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Abstract

We describe work-in-progress toward a nonlinear image-based rigid body dynamic triangulator which we
believe tracks a moving target from "essentially all” initial conditions (all initial conditions except a set of
measure zero). The dynamic triangulator depends on the goal state only through its image plane position and
velocity and requires a navigation function, imposed directly upon image features, to serve as a regressor for a
gradient-like state update law.
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Toward Global Visual Servos and Estimators for Rigid Bodies*

Noah J. Cowan and Daniel E. Koditschek

Electrical Engineering and Computer Science, The University of Michigan
Ann Arbor, MI 48105; E-mail: {ncowan, kod}@eecs.umich.edu

Abstract

We describe work-in-progress toward a nonlinear
image-based rigid body dynamic triangulator which we
believe tracks a moving target from “essentially all”
initial conditions (all initial conditions except a set of
measure zero.) The dynamic triangulator depends on
the goal state only through its image plane position
and velocity and requires a navigation function, im-
posed directly upon image features, to serve as a re-
gressor for a gradient-like state update law.

1 Introduction

The control and vision literature loosely define wvi-
sual servoing and visual estimation as computer-vision-
based closed-loop servo control and state estimation,
respectively. Sanderson and Weiss [14] propose two
classifications for visual servos, position-based, in which
the objective is to minimize a positioning error defined
in the robot’s Cartesian task space, and image-based in
which the controller directly minimizes the perceived
error. The same taxonomy applies to visual estima-
tors, i.e. a position based estimator minimizes the task
space tracking error and an image based estimator dy-
namically updates the estimate to drive the internal
model to visually align with the observation.

Generically, all vision-based estimators and servos
are triangulators in the sense that they (either explic-
itly or implicitly) “compute” the task space coordi-
nates of the objects observed by cameras. Position-
based systems are algebraic triangulators since they
explicitly compute task-space information from image
features and parametric knowledge of the world. Image
based systems are dynamic triangulators since they do
not require the explicit inversion of perceptual models
to recover task space coordinates of the goal. Conse-
quently, they often require less computation and are
thought to be more robust with respect to calibration
uncertainty (7, 8, 16, 11, 5].

*This work was supported in part by the NSF under grant
IRI-9510673
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When the object being tracked has rotational de-
grees of freedom, dynamic vision is greatly compli-
cated. Many researchers in object tracking literature
have addressed this problem by using local lineariza-
tions, e.g. Extended Kalman Filters [16, 15], which pro-
vide good results for incremental tracking but do not
address the issue of large initial error.

1.1 Motivation

The long term aim of our research seeks to develop a
system that couples visual estimation of a dynamical
rigid body with visual servoing of a robot manipulator
in order to achieve a dynamical task, such as catching

] visible
O Occluded

Image Plane

Figure 1: The objective is to drive the rigid body so
that each corner aligns with the respective corner on the
goal. The algorithm proposed requires three common visi-
ble corners, a condition not always satisfied. The “simple-
minded” workaround is to “hallucinate” the occluded fea-
ture for the controller. We prefer to work only with the
visible features available at each position, as depicted in
Figure 3.
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an otherwise unsensed falling body, or snatching an
object from a conveyor. Our approach to such prob-
lems presupposes well designed robust “early vision”
algorithms [9, 4] that track features such as corners
and edges of the objects being observed. This affords
the use of a growing body of signal processing algo-
rithms designed to identify such features of an image
and models the camera as a virtual sensor providing
tmage plane coordinates for the objects being observed.
Hutchinson et. al. provide a tutorial introduction to
this approach {7].

As a rigid body moves in space, actuated or not,
its corners and edges typically cycle into and out of
the view of the cameras. Consequently it will often be
necessary to switch the focus of attention during mo-
tion, introducing a hybrid aspect to the problem. To
achieve stable systems, therefore, it is desirable to de-
velop dynamic triangulators with very large domains
of attraction in order to simplify the very challeng-
ing switching problem that inevitably results from the
image-based approach.

1.2 Relation to Existing Literature

Much of the recent literature [15, 6, 16] uses local lin-
earizations to solve tracking and servoing problems for
both points and 3D objects. Some recent papers from
our laboratory [13, 11] present algorithms, stability
analysis and a working implementation [11] of systems
with provably large domains of attraction for point po-
sitioning and estimation without local linearizations.
This paper proposes extensions of that work to rigid
bodies.

