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Exact Robot Navigation Using Artificial Potential Functions

Abstract

We present a new methodology for exact robot motion planning and control that unifies the purely kinematic
path planning problem with the lower level feedback controller design. Complete information about the
freespace and goal is encoded in the form of a special artificial potential function - a navigation function - that
connects the kinematic planning problem with the dynamic execution problem in a provably correct fashion.
The navigation function automatically gives rise to a bounded-torque feedback controller for the robot's
actuators that guarantees collision-free motion and convergence to the destination from almost all initial free
configurations. Since navigation functions exist for any robot and obstacle course, our methodology is
completely general in principle. However, this paper is mainly concerned with certain constructive techniques
for a particular class of motion planning problems. Specifically, we present a formula for navigation functions
that guide a point-mass robot in a generalized sphere world. The simplest member of this family is a space
obtained by puncturing a disc by an arbitrary number of smaller disjoint discs representing obstacles. The
other spaces are obtained from this model by a suitable coordinate transformation that we show how to build.
Our constructions exploit these coordinate transformations to adapt a navigation function on the model space
to its more geometrically complicated (but topologically equivalent) instances. The formula that we present
admits sphere-worlds of arbitrary dimension and is directly applicable to configuration spaces whose
forbidden regions can be modeled by such generalized discs. We have implemented these navigation functions
on planar scenarios, and simulation results are provided throughout the paper.
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Exact Robot Navigation Using Artificial
Potential Functions

Elon Rimon, Member, IEEE, and Daniel E. Koditschek, Member, IEEE

Abstract—We present a new methodology for exact robot mo-
tion planning and control that unifies the purely kinematic path
planning problem with the lower level feedback controller design.
Complete information about the freespace and goal is encoded in
the form of a special artificial potential function—a navigation
Junction—that connects the kinematic planning problem with the
dynamic execution problem in a provably correct fashion. The
navigation function automatically gives rise to a bounded-torque
feedback controller for the robot’s actuators that guarantees
collision-free motion and convergence to the destination from
almost all intial free configurations. Since navigation functions
exist for any robot and obstacle course, our methodology is
completely general in principle. However, this paper is mainly
concerned with certain constructive techniques for a particular
class of motion planning problems. Specifically, we present a
formula for navigation functions that guide a point-mass robot in
a generalized sphere world. The simplest member of this family is
a space obtained by puncturing a disc by an arbitrary number of
smaller disjoint discs representing obstacles. The other spaces are
obtained from this model by a suitable coordinate transformation
that we show how to build. Our constructions exploit these
coordinate transformations to adapt a navigation function on
the model space to its more geometrically complicated (but
topologically equivalent) instances. The formula that we present
admits sphere-worlds of arbitrary dimension and is directly
applicable to configuration spaces whose forbidden regions can be
modeled by such generalized discs. We have implemented these
navigation functions on planar scenarios, and simulation results
are provided throughout the paper.

I. INTRODUCTION

N this paper we present a technique for constructing

artificial potential-fields' that are guaranteed to bring a
bounded-torque actuated robot to a desired configuration with-
out its hitting obstacles in a perfectly known and stationary
environment. In order to guarantee the correctness of the
feedback controllers resulting from these constructions, we
have found it necessary to refine the notion of “artificial
potential field” by adding several new technical requirements.
We emphasize the importance of these refined conditions by
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! The term potential field means the negated gradient vector field —V'V" of
a potential function V".

referring to potential functions that meet them as navigation
functions. In particular, our navigation functions have cnly one
minimum—the goal configuration.

The notion of a navigation function at once combines a
solution to the global findpath problem along with a feedback
controller for the robot. This approach, therefore, promises
to free the “higher level” planner to a more abstract level.
Indeed, since we have shown that navigation functions always
exist, these ideas offer, in principle, a completely general
solution to the geometric piano movers problem. However,
the constructive techniques presented in this paper encompass
a greatly restricted class of problems.

The construction we will present applies to a point-mass
robot moving in essentially any generalized sphere world.
This is any space resulting from the application of a suitable
coordinate transformation to the model sphere world--a disc
punctured by an arbitrary number of smaller disjoint discs
representing obstacles. Thus, our present recipes work for
any n-degree-of-freedom (DOF) robot whose configuration
space happens to be a generalized sphere world. For instance,
almost any 2-DOF robot and obstacle course give rise to a
configuration space each of whose path-connected components
is a two-dimensional generalized sphere world. Of course, the
techniques presented here may well turn out to offer reasonable
heuristic strategies in many other situations. In fact, we have
recently used them to construct navigation functions for a
certain class of rigid bodies [36] and for an assembly problem
[23]. Such considerations fall, however, outside the scope of
the present paper, which is concerned exclusively with the
exact, provably correct aspect of the methodology as applied
to generalized sphere worlds.

This section continues with a description of the navigation
problem and the potential-field methodology. The next section
briefly reviews a number of important preliminary ideas and
results that have been previously presented in more mathe-
matically oriented literature [25], [38]. Section III contains
the central contribution of the paper: a systematic iiccount
of how to construct navigation functions from a geometric
description of the free configuration space. Section IV assesses
the computational complexity of the resulting navigalion al-
gorithms—they turn out to be comparable in this regard
to the more traditional findpath solution techniques—and
presents a sampling of the many simulation studies we have
made in the course of this research. The paper concludes
with a brief summary and a suggestion of what we con-
sider to be the more promising areas for extension cf these
ideas.

1042-296X/92/$03.00 © 1992 IEEE
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A. Problem Statement

Consider an n-DOF robot that performs various navigational
tasks in a world populated by obstacles. In its simplest form
the navigation problem can be stated as follows: The robot
presented with a fixed destination gy must approach the
destination and halt there while avoiding the obstacles. As
stated above, this paper is concerned with solutions that yield
a bounded-torque controller from perfect information about
a stationary world. All of these terms require more careful
explanation.

The possible placements of the collection of n robot links
in the real world can be described as points in the n-fold cross
product of the Euclidean group (all translations and rotations).
The configuration space CS is the n-dimensional subset of
this space corresponding to placements that respect the robot’s
joint constraints. The joint space J = E™ (E™ is a Euclidean
n-space) is a special local coordinate system on CS, having the
property that each coordinate corresponds to a physical joint.
The phase space T(CS) is similarly represented locally by
the joint phase space, TJ = E™ x E™ of joint positions and
velocities. We presume that the robot’s dynamical behavior
can be satisfactorily described by the standard Lagrangian
model (ignoring such nonideal phenomena as stiction, gear
backlash, flexibility, etc.) Further, we assume the robot has
ideal sensors that measure its position and velocity accurately
and without delay, and that its actuators instantaneously deliver
any specified torque 7 whose magnitude is bounded. Thus,
our robot model takes the following commonly accepted
description in 7J:

M)B+ flp,p) +9(p) =7 e

where M (p) is the robot’s inertia matrix, f(p,p) and g(p) are
fictitious and gravitational forces, and 7 is the torque input.
As noted below, one distinguishing virtue of the potential-field
method is that the specifics of M and f need not be known.
The free configuration space F C CS is the subset of CS
obtained by removing all configurations involving intersection
of the robot with physical obstacles or intersection between
the robot’s links. The regions removed from CS are referred
to as configuration-space obstacles. Note that another kind of
forbidden region whose definition involves the allowed initial
velocities at each initial free configuration is imposed by the
boundedness of the input torques. This constraint is specified
in phase space T(CS) and will be discussed in Section II.
By perfect information we mean a complete description
of the configuration-space obstacles, certain other geometric
constants that may be derived from them, as well as a
topological model of the resulting freespace F. We do not
detail the computational steps required to produce the derived
constants in any generality—a complete list that we shall refer
to as the geometric data throughout the sequel is assumed to
be a priori known and is merely appended to the paper.? As
for a topological model, all the configuration spaces in this
paper will be the generalized sphere worlds mentioned above.
2Since these derived constants are used solely to compute lower bounds on
certain key parameters in our constructions, we have found little sensitivity in

practice to inaccurate estimates. For example, in all of our simulation studies,
the parameters have been simply set “very high.”

path planning| ————— |trajectory planning | ———

Fig. 1. The traditional three-step decomposition of the navigation problem.

The prospects for developing constructive solutions to more
general versions of this problem that do not impose excessively
strong requirements for a priori information will be touched
upon in Section I-B-2.

We may now state our version of the navigation prob-
lem: Given the geometric data and a robot model, find a
neighborhood of initial velocities about F in phase space
&, C T(CS). Construct a smooth bounded-torque feedback
controller 7(p, p) such that trajectories of the closed-loop robot
system originating in £, remain there for all future time and
eventually approach the destination gq and halt there.

Note that this formulation avoids the question of whether
gq is reachable from some particular initial configuration or
not. Strictly speaking, our method does not provide a means
of making this determination, as will be detailed in Section I-
B-2. In practice, assuming the parameter values have been
adequately adjusted, we may conclude with probability one
that the destination is not reachable if the robot’s motion ceases
short of the goal.

