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Abstract
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boundary. These maps, which we term navigation functions, are constructed on an arbitrary sphere world—a
compact connected subset of Euclidean n-space whose boundary is formed from the disjoint union of a finite
number of (n —1)-spheres. We show that this class is invariant under composition with analytic
diffeomorphisms: our sphere world construction immediately generates a navigation function on all
manifolds into which a sphere world is deformable. On the other hand, certain well known results of S. Smale
guarantee the existence of smooth navigation functions on any smooth manifold. This suggests that analytic
navigation functions exist, as well, on more general analytic manifolds than the deformed sphere worlds we
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ADVANCES IN APPLIED MATHEMATICS 11, 412-442 (1990)

Robot Navigation Functions on Manifolds with
Boundary

DanieL E. KobiTscHEK AND ELON RiMON*

Center for Systems Science, Department of Electrical Engineering, Yale University,
New Haven, Connecticut 06520

This paper concerns the construction of a class of scalar valued analytic maps on
analytic manifolds with boundary. These maps, which we term navigarion func-
tions, are constructed on an arbitrary sphere world—a compact connected subset of
Euclidean n-space whose boundary is formed from the disjoint union of a finite
number of (n — 1)-spheres. We show that this class is invariant under composition
with analytic diffeomorphisms: our sphere world construction immediately gener-
ates a navigation function on all manifolds into which a sphere world is de-
formable. On the other hand, certain well known results of S. Smale guarantee the
existence of smooth navigation functions on any smooth manifold. This suggests
that analytic navigation functions exist, as well, on more general analytic manifolds
than the deformed sphere worlds we presently consider. © 1990 Academic Press, Inc.

1. INTRODUCTION

Consider the following problem in robotics. A kinematic chain—a
sequence of mutually constrained actuated rigid bodies—is allowed to
move in a cluttered workspace. Contained within the joint space—an
analytic manifold which forms the configuration space of the kinematic
chain—is the free space, $—the set of all configurations which do not
involve intersection with any of the “obstacles” cluttering the workspace.
Given any destination point in the interior of & to which it is desired to
move the robot, find a curve in F from an arbitrary initial point to the
desired destination.

The negative gradient vector field of a scalar valued function which is
transverse (exterior directed) on the boundary of the free space, and which
has a single minimum at the destination point gives rise to a flow which
moves almost all initial conditions toward that desired point. Thus, a

*This work was supported in part by the National Science Foundation under grant
DMC-8505160.
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ROBOT NAVIGATION FUNCTIONS 413

suitably chosen scalar valued “cost” function solves the geometric problem
of finding paths to the destination in free space. Moreover, interpreting
the cost function as an artificial potential energy, it can be shown that a
gradient vector field on % “lifts naturally” to a Lagrangian vector field on
TS describing the robot’s Newtonian dynamics when subjected to a
suitable feedback compensating control law [11]. Under certain additional
regularity conditions, the Lagrangian system “inherits” the limit properties
of the gradient system, and an explicitly specified open neighborhood
about F X 0 in T.% is positive invariant with respect to the lifted flow
[12]. Thus, a further constrained cost function solves the robot navigation
and the attendant control problems simultaneously.

The geometric problem of constructing a path between two points in a
space obstructed by sets with arbitrary polynomial boundary (given perfect
information) has already been completely solved [21]. Moreover, a near
optimally efficient solution has recently been offered for this class of
problems as well [4]. The motivation for the present direction of inquiry
(beyond its apparent academic interest) is the desire to incorporate
explicitly aspects of the control problem-—the construction of feedback
compensators for a well characterized class of dynamical systems in the
presence of well characterized constraints—in the planning phase of robot
navigation problems. That is, the geometrical “find path” problem is
generalized to the search for a family of paths in & (the one-parameter
group of the gradient flow), which provides a feedback control law for the
physical robot as well. The idea of using “potential functions” for the
specification of robot tasks with a view of the control problems in mind
was pioneered by Khatib [8] in the context of obstacle avoidance. Funda-
mental work of Hogan [7] in the context of force control further advanced
the interest in this approach. The methodology has been developed
independently by Arimoto in Japan [2], and by Soviet investigators as well
(20]. :

This paper concerns the construction of analytic “navigation functions”
on “sphere worlds.” In the next section, we motivate and define these
notions. In the final section, we present an explicit one-parameter family
of functions defined on an arbitrary sphere world and prove that its
members are navigation functions for all parameter values greater than an
integer determined by the boundary locations.

2. NaviGaTION FuncTiONs ON SPHERE WORLDS
We seek an analytic real valued map whose gradient vector field, if

integrated, produces curves to the destination point (from any starting
point) that never leave the free space. In Section 2.1 we make our notion
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of “obstacle” precise by defining sphere worlds and their deformation
classes. In Section 2.2, we observe that smooth (hence, analytic) vector
fields are too tightly constrained to permit strict navigation on any homeo-
morph of a sphere world. This leads to the slightly relaxed definition of a
“navigation function” in Section 2.3, where we also discuss our preference
for analytic as opposed to merely smooth functions. In Section 2.4 we use
results of S. Smale to show that smooth navigation functions exist on every
smooth manifold. Finally, in Section 2.5, we show that the navigation
properties are invariant under diffeomorphism, so that a construction on a
“model space” immediately generates a navigation function on any mani-
fold into which it is deformable.

2.1. Sphere Worlds and Their Deformations

A sphere world is a compact connected subset of £” whose boundary is
formed from the disjoint union of a finite number, say M + 1, of (n — 1)-
spheres. It follows that there is one large sphere which bounds the
workspace,

¥4 {qeE" gl <pd},
and M smaller spheres which bound the obstacles,
G2 {qgeEmlg-ql’<p?, j=1..M.

Note that the spheres are represented by listing their M + 1 positive radii,
{p}/o, and M center points, {g;}}4,. For ease of exposition we refer to
E" — ¥ as the zero™ obstacle, and center the workspace at the origin of
our coordinate system.

The free space remains after removing all the obstacles from the
workspace,

FL oy Gﬁ.
. 1 J‘
P

For % to be a valid sphere world we must impose the additional
constraint that all obstacle closures are contained in the interior of the
workspace,

po>0 and ligll+p, <py; 1<i<M,
and that none of them intersect,
”qi—qj||>P,-+P,-; 1<i,j<M.

