
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

6-10-2008

Synthesizing Human Motion From Intuitive
Constraints
Alla Safonova
University of Pennsylvania, alla@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Part of the Applied Mathematics Commons, Artificial Intelligence and Robotics Commons,
Engineering Commons, and the Graphics and Human Computer Interfaces Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/178
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Safonova, A. (2008). Synthesizing Human Motion From Intuitive Constraints. Studies in Computational Intelligence: Artificial
Intelligence Techniques for Computer Graphics, 159 15-39. http://dx.doi.org/10.1007/978-3-540-85128-8_2

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/978-3-540-85128-8_2
http://repository.upenn.edu/hms/178
mailto:repository@pobox.upenn.edu

Synthesizing Human Motion From Intuitive Constraints

Abstract
Many compelling applications would become feasible if novice users had the ability to synthesize high quality
human motion based only on a simple sketch and a few easily specified constraints. Motion graphs and their
variations have proven to be a powerful tool for synthesizing human motion when only a rough sketch is
given. Motion graphs are simple to implement, and the synthesis can be fully automatic. When unrolled into
the environment, motion graphs, however, grow drastically in size. The major challenge is then searching these
large graphs for motions that satisfy user constraints. A number of sub-optimal algorithms that do not provide
guarantees on the optimality of the solution have been proposed. In this paper, we argue that in many
situations to get natural results an optimal or nearly-optimal search is required. We show how to use the well-
known A* search to find solutions that are optimal or of bounded sub-optimality. We achieve this goal for large
motion graphs by performing a lossless compression of the motion graph and implementing a heuristic
function that significantly accelerates the search for the domain of human motion. We demonstrate the power
of this approach by synthesizing optimal or near optimal motions that include a variety of behaviors in a single
motion. These experiments show that motions become more natural as the optimality improves.

Keywords
computer graphics, animation, planning, motion capture, human motion, motion graphs

Disciplines
Applied Mathematics | Artificial Intelligence and Robotics | Computer Sciences | Engineering | Graphics and
Human Computer Interfaces

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/hms/178

http://repository.upenn.edu/hms/178?utm_source=repository.upenn.edu%2Fhms%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages

Synthesizing Human Motion From Intuitive Constraints

Alla Safonova1 and Jessica K. Hodgins2

1University Of Pennsylvania, USA
alla@cis.upenn.edu

2Carnegie Mellon University, USA
jkh@cs.cmu.edu

June 10, 2008

Abstract

Many compelling applications would become feasible if novice users had the ability to synthesize high
quality human motion based only on a simple sketch and a few easily specified constraints. Motion graphs
and their variations have proven to be a powerful tool for synthesizing human motion when only a rough
sketch is given. Motion graphs are simple to implement, and the synthesis can be fully automatic. When
unrolled into the environment, motion graphs, however, grow drastically in size. The major challenge is then
searching these large graphs for motions that satisfy user constraints. A number of sub-optimal algorithms
that do not provide guarantees on the optimality of the solution have been proposed. In this paper, we argue
that in many situations to get natural results an optimal or nearly-optimal search is required. We show
how to use the well-known A* search to find solutions that are optimal or of bounded sub-optimality. We
achieve this goal for large motion graphs by performing a lossless compression of the motion graph and
implementing a heuristic function that significantly accelerates the search for the domain of human motion.
We demonstrate the power of this approach by synthesizing optimal or near optimal motions that include a
variety of behaviors in a single motion. These experiments show that motions become more natural as the
optimality improves.

Keywords: computer graphics, animation, planning, motion capture, human motion, motion graphs

1 Introduction

The ability to construct animations of human charac-
ters easily and without significant training would en-
able many novel and compelling applications. Children
could animate stories, novice users could author effec-
tive training scenarios, and game players could create a
rich set of character motions. With these applications
in mind, we have focused on techniques that require
users to provide only a small amount of information
about a desired motion. The user provides an approx-
imate sketch of the path of the character on the ground
plane and a set of constraints (Figure 1). Optimization
is a common technique for finding a motion when only a
rough sketch is provided. A number of continuous opti-
mization techniques have been proposed for solving this
problem (for example, [1–4]). In this paper, we concen-
trate on discrete optimization techniques that search a
graph constructed from existing motion capture data for
the solution.

Motion graphs have proven to be a a powerful tech-
nique to solve for a desired motion based only on a
rough sketch [5–9]. Because the solution is constrained
to a sequence of motion segments from the motion cap-
ture database, motion graphs are restrictive in the set of
motions they can represent. For example, it would be
impossible to synthesize a motion for picking up a cup
from a table that is 1.0 meter high if the database con-
tains only motions for picking up a cup from tables that
are 0.5 and 1.5 meters high. To relax this restriction,
in [10] we have introduced interpolated motion graphs
(IMG). The motion is represented as an interpolation
of two time-scaled paths through a motion graph. The
strength of this representation is that it allows the adap-
tation of existing motions through interpolation while
also retaining the natural transitions present in a motion
graph. Although larger than a motion graph, this repre-
sentation creates a search space that is far smaller than
the full space created by the 50 degrees of freedom of a
human character because it contains only natural poses
and velocities from the original motions and the interpo-
lation of segments with matching contact patterns.

Discrete search techniques can be used to search a
motion graph or an interpolated motion graph for a mo-
tion that satisfies user-specified constraints. During the
search, the graph is unrolled into the environment (by
augmenting each state with the global position and ori-
entation of the root). This step is required to search for
motions that satisfy user-specified global position con-
straints and avoid obstacles. Unrolling causes the size
of the graph to grow drastically in size and makes search
challenging.

Most motion graph implementations have used sub-
optimal techniques (that do not provide guarantees on
the optimality of the solution) because it was thought

Figure 1: (Left) Rough sketch of the desired path and a
user constraint requiring the character to sit on the chair
at the end of the path. (Right) Synthesized motion.

to be infeasible to perform a global search of a motion
graph of sufficient size to produce natural motion. In
this paper, we argue that in many situations to get natural
results an optimal or nearly-optimal search is required.

We show how to use the well-known A∗ search (we
use an anytime version of A∗ by Likhachev et. al [11])
to find solutions that are optimal or of bounded sub-
optimality in a motion graph containing a variety of be-
haviors. A∗ is a breadth-first algorithm that gains its
efficiency by using a lower bound on the cost to the goal
(a heuristic) to avoid computing nodes that are irrelevant
to the optimal plan.

We were able to useA∗ on a motion graph because we
made two improvements to the standard motion graph
implementation. The first technique compresses the mo-
tion graph into a practically equivalent but much smaller
graph by removing states and transitions that would not
be part of an optimal solution or are redundant. The
compression reduces the size of the graph by a factor of
20 to 50.

The second technique computes an informative
heuristic function that guides the search toward states
that are more likely to appear in an optimal solution. We
created the heuristic by splitting the full search prob-
lem into two much simpler problems: one that is only
concerned with the character’s location and orientation
in the environment and the other based purely on the
motion graph with no environmental constraints. Both
of these smaller planning problems can be solved effi-
ciently. The solutions to these problems provide lower
bounds on the costs to the goal that can be combined to
obtain an informative heuristic function for the search.