B. Comparison with Alternative Methodologies

Since many researchers have addressed diverse variations
on the navigation problem over the last decade, it seems
important to sketch the place of our potential-field method
in the more general literature. This will provide at the same
time an opportunity to speculate briefly on the prospects for
generalizing our present results.

The robot navigation problem has traditionally been decom-
posed into the three separate steps depicted in Fig. 1. First,
the path planning problem is solved: given geometric data
and desired destination, a collision-free curve connecting the
robot’s initial and final configurations is constructed in the
free configuration space . This curve completely ignores the
robot’s dynamics. Second, the trajectory planning problem
is solved: given a collision-free curve in F, find a time
parameterization for the curve under certain constraints. The
resulting time-parameterized curve becomes a reference tra-
jectory, ¢, : [0, T] — F. Third, the attendant control problem
is solved: a control scheme is devised to make the physical
robot follow the reference trajectory as close as possible.

In contrast, the potential-field approach unifies these three
steps into one. Consider a real-valued map constructed on
the robot’s free configuration space, V : F — R, which
has a unique minimum at ¢g, the goal configuration, and is
uniformly maximal over the boundary of F (gq must of course
be specified in the interior of F). For example, V' on a planar
configuration space can be visualized as a “sculptured” two-
dimensional surface constructed over F (see Fig. 2). Subject
to few additional technical requirements listed in Section II-
A, such maps constitute the class of navigation functions.?
Once a suitable V is constructed it automatically determines

3Note, however, that the scope of our constructions is much broader than

the sample picture suggests. We show how to build such functions on a class
of Euclidean spaces of arbitrary dimension.
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#l(z,y)

saddle [0,1]

\

Fig. 2. A suitable potential function over a free configuration space.

a feedback control law of the form
m(p,p) = =VV(p) + d(p, p) )]

where d is an arbitrary dissipative vector-field.* It is shown
in {24] that the critical qualitative behavior of V’s gradient
trajectories (i.c., solutions of p = —VV(p)) is copied by
the robot itself. Since V has a unique minimum at g¢g and
is maximal over the boundary of F, almost all the gradient
trajectories of V approach g4 without touching the boundary of
F (global convergence is precluded by the topology of 7 [25]).
Consequently, subjecting the physical robot to the feedback
(2) causes the closed-loop robot system to “inherit” the same
behavior. Namely, the robot approaches g¢ while avoiding
the obstacles. Thus, a suitable V constitutes a path-planning
algorithm, a trajectory-planning algorithm, and specifies a
feedback control law, all at once.

We now briefly review some of the representative contribu-
tions from the alternative literature addressing the navigation
problem before proceeding to compare these methods with
the potential-field approach.

1) Alternative Literature: The purely geometric problem of
constructing a collision-free path in a space cluttered with
polynomially described obstacles (given perfect information)
has been solved by Schwartz and Sharir [39]. Moreover, a
near-optimal solution has been offered by Canny {9]. Schwartz
and Sharir’s algorithm uses a “cell decomposition” approach.
It consists of first decomposing the free configuration space
into a finite collection of cells and then searching the adja-
cency graph of these cells. Canny’s algorithm constructs a
similar graph called a “roadmap” for F, with a much more
efficient computational tool (multivariate resultant). The cost
of constructing the roadmap is polynomial in the number of
semialgebraic constraints used to describe 7 and in the degree
of these constraints. It also tends to grow exponentially with
the robot’s degrees of freedom.

The (traditional) path-planning algorithms described above
specify a collision-free curve in the free configuration space
F. They do not take into account the robot’s timing or
velocity. One requires a parameterization of the given path
by time since the (traditional) controller discussed in the next
paragraph expects as input a reference trajectory of the form

41n order to simplify the exposition, assume the absence of gravitational
forces.

¢ : [0,T] — F, where the image of g, is the collision-
free curve. For ¢.(t) to be feasible, the parameterization
must respect the bounds on the torque generated by the
robot’s actuators. Two such techniques, the “switching” (or
bang-bang) technique [7] and “kinodynamic planning” [11],
compute a time parameterization that minimizes the total
travel-time 7.

Traditionally, the attendant control problem assumes a given
collision-free trajectory g, : [0, 7] — F connecting the robot’s
initial and final configurations. The problem is to make the
physical robot follow this path without its hitting obstacles
and without exceeding the actuators’ torque limits. The most
commonly used exact method is called the “computed torque,”
or “inverse dynamics” technique [13], {29]. It consists of exact
term-by-term cancellation of the noninlearities in the robot’s
dynamics (see (1)), by using

7(p,p) = f(p,p) + [M(p)1] 3)

as control input where 7; is not yet specified. The resulting
closed-loop system

p=7 @)

is linear, and the standard control input used to achieve
tracking of ¢(t) is

®)

where K; and K are positive definite (symmetric) matrices.
The resulting closed-loop linear system obtained by applying
(5) to (4) converges asymptotically to gr(t).

2) Generality and Practicability of the Potential Fields:
We shall see in Section II that navigation functions exist in
principle on each connected component of practically any free
configuration space. This paper provides, however, a construc-
tive recipe only for a restricted class of robot configuration
spaces—the n-dimensional generalized sphere worlds. The
computational cost of this recipe turns out to be polynomial
in the number of degrees of freedom (see Section 1V)® and
polynomial in the number of “geometric features.” In contrast,
the findpath algorithms mentioned above are both general and
constructive (although we are not familiar with any practical
implementations). On the other hand, their computational cost
is exponential in the number of degrees of freedom. Of course,
the relative efficiency of the potential-field approach as applied
to the sphere worlds can only result from our starting with
relatively greater information.®

The classical findpath algorithms presume a priori knowl-
edge of the robot’s geometry and that of the environment. In
contrast, an extrapolation of our present solution techniques
to the general problem would impose an excessively strong

7'1(?343) = qr - Kz([) - QT) - Kl(p - qr)

5 As discussed in Section IV-A, this count does not include the computation
of certain geometric constants that are assumed to be part of the geometric
data throughout the paper.

6We are presently unsure whether this relative efficiency is a general
consequence of the greater amount of a priori information we require—a
topological model together with certain additional geometric data—or simply
an artifact resulting from our representation of generalized sphere worlds as
piecewise quadratic shapes.
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version of perfect information—knowledge of a topological
model for the free configuration space. This entails, for in-
stance, a priori knowledge of whether a path exists to the
destination or not. The topological characterization of the free
configuration space does not seem to have been addressed
in the literature, and there seems to be no indication what its
computational cost would be. The need for a topological model
is consequently the chief practical obstruction to extending our
present constructive techniques beyond the cases presented
here.

Yet it seems premature to judge the intrinsic limitations of
the potential-field approach. For example, research presently
in progress seems to indicate the possibility of adaptively
adjusting the potential field in the course of navigation in
order to do away with the formal requirement for any geo-
metric information other than the location of the obstacles’
boundaries. Moreover, the dependence of these constructions
upon a priori topological models may to some degree be
an artifact of our correctness proofs. For example, recent
work by the first author demonstrates that our sphere-world
navigation functions (reviewed in Section II-B-2) constitute
navigation functions for the entirely unrelated topology arising
from a class of planar rigid-body motion planning problems
[36].

Whatever the liabilities, the strong version of the navigation
problem as we have posed it presents some advantages.
Computationally oriented solutions, the roadmap algorithm
for instance, must be reinitialized each time the information
changes. In contrast, our potential fields are given as a closed-
form symbolic expression in terms of the obstacles’ geometry
and the robot’s destination. This use of symbolic information
allows the navigation function to change continuously (and
relatively cheaply from the computational viewpoint) with
changes in the available information.” In this sense, our longer
term goal might be seen as a parameterized version of the
“error detection and recovery” problem that has already been
posed (and approached nonparametrically) by Lozano-Perez
et al. [28] and Donald [12].

From the most practical point of view, controllers resulting
from the potential-field approach have a long history of
successful implementation in the robotics literature [17], [27],
[31]. Moreover, there may be some theoretical reasons to
prefer the “natural control” methodology of (2) to the inverse
dynamics methods of (3) and (4). For example, some have
argued that it presents a minimal energy solution to the
obstacle-avoidance problem [41]. In contrast, the cancellation
of all the nonlinear terms in the robot’s dynamics according to
the computed torque method reflects the designer’s uncertainty
as to which of these terms should be considered “undesirable.”
But it is never possible to cancel terms exactly, even using
adaptive versions of the inverse dynamics scheme. Small
cancellation errors may give rise to unacctably large tracking
errors. Such tracking errors may also cause the robot to exceed
its actuators’ torque limits, affecting its ability to compensate
for the tracking errors. In contrast, the natural control approach

7For example, there is nothing to impede the search for a navigation
function that is affected only by obstacles in the vicinity of the robot. A
preliminary investigation into this area is described in the concluding section.

exploits the special properties of mechanical systems (of which
the robot is a special class) to avoid such cancellations as
much as possible.

