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Abstract
An approach to the problem of automated assembly planning and control using artificial potential functions is
described. A simple class of tasks, 2D sphere assemblies, is examined. A constructive theory for the planning
and control of this class of tasks is presented. Computer simulations demonstrate that the approach may
provide surprisingly good performance.
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Automatic Assembly Planning and Control
via Potential Functions

Louis L. Whitcomb and Daniel E. Koditschek •
Center for Systems Science

Yale University, Department of Electrical Engineering

Abstract
A new approach to the problem of automated assembly plan
ning and control using artificial potential functions is de
scribed. A simple class of tasks, 2-D sphere assemblies, is
examined. A constructive theory for the planning and con
trol of this class of tasks is presented. Computer simula.
tions demonstrate the new approach may provide surpris
ingly good performance.

1 Introduction
The automated assembly problem - planning and control
ling the movement of a collection of rigid body parts from
arbitrary dis-assembled initial configurations to an assembled
final configuration - arises in a multitude of commonplace
tasks such as robot assembly of manufactured parts, robot
palletizing, and automated warehousing. The task specifica.
tion consists of a description of the parts (shape, size, dy
namical model) accompanied by a parametric representation
of the final (assembled) part configurations. We will address
three versions of this problem: .

1. The assembly planning problem is the construction of a
collision-free curve in the part configuration space which
joins any initial configuration and final point.

2. The sequential assembly planning problem is the con
struction of a configuration space curve which achieves
the same objectives while only requiring movement of
one object at a time.

3. The assembly control problem is the construction of a
force control law (for a specified robot manipulator)
which effects a collision free part transfer from any such
dis-assembled configuration to the desired assembled
state.

A recently developed class of artificial potential functions
that we have termed Navigation Functions, [5], appears to
provide, in some instances, a simultaneous solution to both
the planning and control problem of automated assembly. If
this approach can be generalized to a broad class of assembly
tasks, it would possess three desirable properties. First, the
problem specification is simply the natural geometric and
dynamic properties of the parts rather than high level in
terpretations of this data such as, for example, an assem-

"This work was supported in part by the National Science
Foundation under a Presidential Young Investigator Award held
by the second author.

bly graph1 [1]. Second, it appears that Navigation Function
based controllers naturally extend to address the sequential
assembly problem where a single manipulator (of relatively
few degrees of freedom) can only grasp a single part at a
time, and thus must achieve a completed assembly via a
sequence of individual part manipulations. Finally, Navi
gation Function baaed controllers preserve collision-free be
havior and would provide the desirable stability and robust
ness properties characteristic of feedback in contrast to their
open-loop counterparts.

This paper reports on a construction and numerical sim
ulations of Navigation Function based solutions to both the
assembly planning and sequential assembly planning prob
lems {or a simple environment. The important extension
to the assembly ce-ntrol problem [2] {or this environment is
the subject of ongoing work. We identify several outstanding
technical issues which must be addressed to put this approach
on a provably correct theoretical foundation.

2 A Simple Class of Problems:
2-D Sphere Assemblies

This section describes a simple class of assembly tasks arising
from a planar workspace inhabited by a collection of movable
rigid disks. In the sequel we will present an algorithm for
planning the collision-free movement of the disks from any
initial configuration to a desired "assembled" configuration.

Each of n balls, which are free to move, is uniquely spec
ified by its positioa bi E m.', radius Pi E m.+, and the com
posite vector of n balls is b E m.'n. Label the desired ball
positions di E m.' and d E m.,n respectively. We necessar
ily assume both the initial and desired states are "legal" 
no balls touch and all reside within the boundary. Figure 1
shows a typical 7 ball assembly sequence from (random) ini
tial configuration to "assembled" final configura.tion. Figure
2 shows a 10 ball assembly.

It must be emphasized that the 2-D sphere assembly prob
lems (and its solutions) are a vast oversimplification of real
world assembly tas.ks. Our hope is that techniques employed
herein might be extended to richer classes of problems of real
practical usefulneas. This paper constitute a. prelude and the
first first modest step in a program of research on automated
assembly and control via Navigation Functions.

IThere i. no reason to hope, however, that any potential func
tion approach will be computationally more efficient than the al
ternative techniques.

-17-
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Figure 1: A Seven Ball Assembly Sequence: Balls in
dicate current configuration b, Lines indicate the ball
paths. Frame (i) shows random initial configuration, (ii)
and (iii) are intermediate configurations, and (iv) shows
final (desired) configuration.

