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Robust Inside-Outside Segmentation Using Generalized Winding
Numbers

Abstract
Solid shapes in computer graphics are often represented with boundary descriptions, e.g. triangle meshes, but
animation, physicallybased simulation, and geometry processing are more realistic and accurate when explicit
volume representations are available. Tetrahedral meshes which exactly contain (interpolate) the input
boundary description are desirable but difficult to construct for a large class of input meshes. Character
meshes and CAD models are often composed of many connected components with numerous
selfintersections, non-manifold pieces, and open boundaries, precluding existing meshing algorithms. We
propose an automatic algorithm handling all of these issues, resulting in a compact discretization of the input’s
inner volume. We only require reasonably consistent orientation of the input triangle mesh. By generalizing
the winding number for arbitrary triangle meshes, we define a function that is a perfect segmentation for
watertight input and is well-behaved otherwise. This function guides a graphcut segmentation of a constrained
Delaunay tessellation (CDT), providing a minimal description that meets the boundary exactly and may be
fed as input to existing tools to achieve element quality. We highlight our robustness on a number of examples
and show applications of solving PDEs, volumetric texturing and elastic simulation.
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Figure 1: The Big SigCat input mesh has 3442 pairs of intersecting triangles (bright red), 1020 edges on open boundaries (dark red), 344
non-manifold edges (purple) and 67 connected components (randomly colored). On top of those problems, a SIGGRAPH logo shaped hole is
carved from her side.

Abstract

Solid shapes in computer graphics are often represented with bound-
ary descriptions, e.g. triangle meshes, but animation, physically-
based simulation, and geometry processing are more realistic and
accurate when explicit volume representations are available. Tetra-
hedral meshes which exactly contain (interpolate) the input bound-
ary description are desirable but difficult to construct for a large
class of input meshes. Character meshes and CAD models are
often composed of many connected components with numerous self-
intersections, non-manifold pieces, and open boundaries, precluding
existing meshing algorithms. We propose an automatic algorithm
handling all of these issues, resulting in a compact discretization
of the input’s inner volume. We only require reasonably consistent
orientation of the input triangle mesh. By generalizing the winding
number for arbitrary triangle meshes, we define a function that is a
perfect segmentation for watertight input and is well-behaved other-
wise. This function guides a graphcut segmentation of a constrained
Delaunay tessellation (CDT), providing a minimal description that
meets the boundary exactly and may be fed as input to existing tools
to achieve element quality. We highlight our robustness on a number
of examples and show applications of solving PDEs, volumetric
texturing and elastic simulation.

Keywords: winding number, tetrahedral meshing, inside-outside
segmentation
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1 Introduction

A large class of surface meshes used in computer graphics repre-
sent solid 3D objects. Accordingly, many applications need to treat
such models as volumetric objects: for example, the animation or

physically-based simulation of a hippopotamus would look quite
different (and unrealistic) if handled as a thin shell, rather than a
solid. Since many operations in animation, simulation and geometry
processing require an explicit representation of an object’s volume,
for example for finite element analysis and solving PDEs, a con-
forming1 tetrahedral meshing of the surface is highly desired, as it
enables volumetric computation with direct access to and assignment
of boundary surface values. However, a wide range of “real-life”
models, although they appear to describe the boundary of a solid ob-
ject, are in fact unmeshable with current tools, due to the presence of
geometric and topological artifacts such as self-intersections, open
boundaries and non-manifold edges. As a consequence, processing
is often limited to the surface, bounding volumetric grids [McAdams
et al. 2011] or approximations with volume-like scaffolding [Zhou
et al. 2005; Baran and Popović 2007; Zhang et al. 2010].

The aforementioned artifacts are common in man-made meshes, as
these are the direct output of human creativity expressed through
modeling tools, which very easily allow such artifacts to appear.
Sometimes they are even purposefully introduced by the designer:
for example, character meshes will typically contain many overlap-
ping components representing clothing, accessories or small fea-
tures, many of which have open boundaries (see Figure 2). Modelers

1Contrary to some authors’ use of “conforming” to mean that every mesh
edge is locally Delaunay, we use it simply to mean that the volume mesh
interpolates to the boundary description.

Input mesh Slice in output volume

Figure 2: Each whisker, tooth and eye of the Big SigCat is a separate
component that self-intersects the body.

http://doi.acm.org/10.1145/2461912.2461916
http://portal.acm.org/ft_gateway.cfm?id=2461916&type=pdf
http://igl.ethz.ch/projects/winding-number/
http://igl.ethz.ch/projects/winding-number/robust-inside-outside-segmentation-using-generalized-winding-numbers.mp4
http://igl.ethz.ch/projects/winding-number/robust-inside-outside-segmentation-using-generalized-winding-numbers.zip


choose very specific boundary mesh layout and vertex density, nec-
essary for articulation or faithful representation of important features
while staying on a tight vertex budget. It is therefore highly desirable
to avoid remeshing and subsequent interpolation, and at the same
time obtain a valid and precise representation of the object’s inner
volume.

In this paper, we propose an automatic algorithm for producing vol-
umetric meshes that fully contain the geometry of the input surface
model. Our method robustly handles artifacts common in man-made
meshes while still supporting the full set of quality assurances, as
do existing conforming meshing tools.

Past years have seen many advances in algorithms for generating
high quality simplicial (triangles in R2, tetrahedra in R3) volume
meshes. The popular tools TRIANGLE [Shewchuk 1996] and TET-
GEN [Si 2003] are examples of methods that exactly conform to a
given piecewise-linear boundary description. Such tools support a
wide range of features, in particular concerning element quality, but
they fail when the input boundary descriptions contain geometric
ambiguities or flaws which make the inner volume even remotely
ambiguous. The number of these issues in a common man-made
model may range in the hundreds or thousands (see Figure 1), so
manual clean up is time consuming and deadeningly tedious. An
alternative could be to treat this as a surface repair problem, but
this precludes exactly maintaining the original boundary vertices
and facets during local fixup operations [Attene 2010]. Surface
reconstruction techniques are not quite suitable in our setting either,
because they focus on recovering surfaces from scans of real solids,
where the artifacts should only arise from scanning errors, and hence
partial or complete remeshing and loss of input features may occur.

