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Epigenetic Regulation of Progenitor Cell Commitment by Hdac3

Abstract
Tissue-specific progenitor cells emerge during development to expand and differentiate into the multiple cell
lineages that populate the embryo. Appropriate differentiation of these precursor cells requires coordinated
expression of numerous lineage-specific genes and repression of alternative fate programs. Epigenetic
regulators are enzymes capable of activating or silencing large genomic domains by altering histone
modifications, DNA methylation status and chromatin organization. Although differentiating progenitor cells
undergo epigenetic changes and epigenetic factors are required for appropriate cell behavior, the precise
mechanism of how these proteins influence cell fate remains unclear. In this dissertation, I examine the role of
histone deacetylase 3 in control of neural crest and cardiac progenitor cell commitment. Using Cre-mediated
genetic deletion, I generated tissue-specific mouse models to study the function of Hdac3 in both neural crest
and cardiac cells. These studies revealed a critical role for Hdac3 in maintaining neural crest proliferation and
cell survival through regulation of a core network of factors required for craniofacial development. In cardiac
progenitors, Hdac3 maintains appropriate differentiation into the cardiomyocyte, smooth muscle and
endothelial cell lineages that make up the developed heart. Hdac3 represses a cardiomyocyte-specific gene
program and prevents precocious differentiation of progenitors into the myocyte lineage. Surprisingly, this
protein does not require deacetylase activity to repress myocyte commitment, and instead serves as a tether to
retain myocyte-specific genomic loci at the nuclear periphery. This novel mechanism of gene repression and
lineage specification highlights the role that nuclear architecture plays in controlling transcriptional activity
and progenitor cell behavior.
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ABSTRACT 
 

EPIGENETIC REGULATION OF PROGENITOR CELL COMMITMENT  BY HDAC3 

Mudit Gupta 

Jonathan A. Epstein 

 

Tissue-specific progenitor cells emerge during development to expand and 

differentiate into the multiple cell lineages that populate the embryo. Appropriate 

differentiation of these precursor cells requires coordinated expression of numerous 

lineage-specific genes and repression of alternative fate programs. Epigenetic regulators 

are enzymes capable of activating or silencing large genomic domains by altering 

histone modifications, DNA methylation status and chromatin organization. Although 

differentiating progenitor cells undergo epigenetic changes and epigenetic factors are 

required for appropriate cell behavior, the precise mechanism of how these proteins 

influence cell fate remains unclear. In this dissertation, I examine the role of histone 

deacetylase 3 in control of neural crest and cardiac progenitor cell commitment. Using 

Cre-mediated genetic deletion, I generated tissue-specific mouse models to study the 

function of Hdac3 in both neural crest and cardiac cells. These studies revealed a critical 

role for Hdac3 in maintaining neural crest proliferation and cell survival through 

regulation of a core network of factors required for craniofacial development. In cardiac 

progenitors, Hdac3 maintains appropriate differentiation into the cardiomyocyte, smooth 

muscle and endothelial cell lineages that make up the developed heart. Hdac3 

represses a cardiomyocyte-specific gene program and prevents precocious 

differentiation of progenitors into the myocyte lineage. Surprisingly, this protein does not 
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require deacetylase activity to repress myocyte commitment, and instead serves as a 

tether to retain myocyte-specific genomic loci at the nuclear periphery. This novel 

mechanism of gene repression and lineage specification highlights the role that nuclear 

architecture plays in controlling transcriptional activity and progenitor cell behavior. 
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Chapter 1. Introduction 

 

Summary 

 

The cells that make up a developing organism are called upon to proliferate, 

apoptose, differentiate or remain uncommitted in a precise and coordinated fashion. To 

undergo such dramatic changes, cells must be able to activate and silence broad sets of 

genes in a synchronized manner. Epigenetics has emerged as a powerful system of 

regulation that enables control of gene expression without changing the DNA itself. In 

this chapter, I will summarize how these precursor cells were first defined and studied, 

review known regulators of cell behavior and introduce nuclear architecture as a novel 

mechanism of epigenetic regulation during development. A portion of this introduction 

has been adapted from a chapter written by Jonathan Epstein, Rajan Jain and me for a 

textbook on congenital heart disease, “Cardiac Malformation” by Rickert-Sperling, Kelly 

and Driscoll which is, as yet, unpublished. The portions included here were primarily 

written by me. 
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Progenitor cell biology 

 

Patterning of a multicellular organism from a single, totipotent cell requires a 

series of commitment steps as the original cell expands and differentiates into the 

numerous tissues that make up the body. In mammalian development, development 

begins with fertilization of the egg, formation of the zygote and a series of cleavage 

events generating the blastocyst. Each blastocyst is a multi-layered structure made up of 

an inner cell mass surrounded by the trophoblast layer. The trophoblast eventually forms 

extraembryonic structures including the placenta. The inner cell mass, however, is made 

up of cells that will give rise to the entirety of the embryo (Hogan et al., 1986). The cells 

of the inner cell mass can be isolated and grown in culture, yielding embryonic stem 

cells (ESCs). A stem cell is defined as a clonal precursor with ability to both self-renew 

and differentiate into more committed progeny. For example, pluripotent ESCs are able 

to self-renew, forming more embryonic stem cells, and differentiate into every cell type 

found in the embryo. 

 

In contrast to stem cells, the term progenitor has entered common use to refer to 

a more differentiated precursor cell. A progenitor cell is defined as a clonal precursor 

with a limited set of progeny and no capacity for self-renewal. As development 

progresses from the blastocyst stage to specification of the three germ layers � 

endoderm, ectoderm and mesoderm � to organogenesis, multipotent somatic stem cells 

are retrieved to expand and differentiate into tissue-specific progenitor cells that give rise 

to more limited sets of progeny that comprise various tissues. These fate decisions 
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require precise regulation at each step to ensure cell expansion and differentiation 

occurs normally. Proper understanding of the regulatory mechanisms behind progenitor 

cell behavior is essential for both identifying the causes of congenital defects and 

harnessing stem and progenitor cells for treatment of disease. A hallmark of progenitor 

cell differentiation is altered expression of a wide program of lineage-specific genes. For 

example, differentiation of a hematopoietic stem cell into a common myeloid progenitor 

requires upregulation of dozens of myeloid-specific genes and silencing of a lymphoid-

specific gene program, repressing the alternative fate (Weissman et al., 2001). This 

simultaneous gene activation and gene silencing requires precise coordination. In this 

thesis, I focus on an epigenetic modifier, Hdac3, which functions as a regulator of 

progenitor cell fate by synchronizing expression of broad gene programs in both neural 

crest and cardiac progenitors. 

 

Hematopoietic progenitors 

 

The best-studied precursor cell is the hematopoietic stem cell (HSC). Through 

classical studies in mice, Till and McCulloch injected single precursor cells derived from 

bone marrow into lethally irradiated mice and observed colony formation in the spleen 

proportional to the number of injected cells (Till and McCulloch, 1961). This seemingly 

simple observation was the first direct evidence for the existence of a stem cell with the 

capacity to self-renew, repopulate a depleted animal and differentiate into clones of 

progeny. From this early observation, our understanding of hematopoietic development 

grew as new techniques for identification of specific cell populations with antibodies to 
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surface markers, isolation of marked cells with high-speed cell sorting and assays to 

promote derivation of every hematopoietic lineage (reviewed by Weissman et al., 2001). 

Utilizing these technologies to characterize the hematopoietic stem cell, the Weissman 

group identified a population of multipotent progenitors (MPPs) downstream of HSCs 

without the capacity for self-renewal and with a more limited variety of progeny (Morrison 

et al., 1997). From the appearance of this first progenitor downstream of HSCs, the 

hematopoietic hierarchy branches into myeloid and lymphoid lineages with the common 

myeloid progenitor and common lymphocyte progenitor cells. These two cell types give 

rise to even more restricted sets of progeny, express different gene programs and can 

be isolated individually based on different surface markers. From this point in the 

hierarchy, subsequent progenitor cells become even more restricted to differentiating 

into a limited number of cell types and still without the capacity to self-renew (Weissman 

et al., 2001). Taken together, several decades of classical lineage tracing and clonal 

analysis studies have defined a hematopoietic hierarchy that serves as the template for 

progenitor cell maturation pathways in a variety of embryonic tissues (Figure 1.1).  

 

Neural crest  

 

Another cell type that exemplifies progenitor cell behavior is the neural crest. The 

neural crest is often described as the “fourth germ layer,” giving rise to a wide variety of 

lineages and forming a significant portion of the vertebrate embryo. First identified by 

Wilhelm His in 1868, the neural crest was originally termed Zwischenstrang, the 

intermediate cord, for its physical proximity to the developing neural tube and epidermal 
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ectoderm (reviewed by Achilleos and Trainor, 2012; Crane and Trainor, 2006). Arthur 

Milnes Marshall later named this structure the “neural crest,” as it forms upon the fusion 

of the two neural ridges dorsal to the “neural canal.”  

 

This remarkable collection of multipotent cells has the ability to differentiate into a 

broad range of lineages including neurons of the peripheral nervous system, secretory 

cells of the adrenal medulla, smooth muscle, bone and melanocytes (reviewed by Dupin 

and Sommer, 2012). Once neural crest cells were identified and isolated in the late 

nineteenth and early twentieth centuries, classical fate mapping studies were required to 

determine the capacity of these cells. In an early form of lineage tracing, Le Douarin and 

colleagues capitalized on the morphological differences between chick and quail cells to 

analyze both neural crest differentiation and sensitivity to environmental cues (Le 

Douarin et al., 1975). Utilizing a chick-quail chimera system, the authors began by 

ablating a portion of the trunk neural tube in chick embryos early in development, before 

the onset of neural crest migration. Next, a different segment of neural tube from a 

stage-matched quail embryo was grafted onto the chick host and cells were allowed to 

migrate from the quail donor into the host tissue. Histological analysis revealed that 

neural crest cells from the heterotopic quail graft were able to migrate into the chick 

embryo, appropriately differentiate into cholinergic neurons and engraft.  

 

This breakthrough study revealed that quail neural crest cells from a domain that 

normally becomes adrenergic neurons have the capacity to differentiate into cholinergic 

neurons if placed in the appropriate environment. In vitro studies of cultured chick neural 
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crest cells revealed that this population gives rise to both melanocytes and adrenergic 

cells (Bronner-Fraser et al., 1980). Further studies of isolated, single neural crest cells 

confirmed that a single progenitor cell has the potential to give rise to both neuronal and 

melanocyte cells (Bronner-Fraser et al., 1980). With the advent of vital cell dyes, in vivo 

lineage tracing studies of single cells became possible. Labeling of single premigratory 

or migrating neural crest cells revealed that at both stages, individual neural crest cells 

have the potential to become both neuronal and non-neural cell types (Bronner-Fraser 

and Fraser, 1989, 1988). The majority of cranial neural crest cells, for example, give rise 

to neuronal, glia and melanocyte lineages. This varied, yet limited differentiation capacity 

is consistent with neural crest cells behaving primarily as progenitors, more restricted 

than pluripotent stem cell populations.  

 

As noted in the earliest observations of neural crest cells by His and Marshall, 

the neural crest forms at the interface between surface ectoderm and the dorsal neural 

plate. Once the two halves of the neural plate curl and fuse at the midline to form the 

neural tube, this neural plate border comes in direct contact with the surface ectoderm, 

initiating a series of cell-cell signaling events that promote induction of the neural crest. 

One of the critical signaling cues of this process is establishment of a BMP gradient 

(Achilleos and Trainor, 2012). BMP inhibitors secreted by the underlying mesoderm help 

form zones of low, medium and high BMP signaling that promote induction of the neural 

plate, neural crest and surface ectoderm, respectively (Marchant et al., 1998).  
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After induction and specification at the dorsal neural tube, neural crest cells 

undergo an epithelial-to-mesenchymal transition (EMT) to delaminate and begin 

migration throughout the embryo. The EMT process involves reorganization of the cell 

cytoskeleton, dissolution of cell junctions, remodeling of extracellular matrix components 

and activation of several signaling pathways and transcription factors (Achilleos and 

Trainor, 2012; Crane and Trainor, 2006). For example, Snail genes are expressed 

during EMT and serve as markers of neural crest cells undergoing delamination. This 

gene family functions as transcriptional repressors and Snail expression during EMT 

downregulates Cadherin genes, depleting cell junctions and allowing delamination and 

migration to occur (Taneyhill et al., 2007). Once the cranial, cardiac, vagal and trunk 

neural crest cells begin to migrate, they follow well-mapped routes to various 

destinations at each axial level to differentiate into the appropriate tissue types. To 

navigate these migration routes, neural crest cells express a series of factors to remodel 

the extracellular matrix, maintain appropriate cell cycling and respond to guidance cues 

(Achilleos and Trainor, 2012; Sauka-Spengler and Bronner-Fraser, 2008). Matrix 

metalloproteases including MMP2 permit matrix breakdown, cyclin D1 and D2 are 

upregulated during delamination to promote proliferation of migrating neural crest and 

expression of Ephrin receptors ensures appropriate guidance of cardiac crest to the 

aortic arch arteries.  

 

At each stage of neural crest induction, migration and differentiation, a series of 

transcriptional programs are activated or repressed to ensure proper cell function. 

Molecular studies in several vertebrate models have identified components of these 

gene regulatory networks. Despite outlining the transcription factors and target genes 
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within these networks, our understanding of the upstream activators of the transcriptional 

programs and the mechanisms for maintaining their coordinated expression remains 

incomplete. Given the number of developmental defects related to neural crest-derived 

structures including craniofacial abnormalities and congenital heart diseases, elucidating 

the mechanisms controlling neural crest behavior is of critical importance.  

 

Cardiac progenitors  

 

A subtype of neural crest cells, the cardiac neural crest, arises from the otic 

placode through the third somite to give rise to elements of the cardiac outflow tract. 

Classical work by Kirby revealed that avian cardiac neural crest cells migrate to the 

developing aortic arch arteries to differentiate into smooth muscle and also contribute to 

the aorticopulmonary septum (Creazzo et al., 1998; Kirby et al., 1983). Aside from the 

outflow tract, the majority of the working myocardium arises from several pools of 

cardiac progenitor cells (CPC). The heart is the first organ to form in the embryo, with a 

detectable heartbeat present in mice by embryonic day 9. Early characterization of 

cardiac progenitor cells was performed in chick embryos employing several techniques 

also used to investigate the neural crest. In the late 1930s, Mary Rawles cultured 

explants from several regions of early chick embryos to map embryonic regions with the 

potential to form beating tissue ex vivo (reviewed by Eisenberg et al., 2004). Later, 

transplant experiments by Stalsberg and DeHaan utilized radiolabeled tissue fragments 

from chick donors to trace migration and engraftment of labeled cells in recipient 

embryos (Stalsberg and DeHaan, 1969). More recently, linage tracing with vital cell dyes 



9 

 

has enabled tracking of individual CPCs and monitoring of differentiation into the various 

tissue types found in the heart (Redkar et al., 2001).  

 

These studies used very different methodologies to generate nearly identical fate 

maps of cardiac progenitor cells. To summarize the findings of these groups and others, 

committed cardiac precursor cells arise from the primitive streak mesoderm. These 

mesodermal cells initially express pan-mesoderm marker Brachyury which is replaced 

by cardiac-specific Mesp1 expression as the mesoderm begins to commit to the cardiac 

lineage (reviewed by Wu et al., 2008). These Mesp1+ precursor cells migrate away from 

the primitive streak, expanding and condensing into the anterior and lateral plate 

mesoderm on either side of the midline. Once these pockets of CPCs expand medially 

and fuse, they are known as the cardiac crescent and begin to express cardiac-specific 

transcription factor Nkx2.5. This population of cardiac progenitor cells is known as the 

first heart field (FHF), expresses markers Tbx5, Mlc2a and Hcn4 and goes on to 

populate the left ventricle and both atria (Liang et al., 2013; Später et al., 2013). 

Following specification of the FHF, a second wave of progenitors known as the second 

heart field (SHF) emerges posterior to the cardiac crescent, expresses markers Isl1 and 

Mef2c-AHF and contributes to the right ventricle, atria and outflow tract (Cai et al., 2003; 

Verzi et al., 2005).  

 

The cardiac progenitors of both the FHF and SHF are thought to be multipotent, 

with the ability to differentiate into cardiomyocytes, smooth muscle and endothelial cells. 

In vitro studies with both embryonic stem cell-derived and explanted tissue have 
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demonstrated that these CPCs contribute to the three cardiac lineages at both the 

population and single cell level (Kattman et al., 2006, 2011; Moretti et al., 2006, 2010; 

Wu et al., 2006). ESC-derived cardiac progenitor cells express surface markers Flk1 and 

PDGFRα, growth factor receptors, enabling their isolation and clonal analysis. Single cell 

culture of Flk1+PDGFRα+ cells revealed that each individual progenitor cell has the 

capacity to form cardiomyocytes, smooth muscle and endothelial cells (Kattman et al., 

2006). Similar findings were seen with isolated Isl1+ and Nkx2.5+ cells (Moretti et al., 

2006; Wu et al., 2006).  

 

In vivo studies of CPC potential and behavior began with early clonal analysis of 

individual fate mapped precursor cells. Pioneering work by Buckingham established the 

presence of multiple heart fields and subpopulations within the cardiac progenitor pool 

with differing developmental commitments (Meilhac et al., 2004a, 2004b). Subsequent 

studies utilizing progenitor-specific Cre alleles confirmed that at the population level, 

FHF and SHF cardiac progenitors have the capacity to differentiate into cardiomyocyte, 

smooth muscle and endothelial lineages in vivo (Liang et al., 2013; Moretti et al., 2006; 

Später et al., 2013; Wu et al., 2006). More recently, inducible, progenitor-specific alleles 

have permitted clonal analysis of individual CPCs. These studies suggest that in vivo, 

single cardiac progenitor cells have a similar ability to differentiate into multiple lineages 

as previously demonstrated in culture (Lescroart et al., 2014; Peng et al., 2013).  

