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Dynamic Search on the GPU

Abstract

Path finding is a fundamental, yet computationally expensive problem in robotics navigation. Often times, it is
necessary to sacrifice optimality to find a feasible plan given a time constraint due to the search complexity.
Dynamic environments may further invalidate current computed plans, requiring an efficient planning
strategy that can repair existing solutions. This paper presents a massively parallelized wavefront-based
approach to path planning, running on the GPU, that can efficiently repair plans to accommodate world
changes and agent movement, without having to restart the wavefront propagation process. In addition, we
introduce a termination condition which ensures the minimum number of GPU iterations while maintaining
strict optimality constraints on search graphs with non-uniform costs/
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Dynamic Search on the GPU

Abstract— Path finding is a fundamental, yet computationally
expensive problem in robotics navigation. Often times, it is nec-
essary to sacrifice optimality to find a feasible plan given a time
constraint due to the search complexity. Dynamic environments
may further invalidate current computed plans, requiring an
efficient planning strategy that can repair existing solutions.
This paper presents a massively parallelizable wavefront-based
approach to path planning, running on the GPU, that can
efficiently repair plans to accomodate world changes and start
movement, without having to restart the wavefront propagation
process. In addition, we introduce a termination condition
which ensures minimum number of GPU iterations while
maintaining strict optimality constraints on search graphs with
non-uniform costs.

I. INTRODUCTION

Pathfinding is a fundamental problem in robot naviga-
tion, with a large variety of proposed approaches [1] that
balance computational performance, problem domain com-
plexity, and plan optimality. Graph-based search methods
such as A* [2] provide strict optimality guarantees but
cannot handle dynanmically changing environments. Real-
time planners [3] have been proposed which provide anytime
solution guarantees, and can efficiently repair existing plans
to accomodate world changes and agent movement. However,
these approaches are difficult to parallelize. Parallel search
algorithms [4], [5] exploit multiple computer resources to
greatly reduce compuational cost, but sacrifice optimality
guarantees. Additionally, they have no mechanism to effi-
ciently handle world changes and agent movement.

This paper presents a massively parallelizable, wavefront-
based approach to path planning that can exploit graphics
hardware to considerably reduce the computational load,
while still maintaining strict optimality guarantees, and per-
forming efficient updates to accomodate world changes and
agent movement, while reusing previous computations. We
introduce a termination condition which ensures that the
plans returned are strictly optimal, even on search graphs
with non-uniform costs, while requiring minimum GPU
iterations. Furthermore, the computational complexity of our
approach is independent of the number of agents, facilitating
optimal, dynamic path planning for a large number of agents
in complex dynamic environments, opening the possibiity
to large-scale crowd applications. This paper makes the
following contributions:

« A wave-front based search technique that can efficiently
handle world changes and agent movement, while
reusing previous efforts, and is amenable to massive
parallelization.

« A termination condition which enforces strict optimality
guarantees, even for non-uniform search graphs, while
requiring minimum number of GPU iterations.

o Extension to handle any number of moving agents, at
no additional computational cost.

To our knowledge, this is the first massively parallelizable,
dynamic search technique with strict optimality guarantees
for non-uniform search graphs.

II. RELATED WORK

There has been considerable amount of research in robot
motion planning [1] that provide different tradeoffs in com-
putational cost, domain complexity, and solution optimality.
Discrete search methods like A* [2] provide strict optimal-
ity guarantees but cannot efficiently handle dynamic world
updates and agent movement. ARA* [6] provides anytime
properties by quickly generating a sub-optimal solution while
satisfying strict time constraints, and gradually converging to
optimality while reusing previous plan efforts. D* Lite [7]
efficiently handles world changes and agent movement, while
AD#* [3] is an anytime dynamic planner that satisfies strict
time constraints while efficiently repairing existing solutions
to accomodate dynamic events. Tree-based search algorithms
such as breadth-first search techniques [8] and alpha-
beta pruning [9] have been optimized to exploit multiple
processors. However, these approaches are not amenable to
massive parallelization using graphics hardware.