Our method generally follows the steps of reconstruction based on
constrained Delaunay tessellation (CDT): we compute the (tetrahe-
dral) CDT of the convex hull of the input vertices and facets. We
rely on state-of-the-art CDT tools, which currently require certain
pre-processing of the input, such as subdivision of self-intersecting
facets and discarding degeneracies. The goal is then to segment the
CDT volume into “inside” and “outside” elements, such that the set
of inside elements comprises a valid conforming tet mesh. Our main
contribution is the introduction of a new inside-outside confidence
function by generalizing the winding number. Though similar at
a high level, signed distance functions do not encode segmenta-
tion confidence. They smoothly pass through zero at the surface,
whereas our function has a sharp jump there. Away from the surface
our function is smooth (in fact, harmonic!). It defines a perfect,
piecewise-constant segmentation of space when the input is perfect
(i.e. a watertight surface). When the input contains ambiguities and
missing information, the well-behaved nature of our function makes
it suitable for guiding an energy-minimizing segmentation of the
CDT, which can be efficiently computed using graphcut. We can
constrain the segmentation to exactly contain all input vertices and
facets, as well as ensure surface manifoldness. The final output is
a minimal tetrahedral mesh carved from the CDT which may be
post-processed using existing tools to achieve high-quality elements
or heterogeneous sizing.

We evaluate our algorithm on a wide range of inputs, which are other-
wise unmeshable with existing tools. We demonstrate the usefulness
of the method via applications such as physically-based elasticity
simulation, skinning weight computation for real-time animation,
geometric modeling and volumetric texturing. Our algorithm offers
a step towards a new level of robustness of unstructured volumetric
meshing, which will potentially have a large impact on the standard
computer graphics pipeline, especially as geometry processing turns
toward treating solids as solids rather than operating (often just out
of convenience or obligation) on merely the surface.
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Figure 3: The winding number intuitively captures self-intersections,
maintaining boundary exactly (cf. Figure (5) in [Shen et al. 2004]).
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Figure 4: Winding number is the signed length of the projection of
a curve onto a circle at a given a point divided by 2π. Outside the
curve, the projection cancels itself out. Inside, it measures one.

2 Related work

Surface repair. Artifacts of surface meshes, such as violations of
the connected 2-manifoldness, consistent orientation or watertight-
ness properties, not only disturb conforming volumetric meshing but
also surface-based processing, because the majority of geometric
algorithms assume clean input. Although the problem of mesh re-
pair has been extensively studied, it remains elusive in practice [Ju
2009; Campen et al. 2012]. Most methods for meshing of polygon
soups into surfaces do not robustly deal with self-intersecting input
facets [Hoppe et al. 1993; Kraevoy et al. 2003; Guéziec et al. 2001;
Podolak and Rusinkiewicz 2005] insofar as promising a volume-
meshable, watertight surface. Some methods do offer guarantees;
they work by globally remeshing the output [Ju 2004; Bischoff et al.
2005] or by making local modifications at the cost of not maintaining
the original mesh (geometry and/or connectivity) in troublesome
areas [Yamakawa and Shimada 2009; Attene 2010]. Bischoff and
Kobbelt [2005] repair CAD models while trying to preserve the
original meshing, but they assume the input is divided into mani-
fold patches that do not self-intersect, and their method requires a
spatially-varying threshold for gap filling. [Attene 2010] provide
volume meshing as an application of their watertight output. How-
ever, because their algorithm iterates between removing troublesome
patches and hole filling, large portions of the original mesh may be
deleted (see Figure 18). Holes are filled by locally modifying the
mesh and become hard boundary constraints for volume meshing.
Conversely, our winding number function incorporates global in-
formation to intelligently resolve missing information ambiguities.
A volumetric tool for general surface repair exists [Nooruddin and
Turk 2003], but its voxel-based nature does not scale well for large,
detailed models and complicates interpolation of the input mesh.
Unlike our method, the work of [Murali and Funkhouser 1997] is
not restricted to consistently oriented input. However, their voting-
based approach is prone to mis-assignment in overlap regions and
loss of small details [Attene 2010].

Surface reconstruction can be seen as an alternative way to ob-
tain a clean, watertight surface mesh. However, most reconstruction
algorithms are tuned to noisy point cloud inputs and hence do not
strive to preserve the input mesh structure. Algorithms like the
Zipper of [Turk and Levoy 1994] stitch range images by generally



only modifying the mesh along the overlap, but this approach is only
suitable for well-aligned range images. A host of reconstruction
methods, starting with [Hoppe et al. 1992], fit an implicit function to
the input surface geometry and extract a level set, which is guaran-
teed to be watertight for well-behaved functions; recent methods are
quite robust to noisy data [Kazhdan et al. 2006; Mullen et al. 2010]
and even unoriented data [Alliez et al. 2007]. However, the original
input mesh is generally lost during contouring. Shen et al. [2004]
design level-sets using moving least squares to perfectly interpolate
input facets, but contouring loses any premeditated discretization
distribution. Due to the oscillatory nature of their function, the exact
interpolation constraint may need to be relaxed when components
overlap (see our Figure 3 and their Figure 5).

Surface reconstruction of point clouds has been achieved with graph-
cut segmentation on voxel-grids [Hornung and Kobbelt 2006] and on
Delaunay meshes [Wan et al. 2011]. Wan et al. [2012] tackled open
surfaces via graphcut on a level-set of an intersection of approxi-
mating “crusts”. Our method, as many previous ones, segments a
volume from a constrained Delaunay tessellation of the input convex
hull. The peeling procedure of [Dey and Goswami 2003] fills surface
holes, ensuring a watertight result, though possibly non-manifold. It
requires a fine enough initial discretization to prevent a degenerate
solution. The spectral method of [Kolluri et al. 2004] improves upon
this. They provide similar post-processing heuristics to ours for
ensuring manifoldness. However, extending their spectral analysis
to interpolate input facets is not obvious.

