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A Distributed Dynamical Scheme for Fastest Mixing Markov Chains

Abstract

This paper introduces the problem of determining through distributed consensus the fastest mixing Markov
chain with a desired sparsity pattern. In contrast to the centralized optimization-based problem formulation,
we develop a novel distributed relaxation by constructing a dynamical system over the cross product of an
appropriately patterned set of stochastic matrices. In particular, we define a probability distribution over the
set of such patterned stochastic matrices and associate an agent with a random matrix drawn from this
distribution. Under the assumption that the network of agents is connected, we employ consensus to achieve
agreement of all agents regardless of their initial states. For sufficiently many agents, the law of large numbers
implies that the asymptotic consensus limit converges to the mean stochastic matrix, which for the
distribution under consideration, corresponds to the chain with the fastest mixing rate, relative to a standard
bound on the exact rate. Our approach relies on results that express general element-wise nonnegative
stochastic matrices as convex combinations of 0—1 stochastic matrices. Its performance, as a function of the
weights in these convex combinations and the number of agents, is illustrated in computer simulations.
Because of its differential and distributed nature, this approach can handle large problems and seems likely to
be well suited for applications in distributed control and robotics.
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A Distributed Dynamical Scheme for Fastest Mixing Markov Chains

Michael M. Zavlanos, Daniel E. Koditschek and George J. Bapp

Abstract— This paper introduces the problem of determining  chains can be obtained by the Metropolis-Hastings algorith
through distributed consensus the fastest mixing Markov chin  [2, 17]. Since sampling takes place while the chain converge
with a desired sparsity pattern. In contrast to the centralized to stationarity, rapid mixing rates are necessary for valid
optimization-based problem formulation, we develop a nove . ' e .
distributed relaxation by constructing a dynamical system inference results [16_]' Therefore, determ'”'”g or bO_UQd'n
over the cross product of an appropriate|y patterned set of the Second |argeSt e|genva|ue Of MarkOV ChaInS IS V|ta.|.
stochastic matrices. In particular, we define a probability This paper is strongly influenced by a centralized formu-
distribution over the set of such patterned stochastic matices  |ation of a closely related problem, namely, the assignment
and associate an agent with a random matrix drawn from this of transition probabilities to the edges of a graph on which

distribution. Under the assumption that the network of agens . - .
is connected, we employ consensus to achieve agreement of al resulting random walks are required to converge as quickly

agents regardless of their initial states. For sufficientlymany  as possible [18]. The authors of [18] contrasted prior ¢ffor
agents, the law of large numbers implies that the asymptotic determine analytical bounds for the second largest eigeava
consensus limit converges to the mean stochastic matrix, wth  of a Markov chain [19]-[24] with their new observation that
for the distribution under consideration, corresponds to the the fastest mixing Markov chain on a given graph could

chain with the fastest mixing rate, relative to a standard baind b ted tiv b f | ial ti fi
on the exact rate. Our approach relies on results that expres € computed exactly by means of a polynomial ime opli-

general element-wise nonnegative stochastic matrices asnwex ~Mization algorithm. The proposed approach was restricied t
combinations of 0-1 stochastic matrices. Its performanceas chains with symmetric transition patterns and moderate siz
a function of the weights in these convex combinations and (at most 100 states). For larger problems subgradient meth-
the number of agents, is illustrated in computer simulatiors. ods were proposed. This convex optimization formulation

Because of its differential and distributed nature, this agproach d duality th I d derivati fi db d
can handle large problems and seems likely to be well suited and duallly theory allowed derivation of improved bounds

for applications in distributed control and robotics. on the second largest eigenvalue of a Markov chain.
Motivated by the scalability and robustness properties
. INTRODUCTION of distributed control as well as the many applications of

arkov chains in distributed robotics, ranging from motion
anning in probabilistic environments to probabilistcget
tracking, we consider a novel distributed relaxation to the

the value of their immediate predecessors. Under certa’ﬁ{Oblem of determining the fastest mixing Markov chain with

conditions, these processes converge to an equilibrium d%hd(_eswgd sparsity pe_lttern. I!q. partlcullar, we assomat_eyeye
tribution, the so called stationary distribution. The ratte chain with a stochastic transition matrix, define a probigbil

which a Markov chain converges to its stationary distriuiti distribution over the set_ of thes_e matnces,_ an_d Qefme a
is called the mixing rate of the chain and is determine etwork of agents sampling matrices from this distribution