GPU accelerated path planning algorithms [5] provide
tremendous performance boost, enabling the solutions of
higher dimensional problem domains, but return sub-optimal
paths. The work in [10] demonstrates shortest path calcu-
lations for graph based searches on the GPU. The work
in [11] uses a blocked recursive elimination strategy to
utilize the compuational power and memory bandwidth of the
GPU. Randomized searches [12], [4] have been successfully
ported to the GPU, by doing multiple short-range searches
in parrallel, but provide no optimality guarantees. Distance
fields can be used to solve multi-agent planning on the
GPU [13]. Crowd simulation techniques [14], [15] exploit
GPU hardware to accelerate local collision avoidance for
crowds but does not handle global planning. Hierarchi-
cal planning approaches [16] perform map abstraction and
refinement to adaptively subdivide the search space into
smaller grids, each of which can be resolved in parallel.

Wavefront based algorithms [17] are amenable to
parallelization and have been demonstrated in a wide variety
of problem domains [18], not just navigation, yielding
substantial performance benefits over serial algorithms.



Comparison to Prior Work. Our work provides the benefits
of both dynamic search techniques [3] and wavefront style
algorithms [17] to provide a search technique which is
massively parallelizable and can efficiently update search
efforts to accomodate dynamic world changes and agent
movement.

I1I. METHOD OVERVIEW

Our method relies on appropriate data transfer between
the CPU and GPU at specific times. In the initial setup, the
CPU calls generateMap(rows, columns) which allocates
rows x columns states in the GPU to represent the entire
world. Initially, all free states s have an associated cost of -1,
g(s) = —1, which represents a state that needs to be updated,
while obstacles have infinite cost. Givent an environment
configuration with start and goal state(s), computePlan is
executed which repeatedly invokes plannerKernel (a GPU
operation) until a solution is achieved. We keep two copies
of the world map and use one to read state costs and the
other to write updated states costs to. After each iteration
(i.e. kernel execution), the two maps are swapped. This
strategy addresses the synchronization issues inherent in
GPU programming, by ensuring that the main kernel does
not write to the map we use for read operations.

Once the planner is done executing, each agent can just
follow the least cost path form the goal to its own state to
find the generated plan. If an obstacle moves from state s to
state s’, we update the GPU map by setting g(s’) = oo
and g(s) = —1. This means that s’ is now an obstacle
and the cost for s is invalid and needs to be updated. In
addition, we check the neighbors of s’ and mark them as
inconsistent if they had s’ as their least cost predecessor. The
planner kernel monitors states that are marked as inconsistent
and efficiently computes their updated costs (while also
propagating inconsistency) without the need for resetting
the entire map. Agent movement (change in start) is also
efficiently handled by performing the search in a backward
fashion from the goal to the start, and marking the previous
state as inconsistent to ensure a plan update. Algorithm 1
provides the pseudocode for computePlan.

IV. GPU BASED WAVEFRONT ALGORITHM

Existing graph based search [2] guarantee optimality and
work well for dynamic environments [3]. However, they
are not amenable to massive parallelization. The wavefront
algorithm [17] takes its name as an analogy of the way it
behaves. It sets up a map with a initial state which contains
an initial cost. At each iteration, every state at the frontier
is expanded computing its cost relative to its predecessors
cost. This process repeats until the cost for every state
is computed, thus creating the effect of a wave spreading
across the map. Wavefront based approaches are inherently
parallelizable, but existing techniques require the entire map
to be recomputed to handle dynamic world changes and agent
movement. Figure 1 visualizes the wavefront propagation
process in a simple environment.

Algorithm 1 computePlan(*my,,)
My < Mepuy
My Mepu
repeat
flag <0
plannerKernel(m,., m.,, flag)
swap (my,my)
incons < false
for all s in m, do
if incons(s) = true then
incons < true
break
end if
end for
until (flag = 0 A incons = false)
Mepy, < My