Unstructured tetrahedral mesh generation. Efficient creation
of Delaunay tessellations is well studied; [Shewchuk 2012] is an
excellent survey. Methods can be subdivided into those that exactly
conform to input vertices and faces [George et al. 1990; Shewchuk
1996; Joshi and Ourselin 2003; Si 2003; Geuzaine and Remacle
2009] and those that approximate watertight input surfaces [Shi-
mada and Gossard 1995; Alliez et al. 2005; Bridson et al. 2005;
Labelle and Shewchuk 2007]. We heavily rely on the former to
mesh the convex hull of our input. Additionally, as our method
outputs a minimal tetrahedral mesh, we may post-process with mesh
refinement tools [Schöberl 1997; Si 2003; Klingner and Shewchuk
2007; Geuzaine and Remacle 2009] to achieve element quality.

Winding number, inside-outside tests. The winding number of
closed curves is an old concept [Meister 1769/70]. To the best of
our knowledge, no previous work has generalized “winding num-
bers” computed as integrals on open curves or surfaces, but many
related functions exist. Mean value coordinates use a similar pro-
jection integral [Floater 2003; Ju et al. 2005], but lack the jump
discontinuity across the boundary that gives the winding number its
unique segmentation property. They are also notably not harmonic,
and may oscillate and not satisfy the maximum principle. In the
terminology presented by [Zhou et al. 2008], our winding number
adheres to an “object-based” definition of inside-outside. Thus we
are a complement to their “view-based” definition. Their method
uses ray-shooting combined with graphcut to achieve a different set
of applications, more suitable to computer vision.

3 Method

Our goal is a tet mesh conforming to an input shape. We achieve this
by computing a constrained Delaunay tessellation (CDT) containing
the input vertices and facets; by evaluating a generalization of the
winding number for each element, we segment inside and outside
elements of the CDT, resulting in the final tet mesh.

Let the input shape in Rd be described by a list of n vertices V =
{v1,v2, . . . ,vn} , vi ∈ Rd and a list of m simplicial facets F =

{f1, . . . , fm} where fi ∈ {1, 2, . . . , n}d (we only consider d =
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Figure 5: Winding number exactly segments inside and outside for
concave, high-genus, inverted and overlapping curves. Multiple
components are also naturally handled: consider this entire figure.

2 and d = 3). The goal is then to find a set of elements E ⊂
{1, . . . , k}d+1 defined over a set of vertices VE which represent the
area (if d = 2) or volume (if d = 3) of (V,F). In the ideal case, we
achieve exact interpolation: VE = V and all facets in F appear as
subfacets of elements in E . Note, facets and elements correspond to
triangles and tetrahedra inR3 and edges and triangles inR2.

Although F forms a graph or mesh over V , the input is not assumed
to be (d−1)-manifold, orientable or closed. We do assume the mesh
intuitively represents or loosely approximates the surface of some
solid and has reasonably consistent orientation. This is motivated
by the observation that most practical input meshes were created in
such a way that they appear to be the surface of some solid when
rendered with single-sided lighting.

We first construct an inside-outside confidence function which gener-
alizes the winding number. We then evaluate the integral average of
this function at each element in a CDT containing (V,F). Finally,
we select a subset E of the CDT elements via graphcut energy opti-
mization with optional constraints to enforce strict facet interpolation
and manifoldness.

4 Winding number

The traditional winding number w(p) is a signed, integer-valued
property of a point p with respect to a closed Lipschitz curve C
in R2. Intuitively, if we imagine there is an observer located at p
tracking a moving point along C, the winding number tells us the
number of full revolutions the observer took. Full counter-clockwise
revolutions increase the count by one, while clockwise turns subtract
one. In other words, w(p) is the number of times C wraps around
p in the counter-clockwise direction. Without loss of generality let
p = 0, parameterize C using polar coordinates and define

w(p) =
1

2π

∮
C
dθ. (1)

It is the signed length of the projection of C onto the unit circle
around p divided by 2π (see Figure 4). A value of 0 or 1 means p lies
outside or inside C, respectively. The winding number distinguishes
outside and inside for curves enclosing regions of arbitrary genus,
and also identifies regions of overlap (see Figure 5).

θi

ci+1

cip

The integral in Equation (1) provides an im-
mediate and exact discretization if C is piece-
wise linear:

w(p) =
1

2π

n∑
i=1

θi, (2)

where θi is the signed angle between vectors
from two consecutive vertices ci and ci+1 on C to p.
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Figure 6: Left to right: winding number field with respect to an
open, partial circle converging to a closed circle. Note the ±1 jump
discontinuity across the curve. Otherwise the function is harmonic:
smooth with minimal oscillation.

Let a = ci − p and b = ci+1 − p, then:

tan (θi(p)) =
det([ab])

a · b =
axby − aybx,
axbx + ayby

(3)

4.1 Generalization to R3

The winding number immediately generalizes to R3 by replacing
angle with solid angle. The solid angle Ω of a Lipschitz surface S
with respect to a point p ∈ R3 (w.l.o.g. let p = 0) is defined using
spherical coordinates to be:

Ω(p) =

∫∫
S

sin (φ) dθdφ. (4)

It is the signed surface area of the projection of S onto the unit
sphere centered at p.