Figure 2: A Ten Ball Assembly Sequence: Balls indicate
current configuration b, Lines indicate the ball paths.
Frame (i) shows random initial configuration, (ii) and
(iii) are intermediate configurations, and (iv) shows final
(desired) configuration.

3.1 What is a Navigation Function?

will asymptotically approach d, without collision, from all
initial conditions except those within the basin of attraction
of the (topologically inevitable) saddle points - a set of mea.
sure zero. (5)

(4)

(3)

(2)

ri(b) = ~II bi - di II"

i=l
j=i

.=n
;-''''
iflj

PCb) = IT Pb,.bj(b)

where the ~(n - 1) functions

and PCb) is given by

First construct the cost function

where reb) is a smooth function which is positive everywhere
except at the point b = d (where it has a value of zero), k
is a design parameter, and PCb) is a smooth function which
is positive everywhere except at those configurations where
a ball makes contact with another body (where it has value
zero).

The function reb) is given by

(1 )b=-V,p(b)

A Navigation Function for 2-D
Sphere Assemblies

3

This section describes the construction of what we believe
(but have not yet proven) to be a Navigation Function, a
term we shall define more precisely, for the class of simple
assembly tasks defined in Section2.

We desire a smooth function'" : IR?n -+ [0,1) from the con
figuration space of the assembly to the unit interval which (i)
attains a uniform maximum value on the configuration space
boundary (those configuration space points which correspond
to workspace collisions) and (ii) has a unique global minimum
at the desired point in configuration space, all other critical
points being isolated saddles. With some additional technical
conditions, this describes the class of Navigation Functions
[5]. Given a function ,pCb) possessing these properties, the
state of

are always positive when the balls are not touching, and zero
when ball i and j touch.

The function c¥(b) is zero only at b = d, positive elsewhere,
and becomes infinite when contact occurs between any two
balls. In contrast, a navigation function takes values on the
unit interval [0,1) e JR. Thus we limit the magnitude of c¥(b)
(and hence its gradient) by taking the composition with a
"squashing" function

3.2 Constructing a Navigation Function
This section describes the construction of a family of func
tions clearly possessing the first property, but not necessarily
possessing the second. Koditschek [2) has recently proven
that property (ii) holds for a one-dimensional version of this
problem. As the simulations in Section 5 will suggest, this
construction appear4 to possess the property for the two
dimensiol'lal case. We surmise that the property holds in
general. feb) = O'(b) oo(b); O'(q) = (_q_) t.

l+q
(6)

-/J'-



4.2.1 Sequential Algorithm: Low Level Part

Define n low level differential equations to be simply the pro
jection of the 2n dimensional gradient (8) onto the if" sub-

4.1 The Gradient Assembly Algorithm
We conjecture that 4>(b) (6) is a Navigation Function. If so,
then trajectories of the gradient dynamical system

(n) the coordinates of an (essentially) arbitrary initial con
figuration to construct a navigation function based planning
algorithm. The algorithms, each utilizing a set of IR2n di
mensional ordinary differential equations generate a colli,ion
free configuration-llpace path to the "all,embledn boll configu.
ration.

Section 4.1 defines a dynamical system whose solution
curves solve the 2-D auembl" planning problem. Section 4.2
extends and modifies this approach to the more practically
useful 2-D ,equential auembl" planning problem.

define collision free paths to the desired "assembledn

configuration-space coordinate d. Thus we propose the eval
uation oftrajectories ofthe ordinary differential equation (9)
as a IIOlution to the a"emblll planning problem. In the se
quel we shall refer to the system (9) as the gradient all,embl"
algorithm.

Note that a solution to (9), denoted bet), is a map from
IR1 to IR2n. The curve bet) ,imultaneou,l" specifies the
time-varl/ing position of every ball, thus describing a chore
ographed dance in which all ba.ll8 move simultaneously. They
appear to cooperatively jostle their way (without touching!)
into the specified "assembled" configuration. Fabricating an
actual robot workcell using this algorithm would require all
work pieces (ba.ll8) to be somehow independently actuated.
We will relax this requirement in the following section.

As general closed-form solution to (9) does not exist, in
Section 5 we will use numerical integration to carefully ex
amine properties of its solution curves.

