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In this paper we discuss a robotic task requiring dynamical safety in the face of an intermittent environment.
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Toward Obstacle Avoidance in Intermittent 
Dynamical Environments 

R o b e r t  R.  Bur r idge ,  Al f red  A.  Rizzi ,  a n d  Dan ie l  E.  K o d i t s c h e k  

D e p a r t m e n t  o f  Elec t r ica l  E n g i n e e r i n g  a n d  C o m p u t e r  Sc ience  
T h e  Un ive r s i t y  o f  Mich igan ,  A n n  A r b o r ,  Mich igan ,  U S A  

Abstract 

In this paper we discuss a robotic task requiring dynamical safety in the face of 
an intermittent environment. We define and offer examples of this notion. We 
then construct a dynamically safe composite controller from dynamically safe 
constituents, and present empirical evidence of its effectiveness. 

1. I n t r o d u c t i o n  

This paper and a companion paper [1] develop an approach to building up complexes 
of controllers from simpler constituents. These ideas, first set out in [2], arise from our 
previous experience with dynamically dexterous robot tasks. The composite controllers 
we develop result in more varied and capable closed loop robot behavior than can be 
accomplished by any one of the constituent controllers acting in isolation. The compan- 
ion paper [1] presents a method for extending the domain of attraction of a goal set via 
an appropriate composition procedure. This paper introduces the notion of dynamical 
safety for systems with only intermittent contact between robot and environment. In 
other words, we seek to add obstacle avoidance capability to robot controllers that can al- 
ready successfully manipulate objects that must be periodically released into a dynamical 
environment along the way toward their goal. Although all the discussion in the compan- 
ion paper is limited to the dynamical setting, we believe that our framework for controller 
composition is useful over a much wider class of robot task domains. In contrast, the 
novelty of the obstacle avoidance problem considered here is peculiar to the intermittent 
setting. 

To introduce the new notion of a safe control strategy we find it useful to add to 
the formal definition (i) a specific extended example along with (ii) some empirical results 
reflecting our efforts to implement the example on our three degree of freedom B/ihgler 
robot [3]. 
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1.1. I n t e r m i t t e n t  D y n a m i c a l l y  D e x t e r o u s  Tasks  

We are interested in constructing machines that can interact with an environment pos- 
sessing significant dynamics, and that can accomplish tasks affording only intermittent 
influence over that environment. As in the past, we focus on robot juggling (ball bounc- 
ing) tasks as good representatives of this larger class which we believe to include such 
capabilities as catching, throwing, and hopping. Our past work has resulted in a fam- 
ily of machines [3, 4] that exhibit excellent dexterity in a narrow domain, as well as an 
immature but growing body of theory to explain how [5]. 

This paper extends the work reported in [1]. In particular, we wish to develop meth- 
ods by which we can guarantee that constituent feedback based dynamical manipulation 
strategies are safe with respect to certain generalized obstacles. We show that these ideas 
will afford the automatic construction of complex combinations which are themselves also 
guaranteed to be safe with respect to the same obstacles. 

1.2. D y n a m i c a l  Obstacles  

Our robot, the three degree of freedom Bfihgler [6], is equipped with a (roughly) one meter 
long flat paddle and a stereo vision system. The task we wish to explore - the "batted 
pick and place" - consists of a ball being thrown into the workspace without warning with 
the requirement that the robot capture it (prevent it from escaping the workspace), bat 
it as necessary, then bring it to rest at a pre-specified location on the paddle. 

The edge of the workspace defined by the end of the paddle provides a natural obstacle 
since once the ball passes that boundary, it will never return. To avoid this obstacle, we 
need to make certain not only that the ball isn't currently at the boundary, but also that 
future interactions between the robot and the ball will not cause it to reach the boundary 
before we can hit it again. This observation motivates our dcfinltion of safety in Section 
2. 