 

Despite significant evidence that cardiac progenitor cells are multipotent and play 

a critical role in populating the embryonic heart, the regulatory mechanisms governing 
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CPC differentiation and lineage commitment remain unclear. In vitro culture of ES-

derived CPCs has enabled identification of individual signaling molecules and 

transcription factors required for appropriate progenitor differentiation (Kattman et al., 

2006, 2011), however the broader control mechanisms of CPC behavior remain to be 

determined. Culture studies have demonstrated that both BMP signaling and Wnt 

inhibition are essential for appropriate commitment to the cardiomyocyte lineage. A 

broad array of cytoskeletal and sarcomeric factors must be expressed while alternative 

fate genes must be silenced for myocyte specification to proceed. Coordinated 

expression of these lineage-specific gene programs is essential to CPC commitment, 

and epigenetic regulatory factors have emerged as potential mediators of this genetic 

synchronization. 

 

Epigenetics  

 

Introduction 

 

Epigenetics is the study of heritable changes to the genome and gene 

expression patterns that are not caused by direct changes to the DNA sequence. 

Examples of these changes include post-translational modifications to DNA-bound 

histone proteins, DNA methylation and remodeling of chromatin architecture. 

Collectively, epigenetic changes are an additional layer of regulation that affects 

transcriptional activity of genes while leaving the DNA sequences unaltered (reviewed by 
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Chang and Bruneau, 2012; Lee and Young, 2013; Li and Reinberg, 2011). Sequence 

variants or mutations affecting enzymes responsible for modifying or sensing epigenetic 

marks have been identified in patients with congenital heart disease (CHD) and small 

molecule inhibitors of epigenetic complexes have shown promise as therapies for adult 

heart diseases (Anand et al., 2013; Zaidi et al., 2013). Additionally, transgenic mice 

harboring mutations or deletions of genes encoding epigenetic enzymes recapitulate 

aspects of human disease (Haberland et al., 2009a; Hurd et al., 2010; Trivedi et al., 

2007).  Taken together, these findings suggest that the evolving field of epigenetics will 

inform our understanding of human disease and offer new therapeutic opportunities. 

 

Coordinated expression of genes coded by the DNA sequence of the genome 

requires precise temporal and spatial interactions between protein factors in the nucleus 

and the DNA. Work over the last half century has revealed that these interactions are 

highly influenced by the manner in which DNA is packaged and organized as chromatin 

(reviewed by Zhou et al., 2011). The basic unit of chromatin is the nucleosome, a 

complex of 147 bases of DNA wound around an octameric core of histone proteins. The 

spacing and number of nucleosomes determines chromatin density, with the DNA within 

highly dense heterochromatin being less accessible to nuclear factors than sequences 

within relaxed, less dense euchromatin. As a result, genes within heterochromatic 

regions tend to be silenced while euchromatic loci are typically active. Clusters of 

nucleosomes are further condensed so that the genome can be efficiently packaged into 

the nucleus.  
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The first epigenetic modification to be identified was methylation of the DNA 

itself. Methylation of cytosine residues is typically associated with transcriptional 

silencing, and a number of enzymes are responsible for adding and removing these 

methyl groups (Smith and Meissner, 2013). Another type of epigenetic modification 

involves post-translational modifications of histone proteins, including methylation and 

acetylation of lysine residues. These modifications modulate the recruitment of additional 

protein complexes that regulate chromatin density and conformation.  A host of “writer” 

and “eraser” enzymes exists to add and remove specific modifications from histone tails, 

and the description of these growing families of enzymes is rapidly evolving. Histone 

methyltransferases and deacetylases are among the most studied of these “writer” and 

“eraser” enzymes, respectively, in the context of cardiac development and disease. 

Covalent modifications of histone proteins are sensed by “reader” proteins that affect 

downstream changes in chromatin in response to changes in epigenetic marks. Included 

in this class of proteins are chromodomain-containing proteins such as CHD7, a member 

of a larger family of ATP-dependent chromatin remodeling complexes. Mutations in the 

gene encoding CHD7 have recently been identified in patients with congenital heart 

disease (Hurd et al., 2010).  

 

Epigenetic changes during cardiac development 

 

The explosion of next generation sequencing technologies coupled with the 

improved efficiency of directed differentiation of embryonic stem cells into cardiac 

lineages has enabled mapping of the landscape of histone modifications over the course 
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of cardiac differentiation. Most prominently, work by the Bruneau and Boyer laboratories 

and the Murry group has shed significant light on the dynamics of gene activation and 

repression during cardiac specification (Paige et al., 2012; Wamstad et al., 2012). By 

taking snapshots at a series of well-defined time points in mouse and human ESC 

differentiation, these groups defined the presence of various histone modifications 

across the genome during cardiogenesis using chromatin-immunoprecipitation coupled 

with massively paralleled sequencing (ChIP-Seq). Specifically they observed unique 

histone modifications marking transcription start sites (H3K4me3), enhancers (H3K4me1 

and H3K27ac) and inactive chromatin (H3K27me3), thus providing an initial “map” of the 

dynamic epigenetic landscape during cardiac development. A theme that emerges from 

these surveys is that genes specific to non-cardiac lineages such as endoderm and 

ectoderm derivatives are rapidly marked by repressive histone modifications, resulting in 

active repression of these lineages. These findings support the hypothesis that cell 

differentiation requires active silencing of alternative lineages. These studies also 

suggest that cardiac-specific enhancers are marked by monomethylation of lysine 4 

(H3K4me1), and further insights will result from integration of the publically available 

databases resulting from this work with ongoing studies.  

 

Histone modifications 

 

Epigenetic studies have focused on understanding how histone proteins undergo 

post-translational modifications, which amino acid residues are subject to these 

modifications and how various combinations of modifications affect gene expression 
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(Chang and Bruneau, 2012; Ohtani and Dimmeler, 2011). Methylation and acetylation 

are two of the most common and well-studied histone modifications. Histones can be 

methylated on a variety of residues and Jumonji domain-containing proteins act as 

demethylases. Histone acetyltransferases (HATs) acetylate lysine residues primarily on 

histone tails and histone deacetylase enzymes (Hdacs) reverse this process. Additional 

forms of histone modification have been described and continue to be discovered, 

though application to development and disease awaits further study. 

 

Histone deacetylase enzymes 

 

Histone deacetylases (Hdacs) remove acetyl groups from lysine residues, 

typically resulting in compaction of chromatin and repression of gene expression. There 

are five classes of Hdac proteins: I, IIa, IIb, III and IV (reviewed by Thiagalingam et al., 

2003).  Class I includes Hdacs 1, 2, 3 and 8 and these enzymes are expressed in most 

tissues. Hdacs 1 and 2 are members of several repressive complexes including Sin3, 

CoREST, NuRD and PRC2. Hdacs 4, 5, 7 and 9 comprise the class IIa subfamily of 

Hdacs. Class IIa Hdacs exhibit minimal deacetylase activity in vivo and in vitro due to 

evolutionary divergence of a critical tyrosine residue within the catalytic pocket. These 

Hdacs are characterized by a highly conserved Mef2-binding domain. In addition, class 

IIa Hdacs act as signal integrators through interactions with 14-3-3 chaperone proteins 

to facilitate shuttling in and out of the nucleus. Class III sirtuins require NAD+ for 

deacetylation activity and have been studied in the context of cardiac hypertrophy. 

Hdac11 is the sole member of class IV Hdacs and is expressed in the heart, however its 
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function remains poorly described. Of particular to our work, Hdac3 regulates cell fate in 

both neural crest and cardiac development (Lewandowski et al., 2014; Singh et al., 

2011a).  

 

Hdac3 

 

Hdac3 is expressed in both the premigratory neural crest and cardiac progenitor 

cells during development. Germline deletion leads to lethality during gastrulation, before 

the neural crest is induced or the heart is formed (Bhaskara et al., 2008). Tissue-specific 

knockouts have provided insight into Hdac3 function in hematopoietic progenitors, neural 

crest and CPCs (Lewandowski et al., 2014; Singh et al., 2011a; Summers et al., 2013). 

Loss of Hdac3 in premigratory neural crest results in embryonic lethality and abnormal 

contribution to the developing outflow tract (Singh et al., 2011a). Neural crest cells 

migrate to developing aortic arch arteries and differentiate into smooth muscle cells, 

ensuring appropriate patterning of the outflow tract. Previous work from the Epstein lab 

demonstrated that loss of Hdac3 results in deficient vascular smooth muscle and 

congenital outflow tract defects including double outlet right ventricle and aortic 

coarctation, due in part to decreased Notch signaling.  

 

CPC-specific deletion of Hdac3 results in embryonic lethality late in gestation and 

ventricular hypoplasia (Lewandowski et al., 2014). Hdac3 acts as a repressor of Tbx5, a 

known driver of cardiogenesis which also plays critical roles in development of the 
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cardiac conduction system and atrial septation (Li et al., 1997; Wamstad et al., 2012). 

Through deacetylation of Tbx5, Hdac3 prevents expression of cardiomyocyte-specific 

genes, promoting a thin myocardial phenotype. Cardiomyocyte-specific deletion of 

Hdac3 during mid-late gestation with the alpha-myosin heavy chain Cre (aMHC-Cre) 

permits survival until 3-4 months of age, when mice succumb to severe cardiac 

hypertrophy and fibrosis (Montgomery et al., 2008). Interestingly, work from the Epstein 

and Lazar labs demonstrated that deleting Hdac3 in postnatal myocardium and skeletal 

muscle with myosin creatine kinase Cre (MCK-Cre) results in a very mild phenotype and 

no lethality unless the mice are stressed by a high fat diet (Sun et al., 2011). Switching 

the mice from normal chow to a high fat diet results in severe hypertrophic 

cardiomyopathy and fibrosis followed by lethality of all animals within several weeks. 

Myocardial Hdac3 inactivation causes extensive metabolic dysregulation of lipid and 

glucose processing. Consistent with these findings, Hdac3 is unique among Hdacs for its 

interaction with the NCoR-SMRT co-repressor complex that has been previously 

implicated in metabolic regulation (Codina et al., 2005; Guenther et al., 2001; Sun et al., 

2012).  

 

Hdac3 is also a potent regulator of cell proliferation and directly regulates p21. 

Previous work in cancer cells and hematopoiesis linked Hdac3 to cell cycle progression 

and DNA replication (Summers et al., 2013; Zeng et al., 2006). Transgenic 

overexpression of Hdac3 in cardiomyocytes causes increased proliferation and 

ventricular hyperplasia (Trivedi et al., 2008). Expression analysis indicated that Hdac3 

represses several cyclin-dependent kinase inhibitors, reducing levels of these cell cycle 

checkpoints and promoting rapid proliferation of cardiomyocytes.  
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Recent work from the Lazar group has raised the intriguing possibility that Hdac3 

functions as a transcriptional repressor in a deacetylase-independent manner. While 

liver-specific deletion of Hdac3 results in severe hepatosteatosis, re-introduction of a 

mutant form of Hdac3 lacking deacetylase activity is able to rescue most of the 

functional and transcriptional deficiency (Sun et al., 2012, 2013). Furthermore, global 

loss of detectable Hdac3 enzymatic activity does not result in any overt developmental 

phenotype (You et al., 2013). This surprising finding stands in stark contrast to the early 

embryonic lethality associated with germline knockout of Hdac3 (Bhaskara et al., 2008). 

Given the previous studies connecting Hdac3 to cardiac development and emerging 

evidence for a non-deacetylase function of Hdac3, it is possible that Hdac3 serves as a 

regulator of progenitor cell commitment in a deacetylase-independent manner. 

  

 

Chromatin architecture 

 

An emerging level of epigenetic regulation is the spatial orientation and three-

dimensional structure of chromatin (reviewed by Van Bortle and Corces, 2013; Li and 

Reinberg, 2011; Meister et al., 2011). Dense, heterochromatic regions are associated 

with repressed gene activity and euchromatic regions with a more open conformation 

permit increased access by transcription factors to the DNA and are associated with 

increased gene transcription. Regulating higher order chromatin structure in this way 
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allows for simultaneous control of large genomic regions and coordination of gene 

expression–a requirement for large-scale processes such as cell differentiation and 

stress response. For example, epigenetic mapping has demonstrated that as cells exit 

pluripotency during development and become more lineage-restricted, levels of 

heterochromatin increase and the genome becomes more compact while cell fates 

stabilize (Paige et al., 2012).  

 

Genome-nuclear lamina interactions 

 

New insight into chromatin organization within the interphase nucleus has made 

it clear that the localization of genes within the nucleus can affect gene expression. 

Several recent studies have revealed, for example, that the conformation of chromatin at 

the nuclear periphery versus in the nucleoplasm is very different (Bickmore and van 

Steensel, 2013; Pickersgill et al., 2006). The inner surface of the nuclear membrane is 

coated by a thin layer of intermediate filament proteins called lamins. Chromatin found at 

the nuclear lamina, lamina associated domains (LADs), tends to be transcriptionally 

silent and forced tethering of reporter genes to the nuclear periphery results in 

repression (Reddy et al., 2008). Genome-wide mapping studies have revealed that the 

organization of chromatin at the nuclear lamina versus the interior of the nucleus is 

dynamic and varies over the course of cell differentiation (Peric-Hupkes et al., 2010). 

The significance of these changes during development is still a matter of intense study; 

however, it is clear that several diseases with cardiac manifestations are caused by 

mutations in nuclear lamina-associated proteins. These laminopathies include 
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Hutchinson-Gilford progeria syndrome and Emery-Dreifuss muscular dystrophy and are 

due to mutations in genes encoding Lamin A and its interacting protein Emerin, 

respectively (Ho et al., 2013; Shin et al., 2013). While these diseases are caused by 

disruptions of the nuclear lamina, further study is required to establish whether changes 

in chromatin organization are responsible for the observed phenotypes. 

 

Hdacs and LADs  

 

Regions of chromatin in lamina associated domains are typically decorated with 

repressive histone marks and contain genes that are transcriptionally silent (Bickmore 

and van Steensel, 2013; Guelen et al., 2008). Additionally, epigenetic complexes 

including NuRD and NCoR-SMRT are found at the nuclear periphery, suggesting that 

these complexes may function to repress lamina-bound chromatin (Berk et al., 2014; 

Demmerle et al., 2012; Pegoraro et al., 2009). To determine whether the Hdacs within 

these complexes are responsible for silencing genes within LADs, Nurminsky and 

colleagues analyzed the effect of Hdac1 or Hdac3 knockdown on chromatin attachment 

to the lamina and subsequent gene expression (Milon et al., 2012). Analysis in 

Drosophila S2 cells demonstrated that Hdac1 is responsible for deacetylation and gene 

repression of genes within LADs, while Hdac3 primarily acts as a tether, retaining 

chromatin at the lamina. This finding is supported by work from Reddy and Singh, 

demonstrating that in a complex with a BTB domain-containing transcription factor and a 

lamina-bound anchor protein, Hdac3 facilitates the tethering of LADs to the nuclear 

periphery in mammalian cells (Zullo et al., 2012). When combined with mapping studies 
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showing dynamic movement of LADs during ESC differentiation, it is possible that Hdacs 

regulate LADs to help modulate lineage-critical gene expression and influence 

progenitor cell commitment (Figure 1.3 and Peric-Hupkes et al., 2010).  

 

Conclusions  

 

Understanding the control mechanisms underlying progenitor cell fate decisions 

is important for identifying the factors critical for normal development and mapping the 

systems disrupted in disease. In the neural crest and cardiac progenitor populations, 

epigenetic regulators offer the ability to coordinate expression of dozens of target genes 

at critical time points, ensuring appropriate expansion and differentiation. Hdac3 has a 

canonical repressive function as a modifier of histone proteins; however, recent work 

suggests a deacetylase-independent activity. Emerging clues from the literature suggest 

that Hdac3 may regulate gene positioning and nuclear architecture, however the role of 

this non-canonical function in progenitor cell biology remains unclear.  



Figure 1.1: Hierarchy of hematopoietic precursor co mmitment
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Figure 1.1: Hierarchy of hematopoietic precursor co mmitment  
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Figure 1.1: Hierarchy of hematopoietic precursor co mmitment 

Schematic of hematopoietic precursor cell commitment from self-renewing, multipotent 

hematopoietic stem cells (HSC) to multipotent progenitors (MPP) to common lymphoid 

progenitors (CLP) and common myeloid progenitors (CMP). These cells commit to 

specific lineages as granulocyte–macrophage progenitors (GMP), megakaryocyte 

erythroid progenitors (MEP), megakaryocyte progenitors (MkP) and T-cell natural killer 

cell progenitors (TNK). This hierarchy serves as a model for progenitor cell commitment 

in several other tissues including neural crest and cardiac progenitors. Adapted from 

Robb, 2007. 

  



Figure 1.2: Hierarchy of cardiac precursor commitme nt
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Figure 1.2: Hierarchy of cardiac precursor commitme nt  
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Figure 1.2: Hierarchy of cardiac precursor commitme nt 

Schematic of in vitro cardiac precursor cell commitment from self-renewing, pluripotent 

embryonic stem cells (ESC) to cardiac mesoderm marked by Mesp1 expression to first 

heart field (FHF) and second heart field progenitors (SHF). These cells commit to 

specific lineages as cardiomyocytes (CM), smooth muscle cells (SMC) and endothelial 

cells (Endo). Adapted from Robb, 2007.  



26 

 

Figure 1.3: Hdac3 complexes with cKrox and Lap2 β to mediate transcriptional 

silencing of Lamina-associated domains (LADs) 
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Figure 1.3: Hdac3 complexes with cKrox and Lap2 β to mediate transcriptional 

silencing of Lamina-associated domains (LADs) 

Accumulation of HDACs and other transcriptional repressors at the nuclear lamina 

creates a “silencing environment” responsible for low expression levels of genomic loci 

positioned at the nuclear periphery. Hdac3 complexes with transcription factor cKrox and 

lamina-associated protein Lap2β to maintain certain lamina-associated domains (LADs) 

at the nuclear periphery and repressing genes contained within these regions as 

schematized by a transcriptional start site (TSS). Adapted from Zullo et al., 2012. 

  



28 

 

Chapter 2: Murine craniofacial development requires  Hdac3-mediated repression 

of Msx gene expression 

The work described in this chapter was published in Developmental Biology in 

conjunction with Nikhil Singh (Singh et al., 2013).  