C. Related Literature

We conclude this introductory section with a brief summary
of other potential-field related research in robotics. Khatib,
in his 1980 Ph.D. dissertation [16], proposed a closed-form
expression for a potential function and suggested to use its
negative gradient as torque input. Unfortunately, his potential
function suffers from several problems, the most important one
being undesired local minima. This phenomenon persists even
with obstacles having simple shape (see [19] for example).
Since Khatib’s work a decade ago, numerous investigators
have attempted to use potential functions in various robotic
applications. These papers are described in detail in [35]. They
roughly fall into three categories: 1) Papers addressing the
problem of undesired local minima. For example, Krogh’s
generalized potentials [26], Connolly’s Laplacian approach
[10], and Barraquand’s simulated annealing technique [5]. 2)
Papers that view potential functions as path-planning aid. For
example, the “valley tracking” technique [4] and Warren’s path
optimization procedure [45]. 3) Papers that extend the use of
potential functions to time-varying situations. For example,
Newman and Hogan’s work in the context of avoiding mov-
ing obstacles [32] and Khatibs’s real-time obstacle-avoidance
technique [17].

None of the papers mentioned above offers an exact
potential-function-based algorithm that is guaranteed to work 8
The hardest problem to overcome is the presence of
undesired local minima. This problem has been observed
in many practical implementations (see [1], [8], [17]. [43]).
A second problem, encountered by those addressing the
robot’s dynamics, is the following seemingly contradictory
requirement: in order to prevent collision with obstacles, it
seems that the obstacles should exert an arbitrarily large
repulsive potential as the robot approaches their boundary. At
the same time, practical bounds on the robot’s actuators impose
a limit on the allowable repulsive potential. Yet docking,
parts mating, and more general motion tasks [15], all require
navigation at or along the boundary of the configuration
space.

In contrast, the navigation functions, once constructed,
provide a solution to both problems.

II. PRELIMINARY DEFINITIONS AND RESULTS

Before proceeding to a presentation of the general construc-
tions, it is helpful to briefly review a few ideas, and results
from our earlier work. In Section II-A we motivate and define
the notion of a navigation function as providing a solution to
the problem statement of Section I-A above. In Section II-B,
we present a catalog of “functional building blocks” that will
be used systematically in the sequel.

8 An exception is Connolly et al. [10] who propose the numerical integration
of Laplace’s equation, subject to constraints that characterize a navigation
function.
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A. Navigation Functions

This section reviews the fundamental limits in the potential-
field approach arriving thereby at the notion of a navigation
function. We first examine the problem of controlling the
robot with potential fields. Two unremarkable observations by
the second author [24]—the first reviewed in Section II-A-
1, the second in Section II-A-2—afford a list of criteria that
we desire of the potential fields. That examination leads to
Definition 1, the cornerstone of our subsequent work in this
area. The existence of functions satisfying this definition is
guaranteed as discussed in Section II-A-3. We finally introduce
the notion of invariance under coordinate transformation in
Section 1I-A-4 that will be a key to the later constructions.

1) Admissible Potential Functions for Obstacle Avoidance:
A century ago, Lord Kelvin [42] observed that a dissipative
mechanical system—that is, (1) when 7 is a the sum of a
potential force and a dissipative force—Iloses total energy
along its trajectories and that consequently trajectories origi-
nating near a potential-energy minimum would asymptotically
approach it. In the robotics context, Khatib [18] proposed
replacing the gravitational forces with an artificial potential
field and then adding a dissipative term, as in (2).° Khatib’s
method provides a means of obstacle avoidance and local
approach to the destination. This idea was subsequently and
independently introduced in its full generality by a number of
researchers [3], [21], [30], [33]—see [24] for a more detailed
discussion of the history. To the best of our knowledge,'” all
of the previous proponents of this technique have required
unbounded input torques at the obstacle boundaries. We shall
see now that admissible potentials yield bounded controllers.

A real-valued function on the free configuration space is
said to be admissible if is uniformly maximal on the boundary
of F, i.e., where the robot touches an obstacle

vo={Z¢

<c,

for all ¢ € boundary (F)
for all g € interior (F).

for some constant ¢ > 0 (see, e.g., Fig. 2). Using energy-
conservation considerations, it can be shown that trajectories
of a dissipative system with admissible potential energy that
start in JF with suitable initial velocity remain away from the
obstacles [24]. Moreover, since any realistic robot configura-
tion space is compact, any smooth potential field defined on
it is automatically bounded. Thus, a potential-field controller
obtained from an admissible function is bounded and steers
the robot away from the obstacles if some initial speed limit
is imposed on the robot.

In fact, this speed limit must be provided as a function
of initial position: large but bounded speeds are tolerable
from initial configurations away from the obstacles; initial
configurations exactly on the obstacles’ boundary must have
zero velocity. For example, let U be an admissible function
with a maximal height of unity. Let K(q,¢) be the robot’s

9 Actually, Khatib proposed exact cancellation of all the nonlinearities due
to the rigid body dynamics as well. The identical limit behavior obtains in
cither case. It is an open question as to which alternative results in more
desirable transient behavior.

10That is, with the exception of Newman and Hogan [32] who proposed
the use of bang-bang (discontinuous but bounded) controllers.

kinetic energy, and let (go,do) be its initial position and
velocity. Choose a “gain” ¢ according to the inequality

. K (q0, o)
= 1-U(g)

Using the potential V £ (U, it follows that the bounded-
torque controller resulting from (2) steers the robot away from
the obstacles toward some local minimum of V. This simple
procedure can be extended to a guarantee that trajectories
starting in the interior of F stay inside an explicitly specified
subset of F, thus providing for a safety clearance from
the obstacles. A more careful discussion of how to adjust the
height of V in order to meet magnitude constraints on the
input torque is beyond the scope of this paper. Nevertheless,
it is clearly forthcoming from these observations.

2) Morse Functions for Convergence: If few researchers
have considered the possibility of avoiding infinite torques,
seemingly none has heretofore inquired as to the possibility
of obtaining global navigation results. One of the elementary
results of dynamical systems theory establishes that if an
unstable equilibrium is nondegenerate—that is, the linearized
vector-field has full rank there—then its domain of attraction
has an empty interior. For example, the dynamical system

(0)-6)

y Y

has an unstable equilibrium (a saddle) at the origin and its
domain of attraction (the z axis in the (z,y) plane) has an
empty interior.

A simple computation shows that the equilibrium states of
the closed-loop system (1) coincide with the critical points
of the potential function and that they are nondegenerate if
and only if the Hessian (the matrix of second derivatives)
of the potential function evaluated at its critical points is
nonsingular. We will follow standard mathematical convention
and refer to such functions as Morse functions. Another appeal
to Lord Kelvin’s total energy argument, now conceived of as
a Liapunov function for the closed-loop system, establishes in
consequence that, when the potential field is the gradient of
a Morse function, almost all the initial states asymptotically
approach one of the local minima. For details, refer to [24).

Although “essential” global convergence (that is, conver-
gence from almost all initial configurations) is perfectly ac-
ceptable from the practical point of view, there remains the
question of whether true global convergence is achievable. The
answer is no. To begin with, elementary continuity arguments
impose constraints: any continuous function V on a compact
set F must attain its maximum and minimum on that set. It
might be imagined, however, that a sufficiently clever con-
struction could be “strongly” admissible in the sense that the
only local maxima occur on the boundary and nowhere else.
Indeed, our constructions do have this property. In any case,
the appearance of interior saddle points is unavoidable. It can
be shown under very general conditions that the set of initial
states attracted by a dynamical system to an asymptotically
stable equilibrium is a topologically deformed disk [6]. But the
only free spaces with the topology of a disk are the trivial ones
with no interior obstacles! Thus, in every other case there must
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be additional equilibrium states.!! The necessary appearance
of spurious unstable equilibria need not cause any practical
difficulties if it can be assured that “few” initial conditions
will get stuck on them. If the potential function is a Morse
function, then the preceding arguments provide exactly this
assurance.

3) The Existence of Navigation Functions: Since almost all
initial positions and velocities (with appropriate initial total
energy) lead away from the obstacles and toward some min-
imum, an admissible Morse function with a single minimum
at the desired destination provides a solution to the strong
version of the robot navigation problem as posed in Section I-
A. We emphasize the importance of these various conditions
by giving them a formal name:

Definition 1 (from [25]): Let F be a robot free configuration
space, and let g be a goal point in the interior of 7. A map
¢ : F — [0,1] is a navigation function if it is

1) smooth on F (at least a C® function);

2) polar at g4, i.e., has a unique minimum at g4 on the

path-connected component of F containing qq;

3) admissible on F, i.e., uniformly maximal on the bound-

ary of F;

4) a Morse function.

