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Comparative experiments with a new adaptive controller for robot arms

Abstract
This paper presents a new adaptive controller and proof of its global asymptotic stability with respect to the
standard rigid body model of robot arm dynamics. Experimental data from a study of this and other globally
asymptotically stable adaptive controllers on two very different robot arms (i) reconciles several previous
contrasting empirical studies (ii) demonstrates and compares their superior tracking performance (iii)
examines contexts which com promise their advantage.
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International Conference on Robotics and Automation

Sacramento, California - April 1991

Comparative Experiments with a
New Adaptive Controller for Robot Arms

Louis L. Whitcomb, Alfred A. Rizzi, Daniel E. Koditschek *
Center for Systems Science

Yale University, Department of Electrical Engineering

Abstract

This paper presents a new adaptive controller and proof of
its global asymptotic stability with respect to the standard
rigid body model of robot arm dynamics. Experimental data
from a study of this and other globally asymptotically sta­
ble adaptive controllers on two very different robot arms (i)
reconciles several previous contra.sting empirical studies (ii)
demonstrates and compares their superior tracking perfor­
mance (iii) examines con texts which com promise their ad­
vantage.

2

3. Model-based algorithms which feed forward reference
trajectory information rather than actual state infor­
mation yield significant performance benefits when the
controller model is valid; they fail dramatically (in rel­
ative terms) when the actuator model is violated (i.e.
under actuator torque saturation).

4. The degree of performance improvement afforded by all
model-based algorithms is strictly limited by the accu­
racy of the plant model employed.

Background Theory
1 Introduction

Several years ago a flurry of activity amongst robotic control
theorists [6, 23, 21, 27, 11] resulted in a new class of adaptive
controllers for robot arm manipulators. These algorithms
comprised the first in the literature whose stability could
be proven rigorously with respect to the highly nonlinear
rigid body dynamical model. While many of these authors
empirically demonstrated significant performance gains over
traditional PD controllers, no systemat.ic empirical compar­
isons between the provably correct rigid body model-based
schemes, as applied to various robot. plants, seem to have
been at.tempted.

The purpose of the present. paper is threefold. First., we
wish to present a new rigid body model-based adaptive con­
troller that achieves a slight but pot.entially significant the­
oretical advance over past contributions. Second, we offer
the first (to the best of our knowledge) empirical compar­
ison within this family of closely related but conceptually
and algorithmically distinct adaptive controllers. Finally, we
compare the performance of the family when implemented
upon a typical industrial manipulator SCARA arm with that
achieved upon our new "Yale Biihgler" three degree of free­
dom direct drive jnggling robot. Our data corroborate in
part claims made both by the proponents and the detrac­
tors of model reference a.dapt.ive con trol for robot arms. In
particular they suggest til at

1. The tracking performance of rigid body model based
controllers is generally superior to conventional PD al­
gorithms.

2. Adaptive model based control algorithms consistently
outperform their non-adaptive counterparts. There is
only marginal performance distinction between the var­
ious adaptive controllers.

"This work was supported in part by SGS Thomson-INMOS
Corporation, The Superior Electric Corporation, GMF Robotics
Corporation, and the National Science Foundation under a Presi­
dential Young Investigator Award held by the last author.
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The multitude of adaptive algorithms that have been pro­
posed over the past decade prohibits our consideration of the
literature as a whole. We have therefore restricted the scope
of our investigation to those whose asymptotic stability with
respect to the commonly accepted exact rigid-body nonlinear
robot dynamical model has been established. We were un­
able to implement any of an entire class of provably correct
adaptive algorithms based on exact adaptive linearization as
developed in [6, 19, 17] which require instrumentation of joint
acceleration.

