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A Distributed Dynamical Scheme for Fastest Mixing Markov Chains

Abstract
This paper introduces the problem of determining through distributed consensus the fastest mixing Markov
chain with a desired sparsity pattern. In contrast to the centralized optimization-based problem formulation,
we develop a novel distributed relaxation by constructing a dynamical system over the cross product of an
appropriately patterned set of stochastic matrices. In particular, we define a probability distribution over the
set of such patterned stochastic matrices and associate an agent with a random matrix drawn from this
distribution. Under the assumption that the network of agents is connected, we employ consensus to achieve
agreement of all agents regardless of their initial states. For sufficiently many agents, the law of large numbers
implies that the asymptotic consensus limit converges to the mean stochastic matrix, which for the
distribution under consideration, corresponds to the chain with the fastest mixing rate, relative to a standard
bound on the exact rate. Our approach relies on results that express general element-wise nonnegative
stochastic matrices as convex combinations of 0–1 stochastic matrices. Its performance, as a function of the
weights in these convex combinations and the number of agents, is illustrated in computer simulations.
Because of its differential and distributed nature, this approach can handle large problems and seems likely to
be well suited for applications in distributed control and robotics.
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A Distributed Dynamical Scheme for Fastest Mixing Markov Chains

Michael M. Zavlanos, Daniel E. Koditschek and George J. Pappas

Abstract— This paper introduces the problem of determining
through distributed consensus the fastest mixing Markov chain
with a desired sparsity pattern. In contrast to the centralized
optimization-based problem formulation, we develop a novel
distributed relaxation by constructing a dynamical system
over the cross product of an appropriately patterned set of
stochastic matrices. In particular, we define a probability
distribution over the set of such patterned stochastic matrices
and associate an agent with a random matrix drawn from this
distribution. Under the assumption that the network of agents
is connected, we employ consensus to achieve agreement of all
agents regardless of their initial states. For sufficientlymany
agents, the law of large numbers implies that the asymptotic
consensus limit converges to the mean stochastic matrix, which
for the distribution under consideration, corresponds to the
chain with the fastest mixing rate, relative to a standard bound
on the exact rate. Our approach relies on results that express
general element-wise nonnegative stochastic matrices as convex
combinations of 0-1 stochastic matrices. Its performance,as
a function of the weights in these convex combinations and
the number of agents, is illustrated in computer simulations.
Because of its differential and distributed nature, this approach
can handle large problems and seems likely to be well suited
for applications in distributed control and robotics.

I. I NTRODUCTION

Markov chains are stochastic processes describing discrete
time trajectories of distributions over discrete state spaces
whose iterates are prescribed probabilistically according to
the value of their immediate predecessors. Under certain
conditions, these processes converge to an equilibrium dis-
tribution, the so called stationary distribution. The rateat
which a Markov chain converges to its stationary distribution
is called the mixing rate of the chain and is determined
by the second largest eigenvalue of its transition matrix. In
this paper, we investigate the problem of determining the
fastest mixing Markov chain over the set of appropriately
patterned stochastic matrices whose convergence yields a
representation of the desired chain.

Markov chains arise frequently in the areas of statis-
tics, physics, biology, computer science [1]–[7] and dis-
tributed robotics [8]–[13] and, in particular, in the context
of Markov chain Monte Carlo (McMC) simulation [14, 15].
McMC allows simulation of stochastic processes with high-
dimensional state spaces and known probability distributions
by simulating instead Markov chains that have the distri-
bution of interest as their stationary distribution [16]. Such
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chains can be obtained by the Metropolis-Hastings algorithm
[2, 17]. Since sampling takes place while the chain converges
to stationarity, rapid mixing rates are necessary for valid
inference results [16]. Therefore, determining or bounding
the second largest eigenvalue of Markov chains is vital.

This paper is strongly influenced by a centralized formu-
lation of a closely related problem, namely, the assignment
of transition probabilities to the edges of a graph on which
resulting random walks are required to converge as quickly
as possible [18]. The authors of [18] contrasted prior effort to
determine analytical bounds for the second largest eigenvalue
of a Markov chain [19]–[24] with their new observation that
the fastest mixing Markov chain on a given graph could
be computed exactly by means of a polynomial time opti-
mization algorithm. The proposed approach was restricted to
chains with symmetric transition patterns and moderate size
(at most 100 states). For larger problems subgradient meth-
ods were proposed. This convex optimization formulation
and duality theory allowed derivation of improved bounds
on the second largest eigenvalue of a Markov chain.