The intuitive motivation for each of these items has been
discussed above with the exception of the first. Smoothness
ensures that Vo be continuously differentiable and conse-
quently that the classical existence and uniqueness results of
solutions for the closed-loop robot system apply. Moreover,
the notion of a Morse function (Property 4) is well defined
only for smooth functions. But, smoothness is related to
another notion that Definition 1 does not address at all—the
practical requirement that ¢ ought to be effectively computable.
This notion seems harder to formalize. In previous work
we have insisted not only on smoothness but on analyticity
(the existence of a global Taylor series). We have in mind,
of course, closed-form expressions in which a finite number
of familiar analytic functions like polynomials are composed
together by elementary algebraic operations. Often, however,
real-world scenes give rise to free spaces that are merely
semi-analytic, i.e., finite Boolean combinations of analytic
shapes. One might expect that such situations will require
nonanalytic functions as well (e.g., squareroots) and, indeed,
this emerges in the constructions presented later in this paper.
In general, we strive for “the most elementary” functions
possible. Specifically, the constructions presented in this paper
use simple algebraic combinations of polynomials and kth root
functions.

When does a robot free configuration space admit a nav-
igation function? Smale proved the generalized Poincaré’s
conjecture in higher dimensions roughly three decades ago.
In so doing, he was led to develop a number of results
concerning potential fields of which the most important for
this investigation concerns the existence of navigation-like
functions (Smale called such functions nice [40]) on spaces

11We have shown in [25] even a more specific result: a smooth nondegen-
erate vector field on any generalized sphere world that has a unique attractor
and that is inward directed on the boundary must have at least as many saddles
as there are internal obstacles.

without boundary. Elementary results from algebraic topology
may be used to extend Smale’s ideas to the case of a boundary
which arises naturally in the robotics context. We may thus
assert the following general existence result [25].12 For every
smooth connected and compact manifold with boundary, M,
and any interior point, zo € M, there exists a smooth
navigation function with a (unique) minimum at zo.

One would, ideally, like to obtain a closed-form formula in
terms of the geometric data and g4 for a navigation function
on a completely general free configuration space F. Unfortu-
nately, the encouraging result that navigation functions always
exist is not constructive, and there remains the mundane task
of actually constructing them. This is the chief concern of
this paper. Indeed, our research program concerns the actual
construction of such navigation functions for increasingly
more realistic robotic scenarios.

4) Navigation Properties Are Invariant Under Coordinate
Transformation: A central tenet of the larger program of
research within which our version of the navigation problem
takes its place is the importance of generalization across
a common task domain [22]. Simply put, we seek to use
and reuse the same solution techniques by systematically
identifying when two apparently different tasks are actually
the same. Indeed, one of the principal reasons for formalizing
the statement of a problem is the possibility of establishing
such identities. In this section we explore such features of the
navigation problem. Specifically, Definition 1 implies that two
navigation problems no matter how they differ in geometric
detail are actually the same if there exists a coordinate transfor-
mation mapping one to the other. Conversely, this implies that
the navigation properties are invariant under transformation of
both the domain and the range spaces.

Formally, a map between two spaces that is smooth, one-
to-one and onto, and has a smooth inverse is called a diffeo-
morphism. In general, diffeomorphisms preserve the properties
of navigation functions as the following two facts assert [25].
The first constitutes a guarantee for the existence of navigation
functions over every space F that can be transformed to a
given model space M. Let M and F be two free configuration
spaces. Let ¢ : M — [0,1] be a navigation function on M,
and let A : F — M be a diffeomorphism. Then

p=cgoh

is a navigation on F. The second fact asserts that navigation
properties are invariant under transformation of the range
space as well. Let ¢ : 7 — R and ¢ : R — R be smooth,
and let ¢ be defined by

p=00¢p.

If o is monotonically increasing, then the set of critical points
of ¢ and ¢ coincide, and the type of each critical point (i.e.,
minimum, maximum, or a saddle) is identical.

These facts will be used systematically below to enlarge the
scope of the constructive results. For example, the first fact will

121t has been called to our attention that similar existence results might be
obtained from more classical arguments involving partial differential equations
with specified boundary constraints.
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be used in Section III to extend our navigation functions from
the “Euclidean sphere worlds”—a geometrically trivial class
of obstacle courses—to almost any topologically deformed
instance. The second will be used in Section III to modify a
given cost function on F into a navigation function.

B. A Catalog of Preliminary Constructions

Having established the conceptual groundwork, it seems
helpful to introduce some useful “functional building blocks”
here. We will discuss in Section [I-B-1 the manner in which
the geometric data will be used in the constructions to follow.
In Sections 1I-B-2 and II-B-3 we introduce a number of simple
scalar functions that will be used to construct navigation
functions. We shall use the notation fi o fo = fi{f2(2)) to
denote function composition.

1) Implicit Representation of the Geometric Data: In the
problem statement of Section I-A we assumed the knowl-
edge of geometric data. Let us describe in detail how this
information is used in the constructions to follow.

To begin with, we shall use the following distance-to-the-
goal function, defined by

7e(q) = |lg — aal™ )

where ||-|| is the Euclidean norm and x > 0 is a parameter.

The various configuration-space obstacles will appear in the
constructions to follow via their implicit representation. That
is, each obstacle will be represented by an obstacle function,
a real-valued map §; representing it in the form'?

obstacle; = {q : B:(¢) < 0}.

It can be shown (pathological situations excluded) that 3; is
zero exactly on the boundary of the obstacle in question.

For example, consider the Euclidean sphere worlds, as illus-
trated in Fig. 3. Let D(q, p) denote a Euclidean n-dimensional
disk with center ¢ € E™ and radius p. A Euclidean sphere
world is formed by removing from a large n-dimensional disk,
Dy (0, po), M smaller disk-like “punctures,” D;(g;,p;) for
j = 1.--M, called the obstacles. For simplicity, we shall
regard the complement of Dy in E™ as the zeroth obstacle.
The free configuration space remains after removing all the
internal obstacles from Dy

M

F £ Do — | obstacle;.

j=1
For F to be a valid sphere world, the obstacles’ closure must
be disjoint and be contained in the interior of Dy. In this
example, the geometric data takes the form of M + 1 centers
g; and radii p;. From this data it is straightforward to construct
the spherical obstacle functions:

Bo(q) = —lla — a4;lI* + o}
Bi(@) =lla—g;lI> —p2,  forj=1---M.

More generally, we shall use formulas developed by Zenkin
[46] for the implicit representation of a set described by

130f course, a given set can be represented by many such obstacle functions.

Fig. 3. Planar sphere world with five internal obstacles. The undesired local
minima (top) disappear as the parameter value increases (bottom).

an arbitrary Boolean combination of other sets. These for-
mulas are expressed in terms of the implicit representation
of the constituent shapes, which are assumed to be known.
Specifically, if m sets in E™ are described by the inequalities
Bi(q) < 0, then their intersection is given by ¥n (B1, - Bm) <
0, and their union by ¥y(81, - Bm) < 0. These formulas
are completely general, and we will use them to construct
the implicit representation of complicated obstacles by taking
Boolean union and intersection of simpler ones.

Finally, we will be typically interested in the product of all
the obstacle functions

BE Hﬁi @)

which is similar to 1y since it attains zero on the union of
the zero level sets of the (3;’s. Although the zero level set of
8 is typically larger than the boundary of the set described
by ¥u(B1, - Bm) < 0, it is simpler and will be adequate in
many situations.

2) Scalar “Conditioning” Functions: Two real-valued func-
tions of a single real argument will be used constantly in
the sequel for the purposes of “conditioning” their argument
without changing certain essential properties. In both cases,
there is a scalar parameter that must be chosen to complete
the definition, and we will emphasize the importance of this
parameter by use of subscripts.

Lo
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The first function is a diffeomorphism from the extended
reals [0, 00] onto the unit interval

A T

" ®)

ox(z)
where A > 0 is a parameter. This function takes zero to zero,
maps “the point at infinity” to unity, and varies smoothly in
between. Its chief use in the sequel is to bound functions that
achieve their maximal value uniformly on some set of interest
by blowing up to 400 there. For example, an important use
of this function is in the analytic switch, defined by

v(q)
AB(q) + v(q)

(v and § are implicit representations of the geometric data as

described above). Note that this function vanishes exactly at

the zeros of ~, achieves its upper bound of unity exactly at the

zeroes of 3, and varies smoothly between the two elsewhere.
The second function is a xth root function

s, 0) 2 (m o %) (@) =

pu(x) & 2" )

that we shall use to “sharpen” its argument. For example,
v2(q) = |lg — qa||* is not a Morse function (since its Hessian
at the origin is the zero matrix) while ps 0 y2 = |jg — qd||2 is.

As an example of the use of these preliminary constructions,
consider the navigation problem on the trivial Euclidean sphere
world introduced in Section II-B-1. This problem may be
solved with a sharpened analytic switch. Specifically, we have
shown in [25, Theorem 1] that

N . lg — qal)?
n( ): Noalol ( =
Pl (” ﬁ> D= e e+ 5@

(7« is the distance to the goal, and § is the product of the
spherical obstacle functions) is a navigation function, so long
as the parameter x exceeds a certain function of the geometric
data (which is given in closed form in [25]). Fig. 3 shows a
planar Euclidean sphere world with five internal obstacles. The
destination is specified arbitrarily at the origin, and the level
lines shown vary regularly between zero (at g4) and unity
(on the boundary). It can be seen that all the undesired local
minima disappear as the parameter « increases. The resulting
navigation function has a unique minimum at g4 and a saddle
point near each internal obstacle. As asserted in Section II-A,
this is the best that can be achieved subject to the sphere
world’s topology.