Our Approach. Algorithm 2 describes the shortest path
wavefront algorithm ported to the GPU. The planner first
initializes the cost of every traversable state to a default
value, ¢g(s) = —1, indicating it needs to be updated. States
occupied by obstacles take a value of infinity, g(s) = oo, and
the goal state is initialized with a value of 0, g(s) = 0. The
planner finds the value g of reaching any state s from the
goal by launching a kernel at each iteration that computes
g(s) as follows:

g(s) = mins’esucc(s)/\g(s/)zo(C(Sa SI) + g(s/))

for each successor that has been updated (i.e. g > 0).
This process continues until all states have been updated
at which point the planner terminates execution. To address
the concurrency problem inherent in a massive parallel
application, we created two copies of the maps in device
memory, one used as write-only and the other one as read-
only. Let us refer to these maps as m,, and m,., for write-
only and read-only operations respectively. Each thread in the
kernel reads the necessary values to calculate the cost of its
corresponding state from m,., and writes it to its given state
in m,,. This ensures that the map we are reading from will
not change as we are executing the kernel. Once the kernel
finishes execution, we swap m,. and m,,, thus allowing the
threads to read the most recent map while preventing race
conditions.

The kernel also takes as a parameter a flag which is set
depending on the termination condition used:

Exit when goal reached. The flag is originally set to
1 before each kernel run. If we find that goal state was
updated, that means we have a path to it and can terminate
execution. We do so by marking the flag as 0. This will
produce considerably fewer iterations but will not guarantee
optimality on search graphs with non-uniform costs. Since
each thread corresponds to only one state, only one thread
is able to modify this flag and no race condition is possible.
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Fig. 1.

Algorithm 2 plannerKernel(*m,, *m,,, *flag)
s < threadState
if s # obstacle As # goal then
for all s’ in neighbor(s) do
if s’ # obstacle then
newg < g(s') + ¢(s, )
if (newg < g(s)Vg(s) = —-1)Ag(s’) > —1 then
pred(s) < s’
g(s) « newg
{ evaluate_termination_condition }
end if
end if
end for
end if

if(s == goal)flag =0

Exit when whole map converges. An alternate exit con-
dition is to continue propagating until the whole map has
been successfully updated with accurate g values. This will
guarantee optimality but with a considerable increase in the
number of iterations. The flag is set to 0 before each kernel
run. If there is any update in a given iteration, the flag is set
to 1 thus ensuring that the planner keeps running until no
further update is possible. In other words, it will terminate
only when the cost computation for the entire environment
has converged. This will compute costs for unnecessary parts
of the environment but will guarantee optimal solutions.

flag=1

Minimal Map Convergence with Optimality Guarantees.

The naive approach discussed previously does much more
work than it is necessary to find an optimal path. For large
environments, this is prohibitively expensive. We introduce
a termination condition that can greatly reduces the number
of iterations required to find an optimal plan in large envi-
ronments with non-uniform search graphs. If at any iteration,
we find that the minimum g-value expanded corresponds to
that of the agent, this means that a path to that agent is
available and any other possible path would yield a higher
cost. To make sure that the agent state is expanded at each
iteration (to compare to the other states expanded), we give
it a g-value of -1 before each kernel run, marking it as a
state that needs to be updated. To implement this strategy, it

(© (d

Wavefront expansion process. (a) 3 iterations. (b) 11 iterations. (c) 15 iterations. (d) 18 iterations.

is enough to just adjust the condition that would set the flag
that terminates the execution:

if(g(s) < g(start) V g(agent) = —1) flag =1

Once the planner has finished executing, an agent can simply
generate its plan by following the path of least cost from the
goal to its position.

V. EFFICIENT PLAN REPAIR FOR DYNAMIC
ENVIRONMENTS AND MOVING AGENTS

We extend the algorithm to handle dynamic environments
where obstacle changes may invalidate plans that are cur-
rently being executed and it is also able to create a new plan
if an agent diverges from a previous plan. To handle obstacle
movements we incorporate a flag that marks every state as
either inconsistent or not. We define a state to be inconsistent
if its predecessor is not the neighbor with lowest cost or
if its successor is inconsistent. If an obstacle moves from
state s to state s’, then we set g(s’) = oo and g(s) = —1
(marking it for update). Then, for each successor s” of ¢/,
we mark s as inconsistent if s’ is the predecessor of s” and
set g(s”) = —1, forcing it to update. In other words, if any
of the neighbor states has s’ as a predecessor, we mark them
as inconsistent, thus mandating an update. The main kernel
then propagates in the same fashion until the termination
condition is satisfied and no inconsistent states along the
optimal path are left. We can append the following code to
the end of the plannerKernel (Algorithm 3), to guarantee
that node inconsistency is propagated and resolved in the
entire map. Keep in mind that the following code will run
in parallel, and that all read and write operations are done
in two distinct maps.