Motivated by the scalability and robustness properties
of distributed control as well as the many applications of
Markov chains in distributed robotics, ranging from motion
planning in probabilistic environments to probabilistic target
tracking, we consider a novel distributed relaxation to the
problem of determining the fastest mixing Markov chain with
a desired sparsity pattern. In particular, we associate every
chain with a stochastic transition matrix, define a probability
distribution over the set of these matrices, and define a
network of agents sampling matrices from this distribution.
Under the assumption that this network is connected, we
construct differential flows on the set of stochastic matrices
that achieve consensus of all agents on their initial samples.
For sufficiently many agents, the law of large numbers
guarantees that the asymptotic consensus limit converges
to the mean stochastic matrix, which for the distribution
under consideration, corresponds to the chain with the fastest
mixing rate. The proposed distribution as well as the desired
sparsity patterns, rely on results that express general element-
wise nonnegative stochastic matrices as convex combinations
of 0-1 stochastic matrices. The efficiency of our approach is
illustrated in representative computer simulations.

The rest of this paper is organized as follows. In Section II
we define the problem of determining the fastest mixing
Markov chain with a desired sparsity pattern. In Section III
we define the consensus algorithm on the set of stochastic
matrices and discuss its convergence properties. Performance
of the algorithm is discussed in Section IV, while in Sec-
tion V, we illustrate our approach in nontrivial simulations.



II. PRELIMINARIES & PROBLEM DEFINITION

Let {Xt}∞t=0 denote a sequence of random variables,
where every variableXt takes values in a finite setX =
{1, . . . , n}. We call the stochastic process{Xt}∞t=0 a Markov
chain with state spaceX if it satisfies the Markov property:

P(Xt = xt|Xt−1 = xt−1, . . . , X0 = x0) =

= P(Xt = xt|Xt−1 = xt−1),

for all t ≥ 1 and all xt, . . . , x0 ∈ X [25, 26]. We assume
time-homogenous Markov chains, for which the transition
probabilitiessij = P(Xt+1 = j|Xt = i) from statei to state
j are independent oft. Then, the matrixS = (sij) ∈ R

n×n

is called the transition matrix of the Markov chain and is
a non-negative andstochasticmatrix, i.e., its row sums are
all equal to one. Denote, further, byπt = (π

[i]
t ) ∈ R

n
+ the

distribution ofXt so thatπ[i]
t = P(Xt = i).1 Then, we have

the following update rule

πt+1 = STπt, (1)

which implies thatπt = (ST )tπ0, whereπ0 denotes the
initial distribution of the chain. If the Markov chain is
irreducibleandergodic, then there exists a distributionπ⋆ =
(π⋆

i ) overX such that

lim
t→∞

πt = π⋆.

The distributionπ⋆ is called thestationary distributionof
the chain and is the unique vector that satisfiesπ⋆ = STπ⋆

and 1
Tπ⋆ = 1, where1 is a column vector of all entries

equal to one. A chain is irreducible if every state in the
chain can be reached from every other state, i.e., if for every
pair of statesi, j ∈ X , there exists at ∈ N such thatP(Xt =
j | X0 = i) > 0. On the other hand, necessary and sufficient
conditions for ergodicity are that the chain is

(a) persistent, i.e.,fii ,
∑∞

t=1 f
t
ii = 1 for all i ∈ X , where

f t
ij is the probability that starting fromi, the first entry

to j occurs at thet-th step,
(b) non-null, i.e., the mean recurrence timeµi ,

∑∞
t=1 tf

t
ii

for every statei ∈ X is finite,
(c) aperiodic, i.e., gcd{t | P(Xt = i | X0 = i) > 0} = 1

for all i ∈ X , wheregcd indicates the greatest common
divisor.