Clearly, sphere worlds constitute a trivial task domain: there are more
intuitive navigation schemes for such models whose proof of correctness



ROBOT NAVIGATION FUNCTIONS 415

would proceed more simply than ours. However, we will demonstrate that
the properties enjoyed by the navigation functions on sphere worlds
remain invariant under diffeomorphism. Thus, our slightly more compli-
cated construction on a “model space” automatically induces a correct
solution for much more interesting robot navigation problems. The actual
construction of analytic diffeomorphisms from this simple model to “real
worlds” is the topic of another paper [1].

2.2. Strict Global Navigation Is Not Possible

For reasons that will be made clear in the next section, we restrict our
attention to non-degenerate vector ficlds which are transverse on the
boundary of %. Given those constraints, we now show that a smooth
vector field on any sphere world which has a unique attractor, must have
at least as many saddles as there are obstacles. Thus a globally attracting
equilibrium state is topologically impossible.

It is readily apparent that continuity arguments constrain the possible
gradient vector fields: any continuous function, ¢, on a compact set, %,
must attain its maximum and minimum on that set. If there is a maximum
in the interior of & then the conditions for strict global navigation have
already been violated: the minimum will no longer be globally attracting,
since gradient motion which starts exactly at the maximum will stay there
forever. It might be imagined, however, that a sufficiently clever construc-
tion will not only be transverse on the boundary, but will also attain its
maximum on the boundary (the obstacles), leaving the destination point
to be the only singularity in %. This we now show to be impossible.
The various technical terms mentioned in the sequel are defined in
Appendix A.

ProposITION 2.1.  The Euler characteristic of any sphere world homeo-
morph with M obstacles is

x(F)=1-(-1)"M.

Proof. First note that the closed disk, 2", has an Euler characteristic
of unity. To see this, distinguish a point on its boundary, 42", so that the
punctured (n — 1)-sphere resulting from its removal is homeomorphic to
2™, This constitutes a finite cellular decomposition [15] of %, contain-
ing one n-cell, one (n — 1)-cell, and one 0-cell, from which it follows,
according to the definition of Euler characteristic!

x(T)=1+(-1)""+(-1D)"=1.

"Let ¥ be a finite cellular decomposition of a compact manifold 2" For any integer
q 2 0, let «, denote the number of g-cells of % The Euler characteristic of ¥, denoted by
x(X), is the integer T_ _ o(— D, [15]
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Now observe that the closed disk is the union of the free space, &, with
all obstacles re-introduced,

M
9"=%u @&,

i=1

and that each obstacle is an open n-disk—an n-cell. Thus, a finite cellular
decomposition of % in conjunction with the set of obstacles constitutes a
finite cellular decomposition of Z™. It follows that

x(Z7) =x(¥)+(-1)"M. O

The immediate implication of these facts is an unequivocal refutation of
the possibility of strict global navigation using nondegenerate smooth
(much less, analytic) vector fields.

CoroLLaRrY 2.2, There is no smooth nondegenerate vector field, f, on
the free space, &, with M > 0 obstacles, which is transverse on 3., such
that the flow induced by

x=~f,
admits a globally asymptotically stable equilibrium state.

Proof. According to the Poincaré-Hopf theorem the sum over the
indices of the equilibrium states of a vector field which points outward on
the boundaries of %, must equal the Euler characteristic x(%). If (—f)
has a single globally attracting equilibrium state, x*, in the interior of %,
and f is transverse on 3.%, then f points outward on that set—otherwise
x* could not be the positive limit set of the boundary under the flow of
(—=f). If f is nondegenerate, then its jacobian at the equilibrium state,
Df(x*), has all positive eigenvalues (otherwise x* is not an attractor under
the flow of (—f£)), from which it follows that the index of f at x* is +1.

Pursuing the assumption that f has no other equilibrium state, it
follows that the sum of its indices is unity as well. But the Euler character-
istic, x(¥) =1~ (~1)"M, as computed in Proposition 2.1, cannot be
unity unless M = 0—-a contradiction. O

CoroLLarY 2.3. Let f be a smooth nondegenerate vector field on the
free space, 5, with M > O obstacles, which is transverse on d.%. Suppose
that (—f) has a unique attracting equilibrium point. Then each obstacle
introduces at least one saddle point of f.

Remark. This result provides a lower bound—M, on the number of
saddles necessitated by M obstacles. Our construction demonstrates that
this bound may actually be attained; that is, a function with exactly M
saddles of index n — 1 exists on any n-dimensional sphere world.
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Proof. Letting i(x) denote the vector field index of (+f) at x, if x* is
an attractor of (=f) then i(x*) = 1. If x* is the only attractor, according
to the Poincaré~Hopf theorem [18],

1+ Y i(x) =x(F),
xe(f 0 —x*)

and, from Proposition 2.1, this implies

¥ i(x)=—(-1)"M.

re(fTH O —x*)

Since there must be additional zeros of f, assume that p of them are local
attractors of (+f). The index of each is (—1)" [18, Lemma 6.4]. We now
have

Y i(x)=-(-DM+p),

x € {saddles of f}

so there must be at least (M + p) saddles, and the result follows. O

2.3. Navigation Functions

Having defined the class of sphere worlds, and seen that they “defeat”
the strict navigation capabilities of smooth vector fields, we must now relax
the criterion of navigation. At the same time, we wish to add constraints
reflecting the ultimate use in a control algorithm that respects the
Lagrangian dynamics of actuated kinematic chains. Before discussing in
detail the resulting relaxed but “dynamically sound” class of cost func-
tions, we define this class using technical terms that will be discussed in
the text below.

DeriniTion 1. Let 5 C E™ be a compact connected analytic manifold
with boundary. A map ¢: F — [0, 1], is a navigation function if it is:
1. Analytic on .%;
2. Polar on %, with minimum at g, € 50‘“;
3. Morse on %,
4. Admissible on #.
The intuitive motivation for this definition is most simply provided by

reference to the following fact which obtains from elementary properties
of gradient vector fields, for example, as discussed in [6].

ProposiTion 2.4 [12].  Let ¢ be a smooth Morse function on the com-
pact Riemannian manifold, #. Suppose that Vo is transverse and directed
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away from the interior of £ on the boundary of that set. Then the negative
gradient flow has the following properties:

() £ is a positive invariant set;
(ii) the positive limit set of A consists of the critical points of ¢;

(iii) there is a dense open set, FC £, whose limit set consists of the
local minima of ¢.