1.3. R o b o t  Control  Archi tec ture  

All of the experimental work described in this paper has been implemented on the B/ihgler 
robot [6, 3] as elaborated in [1]. This machine senses ball positions using 2 CCD cameras 
located above and outside the workspace, and senses impacts using a microphone attached 
to the paddle. The raw data is filtered and integrated by an observer, producing a 
"continuous" stream of estimates of the ball's position and velocity, as reported in [6] 1. 
The estimate of the hall's state is fed through a nonlinear transformation, or "mirror law", 
M(b), to arrive at a desired reference trajectory for the robot, which is in turn passed 
to a smoothing "follow-through" generator. The resulting reference trajectory is tracked 
by a high performance adaptive inverse dynamics controller [7]. The signal flow through 
this sequence of processing steps from camera image plane all the way down to the joint 

IAlthough space limitations prevent an exhaustive list of modifications to the original system, we will 
note that both the window manager and dynamical observers have been significantly modified to allow 
balls to be thrown into the workspace rather than carefully presented, as had been the case heretofore. 
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level torque commands amounts to a feedback control policy that we shall refer to as ¢. 
Different choices of observers or mirror laws give rise to a characteristic robot response 
and in this sense there are many such • that might be brought to bear on any particular 
problem. 

Throughout the work presented here, we presume that the state estimates emerging 
from the observer are correct (i.e. correctly converged to the true ball state), and that the 
robot will accurately track whatever reference trajectory we command. In fact we only 
require that the robot be "on track" whenever an impact occurs. Thus far our laboratory 
experiences have consistently supported these assumptions. 

1.4. Sequential Composition of Controllers 

As described in [1], our current program of research focuses on the use of multiple control 
strategies and switching schemes to carry out tasks that are impossible with a single 
continuous controller [8, 9]. 

For example, to carry out the "batted pick and place" task described in the companion 
paper we employ three control strategies - juggling (~ j ) ,  catching (¢v) ,  and palming 
(~e) .  Indeed, we foresee the need for several deployments of each of these strategies, 
each with different set points and gains. In order to organize these various strategies 
and deployments toward achieving the overall goal, we use a version of the backchaining 
algorithm originally described in [10] and extended in [1]. 

This algorithm uses knowledge of limit sets - sets of points, G~, in the phase space 
of the ball, to which a particular control policy, ~,  tends to bring the ball - and domains 
of attraction - sets of points, T~, from which ¢ is guaranteed to deliver the ball to the 
associated limit set, ~® - in order to partition the ball's state space into regions where 
individual controllers should be active. The resulting partition of the state space provides 
the basis for a switching mechanism between the controllers which is guaranteed to drive 
the system to the goal. It turns out that if the component controllers are "safe" with 
respect to an obstacle, then the composite controller has the same property. While local 
estimates of the domains may be achieved by standard linear analysis, we wish to work 
with the larger global domain for which analytical estimates may not be available. This 
motivates the experimental determination of ~ presented in the sequel. 

2 .  S a f e  B e h a v i o r  

2.1. S e t t i n g  

Let b E B ~ / R  6 be the full state of the ball (position and velocity) in Cartesian coordi- 
nates. Let r E 7~ ~ IR 6 be the state of the robot in joint space. 

The ball in flight will be modeled by Newtonian dynamics with gravity pointing down 
along the z-axis. Due to the simplicity of the ball flight dynamics, we can derive a closed 
form expression for the bM1 position at t |me t in the future as a function of present state, 
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denoted 

b(t) = F'(b). ( i)  

When the ball and paddle collide we use the standard restitution model of collisions (see 
Synge and Griffith [11] for a discussion of restitution models). In short, we assume that 
only the ball's velocity component normal to the paddle is affected, while neither the 
tangential component nor the velocity of the robot is altered by impact. Unless the bali 
and robot are in continuous contact, it is natural to divide the trajectory of the ball into 
epochs of time punctuated by collisions. The k 'h epoch starts with the ball in state bk, 
and ends immediately after the next impa~t, in state bk+l. 

Since the robot has no effect on the ball except at contact, we will ignore from now 
on the trajectory of the actuator system, and only consider the state of the robot at an 
impact event. Given that the robot strategies used here are feedback strategies (entirely 
based on the state of the ball), it follows that we can compute a return map of the form 

bk+l :--- f¢(bk) (2) 

for a particular robot strategy ¢. 