Adopting the error coordinates, e = [el, e2]T = [r - q, T ­
g]T, the control algorithm used almost without exception in
every industrial robot available today is the proportional­
derivative linear controller, labeled PD in the figures of Sec­
tion 4, and given by Tpd = Ke;K = [K1 ,K2]'

2.1 Model Based Algorithms

2.1.1 ID: Fixed Nonlinear Inverse Dynamics

As of this writing, the most generally discussed algorithm to
achieve robot tracking is the "computed torque controller"
[9, 15]

where the matrix M(qJ) represents joint inertial terms,
C(ql, q2) represents coriolis terms, and the vector g( qJ) rep­
resents gravitational terms in the usual model, resulting in
asymptotically stable linear time invariant error dynamics,
and thus asymptotically exact tracking.

We shall use, instead of (1), a less well known variation,
(2), labelled ID in the figures of Section 4 which provides
for asymptotically exact tracking without exact linearization.



We choose this approach because it admits of adaptive exten­
sions which are globally convergent in both state and param­
eter error, unlike adaptive versions of (1) which have been
shown to be globally convergent in plant state error and only
locally stable in parameter error [6].

The equation (2) can be equivalently written Tid =
W(ql' q2, r, r)O· + Tpd where O· is a vector of robot iner­
tial parameters and W (ql , q2, T, r) a nonlinear matrix val­
ued function determined by the robot kinematic parame­
ters. Note that a straightforward use of total energy for
the non-autonomous closed loop system resulting from (2) is
not a satisfactory Lyapunov function as its time derivative is
merely negative semidefinite.

2.1.2 IDC: "Critically Damped" Fixed Nonlin­
ear Inverse Dynamics

If the PD component of (2) is chosen in a "critically damped
manner," K = K2 [A, I] with respect to this first order sys­
tem 1 and the following feedback law is employed

(3)

the resulting closed loop error system has been shown to be
globally asymptotically stable with respect to both state and
parameter errors [23, 21].

2.1.3 IDCA: Adaptive Critically Damped Non­
linear Inverse Dynamics

Following the presentations in [23, 21] define a new reference

signal ;, = r+ Ael, and notice that IDC (3) may be equiva­

lently written T,de = W(ql,q2,r·',;·')O· + Tpd. Equipped with
a stability argument for the case of known parameters, the
IDC algorithm (3) an adaptive version of (3), labelled IDCA
in the figures to follow is

IDC algorithm (3) leading to the adaptive controller IDCA
(4) of [21, 23]. In contrast, the absence of a satisfactory
stability argument for the ID error system has stalled the
development of an adaptive version of ID (2),

Tida ~ W(q, q, r, i')B + Tpd, (6)

that we shall refer to as IDA in the sequel. The question re­
mains whether some adjustment law can be found for Bthat
yields global asymptotic stability in both state and parame­
ter error.

In point of fact, at least three different groups [12, 26, 24]
have developed strict Lyapunov functions for the ID error
system Each group independently arrived at (essentially) the
same idea (first expounded by Arimoto [24]) of adding to the
total energy a cross term that is bilinear in position and ve­
locity. Unfortunately this is not a global Lyapunov function:
it requires some it priori known bound (which can be arbi­
trarily large) on the initial position error magnitude, el. In
consequence, the adaptive version of ID (2) offered by Ba­
yard and Wen [27] based upon this Lyapunov function suffers
from the requirement of an it priori known bound (which can
be arbitrarily large) on the initial parameter error magnitude
as well.

Two years ago, Koditschek [13] presented a new strict
global Lyapunov function for general mechanical systems
that includes in its general purview the ID error dynam­
ics. The specialization of the general idea to the present case
amounts to nothing more than a modification of the bilin­
ear cross term of the strict (but local) Lyapunov function
[24, 26, 12], as will be seen below. Using this new Lyapunov
function, we derive in this section an adaptive law to accom­
pany the IDA controller (6) that yields global asymptotic
stability in the state and parameter errors.

2.2.1 A New Lyapunov Function

Now consider the modified Lyapunov candidate,

2.2 IDA: A New Adaptive Controller

1 We continue to assume that J{2 has a positive definite sym­
metric part.

As matters stand, there is some reason to reconsider the
problem of adaptive versions of the ID algorithm (2). A sat­
isfactory theory has been developed for the more specialized

(7)

Define the adpative law for (6) to be

~ T
0= KgW [e2 + fel].