1.3 Organization and Contributions

The next section introduces our virtual sensor. Section
3 describes an approach to dynamic triangulation that
imposes a cost function directly upon image features,
and uses that cost as a regressor in a gradient-based
state update. If one can show that the cost is in fact a
navigation function,® then convergence to a static goal
is guaranteed [12]. Similarly, using an image plane
“tachometer” (Section 3.1) we might achieve asymp-
totic tracking of a moving target as well, subject to
the extension of nonlinear time-varying stability theory
to time-varying navigation functions. After presenting
our triangulator we discuss the analytical properties
for a specific objective function for a planar monocular
camera in Section 3.2. In the planar case (n = 2) our
nearly complete characterization of the critical points
suggests that the cost function is indeed a navigation

! A navigation function has a unique global minimum, and all
other critical points are nondegenerate saddles and maximums.

function. We also present a statistical summary of our
simulation results suggesting that the servoing system
is reasonably efficient. Finally we speculate on the im-
plications of this paper and discuss future directions of
our work in Section 4.

2 Virtual Sensor

As stated, we wish to pose an objective function in
“camera-space”, C, and therefore we must construct a
virtual sensor, ¢ : SE(n) = C, from the camera data
using knowledge of the rigid body. First we introduce
some notation, and then we present. the system output
model.

2.1 Rigid Transformations

The group of rigid transformations, SE(n), may be em-
bedded in GL(n + 1) (nonsingular matrices) by writing
the transformation in homogeneous representation

SE(n) = {HeGL(n+1)|RTR=1,|R| =1}
H = [ &t J 1)

where R € SO(n) is an n x n rotation matrix and
r € R" is a translation vector. Let A : R® — R” be a
rigid transformation. Then, using the notation above,
if p € R™ then the point b = h(p) is given by

HEUH

where H is the homogeneous representation of h.

2.2 Camera Model

The map, 7 : R* = R®*=1  maps a point in space to a
point on the image plane. It is assumed that 7 takes an
argument in a local camera coordinate frame. Figure 1
depicts the planar case (n = 2), corresponding to a
“one dimensional” camera and a planar world. The
specific form of m depends on the parametric camera,
model chosen. The pinhole camera model, reviewed in
Appendix A, has lent theoretical and practical utility
to previous work by our laboratory [13, 11] and we have
chosen to exploit its simple structure when analyzing
the specific cost function presented in Section 3.2.

Let  denote the rigid transformation from world
coordinates into the it* camera coordinate frame. The
total camera map is then given by

wo h(b)
g(b) = : (2)
mo*h(b)

where k is the total number of cameras.
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2.3 System Output

Consider & rigid body and let H € SE(n) denote
the homogeneous representation of h, the change from
body to world coordinates, i.e. if p is a point in body
coordinates, then b = h(p) is the same point in world
coordinates. Let P = [p1,...,pm] € R**™ denote m
distinguishable points (“corners”) fixed on the rigid
body, expressed with respect to the body reference
frame. Let B denote the same set of m feature points
as expressed in world coordinates, i.e.

] =)

where 1 = [1,...,1]7. The constant matrix P is as-
sumed known a priori, i.e. we know the block geometry
exactly.

Let ¢ : SE(n) — C denote the camera image of the
m points in the rigid body, i.e.

g(b1) ¢
cH)=| + |=| 1 [, (3)
g(bm) Cm

where g is given in (2). The camera space C is
R™*(»~1)  where k is the number of cameras.

3 Dynamic Triangulation

Suppose there is a target, whose position and orienta-
tion is given by H* € SE(n), which cannot be directly
measured; instead we measure ¢* = ¢(H*). In effect,
our objective is to solve

¢ —c(H) =0, (4)

for H where the parameters of ¢, such as the focal
length and P, are assumed known.

We distinguish two types of triangulation: dynamic
and algebraic. The aim of both is to solve Equa-
tion (4). Algebraic triangulation provides a “pseudo-
inverse” ¢t : C = SE(n), whereas dynamic triangula-
tion uses an iterative method such as gradient or New-
ton descent to dynamically solve for the minimum of
an objective function on the perceived output c(H)
and the perceived goal ¢*. For example ||c* ~ c(H)||
is a candidate objective function with a global mini-
mum at H = H*. Of course, in our research agenda
the recourse to dynamical triangulation is motivated
in part by a real-time servo implementation wherein
the descent step is executed in the physical world by
the direct manipulation of the observed object. Alter-
natively, we might wish to obtain an asymptotic es-
timate of the position, orientation and velocity of an

object which may be moving according to some dy-
namic equation.

Whether for estimation or for servoing, we posit a
purely kinematic model of the form

H = u
y = c(H) ©)

where u € TSE(n) is the input variable.? In terms of
local coordinates ((16) in Appendix B), we have

qg = u

y = cq) ©
where we associate with u its local coordinate repre-
sentation, and by ¢(g) it is understood that we mean
coguy (g), although an abuse of notation. If we choose
Hy = I in (16), then our local coordinates are given
by ¢ = [8,7T]T, the rotation and translation of the
body, and u = [w,vT]T, the angular and translational
velocity.

