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Collision Resolutions in Cloth Simulation

Abstract
We present a new collision resolution scheme for cloth collisions. Our main concern is to find dynamically
convincing resolutions, i.e. positions and velocities of cloth elements, for any kinds of collisions occuring in
cloth simulation (cloth-cloth, cloth-rigid, and cloth-cloth-rigid). We define our cloth surface as connected
faces of mass particles where each particle is controlled by its internal energy functions. Our collision
resolution method finds appropriate next positions and velocities of particles by conserving the particles’
momentums as accurately as possible. Cloth-cloth collision resolution is a special case of deformable N-body
collision resolution. So to solve deformable N-body collision resolutions, we propose a new collision
resolution method, which groups cloth particles into parts and resolves collisions between parts using the law
of momentum conservation. To resolve collisions, we solve a system of linear equations derived from the
collision relationships. A system of linear equations is built using a scheme adapted from the simultaneous
resolution method for rigid N-body collisions [1]. For the special case where we can find cyclic relationships
in collisions, we solve a system of linear inequalities derived from the collision relationships.
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Abstract

We present a new collision resolution scheme for cloth colli-
sions. Our main concern is to find dynamically convincing resolu-
tions, i.e. positions and velocities of cloth elements, for any kinds
of collisions occuring in cloth simulation (cloth-cloth, cloth-rigid,
and cloth-cloth-rigid). We define our cloth surface as connected
faces of mass particles where each particle is controlled by its in-
ternal energy functions. Our collision resolution method finds ap-
propriate next positions and velocities of particles by conserving
the particles’ momentums as accurately as possible.

Cloth-cloth collision resolution is a special case of deformable
N-body collision resolution. So to solve deformable N-body col-
lision resolutions, we propose a new collision resolution method,
which groups cloth particles into parts and resolves collisions be-
tween parts using the law of momentum conservation. To resolve
collisions, we solve a system of linear equations derived from the
collision relationships. A system of linear equations is built us-
ing a scheme adapted from the simultaneous resolution method
for rigid N-body collisions [1]. For the special case where we can
find cyclic relationships in collisions, we solve a system of linear
inequalities derived from the collision relationships.

1. Introduction

Collision handling in Computer Graphics has two phases. One
is to detect collisions and the other is to resolve collisions.

In cloth collision detection, the computation time to detect col-
lisions is not negligible because the number of geometrical entities
(nodes, faces, edges) the collision detection algorithm has to han-
dle is considerable (over 10,000 particles for regular attire). For
this reason, several approaches have tried to expedite the collision
detection processes [16, 3].

Collision resolution is to find the correct next positions and
velocities of colliding objects. Cloth resolution methods so far
have found non-penetrating positions, velocities and accelerations
of cloth surface particles [14, 3, 15]. This scheme works fine for
cloth-rigid collisions and for the special case of cloth-cloth col-
lisions where the dynamic interactions between cloth surfaces in
cloth-cloth collisions do not have to be noticeable.

Volino et. al. [15] applied the conjugate gradient method to
find the actual particles’ positions where a group of particles are
colliding into each other. By preserving barycentric relationships
of collision entities, their method resolves collisions where nu-
merous cloth surfaces are colliding together as a group, which is

a novel way to resolve multiple collisions at once. However it
does not conserve the momentum of cloth surfaces in cloth-cloth
collisions. Another method for cloth-cloth collisions has been pro-
posed by Provot [12], which resolves collisions by giving an av-
erage velocity to all the particles of collisions. Provot’s method is
easy to implement but it cannot give proper visual effect of colli-
sions since we cannot get dynamic interactions between particles
once the particles collide into each other.

Cloth-cloth collision resolution is a special case of deformable
N-body collision resolution. To solve deformable N-body colli-
sion resolutions, we propose a new collision resolution method
which gives a visually reasonable response by ensuring the conser-
vation of N-body momentums. Our cloth system is particle-based,
as many systems are in other cloth research groups [14, 6, 12, 3].
To resolve collisions, we first divide the colliding particles into
parts and build a system of linear equations based on the collision
relationships between these parts. Then we solve the whole system
using the law of N-body momentum conservation. The system of
equalities is based on the scheme adapted from the simultaneous
resolution method for rigid N-body collisions proposed by Baraff
[1]. However his original inequality relationships between relative
velocities before and after collisions are purely heuristic, which
may not be physically correct. Though this physical inaccuracy
has been an inherent problem of simultaneous collision resolu-
tions, it appears to give graphically agreeable results. Hence with
the help of the law of N-body momentum conservation, we found
the results of our resolutions are visually acceptable.