 

Summary 

 

In Chapter 1, I introduced the neural crest as a progenitor cell population 

emerging from the dorsal neural tube that gives rise to smooth muscle, melanocyte, 

bone, cartilage and neuronal derivatives throughout the body. Hdac3 is an epigenetic 

modifier that typically functions as a repressor to silence transcriptional activity. Previous 

work has described the role of Hdac3 in cardiac neural crest differentiation into aortic 

arch artery smooth muscle, however the role of Hdac3 in other neural crest 

subpopulations remains unclear (Singh et al., 2011a). In this chapter I describe the role 

of Hdac3 in neural crest patterning of craniofacial structures. Mice in which Hdac3 has 

been conditionally deleted in premigratory neural crest demonstrate fully penetrant 

craniofacial abnormalities, including microcephaly, cleft secondary palate and dental 

hypoplasia. Consistent with these abnormalities, I show dysregulation of cell cycle genes 

and increased apoptosis in neural crest structures in mutant embryos. Known regulators 

of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, 

are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that 

Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing 

core apoptotic pathways in cranial neural crest cells.   
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Introduction   

 

As I introduced in Chapter 1, vertebrates are unique among metazoans in their 

reliance on neural crest cells to form a wide array of head structures. These neural crest-

derived craniofacial components are analogous to mesodermally- and ectodermally-

derived structures in invertebrates (Gans and Northcutt, 1983). In midgestation in the 

mouse, neural crest cells populate the pharyngeal arches – a series of paired 

outpouchings that flank the developing pharynx, as well as the frontonasal prominence, 

an area that eventually gives rise to the nose and forehead. The first pharyngeal arch, 

which is the largest and most rostral of the arches, contains the neural crest cells that 

will form structures in the face and neck (Alappat et al., 2003). Driven by the proliferation 

and continued influx of migrating neural crest cells, two distinct outgrowths arising from 

the first arch, known as the maxillary and mandibular prominences, grow ventrally and 

flank the developing oropharynx, eventually fusing at the ventral midline in what 

becomes the face. Failure of neural crest cells to migrate or proliferate appropriately can 

result in hypoplasia of these structures and the absence of fusion, which can manifest as 

abnormal facies and clefting (Ito et al., 2003; Vallejo-Illarramendi et al., 2009).  

 

In addition to appropriate proliferation and migration, neural crest patterning 

depends upon carefully controlled apoptosis of premigratory crest cells. In the 

developing hindbrain, a premigratory neural crest population arises in each of eight 

rhombomeres. However, the majority of neural crest cells in rhombomeres 3 and 5 

undergo apoptosis, and the few surviving cells make small contributions to the discrete 
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streams of migrating neural crest that populate and pattern the developing pharyngeal 

arches (Graham et al., 1993; Sechrist et al., 1993; Birgbauer et al., 1995; Köntges et al., 

1996; Ellies et al., 2002). Loss of this selective apoptosis through ablation of 

rhombomere 4 causes increased survival and migration of crest cells from rhombomeres 

3 and 5, resulting in ectopic muscle attachment sites on the developing mandible (Ellies 

et al., 2002). A signal for selective apoptosis of neural crest cells specifically in these two 

rhombomeres is induced by increased expression of Msx2 (Graham et al., 1994). A 

related member of this muscle segment homeobox family of genes, Msx1, is also a 

proapoptotic factor in neural crest cells and controls programmed cell death by 

regulating several caspases in the apoptotic pathway (Tríbulo et al., 2004).   

 

Several human syndromes have implicated MSX genes in craniofacial 

development. Some patients with autosomal-dominant Boston-type craniosynostosis 

harbor a missense mutation in MSX2 and present with a variety of malformations 

including abnormal skull shape and cleft palate (Warman et al., 1993; Jabs et al., 1993). 

Additionally, deletion of the MSX1 gene in patients with Wolf-Hirschhorn syndrome 

manifests with a spectrum of ear, tooth, and skull defects (Ivens et al., 1990). These 

disorders highlight the critical role that Msx factors play in regulating how the neural 

crest contributes to the derivative structures that make up the calvaria and face. 

 

Murine genetics have also proven invaluable in deciphering the genetic programs 

that coordinate the proliferation, migration and apoptosis of cranial neural crest cells. For 

instance, models of conditional deletion and overexpression of Msx1 and Msx2 have 
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further delineated roles for these molecules in various aspects of craniofacial 

development. Msx1 has been studied extensively in the developing tooth and is highly 

expressed in neural crest-derived dental mesenchyme, where it is required for proper 

condensation and development of the molar tooth germ beyond the bud stage (Satokata 

et al., 1994; Chen et al., 1996). Deletion of the Msx1 gene in mice results in reduced 

Bmp4 expression in the dental mesenchyme, supporting the well-studied interaction of 

Msx genes and Bmp4 (Graham et al., 1994; Chen et al., 1996; Bei et al., 2000). In 

addition to its role in neural crest patterning and apoptosis in the developing hindbrain 

(Graham et al., 1993, 1994), Msx2 also regulates osteogenesis and functions with Msx1 

to control cranial neural crest differentiation into bones of the calvaria (Han et al., 2007; 

Roybal et al., 2010). Interestingly, both overexpression and inactivation of Msx2 causes 

defects in calvaria and tooth development (Dodig et al., 1999; Satokata et al., 2000), 

suggesting that the Msx1/Msx2 apoptotic pathway must be exquisitely regulated during 

craniofacial development.   

 

While neural crest proliferation and localized apoptosis are critical for normal 

craniofacial morphogenesis, little is known about how the pathways controlling these 

processes are regulated at the epigenetic level. In this chapter, I demonstrate that the 

class I histone deacetylase Hdac3 regulates genetic programs involved in murine 

craniofacial development. Global deletion of Hdac3 results in lethality prior to E9.5 

(Bhaskara et al., 2008). Conditional genetic deletion of Hdac3 in neural crest results in 

cleft palate, hypoplastic teeth and a variety of defects in calvarial structures of neural 

crest origin. Loss of Hdac3 leads to upregulation of established mediators of neural crest 
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apoptosis, including Msx1, Msx2 and Bmp4. These results suggest that Hdac3-mediated 

repression of Msx signaling plays a critical role in craniofacial development. 
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Results  

 

Hdac3 is widely expressed during craniofacial devel opment and is efficiently 

deleted in neural crest derivatives by Wnt1-Cre 

 

 In order to explore the epigenomic regulation of craniofacial development, we 

deleted the class I histone deacetylase Hdac3 in premigratory neural crest cells using 

the Wnt1-Cre transgene and a floxed Hdac3 allele (Hdac3f) (Jiang et al., 2000; Mullican 

et al., 2011). Using the Z/EG reporter allele (Novak et al., 2000), we observed that both 

Wnt1-Cre; Hdac3f/f (which we have termed Hdac3Wnt1NCKO); Z/EG and Wnt1-Cre; Z/EG 

control embryos demonstrate intact migration of neural crest cells into the developing 

face and pharyngeal arch region at E9.5 (Figure 2.1A, Figure 2.2). 

Immunohistochemistry of staged embryos demonstrates that Hdac3 is widely expressed 

in the developing head at E9.5 and E10.5, including in neural crest, ectoderm and 

endoderm (Figure 2.1B and data not shown).  Expression of PlexinA2, a neural crest 

marker (Brown et al., 2001), appears unaltered in Hdac3 mutant embryos at E9.5 

(Figure 2.2), further indicating that neural crest migration is normal at this stage. In 

Hdac3Wnt1NCKO embryos, Hdac3 protein expression is lost in neural crest-derived 

craniofacial mesenchyme, while expression is retained in ectoderm and endoderm 

(Figure 2.1B). In the absence of neural crest expression of Hdac3, the maxillary and 

mandibular prominences of the first pharyngeal arch demonstrate mild hypoplasia as 

early as E10.5 (Figure 2.1B,C). This is in contrast to the caudal pharyngeal arches, 
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which demonstrate no hypoplasia at E10.5 in the absence of Hdac3 expression (Singh 

et al., 2011). 

 

Hdac3Wnt1NCKO  embryos exhibit severe craniofacial abnormalities in late gestation, 

resulting in perinatal lethality 

 

Embryos in which Hdac3 is deleted in neural crest cells are found at expected 

Mendelian ratios in late gestation and are viable until birth, but uniformly succumb at P0 

(Singh et al., 2011). Hdac3Wnt1NCKO mice are born with microcephaly, micrognathia, a 

shortened snout and eyelid closure defects, with preservation of body morphology 

(Figure 2.3A). Optical projection tomography and histology of Hdac3Wnt1NCKO P0 heads 

reveals cleft palate, which is also apparent in late gestation embryos (Figure 2.3B,C). 

The palate defect is characterized by a large posterior cleft, without additional facial 

clefting (Figure 2.3B). Cleft palate is fatal in perinatal mice; afflicted pups are unable to 

generate suction and nurse, and subsequently die at P0 from dehydration and 

accumulation of air in the digestive tract (Condie et al., 1997; Qiu et al., 1995). 

Consistent with these reports, Hdac3Wnt1NCKO pups are unable to feed, as evidenced by 

the lack of a milk spot (Figure 2.3A). The gross craniofacial defects observed in 

Hdac3Wnt1NCKO mice are fully penetrant and are summarized in Table 2.1. We observed 

similar craniofacial abnormalities using a second neural crest driver, Pax3Cre (Engleka et 

al., 2005); these abnormalities are also fully penetrant both at P0 and in late gestation 

(Figure 2.4 and data not shown). 
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Loss of Hdac3 in neural crest leads to bone defects  in the calvaria and 

viscerocranium 

  

In the adult vertebrate, osteoblasts are among the most abundant cell types 

generated by cranial neural crest. These neural crest-derived osteoblasts contribute to 

the bones of the face, the skull base and the entirety of the calvaria, with the exception 

of the parietal bone (Santagati and Rijli, 2003). Hdac3 has previously been implicated in 

multiple stages of osteoblast differentiation and maturation. In committed, 

undifferentiated osteoblasts that express the Osx-Cre transgene, deletion of Hdac3 

leads to subtle abnormalities in calvarial osteoblast differentiation, and progressive 

abnormalities in trabecular bones that lead to perinatal runting and death early in 

adulthood (Razidlo et al., 2010).  

 

Consistent with a pro-osteogenic role for Hdac3 at the earliest stages of bone 

development in neural crest, Hdac3Wnt1NCKO mice - in which Hdac3 is deleted prior to 

osteoblast specification (before the onset of Osx-Cre expression) - exhibit severe bone 

defects in the calvaria and viscerocranium (Figure 2.5). Alcian blue/alizarin red staining 

of the late embryonic and perinatal mice reveals decreased ossification of the calvaria, 

particularly in the region of the frontal bone, where ossified bone is nearly undetectable 

by alizarin red staining (Figure 2.5A). The open frontal fontanel leads to hemorrhage in 

some newborn pups following parturition (Figure 2.5B). The parietal bone develops 

normally in Hdac3Wnt1NCKO mutants, consistent with its mesodermal origin (Figure 2.5A). 
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In mutant embryos, ossification abnormalities of the viscerocranium were also identified 

in the mandible, skull base, and tympanic ring (Figure 2.5A). 

 

Additional bone abnormalities in E17.5 mutant embryos are detectable by 

Goldner’s trichrome staining. Neural crest-derived calvarial bones, including the frontal 

bone, are thin and show minimal mineralization (Figure 2.5B). Additionally, at variable 

penetrance, absence of ossification in the sphenoid bone plate results in 

encephalocoele, in which the brain herniates into the nasal sinuses (Figure 2.5B). The 

bone defects observed in Hdac3Wnt1NCKO mice are summarized in Table 2.1. 

 

To establish whether loss of Hdac3 in the developing calvaria affects migration 

and survival of neural crest, or differentiation of osteogenic precursors, we fate mapped 

cranial crest cells to the E12.5 calvaria using the Z/EG reporter, measured apoptosis 

with TUNEL staining and evaluated pre-osteoblast differentiation by Runx2 

immunohistochemistry (Figure 2.6). We observed that mutant cranial crest exhibit 

normal migration to the calvaria and normal expression of the critical ossification 

regulator Runx2 at the frontal bone primordium (Ishii et al., 2003), but demonstrate 

increased apoptosis compared to controls.  These observations suggest that the bone 

abnormalities in the Hdac3Wnt1NCKO mice are associated with decreased survival of neural 

crest cells, and are unlikely to be due to a primary abnormality in differentiation or 

migration. 
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Hdac3 is required for normal odontogenesis 

  

Seminal work in amphibians and avian models established that the cranial neural 

crest makes up a significant portion of the developing tooth, specifically the dental 

mesenchyme (LeDouarin, 1982; reviewed by Maas and Bei, 1997). Further studies in 

mouse demonstrate that patterning of the developing molar tooth germ is influenced by 

the interaction of the epithelium and mesenchyme. Recombination experiments with 

neural crest and epithelium revealed that early (E9.5-12.0) oral epithelium can signal to 

non-dental mesenchyme to form teeth; however, later in development, the dental 

mesenchyme possesses odontogenic potential to induce non-oral epithelium to become 

enamel (Kollar et al., 1969; Mina et al., 1987; Lumsden 1988).  

 

In murine tooth development, signals from the epithelium initiate condensation of 

neighboring mesenchyme composed of neural crest cells at E11.5 (Chen et al., 2000). 

As epithelial cells invaginate, they envelop neural crest cells, which will eventually form 

the pulp of the tooth (Figure 2.7A). In Hdac3Wnt1NCKO embryos, the early stages of 

odontogenesis proceed normally, with tooth bud morphology at E15.5 appearing similar 

to littermate controls through the bud and cap stages (Figure 2.7A-D). However, 

expansion of the neural crest-derived mesenchyme does not occur between E15.5-

E17.5, resulting in hypoplastic teeth with the absence of normal pitting (Figure 2.3C and 

Figure 2.7E,F). The tooth bud hypoplasia in mutant embryos parallels the hypoplasia 

observed in other neural crest-derived structures in late gestation (Figure 2.3). 
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Aberrant cell cycle regulation in Hdac3-deficient c ranial mesenchyme leads to a 

failure of neural crest cell expansion, dental hypo plasia and cleft palate  

  

In order to further delineate the mechanism by which deletion of Hdac3 results in 

hypoplasia of neural crest structures, we performed a histological analysis of staged 

control versus Hdac3Wnt1NCKO embryos. In normal palatogenesis, the anterior palate is 

formed by fusion of the maxillary prominence with the frontonasal prominence. 

Hdac3Wnt1NCKO embryos exhibit posterior cleft palate, suggesting that secondary 

palatogenesis is disrupted (Figure 2.3B). The posterior aspects of the hard palate 

(referred to as the secondary palate) are formed from two outgrowths of neural crest-

derived mesenchyme that lie on either side of the stomodeum. These outgrowths - the 

palatal shelves - are detectable at E11.5 in the mouse at both anterior and posterior 

levels (Figure 2.8A,A’). Between E11.5 and E13.5, the palatal shelves, driven by neural 

crest cell proliferation, expand towards the mandible (Figure 2.8A,A’,B,B’). Between 

E13.5 and E14.5 the palatal shelves elevate relative to the tongue and fuse in the 

midline with the nasal septum (Figure 2.8C,C’). This newly formed structure 

subsequently ossifies, giving rise to the mature secondary palate (Figure 2.8D,D’).  

  

Disruption of any of the stages of secondary palatogenesis - palatal shelf 

formation, expansion, elevation, fusion or ossification – can lead to cleft palate in mice, 

and similar mechanisms are believed to contribute to secondary cleft palate in humans 

(He et al., 2011; Ito et al., 2003; Richarte et al., 2007; Vallejo-Illarramendi et al., 2009; 

Wu et al., 2008). Histological analysis of Hdac3Wnt1NCKO embryos reveals that the palatal 
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shelves form appropriately but are hypoplastic at E12.5 (Figure 2.8E,E’,F,F’). Despite 

appropriate elevation of the medial aspect of the palatal shelves by E14.5, the palatal 

shelves do not meet at the midline (Figure 2.8G,G’). These results suggest that cleft 

palate in Hdac3Wnt1NCKO embryos is due to a failure of palatal shelf expansion. 

  

Expansion of the palatal shelves is dependent upon proliferation and survival of 

the neural crest cells that make up the palatal shelf mesenchyme (Ito et al., 2003). In 

E12.5 mutant versus control palatal shelves that were matched for surrounding 

anatomical landmarks, we detected a significant increase in apoptosis and a trend 

towards decreased proliferation, as determined by TUNEL and phospho-histone H3 

staining, respectively (Figure 2.8I). Increased TUNEL staining is also visible throughout 

additional cranial neural crest-derived structures outside of the palatal shelf region 

including the tooth bud and calvaria, suggesting that hypoplasia of these structures is 

also mediated by increased apoptosis (Figure 2.6, Figure 2.8I, Figure 2.9E). 

  

To discern the nature of the cell cycle dysregulation in Hdac3Wnt1NCKO cranial 

mesenchyme, we performed expression profiling by quantitative RT-PCR of 

microdissected anterior cranial tissue of E12.5 mutant embryos and littermate controls 

(Figure 2.9A). While Hdac3 expression in mutant tissue is significantly downregulated, 

expression of the other class I Hdacs is unchanged (Figure 2.9B). Strikingly, the 

expression of multiple cell cycle regulators is altered in Hdac3Wnt1NCKO cranial 

mesenchyme. Cdkn1a (p21), Trp53 (p53), Cdkn1c (p57), Ccnd1 (Cyclin D1), Ccnd3 

(Cyclin D3), CcnG1 (Cyclin G1) and Cdk2 are significantly upregulated in the absence of 
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Hdac3, while Cdkn2c (p18) expression is downregulated (Figure 2.9C). This pattern of 

gene dysregulation is consistent with G1/S arrest of neural crest cells. 

  

Hdac3 has previously been shown to directly repress the cell cycle inhibitor gene 

Cdkn1a (p21) in multiple tissues (Trivedi et al., 2008; Wilson et al., 2008). In order to 

determine whether the substantial upregulation of Cdkn1a observed in Hdac3Wnt1NCKO 

cranial mesenchyme is sufficient to account for cleft palate and microcephaly in these 

embryos, we deleted Hdac3 in neural crest on a Cdkn1a null background (Deng et al., 

1995). Homozygous Cdkn1a-/- mice develop normally and are viable and fertile (Deng et 

al., 1995). We found that loss of p21 does not rescue the cleft palate and microcephaly 

observed in Hdac3Wnt1NCKO embryos, suggesting that dysregulation of additional cell 

cycle modulators contributes to altered regulation of neural crest expansion in Hdac3-

deficient cranial neural crest cells, and ultimately to cleft palate and craniofacial 

hypoplasia (Figure 2.10). 