We can now make formal the notions of limit sets and domains of attraction introduced 
in Section 1.4. Suppose there is an attracting set, ~, arising from iteration of let. We call 

the goal of ¢, and the domain of attraction of q~ to ~ is given by 

~¢(g)  = {b e BIf~°°(b) 6 G}. (3) 

2.2. Def in i t ion  

To introduce the notion of safety we must first consider what an obstacle is. Let the set 
of all ball states which are unacceptable be denoted by O. This set includes the positions 
where the ball is in a physical obstacle, as well as all states where the ball is beyond the 
cylinder of the workspace, or too fast to be viewed by, or outside the field of view of the 
current vision system. 

The time until a ball, b, will hit this obstacle set is given by 

"co(b) = m i n t  : Ft(b) 6 O, (4) 

while the time to next impact for a particular controller, ¢, is given by 7~(b). 

We define a controller ~ to be safe if there can be found a set :D~s C :D~ such that 

:Dvs C {b 6 D~lr.(b) < To(b)} (5) 

and 

f®(~P~s) g ~,s.  (6) 
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Assuming that the robot is acting according to ~,  then the first criterion requires 
that the domain not contain any ball states from which the trajectory of the ball will 
lead to the obstacle before the next contact. The second criterion - invariance to impacts 
- implies that  once in the safe domain the robot will never knock the ball out (again 
assuming that  the robot continues in q~). Together, these criteria insure that once a ball 
is in T)gs, it will neither leave that set nor hit an obstacle as long as the robot remains in 
¢.  

2.3. Two  E x a m p l e s  w i th  F o r m a l  D e m o n s t r a t i o n  

For the remainder of this paper we will only consider purely configuration space obstacles 
which are vertically aligned generalized cylinders. That is to say that the obstacle set O 
can be completely characterized by its projection onto the x-y plane of the bali's phase 
space. 

2.3.1. The Horizontally Regulated Juggle 

Consider the juggling strategy, ~ j ,  used in [6] and [1]. It is easily demonstrated that any 
ball which lies at the horizontal set-point with zero horizontal velocity is in fact "trapped" 
in a positive-invariant submanifold of the bali's state space [5]. If we consider this two 
dimensional set of ball states as ~ o j s  it  follows that  this juggling strategy will be safe 
provided the horizontal set-point lies outside the obstacle set. First we note that since this 
set is invariant under the controller ~ j  it follows that (6) is trivially satisfied. Satisfaction 
of (5) follows from the fact that ro  is c¢ for any ball in ~ j s  since, by presumption, no 
ball in this set has any horizontal velocity and thus can not reach O (since O is limited 
to being a vertically aligned cylinder). 

2.4. Loca l  Sa fe ty  

We have empirically verified that the final equilibrium-point for the juggling strategy 
mentioned above is asymptotically stable. From this fact it follows that there exists a 
positive definite matrix, P,  such that the set defined by 

(7) 

is nonempty for some e > 0 (here b stands for b - ~ ) .  Furthermore there must exist an e* 
such that ~#L(e*) C :D#(9) and T~L(e*)NO = 0. This set is by design a positive invariant 
set under f~ and thus (6) is immediately satisfied. Verification of (5) however is more 
difficult. First we note that no impact between the robot and machine can occur within 
the obstacle set if we start the ball in D~L(e*) - this is a direct result of the invariance of 
this set and the lack of an intersection between it and O. However in order to conclude 
that the overall system is safe we must also ensure that during the ball's flight (between 
impacts) the boundary of the obstacle is not crossed. From our simple Newtonian model 
for flight we know that the projection of a batl's flight onto the x-y plane will be a straight 
tlne, and as a result of the convexity of the set T~¢L(e*) we can conclude that that the 
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entire flight of a ball remains "over" the projection of this set onto the x-y plane and thus 
can never intersect the boundary of the obstacle set. 

