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Abstract
We present a working implementation of a dynamics based architecture for visual sensing. This architecture
provides field rate estimates of the positions and velocities of two independent falling balls in the face of
repeated visual occlusions and departures from the field of view. The practical success of this system can be
attributed to the interconnection of two strongly nonlinear dynamical systems: a novel triangulating state
estimator; and an image plane window controller. We detail the architecture of this active sensor, provide data
documenting its performance, and offer an analysis of its soundness in the form of a convergence proof for the
estimator and a boundedness proof for the manager.
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An Active Visual Estimator 
for Dexterous Manipulation 

Alfred A. Rizzi, Member, IEEE, and Daniel E. Koditschek, Member, IEEE 

Abstract-We present a working implementation of a dynamics 
based architecture for visual sensing. This architecture provides 
field rate estimates of the positions and velocities of two inde- 
pendent falling balls in the face of repeated visual occlusions and 
departures from the field of view. The practical success of this 
system can be attributed to the interconnection of two strongly 
nonlinear dynamical 
systems: a novel triangulating state estimator; and an iniage 
plane window controller. We detail the architecture of this active 
sensor, provide data documenting its performance, and offer an 
analysis of its soundness in the form of a convergence proof for 
the estimator and a boundedness proof for the manager. 

I. INTRODUCTION 

E have built a three degree of freedom robot that W bats two balls into simultaneous stable periodic ver- 
tical trajectories that commonly continue for greater than an 
hour [26]. The juggling algorithm underlying this behavior 
relies on continuous estimates of ball position and velocity. 
This paper examines both the practical and theoretical issues 
involved in generating these estimates from a stereo camera 
system that views brightly illuminated white balls against a 
dark background. Despite this structured visual environment 
there remain a number of significant issues surrounding the 
efficient acquisition and use of camera data to generate the 
required information in a timely manner. Specifically, we have 
developed both a rational attention management scheme and 
a novel triangulating observer that ensures a stable flow of 
information even in the presence of unavoidable transient 
losses of data. 

At a time when many in the robot vision community are 
exploring the benefits of “visual servoing” or have found 
the need for including attention mechanisms in their camera 
architectures, we offer this account as documentation of a par- 
ticular system which seems to incorporate most of the essential 
features of an “active sensor” yet remains simple enough 
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to permit some formal analysis. Developing an architecture 
amenable to analysis yields a system whose run time behavior 
can be understood within a simple paradigm. This in turn has 
greatly expedited the inevitable debugging and gain tuning 
cycles in our laboratory. 

Developing and reasoning formally about this specific sys- 
tem interests us more generally in view of the apparent need to 
develop a theory and practice of “dexterous robots.” This term, 
as we understand it, denotes an autonomous machine capable 
of interacting with a dynamical world. The strategies of general 
interest to us are feedback algorithms which specify the 
manipulator’s actions at each instant in time as a function of 
its current state and that of the world. For a juggling machine, 
the world’s state reduces to the current position and velocity of 
one or two balls and the task of estimating this state forms the 
narrow focus of the present paper. It is our belief that a much 
larger range of dynamically dexterous tasks (of which juggling 
is but a simple example) will necessitate the ability to generate 
timely and accurate estimates for the state of a dynamical 
environment independent of the specific control algorithm. We 
are hopeful that analytically tractable sensor systems of the 
type proposed here will promote the development of robots 
that are both practically and theoretically sound as well as 
behaviorally complex. 

A. Contributions of the Paper 

Beyond the description in Section I11 of “yet another suc- 
cessful laboratory architecture,” the paper presents two sep- 
arate but interrelated analytical contributions highlighting the 
features of this architecture that we believe account in large 
measure for its success. 

The need for a nonlinear estimation procedure is a direct 
result of our decision to rely, to as great an extent as possible, 
on a dynamical model of ball flight rather than a geometric 
model of ball shape. In consequence, we choose to throw 
away images that are “too complicated” to interpret at any 
instant. Thus, we require a means of integrating the resulting 
intermittent measurements from the uncoordinated cameras. 
Section IV presents an algorithm for doing so: a new approach 
to Cartesian state estimation based on filtering image plane 
error vector$, rather than their triangulated versions. The 
proposed estimator makes use of a structural feature of the 
perspective map to achieve triangulation in much the same 
way visual servoing makes direct use of visual data to achieve 
task level goals. We are not aware of any previous work in 
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the field that exploits this useful structural property of the 
camera transformation and we call it to the reader’s attention 
since it has already proven helpful in other contexts [17]. 
We demonstrate the stability of the new estimation system 
assuming the availability of continuous measurements. The 
results of this analysis provide sufficient insight into the 
behavior of the discretely sampled plant (relevant to a real 
camera system) as to afford a working implementation that 
we document. 

The need to introduce an active component to the sensing 
system stems from the rapid and dramatic changes in the 
data available to the camera system arising from the constant 
appearance and disappearance of one or two balls during a suc- 
cessful juggling run. In Section V we study the consequences 
of using a feedback control to cue the data processing stage of 
a stereo camera system. We define the robot’s state of attention 
as a volume of space within which the sensor will search for 
a ball, and prescribe a strategy for choosing the placement 
and size of this volume. If this volume is too large, then 
image processing will result either in untimely or inaccurate 
measurements, which, in turn, lead to increasingly inaccurate 
future estimates. Conversely, if the volume is chosen to be too 
small, then the ball may be entirely missed due to inaccuracies 
in the present estimates. We succeed in showing that our 
simple volume manager is aggressive enough to capture a lost 
ball but not so aggressive as to lose sight of a previously 
spotted ball. 

B. Relation to the Existing Literature 

The two themes of visual servoing and active vision have 
been the focus of significant attention in the recent robotics 
literature and it seems useful to relate our contributions to that 
larger body of existing work. 

There are several relevant dimensions of comparison to be 
made. First there is the question of the task to be performed: 
interest may lie either in attempting to control or merely 
in estimating some aspect of the observable world. Second, 
either class of problem may be addressed with or without 
prior knowledge of an exact model. Finally, it may or may 
not be important to account for the effects of data processing 
errors and delays on the overall control loop. In this paper 
we are concerned only with the estimation problem, and 
assume a priori knowledge of model parameters; moreover, 
we find the (predominantly systematic) errors introduced by 
the data processing segment of our system significant enough 
to warrant compensation. 

1 )  Visual Sewoing and Visual Estimation: We conceive of 
our robot’s perceptual apparatus as the dual of what has come 
to be called in the robotics literature a visual servoing system. 
Researchers working in this area in the last few years [SI, [14], 
[19], [ l l ] ,  [12], approach the problem domain by devising 
visually encoded goals for controllable environments-they 
move the robot (or camera) until the scene (as seen by 
the machine) matches some desired image(s). Although the 
estimated state generated by our sensing system is eventually 
used to achieve control, in this paper we are solely concerned 

with the performance of the estimator. The estimator must 
adjust its estimate of the world state in such a manner that 
its internal state visually aligns with the measured data. It is 
this similarity that leads us to consider the estimation system 
described here as a traditional dual to the visual servoing 
systems of our peers. 

Visual estimation tasks have been pursued for some time by 
Allen and colleagues [l], [2] who employ statistical filtering 
techniques to smooth monocular camera data and predict 
Cartesian motion of unknown objects wiih sufficient accu- 
racy to pick them up in a general purpose gripper. Even 
more generic visual estimation problems have been addressed 
by Rao, Durant-Whyte, and colleagues [21] who approach 
the problem as a multi-target acquisition and tracking prob- 
lem reminiscent of the tracking and acquisition work of 
Bar-Shalom [5]. The problem at hand here is much nar- 
rower-estimate the state of a falling ball-and the success 
of the ultimate manipulation-bat the ball with a flat paddle 
at a particular position and orientation-is more sensitive 
to the accuracy of state estimates. In consequence, we find 
it more appropriate to work within a strictly deterministic 
framework. 