 

The loss of Hdac3 results in dysregulation of core networks that regulate 

craniofacial development 

In multiple aspects of embryogenesis, including neural crest development and 

limb development, the homeobox transcription factors Msx1 and Msx2 and the signaling 

molecule Bmp4 function to initiate apoptosis (Barlow and Francis-West, 1997; Graham 

et al., 1994; Lallemand et al., 2005; Marazzi et al., 1997). Msx1 is expressed in the 

palatal shelves and dental mesenchyme, and regulates development of these neural 

crest-derived structures (Satokata et al., 1994; Chen et al., 1996; Maas and Bei, 1997; 
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Bei et al., 2000; Alappat et al., 2003). Msx2 is expressed in the early dental 

mesenchyme and is also crucial for normal tooth development (Maas and Bei, 1997; 

Winograd et al., 1997). Bmp4 is primarily expressed by epithelial structures in the 

developing face, which signal to neural crest-derived mesenchyme to mediate processes 

such as palatogenesis and odontogenesis, and its expression can be induced by Msx 

genes in neural crest derivatives (Zhang et al., 2002, Mitsiadis et al., 2010). 

 

We measured the expression of important regulatory genes involved in 

craniofacial development using a candidate approach, and detected significant 

upregulation of Msx1, Msx2 and the target gene Bmp4 in the anterior cranial 

mesenchyme of E12.5 Hdac3Wnt1NCKO embryos, but found no significant differences in 

the expression of palate-specific markers Osr2 and Shox2 (Figure 2.9D, Figure 2.11) 

(Lan et al., 2004; Yu et al., 2005). In situ hybridization reveals substantially more 

expression of Msx1 transcripts in the dental mesenchyme of mutant embryos than in 

littermate controls (Figure 2.9E). We also observe increased expression of Msx1 in the 

developing palatal shelves of Hdac3-deficient embryos compared to littermate controls 

(Figure 2.9F). Similar to Msx1, in situ hybridization for Msx2 shows elevated expression 

specifically in the dental mesenchyme of E12.5 Hdac3Wnt1NCKO embryos (Figure 2.9E).   

 

Interestingly, transgenic overexpression of Msx2 leads to cleft secondary palate, 

skull malformations, micrognathia, tooth hypoplasia and eyelid dysplasia, which 

phenocopies many aspects of the Hdac3Wnt1NCKO abnormalities (Winograd et al., 1997). 

Gain of BMP signaling also results in craniofacial abnormalities that partially phenocopy 
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the abnormalities identified in Hdac3Wnt1NCKO embryos (He et al., 2010). These 

observations suggest that the hypoplasia of neural crest-derived structures observed in 

Hdac3Wnt1NCKO embryos may be in part mediated by derepression of Msx1 and Msx2 

leading to increased apoptosis (Graham et al., 1994; Tríbulo et al., 2004; Park et al., 

2005). Consistent with this hypothesis, we observed increased apoptosis in Hdac3 

mutants in dental mesenchyme and palatal shelves, coincident with increased Msx 

expression (Figure 2.9E,F).  

 

To determine whether Msx gene upregulation has a functional role in mediating 

the observed cell cycle dysregulation and failure of neural crest structures to expand 

during development, we performed siRNA-mediated knockdown of Msx1 or Msx2, 

individually or in combination, in cultured neural crest mesenchyme from control and 

Hdac3Wnt1NCKO embryos. We observed a partial restoration of wild-type levels of neural 

crest proliferation following knockdown of either Msx1 or Msx2 (Figure 2.12). Taken as a 

whole, these results suggest that derepression of Msx1 and Msx2 in the absence of 

Hdac3 causes decreased proliferation and increased apoptosis in cranial neural crest 

cells, manifesting as abnormal facies, cleft palate, dental hypoplasia and bone 

deficiencies. 

 

In addition to the Msx gene products, the T-box transcription factors Tbx2 and 

Tbx3 have been shown to play significant roles in palate expansion and neural crest 

development (Zirzow et al., 2009; Mesbah et al., 2012). Tbx2 and Tbx3, like Msx1 and 

Msx2, are normally expressed in neural crest-derived cranial mesenchyme and are 
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important in cell cycle regulation during palatogenesis (Zirzow et al., 2009). Loss of Tbx2 

or Tbx3 in craniofacial development leads to cleft palate due to excessive proliferation, 

and both proteins have been identified as inhibitors of the cell cycle in palatogenesis 

(Zirzow et al., 2009). We observe significant upregulation of these members of the T-box 

transcription factor family in Hdac3-deficient craniofacial mesenchyme, consistent with 

the observed cell cycle dysregulation in neural crest-derived tissue (Figure 2.9D). 

Overall, the pattern of upregulation of these Msx, T-box transcription factors, cell cycle 

regulators and the signaling molecule Bmp4 – all known inhibitors of neural crest 

survival - is consistent with a model in which Hdac3 represses core inhibitors of the 

neural crest cell cycle in order to drive craniofacial development.  
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Discussion 

 

At multiple stages of neural crest development, the growth and survival of neural 

crest cells comes under positive and negative regulation from surrounding cell types, but 

is also subject to cell autonomous regulation (Sauka-Spengler and Bronner-Fraser, 

2008). The homeodomain transcription factors Msx1 and Msx2 are important mediators 

of neural crest apoptosis in both early and late stages of craniofacial morphogenesis, but 

the temporal and spatial regulation of their expression is poorly understood. 

Interestingly, both increased and decreased Msx gene levels in developing neural crest 

lead to severe craniofacial abnormalities (Bei and Maas, 1998; He et al., 2010). That 

craniofacial morphogenesis is so exquisitely sensitive to Msx expression speaks to the 

importance of fine regulation of the timing and patterning of Msx1 and Msx2 transcription 

during neural crest development.  

 

In this chapter, I demonstrate that loss of Hdac3 in neural crest results in severe 

craniofacial malformations including microcephaly, cleft palate, impaired bone formation 

in the skull and hypoplasia of the teeth. Inactivation of Hdac3 by Wnt1-Cre results in cell 

cycle dysregulation in neural crest-derived structures, including increased expression of 

p21, p53, p57, Cyclin D1, Cyclin D3, Cyclin G1 and Cdk2. Hdac3Wnt1NCKO embryos exhibit 

elevated expression of Msx1 and Msx2 in the anterior cranial mesenchyme, and 

knockdown of Msx1 and Msx2 in mutant tissue partially normalizes neural crest 

proliferation. Incomplete rescue in this assay may have been due to incomplete 

knockdown of Msx1 and Msx2 using siRNA approaches, but may also suggest that 
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factors other than Msx1 and Msx2 are functionally altered in Hdac3 mutants and 

contribute to the cell cycle dysregulation that we observe. Indeed we observe 

upregulation of Tbx2 and Tbx3 in Hdac3-deficient cranial mesenchyme, and abnormal T-

box factor expression is also likely to contribute to the abnormal phenotype in 

Hdac3Wnt1NCKO mice. Dysregulation of Tbx factors and other regulators of neural crest 

development is also likely to explain the strong – but not complete – overlap between the 

phenotype of Hdac3Wnt1NCKO mice and Msx2 transgenic overexpressing mice (Winograd 

et al., 1997). 

 

Previous work investigating the regulation of Msx1 transcription in cell lines 

identified several regulatory elements in the Msx1 upstream genomic region (Takahashi 

et al., 1997). LacZ reporters of a “minimal” Msx1 promoter containing these regulatory 

regions were strongly expressed in the neural crest-derived anterior cranial 

mesenchyme of E12.5 embryos (Takahashi et al., 1997). Similar work with the Msx2 

promoter region has also identified highly conserved enhancers that contribute to Msx2 

expression in the craniofacial mesenchyme when fused to lacZ reporters (Liu et al., 

1994). In light of the canonical role of Hdac3 as a transcriptional repressor, it is 

reasonable to hypothesize that Hdac3 may directly repress Msx1 and Msx2 expression 

in neural crest by deacetylating histones at these promoters/enhancers, either at known 

or novel regulatory regions. However, my in vivo chromatin immunoprecipitation 

experiments have not demonstrated Hdac3 occupancy of previously described enhancer 

regions (Brugger et al., 2004; Hussein et al., 2003). As a global modulator of gene 

expression, Hdac3 is likely to affect the expression of multiple pathways involved in 

craniofacial development. Additional work is needed to determine whether Hdac3-
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mediated repression of Msx1 and Msx2 occurs via histone deacetylation at 

uncharacterized enhancer regions at these loci, through derepression of additional 

intermediate genes or via direct deacetylation of non-histone targets. Interestingly, 

recent results suggest that critical functions of Hdac3 in the embryo are independent of 

its interactions with NCOR1 and SMRT, co-repressors that are necessary for Hdac3 

catalytic activity (You et al., 2013). Thus, Hdac3 may mediate important developmental 

processes through a non-canonical function unrelated to deacetylation of histone 

targets. 

 

My finding of decreased bone formation in Hdac3 conditional mutants is 

consistent with the pro-ossification role that Hdac3 is known to play in osteoblast 

precursors; however, by deleting Hdac3 prior to the specification and expansion of 

osteoblast precursors, we observe drastic deficiencies in bone formation not seen after 

deletion of Hdac3 in committed Osx-expressing cells (Razidlo et al., 2010). My results 

demonstrate increased apoptosis of neural crest-derived mesenchyme in the developing 

calvaria, despite intact neural crest migration and normal expression of the osteoblast 

regulatory molecule Runx2. Paradoxically, deletion of Msx1 and Msx2 in neural crest 

leads to heterotopic bone formation, particularly in the frontal bone region, while Msx2 

transgenic overexpression also results in ectopic bone formation, with decreased 

mineralization in the interparietal bone (Liu et al., 1995; Roybal et al., 2010; Winograd et 

al., 1997). While some of the bone abnormalities in Hdac3Wnt1NCKO embryos could be 

attributed to derepression of Msx gene expression, it is likely that additional targets of 

Hdac3 underlie the skeletal abnormalities in these mice. An interesting future area of 

research will involve determining additional targets of Hdac3 that regulate the early 



47 

 

stages of bone development in neural crest progenitor cells and additional populations of 

osteoblast precursors. 
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 Materials and Methods   

 

Mice 

 Wnt1-Cre, Pax3Cre, Hdac3flox, Z/EG and p21 null mice were maintained on mixed 

CD1/B6/129 genetic backgrounds separated by 4-8 generations of interbreeding from 

pure parental strains (Engleka et al., 2005; Jiang et al., 2000; Mullican et al., 2011; 

Novak et al., 2000). Mice were genotyped using previously described Cre-specific PCR 

primers (5’-TGC CAC GAC CAA GTG ACA GC-3’, 5’-CCA GGT TAC GGA TAT AGT 

TCA TG-3’) (Heidt and Black, 2005), and primers designed to distinguish between the 

control and floxed Hdac3 allele (5’-GCA GTG GTG GTG AAT GGC TT-3’, 5’-CCT GTG 

TAA CGG GAG CAG AAC TC-3’). Genotyping for the Z/EG transgene was performed by 

X-Gal staining tail samples. Littermate embryos were analyzed in all experiments unless 

otherwise noted. The University of Pennsylvania Institutional Animal Care and Use 

Committee approved all animal protocols. 

 

Histology, immunohistochemistry and in situ hybridi zation 

 

These techniques were performed on paraformaldehyde-fixed, paraffin 

embedded slides as previously described (High et al., 2008). Embryos were dissected in 

cold PBS, fixed overnight in 2% paraformaldehyde, dehydrated into 100% ethanol, 

embedded in paraffin and sectioned. H&E and Goldner’s trichrome staining were 

performed using standard procedures. Primary antibodies used for 
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immunohistochemistry were anti-GFP goat polyclonal (Abcam AB6673, 1:100), anti-GFP 

rabbit polyclonal (Invitrogen A-11122, 1:200), anti-Runx2 rabbit polyclonal (Santa Cruz 

sc-10758 1:20), anti-phospho histone H3 rabbit polyclonal (Cell Signaling #9701 1:50) 

and anti-Hdac3 rabbit polyclonal (Santa Cruz sc-11417x, 1:10). Radioactive in situ 

hybridization for Msx1,Msx2 and PlexinA2 was performed as previously described 

(Engleka et al., 2005). Msx1 probe corresponds to RefSeq #NM_010835 (bp 862-1741), 

Msx2 to #NM_013601 (bp 159-1143) and PlexinA2 as previously described (Brown et 

al., 2001). TUNEL staining was performed as previously described (Jain et al., 2011). All 

control and mutant histological and immunohistochemical images shown for comparison 

were taken at the same exposure and contrast settings, using NIS Elements software. 

Pharyngeal arch size was quantified using ImageJ software by counting number of 

pixels in at least three serial sections from control and mutant frontal sections. All 

quantification was done in a blinded manner. 

 

Cell number, proliferation and apoptosis were quantified by manually counting 

nuclei, phospho histone H3-, or TUNEL-positive cells, respectively, in adjacent sections 

of the anatomically-defined palatal shelf region in a blinded manner. 

 

Optical projection tomography 

 

Samples were dehydrated into 100% methanol, embedded in 1% low-melt 

agarose, cleared overnight in 1:2 (v/v) benzyl alcohol and benzyl benzoate, and scanned 
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using the Bioptonics OPT scanner (3001M) (Sharpe et al., 2002). Image stacks were 

reconstructed using OsiriX software. Image contrast was optimized to show anatomic 

detail. 

 

siRNA transfection 

  

E12.5 anterior craniofacial mesenchyme was microdissected and dissociated to 

single cell suspension with 0.25% Trypsin-EDTA. Cells were incubated at 37 �C in 5% 

CO2 for 16 hours before transfection with 50nM control (Santa Cruz sc-37007), Msx1 

(Dharmacon #M-044089-01) or Msx2 siRNA (Dharmacon #M-047845-01) using 

Lipofectamine RNAiMax (Invitrogen #13778030). 24 hours after transfection, cells were 

fixed with 4% paraformaldehyde (10 min, room temperature) and permeabilized with 

0.2% Triton X-100. Immunocytochemistry was performed with anti-phospho histone H3 

rabbit polyclonal (Cell Signaling #9701 1;100). Cell number and proliferation were 

quantified by manually counting nuclei and phospho histone H3-positive cells in a 

blinded manner.  

 

Alcian blue/alizarin red staining 

 

 Neonatal mice were eviscerated and skinned after being soaked in room 

temperature water for 3 hours followed by a 1 minute heat shock at 65oC to loosen the 
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skin. The samples were then fixed for 3 days in 100% ethanol at room temperature. 

Samples were stained for 2 days at room temperature with Alcian blue solution 

(0.3mg/ml Alcian Blue, 80% ethanol, 20% acetic acid) to visualize cartilage, and then 

rinsed and postfixed in 100% ethanol at room temperature, overnight. Samples were 

then incubated for 24 hours with Alizarin Red solution (0.065mg/ml Alizarin Red S in 

0.5% KOH) to visualize bone, followed by incubation in 0.5% KOH until soft tissues were 

mostly digested.  The 0.5% KOH solution was replaced with 25% glycerol in water 

(added very slowly to sample) and incubated at room temperature until tissues cleared. 

 

RNA isolation, complementary DNA synthesis and quan titative RT-PCR 

 

For E12.5 cranial mesenchyme expression profiling, Wnt1-Cre; Hdac3f/f and 

littermate Cre-negative control embryos were microdissected with tungsten needles in 

cold PBS. RNA was obtained using the Qiagen RNeasy spin column, with on-column 

DNAse I digestion. Complementary DNA (cDNA) was synthesized according to kit 

instructions with the Superscript III system (Invitrogen). Quantitative RT-PCR was 

performed in triplicate using Sybr Green (Applied Biosystems). Gapdh was used as a 

reference control gene. Quantitative RT-PCR primers (Table 2.2) were designed using 

IDT software. 

 

Statistics 
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The student’s two-tailed t test was used to ascertain differences between groups. 