Let the winding number of a closed surface S at point p be defined
as w(p) := Ω(p)/4π. The same classification properties apply
as in R2. The notion of “winding”, now counts the (signed) total
number of times the surface wraps around a point.

vk
vi

p

Ωf

vj

And again, if we have a triangulated,
piecewise-linear surface, there is an
immediate and exact discretization
of Equation (4):

w(p) =

m∑
f=1

1

4π
Ωf (p), (5)

where Ωf is the solid angle of the
oriented triangle {vi,vj ,vk} with
respect to p. Let a = vi − p, b =
vj − p, c = vk − p and a =
‖a‖, b = ‖b‖, c = ‖c‖; then following [van Oosterom and Strac-
kee 1983]:

tan

(
Ω(p)

2

)
=

det([ab c])

abc+ (a · b)c+ (b · c)a+ (c · a)b
(6)

4.2 Open, non-manifold and beyond

The simplicity of the discrete formulae in Equations (2) and (5)
begs the question, what will happen if the input is open? Or non-
manifold? Or otherwise ambiguous?

We first consider open curves in R2. Instead of an indicator, step
function, Equation (2) is now an otherwise smooth function that
jumps by ±1 across the curve (see Figure 6). In fact, the smooth-
ness and fairness of this generalized winding number may be well

# define Laplacian operator in 2d
Laplacian2 := (f,x,y) -> diff(f,x,x) + diff(f,y,y);
# arbitrary position for vi, a := vi - p
a_x := vi_x-px; a_y := vi_y-py;
# arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py;
# determinant of (a,b)
detab := a_x*b_y - b_x*a_y;
# a dot b
adotb := a_x*b_x + a_y*b_y;
quotient := detab / adotb;
sab := 2*arctan(simplify(quotient));
simplify(Laplacian2(sab,px,py),symbolic);
# result is 0

# define Laplacian operator in 3d
Laplacian3 := (f,x,y,z) -> diff(f,x,x) + diff(f,y,y) + diff(f,z,z);
# vi := (0,0,0), a := vi - p
a_x :=    0-px; a_y :=    0-py; a_z :=    0-pz;
# arbitrary position for vj, b := vj - p
b_x := vj_x-px; b_y := vj_y-py; b_z := vj_z-pz;
# arbitrary position for vk, c := vk - p
c_x := vk_x-px; c_y := vk_y-py; c_z := vk_z-pz;
# determinant of (a,b,c)
detabc := a_x*b_y*c_z + b_x*c_y*a_z + c_x*a_y*b_z - 
  a_x*c_y*b_z - b_x*a_y*c_z - c_x*b_y*a_z;
a := sqrt(a_x*a_x+a_y*a_y+a_z*a_z);
b := sqrt(b_x*b_x+b_y*b_y+b_z*b_z);
c := sqrt(c_x*c_x+c_y*c_y+c_z*c_z);
# divisor in atan
divisor := a*b*c + (a_x*b_x+a_y*b_y+a_z*b_z)*c +
  (b_x*c_x+b_y*c_y+b_z*c_z)*a + (c_x*a_x+c_y*a_y+c_z*a_z)*b;
sabc := 2*arctan(detabc / divisor);
simplify(Laplacian3(sabc,px,py,pz),symbolic);
# result is 0

Figure 7: MAPLE code proving that signed angle inR2, solid angle
R3, and, by extension, the winding number are harmonic.
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Figure 8: Winding number gracefully handles holes (in grey curve,
left), non-manifold attachments (middle), and exactly or nearly
duplicate facets (right).

understood. Except on the curve, it is harmonic! This implies C∞
smoothness and minimal oscillations – highly desirable properties.

The sum of harmonic functions is harmonic, so it suffices to show
that all θi and Ωi are harmonic. This is easy to do using symbolic
differentiation and simplification using Maple [Char et al. 1983]
(see Figure 7). In R3 treating all triangle vertices vi,vj ,vk as
symbolic variables makes Maple run out of memory, therefore we
take advantage of invariance to translation and fix vi = (0, 0, 0).

The winding number is not simply the unique harmonic function
determined by setting one side of the boundary to 0 and the other to
1, as if by a diffusion curve of [Orzan et al. 2008] (also cf. [Davis
et al. 2002]). This is true if and only if the input is watertight. Rather,
the winding number is the sum of harmonic functions corresponding
to each input facet, setting one side to −1/2 and the other to 1/2
(see Figure 9). We do not explicitly control the boundary conditions
— they are implicitly defined by the boundary winding number itself.
This allows graceful shift from a perfect segmentation function to
a smooth confidence measure as artifacts appear in the boundary.
Unlike [Orzan et al. 2008] who solve a variational problem, we have
a closed-form expression to evaluate the winding number.

Equation (5) may be interpreted as an instance of the boundary
element method (BEM) for evaluating the solution to the Laplace
equation. If we define Dirichlet boundary conditions on each side
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Figure 9: The winding number is the sum of harmonic functions defined for each facet.

of our facets using the winding number, the solution of the Laplace
equation on the entire space is equivalent to w(p) for p ∈ Rd. This
follows from the uniqueness property of harmonic functions.

An alternative understanding of the winding number is to shoot rays
in every direction from p. For each ray sum ±1 for each signed
intersection with the input. The traditional and our generalized
winding number is the average of these values. This understanding
is useful conceptually, but difficult to realize as an algorithm. While
casting a few rays is possible [Nooruddin and Turk 2003; Hous-
ton et al. 2003], this approximation will be noisy in the presence
of open boundaries and non-manifold edges. By considering the
input’s projection on the unit ball around p instead, our algorithm is
tantamount to shooting all possible rays.

The jump discontinuity across the input facets provides the winding
number a unique advantage as a confidence measure in contrast to
other methods (e.g. signed distance fields). Such measures continu-
ously approach a zero level-set, where the difference between the
measure at a clearly inside point (just to the inside of a facet) and a
clearly outside point (just to the outside) diminishes. In contrast, the
winding number instead becomes ever more confident and the mea-
sure approaches the discontinuous boundary conditions at that facet,
regardless of whether the facet is part of a watertight component
(see Figure 3).

Non-manifold edges appear often in 3D character meshes to describe
thin clothing or accessories. It is convenient to conceptually treat
each manifold patch of (V,F) as an appropriately open or closed
surface. Each patch then contributes independently to the total wind-
ing number. Thus non-manifold edges affect the winding number
in a similarly predictable manner to open boundaries (see Figure 8
middle).