As far as we are aware there is only one other group that has 
attempted to develop deterministic nonlinear state estimators 
relevant to vision applications. Ghosh and colleagues have 
recently announced a family of image plane state estimators 
for known linear Cartesian dynamical models [ 131. Their 
observers differ from ours by taking state on the image plane 
(resulting in nonlinear dynamics), in contrast to the Cartesian 
workspace of the robot (resulting in linear dynamics with 
a nonlinear output map). Our proposed system is a stereo 
observer (its state is in Cartesian three-space) and thereby 
performs triangulation automatically as well, whereas the 
strategies of [13] only predict motion on the image plane 
and thus far have not been used to fuse data from multiple 
cameras. 

2) Model Parameters: Our online perceptual loop is de- 
signed using B priori knowledge of the ball’s dynamics and the 
hand-eye kinematics. Thus, as might be expected, calibration 
has proven terribly important in our work [24], [25].  Our 
modest contribution to the traditional off-line nonlinear regres- 
sion paradigm has been to cast the error cost function in the 
image plane coordinates as opposed to the usual formulation in 
Cartesian coordinates and this seems to offer certain numerical 
benefits relative to previously reported approaches [6]. 

In contrast, the field has witnessed an emerging interest in 
parameter adaptive techniques for computing this calibration 
data online. Ghosh and colleagues [16] have developed an 
approach to monocular image plane adaptation for linear 
Cartesian dynamics. Were they extended to the stereo set- 
ting, these ideas might well provide us online means of 
calibration-to our knowledge this direction remains unex- 
plored. Recently, Hager [ 141 has reconsidered the visual 
servoing problem without the presumption of complete 21 
priori calibration. His methods conform to the direct adaptive 
control paradigm and we have begun to explore the connection 
between it and this work. 
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Fig. 1. The Biihgler arm (left) and i t ’s  kinematics (right) 1271 

3) Active Vision: There is a large robotics literature con- 
cerned with the introduction of active control policies into the 
perceptual loop. Most relevant to our work is the example 
provided by Dickmanns and colleagues [lo] who cue their 
data processing system with estimates derived from various 
dynamical models of the world. Our attention control mech- 
anism (an image plane windowing manager with dynamics 
caused by delay) may be seen as a concrete example of 
the sort of architectures they have proposed. Our problem 
domain, however, is much narrower (we require only one 
world model) and we focus on a specific implementation that 
seems amenable to formal modeling and stability analysis. 

11. SETTING 

The sensor systems we wish to build require an understand- 
ing both of how the world they attempt to sense evolves over 
time, and how they perceive that world. Thus we pause here 
to develop simple models for the falling and bouncing ball, 
the robot juggling strategy, and the robot’s physical sensors 
(each of which will be used below). 

A. Physical Models: The Robot’s Environment 

In general, state estimation can be only as effective as the 
environmental model available. For the juggling problem, the 
model in question will consist of two parts: ball flight, which 
describes the behavior of a ball under the influence of gravity; 
and impact, which describes how a ball will bounce when it 
makes contact with the robot’s paddle. 

1) Flight Model: For simplicity, we have chosen to model 
the ball’s flight dynamics as a point mass under the influence 
of gravity. A position and time-sampled measurement of this 
dynamical system will be described by the discrete dynamics, 

b, = CUI,; c = [ I ;  01 (1) 

where s denotes the sampling period, ii is the gravitational 
acceleration vector, and 70j := (b;,  b;)  E IR6 embodies the 
entire state of the object (its position and velocity). 

2) Impact Model: To understand the effects of impact, con- 
sider a ball with trajectory b ( t )  colliding with the paddle in 
robot configuration q E Q (depicted in Fig. 1) at some point, 
s ,  on the paddle which has a linear velocity II. We seek a 
description of how the ball’s phase, w := ( b ,  b ) ,  is changed by 
the robot’s phase, ( 4 ,  Q), by such an impact event. 

As in earlier work [7] ,  [25] we will assume that the 
components of the ball’s velocity tangent to the paddle at 
the instant of contact are unchanged by impact, while the 
change in the normal component is governed by the simplistic 
(but standard [28]) coefficient of restitution law. For some 
N E [0,1] this impact model can be expressed as 

(k  - 4) = -(in - U,) 

where b; and U; denote the normal components of the ball and 
paddle velocities immediately after impact, while b, and ti, 

are the velocities prior to impact. Assuming that the paddle is 
much more massive than the ball, we conclude that the velocity 
of the paddle will remain constant throughout the impact 
(U’ = U ) .  It then follows that the coefficient of restitution 
law can be rewritten as b; = b, + (1 + a)(un - in), and hence 

(2) 
* .  
b’ = b + (I + ~ ) T L ~ . ~ ( u  - b )  

where n denotes the unit normal vector to the paddle. 

B. Behavioral Model: The Robot’s Strategy 
A detailed development of our juggling control strategy can 

be found in [22]. Briefly, the “mirror law,” is a map ( m )  
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from the phase space of a ball into the configuration space 
of the robot. Thus the robot’s reference trajectory is specified 
by q d ( t )  = m ( w ( t ) ) .  The function, VL is defined as follows. 
Using (6) from [26], define the joint space position of the 
ball [ & , , ~ b , $ ~ ~ . s ~ ~ ] ~  := gpl(b), where gpl is the inverse 
kinematic map (including the paddle’s length s which provides 
an effective fourth degree of freedom) for our machine, which 
is shown in Fig. 1. Our robot strategy causes the paddle to: 
(i) track under the ball at all times; (ii) “mirror” the vertical 
motion of the ball through the action of i!?b on q d 2  as expressed 
by the original planar mirror law [7]; (iii) raise and lower the 
paddle, resulting in the normal being adjusted to correct for 
radial deviation in the ball position; (iv) roll the paddle, again 
adjusting the normal so as to correct for lateral position errors. 

C. Perceptual Model: Stereo Perspective Projection 

Two fields of image data are simultaneously acquired from 
two cameras. It is then the responsibility of the sensing system 
to report the location and velocity of the ball (or balls) in 
space so the the juggling algorithm described above may 
be executed. As stated previously, the visual environment 
is structured such that an individual pixel may be identified 
as either part of a ball or the background simply by its 
intensity-we are looking for white balls against a black 
background. This structure allows us to use a “simplistic” 
geometric model of the world (pixels are either part of the ball 
or not) to simplify the image processing. Although we have 
chosen to make use of structured lighting, the environment 
is far from uniform. As a ball traverses the visual workspace 
of the machine its appearance changes shape due to lighting 
effects [15]. Thus a geometry based vision system could 
reliably report ball locations only if it were capable of taking 
into account these poorly modeled lighting effects. As will be 
seen shortly, we have chosen to make use of a dynamic model 
of the ball’s flight to make up for this lack of geometric detail. 

The simple projective stereo camera model of the form 

c:  EL3 + R4 

(which maps positions in affine 3-space to a pair of image 
plane projections in the standard manner) has been sufficient 
for the experiments associated with this paper. More precisely, 
c ,  is formed by stacking together the perspective projections 
due to the two individual cameras, 

(3) 

where 

h, is the rigid transformation representing the base frame in 
the zth camera’s frame, and f L  is the ith camera’s focal length. 