A p-value of less than 0.05 was considered significant. 
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Table 2.1: Late gestation and perinatal craniofacia l abnormalities in Hdac3Wnt1NCKO 

mice 

E16.5-P0 Wnt1-Cre Wnt1-Cre; Hdac3f/f 

Microcephaly 0% (0/20) 100% (27/27) 

Cleft palate 0% (0/20) 100% (27/27) 

Eyelid dysplasia 0% (0/20) 100% (27/27) 

Anteriorally displaced 

foramen magnum 0% (0/20) 100% (27/27) 

Absence of:   

Hyoid bone 0% (0/7) 75% (6/8) 

Sphenoid bone 0% (0/7) 88% (7/8) 

Tympanic ring 0% (0/7) 88% (7/8) 

Hypoplasia and  

incomplete mineralization 

of:   

Frontal bone 0% (0/7) 100% (8/8) 

Mandible 0% (0/7) 100% (8/8) 

Maxilla 0% (0/7) 100% (8/8) 

Nasal bone 0% (0/7) 100% (8/8) 

Orbit  0% (0/7) 100% (8/8) 

Temporal bone  0% (0/7) 100% (8/8) 

Zygomatic arch 0% (0/7) 100% (8/8) 

Interparietal bone 

 

0% (0/7) 100% (8/8) 
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Table 2.2: Quantitative RT-PCR primer sequence info rmation 

Gene 

name 
Protein Sequence (5’ – 3’) 

Product 

size 

Genomic 

size 

Bmp4 Bmp4 GAGCAGAGCCAGGGAAC 138 1140 

  GAAGAGGAAACGAAAAGCAGAG   

     

Ccnd1 Cyclin D1 GCCCTCCGTATCTTACTTCAAG 145 1538 

  GCGGTCCAGGTAGTTCATG   

     

Ccnd3 Cyclin D3 GCGTGCAAAAGGAGATCAAG 120 1001 

  GATCCAGGTAGTTCATAGCCAG   

     

Ccng1 Cyclin G1 CAGTTCTTTGGCTTTGACACG 147 1597 

  TTCCTCTTCAGTCGCTTTCAC   

     

Cdk2 Cdk2 GCATTCCTCTTCCCCTCATC 128 1251 

  GGACCCCTCTGCATTGATAAG   

     

Cdk4 Cdk4 TACATACGCAACACCCGTGGACAT 155 931 

  AGTCGTCTTCTGGAGGCAATCCAA   

     

Cdkn1a p21 CTTGCACTCTGGTGTCTGAG 145 651 

  GCACTTCAGGGTTTTCTCTTG  

     

Cdkn1b p27 TGGACCAAATGCCTGACTC 144 705 

  GGGAACCGTCTGAAACATTTTC   

     

Cdkn1c p57 CAGGACGAGAATCAAGAGCAG 150 694 

  CGACGCCTTGTTCTCCTG   
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Cdkn2a p16 Ink4a ATCTGGAGCAGCATGGAGTC 198 5198 

 (Trivedi et al., 
2008) CGAATCTGCACCGTAGTTGA   

     

Cdkn2c p18 AAACGTCAACGCTCAAAATGG 133 3524 

  GACAGCAAAACCAGTTCCATC   

     

Cdkn2d p19 Ink4d CTTCATCGGGAGCTGGTG 138 1140 

  AGGCATCTTGGACATTGGG   

     

Gapdh Gapdh CGTCCCGTAGACAAAATGGT 177 2011 

  GAATTTGCCGTGAGTGGAGT   

     

Hdac1 Hdac1 GAGATGACCAAGTACCACAGTG 135 4741 

  AAACAAGCCATCAAACACCG   

     

Hdac2 Hdac2 AGAAGGAGACAGAGGACAAGA 144 3045 

  CGAGGTTCCTAAAGTTGGAGAG   

     

Hdac3 Hdac3 CCATTCTGAGGACTACATCGAC 142 6837 

  TGTGTAACGGGAGCAGAAC   

     

Hdac8 Hdac8 ACCGAATCCAGCAAATCCTC 149 22619 

  CAGTCACAAATTCCACAAACCG   

     

Msx1 Msx1 AAGATGCTCTGGTGAAGGC 132 2296 

  TGGTCTTGTGCTTGCGTAG   

     

Msx2 Msx2 CTCGGTCAAGTCGGAAAATTC 121 3859 

  GTTGGTCTTGTGTTTCCTCAG   
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Msx3 Msx3 AGTCGCGCACTCTTGTC 141 786 

  TATTGCTTCTGGTGAAACTTGC   

     

Osr2 Osr2 TTGCTCATTCACGAGAGGAC 145 1101 

  TCCCACACTCCTGACATTTG   

     

Shox2 Shox2 CCCACTATCCAGACGCTTTC 131 2726 

  ACCTTTGTGAAGTTGATTTTCCTG   

     

Tbx2 Tbx2 CACAAACTGAAGCTGACCAAC 147 1054 

  GAAGACATAGGTGCGGAAGG   

     

Tbx3 Tbx3 AGCCAACGATATCCTGAAACTG 150 1946 

  GTGTCTCGAAAACCCTTTGC   

     

Trp53 p53 AGTTCATTGGGACCATCCTG 149 6524 

  GCTGATATCCGACTGTGACTC   
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Figure 2.1: Deletion of Hdac3 in neural crest resul ts in cranial hypoplasia at E10.5  
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Figure 2.1: Deletion of Hdac3 in neural crest resul ts in cranial hypoplasia at E10.5  

(A) Gross images of E9.5 embryos visualized with direct fluorescence. Migration of 

neural crest cells into the developing face and pharyngeal arch region is grossly intact in 

the absence of neural crest expression of Hdac3. (B) Immunohistochemistry for GFP 

and Hdac3 in frontal sections of the facial mesenchyme of E10.5 embryos. Hdac3 is 

efficiently deleted in neural crest-derived cranial mesenchyme (arrowhead), as well as 

the conotruncal cushions of the developing cardiac outflow tract (arrow). Note that 

cranial crest-derived (GFP+) structures in the mutant are hypoplastic (open bracket). (C) 

Quantification of the size of the first pharyngeal arch from serial sections of E10.5 control 

and mutant embryos. Scale bars: (A): 300µm. (B): 400µm. 
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Figure 2.2: Neural crest migration in Hdac3Wnt1NCKO embryos is intact at E9.5 
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Figure 2.2: Neural crest migration in Hdac3Wnt1NCKO embryos is intact at E9.5 

(A) Neural crest migration evaluated by PlexinA2 expression and fate mapping. (Inset 

i,ii) E9.5 mutant and littermate controls demonstrate similar expression of PlexinA2, a 

marker of neural crest. (Inset iii,iv) Neural crest-derived cells fate mapped by Wnt1-Cre 

and the Z/EG reporter populate the first pharyngeal arch similarly in mutant and control 

embryos. (B) Quantification of the area occupied by cranial crest-derived GFP+ cells in 

the first pharyngeal arches of mutant and control embryos reveals no significant 

difference. Scale bar: (A): 200µm. 
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Figure 2.3: Craniofacial abnormalities in Hdac3Wnt1NCKO mice  
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Figure 2.3: Craniofacial abnormalities in Hdac3Wnt1NCKO mice   

(A) Gross image of a control (left) and mutant P0 pup. Mutants have severe cranial 

hypoplasia, characterized by a shortened snout (bracket) and micrognathia, and are 

unable to feed, as indicated by the absence of a milk spot, present in littermate controls 

(arrowhead). Mutants also exhibit eyelid dysplasia (arrow). (B) Optical projection 

tomography renderings of P0 heads. (Left panels) Viewed en face, an area of 

hemorrhage (black arrowhead) and eyelid closure defects (white arrowhead) are visible 

in the mutant. (Right panels) Virtual transverse sections cut through the level of the eyes 

demonstrate a cleft palate (arrow) in the mutant. (C) H&E stained coronal sections of 

E17.5 heads. Cleft palate is indicated by the arrow. S: Nasal septum. T: Tongue. Scale 

bars: (A): 500µm. (B): 2mm. (C): 1.4mm.  
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Figure 2.4: Deletion of Hdac3 with Pax3Cre recapitulates the craniofacial 

abnormalities observed using Wnt1-Cre 
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Figure 2.4: Deletion of Hdac3 with Pax3Cre recapitulates the craniofacial 

abnormalities observed using Wnt1-Cre  

(A) Gross images of E15.5 embryos. Mutant embryos exhibit fully penetrant 

microcephaly, with micrognathia and a shortened snout. (B) H&E stained frontal sections 

of E14.5 embryos. Neural crest deletion of Hdac3 with Pax3Cre results in cleft palate (*). 

Scale bars: (A,B): 800µm. 
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Figure 2.5: Hdac3Wnt1NCKO embryos exhibit defects in craniofacial bone forma tion 
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Figure 2.5: Hdac3Wnt1NCKO embryos exhibit defects in craniofacial bone forma tion  

(A) Alcian blue and alizarin red staining of P0 heads. Red staining indicates ossified 

bone, blue staining indicates cartilage. (Inset i) Lateral view of the full skeleton. (Inset ii) 

Lateral view of the calvaria. (Inset iii) Caudal view of the calvaria. (Inset iv) Rostral view 

of the skull base. Mutants demonstrate absence of the tympanic ring (T) (black arrow), 

diminished ossification of the frontal bone (F) (black arrowhead), absence of the ossified 

secondary palate (SP) (asterisk), and decreased mineralization along the midline of the 

interparietal bone (IP) (white arrow). Mutants also exhibit hypoplasia and decreased 

ossification of neural crest-derived viscerocranial structures, including the zygomatic 

arch (Z) (white arrowhead). Ossification of the mesodermally-derived parietal bone (P) 

remains intact. (B) Goldner’s trichrome staining of E17.5 heads. Green staining 

represents bone, red staining represents connective tissues. (Inset i) Asterisk indicates 

cleft palate in the mutant. (Inset ii) Open bracket indicates an area of brain herniating 

through the base of the skull in the mutant. (Inset iii) Decreased ossification of the 

calvaria (C) in the mutant, as indicated by a black bar. BO: Basioccipital. BS: 

Basisphenoid. EO: Exoccipital. IP: Intraparietal. M. Mandible. N. Nasal. Scale bars: (A): 

1mm. (B): 1.4mm. 
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Figure 2.6: Hdac3Wnt1NCKO embryos exhibit intact neural crest migration and 

differentiation of osteogenic precursors, but incre ased apoptosis in the 

developing calvaria 
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Figure 2.6: Hdac3Wnt1NCKO embryos exhibit intact neural crest migration and 

differentiation of osteogenic precursors, but incre ased apoptosis in the 

developing calvaria   

(A,B) GFP, Runx2, and TUNEL staining of E12.5 heads. (Insets i,ii) Neural crest cells 

properly migrate to the outer layers of the developing calvaria and frontal bone 

primordium, shown here by fate mapping with the Z/EG reporter. (Inset iii) Mutant 

calvaria exhibit a normal pattern of Runx2 staining by immunohistochemistry, suggesting 

that differentiation of osteogenic precursors is maintained at this developmental stage. 

(Inset iv,C) TUNEL staining of adjacent sections reveals that neural crest cells exhibit 

significantly decreased survival in the frontal bone primordium of Hdac3Wnt1NCKO 

embryos. (*) denotes p <0.05. Scale bars: (A-C): 200µm. 
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Figure 2.7: The loss of Hdac3 causes hypoplasia of neural crest-derived dental 

mesenchyme 
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Figure 2.7: The loss of Hdac3 causes hypoplasia of neural crest-derived dental 

mesenchyme  

(A-F) H & E stained frontal sections of control and mutant heads at E17.5. Early stages 

of tooth morphogenesis, including epithelial invagination (A,B) and mesenchymal 

specification (C,D) occur normally in the absence of Hdac3. (E,F) However, at E17.5, the 

dental pulp shows decreased bulk in mutants. Ep: Epithelium. M: mesenchyme. Scale 

bar: 200µm. 
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Figure 2.8: Cleft palate in Hdac3Wnt1NCKO mice results from increased apoptosis in 

the neural crest-derived palatal shelves 
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Figure 2.8: Cleft palate in Hdac3Wnt1NCKO mice results from increased apoptosis in 

the neural crest-derived palatal shelves 

(A-H,A’-H’) H&E stained frontal sections of control and mutant embryos at the level of 

the anterior and posterior palatal shelves. (A-D,A’-D’) In control embryos, the palatal 

shelves (P) expand towards the mandible (M) before elevating above the tongue (T), 

meeting in the midline at E14.5 and ossifying by E17.5. (E-H,E’-H’) In mutant embryos, 

the palatal shelves are hypoplastic at E12.5 and do not meet in the midline at E14.5 (*), 

although the medial aspects of the palatal shelves do elevate above the tongue 

(arrowheads). (I) Images show the areas defined as palatal shelves in control and 

mutant embryos at E12.5. Phospho-histone H3 (pH3)- (arrows) and TUNEL- 

(arrowheads) positive nuclei were counted relative to total nuclei in serial sections of the 

pharyngeal arch mesenchyme. Asterisk denotes p < 0.05. Scale bars: (A-H,A’-H’): 

400µm. (I): 50µm. 
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Figure 2.9: Dysregulation of cell cycle genes and t he Msx-Bmp4 apoptotic 

pathway in Hdac3Wnt1NCKO cranial mesenchyme 
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Figure 2.9: Dysregulation of cell cycle genes and t he Msx-Bmp4 apoptotic 

pathway in Hdac3Wnt1NCKO cranial mesenchyme 

(A) Representative fluorescent images showing the area of cranial mesenchyme 

microdissected for E12.5 expression profiling. (B-D) Quantitative RT-PCR results. (B) 

Expression of Hdac3, but not other class I Hdacs, is decreased in mutant tissue. (C) 

Mutant cranial mesenchyme exhibit significant dysregulation of cell cycle regulatory 

genes. (D) Among important regulatory genes involved in craniofacial development, 

Bmp4, Msx and Tbx expression are significantly altered. (E,F) In situ hybridization of 

Msx1and Msx2 in transverse sections of E12.5 heads and TUNEL staining. (E) 

Expression of Msx1 transcripts is increased in mutant dental mesenchyme (Insets ii,iv) 

compared to littermate control (Insets i,iii). Expression of Msx2 transcripts is increased in 

mutant dental mesenchyme (Insets viii,x) compared to littermate control (Insets vii,ix). 

TUNEL staining (Insets v,vi,xi,xii) of adjacent sections merged with images of Msx 

expression reveals increased apoptosis in mutant versus control embryos in the areas of 

higher Msx expression (arrows). (F) Expression of Msx1 transcripts is increased in 

mutant palatal shelves (Insets ii,iv) compared to littermate control (Insets i,iii), as well as 

apoptosis labeled by TUNEL staining of adjacent sections (Insets v,vi) (arrows). (*) 

denotes p <0.05. Scale bars: (A): 150µm. (E,F): 200µm.  
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Figure 2.10: Loss of p21 does not rescue craniofacial abnormalities in 

Hdac3Wnt1NCKO mutants 
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Figure 2.10: Loss of p21 does not rescue craniofacial abnormalities in 

Hdac3Wnt1NCKO mutants  

H&E stained frontal sections of E16.5 heads. Neural crest deletion of Hdac3 on a p21+/- 

or p21-/- background results in cleft palate (arrow). Scale bar: 400µm. 
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Figure 2.11: Core regulators of palatogenesis are n ot significantly dysregulated in 

Hdac3Wnt1NCKO embryos 
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Figure 2.11: Core regulators of palatogenesis are n ot significantly dysregulated in 

Hdac3Wnt1NCKO embryos  

Quantitative RT-PCR of microdissected E12.5 cranial mesenchyme. Mutant embryos 

express similar levels of Osr2 and Shox2 - known regulators of palate development - as 

littermate controls. 
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Figure 2.12: Knockdown of Msx1 or Msx2 partially rescues proliferation defects of 

Hdac3Wnt1NCKO explants 
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Figure 2.12: Knockdown of Msx1 or Msx2 partially rescues proliferation defects of 

Hdac3Wnt1NCKO explants  

(A) siRNA-mediated knockdown of Msx1 and/or Msx2 in microdissected E12.5 cranial 

mesenchyme partially restores proliferation of mutant cells to wild-type levels as 

measured by phospho-histone H3 immunohistochemistry. (B) Validation of siRNA-

mediated Msx knockdown.  Transfection of cranial mesenchyme with 50nM siRNA 

produces partial but significant loss of Msx transcripts as measured by quantitative RT-

PCR. (*) denotes p <0.05. 

  



81 

 

Chapter 3. Genome-Nuclear Lamina interactions regul ate cardiac progenitor cell 

behavior  

 

Summary 

 

In Chapter 1, I introduced the cardiac progenitor cell populations that give rise to 

the cell types found in the heart including cardiomyocytes, smooth muscle and 

endothelial cells. Appropriate expansion and differentiation of these progenitor pools is 

critical for patterning of the developed heart. Progenitor cells require coordinated 

expression of lineage-specific genes to differentiate into one of several daughter cell 

lineages. Epigenetic regulators are ideally positioned to synchronize transcriptional 

activity of disparate genomic loci through several mechanisms including histone 

modifications, nucleosome repositioning and altered higher-order chromatin structure. 

Mapping of chromatin dynamics within the nucleus in several systems has revealed that 

gene positioning often correlates with changed expression patterns, however the direct 

effect of these changes upon cell fate remains unclear. In this chapter, I demonstrate 

that Hdac3 functions in a deacetylase-independent manner as a repressor of the 

cardiomyocyte lineage. Loss of Hdac3 promotes differentiation into cardiomyocytes by 

de-repressing a myocyte gene program. Furthermore, I propose that Hdac3 serves as a 

tether between lineage-specific genes and the nuclear lamina, a transcriptionally 

silenced subnuclear region. Artificial tethering of Hdac3-bound genes to the nuclear 

lamina restores baseline myocyte differentiation, supporting this hypothesis. 
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Introduction 

 

As I introduced in Chapter 1, cardiac development requires precise formation and 

differentiation of several progenitor populations. Classical lineage tracing studies in chick 

and mouse models first identified a region known as the cardiac crescent that 

contributes to the primitive heart tube and working myocardium (Cohen-Gould and 

Mikawa, 1996; Srivastava, 2006). Progenitors emerging from the cardiac crescent, or the 

first heart field, are followed by a second wave of cells that arise posterior to the cardiac 

crescent and eventually populate the right ventricle, atria and outflow tract. The 

progenitors of this second heart field (SHF) are thought to be multipotent, differentiating 

into cardiomyocytes, smooth muscle cells and endothelium (Kattman et al., 2006, 2011; 

Moretti et al., 2006; Wu et al., 2006). Specification of these precursor cells to various 

cardiovascular cell types requires coordinated regulation of numerous, lineage-specific 

genes. Precise control of progenitor cell commitment is essential for appropriate 

patterning of the developing embryo, and perturbations of the gene regulatory networks 

can lead to congenital defects (Bruneau, 2013; Davidson, 2010; Santen et al., 2012; 

Zaidi et al., 2013). 

 

Epigenetic modifiers such as histone deacetylases (HDACs) localize to hundreds 

of genomic loci to regulate transcriptional activity, offering a convenient mechanism for 

synchronizing expression of broad gene programs. HDACs typically act by removing 

acetyl modifications from lysine residues of histone tails to promote a heterochromatic 

state and repression of gene transcription (Haberland et al., 2009b). Furthermore, 
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several HDACs are known to regulate cardiac morphogenesis and stress responses by 

altering expression of diverse sets of genes (Lewandowski et al., 2014; Montgomery et 

al., 2007; Sun et al., 2011; Trivedi et al., 2007, 2008, 2010). Hdac3 is unique among the 

canonical (class I and II) HDACs for its interaction with co-repressors NCoR and SMRT 

and its absolute requirement during early embryogenesis (Bhaskara et al., 2008; 

Guenther et al., 2001). While Hdac3 is essential for repression of broad genetic 

programs in neural crest, hematopoietic stem cells and hepatocytes, little is known of its 

function in cardiac progenitors (Singh et al., 2011b, 2013; Summers et al., 2013; Sun et 

al., 2012) although regulation of Tbx5 has been implicated (Lewandowski et al., 2014).  