In character meshes and CAD models, there may be entirely dupli-
cated or nearly duplicated patches of the input mesh. These shift the
winding number range locally (see Figure 8 right). This disquali-
fies simply thresholding the winding number for final segmentation,
hence our use of a carefully crafted graphcut energy.

4.3 Hierarchical evaluation

The discrete formulae in Equations (2) and (5) give a direct route to a
naive implementation to computew(p): simply sum the contribution
of θi or Ωi for each input facet. This is embarrassingly parallel and
the geometric definition invites the possibility of a shader-style
parallel implementation. However, the asymptotic runtime would
still grow linearly with the number of input facets. A facet’s effect
on w(p) diminishes with respect to its distance to p. We could
asymptotically speed up our evaluation with an adaptation of the Fast
Multipole Method, however this would only be an approximation.
Instead, we achieve exact evaluation and asymptotic performance
gains by noticing that the winding number obeys the following
simple property.

Consider a possibly open surface S and an arbitrary closing sur-
face S̄ such that ∂S̄ = ∂S and S̄ ∪ S is some closed, oriented
surface T . Then if p is outside the convex hull of T , we know

Algorithm 1: construct hierarchy(T,V,F)
Inputs:
T root of subtree in hierarchy
V mesh vertex positions
F list of facets in bbox(T )

begin
E ← exterior edges(F) // Compute list of exterior edges of F
T.S̄ ← closure(E) // Compute closure of F
if |F| < 100 or |T.S̄| ≥ |F| then

T.F ← F // mark as leaf and save F
return

end
Fleft ← restrict(V,F ,bbox(T.left)) // Restriction of F , left
Fright ← restrict(V,F ,bbox(T.right)) // Restriction of F , right
construct hierarchy(T.left,V,Fleft) // recurse
construct hierarchy(T.right,V,Fright) // recurse

end

Algorithm 2: hier winding(p, T, V )→ w

Inputs:
p evaluation point
T root of subtree in hierarchy
V mesh vertex positions

Outputs:
w exact generalized winding number at p

begin
if T is a leaf then

w ← naive winding(p, T.F ,V) // use all faces T.F
else if p is outside bbox(T ) then

w ← −naive winding(p, T.S̄,V) // use closure T.S̄
else

wleft ← hier winding(p, T.left,V) // recurse left
wright ← hier winding(p, T.right,V) // recurse right
w ← wleft + wright // sum

end
return w

end

that wS(p) + wS̄(p) = wT (p) = 0. Interestingly this means
wS(p) = −wS̄(p), regardless of how S̄ is constructed. Notice this
result is trivial if S is closed, as wS(p) = 0.

We can conceptually express our mesh as a union of manifold
patches. We define exterior edges as boundary edges of such a
segmentation. In R3, if p lies outside the convex hull of (V,F),
then we collect all exterior edges and trivially triangulate each with
an arbitrary vertex. Though ugly from a surface repair point of view,
these triangles indeed represent a valid closing of (V,F) and will
only be used for winding number evaluation. Note that the segmen-
tation into manifold patches is never explicitly computed. Rather we
traverse around each facet in order, and for each directed edge i, j
we increment count(i, j) if i < j and decrement count(j, i) if
j < i. In this way we keep track of how many extra times each edge



is seen in the forward or backward direction. Finally all edges with
count(i, j) 6= 0 are declared exterior and triangulated with some
arbitrary vertex k with orientation {i, j, k} if count(i, j) = c > 0
and {j, i, k} if count(i, j) = −c < 0. These triangles are re-
peated |c| times to account for possible multiple coverage of the
same exterior edge. In R2, we analogously find exterior vertices
and connect them to an arbitrary vertex using appropriately oriented
line segments.

For reasonably tessellated meshes, the number of exterior edges and
thus the number of closing triangles will beO(

√
m). We exploit this

by evaluating the winding number using a bounding volume hierar-
chy partitioning F . Though there is an art to optimizing bounding
volume hierarchies, we opt for a simple axis-aligned-bounding-box
hierarchy. We initialize the root with the bounding box of V . We
precompute the exterior edges and closure of F , then we simply bi-
sect the box, splitting its longest side. Each facet of F is distributed
to the child whose box contains the facet’s barycenter. We recurse
on each child. Splitting stops when the number of a box’s exterior
edges approximately equals the number of its facets or when the
number of its facets slips below a threshold (≈100). This stopping
criterion ensures that worst case performance stays the same. See
Algorithm 1. To evaluate the winding number, we traverse this hi-
erarchy recursively. When we reach a box of which the evaluation
point is outside, we evaluate using the closure. See Algorithm 2. In
general we see large speed ups (see Figures 10 & 11).

5 Segmentation

We segment according to the winding number by selecting a subset
of the elements in a constrained Delaunay tessellation of the con-
vex hull of (V,F). We may then refine this mesh to meet quality
criterion using [Si 2003] or [Klingner and Shewchuk 2007].

Theoretically the only problems when computing a CDT on our input
mesh (V,F) are self-intersections. InR2, the TRIANGLE program
[Shewchuk 1996] automatically adds Steiner points at line segment
intersections. To our knowledge there is no equivalent inR3. So, we
first remove any duplicate or degenerate facets. Then we compute
all triangle-triangle intersections using the exact construction kernel
in [CGAL]. This kernel is exact even for difficult cases like coplanar,
overlapping triangles. It specifies the locations for Steiner points and
constraint segments on each offending triangle. We solve a separate
2D CDT problem to meet each set of constraints. Alternatively,
employing [Campen and Kobbelt 2010] promises performance gains.

Unfortunately, efficient CDT algorithms are prone to numerical
issues and fail when input constraints are too close together. Thus
additional clean up is occasionally required. Rather than remesh the
entire input, we notice that in practice a CDT is possible when no
facets are constrained. Thus we enforce as many facets as permitted
by our choice of CDT meshing software [Si 2003]. Troublesome
facets are removed or subdivided according to a small area and small
angle threshold. Subdivision helps ensure minimal disturbance of
the facet interpolation.