The combination of these two techniques makes it

possible to find optimal or close-to-optimal solutions in
standard motion graphs at close to interactive rates (10
seconds of motion required a few seconds of computa-
tion time for our examples). It also makes it possible to
search interpolated motion graphs for an up to 15 second
motion with a few minutes of computation.

In our experiments the user specified a desired 2D
path that required the character to perform various be-
haviors such as jumping, walking, walking along a
beam, ducking, picking, sitting. The solution mini-
mizes the sum of squared accelerations (an approxima-
tion to energy) and therefore our implementation avoids
the dithering back and forth motions often seen in solu-
tions computed with a local or sub-optimal search [7].
The optimality of A∗ allows us to find motions which
are natural in that they use a running jump for longer
jumps and a standing broad jump for shorter jumps as a
human likely would.

2 Background

Continuous optimization, introduced to the graphics
community by Witkin and Kass [1], is a common tech-
nique for finding a motion when only a rough sketch is
provided. These techniques rely on physical laws to con-
strain the search and produce natural-looking motion.
Continuous optimization has been shown to work well
when a good initial guess is provided and for synthe-
sizing relatively short, single behavior motions, such as
jumps and runs (see for example [2–4]). In contrast to
continuous optimization, the discrete optimization ap-
proach explored in this paper can handle longer motions
that consist of multiple behaviors and does not require
an initial guess.

Motion graphs and related approaches can be catego-
rized into on-line approaches where the motion is gen-
erated in response to user input (from a joystick, for ex-
ample) [7] and off-line approaches where the full mo-
tion specification is known in advance [6, 8]. On-line
approaches can perform only local search because new
input is continuously arriving. Off-line approaches, on
the other hand, can find a high quality solution that min-
imizes an objective function such as energy. Our work
falls into the category of off-line techniques.

A number algorithms have been developed to search
a motion graph in an off-line fashion. Kovar and his
colleagues [6] employed a branch and bound algorithm
to get an avatar to follow a sketched path. Arikan and
Forsyth [8] created a hierarchy of graphs and employed
a randomized search algorithm for the synthesis of a new
motion subject to user-specified constraints. Pullen and
Bregler [12] segmented motion data into small pieces
and rearranged them to match user-specified keyframes.
In 2003, Arikan and his colleagues [9] presented a new

search approach based on dynamic programming that
supports user-specified annotations of the motion. The
search space for their algorithm is much smaller than for
ours because they do not include position information
with each state but only the character’s pose and a time.
This simplification makes it difficult to satisfy position
constraints. Choi and his colleagues [13] presented
a scheme for planning natural-looking locomotion of
a biped figure based on a combination of probabilis-
tic path planning and hierarchical displacement map-
ping. Sung and his colleagues [14] used probabilistic
roadmaps and displacement mapping to synthesize mo-
tion for crowds.

To guarantee fast performance none of these ap-
proaches find optimal solutions but instead use sub-
optimal search techniques. To find an optimal solution
efficiently, Lau and Kuffner [15] manually created a
behavior-based motion graph with a very small number
of nodes. In later work, they precomputed search trees
from the graph and used them for faster but not globally
optimal search [16]. Lee and Lee [17] precomputed
policies that indicate how the avatar should move for
each possible control input and avatar state. Their ap-
proach allows interactive control with minimal run-time
cost for a restricted set of control inputs.

Unlike all previous motion graph approaches with the
exception of Lau and Kuffner [15], we find a glob-
ally optimal or a close-to-optimal solution with an up-
per bound on the sub-optimality. In Section 6, we show
a number of comparisons to demonstrate that globally
optimal solutions avoid the inefficient patterns of mo-
tion that are often seen with local or sub-optimal search
techniques.

3 Overview

We assume that we have a database of motions sampled
as an ordered sequence of poses. We use a right-handed
coordinate system XY Z with the X and Z axes span-
ning the ground plane and the Y axis pointing up. Each
pose is represented by (1) Q, the joint angles relative to
the inboard link and the orientation of the root around
the X and Z axes, (2) Py, the position of the root along
the vertical axis, (3) ∆Px and ∆Pz , the relative posi-
tion of the root on the ground plane (computed with re-
spect to the previous pose in this motion sequence) and
(4) ∆Qyaw, the relative rotation of the root around the
vertical axis (computed similarly).

The goal is to find motion that satisfies user sketch
and constraints and at the same time is natural and phys-
ically correct. Optimization is a common technique for
finding a motion when only a rough sketch is provided.
The user specifies a set of constraints (such as pose)
and an objective function. The optimization problem is

then to minimize the objective function while satisfying
user-specified and physics constraints (which preserve
the physical validity of the motion). In this paper we
concentrate on discrete optimization techniques.

To setup optimization problem we need to define un-
known variables that optimizer will search for, con-
straints that optimizer will need to satisfy and the ob-
jective function that optimizer will minimize to find a
natural solution. In Section 4 we describe each of them.

To solve the optimization problem we use a database
of motions to construct a graph that will be searched
for an optimal solution. A number of different graphs
have been proposed in the literature, including behavior-
based graphs, motion graphs and graphs that combine
motion graphs with interpolation. We describe graph
construction process in Section 5.

A number of search algorithms can be used to search
constructed graph for a solution. Global search meth-
ods compute the whole solution in one search. Local
search methods, on the other hand, only perform short
horizon searches that repeatedly find few steps of the
solution. Global methods find better quality solutions at
the expense of longer computation times. Global search
methods can be divided into methods that find a glob-
ally optimal solution and ones that find a locally opti-
mal solution with no guarantee on sub-optimality. We
discuss the importance of finding an optimal solution in
Section 6.

In Section 7 we show how to use the well-known A∗
search (we use an anytime version of A∗ [11]) to find
solutions that are optimal or of bounded sub-optimality.
We achieve this goal for large graphs by performing
a lossless compression of the graph and implement-
ing a heuristic function that significantly accelerates the
search for the domain of human motion. We present our
results in Section 8 and conclude with the discussion in
Section 9.

4 Discrete Optimization Problem

Unknowns: Given user sketch and constraints (such as
one shown in Figure 1), the goal is to find the motion of
the character that stays close to user sketch and satisfies
all constraints. Therefore, unknowns of the optimization
problem are poses of the character over time.
Objective function: Variety of objective functions have
been proposed in the literature. For example, in their
work [8], Arikan and Forsyth, use an objective function
that is a summation of violations of soft constraints and
smoothness of the motion. Soft constraints include: po-
sition and orientation constraints, number of frames in
the resulting motion, joint constraints, style constraints
and so on. Kovar and his colleges in [6], find a motion of
the character that follows a sketch of the path provided

by the user. The objective function they use is the dif-
ference between a user given path P and the actual path
traveled P traversed by the character. In [9], Arikan and
his colleges find a motion that satisfies given user an-
notations. Their objective function is a summation of
D abd C functions, where D measures the difference in
annotations for each frame of the motion and C mea-
sures the smoothness (“distance” between features of 2
consecutive frames).