(9)b= -Vt/>(b)

4.2 The Sequential Assembly Algorithm
In practice, it is not possible for a single robot arm to ,imul.
taneoulIl" and independentl" manipulate, say, a dozen work
pieces. A robot manipulator is typically capable of grasp
ing and manipulating one object at a time. In this section
we present an a.ssembly algorithm which generates assembly
trajectories for which only one part moves at a time. We
shall refer to this as the ,equential a"emblll algorithm in the
sequel. The algorithm repeatedly specifies which part the
robot should grasp. where to move it, and when to release
it. A sequence of such actions will transfer the ball to the
final configuration. Using this strategy we might (i) guar
antee successful completion of the a.ssembly and (n) avoid
collisions while (ill) requiring the robot to manipulate only
one part at a time.

We now propose a two-level hierarchical algorithm to solve
the sequential planning algorithm in which the higher level
will sequentially join solutions amongst n different low level
algorithms. The resulting curves form a continuous collision
free path in configuration space in which only one ball moves
at a time.

3.4 Feedback Control Mechanical Sys-
tems

While the solutions to the ordinary differential equation (1)
represent collision-free paths in configuration space to the
desired "assembly", practical applications require a control
law relating object states to actuator commands (forces and
torques) which will drive the objects to the desired config
uration. It is shown in [4] that we can "lift" the gradient
dynamical system (1) to provide a feedback controller for the
corresponding lagrangian systems which preserves the desir
able properties of collision avoidance and stable "assembly".
Recent work [3] suggests that it is possible to similarly lift
the normalized gradient system.

"?bt/> Vb[u 0 <r(b)] = Vb[-Y(.B + -y");f] (7)

(~(.B + -y")-!p.)[k.BDb[-y]T - -yDb[.Bf] (8)

4 Two Assembly Planning Algo
rithms

In this section we propose solutions to both the a."embl"
planning and ,equential auembl" planning problem for 2-D
sphere assemblies. Each algorithm employs (i) the coordi
nates of a desired "assembled" 2-D ball configuration and

2m the sequel we will omit explicit reference to the indepen
dent variable b where it is clear from context, and use employ the
notation Db(J(b)] to represent the generalized row-vector (or ma.
trix valued) Jacobian of a scalar (or vector) valued function f(b)
with respect to the independent variable b.

3 For example, recall that in the standard double length IEEE
floating point representation, for x smaller than about 10-16 , 1.0+
x =1.0

3.3 Normalized Gradient Dynamics
In practice the magnitude of V4> is often small - values
smaller than 10-20 are commonly observed even in simple
cases. These small gradient norms present two difficulties.
First, since the "speed" ofthe gradient system (1) is precisely
II V 4> II, the system may take an extraordinary amount of
time to converge to the desired point d. Second, numerical
integration of (1), which requires the addition of quantities
which scale with II V 4> II to quantities of order II b II, is limited
by machine numerical precision - and can fail3

•

To remedy this problems, we normalize the gradient vec
tor field by taking its product with the function A = «( +
II Vt/> 11}-1 where £ is empirically selected. The new dynam
ical system b = -A· V4>(b) is free from the performance
problems of (1) described above yet can be shown to inherit
its correctness properties.

Equation (8) consists of two components. The first,
k.BDb[-Y) , is "attractive" and points in the direction of the
desired destination point in configuration space. The second
component, -yDb[.B], is "repulsive" and points "away" from
collisions.

The squashing function u again contains the design param
eter k which will be adjusted in the examples to eliminate
local minima.

Taking the gradient of t/> we have2



space IR? associated with the i'" ball 5 Simulations

where the T ; nt2n
...... nt2n is the transition map from one

"blocked" ball configuration to the next. T is given by

f Here we use x E m.2n to represent the configuration space
state of the high level controller at the i 'th se~uential step to
distinguish it from b.(t), the x-y position of the j' ball at time t.

where O.(x) is function returning the limit point of the i'"
equation (10) with initial condition :1:. Finally, the selection
function C(x) returns the index of that li(x) (11) with the
greatest magnitude.

5.1 A Performance Measure

In this section we present the results of computer simula.
tion study of solutions to the assembly planning problem for
the simple problem class of 2-D sphere assemblies outlined
in Section 2. Section 5.2 examines the performance of the
gradient planning algorithm introduced in Section 4.1. Sec
tion 5.3 examines the performance of the sequential planning
algorithm introduced in Section 4.2.

