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A Distributed Message Passing Computational and I/O Engine for Real-
Time Motion Control

Abstract

This paper illustrates the use of the Yale XP/DCS - a dual board real-time distributed control module based
upon the INMOS Transputer family of micoprocessors - for high performance real-time motion control
applications. The XP/DCS complements the the Transputer’s 1.5 Mflop computational rate and four
independent on-chip 20 Mbps DMA communication engines, by providing a bidirectional latched 32 bit bus
extension with full handshaking support for easy customization of the I/O capabilities of any node. After
contrasting this design with commercially available alternatives we describe three particular applications
presently underway in the Yale Robotics Laboratory. We conclude by reporting some initial experiments
concerning the effect of code distribution and message passing protocols upon sampling rate.
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A Distributed Message Passing Computational and 1/0 Engine
for Real-Time Motion Control

M. Biihler, L. L. Whitcom®, I'. Levin, D. E. Kodilschek '
Cenier for Systems Science
Yale University, Department of Electrical Engineering

Abstract

This paper iltustrates the use of the Yale XP/DCS — a dual-
board real-time distributed control module based upon the IN-
MOS§ Transputer family of microprocessors — for high perfor-
mance real-time motion control applications. The XP/DCS
complements the the Transputer’s 1.5 Mflop computational
rate and four independent on-chip 20 Mbps DMA commnuni-
cation engines, by providing a bidisectional latched 32 bit bus
extension with full handshaking support for easy customiza-
tion of the 1/0 capabilities of any node. Affer contrasting this
design with commercially available alternatives we describe
three particular applications presenily underway in the Yale
Robotics Laboratory. We conclude by reporting some nitial
experiments concerning Lhe effect of code distribution and mes-
sage passing protocols upon sampling rate.

1 Introduction

This paper describes & modular computational engine that has
beeome the workhorse for almost all real-time motion con-
trol tasks that we encounter in the Yale Robotics Laboratory.

Roughly speaking, these tasks amount to the marshalling of -

various data — from external sensors; from user specified com-
mands; from motor joint variables — and rapid computation
involving Lheir appropriate combinations alt in time to pro-
duce molor commands that will ensure high performance co-
ordinated movement of many coupled mechanical degrees of
freedom,

CGur solntion to the exigencies of high performance mo-
tion conlrol rests largely upon the INMOS “Transputer” fam-
ity of microprocessors. To the powerful built-in computation
and conumnunications capabilities of their hardware, INMOS
has added a facile and integrated software/development en-
vironment extremely well suited to the generation of parallel
and concurrent versions of numerically complex algorithms in
a message passing environment. Our contribution to the ex-
isting technology lies in the design and implementation of a
two board set of printed cireuits reflecting the 1/O and mem-
ory requirements of the present applications, Qur purpose in
wriling this article Is to alert control engineers to the intrin-
sie capabilities of Transputer networks in general and the Yale
“XP/DCS” boardset in particular (Section 2); to provide illus-
trative examples of the use and performance of our boards in
specific motion control applications (Section 3}; and to suggest
some of the novel theoretical issues that arise when real-fime
control is effected by a distributed network of message passing
compulers {Section 4},

2 The Yale XP/DCS: Design Require-
ments and Alternatives

Typical servo motors have time constants of between 10 and
100 msec., depending upon the load. While the theoretically
prescribed  Nyquist sampling rate is merely double the fastest
frequency of the system to be controlled, practical wisdom in
the control community has long dictated the choice of an or-
der of magnitude higher [5}: we may thus take 1k/7 2 as the
desired sampling and control update fiequency largel. The
coordination of multiply coupled degrees of freedom cxacts a
surprisingly high computational cost. For example, an “in-
verse dynamics” controller for a six degree of freedom indus-
trial robot manipulator requires roughly 102 flops every sam-
pling interval [6]. This algorithm, then, would require 13 flop
of raw computational capability for real-time implementation.
Since the controller must also sample joint positions and ve-
locities and deliver torque commands to all six degrees of free-
dom, the algorithm assumes that 18 parallel 1/0 operations
ate performed at the rate of 1Al 2 as well. In fact, the compn-
tational requirements of robotics applications are much more
stringent il we are interested in avtonomons rohots and other
machines which possess some greater independence from -
man operators. For example, robot navigation feedback laws
for environments cluttered with obstacles [8] involve real-time
computation which grows exponentially with tle number of
degrees of frecdom [12]. Intultively, it is clear that the closer
we come to an anthropomorphic model of the machine, the
more overwhelming the real-time computational load,