In our work, the objective function is a weighted av-
erage of two terms: the sum of the squared torques com-
puted via inverse dynamics and the sum of the costs of
transitions associated with the traversed edges in the mo-
tion graph. The first term is an approximation of the
energy needed to perform the motion. This term picks
paths through the motion graph that will result in effi-
cient motion patterns. The second term is a measure of
the smoothness of the motion.

Constraints: Constraints allow user to express goals
that need to be satisfied exactly or within small toler-
ance. When constraints do not need to be satisfied ex-
actly but as close as possible, then they are treated as
soft constraints and added as a term to the optimization
function (as was done in [9]).

Hard constraints are most often used to specify start
and goal locations of the character as was for example
done in [8, 9]. Obstacle avoidance constraints are also
treated as hard constraints.

In our work, all user-specified constraints are treated
as constraints for the optimization problem rather than
including them as part of the objective function. This de-
cision makes the objective function independent of the
particular constraints chosen by the user at runtime and
allows us to compress the motion graph as a preprocess-
ing step (Section 7.3). User can, for example, specify a
set of constraints that constraint a particular point on the
character body (such as sitting on a chair or picking an
object). A user also either provides a rough sketch of the
2D path on the ground plane that the character should
follow or the 2D path is computed automatically from
the start and end points (Figure 2). The root of the char-
acter is constrained to stay inside a 2D corridor around
the path (0.5 − 1.0 m wide in most of the examples re-
ported here). If the user sketch passes across obstacles
(such as a river) the system also automatically adds en-
vironmental constraints (which are used for the compu-
tation of heuristic function that guides the search). Fi-
nally, obstacle avoidance constraints are automatically
included. Figure 2 gives an example of user sketch. User
constraints should coincide with contact changes in the
motion and will be met within a small tolerance.

Figure 2: Two example problem specifications.
(Left) The user provided the sketch of the path of the
character and specified 3 constraints: start at A, pick
an object from a table at B, and arrive at D. An envi-
ronmental constraint for jumping over the river is added
automatically by the system. (Right) The user specified
only the start and goal positions. The system automati-
cally creates a sketch of the 2D path while avoiding ob-
stacles and adds an environmental constraint for jump-
ing over the river.

5 Graph Construction

To solve the optimization problem we use a database
of motions to construct a graph that will be searched
for an optimal solution. A number of different graphs
have been proposed in the literature, including behavior-
based graphs, motion graphs and graphs that combine
motion graphs with interpolation. In this work we show
how to search standard motion graphs and interpolated
motion graphs for near-optimal solutions. We give an
overview of the graph construction process for these
graphs next.

5.1 Motion Graphs

Motion graphs are unstructured graphs which are cre-
ated completely automatically. A motion graph, MG, is
constructed by finding “similar” poses in different mo-
tions and creating transitions between these poses (Fig-
ure 3). A motion can be generated by simply traversing
a path in the graph. Two states are considered similar if
the error between them is within some threshold. Dif-
ferent error functions have been shown to work (see for
example [6–8]).

5.2 Interpolated Motion Graphs

Motion graphs capture natural transitions between avail-
able motion and as a result allow for creation of long,
multi-behavior motions. Because the solution is con-
strained to a sequence of motion segments from the mo-
tion capture database motion graphs can not synthesize
variations. For example, it would be impossible to syn-
thesize a motion for picking up a cup from a table that is
1.0 meter high if the database contains only motions for

Figure 3: A simple motion graph for two walking mo-
tions. States A1 and B1 are similar and therefore two
transitions are added to the motion graph: A1 → B2

and B1 → A2.

picking up a cup from tables that are 0.5 and 1.5 meters
high.

To relax this restriction, we have introduced inter-
polated motion graph, IMG ([10]). The key insight
behind interpolated motion graphs is that the motion is
represented as an interpolation of two time-scaled paths
through a motion graph. The strength of this represen-
tation is that it allows the adaptation of existing mo-
tions through interpolation while also retaining the nat-
ural transitions present in a motion graph. We allow in-
terpolation only of segments with matching contact pat-
terns and therefore the resulting motion is often close
to physically correct [18]. Although larger than a mo-
tion graph, this representation creates a search space that
is far smaller than the full space created by the 50 de-
grees of freedom of a human character because it con-
tains only natural poses and velocities from the original
motions and the interpolation of segments with match-
ing contact patterns.

We represent the motion, M ′(t), that we are trying to
synthesize as an interpolation of two time-scaled paths
through a motion graph:

M ′(t) = w(t)M1(t) + (1− w(t))M2(t). (1)

where M1(t) and M2(t) are the paths and w(t) is an in-
terpolation weight. The two paths independently transi-
tion between poses in the database (Figure 4). We allow
paths to be scaled in time to synchronize the motions for
interpolation. The weight, w(t) can also change with
time. Equation 1 is very similar to the standard equa-
tion for motion interpolation, where M1(t) and M2(t)
are two short motion segments of similar structure (two
jumps, for example). In our representation M1(t) and
M2(t) are two long paths through the motion graph
which we find using discrete optimization.

We construct a graph that supports interpolation of
paths through the original motion graph. We first con-
struct a standard motion graph, MG as described in the
previous section. We construct graph MG as a pre-
processing step. We then generalize MG to create a
motion graph that supports interpolation. We call this

Figure 4: For this example, the database consists of
four motions: two walks and two jumps. (a) Stan-
dard motion graphs find one path through the graph; (b)
Interpolated motion graphs find two paths through the
graph. The resulting motion is an interpolation of these
two paths, M1(t) (red) and M2(t) (pink). M1(t) and
M2(t) can transition independently between motions in
the database.

graph IMG (interpolated motion graph). Graph IMG
can also be constructed as a preprocessing step because
it does not require significant space (for our examples
IMG would require less than 5MB).

Each state in graph IMG is defined as S =
(I1, I2, w), where I1 and I2 are the indices of the
two poses to be interpolated and w is the interpolation
weight. Constructing graph IMG is like taking the
“product” of two identical motion graphs. Thus, the
maximum number of states in graph IMG is N2W ,
where N is the number of poses in the motion capture
database and W is the number of possible weight val-
ues. In practice, however, the number of states is much
smaller because we interpolate only poses with match-
ing contact states (left foot on the ground, for example).
Given stateA defined by (IA1 , I

A
2 , w

A
1), we need to com-

pute the set of successor states—the states that can be
reached from state A via a transition in the graph IMG.
State B is a successor of state A if and only if IB1 is
a successor of IA1 , and IB2 is a successor of IA2 in the
motion graph MG.