 

In addition to forming complexes with co-repressors such as NCoR, SMRT and 

NuRD, HDACs interact with proteins bound to the inner nuclear membrane including 

emerin, Lamin B receptor and Lamina-associated polypeptide 2 (LAP2) (Demmerle et 

al., 2013; Guarda et al., 2009; Somech et al., 2005). Accumulation of HDACs and other 

transcriptional repressors at the nuclear lamina creates a “silencing environment” 

responsible for low expression levels of genomic loci positioned at the nuclear periphery, 

whether by natural movement or artificial tethering (Burke and Stewart, 2013; Milon et 

al., 2012; Reddy and Singh, 2008; Reddy et al., 2008; Zullo et al., 2012). These lamina-

associated domains (LADs) are most commonly heterochromatic and marked by 

repressive histone modifications (Towbin et al., 2012). Furthermore, Hdac3 is 

responsible for maintaining certain LADs at the nuclear periphery and repressing genes 

contained within these regions (Milon et al., 2012; Zullo et al., 2012). Genome-nuclear 

lamina interactions are also remarkably dynamic, changing significantly during 

progenitor cell differentiation as lineage-specific genes are being selectively silenced or 
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expressed (Kohwi et al., 2013; Peric-Hupkes et al., 2010). However, whether alterations 

in LADs can modulate developmental processes, or whether genome interactions with 

the nuclear lamina occur only in response to developmental events has been unclear.  I 

sought to determine if cardiac progenitor commitment may be controlled by “selective 

locking” of cell type-specific genetic loci at the nuclear periphery, preventing ectopic 

gene expression and inappropriate differentiation.   

 

In this chapter, I examine the role of nuclear organization in early progenitors 

during cardiovascular lineage commitment by modulating the epigenetic modifier Hdac3. 

Deletion of Hdac3 in cardiac progenitor cells causes excessive differentiation into 

cardiomyocytes in both a cell-based model of cardiac development and in mouse 

embryos. Surprisingly, Hdac3 deacetylase activity is not required for repression of 

myocyte differentiation, suggesting a non-enzymatic role for Hdac3 in gene silencing. 

We discovered that loss of Hdac3 releases several myocyte genes from association with 

the nuclear lamina concurrent with increased expression. Artificial tethering of Hdac3 to 

the nuclear periphery is sufficient to repress cardiomyogenesis. This work demonstrates 

that Hdac3 mediates genome-nuclear lamina interactions and subnuclear gene 

positioning and that genome tethering to the nuclear lamina is a mechanism for 

regulation of progenitor cell commitment.  
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Results 

 

Hdac3 represses ES differentiation to cardiomyocyte s 

 

Hdac3 functions as a repressor of broad, genetic programs, attenuating 

expression of dozens of genes to modulate large-scale effects such as hepatic 

lipogenesis (Feng et al., 2011), cardiac response to metabolic stress (Sun et al., 2011), 

and neural crest specification (Singh et al., 2011b, 2013). We sought to determine 

whether Hdac3 regulates cardiac progenitor cell fate decisions during embryogenesis. 

We modeled cardiac development in vitro by differentiating mouse embryonic stem cells 

(ESCs) into multipotent Flk1+PDGFRα+ progenitors that can give rise to cardiomyocyte, 

endothelial cell and smooth muscle lineages (Kattman et al., 2006, 2011). Upon 

generating a mouse ESC line that enables tamoxifen-induced, Cre-mediated Hdac3 

deletion (Figure 3.1A), we induced these transgenic cells to differentiate into cardiac cell 

types and added tamoxifen to delete Hdac3 when we observed peak expression of 

Flk1+PDGFRα+ progenitors at day 5.  Next, we allowed the cells to differentiate until we 

observed significant numbers of beating cells at day 8. Analysis by flow cytometry 

revealed that progenitor populations in which Hdac3 was deleted yielded significantly 

more cardiac Troponin T-positive (cTnT+) cardiomyocytes without increasing smooth 

muscle or endothelial cell counts (Figure 3.1B). Notably, this increase in cTnT+ cells was 

not due to a change in proliferation as measured by phospho-histone H3-positive cells 

(Figure 3.2), suggesting that loss of Hdac3 in cardiac progenitors specifically affects 

progenitor fate decisions rather than regulating proliferation.  We also observed higher 
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expression of cardiomyocyte-specific genes, while no significant change in gene 

expression of smooth muscle or endothelial cell markers was observed (Figure 3.1C). 

The addition of tamoxifen just 48 hours later when Flk1+PDGFRα cells were no longer 

detected, did not yield any significant increases in cardiomyocyte, smooth muscle or 

endothelial cell numbers as compared to controls (Figure 3.1D-E). These data suggest 

that Hdac3 acts to regulate differentiation during a narrow temporal window at the time 

when multipotent cardiac progenitors are present. Additionally, lentiviral overexpression 

of Hdac3 during this same time window of differentiation further represses 

cardiomyocyte numbers relative to baseline (Figure 3.1F-H). These experiments in 

embryonic stem cells suggest that Hdac3 functions to repress progenitor cell 

differentiation towards the myocyte lineage. 

 

 

Hdac3 represses differentiation of FHF and SHF card iac progenitors 

 

We hypothesized that Hdac3 plays a similar repressive role in cardiac progenitor 

cells present in the developing embryo. Using a floxed Hdac3 allele (Hdac3f), we deleted 

Hdac3 in vivo in SHF progenitors marked by LIM-homeobox transcription factor Isl1 

expression (Mullican et al., 2011; Srinivas et al., 2001). We observed that loss of Hdac3 

in SHF cardiac progenitors resulted in embryonic lethality and ventricular hypoplasia 

(Figure 3.3A). Furthermore, Hdac3-null hearts were comprised of greater numbers of 

myocytes than littermate controls (Figure 3.3B), mirroring the enhanced myocyte 

differentiation phenotype observed in the mouse ESC culture system. Next, we 
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expanded the cell populations of Hdac3 deletion using a more broadly-expressed Cre to 

include both first heart field (FHF) and SHF progenitors (Moses et al., 2001). Loss of 

Hdac3 in cells expressing the cardiac homeobox gene Nkx2.5 also yielded hypoplastic 

morphology and increased differentiation into cardiomyocytes (Figure 3.3C,D). By 

contrast, deleting Hdac3 in committed cardiomyocytes as opposed to undifferentiated 

cardiac progenitor cells did not result in embryonic lethality or morphologic changes 

during embryogenesis (Figure 3.4) (Montgomery et al., 2008). These results 

complement our in vitro studies, establishing that Hdac3 acts during a narrow temporal 

window in FHF and SHF progenitors to repress differentiation to the myocyte lineage.  

 

Hdac3 represses a myocyte gene program 

 

Given the canonical function of Hdac3 as a transcriptional repressor, we 

hypothesized that Hdac3 suppresses cardiac progenitor specification to the 

cardiomyocyte lineage through silencing of a myocyte gene program.  Hdac3 deletion in 

differentiating mouse ESCs de-represses cardiomyocyte genes such as Myh6, Tnnt2, 

Actc1, but not smooth muscle or endothelial cell-specific genes (Figure 3.1C).  In vivo, 

microarray analysis of Hdac3-null hearts deleted by Nkx2.5Cre revealed an upregulation 

of myocyte-specific genes. Classification of upregulated genes by DAVID analysis 

revealed that the top category is regulators of muscle contraction. Finally, we validated 

several of these myocyte gene changes by qPCR and confirmed increased expression 

in Hdac3-null hearts (Figure 3.3E). These results are consistent with Hdac3 functioning 



88 

 

as a repressor of a myocyte gene program, with loss of Hdac3 de-repressing these 

genes and driving precocious differentiation into cardiomyocytes.  

 

Hdac3 represses cardiac differentiation independent  of catalytic function 

 

Recent studies suggest that Hdac3 maintains its function as a transcriptional 

repressor even without deacetylase activity (Sun et al., 2013; You et al., 2013). To 

establish whether Hdac3 catalytic activity is required for regulation of cardiac progenitor 

differentiation, we returned to the mouse ESC system (Figure 3.5A). Consistent with our 

earlier experiments, deleting Hdac3 with addition of tamoxifen substantially enhanced 

differentiation into cardiomyocytes. As expected, exogenous expression of wild-type 

Hdac3 partially restored wild-type levels of differentiation (Figure 3.5B). To our surprise, 

exogenous expression of an Hdac3 mutant harboring a single Y298H substitution in the 

catalytic pocket that abolishes deacetylase activity of the enzyme while maintaining 

interactions with known binding partners (Lahm et al., 2007; Sun et al., 2013) rescued 

differentiation equally as well as wild-type Hdac3 (Figure 3.5B). This unexpected 

observation suggests that Hdac3 represses cardiomyocyte differentiation independent of 

its histone deacetylase activity.  

 

We sought to determine whether Hdac3 catalytic activity is required for normal 

cardiac development in vivo. Mice harboring mutations in the Deacetylase Activating 

Domains of both NCoR and SMRT (NS-mDAD) lack detectable Hdac3 enzymatic activity 
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in vivo (You et al., 2013). Further analysis of these mice revealed that despite no 

detectable Hdac3 deacetylase activity, they are able to maintain normal cardiac 

development and morphology through birth (Figure 3.5C) in contrast to embryos lacking 

Hdac3 protein in cardiac progenitors (Figure 3.3).  NS-mDAD mice survive to term and 

do not exhibit ventricular hypoplasia. Furthermore, expression analysis revealed that 

these mice express critical myocyte genes at levels similar to wild-type controls (Figure 

3.5D). Taken together, our in vitro and in vivo studies suggest that Hdac3 exhibits a 

deacetylase-independent function to regulate cardiac development and progenitor 

differentiation. 

 

Hdac3 functions with Lamina Associated Domains to r epress myocyte genes 

 

Hdac3 has been proposed to function as a component of a protein complex 

responsible for the structural maintenance of nuclear Lamina Associated Domains 

(LADs). Previous studies suggest that Hdac3 interacts with a zinc finger transcription 

factor cKrox (ThPOK) and nuclear membrane protein Lap2β to mediate tethering of 

condensed (repressed) regions of chromatin to the inner nuclear membrane (Melnick et 

al., 2002; Somech et al., 2005; Zullo et al., 2012). We hypothesized that Hdac3 acts in 

this complex to prevent excess cardiac progenitor differentiation by repressing critical 

myocyte genes via tethering to the nuclear membrane. Consistent with this model, 

knockdown of cKrox, a DNA-binding member of this LAD complex, phenocopies the 

significant increase in ESC to cardiomyocyte differentiation that we observe with Hdac3 

depletion (Figure 3.6A,B).  
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Furthermore, expression analysis and chromatin immunoprecipitation reveals 

that several myocyte-specific genes which are repressed by Hdac3 are bound by Lamin 

B1.  Lamin B1 is a core component of the nuclear lamina and DNA bound by Lamin B1 

is by definition within a LAD.  Deletion of Hdac3 in differentiating mouse ESCs releases 

myocyte genes including those encoding structural components (Ttn, Trdn) and ion 

channels (Kcnh7, Kcnc2, Kcnq1) from the nuclear periphery, as determined by loss of 

binding to Lamin B1 (Figure 3.6C). This loss of LaminB1 occupancy is accompanied by 

higher expression of these same genes (Figure 3.6D). These results lead us to propose 

that Hdac3 acts in cardiac progenitor cells to silence a lineage-specific gene program by 

retaining key genomic loci at the nuclear periphery. 

 

Landscape of LADs during cardiac development 

 

Previous studies of three-dimensional chromatin organization within the nucleus 

have focused on in vitro model systems, and little is known about the dynamics of 

lamina-chromatin interactions during normal embryonic development (Peric-Hupkes et 

al., 2010; Sadaie et al., 2013; Shah et al., 2013). To provide a global view of nuclear 

architecture during cardiac development, we mapped DNA-lamina interactions genome-

wide at multiple embryonic timepoints by Lamin B1 chromatin immunoprecipitation 

followed by sequencing (ChIP-seq). We identified about 1500 lamina-bound regions in 

e9.5 and e12.5 hearts (Figure 3.7), comparable with numbers of LADs seen in other 

systems (Peric-Hupkes et al., 2010; Shah et al., 2013). 
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Forcible tethering of Hdac3-bound genes to the nucl ear periphery  represses 

differentiation  

 

To specifically test whether Hdac3 represses progenitor differentiation by 

tethering myocyte genes to the nuclear lamina, we designed a system in which Hdac3 is 

obligated to function as a LAD tether. We generated a construct fusing Flag-tagged 

Hdac3 to nuclear membrane protein Lap2β (Hdac3-Lap2β). Lap2β exclusively localizes 

to the inner nuclear membrane, and immunocytochemistry confirms the Hdac3-Lap2β 

fusion also localizes to the nuclear membrane (Figure 3.8A,B). Returning to our mESC 

system, we deleted endogenous Hdac3 with addition of tamoxifen and exogenously 

expressed the Hdac3-Lap2β fusion, enabling us to restrict Hdac3 to the nuclear 

periphery to interrogate function at this specific subnuclear compartment. Transduction 

of the Hdac3-Lap2β fusion restores differentiation to equivalent levels as transducing 

wild-type Hdac3, a result not seen with an eGFP-Lap2β control (Figure 3.8C). 

Furthermore, expression of the deacetylase-deficient Y298H Hdac3 mutant fused to 

Lap2B also restors differentiation equivalent to wild-type Hdac3. These data suggest that 

tethering Hdac3-bound loci to the nuclear membrane does not require deacetylase 

activity and is sufficient to repress cardiac differentiation into cardiomyocytes.   

 

 

  



92 

 

Discussion 

 

Progenitor cells require coordinated expression of complex gene patterns to 

promote differentiation to specific lineages while repressing alternative cell fates 

(Pongubala et al., 2008). Higher-order chromatin organization within the 

subcompartments of the nucleus significantly alters activity of large genomic domains, 

making it possible to regulate whole gene programs simultaneously. The region 

surrounding the nuclear lamina is enriched for transcriptionally silent genes decorated by 

repressive histone modifications. Recent work suggests that genome-nuclear lamina 

interactions are dynamic, rearranging during progenitor cell commitment and 

differentiation (Kohwi et al., 2013; Peric-Hupkes et al., 2010). However, to date the 

functional significance of these rearrangements has remained unclear.  

 

The results presented in this chapter demonstrate that LAD positioning is 

maintained by the epigenetic modifier Hdac3, and altered nuclear localization of lineage-

specific genes is accompanied by precocious cardiac progenitor differentiation. Loss of 

Hdac3 promotes upregulation of a myocyte gene program and excessive formation of 

cardiomyocytes both in vivo and in an ES cell-based system. A number of these 

myocyte-specific genes alter their interaction with the nuclear lamina during normal 

development and are repositioned away from the nuclear periphery upon Hdac3 

deletion. Artificial tethering of Hdac3-bound genes to the nuclear membrane partially 

restores baseline myogenesis. This work represents, to our knowledge, the first analysis 



93 

 

of a cardiac defect influenced by disruption of nuclear lamina-mediated gene program 

silencing. 

 

Human diseases involving defects in the nuclear lamina, collectively known as 

laminopathies, manifest with developmental defects including muscular dystrophies, 

cardiomyopathies and premature aging.  Hutchinson-Gilford progeria syndrome (HGPS) 

results from mutations in Lamin A and leads to deregulation of chromatin structure and 

increased DNA damage (Van Bortle and Corces, 2013; Kubben et al., 2012). Mutations 

in Lamin A or its interacting protein Emerin also cause Emery-Dreifuss muscular 

dystrophy (EDMD), a degenerative muscular disease that is nearly always associated 

with cardiac abnormalities. A C. elegans model of EDMD exhibits abnormal positioning 

of heterochromatin and a muscle-specific transgene (Mattout et al., 2011). These 

conditions are caused by disruption of the nuclear lamina, however further study is 

required to determine whether rearrangement of genome-nuclear lamina interactions 

explains some or all of the observed phenotypes. 

 

I propose a model by which a lineage-specific gene program is repressed in 

progenitor cells by localizing to the “silenced environment” of the inner nuclear lamina 

(Figure 3.9). As I discuss in Chapter 4, it is unlikely that progenitor cell behavior is 

exclusively regulated by genome-nuclear lamina interactions, however higher-order 

chromatin organization remains a powerful mechanism for coordinated gene expression. 

Nuclear localization studies by FISH reveal differential clustering of active versus 

repressed gene loci (Shopland et al., 2006). Several epigenetic regulator complexes 
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including NuRD and Brahma are found at the nuclear periphery, suggesting that several 

components are in place for repression of tethered gene loci (Euskirchen et al., 2011; 

Milon et al., 2012). Furthermore, another component of the subnuclear structure, the 

nuclear matrix, plays an important role in transcriptional activation of developmentally 

required homeodomain protein targets (Skowronska-Krawczyk et al., 2014). Collectively 

with the work presented in this chapter, there is growing evidence that the distribution of 

the three dimensional chromatin organization within the nucleus can have powerful 

effects on gene expression networks and developmental dynamics. 
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Materials and methods 

 

Mice 

 

Isl1Cre, Nkx2.5Cre, aMHC-Cre,  Hdac3flox, and CMV-creERT mice were maintained 

on mixed CD1/B6/129 genetic backgrounds separated by 4-8 generations of 

interbreeding from pure parental strains (Agah et al., 1997; Hayashi et al., 2002; Moses 

et al., 2001; Mullican et al., 2011; Srinivas et al., 2001). NS-mDAD mice were 

maintained on a C57BL/6 background (You et al., 2013). Mice were genotyped using 

previously described Cre-specific PCR primers (5’-TGC CAC GAC CAA GTG ACA GC-

3’, 5’-CCA GGT TAC GGA TAT AGT TCA TG-3’) (Heidt and Black, 2005), and primers 

designed to distinguish between the control and floxed Hdac3 allele (5’-GCA GTG GTG 

GTG AAT GGC TT-3’, 5’-CCT GTG TAA CGG GAG CAG AAC TC-3’). Littermate 

embryos were analyzed in all experiments unless otherwise noted. The University of 

Pennsylvania Institutional Animal Care and Use Committee approved all animal 

protocols. 

 

ES cell derivation and differentiation 

 

Embryonic stem cells were derived from CMV-creERT; Hdac3f/f mice as 

previously described (Nagy et al., 2002). Briefly, blastocysts were collected at e3.5 and 
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cultured on STO feeder cells in standard ESC media +LIF + 50µM MEK1 inhibitor (Cell 

Signaling #9900) for 7 days until blastocyst hatches and forms colony. Individual 

colonies were subcultured for about 1 week when MEK inhibitor is removed and cells 

passaged as a normal ESC line.  

 

 Cardiac differentiation was adapted from published protocols (Christoforou et al., 

2008; Kattman et al., 2011). Briefly, ESCs were cultured and maintained on a feeder 

layer of mitotically inactivated MEFs in DMEM with 15% FBS (Fisher Scientific # 

SH3007003) and ESGRO leukemia inhibitory factor. Differentiation through hanging 

droplets method was initiated following ESC dissociation and suspension at 5 x 104 

cells/ml in DMEM with 10% FBS (Atlanta Biologicals #S11550) without LIF in 20µl drops. 