By using an imperfect CDT, we are relaxing our strict interpola-
tion constraint. However, surface repair methods like [Attene et al.
2007] are much more aggressive (see Figure 18). Further, our pre-
processing is solely to facilitate construction of the CDT, which is
orthogonal to our volume segmentation problem. All original facets
are still used to compute the winding number. When improved CDT
methods appear, our method will immediately see benefits.
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Figure 10: Hierarchical evaluation performs asymptotically better
than the naive implementation on the subdivided Dino. Naive (blue)
fits neatly to m0.94, hierarchical (green) fits neatly to m0.43.
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Figure 11: Hierarchical evaluation performs asymptotically better
than the naive implementation on a large set of different meshes.
Naive (blue) fits neatly to m1.00, hierarchical (green) fits in least
squares sense to m0.55 (black line).

5.1 Energy minimization with graphcut

We now have a standard segmentation problem. If the input is
perfectly free of ambiguities then the winding number already acts
as an exact segmentation. If the input is not perfectly clean then we
need a more sophisticated segmentation. An obvious first approach
is to apply a simple threshold:

is outside(ei) =

{
true if w(ei) < 0.5

false otherwise
, (7)

where by abuse of notation, let w(ei) = 1
V

∫
ei
w(p)dV be the inte-

gral average of w in element ei. However, this does not incorporate
coherency between neighboring elements (see Figure 12).

Instead we propose an energy functional, consisting of a data term
and smoothness term, whose minimum respects the winding number,
but behaves better due to enforced smoothness. The energy is written:

E =

m∑
i=1

u(xi) + γ
1

2

∑
j∈N(i)

v(xi, xj)

 (8)

where xi is the unknown binary segmentation function at element
ei, N(i) is the set of elements sharing a facet with ei and γ is a
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Figure 12: The winding number inside a hand with thin accessories
(a). Without constraints the accessories may be lost (b). They
are recovered by adding the incident element with highest winding
number (c). Local improvement of the graphcut energy encourages
smoothness (d).

parameter balancing the data and smoothness terms. We define the
data term as:

u(xi) =

{
max(w(ei)− 0, 0) if xi = outside

max(1− w(ei), 0) otherwise
(9)

These terms will become edge weights in a graphcut optimization
and thus must be non-negative. If γ = 0 then the optimal solution
coincides with constant thresholding [Chen et al. 2011].

We use an exponential function to achieve a discontinuity-aware
smoothness term [Boykov and Funka-Lea 2006]:

v(xi, xj) =

{
0 if xi = xj
aij exp

(
−|w(ei)−w(ej)|2

)
2σ2 otherwise

(10)

where aij is the length/area (for d = 2/3) of the facet shared
between ei and ej , and σ is a “noise”-estimation parameter.

A graph with appropriate edge-weights is constructed according
to [Kolmogorov and Zabin 2004], and the optimal segmentation is
found by running a max-flow algorithm.

One last question remains: how to evaluate the integral average of
the winding number per element? A simple solution is to evaluate
w at the barycenter of each element. This works well for inputs
without major issues and when the CDT contains reasonably well-
shaped elements. For extremely difficult cases we can increase the
accuracy of this integral by using more quadrature points. We use a
simple symmetric scheme of [Zhang et al. 2009] and see diminishing
returns on the number of points.

5.2 Optional hard constraints

Our generalized winding number combined with graphcut can be
seen as an outlier detector if some of the input facetsF do not appear
as subfacets of the segmented elements E , as this only happens
when the input is ambiguous (see Figure 13). Unfortunately, we
cannot efficiently and optimally enforce facet interpolation as hard
constraints. Enforcing these constraints as infinite penalty terms
in Equation (8) results in a nonregular function in the parlance of

(1) (2a) (2b) (3)
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Figure 13: Thresholding winding number finds unambiguous at-
tachments (1). Harder cases require facet constraints. Splinters (2a)
are avoided by local improvement with a smoothness energy fixes
this (2b). Finally, the winding number can detect outliers (3).

[Kolmogorov and Zabin 2004]. They prove that such functions, and
thus our constraints, can not be optimized using graphcut.

For completeness we implement a simple heuristic approach to
ensuring facet constraints are met automatically. We march over
unsatisfied constraints and satisfy them by adding the incident ele-
ment with largest winding number. After each update we greedily
optimize the energy in Equation (8) by recursively testing whether
to flip the assignment of elements neighboring any just-flipped ele-
ments. During improvement we do not allow flips that violate any
already satisfied constraints. We converge to a local and feasible
minimum with respect to the energy and the facet constraints.

We may similarly enforce a surface manifoldness constraint by
marching over edges and vertices in the CDT. When a non-manifold
issue is found we simply sort incident elements in descending or-
der according to their winding number and flip them to the inside
until local manifoldness is achieved. Again we greedily improve
after each step to a local minimum. Note that [Attene et al. 2007]
proposes a method for converting sets of tetrahedra (e.g. our output)
into manifold volumetric meshes, and alternatively we could use it
to post-process our output without manifoldness constraints.

6 Experiments and Results

We evaluated our algorithm on a large number of input shapes.
Figure 21 and high resolution images in supplemental material show
the input mesh, highlighting artifacts, a slice through the bounding
box, showing the winding number computed for each element of
the CDT, and our resulting tet mesh with cut-away slices. We show
success on a variety of man-made meshes: CAD models (e.g. Phone,
Alien Space-object) and character meshes (e.g. Skeleton, SWAT Man,
Ballet Woman, Crocodile). Our input and output meshes are publicly
available as supplemental material.

Meshes like the Skeleton contain many slightly overlapping con-
nected components. These could be meshed independently and com-
bined using boolean operations, but this complicates implementation
and will not work for inputs like SWAT Man, whose overlapping
components have open boundaries and non-manifold edges. For
SWAT Man, we activate our optional constraints ensuring that all
input facets are contained in the final tet mesh. This is necessary
for such applications as physically-based simulation requiring safe
contact detection.