5.3 Unrolling Into Environment

During the search, the graph is unrolled into the environ-
ment (by augmenting each state with the global position
and orientation of the root). We call unrolled graph -
SG (search graph). This step is required to search for
motions that satisfy user-specified global position con-
straints and avoid obstacles. The process of unrolling
is the same for both, standard motion graphs and inter-
polated motion graphs. In this section, we use motion
graphs to describe unrolling.

This graph is built as the search works on it, thereby
limiting the allocated memory to only the states that are
actually computed.Each state in the graph SG is de-

fined by a pose in the motion graph MG and a global
position and orientation of the root of the character in
the environment. The global position is required in or-
der to satisfy position constraints (such as getting to the
goal). Depending on the problem, other variables could
be added to each state (elapsed time, for example). Un-
fortunately, the addition of the position information in-
creases the number of possible states significantly. For
example, suppose the position of a character is defined
by a 2D position in the plane (x and z) and an orienta-
tion about vertical axis (θ). Suppose also that each of
these variables can take 1000 distinct values. If the mo-
tion graph MG has 104 states then the search graph SG
will have 104 ∗ 109 states. This exponential expansion
makes search in this graph difficult if not impossible.

During the search, in addition to augmenting each
state with root position and orientation, we also augment
each state with a constraint counter. The counter is used
to ensure that all constraints are satisfied. If a state satis-
fies the next constraint during a search, its counter is set
to that of its predecessor plus one. Because constraints
are positioned along the user sketch, the counter also al-
lows states to be pruned from the search if they pass a
constraint without satisfying it.

6 Importance of Optimality

The search can be global but with no guarantees on opti-
mality of the solution. In many cases, however, it is im-
portant to find a solution as close to an optimal as possi-
ble. Globally near-optimal solutions avoid the dithering
and inefficient patterns of motion that greedy or locally
optimal solutions often have [7].

Figure 5 shows the results for two motions: a walk to
a place where the character needs to pick up an object
and a walk from the start to the goal. As the optimality
of the solution increases, the character finds more effi-
cient motion patterns. Figure 6 shows jumping exam-
ple. Optimal solution uses a running jump rather than a
standing broad jump as a human likely would.

Tables 2 shows how the cost of the solution changes
as its optimality increases during our search. Top table
is for “walk from start to goal” example.The first solu-
tion is very suboptimal—the character makes two really
large steps to reach the goal position (Figure 5). The
second solution is better—the character makes smaller
steps but the walk is a bit unnatural because the steps
are of different length. The final solution is optimal and
looks natural (Figure 5). Middle table is for “walk with
jumps over three river” example. The first solution is
suboptimal—the character makes inefficient two legged
jumps to cross all three rivers(Figure 6). The second
solution is more natural, the character now uses a one-
legged jump to cross the rivers(Figure 6). In the optimal

Figure 5: Optimal and sub-optimal solutions for walking a given distance (left) and for picking up an object (right).

Figure 6: Optimal (right) and sub-optimal (left) solu-
tions for jumping over river.

Search Time (secs) Solution Cost Optimality Bound (ε)
0.67 2,700,000 10.0
3.42 1,800,000 2.0

50.00 1,600,000 1.0

Search Time (secs) Solution Cost Optimality Bound (ε)
0.016 10,700,000 10.0
0.032 8,200,000 2.0
0.844 6,250,000 1.0

Search Time (secs) Solution Cost Optimality Bound (ε)
0.70 1,200,000 10.0
9.10 650,000 2.0

20.10 550,000 1.0

Table 1: Importance Of Optimality

solution the character does not jump but steps over the
last (the smallest) river. In the bottom table, the charac-
ter starts on the small rectangle and needs to walk toward
and pick a small object shown by a sphere in Figure 5.
The first solution is very suboptimal, the character bends
way too far to pick up a small object (Figure 5). The sec-
ond solution is better but the character is reaching from
the side which in the absence of constraints appears un-
natural(Figure 5). The final solution is optimal and looks
natural (Figure 5).

7 Optimal Search

We use A∗ search [19], and in particular its anytime ex-
tension ARA∗ [11], to find the paths through the mo-
tion graph. We briefly describe it in Section 7.1. In Sec-
tion 7.2 we analyze complexity of our problem and show
why it is hard. To make optimal search tractable we pro-
pose a lossless compression of the motion graph that sig-
nificantly reduced the number of states(Section 7.3) and

a search heuristic that worked well for many examples
of human motion(Section 7.4).

7.1 Search Method

We use A∗ search [19], and in particular its anytime ex-
tensionARA∗ [11], to find the paths through the motion
graph and interpolation weights so that the interpolated
path will satisfy the constraints and result in the optimal
motion. The algorithm takes as input a graph where each
edge has a strictly positive cost, a start state, sstart, and
a goal state, sgoal. It then searches the graph for a path
that minimizes the cumulative cost of the transitions in
the path. A∗ uses a problem-specific heuristic function
to focus its search on the states that are more likely to
appear on the optimal path because they have low esti-
mated cost. For each state s in the graph, the heuristic
function must return a non-negative value, h(s), that es-
timates the cost of a path from s to sgoal. To guarantee
the optimality of the solution and to ensure that each
state is expanded only once, the heuristic function must
satisfy the triangle inequality: for any pair of states s, s′
such that s′ is a successor of s, h(s) ≤ c(s, s′) + h(s′),
where c(s, s′) is the cost of a transition between states s
and s′. For s = sgoal, h(s) = 0. In most cases, if the
heuristic function is admissible (i.e., does not overesti-
mate the minimum distance to the goal), the triangle in-
equality holds. For a given graph and heuristic function,
A∗ searches the minimum number of states required to
guarantee the optimality of a solution [20].

The anytime extension of A∗, ARA∗ search [11],
trades off the quality of the solution for search time
by using an inflated heuristic (h-values multiplied by
ε > 1). The inflated heuristic often results in a speedup
of several orders of magnitude. The solution is no longer
optimal, but its cost is bounded from above by ε times
the cost of an optimal solution. ARA∗ starts by finding
a suboptimal solution quickly using a large ε and then
gradually decreases ε (reusing previous search results)
until it runs out of time or finds a provably optimal solu-
tion.

7.2 Complexity

The complexity of the A∗ algorithm is O(E + SlogS),
where S is the number of states and E is the number
of edges in the graph. If a motion graph, MG contains
10, 000 states, the unrolled graph MG (without interpo-
lation) will contain S = 1012 if we discretize Px and
Pz into 1000 by 1000 values and Qyaw into 100 values.
This graph cannot be searched quickly for an optimal so-
lution. As a result, all existing approaches in the litera-
ture either find a solution using a global but sub-optimal
approach with no guarantee on sub-optimality or search
a manually constructed graph with a small number of
states. The unrolled, interpolated motion graph, ISG, is
even more challenging to search because it has a larger
number of states (S = 1017 for this example assuming
we discretize w into 10 values). Constraining the char-
acter to stay inside the corridor around the user-specified
path would reduce the number of states to S = 1015 if
approximately 1% of the position values fall within the
corridor. This reduction is not enough to make optimal
search possible.