Two days after droplets formation, embryoid bodies (EBs) were transferred in 

suspension on poly-HEMA coated dishes. After another two days, EBs were plated on 

gelatin coated dishes in cardiac differentiation media (StemPro-34 SF medium 

[Invitrogen #10639-011] supplemented with 5ng/ml VEGF [R&D systems], 10ng/ml 

bFGF [R&D systems], 12.5ng/ml FGF10 [R&D systems], 2.5µM XAV939 [Cayman 

Chemical #13596], 1mM Ascorbic Acid [Sigma] and 2mM Glutamax [Invitrogen]). 

Beating cells were visible within 48 hours. 

 

 4-Hydroxytamoxifen (Sigma #T176) was dissolved in ethanol and added at 

1µg/ml final concentration to delete Hdac3.  
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Flow cytometry 

 

 ES-derived cells and embryonic hearts were fixed, permeabilized and stained for 

flow cytometry according to standard protocols. Briefly, cells were dissociated in 1mg/ml 

collagenase solution, fixed in Fixation buffer (eBioscience #00-8222-49), permeabilized 

in 1x Permeabilization buffer (eBioscience #00-8333-56) and stored in 1% BSA. 

Embryonic hearts were dissociated in 5mg/ml collagenase at 37oC for 10 minutes with 

occasional trituration before fixation and permeabilization steps. Cells were stained with 

primary and secondary antibodies for 1 hour each in Permeabilization buffer, 

resuspended in Flow Cytometry buffer (eBioscience #00-4222-26) and analyzed on BD 

FACSAria II cytometer. Antibodies used were cardiac Troponin T (1:100, Thermo #MS-

295-P), Smooth Muscle Actin (1:100, abcam #ab5694), CD31 (1:100, abcam #ab28364), 

Phospho-Histone H3 (1:50, Cell Signaling #9701), anti-mouse AlexaFluor 488 (1:200, 

Invitrogen #A21200) and anti-rabbit AlexaFluor 647 (1:200, Invitrogen #A21244) 

 

RNA isolation, complementary DNA synthesis, quantit ative RT-PCR and 

Microarray 

 

ES-derived cells or microdissected embryonic hearts were isolated in Trizol 

(Invitrogen # 15596-026) and RNA was obtained using the Qiagen RNeasy spin column, 

with on-column DNAse I digestion. Complementary DNA (cDNA) was synthesized 

according to kit instructions with the Superscript III system (Invitrogen). Quantitative RT-
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PCR was performed in triplicate using Sybr Green (Applied Biosystems). Gapdh was 

used as a reference control gene. Quantitative RT-PCR primers (Table 3.2) were 

designed using IDT software. Microarray analysis was performed by the University of 

Pennsylvania Next Generation Sequencing Core using 2-color hybridization technique 

with a whole genome mouse Agilent array. Four pools each of mutant Nkx2.5Cre; Hdac3f/f 

and littermate control RNA were hybridized to the array. Each pool contained three 

hearts microdissected from e9.5 embryos.  

 

Western blot analysis 

 

Lysates were run on 4-12% Bis-Tris protein gels (Invitrogen #NP0335) and blots 

were probed with anti-Hdac3 (1µg/ml, abcam #ab7030) or anti-β-actin (1:1000, Cell 

Signaling #4967) according to the instructions of the manufacturer and as previously 

described (Aghajanian et al., 2014). Visualization was achieved using ECLPrime (GE 

Life Sciences #RPN2232). 

 

Histology 

 

Histological analysis was performed on paraformaldehyde-fixed, paraffin 

embedded slides as previously described (High et al., 2008). Embryos were dissected in 

cold PBS, fixed overnight in 2% paraformaldehyde, dehydrated into 100% ethanol, 
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embedded in paraffin and sectioned. H&E staining was performed using standard 

procedures. All control and mutant histological images shown for comparison were taken 

at the same exposure and contrast settings, using NIS Elements software. 

 

Plasmids, transfection and transduction 

 

 Expression plasmids for Flag-Hdac3 and Flag-Hdac3 Y298H were generously 

provided by P. Gallinari (Lahm et al., 2007). Wild-type and mutant Hdac3 were cloned 

into AgeI-BsrGI sites of lentivirus FUGW (Addgene plasmid 14883, deposited by David 

Baltimore, (Lois et al., 2002)) for transduction of ESC-derived cells. Lap2β was PCR 

amplified from pEGFP-Lap2β (generously provided by J. Ellenberg (Beaudouin et al., 

2002)) and cloned into BsrGI site of FU-Hdac3 or FU-Hdac3 Y298H, creating a fusion 

protein with Hdac3 or Hdac3 Y298H. cKrox shRNA was generously provided by K. 

Reddy (Sigma clone TRCN0000194510). Lentiviruses were generated in Lenti-X 293T 

cells (Clontech # 632180) according to manufacturer instructions. Plasmid transfections 

were performed with Fugene 6 (Promega #E2691) according to manufacturer 

instructions. 

 

Lamin B1 ChIP-qPCR and ChIP-seq 

 

 Lamin B1 ChIP was performed from ES-derived cells or microdissected 

embryonic hearts as previously described (Shah et al., 2013). hiSeq-50SR sequencing 
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was performed by the University of Pennsylvania Funcitonal Genomics Core. qPCR 

primers to validate ChIP targets in ES-derived cells were designed using IDT software. 

Primers used are listed in Table 3.3.  

 

 For assigning lamina-associated domains from sequencing data, the following 

method was used: We partitioned the genome into windows of length 1000 bp. Each 

window w has aw input reads and bw ChIP reads. We collected reads from several ChIP 

and input sets, and we processed only windows that have at least one read mapped in 

one of the sets. Other windows are ignored, we call them “null windows”. As a result, we 

do consider windows with aw = bw = 0 if they have reads in some other data sets. The 

“significance” of an interval of windows is related to the p-value that we observe for a 

particular number of signal reads in that interval, but we normalize that number in each 

window. In the null model the windows are permuted, so the content of each window is 

an independent event, and the probability of seeing some combination of independent 

events is the product but we add scores, not multiply. Therefore we use the score that is 

related to the LOGARITHM of the probability, thus the sum of scores for a block of 

windows is related to the logarithm of the product, so it is related to the probability for the 

block. 

 

We consider the windows with a particular number of input reads: 

ni is the number of all windows with aw = i (i input reads) 

sik is the number of all windows with aw = i and bw = k 
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mi is the median for i, a number m such that                                                                                                                    

si0 + … + si(m-1) and si(m+1) + … + simaximum are both smaller than ni / 2 

 

Score(i,mi) = 0, zero significance for the median  

For k < mi we define tik = si0 + … + sik and Score(i,k) = log (2tik / ni) 

For k > mi we define uik = sik + … + simaximum and Score(i,k) = -log (2uik / ni) 

 

With this formula, if the count of signal reads is the median (among windows with 

the same number of reads), then it gets score 0, below, negative, above, positive. 

 

The idea of the scoring is that we prefer to select windows with positive scores 

and avoid selecting windows with negative scores. However, with the described method 

of assigning scores, about half of the windows have positive score and about half, 

negative, while the target region occupy less than half of the genome. Therefore we use 

Score(w) = Score(aw, bw) – α where α is the score adjustment, the same for all non-null 

windows. The larger score adjustment we use, the fewer windows belong to the selected 

regions. The score adjustment is one of the two parameters supplied by the user. 

 

We create blocks of consecutive windows, so either all windows in a block 

belong to one of the selected regions, or none of them does. We start with maximum 



102 

 

blocks such that all windows in a block are negative (scores below zero) or all are 

positives (scores at least 0). In this way, blocks of windows from a particular 

chromosome form a list, sorted by the position, and positive and negative blocks 

alternate.  

 

In the case of the mouse genome, we start with roughly 2.5E+06 windows and 

1E+06 initial blocks. Then we performed the steps described below until there are 

exactly N positive blocks, and we return the positive blocks as the selected regions. N is 

the second parameter supplied by the user. 

 

To perform a step of the algorithm, we consider a block with the minimum  

ABSOLUTE value of the sum of scores of its windows. If it is the first or the last block in 

a chromosome list, we remove it, otherwise we merge it with the two neighbor blocks. 

 

Immunocytochemistry 

 

Transfected 293T cells grown on glass coverslips, fixed in 4% paraformaldehyde 

for 10 minutes, permeabilized in 0.25% TritonX-100 +3% BSA for 15 minutes, blocked in 

3% BSA and incubated in primary and secondary antibodies for 1 hour each. After 

washes, slides were mounted in DAPI-containing mounting solution (Invitrogen #P-

36931) and imaged. All images shown for comparison were taken at the same exposure 
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and contrast settings, using NIS Elements software. Antibodies used were anti-GFP 

(1:100, Cell Signaling #2956), anti-Flag (1:1000, Sigma #F1804), anti-mouse AlexaFluor 

488 (1:400, Invitrogen #A21200) and anti-rabbit AlexaFluor 568 (1:400, Invitrogen 

#A11011).   
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Table 3.1: SHF-specific Hdac3 deletion results in embryonic lethality 

Isl1Cre; Hdac3f/+ x Hdac3f/+ 

P0 No. Observed Observed No. Expected Expected 

Hdac3+/+ 12 0.12 12.3 0.13 

Hdac3f/+ 31 0.32 24.5 0.25 

Hdac3f/f 17 0.17 12.3 0.13 

Isl1Cre; Hdac3+/+ 16 0.16 12.3 0.13 

Isl1Cre; Hdac3f/+ 22 0.22 24.5 0.25 

Isl1Cre; Hdac3f/f 0 0 12.3 0.13 

Total 98    

χ
2 0.004    
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Table 3.2: qRT-PCR Primers for expression analysis  

Gene name  Protein name  Sequence (5’ – 3’) 

Gapdh Gapdh CGTCCCGTAGACAAAATGGT 

  GAATTTGCCGTGAGTGGAGT 

    

Hdac3 Hdac3 CCATTCTGAGGACTACATCGAC 

  TGTGTAACGGGAGCAGAAC 

    

Tnnt2 cTroponinT ATCGAGGCTCACTTCGAGAAC 

  GTCTTTGAGGGAAATCAGCTCC 

    

Myh6 alpha-MHC ACGGTGACCATAAAGGAGGA 

  TGTCCTCGATCTTGTCGAAC 

    

Actc1 Cardiac Actinin GACCTCACTGACTACCTCATG 

  TCTCGTTCTCAAAATCCAGGG 

    

Ttn Titin GACACCACAAGGTGCAAAGTC 

  CCCACTGTTCTTGACCGTATCT 

    

Nkx2.5 Nkx2.5 GACAGGTACCGCTGTTGCTT 

  AGCCTACGGTGACCCTGAC 

    

Cnn1 Calponin CTTCTGCACATTTTAACCGAGG 

  AATGATCCCGTCTTTGAGGC 
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Pecam1 PECAM1 ACATTCACAGATAAGCCCACC 

  TCTTTCACAGAGCACCGAAG 

    

Calca Calcitonin CTCCAGGCAGTGCCTTTGAG 

  GGCGAACTTCTTCTTCACTGAGA 

    

Kcnq1 Kcnq1 ACCGTCTTCCTCATTGTTCTGG 

  GACAATCTCCATCCAGAAGAGG 

    

Kcnc2 Kcnc2 TCCAGTACGAAATCGAAACGG 

  GGGTGAGAAAACAATTCGGACTA 

    

Kcnh7 Kcnh7 CCAGGAAACTGGACCGATACT 

  CCAATCGCATACCAGATGCAA 
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Table 3.3: qPCR primers for ChIP analysis 

Gene name  Protein name  Sequence (5’ – 3’) 

Actc1 Cardiac Actinin GCTCAGTCTCATCCTCTACT 

  TCAGTCTCACCTCCTGATAC 

    

Ttn Titin CTCTATCTGGTGTTTCCTTTC 

  AAAGGCAGAAGGGTCTAA 

    

Calca Calcitonin CATGTGTAAGGAGCAGAGTAAG 

  AGTTCCATGCCCACTATCT 

    

Kcnq1 Kcnq1 CATCTAAGGTCCCTCACTTTG 

  CAGGCATCCTCAGGAAATAG 

    

Kcnc2 Kcnc2 CTGGCTCAGACCCATAAA 

  AATGGAGGACACCAGAAG 

    

Kcnh7 Kcnh7 TCTGTTCCTCTCTGTCATT 

  GTCTGGGATTGGCTTATTT 

    

Ctnnd Catenin, Delta GAGTAGAAAGGAGGGAGTAG 

  TCTCTGACCTGTGATCTTT 
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Figure 3.1: Hdac3 represses ES differentiation to c ardiomyocytes 
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Figure 3.1: Hdac3 represses ES differentiation to c ardiomyocytes 

(A)Schematic of Hdac3 deletion in differentiating mouse ESCs of genotype CMV-

creERT; Hdac3f/f. Deletion is induced with tamoxifen at day 5 when cardiac progenitors 

are present. (B) Analysis by flow cytometry of cardiac TroponinT (cTnT)+, Smooth 

Muscle Actin(SMA)+, and PECAM1+ cells on day 8 of differentiation. Y-axis of % cardiac 

cells represents percent of total cTnT+, SMA+ and PECAM1+ cells. (C) Gene expression 

analysis by qRT-PCR on day 8 of differentiation after tamoxifen addition at day 5. (D) 

Schematic ofHdac3 deletion with tamoxifen addition at day 7 of differentiation, two days 

after peak expression of Flk1+,PDGFRα+ progenitors. (E) Flow cytometry of cTnT+, SMA+ 

and PECAM1+ cells after Hdac3 deletion at day 7 of differentiation. (F) Schematic of 

Hdac3 deletion and overexpression at day 5 of differentiation. (G) Flow cytometry 

analysis demonstrates fewer cTnT+ cells after Hdac3 overexpression and more cTnT+ 

cells after Hdac3 deletion. (H) Western blot analysis to confirm Hdac3 overexpression 

and deletion. * denotes p<0.05. ns denotes p>0.05. 
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Figure 3.2: No change in proliferation upon Hdac3 deletion 
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Figure 3.2: No change in proliferation upon Hdac3 deletion 

Flow cytometry analysis of phospho-histone H3+ cells in differentiating ESCs at days 5, 

6 and 8 of differentiation after vehicle or tamoxifen addition at day 5.  
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Figure 3.3: Hdac3 inhibits differentiation of FHF a nd SHF cardiac progenitors in 

vivo by repressing a myocyte gene program
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Figure 3.3: Hdac3 inhibits differentiation of FHF a nd SHF cardiac progenitors in 

vivo by repressing a myocyte gene program 

(A)Deletion of Hdac3 in Isl1-expressing SHF progenitors results in ventricular 

hypoplasia, thin myocardium and embryonic lethality. H&E staining at e10.5 reveals 

morphology and boxed area highlights thinned right ventricle wall in mutants relative to 

controls. Scale bars 50µm. (B) Flow cytometry analysis of cTnT+, SMA+ and PECAM1+ 

cells from dissociated e10.5 Isl1Cre control and Hdac3-null hearts. (C) Deletion of Hdac3 

in Nkx2.5-expressing FHF and SHF progenitors at e16.5. Box highlights area of right 

ventricle with thin myocardium. Scale bars 200µm. (D) Flow cytometry analysis of 

dissociated e16.5 Nkx2.5Cre control and Hdac3-null hearts. (E) Gene expression analysis 

by qRT-PCR of e9.5 Nkx2.5Cre control and Hdac3-null hearts. * denotes p<0.05. ns 

denotes p>0.05. 
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Figure 3.4: Hdac3 deletion in cardiomyocytes does not disrupt cardia c 

morphology 
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Figure 3.4: Hdac3 deletion in cardiomyocytes does not disrupt cardia c 

morphology  

Histological analysis of cardiomyocyte-specific deletion of Hdac3 at P0 by H&E staining. 

Box highlights normal right ventricle myocardium in both control and Hdac3-null hearts. 

Scale bars 100µm.  
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Figure 3.5: Hdac3 represses cardiac differentiation  independent of catalytic 

function

 

 

  



117 

 

Figure 3.5: Hdac3 represses cardiac differentiation  independent of catalytic 

function 

(A)Schematic of Hdac3 deletion and transduction of wild-type or Y298H mutant Hdac3 in 

differentiating ESCs. (B) Analysis of cTnT+ cells by flow cytometry of ESCs on day 8 of 

differentiation after addition of vehicle or tamoxifen at day 5 with simultaneous 

transduction of GFP control or wild-type Hdac3 or Y298H mutant Hdac3. (C) H&E 

staining of NS-mDAD mice at P0. Scale bars 200µm. (D) Gene expression analysis of 

myocyte genes by qRT-PCR from P0 NS-mDAD hearts. * denotes p<0.05. ns denotes 

p>0.05. 
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Figure 3.6: Hdac3 functions with Lamina Associated Domains to repress myocyte 

genes 
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Figure 3.6: Hdac3 functions with Lamina Associated Domains to repress myocyte 

genes 

(A)Schematic of Hdac3 deletion or cKrox knockdown at day 5 of ESC differentiation. (B) 

Analysis by flow cytometry of cTnT+ cells with control shRNA or cKrox shRNA or 

tamoxifen addition. (C) LaminB1 ChIP-qPCR at myocyte genes was performed with 

ESCs at day 8 of differentiation after addition of vehicle or tamoxifen at day 5. (D) Gene 

expression analysis of myocyte genes in differentiation day 8 ESCs indicates myocyte 

genes in LADs are upregulated upon Hdac3 deletion. * denotes p<0.05. ns denotes 

p>0.05. 
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Figure 3.7: Dynamic landscape of LADs during cardia c development 
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Figure 3.7: Landscape of LADs during cardiac develo pment 

LaminB1 ChIP-seq track from wild-type e9.5 and e12.5 hearts maps LADs genome-wide 

during cardiac development. Blue represents Lamin B1 occupancy at e9.5, pink 

represents occupancy at e12.5. Black bar annotates individual LADs. Scale bar: 200,000 

bp 
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Figure 3.8: Forcible tethering of Hdac3-bound genes  to the nuclear periphery  

represses differentiation 
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Figure 3.8: Forcible tethering of Hdac3-bound genes  to the nuclear periphery  

represses differentiation  

(A)Schematic of Hdac3-Lap2β fusion expressed in differentiating ESCs at day 5. (B) 

Immunofluorescence of 293T cells transfected with EGFP-Lap2β, Hdac3-Lap2β or wild-

type Hdac3 and stained for FLAG or GFP with DAPI as a nuclear stain. Scale bars 

10µm. (C) Analysis by flow cytometry of cTnT+ cells at day 8 of differentiation after 

vehicle or tamoxifen treatment and transduction with GFP, wild-type Hdac3 (WT-Hdac3), 

wild-type Hdac3-Lap2β fusion (WT-H3-L2) or Y298H Hdac3 mutant-Lap2β fusion 

(Y298H-H3-L2). * denotes p<0.05. ns denotes p>0.05. 
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Figure 3.9: Model of LAD-mediated repression of myo cyte gene program in 

cardiac progenitor cells 
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Figure 3.9: Model of LAD-mediated repression of myo cyte gene program in 

cardiac progenitor cells 

Schematic of cardiac progenitor differentiation into cardiomyocyte, smooth muscle and 

endothelial cell lineages. Within cardiac progenitor cells (marked by Nkx2.5 and Isl1 

expression), Hdac3 interacts with Lap2β and cKrox to tether a myocyte gene program to 

the nuclear lamina, repressing transcriptional activity and myocyte commitment. 
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Chapter 4. Conclusions and Future Directions 

 

Summary 

 

Progenitor cells are developmental precursors with the capacity to differentiate 

into multiple cell types but with a limited ability to self-renew. Appropriate differentiation 

of progenitor cells requires coordinated expression of lineage-specific gene programs. 