Hence, a time-homogeneous Markov chain converges to the
unique stationary distributionπ⋆, independent ofπ0, if it is
irreducible and ergodic. In this case,π⋆

i = 1
µi

[26]. If the
chain is alsosymmetric(as in this work), thenπ⋆

i = 1
n

[18].
The time required for a Markov chain to converge to its

stationary distribution is called themixing timeof the chain
and is determined by the second largest eigenvalue modulus
of the transition probability matrix of the chain. Let0 ≤
|λ1| ≤ · · · ≤ |λn−1| ≤ |λn| = 1 be the ordered modula
of the eigenvalues ofS, which by the Perron-Frobenious
theorem can not be greater that one [27]. Define, further, the
sparsity patternP = (pij) ∈ {0, 1}n×n of the chain with

1We denote byR+ the set[0,∞).

pij = 1 if sij > 0,2 and letSP
n denote the set of alln× n

transition matricesS that respect the patternP . Then, the
problem addressed in this paper can be stated as follows.

Problem 1: Given a sparsity patternP , design a dis-
tributed dynamical estimation scheme whose execution, from
a set of arbitrarily initialized local estimates{Si}m

i=1 ∈ SP
n

of the underlying Markov chain, collectively converges to a
common, pattern-preserving transition matrix,S ∈ SP

n , with
the smallest mixing rate|λn−1|.

Our approach to Problem 1 relies on defining a consensus
flow on the transition matrices{Si(t)}m

i=1 that lies in the
set SP

n for all time t. The following result characterizes
the setSP

n in terms of the 0-1 stochastic matricesΣ =
(σij) ∈ {0, 1}n×n, and is similar in nature to a well known
result that expresses the doubly stochastic matrices as convex
combinations of permutation matrices [27].

Lemma 2.1:The setSP
n of all n× n stochastic matrices

is a convex polyhedron whose vertices are the 0-1 stochastic
matricesΣ ∈ {0, 1}n×n.

Proof: Let S ∈ SP
n . We use induction on the number of

positive entries inS. If S has exactlyn positive entries, then
S is a 0-1 stochastic matrix, so the result holds. IfS is not
a 0-1 stochastic matrix, letθ = mini,j{sij} < 1 and define
the 0-1 stochastic matrixΣ ∈ SP

n , such that ifσij = 1, then
sij > 0. Clearly, such a matrixΣ exists for anyS ∈ SP

n .
Then,S̃ = 1

1−θ
(S−θΣ) is also a stochastic matrix inSP

n and
has fewer positive entries thanS. Hence, by the induction
hypothesis,S̃ is a convex combination of 0-1 stochastic
matrices, and therefore, so isS = (1−θ)S̃+θΣ. This shows
thatSP

n is the convex hull of 0-1 stochastic matrices, which
are the vertices ofSP

n , since no 0-1 stochastic matrix can
be written as a convex combination of other 0-1 stochastic
matrices.

III. C ONSENSUS ON THESET OF STOCHASTIC MATRICES

A. Sampling Stochastic Matrices

Before addressing Problem 1, we characterize the transi-
tion matrix S ∈ SP

n that corresponds to the Markov chain
with the fastest mixing rate.

Lemma 3.1:Let ψ(S) , ‖S − 1
n
11

T ‖F . Then,
|λn−1(S)| ≤ ψ(S) for all S ∈ SP

n .
Proof: Similarly to [18], note that|λn−1(S)| corre-

sponds to the spectral radius ofS restricted to the subspace
1
⊥, i.e., |λn−1(S)| = ρ(BTSB), whereB = [b1 . . . bn] ∈

R
n×n denotes an orthogonal projection on1⊥, such that

bTi bj = 0 and bTi 1 = 0 for all i, j = 1, . . . , n. Moreover,
ρ(BTSB) ≤ ‖BTSB‖2, and lettingB = In − 1

n
11

T , we
get

|λn−1(S)| ≤ ‖(In − 1

n
11

T )TS(In − 1

n
11

T )‖2

= ‖S − 1

n
11

T ‖2 ≤ ‖S − 1

n
11

T‖F ,

where‖X‖2
F = tr(XXT ) for anyX ∈ R

n×n denotes the
Frobenious norm and the last inequality results from the

2Note thatsij = 0 does not imply thatpij = 0.



equivalence of the norms‖ · ‖2 and ‖ · ‖F , i.e., ‖X‖2 ≤
‖X‖F ≤ √

n‖X‖2.
Minimizing |λn−1(S)| directly is, in general, hard. In-

stead, using Lemma 3.1 we can minimize the relaxation
ψ(S), which is a convex function of the stochastic matrix
S. Let

S⋆ , argminS∈SP
n
ψ(S). (2)

The following result makes use of Lemma 2.1 and charac-
terizes a class of distributions of stochastic matricesS ∈ SP

n

with meanS⋆. Essentially, it provides a way of sampling
from the setSP

n and motivates the design of the distributed
algorithm for Problem 1.