We have constructed a computer simulation of the above
systems consisting of a numerical ODE integration package
[6] coupled to an interactive graphical interface which pro
vides animated rendering of the complete dynamical system.
The difficulty, and hence performance, of an assembly task
varies with initial and final conditions. We have attempted
to achieve a better than anecdotal understanding of perfor
mance in the following simulations by conducting numerous
trials with random initial conditions. We are thus able to re
port the mean and standard deviations of performance mea
sures as "typical· for a variety of initial conditions.

5.2.1 The Effect of the Parameter K on Path.
length.

The parameter k, which originates as an exponent in (2)
and (6), enters as a scaling coefficient of the "attractive",

In this section we examine two performance aspects of the
gradient assembly system. Section 5.2.1 examines the effect
on path-length of the system parameter k. Section 5.2.2 then
examines the effect of assembly "difficulty" on path-length
performance.

How can assembly performance be measured? The obvious
choice, comparison to "optimal" performance, necessitates
the selection of an appropriate performance metric. Candi
date metrics might include pathlength, time, energy, compu
tational effort, and the like.

For this initial investigation we have employed perhaps
the simplest and most easily measured performance metric
- assembly pathlength. Assembly pathlength is the distance
(in nt2n ) traveled by the spheres from initial configuration to
desired final "assembled" configurations.

Since pathlength necessarily varies with initial condition,
we wish to normalize results with respect to the minimum at
tainable pathlength. Minimum attainable pathlength, how
ever, is difficult to compute in practice. We have instead nor
malized the results with respect to the straight-line euclidean
distance from the initial to final point. and shall term this
measure the "path-length ratio· in the figures. The straight
line path (which might be physically unattainable because
of collisions) is, of course, less than or equal to the mini
mum length collision-free path. The smaller the path-length
ratio, the better the algorithm's performance. Thus, for ex
ample, a path length ratio of 2.0 occurs in the case where
the assembled bodies travel exactly twice as far from start
to finish as would have been required by a straight-line path
in configuration space.

5.2 Performance of the Gradient Assem
bly Algorithm

(16)

(14)
(15)

(13)

(12)

(10)

(11)

o

I.(b); i E {I, ...• n}
Si\h4>

O•• (x n ); in == C(x n )

lim {y(t); iJ = li(y); yeO) = x}'_00

(j; IIIi(x) II = max II I.(x) II}·
l~,~n

b
I.

C(x)

s.

The resulting ball trajectories, comprising a sequential con
catenation of solutions to selected differential equations, are
continuous, piecewise smooth. and require only one ball to be
moved at a time. Of course the actual process of "switching"
workpieces requires that the robot release one object from its
gripper and acquire a different object - often a nontrivial
process. In consequence, in the simulations we will examine
not only the sequential algorithm's pathlength ratio, but the
number of switches required to complete an assembly as well.

4.2.2 Sequential Algorithm: High Level Part

It is the job of the high level algorithm to sequentially choose
from among the i low level differential equations, evaluate
the solution until it "blocks", and then select a different one.
With some abuse of notation', we can write the high level
controller as the discrete dynamical system

It is important to recognize that solutions to the i'" dif
ferential equation (10) are it not simply projections of the
solution of (9) onto the i'" ball's subspace ~. Solutions to
equation (10) specify that the i'h ball move individually along
its component of the overall gradient (9) until "blocked· by
the other j E {l..n}, j 'I- i immobile balls.

where

-20-
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Figure 3: Path Length Ratio VB k for the 7 ball assem
bly of Figure 1. Each data point represents the Mean
and Standard Deviation of 25 runs with random initial
configuration.

kPDb['r), versus "repulsive", "YDb[.8), components of (8). Ear
lier work on a point moving amongst sphere obstacles con
cludes that 4>, (6), becomes a navigation function when k is
sufficiently large. We have observed in simulation (and are
in the pro<:esB of proving rigorously) that values of k above
a context-defined threshold ensure solutions to (9) converge
to the desired point d. Conversely, we have also observed
solutions to (9) do not converge to d for values of k below
this threshold. It is important to understand, in the former
case, how variations in k effect path-length performance.

Figure 3 shows the path-length ratio mean and standard
deviations (for 25 random initial conditions) at five different
values of k for the seven ball assembly of Figure 1. Higher
values of k clearly yield smaller mean path-length ratios and,
from the proportionally smaller standard deviations we may
conclude this relationship is "typical". In this example we
see mean path-length ratios as low as the 1.25 (for the highest
k value), indicating that solutions to (9) have average length
only 25% greater than the straight-line path. Indeed, we
have observed similar performance figures for a great variety
of assemblies.