Epigenetics is the study of heritable changes in gene expression not caused by 

differences in the DNA sequence. These changes can be widespread across large 

genomic regions, offering a convenient mechanism for synchronizing expression of 

numerous genes in a progenitor cell. In this dissertation, I studied the role of histone 

deacetylase 3, an epigenetic regulator, in the context of neural crest and cardiac 

progenitor cell expansion and commitment. Previous studies had identified the 

importance of Hdac3 in the development of these and other tissues, however the precise 

mechanism by which Hdac3 regulates progenitor cell behavior remained uncertain. 

 

In Chapter 2, I demonstrate that Hdac3 functions in the neural crest as a repressor of 

cell proliferation and survival by regulating expression of a core network of factors 

required during craniofacial development. These well-studied pathways include the Bmp-

Msx axis, with increased expression of Msx1 and Msx2 sufficient to reduce proliferation 

in Hdac3 mutants. These changes in proliferation and survival of neural crest-derived 
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mesenchyme cause cleft palate, microcephaly, tooth hypoplasia and other craniofacial 

defects. 

 

In Chapter 3, I examine the role of Hdac3 in cardiac progenitor cells of the first and 

second heart fields. These cells differentiate into cardiomyocyte, smooth muscle and 

endothelial cell lineages and go on to populate the heart. Similar to previous work, 

Hdac3 functions as a repressor to inhibit expression of a lineage-specific gene program. 

Silencing of cardiomyocyte genes prevents precocious differentiation of cardiac 

progenitor cells. Surprisingly, Hdac3 represses the myocyte fate independent of its 

deacetylase activity. Instead, Hdac3 functions at the nuclear membrane to tether 

myocyte genes to the nuclear lamina, preventing expression of this gene program and 

repressing differentiation down the cardiomyocyte lineage. Loss of Hdac3 allows these 

cardiac progenitor cells to precociously differentiate into cardiomyocytes, resulting in 

ventricular hypoplasia and embryonic lethality. 

 

These results implicate a role for subnuclear organization of chromatin as a regulator 

of progenitor cell behavior and lineage commitment during development. This is a novel 

direction for the nuclear architecture field and one that offers insight into how cells may 

coordinate the factors necessary to drive broad, dramatic changes like adopting new 

fates. 
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Future directions  

 

How widespread is nuclear architecture regulation i n development? 

 

Previous work on nuclear architecture and lamina associated domains has 

primarily focused on in vitro model systems and transgenic cell lines. This includes 

mapping chromatin organization in cultured Drosophila cells and cell-based experiments 

artificially tethering reporter genes to the nuclear membrane (van Bemmel et al., 2013; 

Pickersgill et al., 2006; Reddy et al., 2008). The in vitro work with the closest 

developmental corollary is a pioneering study from the van Steensel group mapping 

genome-lamina interactions in mouse ESCs differentiating into neurons (Peric-Hupkes et 

al., 2010).  At four stages of differentiation, the authors performed DamID to mark 

chromatin in contact with the nuclear lamina, profiling the dynamic changes in nuclear 

organization during differentiation. From this study, a few observations stand out. First, 

some LADs are remarkably dynamic, with the level of interaction with the lamina 

changing significantly at each time point. Second, during differentiation to the neuronal 

lineage, non-neuronal factors are being silenced and repressed at the nuclear periphery. 

Third, certain LADs did not change over the course of differentiation, but rather stayed 

constitutively bound at the periphery during neuronal specification. Together, these 

results suggest that a select portion of the genome dynamically alters subnuclear 

localization during progenitor cell commitment.  
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The primary study of nuclear architecture-mediated silencing in vivo focuses on 

localization of a single gene in Drosophila neural progenitor cells (Kohwi et al., 2013). 

The authors identified and visualized hunchback, a transcription factor responsible for 

promoting progenitor cell competence and inhibiting differentiation. Fluorescent in situ 

hybridization enabled tracking of this gene to the nuclear periphery as neuroblast 

progenitors begin to lose competence. Artificial loss of genome-lamina interaction 

permitted sustained expression of hunchback and prolonging of progenitor competence. 

This study in an invertebrate system suggests that nuclear organization and lamina-

mediated gene regulation influences progenitor cell behavior.  

 

 In addition to the mapping study during ESC differentiation, additional work from 

the van Steensel group and others has profiled genome-lamina interactions in multiple 

cell types (van Bemmel et al., 2013; Filion et al., 2010; Kubben et al., 2012; Shah et al., 

2013; Zullo et al., 2012). These LAD maps have consistently demonstrated that about 

40% of the genome is found within 1500 lamina-bound domains of an average size of 

about 250 kilobases. This suggests that a number of genes are contained and silenced 

within these regions, however an even larger proportion of the genome is not actively 

bound to the nuclear lamina. Closer analysis of the makeup of these LADs finds that 

they tend to be gene-poor regions with little detectable transcriptional activity. While this 

is consistent with the model that lamina-bound, heterochromatic regions tend to be 

silenced, there are large portions of the genome that are not found in these domains but 

are still repressed. It is very unlikely that LADs and changes in nuclear architecture are 

the exclusive mechanisms for transcriptional regulation in progenitor cells. It is also 
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unlikely that the entirety of the phenotypes observed in Hdac3-deficient mice or in 

models lacking other lamina-related proteins is due to altered nuclear architecture. 

 

Is neural crest regulation dependent on LADs? 

 

To date, no study has linked nuclear architecture with regulation of the neural 

crest. The most closely related work has been by our lab and the Olson group, targeting 

epigenetic modifiers required for lamina-mediated silencing. Deletion of Hdac3 in neural 

crest (see Chapter 2) results in cleft palate, microcephaly, tooth hypoplasia and outflow 

tract defects (Singh et al., 2011b, 2013). While these defects have not been directly 

attributed to altered chromatin organization, Hdac3 serves as a tether between the 

nuclear lamina and repressed loci. A straightforward first experiment is to map LADs in 

wild-type versus Hdac3-deficient neural crest derivatives. Loss of Lamin B1 occupancy 

at Bmp, Msx or Notch loci would be intriguing preliminary evidence of altered nuclear 

architecture affecting expression of gene regulatory networks.  

Deletion of Hdac1 in neural crest has been previously described (Haberland et 

al., 2009a). Unlike Hdac3, loss of Hdac1 does not result in an overt phenotype or 

embryonic lethality. Given that Hdac1 functions as a mediator of deacetylation and 

repression of genes tethered at the nuclear lamina (Milon et al., 2012), I hypothesize that 

maintaining a locus at the nuclear periphery is more critical to gene function than 

deacetylation or other mechanisms of repression once the locus is at the lamina. The 

Olson group also described severe craniofacial defects with loss of Hdac8, another class 
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I Hdac (Haberland et al., 2009a). While no role for Hdac8 at the nuclear periphery has 

been described, it is possible that this enzyme functions in lamina-mediated silencing. 

 

What comes first, tethering or repression? 

 

The most convincing evidence that relocating chromatin to the nuclear lamina is 

sufficient for repression stems from artificial tethering experiments performed by Singh 

and Reddy (Reddy and Singh, 2008; Reddy et al., 2008). Through creative repurposing 

of the lac operon, the authors were able to inducibly tether a gene of interest to the 

nuclear lamina. First, the lac repressor (LacI) is fused to a structural element of the 

nuclear lamina (e.g. Emerin or Lamin B1). Then, the lac operator (LacO) sequence is 

cloned downstream of a reporter transgene and introduced into a cell stably expressing 

the LacI fusion protein. Upon removal of isopropyl-β-D-thio-galactoside (IPTG), the 

repressor fusion protein reversibly binds to the lac operator sequence, retaining the 

reporter gene at the nuclear periphery. LacI-LacO mediated tethering of a reporter gene 

significantly decreased its expression, providing direct evidence that the nuclear 

periphery is a “silenced environment” capable of repressing genomic loci brought in 

close proximity. 

 

 While these experiments elegantly demonstrate the capacity of the perinuclear 

region to repress transcriptional activity, they do not preclude the model that under 

native conditions a locus is first epigenetically silenced before being retained at the 
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nuclear periphery. To test this alternative hypothesis, a transgene could be artificially 

decorated with histone modifications and tracked to determine whether it migrates to the 

nuclear periphery. One potential system for modifying histone proteins at a specific gene 

is to generate a version of Cas9 fused to various epigenetic modifiers (e.g. Hdacs, 

histone methyltransferase, etc.) and target the gene of interest by transfecting small 

guide RNAs complementary to the transgene sequence. The epigenetic modifying 

enzymes would be directed to the transgene, presumably marking the chromatin for 

repression. This approach would determine whether epigenetic silencing of a gene is 

sufficient to induce translocation to the nuclear periphery. 

 

Are there epigenetic factories at the lamina? 

 

The subnuclear region near the lamina and inner nuclear membrane is often 

described as a “silenced environment.” Active tethering of transgenes to the nuclear 

periphery reduces expression at the RNA level (Reddy et al., 2008). Mapping studies in 

vivo and in vitro indicate that genomic regions bound at the nuclear lamina are typically 

silent, with relatively low transcriptional activity (Guelen et al., 2008; Kohwi et al., 2013; 

Peric-Hupkes et al., 2010; Zullo et al., 2012). Despite these correlative studies in several 

systems, the precise mechanism by which tethered genes are repressed remains 

unknown. 
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Circumstantial evidence from a several studies suggests that a host of epigenetic 

regulator enzymes and complexes reside at the nuclear periphery (Demmerle et al., 

2012; Guarda et al., 2009; Hurd et al., 2010; Milon et al., 2012; Pegoraro et al., 2009; 

Shevelyov and Nurminsky, 2012). These proteins include epigenetic “writers” like HATs, 

“erasers” like Hdacs and “readers” like CHD7/8. These enzymes are also found within 

larger complexes at the nuclear membrane including NuRD and NCoR-SMRT. These 

data are partly accumulated from immunoprecipitation studies identifying interacting 

partners of structural proteins within the nuclear lamina and membrane. Much work 

needs to be done to determine whether these epigenetic complexes are enriched at the 

nuclear periphery or simply appear in immunoprecipitation studies based on stochastic 

abundance. Given our findings of Hdac3 residing at the nuclear periphery and acting as 

a LAD tether, there is reason to suspect that these epigenetic regulators may have 

unexpected repressive functions to maintain the “silenced environment” of the nuclear 

periphery. 

 

LADs vs nuclear pore complex vs nuclear matrix 

 

While gene positioning at the nuclear periphery typically results in binding to the 

nuclear lamina and transcriptional repression, this is not always the case. The nuclear 

membrane is also decorated with thousands of nuclear pore complexes (NPC). These 

large protein complexes of at least 30 different nucleoporin proteins are typically thought 

of as regulators of selective transport in and out of the nucleus. Nuclear pore proteins 

also interact with chromatin and several studies have linked chromatin-nuclear pore 
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complex interactions with gene activation (Arib and Akhtar, 2011; Van Bortle and 

Corces, 2013; Brown et al., 2008; Chambeyron and Bickmore, 2004; Meister et al., 

2011). In cardiomyocytes, class IIa Hdac4 can physically interact with Nup155 to 

mediate chromatin-nucleoporin association and repress Hdac4 target genes (Kehat et 

al., 2011). Work in differentiating ESCs has demonstrated that as lineage-specific genes 

are expressed, some of the corresponding genomic loci move towards the nuclear 

membrane and interact with the nuclear pore complex (Chambeyron and Bickmore, 

2004). One intriguing model for this phenomenon is that genes bound at the nuclear 

pore are optimally positioned for sensing and reacting to incoming signals from the 

cytoplasm. Tethering a gene to the nuclear pore complex may poise the locus for 

activation by cytoplasmic or extracellular signals. In support of this hypothesis, our lab 

has preliminary data that addition of retinoic acid, a potent activator of Hox genes, draws 

the HoxA locus to the nuclear periphery. While additional work must be done to 

distinguish interactions with the pore versus interactions with the nuclear lamina, the 

notion that gene repositioning serves as a mechanism for potentiating signaling 

cascades is very enticing.  

 

As a counterpart to gene repression at the nuclear lamina, recent studies 

suggest that the nuclear matrix may play a role in gene activation (Li and Reinberg, 

2011; Skowronska-Krawczyk et al., 2014). The nuclear matrix is a network of filaments 

within the nucleus without a well-established function. The matrix is thought to aid in 

cargo transport within the nucleus and positioning of the chromosomes during mitosis, 

however a novel function as a transcriptional co-activator has emerged. Work by 

Rosenfeld and colleagues demonstrated that Pit1, a homeodomain transcription factor, 
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requires interaction with both β-catenin and the nuclear matrix protein matrin-3 to 

activate downstream target genes. Through elegant loss-of-function and artificial 

tethering experiments, the authors establish that matrin-3 is required for recruitment of 

co-activators including p300 and ultimately gene transcription. As additional reports of 

lamina, nuclear pore complex and matrix-mediated transcriptional regulation emerge, the 

relevance of these mechanisms in a developmental context will have to be established.  

 

How to visualize and manipulate nuclear architectur e? 

 

As our understanding of the relevance of nuclear architecture on development 

and progenitor cell biology deepens, the dynamics of chromatin organization remain 

undetermined. The current approaches for visualizing specific genomic loci rely primarily 

upon in situ hybridization of locus-specific probes in fixed, permeabilized cells. While this 

technique enables clear visualization of a genomic locus of interest, it limits analysis to a 

single timepoint, preventing studies of chromatin movement over time. It is possible to fix 

samples at several timepoints to track changes over the duration of the experiment, 

however without live imaging it is not possible to determine what changes have taken 

place in the same cell over time. Two novel approaches to live chromosome tracking 

have recently been described. The van Steensel group has published a method for live 

imaging based upon a modification of DamID. DNA adenine methyltransferase (Dam) is 

fused to the nuclear lamina and stably expressed in a cell, adding methyl-adenine bases 

to genomic loci that have come in contact with the nuclear lamina. By simultaneously 

expressing a fluorescently-tagged DpnI restriction enzyme, the methylated loci are 
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bound by DpnI-GFP and visualized (Kind et al., 2013). In parallel, the Huang group 

modified the CRISPR-Cas9 genome editing system to visualize specific genes by 

fluorescently-tagging the Cas9 enzyme (Chen et al., 2013). By introducing at least 30 

guide RNAs to a gene of interest, the authors were able to tile Cas9-GFP molecules 

along the genomic locus and visualize it in real time. The advantage of the CRISPR-

based approach to the Dpn-based approach is that addition of sequence-specific guide 

RNAs allows tracking of a specific gene. These methods may prove useful to 

determining the dynamics and timeframe of nuclear architecture changes in real time in 

differentiating cells or even in vivo in C. elegans or zebrafish. 

 

To directly examine the significance of nuclear architecture changes on cell 

function or progenitor cell behavior, the field needs a system for manipulating gene 

position and analyzing the downstream effects. Much like the artificial tethering 

experiments using LacO-LacI, I have bound Hdac3 and any Hdac3-occupied genes to 

the nuclear periphery by fusing the protein to Lap2β, a factor embedded within the inner 

nuclear membrane (see Chapter 3). I was able to show that this lamina-bound form of 

Hdac3 is sufficient to repress cardiac progenitor differentiation into myocytes, similar to 

wild-type, unbound Hdac3. To extend these experiments further, it is essential to be able 

to directly affect positioning of an endogenous gene. One potential method is to modify 

the CRISPR-Cas9 system by fusing Cas9 to Lap2β, sequestering it at the nuclear 

periphery. Upon introduction of guide RNAs specific to a gene of interest, Cas9 will bind 

to the sequence complementary to the guide RNA and retain the gene at the nuclear 

membrane. This system could be leveraged to investigate the effect of repositioning any 
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gene to the nuclear periphery in any cell type, finally addressing the question of what 

effect gene location has on cell function and development. 

 

Concluding Remarks 

 

In this dissertation I have studied the role of Hdac3 in neural crest and cardiac progenitor 

cell commitment. This work describes the capacity of an epigenetic modifier to 

coordinate expression of broad gene programs controlling cell behaviors including 

proliferation, survival and differentiation. One of the most exciting findings is that Hdac3 

functions in a deacetylase-independent manner to repress lineage-specific genes by 

tethering the relevant genomic loci at the nuclear lamina. This novel mechanism of 

regulation introduces chromatin dynamics within the nucleus as a system by which 

progenitor cells promote differentiation into a specific cell type. This work raises the 

possibility of tailor-made Hdac inhibitors used to regulate cell fate without affecting 

deacetylase activity or other enzymatic function. Potential clinical applications include 

expansion and differentiation of cardiac progenitor cells ex vivo or influence of progenitor 

cell commitment in vivo. It will be interesting to see the effect this work has on bridging 

the fields of developmental biology and nuclear architecture to influence future studies. 
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