2.2.2 Stability of the New Algorithm

where

)
b. fO

f(el = 1 + Ilelll'
Note that a sufficiently small choice of fO guarantees that
this is a positive definite function with respect to the error
coordinates, el, e2, for any time varying trajectory, q(t). The
reader is referred to [29] for the complete proof.

The scalar valued function

v ~ -0 + ~OTK;lO,
2

has a derivative along the motion of the full adaptive system,

i..J = -eJ (K2e2 +we) + feJMe2 - fey [Ce2 + Ke +we] +
feT if e2 + ieTM e2 +8TI<;lB

~ -fQllel12 - [e2 + fel]T we + oT K;lg
~ -fQlleI1

2
,

(4)Tidea = W(q, q,;/, ;'/)B + Tpd

8= Kg W(q, q,;/, ;'/ f K:;l K e.

2.1.4 IDRA: Pure Feedforward Versions

Tidra = W(r, T, T, 1')B + Tpd + O"nllel12 K:;l Ke (5)

8= KgW(r,T,T,r)T K:;lKe

Several researchers [22, 26] have observed that a substitution
of reference information for state information in the feedfor­
ward portion of (2) can still provide asymptotically exact
tracking. This algorithm will be denoted IDR in the figures
below. Moreover, a pure feedforward version of the adap­
tive algorithm, denoted IDRA in the figures below, has been
presented in [22].



that is non-positive 2

It follows that v is bounded, hence, VEllell is an .[2 func­
tion [18]. But an .[2 function whose derivative is bounded
must tend to zero [18], hence Ilell -+ 0 as desired.

3 Experimental Setup

We will study the performance of the controllers imple­
mented on two different robots. The first, the Yale-GMF
A-500 Industrial Arm, is a classical industrial manipulator
as described in [28]. The second, the three degree of free­
dom direct drive Yale Biihgler3

, was designed to support our
research program in robot juggling [5, 4, 20] .. The very dif­
ferent tasks for which these machines were designed result in
two significantly different mechanical systems. It seems valu­
able to compare the performance of the algorithms described
above on these two very different machines.

Figure 1: The Yale Biihgler Arm

The computational hardware for these implementations
is a network of Yale XP IDeS nodes [8], a distributed real­
time controllers based upon the SGS-Thomson INMOS T­
800 Transputer IMflop floating point microprocessor. The
particular architecture used for the experiments discussed
here is detailed in [28].

The model-based controller implementations described
herein employ the exact Lagrangian dynamical equatious, for
fully general link inertial tensors, without omission of a. single
term. A set of symbolic derivation programs both automat­
ically generated the dynamical equations and translated the
resulting symbolic expressions into the high-level language
used in the real-time controllers. The control laws were all
exactly evaluated at two time scales - the feedback terms
at 1KHz and the model-based terms at 400Hz. It should
be pointed out that in our present two-node implementation
of the high level controller, we can easily run the feedback
portion as fast as 2KHz, but the somewhat lower bandwidth
of the analog electronics limits the (expected) performa.nce
benefits of these higher sample rates.

4 Experimental Results

achieved by each of the seven controllers described in Sec­
tion 2. The ensemble of runs over which these descriptive
statistics are gathered comprise ten very different reference
trajectories - different not only in frequency content, but in
the region and volume of jointspace they encompass. The re­
sults are normalized for convenience with respect to the sim­
ple PD controller since all physical significance of the joint
angle errors is vitiated by the diversity of trajectories being
compared.
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Figure 2: Biihgler Normalized Position Error Norm En­
semble Mean and Stdandard Deviation Over Ten Differ­
ent Reference Trajectories for Seven Controllers

Note that the (identical) feedback gain matrices employed
for all controllers were considerably lower than the the limit
dictated by the usual tuning process. We were interested
in comparing the relative performance of the different con­
trollers in an unbiased fashion, and did not push gains to
the verge of instability to obtain the smallest tracking error
magnitude. Higher feedback gains were observed (of course)
to provide uniformly smaller steady state tracking errors,
bu t iden tical relative performance between the various con­
trollers.