by the second largest eigenvalue of its transition matrix. | nder the .assum_ptlon that this network is connected,. we
this paper, we investigate the problem of determining th onstruct differential flows on the set of stochastic masic
fastest mi>,<ing Markov chain over the set of appropriateliWat achi_eye consensus of all agents on their initial sasaple
patterned stochastic matrices whose convergence yields q sufficiently many agents,_the laws of Ia_rge_ numbers
guarantees that the asymptotic consensus limit converges

representation of the desired chain. . : . L
. . . . to the mean stochastic matrix, which for the distribution
Markov chains arise frequently in the areas of statis- . . o
. . . . ._under consideration, corresponds to the chain with thesast
tics, physics, biology, computer science [1]-[7] and dis-

tributed robotics [8]-[13] and, in particular, in the coxtte mixing rate. The proposed distribution as well as the ddsire

of Markov chain Monte Carlo (McMC) simulation [14, 15]. sparsity patterns, rely on results that express generakzie

McMC allows simulation of stochastic processes with high\_lee nonnegative stochastic matrices as convex combirsatio

dimensional state spaces and known probability distidimsti .Of 0-1 stoc_hasnc matnceg. The eff|C|en<_:y of our approach is
: o . . illustrated in representative computer simulations.
by simulating instead Markov chains that have the distri- . ) . .
The rest of this paper is organized as follows. In Section I

bution of interest as their stationary distribution [16icB we define the problem of determining the fastest mixing

This work is partially supported by DARPA DSO SToMP Grant Hea-  Markov chain with a desired sparsity pattern. In Section Il

07-1-0002 and ARO MURI SWARMS Grant W911NF-05-1-0219. we define the consensus algorithm on the set of stochastic
Michael M. Zavianos, Daniel E. Koditschek and George J. Papmatrices and discuss its convergence properties. Perfmena

pas are with the Department of Electrical and Systems Eng|-]c h | ithm is di d in Secti IV. while in S

neering, University of Pennsylvania, Philadelphia, PA 041 USA. of the algorithm Is discussed In Section » while In Sec-

{zavl anos, kod, pappasg}@eas. upenn. edu tion V, we illustrate our approach in nontrivial simulatgn

Markov chains are stochastic processes describing déscrg{:
time trajectories of distributions over discrete statecsga P
whose iterates are prescribed probabilistically accardn



Il. PRELIMINARIES & PROBLEM DEFINITION pij = 11if 555 > 0,2 and letS?” denote the set of alh x n

Let {X;}>°, denote a sequence of random variabledransition matricesS that respect the patterff. Then, the
where ever;:?/ariable’(t takes values in a finite set — problem addressed in this paper can be stated as follows.
{1,...,n}. We call the stochastic proce&&}:, a Markov Problem 1: Given a sparsity patterrP, design a dis-

chain with state spac# if it satisfies the Markov property: {fiuted dynamical estimation scheme whose executiom fro
a set of arbitrarily initialized local estimatdss;}™, € SP

P(Xy = 24| Xs 1 = 241,...,Xo =20) = of the underlying Markov chain, collectively converges to a

=P(X; = 24| X;_1 = 2,_,), Ccommon, pattern-preserving transition matexc SP with

the smallest mixing raté\,,_1|.
forall ¢ > 1 and allz,...,z0 € X [25, 26]. We assume  Qur approach to Problem 1 relies on defining a consensus
time-homogenous Markov chains, for which the transitiofiow on the transition matrice$S;(¢)}™, that lies in the
probabilitiess;; = P(X:y1 = j| X = i) from statei to state set S for all time ¢. The following result characterizes
j are independent of Then, the matrixS = (si;) € R"*"  the setS” in terms of the 0-1 stochastic matricés =
is called the transition matrix of the Markov chain and iS(UZ.j) € {0,1}™*" and is similar in nature to a well known
a non-negative andtochasticmatrix, i.e., its row sums are resylt that expresses the doubly stochastic matrices agxon
all equal to one. Denote, further, by = (/1) € R? the combinations of permutation matrices [27].
distribution of X; so thatwtm =P(X; =1i).! Then, we have = Lemma 2.1:The setS! of all n x n stochastic matrices
the following update rule is a convex polyhedron whose vertices are the 0-1 stochastic
roor = 5T, 1) matrirf):esZ. € {0, 1}”“;. . _
roof: LetS € S, . We use induction on the number of

which implies thatr, = (S7)'r,, wherem, denotes the POsitive entries ir. If S has exactly: positive entries, then
initial distribution of the chain. If the Markov chain is S is @ 0-1 stochastic matrix, so the result holdsSIfs not