3) Star-Shaped Sets and their Transformations: Fig. 4 de-
picts two sets that are both topological discs. D is a standard
Euclidean disk with center p; and radius p. S is a rather general
shape called a “star shape.” Star-shaped sets such as S are
more general than (they include all) the convex sets and are
characterized by possession of a distinguished “center point,”
g; € S, from which all the rays cross their boundary once and
only once.!*

T/n (10)

141t was shown in [35] that the implicit representation of S, 3,, typically
satisfies
V3ig) - (g—q:) 2 A forall

q € boundary (S) (11)

i

Fig. 4. A change of coordinates transforms the star-shaped set into a disk.

We now present a very useful function that has the fol-
lowing two properties: 1) it maps the boundary of the star
diffeomorphically onto the boundary of the disk (i.e., to the
sphere); 2) it maps the star’s interior to the disk’s interior and
the star’s “outside,” E™ — S, to the disk’s outside. We shall
assume that an implicit representation 3; has been given for S,
and we denote the implicit representation of the disk D by g;.
The star-to-sphere transformation, which we call a translated
scaling map, is defined by

Ti(q) = vi- [q— ;] + ps

(g, gi, p; are vectors, v; is a real-valued function of ¢). This
transformation first scales each ray staring at g; by the amount
v; and then translates it along the vector p; (the center of D).
The scaling factor v; is defined to be

/2 P
vi(g) £ [1+ Bi(q)]

' llg — &l
(p is the disk’s radius) and can be easily checked to satisfy the
two desired properties. Thus, T; maps the boundary of the star
into the boundary of disk, its interior into the disk’s interior,
and its outside into the disk’s outside as required.

12)

(13)

III. CONSTRUCTION OF NAVIGATION FUNCTIONS

This section, comprising the central contribution of the
paper, exhibits families of coordinate transformations for in-
creasingly complicated spaces in the class of the general-
ized sphere worlds."> Section II-A-4 above established that
navigation functions on geometrically simple spaces induce
navigation functions on all the topologically equivalent spaces
via a diffeomorphism. Section II-B-2 presented a navigation
function for the geometrically trivial Euclidean sphere world.
Thus, the construction of transformations mapping geometri-
cally complicated sphere worlds to the model sphere world
solves the robot navigation problem posed in Section I-A.

In Section III-A, we introduce the underlying method of
construction based upon the catalog of Section II-B and ex-
plain how it provides a solution in the case of a freespace
whose obstacles are all star shaped. Next, in Section III-B
we introduce the notion of “forests of stars” that greatly
for some constant A > 0, assumed to be furnished along with the geometric
data. This condition is needed in the proof of correctness, and its necessity is
currently not clear.

I3t has been suggested to us that certain classical techniques for building
conformal mappings might be used in place of the original methods reported
here. Indeed, a number of researchers have begun to use such constructions
in a heuristic fashion [2], [20] for building artificial potential fields for robot

motion control. We are not sure to what extent these methods of complex
variable theory may overlap with our work.
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increases the geometric detail we can represent. Finally, in
Section 1I1-C, we extend and generalize the construction of
Section I1I-A yielding a recipe for diffeomorphisms between
the forests of stars and the Euclidean sphere worlds. Each of
the classes mentioned— Euclidean sphere worlds, star worlds,
and forests of stars—is increasingly more “expressive” and
is defined for any dimension of the Euclidean space and for
arbitrary number and arrangement of the (disjoint) obstacles.
The last class—the forests of stars—turns out to be capable
of approximating any generalized sphere world.

A. Navigation Functions on Star Worlds

While a Euclidean sphere world is an n-dimensional disk
punctured by an arbitrary number of smaller disjoint disks
representing model obstacles, in a star world the obstacles
are allowed to be n-dimensional star-shaped sets. These have
already been described in Section II-B. Although they are
topologically equivalent to the standard Euclidean disk as
the translated scaling T; demonstrates constructively, they are
geometrically much more “expressive.” For example, every
convex set is star shaped (although many nonconvex sets are
also star shaped).

In any event, the results of Section II-A now enable us to
restate the problem of Section I-A as follows: Given a star
world F with a goal gq in its interior, find a suitable model
sphere world M and construct a change of coordinates h
between F and M such that h(gs) = pq, where py is an
arbitrarily specified destination in the interior of M.

1) Specification of the Model Sphere World: From a spec-
ification of the star world 7 we would like to construct a
transformation mapping it to a model Euclidean sphere world
M. The first step is to determine a suitable M.

M must have the same dimension and the same number of
obstacles as F, but there seems to be no obvious guideline for
choosing the location and radii of the Euclidean spheres. We
have found, however, that the transformation (defined below)
becomes especially simple if the spheres are placed such that
their centers coincide with the stars’ centers (see Fig. 5).
Further, we have found that the formula for choosing the
parameter of the transformation becomes simpler if the radii
of the internal spheres are chosen sufficiently small so that the
Euclidean spheres are completely contained in the respective
starts. Similarly, the outer sphere is chosen sufficiently large
so that it contains the outer boundary of the star world (see
Fig. 5). Finally, we have found it convenient to set the goal
point in M, pg, to be identical to the desired goal in F, gq4.

Note that this choice of M requires knowledge of a lower
bound on the minimal distance of each star’s center from its
boundary (upper bound for the outer star). This geometric data
is discussed in Appendix III.

2) Linear Combination of Translated Scalings: Each trans-
lated scaling T; introduced in Section 11I-B-3 maps the bound-
ary of one star to one simple Euclidean sphere. If there
are many different boundaries that must be brought into
correspondence with appropriately sized and located Euclidean
spheres, then a single T; will not do. Instead, we will introduce
a “linear combination” of such maps whose relative weights
change as a function of the configuration space.

Fig. 5. A suitable model Euclidean sphere world superimposed on the given
star world.

Consider a collection of M + 1 disjoint star shapes, S; for
i=0,...,M, each with its corresponding translated scaling
T;, defined in terms of a scaling factor v; and implicit boundary
representation 3; as in Section 1I-B-3 above. For each shape
we form an analytic switch

_ PSR A VR vB;
(2. X) = ("* B; )“’) - (vﬁi Y

where « is the distance-to-the goal function (see (6)), and B;
is the “omitted product”

B M
Bi 2 H Bj-

=0,

)(q) (14)

This switch takes values in the unit interval, varyies between
unity on the boundary of S;, and is zero on the boundary
of every other shape, S; for j # i, as well as at the
destination (since ~ appears as a factor in s;). For the sake
of notational consistency, we will denote the identify map on
E™ as Ty(q) = ¢, and let

M
sa(g,\) 21— Zsi
i=0
denote the “destination switch.”
Definition 2: Linear Combination of Translated Scalings is
the one-parameter family of transformations defined by

M
halg) 2 saTa(g) + Y s:Ti() (15)
i=0

(the parameter A appears in the switches). Such functions
resemble the translated scaling T in a neighborhood of the
ith star boundary and match T; exactly on the boundary. They
resemble the identity map on configurations away from the
boundaries and match the identity exactly at the destination.
The rate of decrease of the switch s; away from the boundary
of the ith obstacle is governed by A, and, as it turns out, a
suitable choice of )\ guarantees that hy is a diffeomorphism.
The particular definitions of B; and v; will vary with the geo-
metric details of each case, but the form of the transformation
will always be the same.
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Fig. 6. A planar star world with five internal obstacles (bottom) and its
model sphere world (top).

3) Linear Combination of Translated Scalings Solves the Star
World Problem: We have shown in [38, theorem 1] that when
the model space M is constructed as in Section III-A-1, then
the linear combination (15) defines a diffeomorphism from F
onto M so long as A is chosen larger than some lower bound
A. The proof of correctness actually constructs a formula for
A in terms of g4 and the geometric data, listed in Appendix
HI. Thus, if ¢ is a navigation function for M and h) is the
linear combination of translated scalings (15) with A > A,
then o £ Goh, isa navigation function on the star world F.

A numerical example of such an induced navigation func-
tion is provided in Fig. 6. The figure depicts a planar star
world F with five internal obstacles and its corresponding
model sphere world M. The destination point in both spaces
is chosen arbitrarily at the origin. The level lines of ¢ on F
and of ¢ on M vary between zero (at gg) and unity (on the
boundary). The parameter in ¢ is chosen sufficiently high to
eliminate spurious local minima in M. It can be seen that for
an appropriately chosen A the resulting navigation function
@ = @ o hy introduces no additional critical points. Thus,
there is a unique minimum at ¢4 and one saddle point near each
(internal) star obstacle. It was shown in Section II-A that one
cannot do better than this with the sphere worlds’ topology.