Proof.  Since the vector field is directed toward the interior of S on its
boundary by hypothesis, it follows that this set is positive invariant. The
limit set for any trajectory of a gradient system on a compact manifold is
an equilibrium point [6], hence, in this case, a minimum, maximum, or
saddle of ¢ in the interior of /- Clearly, a maximum may constitute the
positive limit set of no initial condition in / other than itself. Now
suppose that there is some open set of initial conditions in S whose
positive limit set is a saddle point. This would imply that the saddle has a
local stable manifold of dimension equal that of ~—a contradiction, since
the Hessian is non-degenerate by assumption. O

Using the terminology of M. Morse, we say that ¢ is polar if it has a
unique minimum on % [19]. If % is disconnected it is clearly impossible
to construct a continuous function which is polar. Supposing, however,
that the free space is connected, that ¢ has a unique minimum at q,, and
that the other hypotheses of Proposition 2.4 hold, then all initial condi-
tions away from a set of measure zero are successfully brought to g,
without running into the free space boundary (“hitting any obstacle”). It
has been shown in the previous section that one cannot do better than this
with smooth vector fields: topological obstructions prohibit the existence
of vector fields which take every point in F to q,.

Property 3 in Definition 1 is added to match the hypothesis of the
Proposition. In consequence, it is impossible for any submanifold of
codimension 1 not attracted to g, to disconnect % and “block” the flow
toward g,. For, this would imply that some maximum or saddle has a
attracting domain which includes an open set—contradicting the fact that
a non-degenerate unstable equilibrium state has a stable manifold of
dimension less than n. The condition permits, as well, a straightforward
proof that the desirable limiting behavior of the gradient flow is “in-
herited” by the ultimate closed loop mechanical system formed by using
Vo directly as a feedback control law for the robot’s actuators [12].

Using the terminology of M. Hirsch [5], we say that a scalar valued
function is admissible if all boundary components have the same maximal
height—that is, 3.9 = ¢~ (1), This requirement, Property 4 in Definition
2, while sufficient to guarantee that Vo is transverse to the boundary of %
(as additionally required by Proposition 2.4), is a much stronger condition
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imposed to ensure that the transients of the resulting closed loop mechani-
cal system “inherit” the desirable properties of the gradient flow which
prevent collisions with the boundary. Obviously, a careful discussion of the
control theoretic aspects of this work is beyond the scope of the present
paper, and the reader is referred to [9-11] for details.

Finally, it might be said that Property 1 in Definition 1 reflects the
authors’ “ideological” perspective that closed form mathematical expres-
sions are a preferable encoding of actuator commands to algorithms which
include logical decisions. Mathematically, we require merely C 2 functions,
but even smooth (C*) functions may still be defined by “patching to-.
gether” different closed form expressions on different portions of the
space leading to the kind of branching and looping in the ultimate control
algorithm that we would like to avoid as much as possible. Analytic
navigation functions will be harder to construct, but once defined, yield a
provably correct control algorithm directly by “parsing” the symbolic
expression into its gradient.? Unquestionably, real world scenes will often
not admit even a smooth, much less an analytic representation, and it may
well turn out (the theoretical recourse to ever more accurate analytic
approximations notwithstanding) that any serious attempt to extend this
work beyond the class of ball obstacles requires a relaxation of Property 1.
Until such a time, we prefer to remain within the category of analytic
maps on analytic manifolds.

2.4. “Almost” Global Navigation Is Possible

When does a compact manifold with boundary admit a navigation
function? In the initial approach to this problem, the first author was led
to apply certain elementary tests from Morse theory which could reveal
obstructions to the desired goal, but not provide a definitive judgement
otherwise [10]. In the course of further reading [3] and subsequent conver-
sations with M. Hirsch, we have become aware of a body of relatively
recent mathematical results which has much more direct bearing upon this
question. Smale proved the generalized “Poincaré’s conjecture” in higher
dimensions roughly three decades ago. In so doing, he was led to develop
a number of results concerning gradient systems of which the most
important to us is the following (in this section “index” of a critical point
denotes Morse index—see Appendix A).

Tueorem 1 (Smale, 1961 [23, Theorem C)). Let .# be a compact
n-dimensional C* manifold with 3.# equal to the disjoint union of 7, and
,, each ¥ closed in d.#. Then there exists a C” function ¢ on .# with

2We presume, as well, that such considerations will play an important role with respect to
verifiability of implementations in complicated environments.
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non-degenerate critical points, regular on d.#, o) = -3, 0(%) =n + 1
and at a critical point p of ¢, ¢(p) = index p.

Smale calls such a function, ¢, a nice function for .# [22]. He obtains a
number of important results with this construction, including a generaliza-
tion of the somewhat earlier result of Morse which demonstrates that
every smooth manifold with no boundary admits a smooth polar non-
degenerate function [19]. For our purposes, this result is important if it
can be extended to the general case with boundary.

The desired extension obtains by applying the notion of “cancellation”
of adjacent (in index) critical points that Morse and Smale developed in
"the course of their independent investigations. A (reasonably) self-con-
tained exegesis upon these techniques is provided by Milnor [16], whose
version may be rendered as follows. Suppose that ¢ is a smooth Morse
function on .# with two distinct interior critical points, p; and p,,
with indices A, A,, respectively, possessing the properties Ay # A, and
@(p,) # ¢(p,). These two points may be cancelled if there exists another
smooth Morse function, ¢’, on .#, which agrees with ¢ everywhere away
from a neighborhood of ¢~ '[¢(p,)] and ¢ ~'[¢(p,)] in #, yet which has
two fewer critical points—one less critical point of index A,; one less
critical point of index A,. It turns out that pairs of index 0 and index 1
critical points may be cancelled if the “lower boundary” has the right
homology type.

THeorem 2 (Index 0 cancellation theorem {16, Theorem 8.1]). Let .#
be a smooth compact manifold, with boundary formed from the disjoint
union of 7y, ¥,, two smooth manifolds with no boundary. Suppose that ¢ is
a “nice” function for A with ¥\ = ¢~ (= 7). If H(#, ¥;) = 0, then the
critical points of index 0 can be cancelled against an equal number of critical
points of index 1.