Knowledge of the cameras’ relative positions and ori- 
entations together with knowledge of each camera’s lens 
characteristics (at present we model only the focal length) 
permits the selection of a “pseudo-inverse” or “triangulation- 

Fig. 2. A generic active visual estimator 

function,” 

cf: IR4 + E 3  (4) 

such that c-1- o c is the identity on Et3. We have discussed 
our choice of pseudo-inverse at length in previous publications 
[26], and details of the calibration scheme can be found in [25]. 

Estimation of ball state begins anew after each impact using 
initial conditions predicted by (2) and the state estimates prior 
to impact. One drawback of using a camera system as the 
primary sensor is its low data rate, which makes determining 
the exact time of impact difficult. We have chosen to augment 
the juggler’s sensing system with a microphone attached 
directly to the robot’s paddle to serve as an impact detector. 

111. AN ACTIVE VISUAL ESTIMATOR 
A complete sensing system for an environment such as that 

just presented requires the careful integration of a number 
of functional submodules. We now describe our experience 
constructing such a system as well as the manner in which 
those experiences have lead to revisions and complications in 
the architectural framework. 

A. The Challenge of Constructing an Integrated System 

Ideally, a purely Cartesian sensor could be purchased or 
designed which would be capable of providing the continuous 
state estimates necessary for implementation of a controller 
of the type described in Section 11-B. Currently, however, 
such sensors are either prohibitively priced or lack sufficient 
sophistication to cope with anything but the most stringently 
structured environment. We thus face the task of designing 
our own sensing system. 

It seems natural to partition a sensing system suitable for 
this type of dynamical task into three subsystems as shown in 
Fig. 2. This architecture separates the sensing system into the 
following modules: data processing encompasses the algebraic 
(memoryless) signal processing; state estimation contains the 
dynamic or model based processing; and finally, sensor control 
implements the feedback segment responsible for guiding the 
“attention” of the low level data processing. This architecture 
can be found in nearly any system, and we find that thinking 
about the overall behavior in terms of these separate modules 
is advantageous. 

As has been described by others [9], [lo], [19], an active 
sensing system, such as depicted in Fig. 2 can be used to 
reduce the load of incoming data by focusing the attention 
of the machine only where meaningful information is likely 
to be found. More fundamentally, focusing the attention of 
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Fig. 3. Our initial implementation of the active visual estimator. 

a machine can be used as a means to introduce knowledge 
about the environment’s dynamical behavior back into the data 
processing task, thereby making the segmentation and feature 
extraction tasks more tractable. 

1) An Initial Design: Our original design (depicted in 
Fig. 3) followed traditional engineering principles for reliable 
signal processing and state estimation modules. 

Data Processing: Following Andersson’s experience in 
real-time visual servoing [4] we chose to employ a first 
order moment computation applied to a small window of a 
threshold-sampled (thus, binary valued) image of each field. 
Thresholding, of course, presumes a visually structured en- 
vironment, which we have provided in the form of white 
ping-pong balls illuminated with halogen lamps against black 
matte cloth. The result is a pair of pixel addresses containing 
the centroid of the single illuminated region seen by each 
camera. For the remainder of this presentation we will denote 
by Wh the function that takes a white ball against a black 
background into a pair of thresholded image plane regions 
and then into a pair of first order moments at the kth field 

Wk := w, 0 c(C:pk). 

We use p k  := F-‘J (wk) as an “extra” state variable to denote 
the delayed image of the ball’s state due to image acquisition 
and processing delays. 

Sensor Control: Computational resources in our juggling 
system preclude examining more than about 2400 pixels 
from any given video field (our digitization system delivers 
individual fields at a rate of 60 Hz). Thus the system is forced 
to process subwindows from the images to assure completion 
of the image processing task before the arrival of a new 
field. Fig. 3 depicts the trivial sensor control strategy used in 
this initial design, which functions by centering the window 
for a new field over the location of the centroid from the 
previous field. This strategy implicitly presumed that objects 
do not move (or at least they do not move far) between 
images. 

Triangulation: Computation of spatial locations from 
centroid data was initally performed via exact algebraic tri- 
angulation, ct (4), which may be written as 

to make explicit the role of the data processing module. 

State Estimation: Due to digitization and processing la- 
tency, the image measurements generated by the data pro- 
cessing section are results from images that are at least one 
field (16 ms) old. We used an observer which operates on this 
delayed data, 

where the gain matrix, G E lR6x3, is chosen so that A,, + GC‘ 
is asymptotically stable-that is, if the true delayed data, C p k ,  
were available then it would be guaranteed that 6, 4 pk.’ 

Drawbacks: As detailed above, it is not the ball’s po- 
sition, b k ,  which is input to the observer, but the result of 
a series of computations applied to the delayed copies of 
the cameras’ image planes, b k .  Prior to attempting two-juggle 
experiments, we ignored this “detail” and ran with the open 
loop sensory management procedures used to obtain data (5) 
[22]. It soon became clear that these procedures could not 
be similarly transparent in the more demanding domain of 
the two-juggle task. The practical limitations of our robot 
arm necessitated considerable enhancements to the vision 
subsystem, and getting these management issues right became 
one of the chief sources of difficulty. 

For reasons detailed in [23] the considerable torque gener- 
ating capabilities of our Buhgler arm did not prove sufficient 
to permit easily tracked ball trajectories in the two-juggle 
setting. We were forced to juggle higher (longer flight times 
between impacts) and to bring the two balls much closer 
together in space (shorter distance between impacts) than had 
been originally planned. This necessitated adding two new 
corresponding features to the vision system. First, we required 
an ability to sense and recover from out of frame events (a 
ball passing out of the field of view due to the height of the 
juggle). Second, we required that the system handle regularly 
occurring ball occlusions (two balls appearing at or near the 
same location in an image). 

Neither the data processing nor the sensor control module 
described above are equipped with mechanisms suitable for 

’ In principle, one might choose an optimal set of gains, G*, resulting from 
an infinite horizon quadratic cost functional, or an optimal sequence of gains, 
{ G;}t==,, resulting from a k-stage horizon quadratic cost functional (probably 
a better choice in the present context), according to the standard Kalman 
filtering methodology. Of course, this presumes rather strong assumptions 
and a significant amount of ?t priori statistical information about the nature 
of disturbances in both the free flight model (1) as well as in the production 
of 6 from fi via the moment generation process. To date we have obtained 
sufficiently good results with a common sense choice of gains G that recourse 
to optimal filtering scems more artificial than helpful. 
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Fig. 4. Idealized implementation: The active visual estimator. 

handling either of these events. In particular the data process- 
ing module is incapable of recognizing occlusion events, and 
produces erroneous measurements in their presence, while the 
naive sensor control strategy will never be able to reacquire 
a ball which leaves the field of view unless it retums near 
enough to the point of departure. 

B. An Integrated Solution 

Our solution to these problems (introduced immediately 
below) although a natural extension to the basic design, results 
in a much more complicated sensing system whose analysis 
forms the remainder of this paper. In order to encourage a 
more intuitive understanding of these modifications, we briefly 
digress into a historical presentation of the development of the 
system shown in Fig. 4.2 

1)  Data Processing-Making Use qf Dynamic Segmenta- 
tion: As mentioned above, the inability of the data processing 
subsystem to recognize uninterpretable images represents the 
fundamental weakness of our initial design. Fixing this prob- 
lem is not difficult, however, the modifications result in a 
fundamental change in the operation of the sensing system. 