In the next section, we discuss the issues involved in collision
detection, especially to define a way to store collision information.
In Sec. 3, we propose our collision resolution scheme. In Sec. 3.1
and 3.2, we examine some special cases of collisions which need
some prior processes before we actually resolve collisions. From
Sec. 3.3 to Sec. 3.5, the actual collision resolution method is
presented. Finally Sec. 4 discusses results.

2 Collision Detection

A widely used method for detecting cloth collisions is to put
small repellent proximity forces between the cloth surface and the
rigid or cloth surface [4, 14, 3] while the actual collisions are
tested with pairs of particle-face or face-face of the current po-
sitions. When objects are moving fast, however, these preventive
proximity forces cannot prevent collisions since a particle can pass
through the proximity violation region during one integration time
step. This problem can be negligible when the integration time
step is very small, so we rarely have those pass-through cases.



However since implicit integration methods [3, 5, 7] have been
used for cloth simulations, the time step has become larger, some-
times as large as to meet the frame rate of1

30
sec/frame. Conse-

quently this penetration problem is no longer negligible, so we use
the swept volume approach [13, 8] which will be described in the
next section.

2.1 Collision detection using swept-volumes

A swept volumeis a volume made by two sets of positional en-
tities of a face - one at timet and one at timet+�t. Connecting
these old and new positions of all particles in a face gives us a
volume. Any collision happening within an integration time step
always can be detected by this swept volume method, unless the
motions of faces are highly rotational. An interesting case is where
the faces are not actually intersecting but two swept volumes report
a intersection anyway. Though this case is not an actual collision,
it happens only when two faces are very close. Hence we resort
to the collision report of this case, since we consider this case as a
violation of the proximity law. We use classical edge-polygon de-
tection algorithms to detect collisions among swept volumes. We
use this swept volume approach for cloth and the dynamic rigid
body alike, but for the non-moving rigid body only the surface
faces are used for collision detection. In addition, we add proxim-
ity regions to the normal directions of faces of a swept volume to
add proximity violation regions.

2.2 Saving detected collisions

Figure 1. Impact Zones

Though detected collisions are reported as pairs of face-face,
we cannot respond to each collision individually since these indi-
vidual responses may introduce another new collision or one face
may possibly be related to several other collisions. So we save all
detected collisions in a data structure, i.e. a set ofzones of impact
[12] during the collision detection phase. All stored detected col-
lisions will be resolved comprehensively by the rule described in
the next section. Originally a zone of impact (IZ) is an area where
multiple self-collisions occur [12]. We extend Provot’s definition
of an IZ to an area where collisions happen, including collisions
against bodies and self-collisions.

An objectO is a set of particles, faces, and edges, where faces
and edges are defined based on the positions of particles by the rule
comprising cloth surface. An areaA is a subset ofO such that all
the particles and edges constituting a face� in A are members of
A. An areaA is calledseparablewhen, for all faces� 62 A,� does
not collide with any face inA. An areaA is calledcolliding when,
for all faces� 2 A, � collides with at least one face inA. An IZ

is a separable colliding area. Fig. 1 shows a cross section view of
a collision situation where three cases of IZs are shown by dotted
circles. An areaA is calledvisitablewhen, for all particlesP 2 A,
P can be encountered by traversing from any other particle inA
using edges inA. Otherwise, the areaA is non-visitable. We call
a visitable subset area of an IZ acollision cluster(CC). When a
face-face collision is detected, the entities of each colliding face
� (the particle and the edges of�, and� itself) are inserted into
a CC, where the CC can be encountered by traversing from the
particles in� using only edges in�. When there is no such CC,
� becomes a CC. When two or more such CCs are found, these
CCs are merged into one CC connected by�. In Fig. 1, a CC is
denoted as a shaded area.

3 Collision Resolutions

Numerous approaches [14, 12, 3, 15] have been introduced for
cloth collision resolution: the correct next positions and veloci-
ties of colliding cloth particles. So far, however, no cloth collision
resolution method which considers cloth-cloth momentum conser-
vation has been introduced, while we cannot achieve realistic cloth
interactions in cloth animation without conserving cloth-cloth mo-
mentums. Having this characteristic is visually distinctive when
cloth surfaces are moving fast and interact with each other.