Moreover, note that there are “enough” index 1 critical points to cancel
all the minima if the manifold is connected: the proof was suggested by W.
Massey.

ProposiTION 2.5 [14).  Let ¢ be a “nice” function for the manifold, #,
of the previous theorem. If the manifold is connected then there are at least
as many index 1 critical points as index O critical points of ¢ in .

Proof.  Supposing the contrary, apply Theorem 2 to obtain nice func-

tion, ¢', which has at least one minimum and no index 1 critical points.

For all sufficiently small ¢, the set ¢~ [ — %, €] has the homotopy type of

¢'~'[~ 3, — &] with a O-cell attached [17, Theorem 1.3.2). This implies that
¢'~'[~ 3,€] is a disconnected set. Since there are no index 1 critical

points, the rest of the manifold, .#= ¢'~![— 1,n + 1], obtains from
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attaching cells of dimension two or greater to ¢’ '[— 1, ] [17, Theorem
1.3.5]. Now “attaching” a cell is defined to be the continuous identification
of its boundary with a subset of the target set [17, p. 3], and the boundary
of a k-cell is a (k — 1)-sphere—a connected set for all k > 2. Thus, the
former may be attached to only one of the disconnected components, and
the manifold cannot be connected, in contradiction to the hypothesis. O

We are now in a position to apply these results in the present setting:
the following argument was suggested by M. Hirsch.

THEOREM 3. For every smooth compact connected manifold with bound-
ary, #, and any point, x, € j, there exists a C” navigation function.

Proof. Let .#; be an open disc about x, in the interior of .#. Thus,
7y £ 6%, is a boundary of &' £ .4 — ;. Moreover, defining ¥; 2 0.4,
the boundary of .#" is exactly the disjoint union of %, and ;. Now let ¢
be a “nice” function on .#' guaranteed to exist by Smale’s theorem.

Note that both .#" and 7, are connected, thus, H(.#", %) = 0[15]. It
now follows from Theorem 2 that ¢ may be replaced with a new function,
¢', which agrees with ¢ on %; yet which has no critical points of index 0.

Finally, extend ¢’ to .#, by defining a cost function, 7, on some open
neighborhood of .#; that agrees with ¢’ at the boundary, 7, and has a
unique critical point, a minimum, at x,. This may be done since .#; is
diffeomorphic to 2". O

2.5. Navigation Properties Are Invariant Under Deformation

While the results of Section 2.2 apply to any homeomorph of the sphere
worlds, in this section we restrict our attention to analytic diffeomorphs of
a sphere world. We now show that the navigation properties are invariant
under diffeomorphism of both the range and the domain spaces. In the
latter context, we regard the particular free space of Definition 1 as a
simplified “model,” .#, of a family of spaces which are “deformable” into
it. The following statement, suggested by M. Hirsch, constitutes a formal
guarantee of the existence of analytic navigation functions over every
space in the analytic diffeomorphism class of a given model.

ProrosiTion 2.6. Let ¢: .#— [0,1] be a navigation function on A,
and h: & — .# be an analytic diffeomorphism. Then

Y

¢ =poh,

Is @ navigation function on %.
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Proof.  Applying the chain rule yields
Vé = Dh™((Ve) o h).
According to the hypothesis, DAT is never singular, hence
%, = h(£};).
Moreover,?

V24|, =(DhT[(V2p)< h] Dh + [((Vo)-h)" @ 1] D(Dh)*)

%6

= Dh™(V?¢l,,)Dh.

Since Dh is non-singular, it follows that V2| ¢, and V|, have the
same rank, hence, that ¢ is a Morse function.

It follows as well that for any v € E” there exists a 4 € E" u =[Dh]v,
with the property that

uT(qualgé)u = uT(v2¢|4)u,
hence,

index( @) ]gv_, =index(¢)|, .

The induced cost function has exactly one minimum, at p, £ h~(q),
since A is injective. The last two statements show that ¢ inherits the polar
property from ¢.

Admissibility of ¢ follows from the admissibility of ¢, since it can be
shown that h(0.F) = a.# [15]. O

Deformation of the range space will be used explicitly in this paper. It
will serve to deform a given cost function on %, , to a navigation function.
Specifically, it will be used in Section 3 to make a cost function ¢
admissible on %, and to change g, to a non-degenerate critical point.

ProposiTioN 2.7. Let 7, #, C R be intervals, ¢ F> 7 and o:
F = F, be analytic. Define the composition ©: F > A, to be
eLoog.
If o is monotonically increasing on F\, then the set of critical points of ¢
and ¢ coincide,
g‘P = g@’

3Using the identity Ax = (xT ® [)4°, where A4,/ e R"*", and ®,(-)* denote the Kro-
necker product and the stack operation, respectively.
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and the index of each point is identical,
index(¢)| ¢, =index($)|s, .

Proof. Vg = V(o - @) = (((d/dx)o)> $)Vg, by the chain rule. But o is
monotonically increasing, hence (d/dx)o > 0, which implies that
'g‘p = g@.
Also,

T
Viple = io- 03|Vl + Vol Vi = i 0|V .
s, 50| 0|Vela + Vélg| Vo il R A

and for the same reason,
index(¢)|¢, =index(¢)|,,. D

In other words, the composition with o neither changes the set of
critical points, nor their type (minimum, maximum, or a saddle) or degen-
eracy.

3. THe CONSTRUCTION

The proposed navigation function, ¢: % — [0,1], is a composition of
three functions:

A A

¢ Eo,00°8.

The function ¢ is polar, almost everywhere Morse, and analytic; it attains
a uniform height on 4% by blowing up there. Its image is “squashed” by
the diffeomorphism, o, of [0, «) into [0, 1], where

X
1+x’

o(x) &

resulting in a polar, admissible, and analytic function which is non-degen-
erate on % except at one point—the destination. This last flaw is repaired
by o,.

We distinguish between “good” and “bad” subsets of %, When a point
belongs to the “good” set, we expect the negative gradient lines to lead to
it (here it is just the destination {g,}). The “bad” subset includes all the
boundary points of the free space, and we expect the cost at such a point
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to be high. Let y and B denote analytic real valued maps whose zero-levels,
i.e., y'(0), B~'(0), are respectively, the “good” and “bad” sets. We define
¢ to be

>

6>
™=

where y: & - [0, ») is

yEvi, keN; vy, 20q - gl
and B: F - [0,%) is

™
>

ninOBj’
where
Bo2ps—llal’s B 2llg—ql®-p% j=1..M.
In the sequel we will denote the “omitted product” by the symbol
_ M
g= 11 B
J=0,j#i

Due to the parameter k in &, the destination point is a degenerate critical
point. To counteract this effect, the “distortion” o, [0,1] - [0, 1],

o (x) 2 ()%,  keN,

is introduced, to change g, to a non-degenerate critical point.
The following theorem is the main contribution of this paper.