irreducible andergodic then there exists a distributiort = @ 0-1 stochastic matrix, let = min; ;{si;} <1 and define
(7¥) over X such that the 0-1 stochastic matriX € S?, such that ifo;; = 1, then
sij > 0. Clearly, such a matriX. exists for anyS € S7.
: * =, . . .
Jm =7 Then,S = 15 (5-6%) is also a stochastic matrix i)’ and

has fewer positive entries tha®i Hence, by the induction
hypothesis,S is a convex combination of 0-1 stochastic
matrices, and therefore, so$s= (1—60)S+60%. This shows

T : , ) thatS? is the convex hull of 0-1 stochastic matrices, which
equal to one. A chain is irreducible if every state in the, o the yertices of?, since no 0-1 stochastic matrix can

ch(_aun can be' r(_aached from every other state, i.e., if foryevebe written as a convex combination of other 0-1 stochastic
pair of stateg, j € X, there exists @ € N such thaf?(X; = matrices -

j | Xo =) > 0. On the other hand, necessary and sufficient

conditions for ergodicity are that the chain is I1l. CONSENSUS ON THESET OF STOCHASTIC MATRICES

() persistentie., f;; = 3,2, ff; = 1foralli € X, where A gampling Stochastic Matrices
ffj is the probability that starting fromy the first entry
to j occurs at the-th step,

(b) non-null i.e., the mean recurrence timpe = Y77 tf},
for every statel € X is finite,

(c) aperiodig i.e.,ged{t | P(X;, =i | Xo=1) >0} =1
for all i € X, whereged indicates the greatest common
divisor.

Hence, a time-homogeneous Markov chain converges to tEsi

unigue stationary distribution*, independent ofr, if it is R"*" denotes an orthogonal projection dr, such that

irreducible and ergodic. In this case; = i [26]. If the bTb; = 0 and 671 = 0 for all 7,j = 1,...,n.' Moreover,

chain is alsosymr_netrlc(as in this Work),.thenri* = % [18]. _p(BTSB) < | BTSB|, and lettingB = I,, — %11T, we
The time required for a Markov chain to converge to itget

stationary distribution is called thmixing timeof the chain

and is determined by the second largest eigenvalue modulus An_1(9)]

of the transition probability matrix of the chain. Lét <

[AM1] < -+ < [An-1] < [An] = 1 be the ordered modula

of the eigenvalues of, which by the Perron-Frobenious

theorem can not be greater that one [27]. Define, further, thehere || X ||2 = tr(X X7T) for any X € R"*" denotes the

sparsity pattern? = (p;;) € {0,1}™*™ of the chain with Frobenious norm and the last inequality results from the

The distributiont™ is called thestationary distributionof
the chain and is the unique vector that satisfies= S77*
and 177* = 1, where1 is a column vector of all entries

Before addressing Problem 1, we characterize the transi-
tion matrix S € S’ that corresponds to the Markov chain
with the fastest mixing rate.

Lemma 3.1:Let (S) £ [|S — 1117 F. Then,
[An—1(9)] < 9(S) for all S € ST.

Proof: Similarly to [18], note that/\,,—1(S)| corre-
onds to the spectral radius 8frestricted to the subspace
, i.e., [A\—1(S)| = p(BTSB), where B = [by...b,] €

(L, — 2117)T5(1, — L1175
n n

IN

1 1
I8 = =117l < [|§ = ~117|,
n n

lwe denote byR . the set]0, co). 2Note thats;; = 0 does not imply thap;; = 0.



equivalence of the normg - |2 and || - |7, i-e., || X]|]2 < stochastic matrices with all remaining rows# i satisfying
1 X|lFr < Vil X2 B the sparsity patters?. Hence,[zlﬁvﬁ1 (31— E2)2T i =0

Minimizing [A,—(S)| directly is, in general, hard. In- for all ; = 1,...,n, which implies thattr( Y27, (31 —
stead, us_mg.Lemma 3.1 we can minimize the _relaxaﬂ_ogQ EZ“) — 0, as desired. '
¥(S), which is a convex function of the stochastic matrix \wae conclude that) (E(X)) < o(E.(X))

for any per-
S. Let y p,

A . turbation0 < e < Nip which implies thaty(E(X)) =
5" = argminge sp9(S). 2) mingesr ¥(S) and, henceE(S) = 5*, by convexity of the
The following result makes use of Lemma 2.1 and charadunction(S). _ _ _ n
terizes a class of distributions of stochastic matrifes S In other words, if we sample stochastic matrices S,
with mean $*. Essentially, it provides a way of sampling according to the assumptions of Lemma 3.2, then their mean

from the setS” and motivates the design of the distributedvalue is equal t5*. Combined with Lemma 3.1 and the law

algorithm for Problem 1. of large numbers [25, 26]