Figure 4 shows the path length ratios for the more compli
cated ten ball assembly of Figure 2. Here again we observe
the path length ratios to be under 1.25 for high k values.
This is remarkable considering solutions to (9) are guaran
teed to be collision-free, while the (only marginally shorter)
straight-line path may result in collisions, making it physi
cally unrealizable.

5.2.2 The Effect of Assembly "Difficulty" on
Pathlength.

We naturally expected path-length performance to vary with
the "difficulty" of the assembly task - that the closely
packed desired assembly of Figure 5(d) would be more diffi
cult to attain than a loosely packed assembly of figure 5(a).
The function .8(d), (4), is the product of all pairwise dis
tances between objects. Figure 5 shows that .8(d) varies in a
manner that corresponds to our intuitive notion of assembly
difficulty - The tightly packed assembly of Figure 5(d) has
p(d) value of 10-u while an "easier" loosely packed assembly
of 5(a) has .8(d) value 10-2 • More closely packed (harder)
assemblies have smaller /3(d).

Figure 6 shows the resulting plot of path-length ratio

2.1:1

=
I- 2.5

"""0:: 2.2:1

i=
<!)=L.W
....J 1.7!l

:l::
l- I.,
~

1.2>

1.... .... .... 71•• .... .... tH••

K PARAMETER

Figure 4: Path Length Ratio VB k for the 10 ball assem
bly of Figure 2. Each data point represents the Mean
and Standard Deviation of 25 runs with random initial
configuration.

= 1.4
I~K=e;01

I-
~
0::

:l::
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-< 1.1Q..
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LaGle DESTINATION BETA

Figure 6: Path Length vs j3(d) for each of the five 7-ball
assemblies of Figure 5. Each data point represents the
Mean and Standard Deviation of 25 runs with random
initial configuration.

(mean and standard deviation for 25 runs) for five differ
ent values of destination beta. Surprisingly, the path-length
ratio appears to be nearly independent of the assembly .8(d)
value. "Harder" assemblies (having smaller .8(d)) result in
path-length ratios only marginally greater than for "easy"
Qarger .8(d)) assemblies.

Figure 7 shows the result of the same experiment of Figure
6 repeated for five different values of k. This rather compli
cated figure demonstrates two important points. First, the
the insensitivity of path-length ratio to assembly "difficulty"
holds for a wide range of k values. Second, the remarkably
good pathlength performance reported in the previous sec
tion is observed to hold for both easy (large .8(d)) and hard
(sma.ll .8(d)) assemblies.

Of course, path length ratio also varies with the "diffi
culty" of the initial configuration of the &Ssembly parts. We
are particularly interested in examining the performance of
these algorithms in situations where several pieces need to
be moved aside before other pieces can be moved into their
designated position. Thus, we also ran a series of simula
tions whose destinations were tightly packed (small .8(d)) ,
and whose 25 initial ba.ll positions were random permuta.
tions of the desired final positions. This resulted in path
length ratios nearly double those observed for random initial
configurations but with trends otherwise similar to the less

-.2/-
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Figure 5: Five 7-Ball Assemblies of Varying Difficulty: (from left to right) (a) f3(d) = 10- 2, (b) j3(d) = 10-9 , (c)
f3(d) =10-16 , (d) j3(d) =10-28 , (d) f3(d) =10-44 .

adverse cases previously described".
We conclude that the path-length performance of the gra.

dient algorithm is typically no worse than twice the corre
sponding euclidean distance, and thus no more than twice
the optimal length solution as well. Moreover, this surpris
ingly good performance is maintained even in the face of a
variety of difficult (closely-packed) assemblies.
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Figure 8: Switched Algorithm: Path Length Ratio vs
j3(d) for each of the five 7-ball assemblies of Figure 5
for Five k Values. Each data point represents the Mean
and Standard Deviation of 25 runs with random initial
configuration.
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Figure 7: Path Length Ratio vs (J(d) for each of the five
7-ball assemblies of Figure 5 for Five k Values. Each
data point represents the Mean and Standard Deviation
of 25 runs with random initial configuration.