3.1 Generic Image-Based Tracking

We wish to triangulate a part moving on a conveyor,
or a falling body, with an input dependent on the goal
only through its image plane positions and velocities,
and yet still guarantee convergence. To achieve this we
pose the cost ¢ : SE(n) x SE(n) — R on image plane
measurements, that is, ¢ admits of a factorization

@(H, H) = g(c(H),c(H")). (7)

Furthermore, we suppose the possibility of taking nu-
merical derivatives of our image plane motions, and
assume that we have perfect measurement of the im-
age plane coordinates, ¢* = ¢(H™*) of the body we are
tracking, and the image plane velocities, ¢* (motivat-
ing the term image plane “tachometer”).

Our input is given in local coordinates (16) by

u=—=M""(q) Dgp(q,q")" — usDe-F(c,c*) & (8)
where
us = Dyp(q,q") " (De(q, ") Dyp(g, ") ")

and D, f denotes the Jacobian of f with respect to z.
M is an arbitrary Riemannian metric.

The reader can check that u depends on (H*, H*)
only through (c¢*,¢*). Furthermore, since

¢ =Dqp(q,q") u+ De-p(c, ™) &7,
substituting for u from (8)

¢ = —|lgrad,p(a,q")|3 < 0.

2TSE(n) denotes the tangent space of SE(n).
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If (-, H*) is a navigation function and H* = 0 then
we achieve asymptotic tracking for “essentially all” ini-
tial conditions [12]. When the goal is moving then
(-, H*(t)) is time varying, and the convergence result
is slightly more elusive.?

3.2 Navigation Function Candidate

We now investigate the critical points of a novel cost
function, based on “angular error”, using a planar
monocular pinhole camera (see Appendix A).

Note that given the projection of two points on the
image plane one can deduce the angle subtended be-
tween them (measured in the camera frame) purely
from image plane coordinates, and let

- oIy cler + A2
Cleezl Tl + A2 eI + A%)

(9)

denote the cosine of the angle between the i** corner
and its goal, where ¢ = ¢(H), ¢* = ¢(H*) and X is the
focal length. This serves as the primary building block
for our cost function

m

Q(HH*)=> 1-7. (10)

i=1

Note that ¢ has been factored according to (7). We
now wish to verify that ¢ is a navigation function by
investigating the critical points.

3.2.1 Gradient

In reporting the progress of our analysis, we restrict at-
tention to the case in which the rigid body is a triangle
(m = 3) on the plane (n = 2).

To investigatc the gradient at a particular Hp, we
simply compute the gradient in local coordinates (16)
and evaluate at ¢ =0

grad, ¢(¢,q")| o = M7H(0) (Dewlq, )|, (11)

where M is a Riemannian metric. For convenience, let
M (0) = I, as the choice of metric does not change the
limiting behavior. Simplifying, yields

(Depla,4"))go = As

where
L o )0l 7]
- Jb Jb Jb 3 = 3
Tz [ el 10

3We are presently developing a time-varying extension to nav-
igation functions (similar to the time-varying extension to Lya-
punov theory presented, for example, in Khalil [10]) that will
guarantee convergence under (presumably reasonable) restric-
tions on H*.

5 = /\(Ct - Ci)
C VPR R+ %)

Assuming that (4) has a unique solution in front
of the camera,® we believe but have not yet shown
formally that (-, H*) has exactly two critical points.
One of the critical points is the goal, which is a min-
imum by design. Another is the “ghost goal” behind
the camera and it is a maximum, as shown in the next
section. The details of this conjecture (the final proof
of which is in progress) may be found in our technical
report [2].

i=1,2,3.

3.2.2 Hessian and Stability

The Hessian is calculated by taking the Jacobian ma-
trix of the vector field which we may evaluate at ¢ = 0
to study the stability properties at Hy. The calcula-
tions are further simplified if we evaluate the Hessian
at a critical point, which implies that s = 0:

H = D(I(Dqlp(qaq*))T|q=0’ =0 " (12)
It is straightforward to show that
H = ATAT (13)

where ' = diag {71, 72,73 }-

At the goal I' = I and at the “ghost goal” I' = ~1I.
Hence the goal is a local minimum and the remaining
critical point is a maximum. Subject to the verification
that there are no additional critical points, we have
shown ¢(-, H*) satisfies the requirements of a naviga-
tion function. In addition to the analytical evidence,
numerical simulations suggest that this is true.

3.2.3 Numerical Results

Table 1 summarizes the results of 125 simulations of
(8) assuming a static goal and no occlusions, wherein
25 initial conditions were spaced evenly around each of
five different initial distance balls. The maximum ini-
tial error® corresponds ta about 100° of angular error
or about three times the body radius of translational
error. The camera was assumed to have unit focal
length, and the rigid body is an equilateral triangle in-
scribed in a circle of radius 1. The goal is centered at
(0,5) and was chosen as the local coordinates for the
gradient calculation, i.e. Hy = H*. Of course practi-
cal settings will vary greatly in detail and the table is
merely qualitative.