Lemma 3.2:For any collection of uniformly distributed m
0-1 stochastic matrice$¥;}5_, € SF and any random lim lZgi =E(S)
vector of nonnegative weights = [a;...ax]T € Ri, m/ee m i

let S = %1 Zl?_l a;%; € SE. Then, assuming the usual i ] ]
independence, we haw(S) = S*. we conclude that we can obtain a stochastic marix S7’
Proof: SinceE(S) is a stochastic matrix, we have thatWith the lowest second largest eigenvalig,—.(S)| by

E(S)117 = 117. Hence, using the property that the tracesampling the setS” of stochastic matrices and averaging
of a matrix is equal to the trace of its transpose, we get these samples. This observation leads to a distributed con-

) ) trol scheme for Problem 1 using distributed averaging or

Y(E(S)) = tr(E(S) - E11T)(1E(S)T - EHT) consensus
T
= tr(E(S)E(S) ) -1 B. The Distributed Consensus Algorithm
where Let G = (V,€&) denote a network ofn agents, where
k o E oo V ={1,...,m} is the set of vertices indexed by the set of
E(S) = Z IE(QTJI)]E(EJ-) = ]E(E)E( Z OzTJ]_) =E(%), agentsand CVxVis the set of communication links. We
j=1 j=1 assume bidirectional communication links and(sgj) € £

if and only if (4,7) € £. Such graphs are callashdirected

and are the main focus of this paper. Furthermore, assume
G is such that there exists a path (i.e., a sequence of distinct
vertices such that consecutive vertices are adjacent)cestw
any two of its vertices. Then, we say tltats connectedAny
verticesi andj of an undirected grap§ that are joined by

for any uniformly distributed 0-1 stochastic matiixe S7.
Note, further, thatE(X) = j.vz’)l NLPEJ-, where N, is the
total number of 0-1 stochastic matrices that satisfy theepat
SP, and for any0 < € < Ni define thee-perturbed mean

of the 0-1 stochastic matriX by

1 1 1 Np a link (i,7) € &), are calledadjacentor neighbors Hence,
E.(2) = (— + e)El + (— - e) Yo+ — Z Y we can define the set of neighbors of ageby \; = {j €
N, N, N, 4 o
v g = V| (i.j) € €}
= EX)+eXE —X2). In what follows, we make use of an equivalent algebraic
Then. we have L?ztrrei;entation of a grap = (V,&) using alaplacian
V(EX)) —(E(X)) = L=A-A, ®)

= tr(E(D)E(D)” — E()E(D)7)

where A = (a;;) € R™*™ corresponds to thadjacency
= —2etr(E(X)(Z1 — 22)7) — €21 — 2o y

matrix of the graphg, which is such thaty;; = ﬁ if

2 - ) ) (i,5) € € anda;; = 0 otherwise andA = diag(>_"_; aij)

- —N—ptr(Z(El - 22)23') = [[E = ZolF denotes thevalency matri¥* The spectral properties of the
) =1 ) laplacian matrix are closely related to graph connectivity

= —€[|%1 = o[z <0, particular, ifv; < vy < --- <, are the ordered eigenvalues

of the laplacian matrix., thenv; = 0, with corresponding
eigenvector, andvs > 0 if and only if G is connected [28].
Hence, we have the following result.

sincetr ( Z;V:pl(zl —EQ)E;!) = 0. To see this, suppose that
¥, and X, differ in the ¢-th row. Then, there exist indices
S }é t such that[El — 22]1'5 =1 and [21 — 22]“ = -1,
where [-];; denotes theij-th entry of a matrix. Observe, ) o ) )
further. that the number of 0-1 stochastic matriégswith Note that if X1 and X5 do not differ in the]%r-th row, then thei-th row

! . 3 . of 31 — X9 is zero, which again results i[rzjzpl(ill — 22)2?]“’ =0.
[Ej]is. =1lis equal to the number of 0-1 stochastic matrices 4Since we do not allow self-loops, we defiag; = 0 for all 4. Also,
¥, with [¥;];; = 1, and corresponds to the number of all 0-1.V;| denotes the cardinality of the saf;.