THEOREM 4.  If the free space, F, is a valid sphere world (as defined in
Section 2.1), then there exists a positive integer N such that for every k > N,
for any finite number of obstacles, and for any destination point in the
interior of &,

(1)

& 1/k
Ya
b

¢=0‘d00'0‘ﬁ=
(75+B

Is a navigation function on %.

Remark. While ¢ is analytic only on the interior of %, o is analytic on
[0, ), and o, is analytic only on (0, ), their composition, ¢, is analytic on
the entirety of some open neighborhood containing %.
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Remark. In the proof that follows, a constructive formula for N is
given; it has the “schematic” form

_ 4o dm :
v = maefan o] [G])

i=0

where & is the /™" obstacle. The functions N, are given explicitly in
Appendix B.

3.1. Proof of Correctness

Let & > 0, define B (e) £ (g € E™ 0 < B, < ¢} (i.e., an n-ball “without
a core”). In the proof that follows, the free space is partitioned into five
subsets:

1. the destination point,
{a4};
2. the free space boundary,
07 = B~1(0);

3. the set “near the obstacles,”
M

Fo(e) & U %(e) — {a4);
i=1

4. the set “near the workspace boundary,”
Fi(€) £ Bo(e) = ({aq) U Fole));
5. the set “away from the obstacles,”
File) 2 F = ({q4) VoFU Fo(e) U F(e)).
We assume, to begin with, that ¢ is sufficiently small to guarantee
Fole) € F.
This assumption is interpreted algebraically as
e<(llg—all—p,) =02  ijefl,...M},i*] (2)

and

e <(py—llgl)* —p2, ie(1,..., M) (3)
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Note that in practicality ¢ is expected to be small enough so that the
exclusion of {g,} from % (¢) and % (¢) is redundant.

We will begin by showing that g, is a non-degenerate local minimum
and that ¢ has no critical points on 4%, using the navigation function
itself. Then, since Proposition 2.7 applies to % — 3. — {q,}, it will suffice
to assert the theorem in consideration of F(e), F(e), and F5(e), using
@, which is simpler to deal with.

The following technical lemma gives formulas for the gradient and
Hessian of a rational function at a critical point, to which we will
continually refer in the sequel.

LemMma 3.1. Let v,6 € COE" R], and define

p2v/s.
Then
1
Vzplgp=55[8V2V*uV26]. (4)
Proof. Since
1
Vp = 3—2(8VV'—VV5), (5)

we have

1 I
v? =S-z-[ﬁvzv+VVV8T—V8VVT—vV28] +82Vp(V(—$3) .

But at a critical point Vp = 0 and Vv = p V§; hence
V2 — 1 V2 V2
plgp——gi[b‘ v —vV3]. O

3.2. The Destination and the Boundary of %

ProrosiTiON 3.2.  If the workspace is valid, the destination point, Gy IS
a non-degenerate local minimum of ¢.

Proof. Applying Eq. (5) to the definition of ¢, given in Eq. (1),

1
2/k ((Y: + B)l/kv’)’d ~ Ya V(')’: + ,B)I/k)

(v& +B)

since both v, and Vy, vanish at g,. Using Eq. (4) and the fact that

Vo(q,) = =0,

44




; 2 Ya = 21
d >

I/k]

TR [(vé‘ +B)7 21 — v, V2 (vk + B)

1
(v +B)

— 2B—1/k1,

(V3)(q,) =

d4

which implies that g, is a non-degenerate local minimum of ¢. O

ProrosiTioN 3.3. If the workspace is valid, all the critical points of ¢
are in the interior of the free space.

Proof. Let g, be a point in 3.%. By construction B,(g,) = 0 for some
i €{0,... M}. If the workspace is valid, it follows that B, > 0 for all
j€{0,... M}, j #i. Applying again Eq. 5 to the definition of ¢,

It

1

A KAMACREA AT
d

1

1
—(Vvd - -,;Y,}“k(kvé‘"vvd + Vﬁ))
Yd

Ve(4q,)

40

q0

1 M
—Z'Yd_k( 1_[ Bj)VBi;&O' g

j=0,j=#i

3.3. The Absence of Minima in the Interior of &

From now on, we will assert the theorem using ¢. The trick is to use k
in ¢ as a tuning parameter. Intuitively, V¢ (see Eq. 5) consists of the terms
Vy and VB. By increasing k, the first term dominates, forcing — V¢ to be
directed toward g, and have a larger magnitude. The overall effect will be
to shift the critical points of ¢ toward the obstacle boundaries. But we
may as well expect that when k is high enough, each critical point is not a
local minimum, since the overall behavior of ¢ tends to that of y. In such
a case any test direction which is parallel to the “nearest” obstacle
boundary should prove that this critical point is not a local minimum.

The proof that follows has two steps: first we show that all the critical
points can be shifted arbitrarily close to the boundary of the free space.
Then we find a test direction along which D% has a negative eigenvalue
at any critical point. As a result, g, is the unique minimum of ¢. The
following proposition shows that %(¢), the set “away from the obstacles,”
can be “cleaned” of critical points.

ProposiTION 3.4. For every € > (0 there exists a positive integer N(¢)
such that if k > N(¢) then there are no critical points of ¢ in F5(¢e).
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Proof. At a critical point, g € €; N ,(¢), according to Eq. (5) we
have

kB Vy, = Y4 VB.

Taking the magnitude of both sides yields

2kB = /v, V8l

since |{Vy,ll = 2y/y,. A sufficient condition for the above equality not to
hold is given by

1 VvallVBll

3 3 <k forall g € F(¢).

An upper bound on the left side* is given by

1 \/ZIIVBH 1

5 ‘/y—d, OB”VB“

E

< E;m’z}x{r}z {”VB ”} éIV(“:)’ (6)

since B; 2 ¢,/ €{0,... M}. O

In the proof of Proposition 3.6, it will prove important to have an upper
bound for

1
ViéZV.Bi'V‘Yd_)’d

over the closure of Z(e), the set F(e)2 {q: 0 < B(q) < &}. This is
readily obtained using Lagrange multipliers.