B. Extension to Geometrically Complicated Spaces

This section addresses the question of how to represent more
geometrically complicated instances of the generalized sphere

Fig. 7. Every polyhedron is a semianalytic set.

worlds than specified by the star worlds. We have chosen a
representation obtained from decomposing configuration-space
obstacles into unions of overlapping stars. This introduces
a technical difficulty not encountered before: the obstacles’
surfaces may now have kinks, or sharp corners, at the “seams”
where two stars intersect each other. We shall first formulate
the notion of an obstacle with sharp corners in Section [1I-B-1.
Next, we shall introduce the “forest of stars” in Section III-
B-2 as a concrete instance of how allowing such unions of
overlapping shapes can yield a representation of obstacles that
is essentially complete.

1) Semianalytic Obstacles: A set S C E™ is semianalytic
[34] if it can be expressed as a finite Boolean combination
(via the set operations U, N, —, c) of sets S;, each described
by a real-valued function 3; in the form

Si2{g€ E": Bi(q) <0}. (16)

For example, any polyhedron is a finite intersection of linear
inequalities (see Fig. 7). We shall allow only nondegener-
ate semianalytic shapes. Namely, n-dimensional sets whose
boundary is a disjoint union of (n — 1)-dimensional smooth
patches (or faces), “glued” together along their respective
boundaries (or edges). We denote by C the collection of these
edges, and call this set the sharp corners of S. For example, the
planes forming the boundary of the polygon in Fig. 7 satisfy
this property and, in fact, almost all semianalytic shapes satisfy
this property [14, pp. 69—69]. We call such sets semianalytic
obstacles.

2) Forest of Stars: The notion of semianalytic set may be
used to greatly increase the geometric expressiveness of our
representation of obstacles. We may now consider unions of
overlapping stars. We would like, however, to allow only
unions that are generalized n-dimensional disks. For this
purpose, we restrict the stars’ adjacency graph to be a tree (i.e.,
a connected graph having no edge loops) as follows. Describe
the arrangement of the stars comprising each obstacle by an
adjacency graph whose vertices are the star centers and whose
edges connect centers of overlapping stars. Thus, a tree-of-
stars is a finite union of overlapping stars whose adjacency
graph is a tree. A forest of stars is an n-dimensional star-
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Fig. 8. A simple tree of stars (top) and two prohibited situations (bottom).

shaped set, denoted by 7To,'6 punctured by an arbitrary number
of smaller disjoint tree-of-stars obstacles, denoted by 7T; for
i=1,...,M. In the special case in which each tree of stars
consists of one star, the resulting space is a star world defined
in Section III-A.

We shall find it convenient to restrict attention to a simplified
subclass of the forests of stars whose members are guaranteed
to be generalized sphere worlds. The first simplification is to
restrict the shapes to be quadratic. Namely, the various stars
must be expressed as a Boolean combination of polynomial
inequalities of degree at most two. In other words, the bound-
ary of each star is partitioned into planar and quadratic patches
with sharp corners allowed. The second simplification requires
that each tree of stars 7; satisfies the following three properties
with respect to some choice of its root:'7 1) the center point
of each star is contained in its parent in the tree; 2) each of
the stars is connected to its parent via a unique patch; 3) this
patch is star shaped with respect to the center point of the
star it connects to (i.e., the rays from this center intersect the
patch at most once). We shall call such forests of stars simple.
Fig. 8 shows an example of a valid tree of stars as well as
two prohibited situations. On the left, not all the centers of
the leaves are inside their parent. On the right, two leaves
intersect each other so that the stars’ intersection arrangement
is not a tree.

The convenience afforded by these restrictions does not
come at the expense of any generality since we have shown

167 can be an “inverted” tree-of-stars, one whose root is the complement
of a star-shaped set S and whose other stars “grow” into S. For simplicity,

assume that 7 is star shaped.
17Recall that any node of a tree can be designated as its root.

that any generalized sphere world can be approximated by
such forests of stars [35].!® Moreover, if all the stars are also
convex, then the forest of stars is guaranteed to be simple.
From now on, the term forest of stars will mean simple and
quadratic as well. Finally, we have relegated to Appendix I
a rather technical discussion concerning the extension of the
class of navigation functions to spaces with piecewise smooth
obstacle surfaces, such as the forest of stars.

C. Navigation Functions on Forest of Stars

We now address the central problem of the paper. Namely,
the construction of a coordinate transformation mapping a
given forest of stars to its model sphere world. We shall do it
by successively “purging” the forest with the following basic
operation: Given a forest of stars 7 with maximal tree depth
d > 1, and with a destination gg in its interior, find a model
forest of stars F with maximal tree depth d — 1. Construct
a change of coordinates fx between F and F such that
pa = fr(qa), where py is an arbitrarily specified destination
point in the interior of F.

Notice that a forest of stars of depth zero is a star world.
Thus, a composition of such transformations yields a diffeo-
morphism between the original forest and a star world. The
latter may then be treated by the methods of Section III-A.
This section introduces the “purging transformation” that maps
F onto F. Section IV describes several simulation studies,
indicating the rich variety of shapes attainable with forests
of starts and depicting problems that may arise with practical
implementation.

1) The Purging Transformation: Given a forest of stars F,
we label its stars by considering a tree at a time: for each
tree, designate one of its stars as the root and then label the
stars by proceeding along edge paths. The order by which
the stars along a specific path are encountered determines a
parent—child relation: we denote the index of the parent of the
ith star by p(#). Each such path ends in a leaf. We denote the
index set of all the leaves in the forest that belong to trees
consisting of more than one star by £, and denote the index
set of all the stars in F by Z. We are now ready to present the
purging transformation. As before, it is given in terms of the
distance-to-the-goal function ~y and the implicit representation
of the stars’ boundary 3; for i € T.

Definition 3: The purging transformation fn is a linear
combination of translated scalings T that range over the leaves
i€ L

2 saTa(g) + Y s:Til9)
€L
where sy = 1 — 3, 5, and the switches s5;(g,\) have
the same structure as before, except the omitted products
appearing in the switches, which now become

H Br H Br | - Bp(i)'

keZ—{i,p(i)} keL—{i}

B; & a7

18The approximation is with respect to the Hausdorff metric, defined on the
class of all compact subsets of E™ [44]. Unfortunately, and characteristically
of this metric, an approximating obstacle does not necessarily contain the -
original obstacle, thus limiting its practical use.
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Fig. 9. The various values of the switch s;.

It is worth contrasting the intuition underlying this con-
struction with that of the simpler star-world to sphere-world
transformation of Section III-A. There are two essential com-
plications. First, the switches s; must be modified to account
for the new situation that several different translated scalings
T; must operate on different portions—the distinct leaves— of
the same connected boundary—the ith tree of stars. Second,
the translated scalings 7; are now designed to bring the
exposed portion of a leaf’s boundary into correspondence with
the portion of the parent’s boundary that it encloses rather than
a simple sphere.

As shown in Fig. 9, each s; attains the value of unity on
the ith leaf’s boundary, becomes zero on the boundary of
every other star except its parent, and varies smoothly between
the two in the interior of . Note that whenever s; = 0
for some ¢ € L, the transformation f, becomes the identity
map. Since we would like f) to be the identity map on the
boundary of the parent stars, it is desirable that s; be zero
on the boundary of the ith parent. This parent, however, is
connected to the ith leaf on whose boundary the switch s; is
identically unity. This apparent contradiction is resolved by
distinguishing a “collar” portion within the parent’s boundary
in a small neighborhood about the ith leaf via the special
function Bp(i) (note, according to the definition of a simple tree
in Section III-B-2, that no other leaf intersects a sufficiently
small collar).

Specifically, Bp(i) is the implicit representation of the region
obtained by intersecting the ith parent and the complement of
a “thickened” version of its child (the maximal amount of
thickening is governed by a geometric constant that is part
of the geometric data). The desired ﬁp(i) is easily constructed
using Zenkin’s formulas and is given in Appendix II. Thus,
Bp) effectively represents a new “obstacle” formed by re-
moving from the parent a thickened version of its child. Since
Bp(i) is zero exactly on the boundary of this region and is
positive elsewhere in F (and, in particular, on the ith collar),
the switch s; of (17) becomes zero on the boundary of the
ith parent excluding the collar and attains the value unity on
the ith leaf. On the collar itself, which lies within the parent’s
boundary, s; varies smoothly between unity on the outer rim
and zero on the inner rim—the “seam” between the leaf and
its parent (see Fig. 9).

It should now be clear that the purging transformation
exactly matches T; on the boundary of each leaf, exactly
matches the identity transformation on the boundary of all
the nonleaf stars (excluding a collar around each parent-leaf
seam) and at the goal point ¢4, and varies smoothly between
zero and unity on the interior of F. The behavior of f) on the
collars will become clear from a discussion of the component
transformations 7.

The ith translated scaling 7; maps the ith leaf’s boundary
onto a portion of its parent’s boundary. Namely, 7; scales
the rays starting at the leaf’s center point ¢; and crossing the
leaf’s boundary at points ¢ by the scaling factor v;(g).!"> On
the collar surrounding the ith parent-leaf seam, the switch
s; varies between zero and unity. Consequently, f, varies
between the identity map on the collar’s outer rim and the
translated scaling 7; on the inner rim, which is the seam itself.
Inspection of v; shows that T; matches the identity map on the
collar. Thus, fy reduces to the identity transformation over
the entire collar region, and consequently it is the identity
transformation over the entire boundary of the parent, as
desired.