4.1 Data Presentation and Repeatabil­
ity

It has become accepted practice in the robotics community
to compare controller performance by the visual examination
of tracking error curves as a function of time for a "repre­
sentative" or "standard" reference trajectory. vVe wish to
compare tracking performance over a variety of reference tra­
jectories. We have employed the scalar valued .[2 norm -

.[2[e(t)] = (t It: Ile(t)11 2 dt)! - an objective numerical mea­

sure of tracking performance for an entire error curve. The
norm measures the root-mean-square "average" of the track­
ing error, thus a smaller .[2 norm represents smaller tracking
error - and thus better performance.

In general, the performance of each model based controller is
improved roughly fifty percent by its adaptive counterpart as
shown in Figure 2. Of course, a fair comparison between the
fixed and adaptive model based algorithms is complicated

The overall conclusion to be derived from these experimen ts
is probably best summarized by Figure 2. This plot depicts
the mean and variance of root mean square position errors

2Where Q is a positive constant depending on known bounds
as in [29].

3byoog'-ler.

4

4.2 Performance Benefits Due to the
Adaptive Algorithms



RADIANS x 10-3

Figure 3: Biihgler Position Error Norm (Radians) vs
Reference Trajectory Frequency-Multiplier
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A comparison of the breakdown of typical tracking error for
(direct drive) joint °and (gear drive) joint 1 for the A-500,
as shown in Figure 5 and 6 respectively, reveals striking dif­
ferences. Figure 5, representing the position error norm for
(direct drive) joint 0, shows all model based controllers per­
forming significantly better than the PD controller - the
distinction increasing with nominal reference trajectory fre­
quency. In contrast, Figure 6, representing the position error
norm for (gear drive) joint 1, shows only marginal improve­
ment.

We attribute excellent tracking performance of Joint °to
the relevance of the rigid body model. Conversely, the rela­
tively poor tracking performance of joint 1 under the model
based controllers may be attributed to the completely un­
modeled dynamics of its actuator - consisting of a 47:1
spiroidal gearbox and DC motor. This conjecture is sup­
ported by the uniformly superior tracking performance of all
joints under the model based controllers for totally direct­
drive mechanical unit presented in section 4.2. The spiroidal

4.4 Contrast Between Direct-Drive and
Geared Joint Performance

0.00 ---.,..---+---'I"'"----j----~-

300.00 .=-+---+-....;:=~+---l-=-~I---

In fact, incorrect parameter values may result in poorer
performance than that of PD control. Figure 4 shows the
error norms for link 1 of the Biihgler obtained with the same
reference trajectories, controllers, and initial parameters as
Figure 3. Here the "gripper payload" was removed from
the distal link, and the resulting parameter mismatch de­
grades the non-adaptive controller performance. The adap­
tive controllers, in contrast, compensate automatically for
the change.

Figure 4: Unmatched Parameters: Biihgler Link 1 Po­
sition Error Norm (Radians) vs Reference Trajectory
Frequency-Multiplier

2S0.00 -IF::--i---t-

sign capability.
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100.00 .~+---+-~~+---HIE'!'""---I---

4.3 The Effect of Incorrect Parameter
Values

It is commonly agreed that effective non-adaptive model­
based control relies on the availability of correct model pa­
rameter values. A common misconception, however, is that
"any model is better than none" - that an "approximately
correct" parameter set will result in better tracking than that
obtained by PD control alone.

IS0.00 .=--i---t-IE~-l---HIE:--f---

I'n--­
4S0.00 --+---+---+---+---I---to-­

IDT.­
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IS0.00

100.00
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0.00

by the issue of where to obtain the necessary parameter es­
timates for the former class. When hand-measured phys­
ical link-mass and link-inertia measurements are used, the
adaptive algorithms evince clearly superior performance as
shown, for example, in the higher frequency columns of Fig­
ure 5. On the other hand, when the fixed model controllers
are given parameters resulting from their adaptive counter­
parts' convergence over a long run, it is not surprising that
the adaptive controllers perform little better if at all. Yet,
since parameters "optimally tuned" for one reference trajec­
tory are in general "sub-optimal" with respect to any other,
the fixed controllers always perform less capably than their
adaptive counterparts in any other context. This is reflected
not merely in the lower means of Figure 2, but in the compar­
atively smaller variance of the adaptive algorithms relative
to their fixed parameter counterparts.