For rigid N-body collisions by graphics and robotics groups
[11, 1, 10, 9] and for flexible-rigid collision resolution [2], several
approaches have been suggested. But they are not directly applica-
ble for deformable N-body collision resolutions, which is the case
cloth requires.

Cloth resolution methods so far compute non-penetrating po-
sitions, velocities or accelerations of particles [14, 3, 15], which
work fine for the collisions against fixed bodies. Using these meth-
ods, however, we cannot achieve visually satisfying dynamics of
cloth-cloth collisions. Adjusting particle orientations after colli-
sion resolution as suggested by [14] to sustain the geometrical
consistency of colliding faces also does not warrant reasonable dy-
namic movements of cloth-cloth collisions.

Handling collisions in an IZ as a bundle, proposed by Provot
[12], also does not give a proper visual effect. Since all particles
are given the same velocities after collision resolution, particles
tend to get stuck once they collide into each other in an IZ.

We propose our cloth collision resolution method which re-
solves simultaneous collisions while ensuring conservation of mo-
mentum as accurately as possible. Since simultaneous resolution
does not blindly resolve a collision without considering neighbor-
ing collisions within an IZ, we do not introduce any new collisions
while resolving a collision.

The collision resolution module receives collision information
as a set of IZs as described in Sec. 2.2. Within an IZ, where pos-
sibly multiple collisions reside, collisions are resolved simultane-
ously as described in Sec. 3.4. After we handle each IZ separately,
we check whether any new collisions between IZs are introduced
by collision resolutions, and handle them if there are any. In an
IZ, we first check whether it has CCs from rigid bodies. In case
we do not find any CCs from rigid bodies, the collisions in that IZ
are categorized as cloth-cloth collisions. If we find CCs from rigid
bodies in an IZ, we extract them temporarily from the IZ so that
only cloth-cloth collisions remain in the IZ. After resolving these
cloth-cloth collisions, we take care of cloth collisions against rigid
bodies so that the resolutions against rigid bodies will be done on
top of the result of self-collision resolutions. This sequence of
resolutions is chosen to avoid the case where self-collisions are
ignored while collisions against rigid bodies are handled.



3.1 Single Collision Cluster in an IZ

Figure 2. Segmenting a Collision Cluster into
parts

For some cases, an IZ has only one CC (for example, in the case
of extreme bending). When an IZ has only one CC, we cannot han-
dle the particles in that CC as a bundle as usual. Since the particles
in that CC will stick together after resolution, the movements of
cloth would not be natural and satisfactory. Hence we divide one
CC into parts so that we can find proper collision responses within
these parts. Segmenting one CC into parts is performed by iden-
tifying border edges. A border edge is an edge where we identify
a “significant” bending between two faces adjoining in that edge.
Empirically a bending between two faces with face normalsN1

andN2 is identified as significant whenN1 � N2 < 0. Eliminat-
ing the particles in the border edges segments a CC into several
sub-CCs as shown Fig. 2.

3.2 Merging Multiple CCs in an IZ

Figure 3. Merging Collision Clusters

When an IZ has three or more CCs, we reduce the total number
of CCs by merging closely located CCs. This merger is performed
to prevent undesirable collision resolution. If CCs are closely lo-
cated, it means the cloth patches represented by these CCs are
closely located. We do not want to handle closely located CCs
separately since it might instantly introduce instabilities to the sys-
tem by allowing closely located CCs to have different velocities.
However, there is an exception. When we find a significant bend-
ing between these closely located CCs, we have to resolve colli-
sions between these CCs by handling them separately. Bending
between CCs is consideredsignificant in the same way as in the
case of bending between faces. We do not want to handle closely

located CCs separately except for the case where the bending is
significant (CCs are considered to be closely located heuristically
when they can be connected using at most two edges which are not
members of both CCs). Hence the candidates of the CC merger are
the CCs closely located, where we do not witness any significant
bending between the CCs. Fig. 3 shows this merging process. Af-
ter merging, we still possibly have more than two CCs. Multiple
CC collision resolution is discussed at length in Sec. 3.4.

3.3 Collision resolution for two CCs

Figure 4. Determining the colliding direction.
Showing two different colliding directions
where the solid arrow shows the direction
computed by CC face normals and the dot-
ted arrow shows the direction computed by
connecting centers of masses of CCs.