The construction of a system capable of handling occlusion 
and out offrame events must include the capability to either 
detect and reject images containing such events, or to reliably 
extract the relevant information in spite of these events. 
Clearly, in the case of out of frame events, there is no choice 
but to predict future behavior without new information. Having 
already committed to measuring the first order moments of a 
binary image as the primary method of localization, it is natural 
to extend this notion and use the zeroth and second order 
moments as simple and robust occlusion detectors. Under 
reasonably well-structured lighting conditions, the “ballness” 
of an image-segment is easily determined by placing thresh- 
olds around the zeroth order moment and the the ratio of 
the eigenvalues of the matrix of the second order moments 
in conjunction with a test on the planar orientation of its 
eigenvectors. 

2) Sensor Control-Feedback for Active Vision: By choos- 
ing to reject uninterpretable images in the data processing 
system we have implicitly assumed that the higher levels of 
the sensing system will be able to guide future measurement 
efforts. Specifically, we expect the sensor control module to 

*Note, in our laboratory implementation we have found it expedient to 
incorporate two parallel observers alongside the nonlinear (triangulating) 
observer pictured here for reasons mentioned in Scction V-D. 

supply clues sufficient to guarantee that a temporarily ignored 
object will be reacquired. 

Window Placement: Regular occlusion events (because 
the balls are purposefully juggled high and close together), 
in conjunction with the policy outlined above of ignoring data 
from occluded windows severely compromises the effective- 
ness of the simple window placement scheme of Section III- 
Al .  An obvious improvement results from using the position 
estimates produced by the observer to place the windows. 
Namely, the search windows in the next image to be processed 
are centered at a point formed by projecting the predicted 
state estimate from the observer onto the camera image planes. 
Thus, the window location is now fed back from the output 
of the estimator whose inputs it provides. This connection 
of the observer back to the low-level data processing forms 
the sensor control module discussed above, and comprises the 
active vision component of this system. 

Window Size Adjustment: Our inability to compute with 
more than a small percentage of the available pixels during 
the 16 ms. interval between successive camera fields forces 
a tradeoff between the accuracy of the centroid data input 
to the observer and the possibility of an unnecessary and 
unrecoverable out-of-window event. This tradeoff is governed 
by the choice of sampling resolution or, equivalently, image 
plane window area. 

There are three principal sources of error in the sensing 
system. First, noise inevitably corrupts the image processing 
(e.g., distortions introduced by thresholding an imperfectly 
illuminated scene, or by insufficient spatial resolution). Sec- 
ond, the observer is itself compromised by parametric errors 
(e.g., the gravitational force, 6 in (1) is obtained through 
our calibration procedure) and omissions (e.g., there is no 
model of spin during flight). Finally, these are exacerbated 
by the intermittent loss of input data that attends occlusion 
events (e.g., out-of-frame events may easily last in excess of 
0.25 s). 

Section V offers a formal presentation of the system the- 
oretic ideas which support our current implementation. Es- 
sentially, we grow the window area following any image 
plane measurement failure (i.e., an occlusion event), while 
the window area is shrunk following valid measurements. The 
exact size of the window needed to guarantee a successful 
future measurement is derived by bounding the current error 
in the state estimator, so as to ensure that the window will 
encompass the actual location of the ball. 
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Triangulation 

Observer 

Nonlinear (Triangulating) Observer 

(b) 

Fig. 5. A comparative illustration of the .stute ustimurion boxe5 of Figs. 3 
and 4: (a) Direct or algebraic inversion, (b) Dynamical inversion through the 
Jacobian, Dc.‘‘. 

3) State Estimation-A Nonlinear (Triangulating) Observer: 
A central difference between the system presented in Section 
111-A1 and the one discussed here arises from the idea of 
discarding data from individual cameras whenever the image 
is difficult to interpret. The significant side-effect of this 
change is apparent when we look at the algebraic triangulator 
used to supply spatial ball positions to the linear observer. 
The system is unable to perform triangulation whenever data 
from either camera has been rejected, and thus new inputs 
can not be provided to the observer. Since it it is unlikely 
for data from both cameras to be invalid simultaneously, 
discarding questionable data from one camera apparently 
forces the system needlessly to discard valuable data from 
the other. 

IV. DYNAMIC TRIANGULATION 

We now embed the triangulation process directly in an 
observer and thereby make use of all the available data at 
all times, while continuing to guarantee convergence of the 
state estimates. Our previously mentioned “waste” of data 
arose from the use of an algebraic inverse to transform image 
plane measurements into spatial positions. The alternative we 
present here performs this inversion implicitly in a dynamical 
filter.? Fig. 5 depicts the structural difference between these 
approaches. 

Underlying the new estimation technique is the simple idea 
of augmenting the standard (linear) Newtonian flight model, 
b = 6, with a nonlinear output map, U = c(b), and constructing 
a nonlinear observer which updates its state estimates based 
on the image plane data rather than a spatial “measurement” 
(derived through triangulation). The structure for this new 
observer is shown in Fig. 6(b). The significant change here 
is to abandon the use of an algebraic triangulation function 
to invert c(b) and instead revert to using a dynamical system 

31n much the same way, an integrator in a feedback loop can bc used to 
implicitly form the derivative of an input signal, or an analog computer can 
use gradient descent to find the root of a system of equations. 

to simultaneously smooth, predict, and perform this inversion, 
all through its update law for the estimated state.4 

A. A Useful Property of the Perspective Projection Map 

Recall from (3) that the stereo camera transformation, c,  is 
formed by stacking together the perspective projections due to 
the two individual cameras. In this section we note that 

~(6) - ~ ( b )  = A(6,6)C(6)(6 - b )  
= A(b, 6)C(b)(6 - b)  (7) 

where C(b)  is the Jacobian of c evaluated at b and 

where 113 denotes Cartesian projection of IR3 onto its 3rd 
coordinate. 

This fact emerges directly from computation. Given 6 lying 
in the frame of reference of a camera with focal length f ,  we 
have 

The Jacobian of this projection is then given by 

(9) 

Expanding the right hand side of the top row of (7) in these 
coordinates gives 

and similar results follow for the remainder of the rows. This 
establishes the original assertion. 

Throughout the remainder of this section we will need to 
ensure that A is positive definite. Geometrically, this implies 
that both b and & always lie on the same side (fronthack) 
of all the cameras at all times. In practice this is not an 
unrealistic assumption: it merely requires that neither the 
actual object cross the singularity in (3) nor that the errors in 
the observer system become so large as to cause the estimated 
object location to cross this same singularity. Formally, this 
assumption allows us to assert that 

(i, - b)CT( i , ) (C ( i )  - c(b)) > 0 (1 1) 

and we will demonstrate that when (1 1) is initially true that 
the strategy of Fig. 6(b) preserves this property. 

4The expectation here is that beyond the efficiency achieved by not wasting 
good data, such a system will cxhibit better noise immunity since it does 
not directly attempt to invert c .  However, we do not attempt any formal 
justification of this claim in the present paper. 
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Sensor Control 

(a) 

’ ............. ......., , 
Sensor Control 

(b) 

Fig. 6. Structure of the two observer schemes: (a) Original design; (b) Improved design 

B. An Image Based Observer for  Second 
Order Linear Dynamics 

Let us now reconsider the system, b = 5, written more 
generally as 

where wI := b and w2 := b represent the position and velocity 
of the object respectively. This system is of particular interest 
since it includes our model for the ball falling under the 
influence of gravity. The associated observer now takes the 

1 )  Stability Proofi We now demonstrate that this nonlin- 
ear dynamical system can be stabilized by the appropriate 
choice of gains under a set of reasonable assumptions about 
the operating conditions. Specifically, we will show that if b 
and & both start beyond some minimum distance from the two 
cameras and if w and 6 start within a nominal distance of one 
another then not only will lii converge to 2u but also b and 6 
are guaranteed to stay in front of both cameras. Note that this 
is an “almost” global result, in that the gains may be adjusted 
to stabilize an arbitrarily large set of initial errors, but that a 
bound on 1/71xl(O)ll is required. 