More relevant, perhaps, to the short term opportunities of
the industrial world are recent developments in smart sensor
and actuator iechnology, For example, a new class of “vari-
able reluctance” motors promises relatively large torque/mass
ratios at very low speeds suggesting great improvements in
direct-drive positioning applications through the elimination
of transmissions and lnkages. However, satisfaclory perfor-
mance from these motors requires a great deal of attention
to their commulation and current drive strategies [9], necessi-
tating the dedieation of a single processor to the production
of torque itself in a single motor. Sintilar computational re-
quirements in smart sensor applications will quickly convince
the forward minded engineer that real-titne motion control ap-
plications require not merely coplous computational capacily
but distributed processing and high capacity 1/0 at physically
distinct locations.

Frhis work is supported in part by Inmos Corporation, GAMF
Robotics Corporation, PMI Motion Technologies, Weilek Corpora-
tion, and, in part, by matching funds from the National Sciestce
Foundation under the terms of a Presidential Young Investigalor
Award held by the last anthor,




Two years ago we initiated a scarch for a powerhul, eost
elfective, and casily expandable solution to the problems of
high performance real-time motion control in the Yale Robotics
Laboratory. We sought a system consisting of relatively simple
and affordable nodes, deployed in a reconfigurable network ar-
rangement with high inter-node bandwidth. Since the theory
regarding algorithm partitioning within a parallel processing
environment is still in its infancy, and target control situations
are legendary in their variability, we saw system reconfigura-
tion flexibility as the most imporlant goal, Purthermore, since
robot sensor amd actuator technology is in a state of rapid flux,
cach node would need 1o be easily adapiable to specific digital
and analog interfacing problems. A most important consid-
eration centered around the sofiware and development envi-
ronment, We wanted to experiment with motion control algo-
rithms and emplatically did not want to write real-time op-
erating system kernels or develop our own paraltel fconcuarrent
code distribution tools.The system chosen would need 2 suit-
able high level language that supports parallel processing, and
has capabilities for writing, distributing and debugging code.
Most critically, the hardware associated with the development
and {argel system system needed to be affordable.

The options available in the marketplace were numerous
when we began our search for solutions two years ago: they are
almost bewildering now. Since we feel that our “XI'/DCS” sys-
tem remazing attractive today with respect to the required ca-
pabilities {and particularly with respect to price/performance
criteria) we will present a brief review of commercial alterna-
tives below before describing the nature of our design.

2.1 Technology Review

Given clear upper limits on desired processor power and 1/0
capacity it would seem most desirable to use a single central-
ized CPU. Unfortunately, the open-ended nature of rebotics
research virtually guarantees that any fixed-capacily computa-
tional environment will be quickly exhausted by the ineluctable
desire for more degrees of freedom and more complicated algo-
tithms, Thus, a “granular” incrementally costly control archi-
tecture seems unavoidable,

2.1,1 Shared Bus Based Commercial Products

Comumercial motion controllers based upon the current gener-
ation ol 32 bit microprocessors designed as functional elements
on one of the many shared bus arrangements are currently a
very popular means to this desirable “finer grain” more flexi-
ble and exapandable architecture. As an example consider the
offerings from Ironics Inc.,(Ithaca, NY} a VME board manu-
facturer specializing in multiprocesing applications. Their lat-
est higlt-performance board, the 1V.9001, is designed around
AMD’s RISC 29000 microprocessor. With a tliroughput of
FTMIPS at 25M 11z and 6MFLOPS with the 20027 coprocessor,
the board las enough processing power to handle the range of
tasks in question. The system memory held on a daughter
hoard can have 2,8 or 16 Mbytes of static-column DRAM. Tor
1/0 applications they plan a similar daughter board with pro-
viding 100 Mbytes/sec throughput. Custom IO cards are also
possible, The 1V-9001 base board costs $7995. To that must
be added memory at $1995 for the 2MB board. The price
for the IO daughter board has yet to be announced. The
development system consists of a 68020 based tnix worksta-
tion coupled to a VML chassis via serial link., Code is witten,
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compiled and then downloaded to the target hoards in the de-
velopment chassis, Monitors, and debuggers exist to aid in the
process. The development system pricing with software starts
at $16,000.