Lemma 3.2:For any collection ofk uniformly distributed
0-1 stochastic matrices{Σj}k

j=1 ∈ SP
n and any random

vector of nonnegative weightsα = [α1 . . . αk]T ∈ R
k
+,

let S = 1
αT 1

∑k

j=1 αjΣj ∈ SP
n . Then, assuming the usual

independence, we haveE(S) = S⋆.
Proof: SinceE(S) is a stochastic matrix, we have that

E(S)11
T = 11

T . Hence, using the property that the trace
of a matrix is equal to the trace of its transpose, we get

ψ(E(S)) = tr
(

E(S) − 1

n
11

T )(E(S)T − 1

n
11

T
)

= tr
(

E(S)E(S)T
)

− 1,

where

E(S) =

k
∑

j=1

E

( αj

αT 1

)

E(Σj) = E(Σ)E
(

k
∑

j=1

αj

αT 1

)

= E(Σ),

for any uniformly distributed 0-1 stochastic matrixΣ ∈ SP
n .

Note, further, thatE(Σ) =
∑Np

j=1
1

Np
Σj , whereNp is the

total number of 0-1 stochastic matrices that satisfy the pattern
SP

n , and for any0 < ǫ < 1
Np

, define theǫ-perturbed mean
of the 0-1 stochastic matrixΣ by

Eǫ(Σ) =
( 1

Np

+ ǫ
)

Σ1 +
( 1

Np

− ǫ
)

Σ2 +
1

Np

Np
∑

j=3

Σj

= E(Σ) + ǫ(Σ1 − Σ2).

Then, we have

ψ(E(Σ)) − ψ(Eǫ(Σ)) =

= tr
(

E(Σ)E(Σ)T − Eǫ(Σ)Eǫ(Σ)T
)

= −2ǫtr
(

E(Σ)(Σ1 − Σ2)
T
)

− ǫ2‖Σ1 − Σ2‖2
F

= − 2ǫ

Np

tr

(

Np
∑

j=1

(Σ1 − Σ2)Σ
T
j

)

− ǫ2‖Σ1 − Σ2‖2
F

= −ǫ2‖Σ1 − Σ2‖2
F < 0,

sincetr
(
∑Np

j=1(Σ1−Σ2)Σ
T
j

)

= 0. To see this, suppose that
Σ1 and Σ2 differ in the i-th row. Then, there exist indices
s 6= t such that[Σ1 − Σ2]is = 1 and [Σ1 − Σ2]it = −1,
where [·]ij denotes theij-th entry of a matrix. Observe,
further, that the number of 0-1 stochastic matricesΣj with
[Σj ]is = 1 is equal to the number of 0-1 stochastic matrices
Σj with [Σj ]it = 1, and corresponds to the number of all 0-1

stochastic matrices with all remaining rowsk 6= i satisfying
the sparsity patternSP

n . Hence,[
∑Np

j=1(Σ1 − Σ2)Σ
T
j ]ii = 0

for all i = 1, . . . , n, which implies thattr
(
∑Np

j=1(Σ1 −
Σ2)Σ

T
j

)

= 0, as desired.3

We conclude thatψ(E(Σ)) < ψ(Eǫ(Σ)) for any per-
turbation 0 < ǫ < 1

Np
, which implies thatψ(E(Σ)) =

minS∈SP
n
ψ(S) and, hence,E(S) = S⋆, by convexity of the

functionψ(S).
In other words, if we sample stochastic matricesS ∈ SP

n

according to the assumptions of Lemma 3.2, then their mean
value is equal toS⋆. Combined with Lemma 3.1 and the law
of large numbers [25, 26]

lim
m→∞

1

m

m
∑

i=1

Si = E(S)

we conclude that we can obtain a stochastic matrixS ∈ SP
n

with the lowest second largest eigenvalue|λn−1(S)| by
sampling the setSP

n of stochastic matrices and averaging
these samples. This observation leads to a distributed con-
trol scheme for Problem 1 using distributed averaging or
consensus.