By definition, an IZ is a set of CCs. Since we pre-processed a
single CC IZ previously, we assume an IZ always has two or more
CCs. The important part of the collision resolution of these mul-
tiple CCs is to find the proper directions of collisions. Collision
direction is a direction to which two CCs collide into each other.
Since the velocities of CCs after collision are computed based on
this collision direction, finding the correct collision direction is im-
portant to achieve proper visual effect of collisions. In the case of
the two billiard ball collision, the collision direction is computed
by connecting the two ball centers of mass. But in cloth-cloth col-
lisions, connecting two centers of CC masses is not a proper way
to decide the collision direction. We choose the collision direction
to be the average direction of the two face normals of colliding
CCs. To have the proper average direction, the CC face normals,
N1 andN2, have to be properly signed asN1 �N2 > 0. The face
normal of a CC is the average normal of all faces in the CC. Fig.
4 shows two different colliding directions between two collision
clusters CC1 and CC2; one by the average face normal and the
other by connecting centers of masses.

We handle a CC as a sphere mass where the diameter of the
sphere reflects the minimum proximity region. This approach
serves us well empirically. The velocity of a CC is defined as
the average velocity of all particles in that CC.

3.4 Simultaneous collisions

When we have collisions of three or more CCs in an IZ, it is
not straightforward to resolve the collisions.

As has been discussed in multiple collisions of rigid bodies, we
can think of two ways to solve this multiple cloth collision prob-
lem. One way of resolving these multiple collisions is to handle



them as staggered collisions [11, 10]; the other way is to han-
dle them as simultaneous collisions [1]. The staggered collision
approach handles multiple collisions as a series of single colli-
sions [11] or desynchronized groups of collisions [10]. The simul-
taneous collision approach treats multiple collisions as simultane-
ous collisions within a time-step. The staggered collision approach
gives us a more physically correct solution than the other. In the
synchronized staggered collision method, we have to find the first
collision among multiple collisions. After we resolve it, we march
the time step until we find the next collision. Then we repeat the
same procedure. This whole process is not only computationally
expensive but also we have to consider the possibility that the res-
olution of a collision can create new multiple collisions, which
we have to employ another strategy to resolve. In the desynchro-
nized staggered collision method, we identify groups of collisions,
and redefine the integration front-end by allowing time desynchro-
nization. In addition to the substantial computational expense and
complexity, the visual advantage of those staggered methods is not
considered significant compared to that of the simultaneous colli-
sion method.

The simultaneous collision handling method, proposed by
Baraff [1], resolves multiple rigid body collisions by solving a
system of linear inequalities, where the system of linear inequal-
ities is based on the colliding relationships between rigid objects.
As we treat CCs as mass balls, we adapt this approach for the cloth
collision resolution problem. A CC is considered as a body.

If N is the number of colliding bodies,v�i is the velocity of the
body i before collision, andv+i is the velocity of the same body
after collision, givenv�i , we have to findv+i for all i 1 � i � N .

When CC bodies are considered as vertices, an edge exists be-
tween two vertices where the bodies represented by those two ver-
tices collide. We call the resultant graph acollision graph. When
the collision graph of an IZ has a loop, we call the collisions in the
IZ cyclic. WhenN bodies are colliding without having any cyclic
collision, we can build a system ofN � 1 linear equations based
on the changes of relative velocities of each colliding pair, such as

v
+

i;j = �Cev
�

i;j (1)

whereCCi is theith CC,v�i;j is the relative velocity of theCCi

andCCj before collision,v+i;j is the relative velocity of the same
pair after collision, andCe is an elastic coefficient.

In addition, the law of N-body momentum conservation says,

m1v
+

1 +m2v
+

2 +��+mNv
+

N = m1v
�

1 +m2v
�

2 +��+mNv
�

N : (2)

Using eq. 1 and 2, we can deterministically find the solution of
all v+i for 1 � i � N .

Since we use swept-volumes of faces to detect collisions, we
handle fast moving cloth and rigid body objects. However a prob-
lem arises when collision resolutions of an IZ create new collisions
against objects around the IZ. This happens when objects do not
move fast enough to penetrate objects outside an IZ, but just fast
enough to make the result of collision resolutions penetrate the
proximity region of objects outside the IZ. To our relief, this case
appears to be very rare. However we can resolve this case by main-
taining the barycentric relationship between cloth surfaces and the
newly introduced colliding entities. Apparently, in the worst case,
this involves repetitious processes as we may introduce other new
collisions when we resolve the current collisions.