Algorithm 3 Algorithm to propagate state inconsistency
state < threadState
incons(s) < false
if incons(pred(s)) = true then
incons(pred(s)) « false
incons(s) + true
g(s) -1
end if

Handling agent movement is straightforward. For the non
optimized planner, the cost to reach every state has already
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Comparison of termination conditions. (a) Non-uniform state space. The states shown in red are of much higher cost as compared to other

states. (b) The planner terminates after updating g values for the whole map, producing an optimal path with significantly more iterations = 17. (c) Plan
termiation as soon as it finds a path to the goal, producing a sub-optimal path. Total number of iterations = 8. (d) The proposed termination condition
requires minimal iterations, while providing strict optimality guarantees. Number of iterations = 12.

been computed, so the agent would only require to recon-
struct its path again. In the case of the optimized version of
the planner it is necessary to run the planner again so that
any state between the goal and the new agent position that
has not been expanded, gets a chance to update its cost.

VI. MULTI-AGENT PLANNING

Our GPU planner is able to handle multiple agents and
create paths for each of them in such a way that they
avoid collisions with each other. We interleave planning and
execution by running the kernel every time the agents move.
Each agent is able to update its own plan by following the
least cost path from its position to the goal each time the
planner kernel is run. We extend our planner implementation
by making a slight modification to the termination condition
to account for multiple agents. We execute the kernel until
the agent with the largest g has a smaller g that any of the
non-agent states that were expanded for that iteration, and
all agent states had a chance to be reached:

if((g(s) < mawa,cayg(ai)) vV (9(ai) = —1Va; € {a}))

This means that the number of iterations it will take the
planner to finish execution will depend on the distance from
the goal to the farthest agent. When the map is updated,
each agent simply follows the least cost path from the goal
to its position to find an optimal path. It is important to
note that our approach requires no additional computational
cost to handle many agents.

Multi-Agent Simulation. Since our approach can
efficiently plan paths for a large number of agents, and use
existing plan efforts to efficiently repair plan efforts due to
changes in world state, we can easily extend our approach
to simulate a crowd of autonomous agents. Grid states that
are currently occupied by an agent incur an additional cost,
which impacts the manner in which the wave propagates
through it. Each agent is simulated to move along its current
path using a simple particle simulator (the path is guaranteed
to avoid obstacles and agents). At each frame, the map
is efficiently repaired to accommodate world changes and
agent movement, thereby repairing the paths of all agents.

Multiple Target Locations. Our framework is currently
limited to a small number of target locations, since a separate
map needs to be maintained for each target, resulting in a
significant memory overhead. Possible extensions to mitigate
this issue include an adaptive quad-based environment rep-
resentation, which would reduce the computation of wave
propagation in large worlds, and significantly reduce the
memory footprint. Efficiently porting an adaptive-quad based
environment representation to the GPU is the subject for
future exploration. We face a limitation regarding memory
when we attempt to handle multiple agents each with its
own goal. In this case, each agent would need its own
representation of the environment, which means that one
map per agent would be needed, requiring great amount of
memory.

VII. RESULTS

We ran our planner on several challenging navigation
benchmarks [19] to showcase the benefits and limits over
traditional methods using two different GPUs. Table I gives
the specification of both units:

TABLE I
GRAPHICS PROCESSING UNITS SPECIFICATIONS

Information GPU 1 GPU 2
Type GeForce GTX680 | Geforce GT 650M 2GB
Warp Size 32 32
Threads/Block 1024 1024
Global Mem 2147483648 Bytes 2147483648 Bytes
MultiProcessors 8 2
Mem Clock Rate 3004000 KHz 900000
Mem Bus Width 256 bits 128 bits
Chip Clock Rate 1058500 KHz 950000 KHz

Figure 3 demonstrates the scalability of our approach with
increase in number of agents on a 256 x 256 world map.
We observe that there was no noticeable increase in the
computational cost with increase in number of agents.