B. The Distributed Consensus Algorithm

Let G = (V , E) denote a network ofm agents, where
V = {1, . . . ,m} is the set of vertices indexed by the set of
agents andE ⊆ V×V is the set of communication links. We
assume bidirectional communication links and so(i, j) ∈ E
if and only if (j, i) ∈ E . Such graphs are calledundirected
and are the main focus of this paper. Furthermore, assume
G is such that there exists a path (i.e., a sequence of distinct
vertices such that consecutive vertices are adjacent) between
any two of its vertices. Then, we say thatG is connected. Any
verticesi andj of an undirected graphG that are joined by
a link (i, j) ∈ E), are calledadjacentor neighbors. Hence,
we can define the set of neighbors of agenti by Ni , {j ∈
V | (i, j) ∈ E}.

In what follows, we make use of an equivalent algebraic
representation of a graphG = (V , E) using a laplacian
matrix

L = ∆ −A, (3)

whereA = (aij) ∈ R
m×m corresponds to theadjacency

matrix of the graphG, which is such thataij = 1
|Ni|

if
(i, j) ∈ E andaij = 0 otherwise and∆ = diag

(
∑n

j=1 aij

)

denotes thevalency matrix.4 The spectral properties of the
laplacian matrix are closely related to graph connectivity. In
particular, ifν1 ≤ ν2 ≤ · · · ≤ νm are the ordered eigenvalues
of the laplacian matrixL, thenν1 = 0, with corresponding
eigenvector1, andν2 > 0 if and only if G is connected [28].
Hence, we have the following result.

3Note that ifΣ1 andΣ2 do not differ in thei-th row, then thei-th row
of Σ1 − Σ2 is zero, which again results in[

PNp

j=1
(Σ1 − Σ2)ΣT

j ]ii = 0.
4Since we do not allow self-loops, we defineaii = 0 for all i. Also,

|Ni| denotes the cardinality of the setNi.



Lemma 3.3 (Consensus onSP
n ): Let G denote a network

of m agents and assume that every agenti is associated with
a stochastic matrixSi ∈ SP

n . Then, the closed loop system

Ṡi = − 1

|Ni|
∑

j∈Ni

(Si − Sj), ∀ i = 1, . . . ,m, (4)

defines a consensus algorithm on the set of stochastic matri-
cesSP

n , and ifG is connected, it guarantees thatSi−Sj → 0

for all i, j as t→ ∞.
Proof: For all agentsi, observe that

∑

j∈Ni
(Si −

Sj)1 = 0, which implies thatṠi1 = 0. Hence,Si(t)1 = ci,
for any constant vectorci ∈ R

n and all timet ≥ 0. Since,
Si(0)1 = 1 for all agentsi, we have thatci = 1 for all
i, and soSi(t)1 = 1 for all time t ≥ 0 and all agents
i. The fact thatSi(t) ≥ 0 for all i and all time t ≥ 0
follows from the fact thatSi(0) ∈ SP

n for all agentsi
and the distributed averaging law (4), which ensures that
Si(t) ∈ conv{Sj(0) | j = 1, . . . ,m} for all time t ≥ 0.
Hence,Si(t) ∈ SP

n for all time t ≥ 0 and all agentsi.
Consider now the Lyapunov function candidate

V (S) ,
1

2

m
∑

i=1

∑

j∈Ni

‖Si − Sj‖2
F =

1

2
trST (L⊗ In)S,

where⊗ denotes the Kronecker product of matrices andS =
[ST

1 . . . ST
m]T ∈ R

mn×m. Taking the time derivative of
V (S) we get

V̇ (S) =
1

2
trṠT (L⊗ In)S +

1

2
trST (L ⊗ In)Ṡ

= −trST (L ⊗ In)T (L⊗ In)S

= −‖(L⊗ In)S‖2
F ≤ 0.

The set of critical points satisfies(L⊗ In)S = 0 and if the
network is connected, thenSi − Sj → 0 as t→ ∞.

If we initialize consensus (4) according to the assumptions
of Lemma 3.2, then the law of large numbers implies that for
sufficiently large numberm of agents, the asymptotic limit of
the consensus approximates the optimal solutionS⋆. In other
words, Lemmas 3.2 and 3.3 provide a distributed algorithm
for Problem 1, as desired.