4Such a solution exists provided the circle which passes
through the three features of the goal does not pass through
the camera’s focus.

5We have arbitrarily scaled orientation angles by body radius
to fix a unique metric for SE(2).
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Figure 2: Typical simulated trajectory.

Distance to Avg Distance Average Standard

Goal (|lg(0)D) Traveled Inefficiency Dev
0.25 0.37 48% 25%
0.50 0.73 46% 25%
1.00 1.44 44% 25%
1.25 1.80 41% 25%
1.50 1.39 39% 25%

Table 1: Summary of 125 simulations, wherein 25 ini-
tial conditions were spaced evenly around each of 5
different initial distances to the goal. “Average Inef-
ficiency” is the extra distance traveled by the vision-
based algorithm compared to the “straight-line” tra-
jectory.

The algorithm seems to be reasonably “efficient” in
the sense that the distance traveled is generally about
one and a half times the shortest possible distance. Of
course gradient algorithms do not guarantee optimal-
ity. A typical trajectory is shown in Figure 2.

4 Conclusions

4.1 Summary

The two central contributions of this paper to the field
of visual servoing estimation are the application of gra-
dient techniques to the dynamic triangulation prob-
lem for rigid bodies, including the introduction of a
novel angle-based candidate navigation function, and
the use of an image-based velocity estimate — image
plane “tachometer” — to track nonstationary objects.

Intermediate
Goal

D Visible
O Occluded

Rigid
Body

Figure 3: The camera (not shown), rigid body and goal
are in the same positions as in Figure 1, and, as before, the
objective is to drive the rigid body corner-wise to the goal.
Here, there is a hierarchy of two controllers for backchain-
ing. The first controller “prepares” the second.

4.2 Work-in-Progress

Our near-term research agenda addresses dynamic es-
timation and control in which the accelerations of the
bodies being triangulated change in some known way,
e.g. according to Newton’s laws or a control law, so we
can advance from the quasi-static approach we have
used thus far.

We have also begun to address the problem of
“switching.” As the rigid body is servoed, it will gener-
ally be necessary to switch the focus of attention (due
to occlusions), as depicted in Figure 3. Consequently a
systematic switching method must be used to guaran-
tee convergence to the goal. Back-chaining [1], wherein
one constructs a set of intermediate goals which sat-
isfy an appropriate “prepares” relationship, is one such
approach. A “cartoon” version of this is shown in Fig-
ure 3. The initial condition and goal are the same as
in Figure 1, however there is an intermediate goal, H'
constructed a preor: that shows corners 1,2,3,4. One
first navigates according to ¢(-, H'), to the interme-
diate goal until corner 4 is visible, at which time the
controller switches to the navigation function (-, H*).
In this sense, the first navigation function “prepares”
the second. Of course one seeks to plan out a com-
plete set of these intermediate “preparatory” subgoals
in such a fashion that the entire configuration space,
SE(2), is “covered”.

Finally, and most importantly, we have begun con-
structing research apparatus for validating the empir-
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ical utility of the analytical results and conjectures set
forth in this paper.

A Pinhole Camera

The spatial pinhole camera transformation m, : R —
R? is given by
)

where X is the focal length (assumed known) of the
camera and b = [b;, by, b.]” is a point specified in cam-
era coordinates. Note that the z-axis is perpendicular
to the image plane.

For the planar case, SE(2), there are only two frame
axes which we denote {z,z}. The z-axis is chosen or-
thogonal to the image line, as before.® See Figure 1.
The planar pinhole camera map 7, : R2 — R is simply

A
b

A

b,

by

m ) by (14)

() [bs]. (15)
Note that the same symbol, 7y is used for both the
planar and spatial camera. It will be clear from context

which is being used.

B Local Coordinates on SE(n)

The local coordinate charts used in this paper were
chosen to simplify the analysis, and are defined below.

The skew symmetric operator J : R™ — Skew(m) is
given by

0 —U3 (]
JW):=| v 0 -
—vy Ui 0
for m = 3 and
10 —v
J(v) = [ v 0 }

for m = 1. Let q; € R*"~1/2 and ¢, € R*. Define
the map ¢! : R*™+1)/2 5 SE(n) by
} Ho.

In a neighborhood of Hg, ¢m; ! is invertible. In par-
ticular, ¢, © ¢p; " is the identity on R*n+1)/2 ip a
neighborhood of 0, and ¢y;! o ¢y, is the identity on
SE(n) in a neighborhood of Hy [3].

q2

-1
P, 1

0

(q) — [ exp(OJqul)) (16)

6Since the “world” is chosen to be a plane, the camera image
is one dimensional.
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