Figure 4 illustrates the scalability of our approach to
accomodate large environments. We tested it with a single
agent with a goal distance of N/2 in a N x N world map.
We observe that the use of the minimal yet sufficient exit
condition (EXIT A) produces significant performance im-
provements over EXIT B as the planner does not have to wait



1.7

--GPU 1,EXITA -#GPU 1,EXITB -+GPU 2,EXITA -eGPU 2,EXITB

15 -
PP (o)
> B——a——a s §————1
=
E1a
O
2
<
=09 -
o
o
.
Bo7 1 o—0__ _ _ o—e_ _ —o—o—
a. * A o - +
0.5
03 . . E—— ; ‘
4 8 16 32 64 128 256 512 1024
NUMBER OF AGENTS
Fig. 3. GPU planner performance with increase in number of agents.

EXIT A: Exit condition that checks for convergence of only agent states.
EXIT B: Exit conndition which checks for convergence of whole map. All
solutions returned are optimal paths. Experiment performed on a 256 x 256
environment. GPU memory = 5120 KB. CPU memory varies from 2048
KB to 2080 KB.
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Fig. 4. The figure shows the time it took our planner to find an optimal
solution for different map sizes on the average case. We can observe that
on the average case, the larger the environment the larger the benefit of our
planner.

until the g values of the whole map have converged, resulting
in great savings. Figure 5 illustrates the performance of our
approach on a variety of challenging benchmarks [19].

Figure 6 illustrates the overall advantage of using our
method with a simple test scenario where we handle obstacle,
agent and goal movement. We generated a random map of
size 512 x 512 populated with 8 agents. We can observe that
our method took fewer iterations to reach an optimal solution
at each step, with a significant performance improvement on
the initial plan and after goal movement, when the map needs
to be reset and planned from scratch.

Figure 7 illustrates the memory requirements of our ap-
proach based on world size.

Figure 8 demonstrates path planning for 200 agents in a
randomly generated environment of size 512 x 512. Since
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Fig. 6. GPU planner performance for dynamic simulation with changes in
environment, start, and goal.
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Fig. 7. Here we can observe that for world sizes over 128x128, we see
an increase on the amount of memory required by the GPU. We ran the
planner up to a size of 2048x2048 where the total amount of memory used
in the GPU was 263.16 MB.

Fig. 9. The figure shows how our planner is able to handle large complex
environments. In this case we show a world of 512 x 512 with 200 agents.
The goal is in the center of the map, and the computed paths are shown in
blue.
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TABLE I
ALGORITHM PERFORMANCE FOR DIFFERENT ENVIRONMENTS. (TIME
IN SECONDS)

. GPU 1 GPU 2

World Size  —p s Bt B T Exit A | Exit B
32 X 32 0011 | 0012 | 001 0.012
64x 64 | 0024 | 0027 | 0017 | 0022
128 x 128 | 0107 | 0.146 || 0078 | 0096
256 x 256 | 0.608 | 0871 | 0349 | 0.542
512x 512 | 4219 | 624 | 2691 | 3816
1024 x 1024 | 32.931 | 49.126 || 21.246 | 30.778
2048 x 2048 | 258.88 | 387.35 || 178.794 | 264.373

our approach can efficiently handle dynamic updates, we
can interleave planning with execution to create a crowd
simulator.

VIII. CONCLUSION AND FUTURE WORK

We have developed a massively parallel wave-front based
planning technique which can efficiently handle world
changes and agent movement by reusing previous computa-
tions. The computational cost of our approach is independent
of number of agents, facilitating global path planning for
hundreds and thousands of agents in very large, complex,
dynamic environments. Furthermore, we demonstrate a pro-
totype crowd simulator by interleaving planning with execu-
tion where the plans are efficiently updated to accomodate
agent movement.

There are some limitations to our approach. A separate
map needs to be maintained for each target location, resuting
in a substantial memory and computational overhead. This
makes our current approach intractable for agents with their
own targets. One possible approach to attenuate the impact
in memory would be to use a quad-based environment repre-
sentation where open spaces can be represented as a coarser

(c) @

Global Navigation for multiple agents on a variety of challenging benchmarks [19] of size 512 x 512.

© (d

Global Path Planning and Simulation of 200 agents on a complex navigation benchmark.

grid. Porting a quad-based environment representation to the
GPU is the subject of future exploration.
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