The reference trajectories were sinusoids, and the error
norms are plotted at three different nominal reference tra­
jectory frequencies. The frequency range was chosen to in­
clude slow, friction-dominated operation at at one end to
dynamics-dominated operation at the other. In this plot the
slowest frequency corresponds to peak gripper velocity of 0.5
meter/second, and the highest frequency corresponds to peak
gripper speeds of 3.0 meters/second. The model based con­
trollers provide tracking performance superior (smaller error
norm) to conventional PD control at equal feedback gains.

Amongst the model based controllers (both fixed and
adaptive) the IDR and IDRA (see section 2.1.4) controllers
which utilize reference trajectory values in their plant model
are uniformly outperforming the controllers which use sen­
sor values in their plant model. We can attribute the poorer
performance of the latter algorithms to the noisy velocity sig­
nal, obtained via numerical differentiation of encoder posi­
tion, used in their evaluation, in contrast to the uncorrupted
reference trajectory velocity signal used in the former case.
As demonstrated in [29]' however, these controllers are more
easily destabilized by commonplace model defects such as
actuator torque saturation.

The IDC and IDCA controllers are seen to marginally out­
perform the ID and IDA controllers respectively. This consis­
tent difference, due to the differing error feedback structure
of the two algorithms, is discussed in [29].

Finally, adaptive controllers were observed to be less ro­
bust than the non-adaptive controllers in the presence of cer­
tain unmodeled effects such as link vibration modes, actua­
tor saturation, numerical integration, and the like which may
occur when the reference trajectories exceed the system's de-
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4.5 "Long Term Memory" Effects
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'vVe tried a variety of reference trajectory combinations
to find examples evoking a transient response in which the
ID controller outperformed its adaptive counterpart. 5 Fig­
ure 7, shows the instantaneous position error norm for the
transition between extremely slow sinusoids (friction domi­
nates) on the left, and fast sinusoids on the right (dynamics
dominates). Given a sufficiently long interval on the slow
trajectories (300 seconds in this example), the IDA adaptive
parameters drift was sufficient to produce a larger transient
excursion than the ID controller. Within a few seconds the

Figure 7: Long Term Memory Effects: Biihgler Instanta­
neous Position Error Norm (Radians) vs Time (Seconds)
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4 Implementation of representative "learning" controllers falls
beyond the scope of the present investigation. Thus tlUs discus­
sion will focus on revealing the nature and extent of the above­
mentioned defects in model-based controller performance.

5The excellent ID performance in these plots reflects the use
of a nearly "optimal" fixed parameter set. Note that it would
have been easy to "stack the deck" against ID by giving it a poor
parameter set - resulting in arbitrarily poor ID performance.

are unable to apply the knowledge of "learned" parameters
to any but the original task. While much of the early work
in this area was heuristic, recent results directly address sta­
bility and robustness [2, 16], thus establishing some of these
techniques as theoretically sound alternatives to model based
adaptive robot control.

In contrast, the adaptive robot controllers' "learning" pro­
cesses (parameter convergence) occur simultaneously with
task execution, obviating the need for a separate "learn­
ing" phase. Moreover, after achieving parameter conver­
gence, they can (in theory) apply this knowledge to track
any smooth reference trajectory. In practice, however, these
advantages are compromised by the following effects. First,
adaptive parameter convergence relies on richness properties
of signals within the system [18] that commonplace work­
place tasks may fail to produce. Second, we observe in prac­
tice that adaptive parameters converge to slightly different
"optimal" values for differing reference trajectories, rather
than converging to a single value for all rich trajectories, and
exhibit (theoretically disallowed) transients when transition­
ing from one reference to another. 4

'vVe demonstrate these effects as follows. After running
the robot long enough to establish steady-state tracking of a
selected trajectory, an analytic "switch" ( arctanO and its
derivatives) smoothly transitioned the controller reference to
a second, different, signal. 'vVe can thus observe the tran­
sient response of the various controllers when transitioning
b.etween any two (possibly very different) reference trajecto­
nes.