Assumptions: We will assume that the motion to be 
tracked, b ( t ) ,  remains a bounded distance away from the two 
cameras, that is 

form 
max[llb(t) t>o - O l l l ,  I lb(t) - 02111 < P o  

denoting by 01 02 the origin (in the world coordinates) of the 
two camera frames, respectively. Using the notation 

S, = ir2 - rlcT(61)(c - 

tiZ = ~ , l i ’ ~  + ~ ~ t i j ~  + - r2cT(oI)(c - .) 

(13) 0 hI(b)I2 a(b) := [n, 6 = .(GI) 

with gain matrices FI and rz free to be chosen. Taking 
differences yields the error dynamics developed above, this implies the matrix inequality 

for all t :  A o b ( t )  < poI4. 
= lij, - r1cT(61)(,c - .) 

W 2  = AIGl + A2& ~ r2CT(&)(.ir ~ 7)) (14) Similarly, we will also assume that the motion to be tracked 
remains in front of both cameras-that is, A o b is bounded 
below which simplifies to 

for all t :  A o b ( t )  > 26‘014. 

This last assumption implies as well that 
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Furthermore, for simplicity, we presume that the structure 
of the gain matrices is of the form5 

Bounded Initial State Estimation Error: In order to 
choose feedback gains, y1.y2, and a quadratic Lypunov 
function, 8 (19), that depends upon them, we require some 
initial knowledge of the state estimation error, W. As usual, 
the more conservative the initial estimation error bounds, the 
larger will be the required gain magnitudes. 

We now further assume that the initial state estimation error, 
7Z0, is bounded by some known amount, 

and we choose y1 large enough so that 

Note that the Lyapunov candidate below, 79 (19), satisfies the 
inequality 

If 79 o w(t) 5 60 for all t > 0, then 

from which we conclude that 6(t) also remains in front of 
both cameras. 

This last condition may again be rendered as 

Consequence-A Lower Bound forCT AC: We have al- 
< 0 implies ready noted that /&I4 > A(6) > 601, > 0 and 

A(&) > 6014. This, in turn, yields 

Moreover, since h remains in front of the cameras, and within 
a Si radius of b and the latter remains within a compact set, 
it follows that the Jacobian matrix is bounded below for all 
time as well, 

Thus, under the assumptions above, we have 

'In principle there is significantly more freedom available in the choice of 
gains than we havc chosen to exploit here. This simple gain structure affords 
simple analysis and has performed well in our experimental and simulation 
environments. 

The Lyapunov Function and Its Derivative: Consider a 
Lyapunov function of the form 

19 := WTPW 

which is positive definite since P is the symmetric square of 
a nonsingular matrix. 

The derivative of 6 along the motion of (1 5 )  is given by 

8 zz -7jTQW 

Y I ( Y ~ C ~ A C - A I )  "ii(~iI+ i A 2 ) + ~  l A T ] .  1 

(20) 
-YI(Y11+ ;A?J+;AT 711- A2 [ & : =  

Choice of Feedback Gains: Choosing 

Yz > rl + 1lA111/1.(. 

Y1 > 7; + IlAzll 

(21) 

(22) 

for some ~ i ,  7; > 0, insures that the diagonal block matrices 
of Q (20) are positive definite. We may now write 

and 

where 

and 

Thus if we require 

it follows that &' is positive definite so 9 remains negative 
semidefinite. 

C. Implementation 

As usual, the real world departs from the assumptions 
underlying these models in certain important regards. What 
follows is a brief discussion of the differences between the 
previous section and the actual system, along with both 
experimental and simulation results demonstrating the utility 
and pitfalls for this type of observer. 

Time Sampled Implementation for Second-Order Systems: 
Real cameras do not deliver continuous measurements in 
time-present day affordable devices take snapshots of the 
world at a fixed sampling rate, in our case, 60 Hz. Since 
the observed system's motion is significant relative to this 
rate (near impact, the ball often travels in excess of 10 cm 
between successive images), sampling considerations cannot 
be ignored. For the observer of Section 111-A1 (with algebraic 
triangulation), implementation in the presence of sampling 

1) 
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Time (seconds) 

Simulation: Convergence of the constant gain Continuous and discrete Fig. 7. 
time observers for small initial error. 

Time (seconds) 

Continuous Observer 
Time (seconds) 

Discrete Observer 

Fig. 8. 
time observers for larger initial error. 

Simulation: Convergence of the constant gain continuous and discrete 

presents no problem since the dynamical system we are 
observing is linear, and traditional discrete time systems theory 
affords a reliable observer (6). 

In contrast, since there is no general nonlinear sampling 
theory, the new triangulating estimator requires a separate 
stability argument for its discrete time version, which we 
present in Appendix A. Not surprisingly, one can no longer 
tolerate arbitrarily large initial errors, and furthermore the gain 
structure introduced in Appendix A becomes state dependent. 
In our laboratory implementation we have chosen, for reasons 
of computational simplicity, to implement a sampled version 
of the constant gain continuous time algorithm ( I  3) as opposed 
to the conservative time varying structure of Appendix A. 
To understand the trade-offs in doing so, we have studied 
numerically both the continuous and sampled (constant gain 
discrete time) versions of (13). Figs. 7 and 8 demonstrate 
how an increase in the initial errors can result in instability 
for the time sampled system, while the continuous version 
remains well behaved, as predicted by theory. Fig. 7 depicts a 
case where the discrete (sampled at 60 Hz) and continuous 
constant gain system demonstrate comparable behavior for 
identical gains and small initial errors, Fig. 8 demonstrates 
that these systems can display markedly different behavior 
for different initial conditions. In this particular example the 
continuous system converges reasonably quickly, while the 
discrete version initially behaves reasonably well, then slowly 
begins to fail until 5.5 s, when it “explodes.” 

2) Integration in the Juggling System: In our laboratory 
setting, we are fortunate to have good control over the 
initial conditions of the estimator-balls are presented at 
predetermined locations in the workspace with zero velocity 

- - - Linear Observer 0 Measured 
- - Non-Linear ObseNer .a Linear OhTemer 
- Measured Q Non-Linear Observer 

0.9 7 

1.05 1.10 1.15 
0.” 1- 

0.6 0.8 1.0 1.2 
Time (seconds) Time (seconds) 

(a) (b) 

Fig. 9. 
from both observers during recovery from a typical out-of-frame event. 

Experimental data: Triangulated ball height and estimated ball height 

and the sensing system performs algebraic triangulation 
on the first valid measurement it receives to generate an 
initial location estimate for the ball, while initializing the 
velocity estimate to zero. The resulting initial errors have been 
sufficiently small that we have neither observed destabilization 
of the observer due to the sampling effects noted above, nor 
have we had difficulty choosing observer gains based on the 
simpler design of (13), as opposed to the provably stable 
design of Appendix A. 