LeMmMa 3.5. max;ii(—s){v,-} =(ye + p? —llag, — aDllg, — gl
Proof. Expanding v; yields
VB Vva—va=(a-a) (a-4a,) —(a-4q,) (qa-a,)
=(qs—a;) (gd—-q,).

Since v; is affine, it follows that its maximum over any compact set is
attained on the boundary, in this case d%,(¢) = B, '(¢) U B; 1(0). Further-

*See Appendix for max , (-).
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more, imagine the “filled” set

fill(Z(€)) 2 {g: —p? <B; <&} ={g:0 < llg — ql* < p? + &};

it is a compact set, fill(Z.(¢)) 2 #;(¢), and v, attains its maximum on
I fill(Z(e)) = B '(e). 1t follows then, that v, attains its maximum on
B/ '(¢), the “outer boundary.” At that maximum, ¢*, we have

AVy, = VB,
or
May—q) = (g —q)
for some A € R. Which implies that
" =(1-A)g +rg, and B,=Xlg,—al* —p2 (7
hence,
vi(g*) = (A = Dlg, - q/l*.

Solving for A in Eq. (7) yields

VBi+pi2

A=+
”qd - gl
or
B+ Pi2
V,‘(q*) =+t -1 ”qd - q,'”z-
g, — gl

Choosing for the maximum the “+” option and substituting ¢ for B,(g*),
it follows that

max {,} = (Ve + p? - lla, - all)la; - qll. O

Note that maxz{v,} is negative for ¢ small enough, in consequence of
the assumption that g, is not inside the obstacle &,.

The following proposition shows that for ¢ small enough, the set “near
the obstacles,” F(¢), is free of local minima.

ProrosiTion 3.6.  For any valid workspace, there exists an e, > 0 such
that ¢ has no local minimum in F(¢), as long as ¢ < g,.
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Proof. If q &€ Fe) N €, then g € F(e) for at least one i€
{1,... M}—i.e., g is very close to some obstacle boundary. We will use a
unit vector orthogonal to VB; at g as a test direction to demonstrate that
(V24X q) has at least one negative eigenvalue. Using Eq. (4),

1
(V%$)(q) = —7(3 Viyk - vk VB)
-2

—7“ (kB[ vaV2vq + (k — 1) Ty, VyT] = 72 V2B). (8)

At a critical point, kB Vy, = y, VB, according to Eq. (5). Hence, taking
the outer-product of both sides,

(kB)*Vy, Vv = v3 VB VB™.
Substituting for k(k — 1)8 Vy, Vv, (g # q,) in Eq. (8) yields
y ko

1
(V2¢)(4) (kB Vsz (1 - ;)% vB VBT - dezﬁ - (9

If A4 is a matrix, let (A)S denote its symmetric part— 3(4 + A"). Recall-
ing that B, = 1)L, ,,,B;, note that

k 1 1
e o)

[B;z VE[ VEI-F + 2BiBi(VBi VBI'T)S + Ezz VB, VBIT]

(V?¢)(q) =

_')’d[BiVZEi + Z(VE:‘T VBi)s + EiVZBi])'
Evaluating the quadratic form associated with (VZ$Xgq) at 0 £
V(B.(g.)/IVBq D+ vyields
ﬁZ

d

-0T(V28)(q) 0 = 2kB — 2748,

+ T

(1= 1) %6t 58587 - ve 7B o, (10
since V2y, = V28, = 21. Now take the inner-product of both sides of the
equation kB Vy, = y, VB with Vy, to obtain
4kB = VB - Vy,
= Ei VB; - Vy, + B, VE{ Vg
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Substituting this for 2kB8 in Eq. (10) and grouping the terms which are
proportional to B;, we have

ﬁZ
k-1 ﬁT(Vz‘f’)(q)ﬁ
Yd

vi(q)

_ (1
= ZBi(Z VB, Vv, — 'Yd)

t

1 _ 11 —
+Bi(§ Vﬁi'V'Yd+7dﬁT[(l - Z)E VBiVBtT_ Vzﬁz}ﬁ)' (11)

The second term is proportional to B;, and can be made arbitrarily small
by a choice of &, but it can still be positive, so the first term should be
strictly negative. According to Lemma 3.5, this is guaranteed by the
condition

e<lg,—aqll*—p*2ey,, ie(l,...M}). (12)

In order to assure the inequality 57(V?¢Xg)d < 0, it now follows from
Eq. 11 that ¢ must be further constrained to satisfy

< 2("’[)5;‘2
© = (1/2)B, VB, - Vya + va0|(1 — 1/k) VB, VB] — B,V?B.]5’

for which it will suffice that

minm{2|l/(4) 1B?)

< — — — — .
® < maxgo((1/2)B, VB, - Vv, + v |(1 — 1/K) VB, VB, — B,V?B,]0)

Consider the right-hand side of the above inequality to be a scalar-valued
function {(e). If ¢ < &' then H(e) c B(e), and it follows that {(¢) >
£(&"). Hence it will also suffice that

< minm{Zlv(qHEiz}
maxm{(l/2)[§i VE;‘ “Vy, + YdﬁT[(l - 1/k) VE:‘ VE‘T - Bivzﬁi]ﬁ}

-y

"
801'.

By making &, = min{ej,, ¢4}, i € {1,..., M}, the proof is completed. O
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We now consider the set % (¢). By adjusting &, a point in this set can be
made so close to the workspace boundary that V8, dominates any obstacle
gradient. We will show that such a point cannot be a critical point of @,
provided that it is far enough from any obstacle.

Proposition 3.7. If k = N(e), then there exists an &, > 0 such that ¢
has no critical points on (), as long as € < &,.

Proof. 1t is first convenient to bound %y(e) away from the ball of
radius given by the destination point ¢, as follows. If

2
e < (pg)” = llg,ll?,

and B, < g, then

Bo = (po)’ = llgll* < &;

hence

llgll > llg,ll,  forall g € F(¢).

This is a sufficient condition for VB, to point away from the destination
—i.e., Vy, - VB, < 0 on #B,(e)—because

iVY VB = ~(a-4,) -q=aqa, - llal* <llgl(lig,ll - llgll) < 0.