Other VME boards using the Motorola 63020 and 68030
CISC parts are somewhat tess expensive but offer tess perfor-
mance. Neurikon Corp. { Madison, W) will provide a 20M1lz
68030 VME cpu card with 4Mb DILAM and a 68882 copro-
cessor for ahout $5600. With the Motorola parts, the floating
point performance hecomes a question for our application. Al
abont .3 MIFLOPS the 68036/68882 won'{ provide the compn-
tationnl power we desire. Although the VME bus has a band-
width specification of 40 Mbytes/sec, a 680x0 hased multipro-
cessor system would probably average no greater than about
3 - 5 Mbytes/sec of available inter-processor communications
bandwidth. Difficulties arise concerning bus latency and the
'partitioning of code in such a system.

Similar considerations apply to the Mulibus. As part of
the IELE 1298 specification for the Multibus 11, the concept
of message passing seeks to accomodate multiple micropro-
cessor systems. A single chip termed the Message Passing
Coprocessor was designed by Intel to enrable any micropro-
cessor {o interface easily to the IEEE 1296 bus. Expected
bus bandwidth is improved over thal of the VME bus to a
respectable 13 MBytes/sec in actual applieations. Costs for
Multibus!t boards are still fairly high however. lleurikon's
HI(BS/M220 board uses the 32 bit (5020 and has 4MB DRAM,
256k EPROM and a 68881 coprocessor and Hsts for $6295.00

2.1.2 Limitations of Shared Bus Archilectures

The high costs per node for thesk commercial VME and Multi-
bus processor hoards represent only one aspecl of their defi-
ciency regarding the intended application. For those probleins
requiring the power of a multiprocessor sohition, the major
lhmitations of these systems stem, ironically, from their fun-
damental strength, the shared bus architecture, or, as it Las
somelimes been described, the “von Neumann bottleneck.”
As more processors are added to a system, the bus’ ability
to service them diminishes. The point at which the number
of processors becomes problemalic varies with the applieation
but problems with bus loading and latency are inevitable fL1].
Faced with these intrinsic Hmitations, designers have increas-
ingly sought te minimize bus traffic as much as possible. Their
solutions take the form of more antoromous "nodes” e, pro-
cessors having more local resources e.g. dedicated mentory ancd
1/0 ports and systems with more eflicient bus handling e.g. the
MPC chip on the Multibus II. The enhanced bus handwidth (
100MB/s) expected with the next generation VME hus, var-
iously called Futurebus or Ruggedbus, will provide designers
some relief but won’t alter the more fundamental constraint
limiting performance for multiprocessor systems.

2.1.3 Summary of Commercial Alternatives

In summary, whichever of the conventional microprocessors is
chosen as the basis of such a customized distributed architec-
ture, all share two big disadvantages. First, they are not de-
signed to be interconnected for parallel processing and thus, by
themselves, do not afford inter-processor communication, Thus
one generally is forced to resort to a bus based approach — the
basic structure for almost all parallel real-time control systems
built in the past. Unfortunately, the bus communication band-
width decreases at least linearly with the number of nodes and




[/O units which arc attached in a parallel fashion. While it
may be feasible to build such paraliel systems with only few
nedes, expandability quickly becomes limited {depending on
the communication requirements of the specific application}.
Second, due to the lack of a suitable language, software issues
hecome more and more problematic as the hardware increas-
ingly exploits parallelism.

22 The Yale XP/DCS Controlier Node

In this seclion we present a deseription of a system we feel
represents a “best fit” of technology to task: a reconfigurable
distributed network of I/O customizable boards costing less
than $2008 each for which a complete off-the-shelf commercial
development environment may be purchased for roughly $5000.
Moreover, since network links are standardized, our nodes may
be trivially interconnected to any of the hundreds of additional
existing third party vended boards based upon this technology.
We have described the design and performance characteristics
of our boards elsewhere in detail [4, 2, and will be content
with a brief sketch here.