2) The Purging Transformation Yields a Navigation Func-
tion: We conclude this section with a statement of the theorem
asserting the correctness of fy. First there is a technical detail
to be clarified. In general, the smoothness of the navigation
function is sufficient to guarantee that the resulting feedback
control law (2) will be bounded, as required by the practical
torque limits of the robot’s actuators. Yet the construction
presented here is merely continuous at the obstacles’ sharp
corners C as revealed by inspecting the scaling factors v; and
the functions BP(I) (see Appendix II). We present here this
less desirable construction since it is simpler than its smooth
version. For this situation, however, one must explicitly verify
that the Jacobian of f) is bounded on F because this would
imply the boundedness of the gradient of the resulting navi-
gation function . This fact is, therefore, explicitly stated in
the following theorem:

Theorem 1 (from [37]): For any (simple and quadratic) forest
of stars F, there exists a positive constant A > 0 such that
if A > A then the purging transformation fy is a one-to-
one function that maps F onto its purged version F and is
a diffeomorphism away from the obstacles’ sharp corners C.
Moreover, the Jacobian matrix of fy is bounded on F — C,
provided that the gradient of the obstacle functions V3; for
i € 7 is bounded on F - C.

The proof of correctness actually constructs a formula for
A in terms of g4 and the geometric data (see Appendix III).
To summarize, the mapping of the forest of stars F onto its
model star world is achieved by successively purging the trees
in F. Each purging stage yields a forest of smaller depth,
and this process ends when each tree has only its root left,
which is a star. Since it was already shown how to construct a
navigation function on star worlds, the problem of constructing
a navigation function on F is solved. This is illustrated in the
next section.

The conceptual distinctions between the sphere-based scaling v; (see
(13)) and the more general version required here are slight enough that the
technically involved redefinition is relegated to Appendix II.
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IV. IMPLEMENTATION

This section discusses implementation issues concerning the
navigation functions on the forest of stars: their computa-
tional complexity and several observations drawn from their
numerical simulation.

A. Computational Complexity

The computation involved has two parts. First, when pre-
sented with the geometric data describing the forest F, a
navigation function is constructed on F according to the
recipe

p=¢ohrofago - fa

where ¢ is a navigation function on the corresponding Eu-
clidean sphere world M, hy maps the star world whose
obstacles are the roots of the trees in F onto M, and f,,
fori = 1,---,d are successive purging transformations. The
construction of ¢ involves the choice of d + 2 parameters for
the d + 2 functions comprising . The computational cost of
this part is shown in [35] to be bounded by

10M2n + 15M? + 25d|T| + |Z|n®

where M is the number of tree-like obstacles, |Z| the total
number of star obstacles, d the depth of the forest, and n
. the dimension of the ambient Euclidean space. It is important
to note that this count does not include the computation of
the various data terms (see Appendix III). In the simulations
described below, we directly specify the obstacle functions and
adjust the d + 2 parameters to be “sufficiently high” without
ever computing the various geometric constants.
Second, the controller has to compute Vi

Vo =V(gohyofa, 0 fx)
1t is shown in [35] that this computation is bounded by

5d|Z] + 15|Z|n® + 5dn® + 5d Y (#B; + #V5;)
JET

where #(03;) and #(V ;) are “place holders” for the compu-
tational cost of 8; and V3;. These terms are not completely
unknown: each obstacle function is obtained from a Boolean
combination of m linear and quadratic inequalities. It is shown
in [35] that these can be effectively arranged in a recursive
form so that their computation is linear in m.

As a concrete time measure, the time to evaluate Vi along
the gradient trajectories depicted on the trivial example of
Fig. 10 (that involves one coordinate transformation) is 4 ms
on a DEC5000 machine. Roughly speaking, the time required
for more complicated examples grows linearly in the number
of stars comprising the tree obstacles |Z| and linearly in the
number of coordinate transformations d required to obtain the
corresponding model Euclidean sphere world.

(18)

B. Simulation Studies

Fig. 11 depicts a forest of stars resembling a building floor
plan. There are three internal tree-like obstacles, and the depth
of the deepest tree is d = 4. The purging transformation

—

obstacle

Fig. 10. The phenomenon of disappearing valleys. The valleys are clearly
depicted for low parameter values (left) but disappear as the parameter values
increase (right).

f», is applied d times until a space whose obstacles are the
roots of the original trees is obtained. This space is a star
world, and the previously constructed star-world to sphere-
world transformation is applied to obtain the corresponding
model sphere world M. Thus, the sequence of transformations
is
SRR RN LTI

The figure depicts each of the intermediate spaces as well as
the level lines of the navigation function as it is “pulled back”
via these spaces. The destination point is chosen arbitrarily
at the origin, and the level lines shown vary between zero
(at gg) and unity (on the boundary). The parameter of the
original navigation function on M is chosen sufficiently high
to eliminate spurious local minima, according to [25, Theorem
1]. The parameters in the transformations f and fx, for
i=1,---,4 are chosen sufficiently high so that no new local
minima appear, according to [38, Theorem 1] and Theorem 1
here. Thus, there is a unique minimum at gq and one saddle
point near each (internal) tree-like obstacle. As we have shown
in Section II-A, one cannot do better than this using smooth
vector fields.

The simulations, while corroborating the theory, reveal
certain numerical difficulties. The level lines clearly depict
a unique minimum at ¢4. But, when the various “valleys”
approach the obstacles, they are so close to the boundary that
they can be seen again only on the far side of each obstacle, as
portrayed in Fig. 10. We have found from further numerical
experimentation that such situations—when the valleys hug
the boundaries too tightly—lead to gradient vector fields that
vary too abruptly to be implemented in a practical setting. The
phenomenon becomes even more acute when the parameters’
values increases. Of course, the theory requires in general that
these parameters be increased to avoid spurious local minima.

To understand this behavior, consider the purging transfor-
mation

A=Y sie Vi@ + (1 - sig, A))id(q).
i€l i€l

The effect of increasing the parameter A is to make the

switches s; vanish more rapidly away from the obstacles’

boundary, rendering the transformation essentially the identity

mapping. Thus, all the “interesting” features are confined to

small neighborhoods about the obstacles’ boundaries.
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Fig. 11. Planar forest of stars with three internal tree-like obstacles (bottom
right), its purged versions, and its model sphere world (top left).

In Fig. 12 we have experimented with various intuitive
numerical remedies for the problem of disappearing valleys.
Additional parameters introduced in the switches s; make their
value close to unity in a neighborhood about the boundaries
and only then decrease to zero. Intuitively, this slows the
transition of the purging transformation to the identity map,
and consequently the valleys move away from the obstacles’
boundary. Fig. 13 depicts the enlarged image of some inter-
esting regions in 7, demonstrating the “reappearance” of the
valleys.

It becomes clear from these simulations that the practicabil-
ity of this construction depends on the development of some
control mechanism for the location of the valleys. This is the
subject of research now in progress.

V. CONCLUSION

This paper motivates and defines formally navigation func-
tions, a new class of artificial potential functions that simul-
taneously solve the two principal aspects of the robot motion
planning and control problems. First, navigation functions are
correct with respect to the path-planning problem. Namely,
almost all the negative-gradient trajectories converge to the
desired destination ¢4, and none can leave the free space F.
In general, global convergence with smooth vector fields is

T T
Ladme: Yaanal

Fig. 12. Result of experimentation on the space of Fig. 10.

precluded by the topology of F. Second, navigation functions
provide automatically a controller that implements the path
correctly. Namely, their gradient vector field gives rise to
a bounded-torque feedback control law that guarantees that
the closed-loop robot system will approach g4 without hitting
obstacles. Moreover, there is an explicitly specified set of
initial positions and velocities, including any initial position
on the boundary of F with zero velocity, for which the robot
trajectories exhibit the desired behavior.

The chief contribution is a detailed “recipe” for constructing
navigation functions on almost any generalized n-dimensional
sphere world whose geometry is a priori known. This results
in closed-form expressions that depend upon g4, the geometric
data, as well as certain free parameters that affect the shape
of the potential function. Lower bounds on the parameters are
computed in terms of the geometric data, guaranteeing that,
for suitable values, the constructions are indeed navigation
functions.

These results provide for the first time a smooth bounded
potential-function-based robot navigation algorithm that is
provably correct. But, although smooth navigation functions
always exist and their underlying control theory is completely
general, the generalized sphere worlds treated here constitute
a very small portion of the general case of an n-link robot
navigating between arbitrarily shaped obstacles. Some impor-
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low region 2

obstacle

L

region 3

Fig. 13. The enlarged image of some regions.

tant situations can be modeled in practice with this machinery.
For example, it can be shown that the free configuration space
of a disk-shaped robot moving in the plane amidst arbitrary
shapes is a collection of generalized sphere worlds (excluding
pathological cases). Our methods provide a means of building
up a solution for progressively more accurate representations
of such sphere worlds. Yet, ideally, one would like to construct
navigation functions for progressively more realistic robotic
situations in general.