5.3 Performance of the Switched Assem
bly Algorithm

We have constructed a numerical simulation to investigate
the performance of the switched assembly algorithm pre
sented in Section 4.2. Figure 8 shows the means and standard
deviations of the switched algorithm's path length ratios6,
each for 25 runs, at five different fJ(d) values and five dif
ferent values of the parameter k. This figure represents the
switched versioD of the data portrayed in Figure 7. A com-'
parison of Figure 7 (uDswitched) and Figure 8 (switched)
reveals essentially similar performance, with the switched al
gorithm pathlength ratio only 10% greater than that of the
unswitched.

Figure 9 shows the corresponding mean and standard de
viations for the number of switches for the runs of Figure

"In particular, the nwnber of switches when the sequential ver
sion of this algoritlun Wall run in these Calles was not statistically
different from those involving less adverse initial conditions.

6Note that the path-length ratio for the unswitched algoritlun
is with respect to the configuration space euclidean norm from
ini tial to final configuration, whereas the the switched version is
computed with respect to the sum of the individual ball distances.
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Figure 9: Switched Algorithm: Switch Count vs l3(d)
for each of the five 7-ball assemblies of Figure 5 for Five
k Values. Each data point represents the Mean and
Standard Deviation of 25 runs with random initial con
figuration.



8. Here we observe that the number of switches required
to complete an assembly rises perceptibly as a function of
the assembly difficulty. The "easy" assemblies here require
each ball to be switched (grasped, moved, and released) only
about three times, while the "difficult" assemblies have both
a higher mean number of switches as well as substantially
higher variance.

Since a human can easily perform these assembly tasks
with only one or two switches (grasp, move, release) per ball,
the switching algorithm is obviously sub-optimal. It offers
the useful possibility, however, of automatically planning the
manipulation of an assembly with a great many degrees of
freedom with a robot of just a few degrees of freedom. More
over, while this (admittedly sub-optimal) algorithm fails to
compare with human performance in this simple example, we
hope this approach will provide an automatic and construc
tive technique for assemblies of much higher complexity for
which intuition may fail.

6 Conclusion
We have presented an approach to assembly motion plan
ning that holds the promise of providing as well a control
scheme capable of effecting the physical motions needed to
implement the plan. We have explored the performance of
a concrete instance of this approach in a very simple prob
lem setting - re-arranging disks on a plane into specified
finished patterns. Simulations suggest that our algorithms
yield configuration space paths that are typically (in a sta,.
tistical sense) better than within a factor of two of the opti
mal length. Performance varies with a design parameter (k)
whose proper adjustment can apparently deliver configura,.
tion space paths that are typically within 25% of the optimal
length. Somewhat surprisingly, performance appears to vary
little with assembly "difficulty".

Motion sequences for one manipulator commanded to
build an assembly involving n separate bodies have path
lengths roughly 10% higher than those corresponding to si
multaneous motion of all n bodies. The number of "switches"
in these cases seems to increase with assembly "difficulty"
and to decrease with increasing k. In an n body assembly
plan sequence for a single robot, the number of switches in
the cases of even greatest "difficulty" is typically less than n
per body.

As with any exact solution to a task that involves a version
of the generalized piano-movers problem, it must be expected
that the computational complexity of our approaches will in
crease exponentially in the degrees of freedom - in our case,
the number of pieces to be assembled. We have found that
these algorithms run reasonably quickly when the number
of pieces does not exceed ten , but that further increases
cause increasingly significant delays (for example, run times
of roughly 5 min. on a Sun SPARCstation-l for a fifteen
piece problem, the largest we have run to date). In practice,
the salient upper limit on number of pieces appears to be
dictated by the numerical precision of floating point repre
sentation employed. The matter deserves careful attention.

Since the foundation for these algorithms rests upon our
earlier work with Navigation Functions [5], there is good rea,.
son to hope that the trivial geometry of our present task
domain hides neither unforeseen computational complexity
nor unresolvable constructive road blocks when the shape of
the pieces is generalized. Rimon and Koditschek have shown
how to deform simple problems into all topologically equiv-

alent relatives (no matter how geometrically intricate) in a
very simple topology [7]. Rimon has begun to suggest how
to extend the constructions explored here to the topology
resulting from pieces that are not spherically symmetric [8].
We are currently completing a proof which demonstrates that
(6) is a Navigation Function.

We hope to construct a working laboratory implementa,.
tion of these ideas in the near future.
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