2.2.1 The INMOS Transpuier

The choice of the INMOS product line represents a strategy
which standardizes and places the burden of parallelism -—
inter-processor communications support, software, and devel-
opment environnment — around a commercial product, while
customizing the computationat or IfQ “idendity” of particular
nodes by recourse to special purpose hardware.

The Transputer is a 32-bit RISC microprocessor with fast
on-chip RAM, interrnpt and DMA support, an internal archi-
teclure supporting multi-processing, and four high speed DMA
serial interprocessor communication links. The latter capabil-
ity represents the most important feature of this chip relative
to its competitors. The four links circumvent the constraints
of bus based interprocessor communication schemes both with
regard to reconfigurability as well as bandwidth. The result
is a topology to which rodes are added or deleted simply by
physically connecling a four wire serial cable (and a three wire
syslem service eonnection). Through the paraltel processing
constritcts of the associated programming language, OCCAM,
one can equally simply address the software requirements of
process concurrency. Whether multitasking on one {ransputer,
or engaged in parallel implementation on a network of trans-
puters, the desired relationships between software processes
and hardware processors may be specified with ease and flexi-
bility.

2.2.2 The XP/DCS Motherhoard

Our motherboard consists of a Transputer chip, 128 Kbytes
bytes of zero wait state SRAM, address decoding hardware,
and a bus extension connector. We have standardized to the
inereasingly popular Eurocard [orm factor, using a board size
of 100mm x 220mum, the so-called Single Extended Eunrocard,
The rear edge connector is pin compatible with INMOS' eval-
ntalion eards for the TTEM system. In particutar, the four high
speed serial finks are made available on this rear edge connee-
tor. To ensure signal integrity in harsh EMI, two of the links
may be routed to fiber oplic poris located on the board’s front
edge, Current hardware choices limit the fiber bandwidth to
5Mbps, the link speed which will be supported by all trans-
puter family products.

The 1/Q connector located on the lower edgo of {he hoasd,
passes the 32 bit DatafAddress bus with all interenpt-, DMA-,
and bus-contrel lines. Thus any add-on board can to he at-
tached that “fits” the iransputer memory interface. However it
is required that all signals be buffered after the 10 connector,

2.2.3 The XP/DCS I/O board

Virtually every 1/O device is now available with tri state inter-
face, eliminating the need lor a separate latch for each unit, and
permitiing operation in parallel on a common /0 bhus. T'hus,
it became soon clear that in order to similtaneousky maximize
flexibility as well as case of use, we needed a Jateled 32 bit
bidirectional 1/O bus which provides for a virtually unlimited
number of }/O devices with minimal chip count. In order to
further minimize the custom IfO cffort when aceammodating
a specific 10 device, we provide six individually addressable

sets of four latched handshaking output lies ag well as a total
of eight handshaking input lnes. Tn order to prevent arbitrary
latched outputs of the handshaking outpul lines at power up
to cause disaster (for example, enabling a rohot joint while
the torque command is not under control}, these outputs wake
up in a high impedance state and can be jumpered to cither
polarity on the fabricated section of the 1/0 board. For pro-
gramming and debugging convenicnce, all handshake output
lines can be read back.

This implementation provides the user with a maximum
of support for custom /0 needs: Most Lristate 1/0 devices
should be able to interface to this bus without any adiditionat
support chips at all. If desired, several devices can be acecssed
simultaneously: for example, two 16 hit or three 10 hit -
to-A or A-to-D converters could be accessed by attaching the
different chips to different portions of the 1/ bus.

We call the mode previously described the asynchronous
1/0 mode. Devices can be accessed independent of their speed.
A complete [/G cycle would take in this defaull mode would
take about 1 ps, or roughly the time for one flop. Examples of
this mode of aperation are to be found in Sections 3.1 and 3.3
where quadrature output froin shaft encoders is reguired for
motor position control. However, in general the board altows
for direct bus interfacing to the transputer in a mamer that we
call synchronous 1fO mode. This is possible by removing the
bidirectional bus fatehes, An example of this mode of operation
is to be found in Section 3.2 wlhere the 1/0 board carries fast
video nremory.