3.4.1 Cyclic Collisions

For the special case where we observe cyclic collisions in an IZ,
we build a system of linear inequalities based on the collision rela-

tionships between grouped particle parts. We find the feasible so-
lution of the linear inequality system, while trying to minimize the
energy we introduce into the simulation artificially. If an IZ has
cyclic colliding relationships between CCs, we haveN or more
linear inequalities such that

v
+

i;j � �Cev
�

i;j (3)

where the notations are as in eq. 1. This inequality relationship
between the relative velocities before and after collision is an arti-
ficial relationship set up heuristically, not based on physics. This
inequality relationship, first used for rigid body multiple collisions
[1], appears to serve the graphical purpose well.

When we solve this system of inequalities, we want to mini-
mize the difference betweenv+i;j and�Cev

�

i;j , which would rep-
resent the extra energy we introduce into the system. Hence, we
define an objective function,

X =
X

i;j

v
+

i;j � (�Cev
�

i;j) (4)

to be minimized when we solve the system. The system of in-
equalities with an objective function can be solved using a Linear
Programming Method.

3.5 Moving and Fixed Rigid Bodies

If an IZ has CCs from rigid bodies (rigid CCs) along with CCs
from cloth (cloth CCs), the collision resolutions against rigid bod-
ies are performed after cloth-cloth collisions are resolved.

When an IZ has rigid CCs, collision responses are different
based on whether rigid CCs are moving or fixed or a mixture of
both.

If the rigid CCs in an IZ are all fixed, we handle particles in
that IZ individually. WhereNface is the normal of a rigid face,V
is a particle velocity,Vnormal andVtangential are the normal and
tangential components ofV with respect to the rigid face, parti-
cles are considered separating ifVnormal � Nface > 0. Particles
are ignored if they are not in the vicinity of a face in fixed rigid
CCs, where the size of vicinity is the thickness of cloth. Further-
more, particles separating from the rigid bodies are also ignored.
The new particle velocityVnew is�CeVnormal+CfVtangential,
whereCe is an elastic coefficient andCf is a frictional coefficient.

If the rigid CCs in an IZ are all moving, we handle particles
as a bundle as long as particles are in the vicinity of moving rigid
CCs. We find the�x and the velocityVrigid of a moving rigid CC,
whereVrigid is defined as the translational velocity of the center
of mass of the moving rigid CC. Then the positions of all particles
we have to handle will be incremented by�x and the velocities of
the particles will be updated asVrigid.

If an IZ has both moving and fixed rigid CCs along with cloth
CCs, collision resolutions against rigid bodies are done based on
the proximities of particles to the rigid CCs. Cloth collision res-
olutions against rigid CCs will be computed based on the closest
rigid CC. Collisions between rigid bodies (rigid-rigid) have to be
handled independently from cloth collisions.

4 Results

Fig. 5 shows cloth-rigid and cloth-cloth collisions, where no
friction was assumed between the rod and the cloth. Fig. 6 shows
various kinds of collisions; cloth-rigid(fixed), cloth-rigid(moving),
and cloth-cloth. All our simulations were done on SGI Octane



with R10000 CPU and R10010 FPU. For numerical integration,
we used the CG method proposed by Baraff [3]. Details of simu-
lations are noted in Tab. 1. Notably�t in Fig. 6 (above) is 5 times
bigger than that of Fig. 6 (below). This mainly comes from the
fact that the fabric in Fig. 6 (below) is stiffer than the one in Fig.
6 (above).
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Simulation �t ST CD(%) CH(%) Int Np ledge(cm)
Fig. 5(above) 0.0005 0.36 .20(56) 0.07(19) 0.07(20) 961 1
Fig. 5(below) 0.0001 0.22 .099(45) 0.039(18) 0.07(32) 961 1
Fig. 6(above) 0.0005 1.22 .98(80) 0.12(10) 0.1(8) 1681 1
Fig. 6(below) 0.0001 1.15 .90(78) 0.10(9) 0.1(9) 1681 1

Table 1. Simulation logs - Units are in seconds unless noted otherwise. ST is the average Simulation
Time for one time step, CD is the average Collision Detection time, CH is the average Collision
Handling time(including re-integration), Int is the average Integration time, Leftover time is used for
displaying and saving frames, etc., Np is the number of particles used. ledge is the length of a warp or
weft directional edge.

Figure 5. Movements of two different types of fabrics

Figure 6. Dropping balls onto two different types of fabrics
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