Fig. 9 demonstrates the difference between this new obser- 
vation scheme and the traditional triangulator/linear-observer 
scheme. Fig. 9(a) shows the overall flight of the ball as 
estimated by both observers, and measured by the triangulator 
(absence of the solid line indicates that the ball was outside 
the field of view of one or both cameras). In this example 
the ball travels out of frame for approximately 0.2 s. As can 
be seen in Fig. 9(b) (a blowup of the ball returning into the 
field of view) the dynamical triangulator is capable of updating 
its estimate while the triangulator/observer pair are forced to 
simply predict the trajectory (note the differing behavior from 
1.05 to 1.10 s). Significant reduction in tracking error then 
results as the ball reappears in both camera’s fields of view 
at 1.10 s. This anecdotal picture is confirmed by experimental 
statistics. Fig 10 shows the mean and standard deviation of 
the norm squared tracking errors (position only) for the first 
four frames after recovery from an out-of-frame event for 102 
typical events. Although the improvement may seem slight, 
our machine generally has fewer than one dozen frames of data 
between reacquisition and impact, thus the improved transient 
greatly increases the accuracy of our batting. 

v. ACTIVE VISION: CONTROLLING THE STATE OF ATTENTION 

Whether choosing what segment of an image to process, 
where to look with a camera, or what camera to look with, 
many modem vision based systems incorporate an implicit 
control system-the control of the state of attention of the 
machine. In the case of our robot juggler this problem appears 
quite explicitly as a result of the limited real-time vision 
hardware. The machine is limited to only processing a small 
fraction of the total available data and must thus choose what 
data to process. This problem of active vision introduces a 
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Fig. 10. Experimental data: Mean and standard deviation for the spatial 
observer errors immediately after recovery from out of frame, averaged over 
102 events. 

novel aspect of control in the design of the sensing system: 
the system responsible for control of attention must balance 
the benefit of examining only a small amount of sensor data 
against the risk of failing to generate useful measurements. 

This problem might be posed within an optimal frame- 
work-for example by introducing the notion of “dual control” 
[5], [18], [21]. However, the experimental setup in our labora- 
tory has never motivated the kind of careful statistical models 
required to yield practical utility from such an approach. What 
follows is a detailed examination of this problem under the 
presumption that there are three noise sources (sensor noise, 
modeling inaccuracy, and measurement inaccuracy due to the 
“area of attention”) to be balanced against the need for the state 
estimate to converge. Our presentation is focused on ensuring 
the convergence of the underlying state estimator in conjunc- 
tion with guaranteeing future acquisition of measurements. 

While in general the ideas presented here can be applied 
to an arbitrary estimation scheme, in particular the nonlinear 
scheme of Section IV, for reasons of clarity we will limit 
our formal analysis to the case of a linear estimation scheme, 
and point out how to make the generalization in the textual 
remarks. 

A. The Sensor Control Variables as a “State of Attention” 

The sensor control module of Fig. 2 is responsible for con- 
trolling the locus and extent of the image plane windows used 
for information extraction by the data processing subsystem. 
Thus, we offer as a definition for the system’s state of attention 
at some field interval, k ,  as the pair 

ak: = ( i k : , P k . )  E IR.3 x IR’ (24) 

where 6k: denotes an estimate of where the falling ball is 
expected to appear, and the positive scalar pk is a measure 
of certainty of this estimate. With respect to a norm, 11.llp, 

which will be defined below, induces two windows on 
the two camera image planes including all stereo image pixel 
pairs, x,  in the set 

N ( Q )  := { x  € c(R3): I l i ,  - C + ( X ) I l P  5 0,). 

Note that this state of attention represents a dynamic notion of 
certainty and is thus structurally different from the geometric 

notions of certainty offered in [ 3 ] ,  [20]. The data processing 
subsystem will process these windows, and if the “ballness” 
tests (zeroth and second order moment tests) are passed, the 
first order moments will be passed to the state estimation to be 
interpreted as a spatial position. Otherwise, an empty window 
will be reported. For the sake of notational simplicity, we will 
denote the situation that first order moments are successfully 
formed inside the windows of the kth camera field as 

The dependence of the kth measurement on a k - 1  immediately 
suggests the dynamics intrinsic to the general sensor man- 
agement problem-appearing here as mere delay. Regardless 
of how it is computed, the state of attention, ak: must be 
assembled from information derived from existing sensory 
observations. Thus, the acquisition of new data is necessarily 
mediated by old knowledge and a feedback loop is formed. 

For a suitable norm, we look back to the stabilized observer 
equations (6). Because these systems are asymptotically stable 
there exists a positive definite symmetric matrix, P,  such that 

[A,, + G‘C]*P[A,, + GC] < P 

and we will denote the Euclidean norms induced by this matrix 
as 

llzllp := ( . E ~ P ~ . ) ~ ’ ~ ;  llAllp := sup IIAx/lp 

For ease of exposition we introduce the notational conventions, 
I l T l l p = l  

and assume, purely for further notational convenience, that the 
poles of the closed loop observer equation (6) have been placed 
on the real line with multiplicity two with the consequence that 

Similar arguments follow for the nonlinear and discrete time 
versions of this system, the only significant difference being 
that the norm of (25) are no longer constant, and must be 
replaced with conservative bounds on their state dependent 
values. 

B. Observer Errors from a Noisy Model 

The task at hand is to develop a control scheme for updating 
the state of attention, ak: as a function of its previous value 
and presently available data. To do so we must append to 
our previous state estimation procedure some notion of its 
changing degree of certainty. Thus, reconsider the Newtonian 
flight model (I), with the addition of both a process and a 
sensor noise model. We wish to model the inaccuracies in the 
Newtonian flight law as well as the salient features of the inac- 
curacies in ball position measurement introduced through the 
use of the camera. The latter includes two central phenomena: 
the absence of data when the ball lies outside of its assigned 
window; and the imprecision of spatial localization as the size 
of the window grows (and either delay grows or resolution 
shrinks correspondingly). For present exploratory purposes, we 
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will be content with a crude deterministic representation of the 
imprecision inherent in these process and sensor models. 

We substitute for ( I )  and (5) the system 

As a first crude model for the failings of the putative New- 
tonian free-flight model (1) we take nlxr to be a bounded 
deterministic sequence of uncontrolled inputs (perhaps gen- 
erated via a map on the state space), and ns to be the sensor 
noise introduced by thresholding a finite resolution image 
before computation of the moments. Because the window 
resolution must decrease as the window size increases (as 
a consequence of subsampling), ns is nondecreasing in its 
argument. Since no subsampling is required for sufficiently 
small windows, ns is a positive constant for small values of 
its argument. These considerations suggest an affine model of 
sensor noise as a function of window radius 

We choose to ignore the details of how c( .) and c’( .) influence 
the creation of errors in the measurement of b k ,  since this 
would require a careful assessment of the reflectance properties 
of the balls-a distant second order effect given the current 
structured lighting. In contrast, we are greatly concerned with 
developing correct window management logic, and we will 
explicitly embed the influence of W ( . )  in 6‘ as follows. 

The deterministic output map, C k  returns the value C = 
[I. 01 as in (1) when the body’s image is in the examined area 
of the image plane, and vanishes otherwise 

This models the salient behavioral features of the data process- 
ing subsystem introduced in Section 111-A1, as it returns no 
data (zero) when an “out of frame” event occurs. This results 
in the observer simply extrapolating the present state estimate 
in such situations. The resulting observer takes the same form 
as (6) only with C k  from (28)  incorporated, 

Here, we distinguish between the state estimate, w(.), that 
is sent forward to the juggling algorithm, and the attention 
variable, 6, that will be sent back to the sensor control module. 
The robot gets 6 ( k ~ f )  as soon as it is formed, with future 
predictions being made at the faster physical rate, T ~ .  The 
sensor control module will make use of e k  in the form of b k  

to handle the ( k  + 1)st image. 