The Ant has minimal triangulation for the thin legs and antennae,
which our method preserves. This not only allows direct access to
and assignment of boundary values, but enables efficient storage as
the input mesh and our output tet mesh share the same vertex set.
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Figure 14: Each triangle of the Cat (originally with open bottom) is
ripped off and slowly rotated in a random direction. The winding
number gracefully degrades.

The Ballet Woman contains a very detailed mouth (see also Ballet
Woman’s Head in the supplemental video). Our meshing preserves
these features while still correctly segmenting out the mouth cavity.

We report statistics in Table 1. Our timings were obtained on an
iMac Intel Core i7 3.4GHz computer with 16GB memory. Our
implementation is serial except for computing the winding number,
which uses an OPENMP parallel for loop over the evaluation points.
We tested the performance of our hierarchical evaluation versus
a naive one with two experiments. First, we measured average
computation time of a single evaluation in the bounding box of
the Dino mesh under increasing subdivision levels (see Figure 10).
Next we considered 700 (target) models of the SHREC dataset
[Bronstein et al. 2010] (see Figure 11). For both experiments we
average the computation time of 1000 random samples in the test
shape’s bounding box. Both experiments show that in general our
hierarchical evaluation performs asymptotically better.

We stress tested our generalization of the winding number by con-
sidering how the function responds to degenerating input. The Cat
in Figure 14 has an open base, and its winding number is a smooth
(harmonic) field in ≈[0, 1]. We separate each triangle of the mesh
and slowly rotate it in an arbitrary direction, evaluating the effect
on the winding number. The winding number field maintains the
image of cat until the triangles have rotated by π, when the mesh as
a whole clearly breaks our consistent orientation assumption.

We compare our method to first repairing the input as a surface
using [Attene 2010] and meshing the result (see Figure 15). The
Elephant’s ear flips inside-outside making volume determination
badly ill-posed there: our method deletes the region creating a
topological handle. Attene’s MESHFIX deletes the region and then
fills the hole with a different topology, but other parts of the mesh
suffer: the tusks and eyes are also deleted. In Figure 18, [Attene
2010] fills the holes in the Holey Cow with the same topology as
our method, but deletes the entire tail, which self-intersects its udder.
Because our method avoids such drastic surface changes, we may
compute a volumetric texturing using [Takayama et al. 2008] that
meets the original surface (see Figure 16). One may then simply
render the original surface and only show the inner texture when the
Tree is cut.

In lieu of computing a volume discretization, many geometry pro-
cessing tasks may be instead conducted on the surface. For example,
the self-intersections in the Beast might have previously discouraged
the use of a volumetric deformation technique due to the manual
cleanup involved in preparing the model for tet meshing. Bending
with surface-based technique reveals shell-like collapses when com-
pared to a volumetric technique using a our volume discretization
(see Figure 17). Some techniques like computing skinning weights
automatically with [Jacobson et al. 2011] are designed specifically
for volumes (see Figure 20). Without our method, this algorithm

Input Our method[Attene 10]

Figure 15: The ears of the Elephant Head overlap and flip inside-
out (bright green) creating a negative volume. The result of [At-
tene 2010] creates a watertight surface, but the tusks and eyes are
conspicuously missing. Our winding number identifies this region
(w < 0), but our segmentation removes the region creating a hole
(actually topological handle, blue).

Figure 16: The Tree contains many intersections and open bound-
aries (left). Our method is robust to these, producing a compatible
mesh for applying volumetric texturing (right).

Surface-based Volume-based  

Figure 17: Self-intersections in the otherwise clean Beast prevent
volume-meshing with previous methods. Surface-based deformation
is one option, but bending causes shell-like collapses not present in
a volume deformation enabled by our method.

has a limited set of inputs or requires tedious user preparation of
input (defeating its automation gains). State of the art physically-
based elasticity simulation techniques also require tetrahedral vol-
ume meshes. Our method accordingly expands the domain of inputs
for these methods (see Rubber Hippo and Rubber Chihuahua in
supplemental video).

7 Limitations and future work

The winding number and our generalization rely heavily on the ori-
entation of input facets. Triangle soups with unknown or erroneous
orientations would need further preprocessing (e.g. with [Borodin
et al. 2004]). Since a single facet has a drastically different effect on
the total winding number when its orientation agrees with its neigh-
bors, it would be interesting to use the notion of our generalized
winding number to verify or correct triangle orientations.

The number of connected components in our output is not controlled
even when manifoldness is constrained. It would be interesting to ex-
tend the work of [Chen et al. 2011] to 3D, enabling such topological
constraints in our graphcut segmentation.



Input model Computation time Output

Model name |V| |F| |∂F| #self-int. #CC #nme. pre. CDT w cut |E|

Tree 2599 4067 1097 386 32 0 1.99 0.48 1.06 0.06 11643
Holey Cow 2632 5080 206 83 1 0 0.74 0.02 0.05 0.05 9232
Bikini Woman 2827 5204 477 472 11 24 2.29 0.22 0.60 0.06 13057
Ant 2859 5258 152 1578 62 1 7.14 0.48 0.59 0.06 18466
SWAT Man 5277 9820 551 2806 51 24 12.12 1.14 2.47 0.08 31317
Frog 6614 13216 0 316 3 0 1.75 0.39 1.57 0.06 21909
Dog 7953 15848 56 0 1 0 0.51 0.67 2.45 0.07 27707
Rhino 8071 16031 23 2150 26 0 10.29 0.73 4.37 0.10 74446
Alien Space-object 8762 17692 0 1686 32 0 13.41 0.74 7.86 0.10 57293
Skeleton 11963 21551 0 4095 206 0 25.17 4.19 31.87 0.28 217517
Flying Bug 12603 23932 1200 1731 25 0 9.12 1.77 8.69 0.10 62285
Crocodile 17332 34404 0 5236 65 0 22.33 0.20 6.88 0.13 98719
Bear 24936 23530 320 5572 37 0 24.62 0.15 5.38 0.15 56605
Beast 32311 64618 0 969 1 0 7.84 2.98 40.10 0.36 192613
Ballet Woman’s Head 39068 76618 1146 8660 44 0 33.19 4.72 92.39 0.10 201991
Big SigCat 40224 60502 1020 3442 65 344 18.88 1.67 9.22 0.12 95896
Phone 42003 83998 0 1597 11 3 15.50 2.76 17.76 0.20 150159
Elephant Head 52740 105056 416 613 5 0 11.26 2.94 19.47 0.27 186025
Ballet Woman 70488 139324 1714 9734 44 0 45.95 7.07 153.23 0.83 615313