FREO-MULT
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8.006.00

6.00

4.00

4.00

2.00

2.00

Recently, a fundamentally different set of "learning" tech­
niques - neural networks [10, 7]; memory-based learning
[3]; and repetitive learning [2, 16] methods have challenged
the hegemony of Lagrangian model-based methods in robust
controller design. The principal advantage of the "learn­
ing" control algorithms would be the promise of accurately
controlling enormously complicated plants without explicitly
modeling the plant's underlying dynamics. Their disadvan­
tage is the need to repetitively learn each unique task - they
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Figure 5: A-500 Joint 0 Position Tracking Error (!lad.)
vs. Reference Trajectory Frequency-Multiplier

Figure 6: A-500 Joint 1 Position Tracking Error (!lad.)
vs. Reference Trajectory Frequency-Multiplier

gear box used in joint 1 of the A-SOO is, in fact, a dynami­
cally simple mechanism with only two moving parts, provid­
ing very high stiffness and (unfortunately) a noticeable back­
lash. It is not surprising that other researchers have observed
more curious (and even repeatable) performance defects in
robots with more complicated actuator systems, e.g. [IA].

The relatively poor showing of the model based controllers
at low velocities of Figure 6 (in com parison to their excellen t
showing in Figure 3) occurs because former controller did
not incorporate a friction, while the latter included a linearly
parameterized model for coulomb and viscous friction. A
complete discussion of these effects in [29] demonstrates the
necessity of incorporating friction models for accurate low­
speed tracking.
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j DA con troller recovers to equal the performance of the ID
controller, and it becomes superior at steady state.

We conclude that the performance of model-based, and
i 11 particular adaptive model-based, controllers is not seri­
ously compromised by the imperfect parameter convergence
mentioned a.bove. The adaptive controller usually outper­
rorms both its non-adaptive counterpart as well as PD con­
tro\. We ,Hgne that the worst-case "defects" of the a.daptive
'l.]gorithms (brief transients) are relatively innocuous in com­
parison 10 their demonstrated advantages over all of the fixed
con trollers.

5 Conclusion

This paper has reviewed the stability literature for a class of
model reference parameter adaptive controllers for robot arm
manipulators based upon the ID (2) variant of the popular
computecl torque algorithm (1). It provides for the first time
a rigorous and global stability proof for IDA (6), a member
or this class that has heretofore eluded a complete analysis.
C;ompa.r;tlive experiments of all these variants have been per­
rormed Oil it standard industrial SCARA manipulator a.nd a
rast direct. drive robot arm developed at the Yale Robot.ics
Ltboratory. The highligh t.s of the observations of Section 4
having heen previewed in the introduction of the paper, we
will only briefly summarize and amplify here.

Fixed model based controllers dramatically outperform
the PD controller and their adaptive counterparts perform
still better. Thus, if a designer is committed to a computed
torque-like controller, since the (computationally intensive)
IV terms of (2) must be computed anyway (and since the
parameter adaptation integrals represent very minor addi­
tional computational burden), the adaptive variant should
he preferred.

The degree of performance improvement afforded by
11Ioclcl-based aJgorithms is strictly limited by the accuracy
or t.he pl,LIlt model employed. For example - the failure of
the commonly accepted Lagrangian rigid-body model to rep­
reseu t rCid-world effects such as joint friction, actuator satu­
ration, gearbox dynamics, and actuator dynamics is shown to
result in lackluster performance indistinguishable from con­
ventional PD algorithms. When better models are incorpo­
rated, performance benefits are immediate.
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