IV. CONSENSUSPERFORMANCE

In this section we characterize the performance of the
consensus update (4) for a given number of agentsm. In par-
ticular, given a set of 0-1 stochastic matrices{Σij}i=1,...,m

j=1,...,ki
,

with ki > 0 the number of such matrices associated with
agenti, and recalling that (Lemma 2.1)

Si =
1

αT
i 1

ki
∑

j=1

αijΣij ,

whereαi = [αi1 . . . αiki
]T is a vector of positive weights, we

are interested in the solution of the following optimization
problem

min
αij≥0

P (‖vec(S) − vec(S⋆)‖2 ≥ ǫ)

s.t. S , 1
m

∑m
i=1 Si, Si = 1

αT
i
1

∑k
j=1 αijΣij

(5)

for anyǫ > 0, whereS andS⋆ are the limit of the consensus
update (4) and the sought expectation, respectively, and
vec : R

n×n → R
n2

denotes thevectorizationof an n × n
matrix. Optimization problem (5) is, in general, hard to solve.
Instead, we solve the simpler relaxation

min
αij≥0

Var(vec(S))

s.t. S , 1
m

∑m
i=1 Si, Si = 1

αT
i
1

∑k
j=1 αijΣij ,

(6)

which results from an application of Chebyshev’s inequality

P (‖vec(S) − vec(S⋆)‖2 ≥ ǫ) ≤ Var(vec(S))

ǫ2
,

where the varianceVar(vec(S)) is defined as [29, pp. 446–
451]

Var(vec(S)) , E
(

‖vec(S) − E(vec(S))‖2
2

)

.

In particular, we have the following result.
Lemma 4.1:Problem (6) has a unique minimum obtained

whenαi = ci1, for any set of scalarsci > 0 and all agents
i = 1, . . . ,m.

Proof: Let βij , αij/α
T
i 1. Then,

∑ki

j=1 βij = 1 for
all i = 1, . . . ,m and using Lemma 1.1 in the Appendix, the
the objective function becomes

Var(vec(S)) =
1

m2

m
∑

i=1

Var(vec(Si))

=
1

m2

m
∑

i=1

ki
∑

j=1

β2
ijVar(vec(Σij)),

by independence of the 0-1 stochastic matricesΣij . Hence,
the optimization problem (6) is equivalent to

minβij≥0

∑m

i=1

∑ki

j=1 β
2
ij

s.t.
∑ki

j=1 βij = 1 ∀ i = 1, . . . ,m,
(7)

which is separable, and so corresponds to the solution ofm
copies of the problem

minβij≥0

∑ki

j=1 β
2
ij

s.t.
∑ki

j=1 βij = 1,
(8)

It can be shown that the solution to problem (8) isβij = 1
ki

for all j = 1, . . . , ki, which along with its convex nature,
completes the proof.

In other words, Lemma 4.1 implies that in order to increase
the performance of the consensus update (4), every agenti
should initialize its stochastic matrixSi = 1

αT
i
1

∑ki

j=1 αijΣij

with equal weightsαij .

V. SIMULATIONS

In this section we simulate the distributed consensus
algorithm discussed in Sections III and IV. In particular, for
the pattern illustrated in Fig. 1 andki = 10 for all agents
i, we construct the initial samplesSi = 1

αT
i
1

∑ki

j=1 αijΣij

choosing the 0-1 stochastic matricesΣij uniformly in the
set SP

n and the positive weightsαij either randomly or
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Fig. 1. Markov chain of sizen = 10.

uniformly, as discussed in Section IV. Following is the initial
stochastic matrixSi of a sample agenti:

Si =











.4 .3 0 0 0 0 0 0 0 .3

.1 .3 .6 0 0 0 0 0 0 0
0 .3 .3 .4 0 0 0 0 0 0
0 0 .4 .3 .3 0 0 0 0 0
0 0 0 .2 .4 .4 0 0 0 0
0 0 0 0 .2 .3 .5 0 0 0
0 0 0 0 0 .2 .3 .5 0 0
0 0 0 0 0 0 .4 .1 .5 0
0 0 0 0 0 0 0 .4 .4 .2
.4 0 0 0 0 0 0 0 .2 .4











We run the consensus update (4) developed Section III
for different numbers of agentsm and the results are shown
in Table I and the associated Fig. 2. Note that the larger
the number of agents, the better the approximation of the
sought expectationS⋆, as predicted by the law of large
numbers. Furthermore, choosing the weightsαij uniformly
results in a better performance of the algorithm, as discussed
in Section IV. Following is the final stochasticS for the case
of m = 100 agents and uniform weights:











.3358 .3453 0 0 0 0 0 0 0 .3189

.3601 .3233 .3166 0 0 0 0 0 0 0
0 .3343 .3203 .3455 0 0 0 0 0 0
0 0 .3360 .3107 .3533 0 0 0 0 0
0 0 0 .2969 .3472 .3559 0 0 0 0
0 0 0 0 .3252 .3237 .3511 0 0 0
0 0 0 0 0 .2960 .3619 .3421 0 0
0 0 0 0 0 0 .3408 .3288 .3304 0
0 0 0 0 0 0 0 .3275 .3363 .3362

.3540 0 0 0 0 0 0 0 .3194 .3266











Note thatS approximates well the transition matrixS⋆ with
the fastest mixing rate, which for the particular example has
all positive entries equal to 1/3.

VI. CONCLUSIONS

In this paper, we considered the problem of determining
the fastest mixing Markov chain with a desired sparsity pat-
tern, captured by a stochastic transition matrix. We developed

TABLE I

THE COST FUNCTIONψ(S) AFTER APPLYING CONSENSUS(4) FOR THE

MARKOV CHAIN SHOWN IN FIG. 1.

ki = 10, ∀ i
Number of agentsm

5 10 20 50 100

Randomαi
1.5938 1.5546 1.5408 .1.5331 1.5315
±.0156 ±.0077 ±.0028 ±.0028 ±.0011

Uniform αi
1.5757 1.5489 1.5382 1.5319 1.5308
±.0113 ±.0074 ±.0025 ±.0022 ±.0007
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Fig. 2. Plot of the cost functionψ(S) obtained by applying consensus (4)
for the pattern illustrated in Fig. 1, corresponding to the data presented
in Table I. Note that the larger the number of agents, the better the
approximation of the sought expectationS⋆. Moreover, uniform weights
αij ≥ 0 result in better performance, as discussed in Section IV. The
communication networksG underlying the consensus algorithm are taken
to be random and connected.

a novel distributed relaxation to the problem by constructing
differential flows on the set of stochastic matrices. In par-
ticular, we defined a probability distribution over the set of
stochastic matrices and associated an agent with any random
matrix drawn from this distribution. Under the assumption
that the network of agents is connected, we employed
consensus to achieve agreement of all agents independent of
their initial states. For sufficiently many agents, we showed
that the asymptotic consensus limit converged to the mean
stochastic matrix, which for the distribution under consid-
eration, corresponded to the chain with the fastest mixing
rate. The proposed distribution as well as the desired sparsity
patterns, relied on results that express general stochastic
matrices as convex combinations of 0-1 stochastic matrices.
Due to its differential and distributed nature, our approach
can handle large problems and seems likely to be well suited
for applications in distributed control and robotics. Future
work involves determining more quantitative bounds on the
number of agents required to obtain almost optimal solutions,
as well as applications in distributed robotics, in the context
of probabilistic mapping of environments and target tracking.
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APPENDIX

In this section we show a generalization of the well known
identity Var(aX + bY ) = a2Var(X) + b2Var(Y ) [25]
for X,Y ∈ R independent identically distributed random
variables, to the case of random vectors. In particular, we
have the following result.

Lemma 1.1:Let X,Y ∈ R
n be independent identically

distributed random vectors with meanE(X) = E(Y ) = µ ∈
R

n and let Var(X) , E‖X − E(X)‖2
2 (similarly for Y )

[29, pp. 446–451]. Then,Var(aX + bY ) = a2Var(X) +
b2Var(Y ), for any scalarsa, b ∈ R.

Proof: Observe first that

Var(X) = E(X − µ)T (X − µ)

= E(XTX) − 2E(XT )µ+ µTµ = E‖X‖2
2 − ‖µ‖2

2,

and similarlyVar(Y ) = E‖Y ‖2
2 − ‖µ‖2

2. Then,

Var(aX + bY ) = E‖aX + bY − E(aX + bY )‖2
2

= E‖aX + bY − (a+ b)µ‖2
2

= E‖aX + bY ‖2
2 − (a+ b)2‖µ‖2

2

= a2
E‖X‖2

2 + 2abE(XT )E(Y ) + b2E‖Y ‖2
2 − (a+ b)2µ2

= a2
(

E‖X‖2
2 − ‖µ‖2

2

)

+ b2
(

E‖Y ‖2
2 − ‖µ‖2

2

)

= a2Var(X) + b2Var(Y ),

which completes the proof.
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