To address this problem, we developed two tech-
niques that significantly decrease the number of states
that the search will need to visit. The first technique
compresses the motion graph into a practically equiv-
alent but much smaller graph. The second technique
computes an informative heuristic function that guides
the search toward states that are more likely to appear in
an optimal solution. In Section 8, we show that the com-
bination of these techniques makes it possible to find an
optimal or a close-to-optimal solution for a database of a
reasonable size with a few minutes of computation. The
next two sections give the details of both techniques.

7.3 Graph Compression

We compress the motion graph in two steps. First, we
cull states and transitions that are sub-optimal. These
states will not appear in the optimal solution for any
set of user-specified constraints because the graph con-
tains a lower cost alternative. Second, we cull states and
transitions that are redundant because they are similar to
other states and transitions in the motion graph. These
steps result in a compressed version of graph MG and
the graph IMG is derived from that graph as described
in Section 7.3.
Culling sub-optimal states and transitions: To cull
transitions, we first identify a specific class of states:
those in which a contact change occurs (from double
support to right leg contact, for example, or from no
object in hand to object in hand). More formally, state
S in motion M is defined as a contact change state if
the state that directly precedes state S in motion M has
a different set of contacts with the environment. Con-

Figure 7: (a) For direct paths between a pair of contact
change states S1 and S2, the global position and orienta-
tion of the root of the character at state S2 is uniquely de-
termined by the contact position and orientation at state
S1 and the values of the joint angles at state S2. (b) The
position of the center of mass at landing (state S2) is
uniquely defined by the intersection of the flight trajec-
tory and the center of mass of the character at state S2.
The trajectory of the center of mass for the root of the
character is defined by the lift-off velocity from state S1.

tacts are assumed to be not moving with respect to the
ground plane or object in the environment. To deter-
mine the contact change states, we separate motions into
phases based on contact with the environment. We use
the technique of Lee and his colleagues [7] to identify
the contacts and then verify them by a visual inspection
(only a very small percentage of the contacts need to be
adjusted by hand for locomotion and other simple be-
haviors). Contact information could also be computed
using one of the other published techniques [21, 22].

We can then compute paths that connect pairs of con-
tact change states without passing through another con-
tact change state. All states in each such path will have
the same contacts except for the terminal state where
the contact changes. We call these paths single contact
paths.

We can remove a large number of single contact paths
from the graph MG. The key insight behind our algo-
rithm is that although there are likely to be many sin-
gle contact paths that connect two contact change states
(thousands in our experiment), they all end with the
character in exactly the same pose and with the same
root position and orientation (Figure 7). Only one of
these paths is optimal with respect to our optimization
function. Therefore we can cull all other paths before
unrolling the graph into the environment without reduc-
ing the functionality of the graph. Figure 8 illustrates
this process.

This culling step does not affect the functionality of
the graph unless the constraints provided by the user re-
quire controlling the details of the motion during a pe-
riod of time when the contacts are not changing. For
example, the user could no longer ask for waving while
standing in place. Because animated characters tend to
act on their environment, user constraints often create

Figure 8: (a) States A, B, C and D (shown in red)
are contact change states. If the character enters state
A (and initiates a right leg support phase), it can exit
only through state B or D. (b) A representation with
only the contact change states shows that there are many
paths between each state. (c) The graph after transitions
are culled to include only optimal paths between contact
states.

contact changes we have not found this restriction to be
a serious problem. We can revert to searching an uncom-
pressed motion graph if a constraint falls in the middle
of the contact phase.

The optimal path might also violate environmental
constraints if the swept volume for the character from
one contact change state to the next intersects an ob-
stacle. If the original graph contains a different path
that would not have violated the constraints, then the
culled graph will have lost functionality. This situation
is uncommon because neither endpoint intersects the ob-
stacle (or the search would not have explored the state)
and only limited movement is possible with one contact
change.

The optimization function we use allows us to com-
pute optimal paths as a precomputation step because it is
independent of the particular constraints the user speci-
fies. Many common optimization functions are indepen-
dent of the particular problem specification: minimizing
energy, minimizing sum of squared accelerations, max-
imizing smoothness, minimizing the distance traversed,
minimizing the total time of the motion, and satisfying
specified annotations (for example behaviors or styles as
in [9]). We can also support objective functions that de-
pend on the user specification at contact change states.
These functions can often be used to approximate other
functions. For example, instead of minimizing the dis-

Figure 9: (Left) States S1, S2 and S3 are similar to each
other. As a result, optimal transitions t1, t2 and t3 are
also very similar and all end with the character at ap-
proximately the same position. (Right) We merge states
S1, S2 and S3 into one state S′ and keep only the lowest
cost transition.

tance between every frame of the motion and the user-
specified sketch, we can minimize the distance between
the contact change states and the sketch.

Culling transitions in this way is different from retain-
ing only the transitions between contact change states,
as others have done [7]. With that approach no path
would be found between states A and D in Figure 8(a)
even though one exists in the original motion graph. The
preprocessing presented here retains many more unique
transitions, a property that is important for finding tran-
sitions between different behaviors such as a walk and a
jump.
Culling redundant states and transitions: After we
cull the sub-optimal states and transitions, we cull re-
dundant ones. Motion graphs often include redundant
data because of the need to capture natural transitions
between behaviors. For example, to include natural
transitions between walking and jumping, we included
many steps of similar walking segments. As a result,
each state in the motion graph may have many outgo-
ing transitions that are similar. If we remove this redun-
dancy, we can significantly reduce the size of the graph.
This compression is performed on the graph that con-
tains only contact change states, and the transitions are
the optimal sequences of poses between contact change
states.

For example, state A in Figure 9 has three successors,
S1, S2 and S3, that are similar to each other and all three
transitions will end at approximately the same position
in the environment when the graph is unrolled. We can
cull the redundant states by merging states S1, S2 and
S3 into one.

When two or more states are merged to form a new
state, the successors of that state are the union of the suc-
cessors of the merged states. Similarly, the predecessors
are the union of the predecessors of the merged states.
After merging, we will have many redundant transitions.
We keep only the lowest cost transition (Figure 9). We
merge states in the order of their similarity. The simi-

larity threshold for merging can be substantially larger
than that for establishing the initial transitions. A higher
threshold for merging just removes flexibility from the
graph whereas a higher threshold for transitions intro-
duces perceptible errors. Because each transition in the
compressed graph is a sequence of poses representing
one contact phase of the motion, we can post-process
each transition to remove foot-sliding as a preprocess-
ing step.
Constructing CompressedIMG: Previous two section
described how to compute a compressed standard mo-
tion graph. Comptressed interpolated motion graph can
be computed from it. After graph MG is compressed,
graph IMG is constructed from it using the same pro-
cess as described in Section 5.2. In the compressed
graph MG, however, each transition is a sequence of
poses in between two contact change states. Conse-
quently, a transition from state A = (IA1 , I

A
2 , w

A
1) to

state B = (IB1 , I
B
2 , w

B
1) in graph IMG is now a se-

quence of poses where each pose is an interpolation of
corresponding poses in the transitions from IA1 to IB1
and from IA2 to IB2 in the compressed MG (see [10] for
more information). The interpolation weight w is con-
stant throughout the transition. We use the interpolation
scheme described in Safonova and Hodgins [18]. When
the durations of the transitions from IA1 to IB1 and from
IA2 to IB2 differ, we assume a uniform time scaling with
the time of the interpolated segment computed accord-
ing to formula in [18].