The result is a system with two distinct kinds of error,6 each 
with its own causes and effects. The first is the standard error 
due to the observer, 

P k  := P k  - I%, 

and is governed by the dynamics 

I%+i = (ATT + G C k ) P k  + n k  

:= Gn.s(pk-1) + 7 ~ ~ [ ( k  - 1)7f]. (30)  

Denoting the present error magnitude by 8 k  := l l @ k l l p ,  we 
can conclude that 

(0 and E are defined in (25))  and it follows that the necessary 
and sufficient condition on 6, and x k  for a measurement to 
be successfully taken may now be expressed as 

Thus, there is a second sort of error associated with this event. 
It is due to the conjunction of process noise with time delay in 
the formation of the extrapolated state estimate. For, assuming 
I l n ~ l l p  is bounded above by the scalar U N ,  we have 

IICT(CW[(k - 1)Tfl  - L I I P  

I I I4(k  - 1).fl - FTf ( I j k - l ) l l P  

I ( Y ( t 9 - 1  + Tf74v). (33)  

It follows that if pk-1 is at least as large as the last expression, 
we are guaranteed (within the limits of our noise model) that 
the kth window will not be empty-that condition (32)  will 
hold. 

C. The Window Radius Control Policy and It’s Consequences 

The construction of a functional observer of the form 
presented in (26)  necessitates the implementation of a sensor 
controller. Specifically, this amounts to choosing window 
sizes, p k ,  and locations, b k ,  in such a fashion that the acqui- 
sition of new measurements can be guaranteed in conjunction 
with the estimated state converging to the actual state. 

1 )  Certainty Estimates from a Parallel Observer: The 
result of (33) implies that Pk; should be set in relation to 19k in 
order to insure data to the observer. But, unfortunately, we are 
not in possession of the error magnitude, 19, for the very reason 
that we were led to build an observer in the first place (our 
inability to measure ball velocities). Since 5 represents our 
only knowledge of p ,  the best estimate of 19 is 0 as matters 
stand presently. To address this deficit, we will build a second 

6Note that there is actually a third sort of error, which concerns the quality 
of the estimate passed forward to the robot. If t7,k := W ( R T [  f ~ k )  - ; O ( k ~ j )  
we have, 111111;111’ 5 d* ( d h  + (TJ  + L k ) f / N ) ,  where T~ 5 ~k 5 r f .  Thus, 
Ilil>kllp is a nondecreasing function of both Iy and p. But this error is never 
seen in the sensory loop. 
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state estimator and attempt to construct and estimate of 19 by 
comparing the two. 

In the case of linear estimation scheme, we can make use 
of the invertibility of the observability matrix, 

to define a very different estimate of p taking the form 

d k  = FTf (0-1 (["I;'] - pJ)). (34) 

This is a dead-beat observer in the sense that & := p k  - dk: 
converges to zero in two steps from all initial estimates, do in 
the absence of noise, ns = nN = 0.7 

Through careful comparison of the estimates provided by 
these two observers (as detailed in Appendix C.1) we are led 
to define a worst case estimate for t9 as 

where 

This guarantees that 8 k - 1  2 79-1 when b k  and b k - 1  are 
both available. If either of these is unavailable (making d k  

uncomputable), a conservative estimate for fl is given by 

2) Control of Window Radius: Equipped with a worst 
case estimate for 19, we are now in a position to adjust p. 
According to the previous calculations (33), a window radius 
management strategy that achieves the relation 

guarantees data to the observer at step k 4- 1. Noting that d k  

is causally determined by p k ,  and thus cannot be estimated 
directly by the procedure (35) at stage k ,  we appeal to (31) 
and note that the desired relation is implied by 

This demonstrates that the radius adjustment procedure 

will always yield a window large enough to capture the next 
centroid, up to the limits of the error models employed. 

More generally any six independent measurements of the underlying 
dynamical system could be used to producc a similar dead-beat estimate of 
the balls state (e.g., any three perspective images or a ball's flight could be 
used). 

3 )  Boundedness of Estimator Errors: This then leaves the 
question of observer convergence. Recall that as p increases, 
the quality of the estimates deteriorates. Eventually, the re- 
course to subsampling might begin to have a net destabilizing 
effect through the injection of noise represented by 71.k in (31). 
We must show that the coupled dynamical system defined 
by (31) and (37) remains bounded. The following analysis 
verifies that if the observer gains (G in (29)) are chosen to 
result in sufficiently fast convergence, and the noise due to 
sub-sampling (zq in (27)) grows slowly enough in relation to 
window size, then our radius management scheme will grow 
windows quickly enough to reacquire lost balls, but not so 
quickly as to drown the estimation process in resolution noise. 

As derived in Appendix B the coupled dynamics for ~ ? k  and 
pk. may be bounded by 

Moving to the coordinate system, z := [X I ,  x2, x 3 I T ,  where 
x l ( k )  2 ,8191, bounds the actual Lyapunov magnitude of (29) 
and x~ ( k )  2 p k ,  xa ( k )  2 pk- 1 represent bounds on the most 
recent window radius values, we obtain the dynamics 

z ( k  + 1) = Qk..(k) + T 

0 

r := [i] 
where the symbols .q7. T,, i = 1 , 2  denote constants derived 
from the computations developed above. 

By construction of the radius adjustment procedure (37), the 
state of this system must enter a region where A k  = 6 < 1 
after an initial transient. Now, elementary root locus analysis 
of the characteristic polynomial of this system, 

2-6 + s )  + " 7 4 [ ( . q 2  - 1)6 + ("91 - y2)s + 91s2] 

shows that the matrix Q has roots in the unit circle of the 
complex plane for small enough values of u1 (they originate 
at {(U. 0.0)). This implies that if the noise coefficient, v1 is 
sufficiently small relative to the other parameters then the 
window management system succeeds in keeping the windows 
large enough to retain the required image, but not so large as 
to destabilize the estimation procedure. 

D. Implementation and Results 

We have implemented and performed experiments on a 
window management system identical to that described here. 
Specifically, while our juggling system has made use of the 
output from the nonlinear estimation system of Section IV, 
we have continued to use a triangulator and linear estimation 
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Fig. 12. Image plane tracks and search windows for two balls during an occlusion event. 
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Frame 8 

scheme to drive the sensor management system. Thus our 
implementation incorporates three parallel observers, rather 
than the minimally required two.* 

The two significant areas of improvement, for which we 
present anecdotal evidence, are the ability to recover a ball 
which leaves the system’s field of view and to recover from 
two balls occluding one another. 

Recovery from Out-of-Frame: As mentioned above, the 
use of the output from the state estimator to place the search 
windows, has allowed the juggling height to be increased to 
the point that every juggle passes out of the field of view 
of our vision system. Fig. l l (a)  and (b) depict exactly such 
a sequence. The top 0.25 to 0.4 seconds of each flight are 
outside the field of view, as is evident by the lack of position 
measurements during this period. Nevertheless the observer 
continues to predict the ball’s location, and it is recovered as 
it passes back into the system’s field of view. Fig. 1 l(b) shows 

8Note this is the minor deviation from the idealized system of Fig. 4 
mentioned earlier. 

a detail of a single recovery. Evidently, there is a slight build 
up of prediction error (approximately 5 cm vertical error) over 
the near 0.5 second that this ball was outside of view. However 
since the measurement window has grown, this magnitude of 
error is readily accommodated. 

Recovery from Ball-Ball Occlusions: Similarly we have 
been been able to observe the occlusion events discussed 
earlier. Fig. 12 depicts eight sequential image plane measure- 
ments spanning an occlusion event (for clarity we have only 
presented a small region from one of the two image planes). 
The grey ellipses represent centroid information assigned to 
ball 0, while the white ellipses are those associated with ball 1. 
The solid and dotted boxes denote the windows over which the 
binary moments were calculated for ball 0 and 1 respectively, 
and the small crosses indicate the window centers which are 
also the expected ball locations. 