Now, V¢ is non-vanishing on %(¢), since its inner-product with Vy,,
according to Eq. (5), is given by

k
R Y,
Vé - Vy, = B—i(4k3 ~ VB - Vy,)

Y. — -

= 55(4/‘3 =~ (ByVBy - Vv, + B, VB, - V'Yd))

P
> BO'B_z(4kBo — VB - Vv,).
If k is large enough,

1 VB,V
~M, for all g € #(¢),
4 By

the term V¢ - Vy, will be positive. But k > N(¢) is sufficient for this to be
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true, since
198, Yy, 1! VBl v,
4 Bo -2 Bo
1 M B,
< 3% L IVl
11 d

i=1

Since by definition of F(e), B, 2 ¢ for i €{l1,... M}. The proof is
completed by choosing

€ & (Po)2 - ||Qd”2~ a

3.4. Non-degeneracy of Critical Points in the Interior of F

The proof that ¢ is polar was completed in the previous section. We
now show that it is also Morse. The following lemma, which will be used in
Proposition 3.9, asserts that the non-singularity of a linear operator
follows from the fact that its associated quadratic form is sign definite on
complementary subspaces of E".

Lemma 3.8. Let E" = P& 4, and let the symmetric matrix Q € R™*"
define a quadratic form on E"

£(v) £ 0TQ.

If £l is positive definite and £\ 4 is negative definite, then Q is non-singular
and

index( Q) = dim(.#").

A proof can be found in [13].

Let £ (v) denote the quadratic form associated with the Hessian of @,
(V2¢Xq), on the tangent space to the set “near the obstacles” at g €
Fole), denoted as T, F(¢).

ProposiTion 3.9.  There exists an €, > 0 such that for every ¢ < ¢, at
each critical point of ¢ in F(e), q € €, N F(e), there is a direct sum
decomposition T, F(e) = Z, & A, where dim(P,) = 1, for which ¢l 2,
Is positive definite and £,|.4, is negative definite.

According to Lemma 3.8, this implies that all the critical points of ¢ are
non-degenerate.
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Proof. Without loss of generality, assume that g € %(e), where
#e) = {q: 0 < B, <e¢}. Define &, 2 span{VB(g)}, and let .#, be the
orthogonal complement of &, in T, %(¢). In the proof of Proposition 3.6,
it was shown that £,| 4, is negative definite, as long as ¢ < ¢,. It remains
to show that ¢, |5, > 0. Taking the squared norm of both sides of Eg. 5
yields

(kB)*1IVy,lI* = y2IVBI2,

and this implies

_ Y 2
2k = kB Ivll.
Substituting for 2k8 in Eq. (9),
Bz =T 2 a o _ Y4 2 ‘1 2/1 .Az
T B, (V9)(0) B, = g IVBl + (1 |2 (% )

——T e, —
— v49B; V’BVB; where VB; = VB, /IIVB;lI.

Expanding [[VBII* = IV(8,8)I1* and (VB - VB, = (V(B,B,) - VB,)? yields

Ya
2kB

(BB + 289, - VB, + BRIvEIE)

1 . o
+(1 £ ) (82(%B.- B) + 2819858, - B, + G181

k| B _
* %
—T PP
— YaVB: VB VB,
Noting that ||VB,~||€E,-'VB_,~ = VB, - VB,, enter the term (**), which

muthiplies —(l/kT)(‘)’d/B) inside the term (*), inside the term
VB, v VB, = VB, Vz(BiBi)VBi:

Y g2vB 2 - VB, + BIVBIP
2%p (BEIVBA™ — 2B VB, - VB, + BPHVA,I)
1 Ya e —\2 - 2
+(1- ) (62 5B) + BB,
+ 274||VB1”6E : VE[ - YdeﬁiT[BiVZEi + 2(VE.‘ VB:T)S + ZB—[I eﬁz
t i

The term () is the leftover from (**), and it is canceled by the term (%).
Since both BZIIVB,I* — 28 VB, - VB, + BIIVB/I® = (BB, - B.IIVB,)?
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and BX(VB, - VB,)? are non-negative,

BZ o . o
—‘m VB’T(VZ‘P)(q) VB:
Ya
~ o -
> 73—((1 L AR AT 2""‘*")'

Recalling the hypothesis that g € Z(e) N €,

B — —
-1 V.BiT(VZ‘fA’)(‘I) VB,
Ya

1y_ — — —
= %((1 - ;)ﬂ,HVB,HZ - 82|VB;‘TV2B:‘VB,‘| - ZEBi)’

which can be conveniently rearranged as

Ya 1 B l — 2 =
E({E(l k)B,-IIVB,-II 2e[3i}

1 1\_ o R
. {5(1 - ;)ﬁinwsinz - eZIVBiTVZB.«VB,-I})-

* ok

Assuming that k > 2, a sufficient condition for the term (*) to be positive,’

& < 3 min {[VB,I1%},
#(c)

or, substituting for minEQ{IIVﬁ,»IIZ}, using Eq. (16) in the Appendix,
e < 2p] £ &y,

A sufficient condition for the (**) term to be positive is

1 ming5{ VB, 1VB.I}

4 maxm{vlﬁT V28,0 } ’

which, by the same reasoning detailed in the proof of Proposition 3.6, is

g <

SSee Appendix for min (-}, max —(-}.
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satisfied if

1 minggpy{ VA 1981)
< Z maxm< wT Vzﬁ,ﬁl }

A

£3;- (13)

To complete the proof, choose
£, £ min{e};, 4.}, ie{l,...,.M}. O

Finally, if we will choose N(e) = N(e,;,) in Eq. (6), where

min

AL
€min = 2 mm{so,sl,ez},

the proof of Theorem 4 is completed.

4. CONCLUSION

Presented with the geometrical model described, the task of navigating
a point robot toward an arbitrary destination while avoiding the obstacles
is captured in a cost function. This representation is correct in the sense
that if one computes the parameter k& according to the formula given in
Eq. (6), the resulting gradient vector field has a unique attractor at the
destination and is directed away from the interior of the free space on its
boundary. The cost function immediately gives rise to a correct feedback
control law for a torque actuated mechanical system as well. The issue of
numerical stability will be discussed in a future paper, in which we will
present a numerical procedure to implement this algorithm.