2.2.4 Esiimated Cost

It is perhaps unfair to compare the cost of commerciatly mar-
keted electronics with “homemade” cquipment. Yet we are
now using a printed circnit version of the XP/DCS mother-
board that has been produced in {small) volume by a local
design company for general use in the Yale Robotics Labora-
tory at a cost of less than $2000 for cach stuifed and tested
board, Surely, given the economies of scale involved in higher
volume production, this represents the upper limit of cost that
would be incurred by a mass market, A printed circuit ver-
sion of the XP/DCS 1/0 hoard discusseid above is presently in
preparation so we have as yel no good cstimate of its volume
cost (present applications use wire-wrap prototypes). In any
event, the danghterhoard concept invites eustomization of /0
capability a very different board has been protolyped for
the transmission of video data in the application describe in
Section 3.2 — and per board cost will vary greatly with the
particular design,




3 Applications

The XP/DCS systen was designed to be the general warkhorse
for real-time motion control experiments within the Yale Robatics
Laboratory. In this section we will briefly review our experi-
ences with three particular robotic devices, References to more
elaborate diseussions of each apparatus will be given in the text
below.

3.1 A Simple Juggling Robot

A program of researcli into dexterous manipulation in intermit-
tent dynamical enviromments [1, 7} leads fo experimentation
with the juggling robot depicted in Figure 1.

The physical apparatus consisls of a puck, which stdes
on an inclined plane and is batted successively by a simple
“robot”: a bar with billiard cushion rotating in the juggling
plane as depicted in that figure. All intelligest scnsor and
controller functions are performed by a fowr node XP/DCS
network.

In order to move the bar according to some puck depen-
dent control algorithm, the puck’s position and velecity in both
directions on the plane must be measured. Presently, this is
accomplished by placing an oscillator inside the puck and buery-
ing a grid in the juggling plane, thus hnitating a big digitizing
tablet. On the back of the plane, a simplified XP/DCS system,
the Puck Seusor Node, is used as a smart sensor, It measures
the voliages induced in the sensing grid by the puck. The puck
position in the plane is computed from the zero and first or-
der moments. This information is used to estimate the puck’s
state: we use a standard lincar gbserver to reduce measurement
noise in position and velocily data. Iach puck state measure-
ment is communicated asynclironously via fiber optics to the
Computation Node. This sampling and communication pro-
cess is performed at a rate of Lkliz (when tracking one puck}.
In the near future we intend to introduce an XP/DCS based
real time sterco vision system described in the next section
in order to move off the plane into three space. We are fairly
confident that the attendant decrease in shinpling rate to G0z
will not affect the experimental resulls significantly.

The Computation Node receives puck state information
from the sensor node, reports fogging data to the logging node,
implements the control algorithm and issaes the resulting de-
sired robot states to the Motor Control Node. Various addi-
tional tasks like detecting the puck mnotion status {up, top,
down, impact), predicting pnck states {both used for extract-
ing logging data} as well as extensive error checking and house-
keeping tasks have to be performed on this node as well. The
sampling time can vary between 500 and 1000 yis. The Motor
Control Node is dedicated to commanding a high torque de
servo actuator {built by PMI Motion Technologies) 2t a rate
of 2kliz.

The experiences with the XP/DCS, the transputer and
the development environment derived from this application are
very enconraging. No single number can capture the ease of
use and the little time spent with system overhead. Given the
T800's intrinsic floating point capabilily, and the mathemati-
cal function library, formulas were programmed {in OCCAM,
the native compiler) almost direetly from the blackboard with
no attempt at code opthmization. In spite of substantial cal-
culations, and a great deal of data logging and error handling
overliead, very high sampling rates were achieved. The system

aperates capably in 2 high EMI environment 1 consequence
of the low cost 5Mbps fiber oplic units from Hewlett Packard
built into the Yale XP/DCS boards,

3.2 A Field Rate Camera System

The need for real time sterco vision arises from our plans to
move to a three degree of freedom robot which jugeles in three
space. The motivation Lo develop our own vision system as op-
pesed to buying some commercial unit is an ontgrowth of that
underlying the original XP/DCS design. Most of the computa-
tional hardware burden is shouldered hy the existing XP/DCS
node: we need merely provide an ceffective interface from the
video signal 1o a motherboard through the bus extension con-
nector described in Section 2.2, In fact, the prototype working
version of the Cyclops system described liere was designed and
tested by twe maslers students working in the Yale robotics
laboratory on a semester project for a compiter archilecture
course offerd in the fall of 1988 {13}, Moreover, as is always true
of “homebuilt” boards, we end up with a much more powerful
and flexible system than could be purchased with our modest
laboratory equipment grants.