Lemma 3.3 (Consensus &f’): Let G denote a network for anye > 0, whereS andS* are the limit of the consensus
of m agents and assume that every agaatassociated with update (4) and the sought expectation, respectively, and
a stochastic matrixs; € SP”. Then, the closed loop system vec : R"*" — R"™ denotes thevectorizationof an n x n

) matrix. Optimization problem (5) is, in general, hard tovsol
Si = |J\/| > (Si—8;), Vi=1,...,m, (4 Instead, we solve the simpler relaxation

- in Var(vec(s))
min ar(vec

defines a consensus algorithm on the set of stochastic matri-:; >0 i (6)
cesSP, and ifG is connected, it guarantees tifat-S; — 0 st SELYT S, Si= 7Y @S,
for all 4,j ast — oc. _ o _ _

Proof: For all agentsi, observe thaty" .. (S; — which results from an application of Chebyshev’s ineqyalit

JjE

S;)1 = 0, which implies that$;1 = 0. Hence,S;(t)1 = c;, . Var(vec(S))
for any constant vectoe; € R™ and all timet > 0. Since, P (llvec(S) — vec(S)[l2 2 €) < 2 ’

S;(0)1 = 1 for all agentsi, we have thaic; = 1 for all

i and s0S,()1 — 1 for all ime ¢ > 0 and all agents where the varianc&ar(vec(5)) is defined as [29, pp. 446—

i. The fact thatS;(t) > 0 for all ; and all time¢t > 0 451]
follows from the fact thatS;(0) € SP for all agentsi Var(vec(S)) £ E (||vec(S) — E(vec(S))|13) -
and the distributed averaging law (4), which ensures that
Si(t) € conv{S;(0) | j = 1,...,m} for all time ¢t > 0. N particular, we have the following result.
Hence,S;(t) € S¥ for all time ¢ > 0 and all agents. B Lemma 4.1:Problem (6) has a unique minimum obtained
Consider now the Lyapunov function candidate whena; = ¢;1, for any set of scalars; > 0 and all agents
t=1,...,m.
yo Z S8 - 85112 = _trST(L®I )S, Proof: Let 8;; = au;/al1. Then,Z?;lﬁzj =1 for
=1 jen alli=1,...,m and using Lemma 1.1 in the Appendix, the

i the objective function becomes
where® denotes the Kronecker product of matrices &nhe

ST ... ST ¢ R™m*™, Taking the time derivative of 1 &
%/(15) we get] g Var(vec(S)) = — ZIVar(wc(Si))
. L e 1, r .
V(s) = 5trS (L®IL,)S + 5trS (L®I,)S - L ZZ 2 Var(vee(Siy)),
= —trST(Lo L) (L®I,)S [
= —|(L®L)S|% <o. by independence of the 0-1 stochastic matriEgs Hence,

The set of critical points satisfi€d ® I,,)S = 0 and if the the optimization problem (6) is equivalent to

network is connected, thefi; —S; — 0 ast — . [ | ming,; >0 Zz ) Zg )

If we initialize consensus (4) according to the assumptions ot Z B8 = 1 V i=1,. (7)
of Lemma 3.2, then the law of large numbers implies that for =17 "
sufficiently large numbem of agents, the asymptotic limit of which is separable, and so corresponds to the solution of
the consensus approximates the optimal solufibnin other  copies of the problem
words, Lemmas 3.2 and 3.3 provide a distributed algorithm . ki oo
for Problem 1, as desired. ming,; >0 X254 B 8)

s.t. S B =1,
IV. CONSENSUSPERFORMANCE g=ty
. o
In this section we characterize the performance of thit ¢an be shown that the solution to problem (8)jis = 7-

consensus update (4) for a given number of agentlsn par- forall j = 1,...,k;, which along with its convex nature,
ticular, given a set of 0-1 stochastic matridgs;; } '~y ', completes the proof. o _ u
with k; > 0 the number of such matrices assométéd with Inotherwords, Lemma 4.1 implies that in order to increase
agenti, and recalling that (Lemma 2.1) the performance of the consensus update (42 every dagent

N should initialize its stochastic matri% = T1 27 1 Q55

with equal weightsy;
- _T Z iy ij+
@ j=1

V. SIMULATIONS

wherea; = [ai1 ... aq,]" is a vector of positive weights, we  |n this section we simulate the distributed consensus
are interested in the solution of the following optimizatio algorithm discussed in Sections Ill and IV. In particulan, f

problem the pattern illustrated in Fig. 1 and = 10 for all agents
min P ([[vec(S) — vee(SH)|2 > €) i, we construct the initial sampleS; = T1 ZJ 1 O 245
@ij 20 (5) choosing the 0-1 stochastic matricEs; uniformly in the

k
st SE LY S, Si= ﬁ Djm1 ®ijij set S” and the positive weightsy;; either randomly or



Fig. 1.