3. Experimental Determination of Safe Domains 

In order to determine the domain of attraction for our juggling controller, a "typical" set 
point, p0, was chosen and the juggle controller was activated. Two series of experiments 
were conducted, as outlined below. 

3.1 .  N o t a t i o n  

For the purposes of this section it is convenient to consider apex points rather than the 
full ball state. Essentially, an apex point has all ball states except ~. Furthermore, we 
will express the horizontal component of these apex points in polar coordinates, rather 
than cartesian. Thus we have ¢ and r and their velocities instead of z and y and their 
velocities. In apex space, our nominal set point is P0 = (-0.3,0.55,4.5,0,0),  where the 
first value is the polar angular position, the second is the radial distance from the origin, 
the third is the vertical energy, and the last two are the velocities ¢ and ÷ (which will 
always be zero at juggle set points). 

During ball flight, the apex point should remain constant, thus each epoch can be 
represented by a single point in apex space. 

3.2.  E x p e r i m e n t s  

In the first set of experiments, a small region around the fixed point, A/'p0, was chosen 
based on the steady-state performance of the controller. Every time the apex point entered 
A/'p0 , the robot "kicked" the ball in a random direction and then at tempted to recover by 
juggling. If it succeeded in regulating the bail again, then all of the points after the "kick" 
were considered "good". If the juggler lost the ball after batting it at least once, then all 
the apex points between the perturbation and the loss were considered "bad". 

In the second set of experiments, the robot regulated the ball to a different set point 
then switched on the original juggle controller. If it successfully negotiated the switch, 
"good" points were generated and the second set point was moved further away and the 
process repeated. If not, "bad" points were generated. 

All "good" apex points from both experiments were combined into a single set, and 
all "bad" apex points into another. 

3.3.  P r e s e n t a t i o n  

Due to the nature of the experiments, as well as very fast vertical regulation, the data set 
is sparse for apex points with z outside a roughly lOcm band. Furthermore, examination 
of all the data reveals that the height of the apex had no significant effect, thus we are 
able to ignore z and project all the data onto the four-dimensional horizontal state space, 
(¢,r,¢,÷). 
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The velocity space, (~, ÷), was divided into twenty-five bins, or sectors, and the sets of 
good and bad points were divided among them. For each velocity sector, the corresponding 
positions, (~b, r), were plotted. In figure 3 we show one "spine" of these plots, with ÷ near 
zero, and ¢ varying from negative to positive as we progress down the page. The center 
plot shows the positions for horizontal velocities nearest zero. 

In figure 2 we show the plots of r against ÷ and ¢ against ¢ for all the recorded apex 
points, with superimposed ellipses approximating the %afe" regions of each. 

3.4. Discussion 

In figure 2, as ¢ goes negative, we see fewer bad points on the right, and those on the left 
begin to creep in. There axe also more failures toward the end of the paddle. As ¢ goes 
positive, we see the opposite effect, as the bad points on the right creep in toward the set 
point. 

The bad points appearing within each of the ellipses in figure 2 represent points outside 
of the other ellipse. Thus if all the bad points outside the r-÷ ellipse were removed from 
the ¢-¢ plot, none would remain inside the ¢-¢ ellipse. 

4.  C o n c l u s i o n  

4.1. Combin ing  Safe Control lers  

Having chosen a "safe" ellipsoid approximating the safe domain for the juggle controller, 
we next chose several such controllers with different set points to cover a large portion 
of the zero-velocity configuration space. Using the partition method described in [1] we 
combined them together to create a larger, more robust controller whose domain was 
the union of all the individual domains. Figure 1 shows a representative run of such a 
controller when the ball is introduced outside the domain of the goal controller. 

4.2. Fu tu re  W o r k  

The methods employed to generate data to determine the boundaries of the domain for 
juggling do not generate a rich enough.set. We are currently looking at other methods, 
including simulation and analysis, to help determine the juggling domain. 

Nonetheless, the conservative approximation we were able to derive enabled us to 
successfully build a safe complex controller that successfully negotiated ball states that 
would have been lost by a single juggle algorithm. 
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