Woe have successfully tested the system detailed below in a
tracking task requiring the position and velocities of two “point
masses” moving in three dimensions in structured lighting at
fietd rate (G0 1lz). To the best of our knowledge the only com-
mercially available products which achieve this performance
{3, 10} cost considerably more than the system teported here.
1 We are confident that far more complicated objects may be
tracked at near field rates as well, hut have not yet developed
the necessary software.

Cyclops consists of five main elemenis as depicted in Fig-
ure 2: a camera, a digitizer board, a filter board and one
or more video memory boards, cach of which connects to a
XP/DCS CPUboard. The functions are straightforward —
the camera provides interlaced fields of video data to the dig-
itizer, which converts the analog signal into an eighl hit pixel
stream, accompanied with some synchronizatlion signals, The
video bus containing the pixel stream is brought to the filter
board, Here any two dimensional filter or convolution with
a Gxl14 pixel size window can be applied to the data in real
time. Finally the video data is written into one or several
video memory “daughter boards” where it can be accessed by
an XP/DCS motherhoard over the bus connector. All memory
boards attach to the video bus in parallel: the maximum pos-
sible number is restricted only by drive and noise limitations.

Even though Cyclops satisfies a specific need, it is saili-
ciently Bexible in its operation as to allow its application to
most vision tasks. In order to iltustrate its generality, we will
describe three different distribution schemes for the video fields
and the implications for update rate and latency. By update
rate we mean the rate at which results are computed by any of
the processing boards on the video bus whereas [atency refers
to the total processing time from raw video data to end resui,

Group Mode: the video fields are loaded info all memory
boards simultaneously, Depending on the application, ecach
processor then picks a dynamic or static partition of the Tull
field for processing. A new fleld is loaded alter all processors

!Since the videa memory boards, unlike the XP/DCS motherboards
have not yel been mass produced, it is diflicull to give a good cosl esli-
mate. A complete sysiem incurs ranghly $5000. in electronics parts — a
commercially viahle product might be sold for donble that ameonnt,




have finished processing — thus latency s equal to update rate,

Scan Mode: for many applications, the video data is ot
easily separable into partitions without extlensive inter-processor
communication and deereased performance. In this case one
can achieve an increased update rate while keeping the same
latency as with only one memory board by sequentially scan-
ning successive ficlds into different memeory boards, Maximally
cight memory boards can receive ditferent fields,

Mized Alode: this mode combines scan and group mode.
Successive fields are scanned into groups of boards as opposed
to into single board as in scan mode. This reduces latency
when compared to the scan mode.

3.3  An Industrial Robot Manipulator

An advanced rebot controller based on the XP/DCS is under
construction for botl testing new robot control algorithms and
investigating issues of distributed real time control. Tor this
task the GMT Robotics Model A-500, a four degree of freedom
SCAILA type ann, was chosen as the target mechanical unit.
A more detailed account of this work may be found in [14}.

Like virtually alt currently available robot systems, the
original A-500 system controller provides an integrated high
level user interface which serves admirably in industrial appli-
cations, but precludes the low level servo intervention which
is neaded in the research laboratory., For our experiments it
is necessary Lo be able to directly and independently specify
the torque being delivered by each joint of the robet. Since
the original control system does not alfow this type of inter-
face at any level, it was necessary replace the manufacturer’s
control system with our own system. For each of the rohot’s

joints, the new interface consists of a dedicated XP/DCS node
which dircctly commutates {in software) the currents in the
DO brushless motors at the robot joints. The system block
diagram for a single joint is shown in Figure 3.