Under the naive assumptions of Section I, a program of
research aimed at this goal should take the following hierarchy
of difficulty into consideration: 1) a point-mass robot navigat-
ing amidst arbitrary shapes; 2) a rigid body navigating in the
same space; 3) an n-link robot in the same space; 4) several
robots moving in a coordinated motion amidst obstacles. In
fact, there has been some progress since these results were
obtained in pursuing such problems [36], [23]. However, our
naive assumptions—stationary obstacles, fixed destination,
perfect information, ideal sensors, and ideal bounded-torque
actuators—are themselves unrealistic, and their relaxation is
imperative in the long run. The questions raised by these
possibilities are discussed in brief below.

Consider first the matter of perfect information. The most

computationally problematic aspect of this requirement arises
from the present need to compute obstacle functions as closed-
form symbolic expressions, extracting information about the
connectivity of the resulting free space, and computing the
constants that determine the navigation function parameters
along the way. Beyond the present activity in generating
implicit representations for obstacles there is some hope that
“adaptive” versions of our ideas might be pursued successfully.
For example, it would be preferable (both computationally
and philosophically) to leave the ultimate choice of the lower
bound on the critical free parameters that enter our construc-
tions to the wisdom of an automatic adjustment rule that raises
or lowers their magnitude until the destination is reached.
Ongoing work in this area suggest that some provably correct
means of doing so might be forthcoming. More radically,
it might be possible to replace known obstacle functions
themselves with known parameterized families whose specific
parameter values are adjusted as progressively more about the
geometric details of the configuration space is learned in the
course of navigation. Eventually, a proper reliance upon the
distance function as measured by a suitably clever sensory
device might substitute in large measure for computation.
This last prospect of gathering information effectively about
a stationary world “on the fly” raises the even more attractive
possibility of treating worlds in motion as well. However, all of
these remarks represent mere speculation at the present time.

APPENDIX |
AN EXTENDED DEFINITION OF THE NAVIGATION FUNCTIONS

The class of navigation functions for configuration spaces
with semianalytic obstacles must be extended from the follow-
ing reason. Consider a free configuration space F resulting
from the removal of semianalytic obstacles from the con-
figuration space. According to the admissibility property,
the boundary of F must be a level set of the navigation
function . But, the boundary of a semianalytic obstacle is
nondifferentiable since its tangent space at the corner points is
not well defined. Thus, on the set of sharp corners ¢ must be
either nondifferentiable or have a vanishing gradient. The latter
option must be adopted since, in general, ¢ must be at least of
class C® (twice continuously differentiable) to guarantee the
classical existence and uniqueness results for the trajectories
of the closed-loop robot system. It follows that the gradient
of o must vanish at the corner points, making the corners
degenerate local maxima. This, in turn, implies that » cannot
be a Morse function on the entirety of F, as summarized in
the following definition:

Definition 4 (Definition 1 Revised): Let F be a free con-
figuration space resulting from the removal of semianalytic
obstacles, and let C be the obstacles’ sharp corners. A map
@ : F — [0,1] is a navigation function if it satisfies Definition
1 with the exception that now ¢ is required to be Morse only
away from the sharp corners on, the set 7 — C.

The fact that ¢ is not required to be Morse on the entirety of
F requires a reconsideration of the underlying control theory.
One must guarantee that the resulting feedback control law still
guides the physical robot correctly. Although this is beyond



516 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 8, NO. 5, OCTOBER 1992

—7(g:)+xi(q)
A 8:(q)+x:i(q)
vi(q) =

(g=9:)" Qi (pi—ai)++/wi(a) +sgn( D’ 7 ) /6 (9)+i(a)

if P; is planar
(B2)
if P; is quadratic

(9-4:)" Qg—g:)

the scope of this paper, we believe that a simple energy-
conservation argument ensures the physical viability of this
extended class.

The invariance of navigation properties under coordinate
transformation must also be restated for the following reason.
It was previously noted that navigation functions are invariant
under diffeomorphic transformations. Yet, such transforma-
tions cannot be constructed on a space whose boundary has
kinks. Instead, the transformation must be allowed to have a
singular Jacobian at the sharp corners. The extended invariance
property can be stated as follows. Let M and F be two free
configuration spaces. Let ¢ : M — [0,1] be a navigation
function on M, and let the smooth map f : 7 — M be both
one-to-one and onto, and be a diffeomorphism away from C;
then ¢ = ¢ o h is a navigation function on F.

APPENDIX [I
SOME DETAILS CONCERNING THE FOREST OF STARS

This appendix describes terms that appear in the definition
of the purging transformation fy, whose definition was omitted
in order to simplify the presentation.

Let us first describe the function Bp(i) appearing in the
switches. Using Zenkin’s formula [46], this function is defined
by

Bo(i (@) 2 Bogiy (@) + (2E; — Bi(q))
+ /B2 (@) + 2Ei - i(a)”

(BD)

where E; is a geometric constant whose exact nature is
discussed in [35]. The function 3,;) corresponds to a new “ob-
stacle,” obtained by excluding from the ith parent (described
by Bp(:)) a 2E;-thickened version of the ¢th leaf (described
by B,(i), as illustrated in Fig. 14. By construction, the interior
of the parent is disjoint from F, and since Bp(i) is negative
only inside the parent, we have that Bp(i) > 0 on F. On the
boundary of the parent we have that 3,(;) = 0. Consequently,
Bp(,-) is strictly positive on the “collar” region surrounding the
ith leaf and contained in the boundary of its parent.

The other term in the purging transformation whose defini-
tion was omitted is the ¢th star-set scaling factor v;, appearing
in the translated scaling map 7;. Consider the ith leaf for
some 7 € L. By construction it is “connected” to its parent via
a unique patch. This patch, denoted by P;, is contained in the
zero level set of a known polynomial:

miq) 2 (q—pi) - vi — ci, if P; is planar
‘ (- Pi)TQi(q —p;) — 1 if P; is quadratic

where v; is a nonzero n vector, and Q; is an n X n positive
definite (symmetric) matrix.

ANNNN

parent

Fig. 14. The set described by Bp(i)'

Remark: This paper does not treat the whole list of
quadratic shapes. Augmenting the construction presented
below with other quadratic shapes—for instance, cylinders
and cones—requires more tedious algebra but resembles the
ellipsoidal and planar shapes discussed here.

The star-set deforming factors are the real-valued functions
defined on F by (B2), which is given at the top of this page.
As we have already said, the purpose of ;(g) is to scale the
rays starting at the leaf’s center point g; such that points ¢ on
the leaf’s boundary are mapped to points where the rays cross
the patch. See [35] for details concerning the other terms in
(B2).

APPENDIX [II
THE REQUIRED GEOMETRIC DATA

In this appendix we describe the geometric data required in
the construction of the navigation functions. We shall describe
the data required for the forests of stars, since this class
includes the other ones—the Euclidean sphere worlds and the
star worlds—as special subclasses.

The required data can be divided into two groups: The
first is symbolic in nature and describes the geometry of the
free configuration space. It includes the adjacency graph of
the stars in each tree-of-stars obstacle, the obstacle functions
for the various stars, and the stars’ centers. The second
is a list of geometric constants used in the determination
of theoretically correct parameter values for the navigation
functions.?’ In principle, these constants can be extracted
from the obstacle functions, but we have not developed any
general procedures to compute them. In practice, we have
obtained navigation functions simply by increasing the various
parameters to “sufficiently high” values. Moreover, since the

20 An exception is the constant E; appearing in the construction itself (see

(B1)). It is currently not clear whether the presence of this constant in the
construction is actually necessary.
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obstacle functions in the forests of stars are constructed from
planar and quadratic polynomials, explicit formulas giving
bounds (exact values are never required) on these features
ought to be much easier to obtain.

The list of these constants is rather lengthy, so let us first
describe the constants required for computing the parameter
of the navigation function on the star worlds. These constants
are a subset of those required for the forests of stars. First, for
each star obstacle, a lower bound on its minimal “radius” —the
minimal distance from its center ¢; to its boundary (upper
bound on the radius of the zeroth obstacle). Second, upper
bounds on the obstacle functions and on the distance-to-the-
goal function ~y, denoted by {Ei}y" and Eg, guaranteeing
that the “thickened boundaries” of any two stars still do not
overlap

{q:Bi(a) < Ea}(){a: Bila) < En} =0

for i # J. (C1)

Nor do they overlap an E,4 disk about the destination

{q: Bi(q) < Ea}{{a:7(a) < Ea} = 0.

Third, for each obstacle function 3;, a pair of positive constants
(A, E;2) satisfying the inner-product condition of (11)

VEi(a)-(g—qi)> A VgeF

such that 8;(q) < Eia. (C2)

Last, we require for each obstacle function 8; knowledge of
the following upper bounds:

max (B} and - max (VA

Additionally, there is a list of three constants required
exclusively for the forest of stars, for instance, E; used to
construct the parent-leaf collars in the switches (see (B1)).
The details of these constants are rather involved and can be
found in [35].
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