Markov chain of sizex = 10.

uniformly, as discussed in Section IV. Following is theiiit
stochastic matrixS; of a sample agent

0

(=)

00

oo

S =

hOOOOOOOLN
[elelelolalal=TRIRTN
COCOCOO N e
[lelel=l=I RN =}
[l ===t}
[SI=NRTS [Tt}
[N =l=l=l=l=lol=)
MO0 OCOCOO,

COOOLRWOD
Opnimino0000

We run the consensus

numbers. Furthermore, choosing the weights uniformly

results in a better performance of the algorithm, as diszliss

in Section IV. Following is the final stochastftfor the case
of m = 100 agents and uniform weights:

.3358 .3453 0 0 0 0 0 0 0 .3189

.3601 .3233 .3166 0 0 0 0 0 0 0
0 .3343 .3203 .3455 O 0 0 0 0 0
0 0 .3360 .3107 .3533 O 0 0 0 0
0 0 0 .2969 .3472 .3559 O 0 0 0
0 0 0 0 .3252 .3237 .3511 O 0 0
0 0 0 0 0 .2960 .3619 .3421 O 0
0 0 0 0 0 0 .3408 .3288 .3304 O
0 0 0 0 0 0 0 .3275 .3363 .3362

.3540 0 0 0 0 0 0 .3194 .3266

Note thatS approximates well the transition matri with

the fastest mixing rate, which for the particular exampls h

all positive entries equal to 1/3.

VI. CONCLUSIONS

update (4) developed Section ﬁ
for different numbers of agenta and the results are shown
in Table | and the associated Fig. 2. Note that the larg
the number of agents, the better the approximation of tP}
sought expectatiors™, as predicted by the law of large

a

1.65

—— Random Weights

—— Uniform Weights

1s5F | T E

Cost function Y(S)

15 + L L L L L L
0 10 20 30 40 50 60 70 80 90 100

Number of agents m

Fig. 2. Plot of the cost functiorp(S) obtained by applying consensus (4)
for the pattern illustrated in Fig. 1, corresponding to theadpresented
in Table I. Note that the larger the number of agents, theebetie
approximation of the sought expectaticit. Moreover, uniform weights
a;; > 0 result in better performance, as discussed in Section I\e Th
communication networkg; underlying the consensus algorithm are taken
to be random and connected.

a novel distributed relaxation to the problem by constngcti
ifferential flows on the set of stochastic matrices. In par-
cular, we defined a probability distribution over the sét o
stochastic matrices and associated an agent with any random

er

matrix drawn from this distribution. Under the assumption
fat the network of agents is connected, we employed
consensus to achieve agreement of all agents independent of
their initial states. For sufficiently many agents, we shdwe
that the asymptotic consensus limit converged to the mean
stochastic matrix, which for the distribution under consid
eration, corresponded to the chain with the fastest mixing
rate. The proposed distribution as well as the desired pars
patterns, relied on results that express general stochasti
matrices as convex combinations of 0-1 stochastic matrices
Due to its differential and distributed nature, our apptoac
can handle large problems and seems likely to be well suited
for applications in distributed control and robotics. Fetu
work involves determining more quantitative bounds on the
number of agents required to obtain almost optimal solgtion
as well as applications in distributed robotics, in the eant

of probabilistic mapping of environments and target tragki

In this paper, we considered the problem of determining

the fastest mixing Markov chain with a desired sparsity pat-

tern, captured by a stochastic transition matrix. We depesdo

TABLE |
THE COST FUNCTIONy(S) AFTER APPLYING CONSENSUS4) FOR THE
MARKOV CHAIN SHOWN IN FIG. 1.

_ . Number of agentsn
ki =10, Vi —p 10 20 50 100
Randoma; 1.5938 1.5546 1.5408 .1.5331 1.5315
+.0156 | 4+.0077 | £.0028 | £.0028 | +.0011
Uniform 1.5757 1.5489 1.5382 1.5319 1.5308
+.0113 | +.0074 | £.0025 | £.0022 | +.0007
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