A primitive protacol has been defined for the interface be-
{ween the servo transputer and the control network, thus ab-
stracting them as “perfect actuators” which report their state
in floating point units of radians, and receive torque commands
in floating point units of Newton-meters. The simple servo
I/O structure gives the designer a clean interface to experi-
ment with high fevel control algorithm design and implement
arbitrary netwerk topologies using standard INMOS compat-
ible nodes. We have found this approach to offer a powerful
and flexible environmment superior to bus-based multiprocessing
environments, The speed and sinplicity of processor intercon-
nection has proven indispensible in the ease of rapid prototyp-
ing and testing of network concepts. The relation of the controt
network to the fow level servo nodes is Hiustrated in Figure 4
which depicts a topology we have found particularly well suited
to implemeniations of the “computed torque” algorithm.

4 Conclusion

The XP/DCS has considerably advanced our real-time con-
trol capabilities within the Yale Robotics Laboratory both
with respect to computational power and simplicity of deploy-
ment, We have sketched in Section 2.2 a hardware design based
upon the INMOS Transputer yiclding a karge number of 1.5
MAop engiites, cacl possessed of zero wait-state direct mem-
ory mapped 1/ capability whose cost {at time of wriling) is
less than $2000 each. Since typical robotic actuators and in-
telligent sensors cost at least twice this amount our strategy

of assigning (al least) an individual XP/DCS node to cach
such device can be easily defended against eriticisms of profli-
gacy in today's research environment, Given the historically
accelerated decreases in electronics cost relative to mechanieal
hardware we may confidently predict this strategy’s comier-
cial cost effectiveness as well within a few years time. We have
provided an incomplete but illustrative review of commeercial
allernatives to the XP/DCS strategy in Section 2.1 suggesting
that our design is less than half the present cost of anything
comparable to be found on the market. More critically, as we
point out in that section, given the intended level of granular-
ity in deployment, our Transputer based design scems to offer
the only alternative to the cantradiction between more proces-
sors and higher communications traflic intrinsic to shared bus
paratielism.

A uniform, geanular, computationally powerful system of
individual nodes with completely reconfignrable interconnec-
tion network focusses research attention upon innovation in al-
gorithm design and physical experimentation rather than code
optimization, operating system hacks, and interface hardware
devélopment, ‘The diverse applications presented in Section
3 — a siandard industrial manipulator; a frame-rate storeo
vision system; » novel juggling robot — suggest just how ver-
satile tlis notion of a Maboratory workhorse” can be. Since
each physical device with its dedicated XP/DCS node lias the
compattationat identity of yel another Transputer in the net-
work, the standard INMOS concurrent development environ-
ment and network debugging tools may be applied directly.
Once a device has been “wedded” to its compuiational mate,
the integration or re-assignment to another assembly or ex-
perimental apparatus is no harder than disconnecting and re-
connecting the twisted pair or fiber-optic cables that form the
network links,

There do, however, seem to be a number of new theo-
retical issues concerning the eflicacy of real-time controllers
whose only mode of communication consists of messages passed
around a distributed network (as opposed, for examptle, to the
possibility of “instantaneous” hroadcasts or shared memory
schemes made possible by the single bus architectures we re-
jected in Section 2.1}. In a recent paper {14] we have added to
the familiar and contrasting notions of wupdele rele versus la-
teney the stightly more refined distinetion hetween self lntency
and eross latency in a distributed real-time mossage passing
controller. Self latency is, roughly speaking, the average time
it takes a given node (or set of nodes) in the control network to
adjust the output commands it is producing to the nature of
new sensory data received locally. Cross latency, by contrast,
is the average time it takes a given node (or set of nodes) to
adjust the ontput commands it is producing in response o
sensory data received at a distant node (or set of nodes} mwul
transmitled via a message across the network. We have found
experimentally that slight variations in code distribution and
message passing protocols can have dramatically different ef

fect upon the resulting nectwork lafeney matrir . 1L is to bhe
expected that the the network latency matrix — a muck more
complicated variation on the familiar theme of controlier time
constants — will, in turn, lave a noticeable impact upon the
resulting closed loop behavior of the controlled system. We
suspect that the effective design of real-time controllers built
from distributed message passing nodes, attractive though such
hardware may be, will require a careful analysis of which net-
work latency properties are desirable and how they may be
guaranteed by appropriate principles of synthesis.
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