As was shown by Safonova and Hodgins [18], this in-
terpolation scheme ensures that the majority of the cre-
ated transitions in graph IMG are close to physically
correct. We can also check these interpolated transitions
for physical correctness using inverse dynamics at the
time of construction of graph IMG.

7.4 Heuristic Function

We use an anytime version of the A∗ search algorithm
to find an optimal path in the unrolled graph, SG. The
number of states that A∗ search explores depends on the
quality of the heuristic function—the lower bounds on
cost-to-goal values. Informative lower bounds can sig-
nificantly reduce the amount of the search space that
is explored. In this section, we present a method for
computing such bounds. In Section 8 we show that this
heuristic function usually speeds up the search by sev-
eral orders of magnitude and is often the determining
factor in whether a solution can be found.

The heuristic function must estimate the cost of get-
ting to the goal while satisfying user and environmen-
tal constraints for each state S in the graph SG. We
compute two heuristic functions: Hpos and Hmg. The
first heuristic function, Hpos, ignores the dynamics of
the motion of the character and estimates the cost of get-

Figure 10: Hpos(S,G) is the shortest path from the po-
sition of the character at state S to the goal. The shortest
path is constrained to stay inside the corridor.

ting to the goal based only on the current position of the
character, sketch of the user path and obstacles in the
environment. The second heuristic function, Hmg, takes
into account the capabilities of the character that are en-
coded in the motion graph but ignores its position in the
environment. The combination of the two heuristics cre-
ates an informative measure of the cost of solving the
problem specification. We now describe how to compute
Hpos and Hmg and how to combine them. Same heuris-
tic function can be used to search both standard motion
graphs, SMG, and interpolated motion graphs,ISG.
Heuristic based on the character location (Hpos):
Hpos(S,G) is the shortest path on the ground plane from
the position of state S to the position of the goal state
G. The path must avoid obstacles and remain inside
the corridor around the user-specified path (Figure 10).
To compute Hpos(S,G), we discretize the environment
into 0.2 by 0.2 meter cells and compute the shortest path
from the center of each cell to the goal. A single Dijk-
stra’s search on a 2D grid can be used to compute all the
paths with only a few milliseconds of computation. Be-
cause our cost function minimizes weighted average of
energy and smoothness terms, we need to multiply the
shortest distance (in meters) by an estimate of the min-
imum value in objective function required to traverse
one meter. We compute the minimum value in objec-
tive function from the motion graph data. Because the
computation of the heuristic Hpos(S,G) depends on a
given user sketch, it must be computed at runtime.

We use a coarse discretization to compute the heuris-
tic function, but a much finer discretization when com-
puting the unrolled graph SG. For that computation, the
root position of the character was discretized into a 0.05
by 0.05 meter grid to avoid discontinuities in the final
motion.
Heuristic based on motion graph state (Hmg):
Hpos(S,G) provides a reasonable estimate of the cost
to the goal for motions that simply require the charac-
ter to travel from one location in the environment to an-

other. But if constraints are present thenHpos(S,G) will
underestimate the cost to the goal for two reasons: (1)
user or environmental constraints usually require much
more effort than the minimum torque estimate assumed
by Hpos; (2) the motion graph restricts what the charac-
ter can do from a particular state, perhaps making a state
that satisfies the constraint hard to reach. For example,
if the character needs to jump over an obstacle and it is
difficult to reach a jumping motion from state S, then
the cost-to-goal at state S should be high. Hpos will
grossly underestimate this cost and, consequently, A∗
search will needlessly explore this part of the space. The
second heuristic function, Hmg, addresses this problem
by taking into account the capabilities of the character
that are encoded in the motion graph. It estimates the
extra cost (the cost not accounted by Hpos) of satisfy-
ing each type of constraint for each state in the motion
graph.

In our implementation, we support five types of con-
straints: picking, jumping, stepping onto an obstacle (a
beam for example), ducking, and sitting. The method
should generalize to other types of constraints such as
kicking, stepping over obstacles, or standing on one leg.
For each type of a constraint supported by our system,
Hmg(S,C) is computed as the minimum cost of getting
to any pose in the motion graph that satisfies the con-
straint C from the state S.

The computation of the Hmg heuristic does not de-
pend on the particular constraint specified by the user
and therefore can be precomputed. The computation of
the Hmg heuristic is automatic because we have con-
tact information for all motions in the motion capture
database. We use the constraint of picking up an object
to explain the computation ofHmg. The same method is
used for all constraints supported by our system.

Both Hpos(S,G) and Hmg(S,C) account for the mo-
tion of the character in the plane. Therefore, the sum-
mation may overestimate the actual cost to the goal and
violate the admissability requirement for the heuristic
function. To resolve this problem, when computing the
Hmg(S,C) term, the cost of each transition in the mo-
tion graph is reduced by the minimum torque required
to traverse the planar distance covered by the transition
(Hposforthattransition). We denote this heuristic by
H̃mg(S,C).

When the constraint, C, is to pick up an object,
Hmg(S,C) represents the minimal cost of a path in the
motion graph from state S to any state that represents
the picking up of an object. Each “picking” pose can
be defined by two parameters: height and reach (Fig-
ure 11(a)). Height is the height of the object with re-
spect to the ground. Reach is how far the character must
reach out to pick up the object (distance between the
root and the hand projected onto the ground). Based on
the contact information, we automatically identify each

Figure 11: (a) We identify states where objects are
picked up in the motion graph. Each such pose is pa-
rameterized by two parameters: height and reach. (b)
For each state in the motion graph we precompute a ta-
ble with the minimal cost of getting to a “picking” state
with the specified height and reach parameters.

state in the graph MG that represents picking up an ob-
ject and compute height and reach values for that state.
For graph IMG, the process is similar. We identify each
state p = (I1, I2, w) that represents picking up an ob-
ject. Both poses, I1 and I2 are states where an object
was picked up. At this state, the character assumes a
picking pose with height and reach values based on the
interpolation of poses I1 and I2 with weight w.