In this particular sequence ball 1 (the open ellipse) is rising 
toward its apex as ball 1 falls behind it causing an occlusion 
in the 3rd frame. The balls remain occluded (lying within 
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the overlap region between the two large windows), and both 
windows continue to grow until the 5th frame at which point 
ball 0 reappears from behind the search window for ball 1, 
and finally in frame 6 ball 0 becomes visible due to the search 
window for ball 1 shrinking and exposing it. 

VI. CONCLUSION 

This paper discusses a working active visual sensor-a com- 
putational dynamical system internal to our juggling robot’s 
perceptual apparatus that combines state estimation and sensor 
control in a nonlinear feedback loop. The architecture of this 
system has been described in detail, its functional behavior 
in laboratory experiments has been documented, and formal 
proofs of soundness have been presented. Throughout, we have 
tried to take an integrated view, stressing the implications of 
our design choices for the coordinated system as a whole. 
In particular, the analytical framework is motivated by the 
hope of characterizing and managing the behavior of dynam- 
ically dexterous robotic systems that incorporate such active 
perceptual subsystems. 

We have defined the state of attention of our sensor to be a 
representation of a prescribed volume of space whose features 
the system will attempt to relate to a particular world model-a 
falling ball. We have introduced a control of attention policy by 
means of which this volume is adjusted with the dual effect of 
bringing high level clues to bear on the low level image plane 
segmentation task and providing a recovery strategy when 
segmentation fails. We have demonstrated mathematically that 
this recovery strategy is sound: that the volume of space 
being examined will grow as fast as required to encompass 
the missing ball (up to the limits of our model of ball 
motion) without growing so fast as to misjudge its state 
when found again (up to the limits of our model of sensor 
noise). 

We have also proposed a new nonlinear state estimation 
scheme-the triangulating observer-that employs stereo im- 
age plane measurement errors to update estimates of the falling 
ball’s spatial position and velocity and both mathematically 
and experimentally demonstrated its convergence. This con- 
struction follows from a structural feature of the perspective 
camera transformation relating an image plane difference vec- 
tor to the Jacobian projection of the corresponding Cartesian 
difference vector. Direct use of image plane measurements 
avoids passing the data through a sensitive algebraic inverse 
and seems to result in a system better conditioned with respect 
to noise sources. It is particularly important in our juggling 
application that the new estimator promotes an efficient use of 
incomplete stereo image data: updates can be formed from 
only one camera’s report when the other’s is missing or 
corrupted. 

Our motivation for pursuing this line of research remains 
quite practical. During the construction of our juggling robot, 
we found that the original specification of its perceptual 
capabilities was inadequate to the task at hand. As more 
and more enhancement modules were added, anticipating and 
appropriately redesigning both their mutual interaction as well 

as the net effect on the targeted juggling behavior became 
increasingly challenging. This motivated the analytical study 
presented here. We are convinced that this interactive process 
of pragmatic building followed by theoretical reflection lead- 
ing to further refined building, and so on, is the best way to 
advance the emerging field of robotics. 

APPENDIX A 
DISCRETE TIME TRIANGULATING OBSERVER 

A. The Nonlinear Observer “Inherits” the 
Gains of the Linear Observer 

When considering the stability of the discrete time variant of 
(14) it is essential that we chose gains which are large enough 
to stabilize the system yet small enough to avoid instability 
due to the time sampled nature of the system. Our approach is 
to begin with the sampled linear model of the system, construct 
a stabilizing set of gains (using pole placement, or whatever 
design method seems appropriate), use these gains to induce a 
Lyapunov function over the nonlinear error system, and finally 
use the structure of this Lyapunov function to derive stabilizing 
gains for the actual system. Note, these derived gains stabilize 
the system for initial errors, ~ ~ w ( 0 ) ~ ~ ,  sufficiently small as to 
guarantee IlA - 111 starts and remains sufficiently small. 

B. The Lyapunov Difference as a Quadratic Form in Gain 

Given that A E EtGx6 is the discrete time system matrix 
of the Cartesian dynamics, b = Z, with the (possibly state de- 
pendent) output matrix El = [ M T ;  0IT. Furthermore presume 
that (ET ,  A) is an observable pair, and that a matrix of gains, 
G has been chosen such that A - GET is an asymptotically 
stable matrix. It then follows that for any Q > 0 there can be 
found a P > 0 such that 

Ct, = P - [AT - EIGT]PIA - GET] > 0 (39) 

and it then follows that for all 7u := (w1; 7 u ~ )  E IR‘ 

0 < wTLw - 2wyMTGTKw +wyMTGTPGMwl (40) 

where 

From this we conclude that LZ must be positive definite so 
that this inequality is preserved when w1 = 0. Rearranging 
terms and completing the square for LZ we may write this as 

where 
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and note that Ker ST includes the image of 

1 I 

Thus it also must be true that STRSl > 0, or else the 
inequality of (39) would fail to hold for PO E Kcr SF. 

C. Choice of Gains 

For the error system associated with the nonlinear observei- 
of Section IV the relevant problem is to find a (possibly state 
dependent) choice of gains which stabilize the discrete form 
of (14). In this case M = CTAC. To begin we note that it 
must be the case that RI from (41) is negative definite. Were 
this not true an arbitrarily large gain, G, could be chosen such 
that it aligned with a positive eigenvector of RI forcing (40) 
to hold for all iii in an arbitrarily large set, however this is 
a discrete system and it must be the case that the system is 
destabilized by arbitrarily large gains. 

Since RI < 0 it follows that we may rewrite R as 

I I  
‘ f 

j = 1  

where 

we are led to define a worst case estimate for 6 as 

0 [“‘IR;’ ‘TI + [: R2 - RoRl -1 R, T I .  
B. Bounded Coupled Dynamics for p k  and 6k 

The bounded coupled dynamics for pk; and 191, used in Sec- 
tion V-C3 is constructed by first approximating the appearance 
of p in nk and va to first order (27). This results in 

RO 

We conclude that SFRS1 > 0 only if 

R ~ - R ~ R ; ~  R ; > 0 .  

This suggests - ~ R , I R o M - ~  as the natural choice of gains. 
Unfortunately M-’, because of its dependence on A, is not l l r L k l l P  5 y(”0 + vlpk-1) + 1’N 

available to us, and we are forced to consider V A ( P k , P k - l )  5 (1 + “ 7 f ) ” N  + r(.o + W k )  
01 + -(.Ar f 2VO + V l P k  + 7 / 1 p k - l )  

G = -yRllRo(CTC)-l. llwJ 
= (1 + a ( q  + l / / / @ I J P ) V N  + y + 2- ( ll&) 

Expanding the first term of ST RS1 in this case yields 

( I  - CTAC(CTC)- l )R~R, lRo( I  - (CTC)-lCTAC) 

and we note that this has the desired property of approaching 
01 

x 710711 + ~ P k - 1 .  ( ,,;Ipb + ul/oIIp 
0 as A 4 I .  As detailed in Section IV-B, A is bounded above 

bounds on Il.lli(O)iI that guarantee lIA - 111 starts and remains 
sufficiently small for all time. 

and below. Similar algebraic manipulation results in initial The coupled dynamical inequalities in question now may be 
written 

APPENDIX B 
MATHEMATICAL DETAILS OF WINDOW MANAGEMENT 

A. Upper Bound for 8,.-, 
In Section V-CI a worst case estimate for 8k-1 was 

developed, its derivation follows from the fact that REFERENCES 
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