Table 1: Statistics for the various examples. |V| and |F| are the number of vertices and facets in the input 3D model. |∂F| is the number
of boundary edges, #self-int. the number of intersecting pairs of facets, #CC the number of connected components, and #nme. the number
of non-manifold edges. We report timings for each stage of our algorithm in seconds: (pre.) pre-processing (dominated by self-intersection
meshing), constructing a CDT with TETGEN (CDT), hierarchically evaluating the winding number w, and final graphcut segmentation (cut).
The number of elements in the output tet mesh is |E|.

Figure 18: Left to right: Holey Cow with its tail intersecting its udder. [Attene 2010] fills the holes, but deletes the tail. A slice through the
winding number shows correct assignment of 0 outside, 1 inside the main part, and 2 inside the overlapping tail (red), inset. This may be
meshed as usual gluing the tail to the body. Or we may duplicate this doubly covered region and glue it to either side. This allows the tail and
its volume to be pulled out.

Many meshes contain sheet-like features not part of the main solid
body, such as leaves on a tree or cape on an action hero. Such fea-
tures are typically two-sided and would require special treatment to
consider the thin solids they represent. Conversely the accessories or
nearly duplicated regions we do handle may also cause ambiguities.
When duplicated surfaces nearly enclose a concavity, the winding
number increases and may cause the region to be marked as inside
(see Figure 19). The difference between inside and outside in these
cases is a matter of semantics. To alleviate this, such accessories
could be tagged as non-participatory for the winding number com-
putation, but still constrained during our segmentation. Achieving
such tagging automatically is an interesting direction for future work
in the accelerating field of retrieving semantics from 3D shapes.

Our generalized winding number correctly identifies regions of over-
lap even in the presence of surface artifacts such as holes (see Fig-
ure 18). This suggests the ability to construct volume discretization
that respect self-intersections of the original surface (rather than
“correct” them). We show a proof-of-concept of this idea, by dupli-
cating the meshing inside the Holey Cow’s overlapping tail (where
w≈2) and gluing separately to the tail and body. The tail and its
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Figure 19: Inside-outside of the Snake (a) becomes ambiguous when
thin sheets are used to represent accessories such as a ski-mask (b)
or a muzzle (c). In (b) and (c) the winding number at the yellow
points are similar, but the semantic inside-outside classification is
opposite.

volume may then be deformed in and out of the body. More com-
plicated overlaps are far from trivial to untangle and we continue to
investigate this problem in our future work.



Input triangle mesh Our output tet mesh Auto. weights Poses of textured input

Figure 20: Left to right: the Bikini Woman has many artifacts, as well as thin sheet-like accessories. Their volumes are ambiguous, but our
facet constraints ensure some trivial connection. This enables automatic, volumetric skinning weight computation [Jacobson et al. 2011] on a
refinement of our output. Only the weights on the original vertices are needed to deform the original textured input mesh.

8 Conclusion

Generalizing the winding number to arbitrary triangle meshes proves
to be a powerful and mathematically beautiful tool. The core of
our method is simple to implement and our hierarchical acceler-
ation structure enables efficient evaluation on large models. The
winding number’s harmonic nature and implicitly defined, discon-
tinuous boundary conditions make it ideal for guiding our graphcut
segmentation when input meshes contain self-intersections, open
boundaries, and non-manifold pieces. We hope that our algorithm’s
success on previously unmeshable models will encourage volumetric
processing of solid shapes throughout computer graphics.
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Tree ∂ F: 1097, si: 386, cc: 32, nme: 0
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Holey Cow ∂ F: 206, si: 83, cc: 1, nme: 0

Phone  ∂ F: 0, si: 1576, cc: 11, nme: 3

Ant ∂ F: 152, si: 1578, cc: 62, nme: 1 Bikini Woman ∂ F: 477, si: 472, cc: 11, nme: 24

Ballet Woman ∂ F: 1714, si: 9734, cc: 44, nme: 0

Bear ∂ F: 320, si: 5572, cc: 37, nme: 0

Skeleton ∂ F: 0, si: 194, cc: 4095, nme: 0

SWAT man ∂ F: 551, si: 2806, cc: 51, nme: 24

Alien Space-object ∂ F: 0, si: 1686, cc: 32, nme: 0

Crocodile ∂ F: 0, si: 5236, cc: 65, nme: 0

Flying Bug ∂ F: 1200, si: 1731, cc: 25, nme: 0

Beast ∂ F: 0, si: 969, cc: 1, nme: 0

Ballet Woman’s Head ∂ F: 1146, si: 8660, cc: 44, nme: 0

Dog ∂ F: 56, si: 0, cc: 1, nme: 0

Frog ∂ F: 0, si: 316, cc: 3, nme: 0

Rhino ∂ F: 23, si: 2150, cc: 26, nme: 0

10 ½-½ 21½ 10 ½-½ 21½

Figure 21: Each row shows left to right: input model with connected components randomly colored, self-intersections facets marked in red,
open boundaries in dark red and non-manifold edges in purple; slice through CDT visualizing winding number; surface of output mesh;
hot-dog slice view of output mesh.
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