For each state in the graph MG(process is the same
for IMG), we then compute a table (Figure 11(b))
where each cell represents a range of height and reach
values, and the value is the minimal cost of getting from
the given state to a state that represents picking with
height and reach values in this range. For each entry in
the table and each state in MG, we search graph MG
to compute the cost for that entry. The computation
is really fast for graph MG. For graph IMG, for the
database of 6-7 minutes of motion the precomputation
of the Hmg heuristic for all constraints took less than an
hour.
Combining the two heuristics: We combine
Hpos(S,G) and Hmg(S,C) into a single heuristic
function by summing them together. If at state S there
are still n constraints remaining to be satisfied, we fetch
theHmg term for each of these constraints, and then add
all of them to the Hpos(S,G) term to obtain a heuristic
value for state S:

H(S) = Hpos(S,G) +
∑

i=1...n

Hmg(S,Ci) (2)

8 Experimental Results

To illustrate the effectiveness of our approach, we gen-
erated a variety of examples for both standard motion

Figure 12: A forty-five meter motion with jumps and
walks

graphs (MG) and interpolated motion graphs (IMG).
For each experiment, the user specified a 2D path in
the environment that the character should follow and the
width of the corridor around that path. In some experi-
ments, the user also specified constraints such as pick-
ing up an object or sitting on a chair. Based on the
sketch and the current environment, the system automat-
ically computed environmental constraints such as step-
ping onto an obstacle, ducking, and jumping.

8.1 Search Effectiveness for standard motion
graphs (MG)

We have generated a variety of different examples in-
cluding various walks such as straight walks and walks
with slow and sharp turns, stepping over stones and
jumps of different lengths and of different types (one-
legged jumps and two-legged jumps). The figure 12
shows a screenshot of one of the motions generated by
our algorithm.

For all the experiments we used a motion database
containing approximately 12,000 frames of human mo-
tion captured at 30 frames per second. The motions
included various walks, jumps, and picking up objects
motions. The motion database was used to generate a
single motion graph for all the experiments. The gen-
erated motion graph was relatively densely connected
with the number of states being the same as the num-
ber of frames and the number of edges equal to about
250,000. While the density of the transitions in general
makes the task of the search harder, it has a significant
benefit in that we can generate motions that are quite
different from the motions in the motion database. This
freedom allows motions to follow the user specified path
and meet the constraints well. In addition, because the
generated solutions minimized the sum of squared accel-
erations (an approximation to energy), the motions gen-
erally avoided various artifacts such as dithering back
and forth motions. All the generated motions were post-

Search Time (secs) Solution Cost Optimality Bound (ε)
0.016 10658960 10.0
0.031 10658960 2.1
0.032 8226729 2.0
0.033 8226729 1.4
0.250 6268591 1.3
0.844 6268591 1.0

Table 2: The cost of a solution and the bound on its sub-
optimality as a function of search time. (The numbers
are only given for the time points when the solution cost
changed.)

processed to remove feet sliding, an effect usually seen
in motions that come straight from a motion graph. (The
post-processing used a very simple local optimizer.)

The lengths of the motions generated by our approach
varied from 8 to 60 seconds. The longest one was a 45
meter walk through a maze that also involved a num-
ber of examples of jumping over water. In all the ex-
amples the search quickly generates a first solution (for
sub-optimality bound ε set to 10): usually within 2 to
3 seconds. In case of the long walk through the maze
though the first solution was generated within 30 sec-
onds. The search then improves the solution within the
remaining time allocated to it. For each example the
search was given 120 seconds to find the best solution
it can. The table 2 shows how the cost of the found so-
lution improves during the search for one of the simpler
experiments. ε set to 1 corresponds to a provably op-
timal solution. Usually, the search converged to some-
where in between ε = 1.1 (at most, 10% sub-optimality)
and ε = 1.5 within the allocated time.

8.2 Search Effectiveness for interpolated mo-
tion graphs (IMG)

Figure 1 shows the motion of a character traversing an
obstacle course. The character walks over the beam,
jumps over holes, ducks under a bar, and finally sits on
a chair. This example illustrates that our algorithm can
synthesize motions that are 15 seconds long and con-
sist of several different behaviors. Besides the obstacle
course examples, we have also synthesized many other
examples, including walking along paths of varying cur-
vature, picking and placing an object in various loca-
tions, jumping over stones with variable spacing, jump-
ing with different amounts of rotation and distance, and
forward walks of different step lengths. Figure 13 shows
images for some of the results. For shorter, single behav-
ior examples, such as jumps and short walks, only a few
milliseconds to a few seconds were required to compute
an optimal solution. For longer, multi-behavior exam-
ples, a few minutes were required to compute a close-
to-optimal solution. In general, the time depends on the
size of the database, the length of the generated motion,
and the complexity of the constraints.

Figure 13: Synthesized motions

Before After removing After removing Compression
merging sub-optimal data redundant data time

DB 1 states=6,000 states=350, states=130 30 min
trans=90,000 trans=12,500 trans=700

DB 2 states=12,000 states=700 states=300 60 min
trans=250,000 trans=60,000 trans=5,000

DB 3 states=2,000 states=173 states=50 2 min
trans=25,000 trans=3,700 trans=300

Table 3: Compression for three motion graphs. The first
graph is computed from walking, jumping, ducking, sit-
ting and walking along the beam motions. The second
graph is computed from walking and picking motions
and the third one is computed from just walking mo-
tions.

8.3 The benefit of motion graph compression

In this experiment, we evaluate the effect of motion
graph compression. Table 3 shows these statistics for
three different databases: (1) walking, jumping, duck-
ing, sitting and walking along a beam; (2) walking and
picking up an object; (3) just walking motions. For each
database, we computed the number of states and transi-
tions in the motion graph before compression, after the
first compression step (removing sub-optimal data), and
after the second compression step (removing redundant
data). The table also gives the time required to compress
the graph (a precomputation step performed only once
for each database). Compression techniques reduce the
size of the graph by a factor of 20 to 50.

8.4 The benefit of the heuristic function

We also evaluated the effectiveness of our heuristic func-
tion. The results are shown in Table 4. We compare four
heuristics: (1) the Euclidean distance to the goal; (2) the
Hpos component of our objective function; (3) the Hmg

component of our objective function; (4) the combined
heuristic function with bothHpos andHmg components.

The results demonstrate that our heuristic function is es-
sential for making the search efficient and often makes
the difference between finding a good solution and not
finding one at all. The table also shows that both com-
ponents of the heuristic function are important, neither
component alone is effective.

9 Discussion

Motion graphs and their variations have proven to be
a a powerful technique to solve for a desired motion
when only rough sketch is given. In this paper, we have
demonstrated that it is possible to search a standard mo-
tion graph and interpolated motion graph using a glob-
ally optimal search algorithm, A∗. Two contributions
made this possible: a lossless compression of the mo-
tion graph that significantly reduced the number of states
and a search heuristic that worked well for many exam-
ples of human motion. We demonstrated that the global
search was effective by creating long example motions
and showing that the optimal and near-optimal solutions
avoided the dithering and inefficient patterns of motion
seen in many other motion graph implementations.

Because the method computes a compressed motion
graph that contains only optimal paths, variations that
may have existed in the original data may be lost. Vari-
ations are always “sub-optimal” and therefore will be
culled. We would like to experiment with keeping sev-
eral maximally different paths rather than just one. In
our experience, most of what is culled is redundant
trajectories that are visually indistinguishable but addi-
tional experiments would be required to decide whether
important variability is lost.