APPENDIX A: NoTaTiION AND TERMINOLOGY

Given a topological space, 2, we will denote the closure of a set,

AC X by .7, and its interior by ”. Let 2;(x) denote the open
Euclidean n-disk of radius p about the point x,

Z0(x) 2 {y€E" |y —xll <p}.

In the special case that p = 1, x = 0, this will be written 9",

If h: E" = E™ then Dh denotes the Jacobian—that is, the matrix of
partial derivatives of h. If [Dh](x) is not surjective then x € E” is a
critical point of h; otherwise it is a regular point. If h~(y) contains a
critical point, then y € E™ is a critical value.
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If m = 1 then the row matrix D# is the “differential one-form” induced
by the scalar valued map, A. Since we will always use the Euclidean metric
in E", the gradient vector field induced by 4 is simply the column matrix,

Vh 2 (Dh)".
The Hessian is the symmetric square matrix,
D*h £ DVh,

Let ¢ € C*[E", E]. The set of critical points of ¢ will be denoted by <.

A critical point of ¢ (a zero of the gradient vector field) is non-degenerate
if the Hessian, D?%p, has full rank at that point. The scalar valued function,
¢, is called a Morse function if all its critical points are non-degenerate.
The Morse index of ¢ at a critical point, x, is the dimension of the
subspace of E” spanned by eigenvectors of the Hessian with negative
eigenvalues:

A (x) £ dim{y € E*: yT[D%](x)y < 0}.

Each critical point of ¢ is a strict local minimum or maximum (defined in
the standard way—index 0 or n, respectively), or a saddle—any non-
degenerate critical point which is neither a minimum nor a maximum. ¢ is
said to be polar on 2" at q, if it has exactly one minimum, at q, [17].
Finally, it is admissible on 2" if ¢(d2") = 1, and at any other point in the
interior of 2”0 < ¢ < 1[5].

APPENDIX B: COMPUTATION OF THE NAVIGATION
FuNcTiON PARAMETER

B.1. Bounding Each Obstacle Cost

To obtain a practical lower bound for &, and consequently an upper
bound for N(e_,, ), the following “tokens” have to be found,

Vi Bl Ya o B s L€ {0, M), i), (14)

min Jmin max ma;
and their normed gradients,
19y 0980 ILIVy, ILIVB, I;  i,je(0,...M}, (15)

where

(Dmn 2 min {(1))  and () py 2 max{(-)}.
Ble) ‘4
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Note that
Ya = Bilqi=f14» Pi=0;

it follows then that {yjmi", Ya,o V74, [} need not be considered as a
special case.

Lemma B.1. B,

I max

=(po +llgD* - p? i€ {1,... M}.

Proof. At any point g € %,

llgl* < (po)?,

adding to both sides the term llg,)* — 2q - q; — p?

i’
lg = adl® = p? < (po)* = 24 - q; + ligI* - p?
< (po)® + 2p0 - llgill + llgI1* ~ p2;
hence,
2
B: = (po+llgl)’ - p2. O

And of course,
30mx = (Po)z-

Turning our attention to Bj‘fm,m i€{1,... M}, we will find the minimum
of B; over #,(¢), using Lagrange multipliers.

Lemma B2, 8] = min_{B} = (e + p] —llg; — q;I)> - p2.

Proof. By the assumption of a valid sphere world the obstacles do not
intersect, which implies that g; cannot be inside the obstacle &,. Each B;
is a quadratic function, which has exactly one critical point, at g = ¢ ;- The
case of q; € #(¢), which is interpreted algebraically as

Bl(qj) <€,
can be excluded if
e<la—ql’~p2 ije(l,...M},i+]
which is the case by the assumptions detailed in Eq. (2) and Eq. (3). It

follows that the argument given in the proof of Lemma 3.5 applies also
here, namely, that B; attains its minimum in 8; (e).
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At the minimum, g*, we have
AVB; = VB
or
Ma* —aq) =q* — g,

for some A € R. Which implies that

. A 1
oA T Y
Hence,
A 2
— 2 2
Ba*) = (A 2 1) lgs — q = o
and
Ba*) = —l—zllq,- - qlI> - p2.
(A —-1)

Solving for A in the above equation yields

A=14 lg; — gl
VBi(a*) + p?
or

B(a*) = (VBAa") + 7 g, q)) o2,

choosing the “—" option for the minimum and substituting & for 8,(g*),

o :
o = min (B)) = (Ve + o7 ~llg, — g/l - o7 O

Following the above proof almost identically, it can be readily found
that

Bl = min (Bo} = o3 = (Ve + o7 +lail)’

#(e)

Remark. The assumption that the “extended obstacles” do not inter-
sect, and in the interior of %, detailed algebraically in Eqs. (2) and (3),
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guarantees that

B >0, ie{l,...M},je{0,...M},i+].

J min

Finally, the minimum of the normed gradients is readily obtained from
the above results, since

VBl = 2/B, + 02, je(1,...M},

which implies that

2(\/5 +p? — g, — qj||) ifi#j

20, ifi=j,
i,je{l,...M}. (16)

vB; =28 + o} =

B.2. Bounding the “‘e Limiters”—¢,, ¢,

In general, if ¢, ¢, are non-negative scalar valued functions on a
compact set &, then

min {¢,} min {¢,} < min{¢,¢,},
and, of course, the same applies to the max{-}.

Using this fact, with the Schwartz and triangular inequalities, we can
trivially obtain a bound on each “e limiter” in terms of the “tokens”
detailed in Eqgs. (14) and (15). The only term which deserves attention is
|0™ V2B, 0|, which appears in ¢, and ..

w- ([ afw.

j=0,j#i \{=0,1+#i,j

which implies that

=0, j#i \[=0,1+i,j

_ M M
Vg, = ) ( I1 BI)VZB;‘

M M M
+ Z Z ( n le)VBjT VBI,

J=0,j#il=0,1+i,j \m=0,m#i,j,



ROBOT NAVIGATION FUNCTIONS ' 441

since |V2B,| = 21. It follows then, that an upper bound on |7 V23, | is

M
max (0T V3B,01) <2 3

M
I %{Bt})

B(e) j=0,j*i 1=0,1+i,j Bs)
M M
+ X IT max{g,}
I=0,1#i,j \m=0,m#i,j,1 #(e)
- max {[IV8,{]} max (IV8,1} | (17)
Be) H#e)
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