The quality of the results largely depend on the qual-
ity of the motion database used to construct the motion
graph. For example, if the database contains only a mo-
tion of sitting on a tall chair then we cannot synthesize
a motion for sitting on a medium or a low height chair
because there are no two motions whose interpolation
would provide the desired motion. We also found that
the motion graph must have “good” connectivity. Our
experiments show that to obtain good results many states
must be able to quickly connect to the constraint states
and vice versa.

Global optimization has two significant effects on the
motion of the character. First, it should iteratively find
the “correct” strategy for the character to use to navigate
an environment. For example, is a two-legged jump or
a one-legged jump more efficient for an obstacle of a
given size? Table 2 illustrates these discrete changes.
The second feature of the global optimization should
be to fine tune the motion, choosing a series of walk-
ing steps with little velocity change, for example. This
second feature is not as apparent in the animated mo-

ε Euclidean distance H2D Hmg Hcombined

time exp solved time exp solved time exp solved time exp solved
10.0 8.0 185,813 100% 8.1 160,718 100% 11.6 72,004 100% 0.8 9,332 100%
3.0 17.1 481,321 100% 16.8 406,149 100% 15.1 103,000 100% 1.6 16,068 100%
1.0 100.2 1,832,347 20% 97.8 1,748,620 20% 48.1 270,812 80% 49.5 275,712 80%

Table 4: Evaluation of the heuristic function for the problem of picking up an object. We sampled the location of the
object into 179 samples. Each column shows the average search time in seconds, the average number of states expanded
during the search and the percent of the experiments that succeeded (found solution within 10 minutes and did not run
out of memory). The statistics are reported for the Euclidean distance to the goal, the H2D component alone, the Hmg

component alone, and the combined heuristic function. The first row shows results for a solution whose cost is at most
10 times the optimal one. The sub-optimality bound for the second row is 3 and the solution in the last row is optimal.

tion but is still visible in the decrease in energy as the
optimizer iterates.

Although we did a few informal experiments to see
if a subject used the same strategies as the animated
character for a given terrain, we did not do a defini-
tive assessment with a large naive subject pool. Such
a study would be easy to run (using coding of the be-
havior selected for each part of the obstacle course as
the metric). We expect that the sequence of behaviors
from the human subjects would be similar to those of
the animated character for many but not all examples.
They might differ because the motion graph did not in-
clude the right behaviors (a long one-legged jump, for
example) so another less efficient behavior is selected (a
long two-legged jump, for example). Alternatively dif-
ferences might arise because people do not always opti-
mize efficiency but instead optimize for style, comfort,
safety or other factors.

References
[1] A. Witkin and M. Kass, “Spacetime constraints,” Computer

Graphics (Proceedings of SIGGRAPH 88), vol. 22, no. 4,
pp. 159–168, 1988.

[2] A. C. Fang and N. S. Pollard, “Efficient synthesis of physically
valid human motion,” ACM Trans. on Graphics, vol. 22, no. 3,
pp. 417–426, 2003.

[3] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthe-
sizing physically realistic human motion in low-dimensional,
behavior-specific spaces,” ACM Trans. on Graphics, vol. 23,
no. 3, pp. 514–521, 2004.

[4] A. Sulejmanpašić and J. Popović, “Adaptation of performed
ballistic motion,” ACM Trans. on Graphics, vol. 24, no. 1,
pp. 165–179, 2005.

[5] Y. Li, T. Wang, and H.-Y. Shum, “Motion texture: a two-level
statistical model for character motion synthesis,” ACM Trans.
on Graphics, vol. 21, no. 3, pp. 465–472, 2002.

[6] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM
Trans. on Graphics, vol. 21, no. 3, pp. 473–482, 2002.

[7] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S.
Pollard, “Interactive control of avatars animated with human
motion data,” ACM Trans. on Graphics, vol. 21, no. 3, pp. 491–
500, 2002.

[8] O. Arikan and D. A. Forsyth, “Interactive motion generation
from examples,” ACM Trans. on Graphics, vol. 21, no. 3,
pp. 483–490, 2002.

[9] O. Arikan, D. A. Forsyth, and J. F. O’Brien, “Motion synthesis
from annotations,” ACM Trans. on Graphics, vol. 22, no. 3,
2003.

[10] A. Safonova and J. K. Hodgins, “Construction and optimal
search of interpolated motion graphs,” in ACM Trans. Graph.,
p. 106, 2007.

[11] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A*
with provable bounds on sub-optimality,” in Advances in Neu-
ral Information Processing Systems (NIPS) 16, Cambridge,
MA: MIT Press, 2003.

[12] K. Pullen and C. Bregler, “Motion capture assisted animation:
texturing and synthesis,” ACM Trans. on Graphics, vol. 22,
no. 2, pp. 501–508, 2002.

[13] M. G. Choi, J. Lee, and S. Y. Shin, “Planning biped locomotion
using motion capture data and probabilistic roadmaps,” ACM
Trans. on Graphics, vol. 22, no. 2, pp. 182–203, 2003.

[14] M. Sung, L. Kovar, and M. Gleicher, “Fast and accurate
goal-directed motion synthesis for crowds,” in ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation, pp. 291–
300, July 2005.

[15] M. Lau and J. J. Kuffner, “Behavior planning for character an-
imation,” in ACM SIGGRAPH/Eurographics Symp. on Comp.
Animation, pp. 271–280, 2005.

[16] M. Lau and J. Kuffner, “Precomputed search trees: Plan-
ning for interactive goal-driven animation,” in ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation, pp. 299–
308, Sept. 2006.

[17] J. Lee and K. H. Lee, “Precomputing avatar behavior from hu-
man motion data,” in ACM SIGGRAPH/Eurographics Symp.
on Comp. Animation, pp. 79–87, 2004.

[18] A. Safonova and J. K. Hodgins, “Analyzing the physical
correctness of interpolated human motion,” in ACM SIG-
GRAPH/Eurographics Symp. on Comp. Animation, pp. 171–
180, 2005.

[19] J. Pearl, Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison-Wesley, 1984.

[20] S. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach. Englewood Cliffs, NJ: Prentice-Hall, 2003.

[21] L. Ikemoto, O. Arikan, and D. Forsyth, “Knowing when to
put your foot down,” in ACM Symposium on Interactive 3D
Graphics, pp. 49–53, 2006.

[22] B. L. Callennec and R. Boulic, “Robust kinematic constraint
detection for motion data,” in ACM SIGGRAPH/Eurographics
Symp. on Comp. Animation, pp. 281–290, 2006.

	University of Pennsylvania
	ScholarlyCommons
	6-10-2008

	Synthesizing Human Motion From Intuitive Constraints
	Alla Safonova
	Recommended Citation

	Synthesizing Human Motion From Intuitive Constraints
	Abstract
	Keywords
	Disciplines

	tmp.1448053371.pdf.LfP8c

