
University of Pennsylvania
ScholarlyCommons

Center for Human Modeling and Simulation Department of Computer & Information Science

2014

Stochastic Activity Authoring With Direct User
Control
Aline Normoyle
University of Pennsylvania, alinen@seas.upenn.edu

Maxim Likhachev

Alla Safonova
University of Pennsylvania, alla@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/hms

Part of the Engineering Commons, and the Graphics and Human Computer Interfaces
Commons

I3D 2014, March 14-16, 2014, San Francisco, California, USA.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/hms/142
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Normoyle, A., Likhachev, M., & Safonova, A. (2014). Stochastic Activity Authoring With Direct User Control. Proceedings of the 18th
meeting of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D '14), 31-38. http://dx.doi.org/10.1145/
2556700.2556714

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/hms?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/2556700.2556714
http://dx.doi.org/10.1145/2556700.2556714
http://repository.upenn.edu/hms/142
mailto:libraryrepository@pobox.upenn.edu

Stochastic Activity Authoring With Direct User Control

Abstract
Crowd activities are often randomized to create the appearance of heterogeneity. However, the parameters
that control randomization are frequently hard to tune because it is unclear how changes at the character level
affect the high-level appearance of the crowd. We propose a method for computing randomization parameters
that supports direct animator control. Given details about the environment, available activities, timing
information and the desired highlevel appearance of the crowd, we model the problem as a graph, formulate a
convex optimization problem, and solve for a set of stochastic transition rates which satisfy the constraints.
Unlike the use of heuristics for adding randomness to crowd activities, our approach provides guarantees on
convergence to the desired result, allows for decentralized simulation, and supports a variety of constraints. In
addition, because the rates can be pre-computed, no additional runtime processing is needed during
simulation.

Keywords
stochastic modeling, crowd authoring, optimization

Disciplines
Computer Sciences | Engineering | Graphics and Human Computer Interfaces

Comments
I3D 2014, March 14-16, 2014, San Francisco, California, USA.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/hms/142

http://repository.upenn.edu/hms/142?utm_source=repository.upenn.edu%2Fhms%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages

Stochastic Activity Authoring with Direct User Control

Aline Normoyle∗

University of Pennsylvania
Maxim Likhachev †

Carnegie Mellon University
Alla Safonova ‡

University of Pennsylvania

Figure 1: Population control examples. From left to right: (1) A player interactively controls a population for gathering resources. The
workers gather resources at random, while maintaining the player’s instructions. (2) A game level designer can directly set up the activities
of a food court so that peak times appear busiest, without manually tweaking random rates of entry and exit. (3) Bird behaviors are authored
so that the proportion pecking for worms remains constant even though birds randomly switch between other activities. (4) In a large mall
environment, wandering zombies explore closer areas more often than further ones while remaining evenly distributed across the environment.

Abstract

Crowd activities are often randomized to create the appearance of
heterogeneity. However, the parameters that control randomization
are frequently hard to tune because it is unclear how changes at
the character level affect the high-level appearance of the crowd.
We propose a method for computing randomization parameters that
supports direct animator control. Given details about the environ-
ment, available activities, timing information and the desired high-
level appearance of the crowd, we model the problem as a graph,
formulate a convex optimization problem, and solve for a set of
stochastic transition rates which satisfy the constraints. Unlike the
use of heuristics for adding randomness to crowd activities, our ap-
proach provides guarantees on convergence to the desired result,
allows for decentralized simulation, and supports a variety of con-
straints. In addition, because the rates can be pre-computed, no
additional runtime processing is needed during simulation.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—[Animation];

Keywords: stochastic modeling, crowd authoring, optimization

∗e-mail: alinen@seas.upenn.edu
†e-mail: maxim@cs.cmu.edu
‡e-mail: alla@seas.upenn.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org. I3D ’14, March 14 - 16 2014, San
Francisco, CA, USA
c©2014 ACM 978-1-4503-2717-6/14/03...$15.00.

http://dx.doi.org/10.1145/2556700.2556714

1 Introduction

Crowd activities are often randomized to create the appearance of
heterogeneity. However, the parameters that control this random-
ization are frequently hard to tune because it is unclear how changes
at the character level affect the high-level appearance of the crowd.
For example, suppose an AI designer is using a finite state machine
(FSM) to control characters in a food court. Suppose also that the
animator wants to randomize the state transitions so that the final
crowd appears to be made of unique individuals. The high-level
appearance of the crowd will depend on numerous factors, such
as the duration of each state, the distances agents must walk be-
tween various locations, and the order in which states are executed
(e.g., agents must order food before they can pick it up). Tweaking
the script parameters to produce a specific effect (for example, to
create times of day when the food court appears busy) is tedious
and time-consuming: the animator must repeatedly tweak the FSM
parameters and re-run the simulation to preview the result. Fur-
thermore, these parameters need to be re-configured whenever the
environment, activity properties, or scenario changes. The crowd
designer must understand the control scripts and understand which
properties influence the crowd’s high-level behavior. Lastly, the
need for extensive parameter tweaking makes it impossible to re-
spond in real-time to dynamic changes, for example the changes
made by a game player at runtime.

In this work we investigate a method for computing random param-
eters that supports direct control of the crowd simulation. Given the
layout of the environment and constraints on activities (such as du-
ration, ordering, and preferences), we model agent decisions with
a stochastic graph and formulate a series of convex optimization
problems which compute transition rates guaranteed to satisfy the
input constraints. Once computed, the new rates can be plugged
into the agent simulation at no additional runtime cost.

This approach has a number of advantages.

• The distribution and the behavior of the crowd are guaran-
teed to converge to the specified distribution and specified
constraints, regardless of the initial state of the crowd. For
example, it is trivial for some agents to switch to a high-detail
behavioral model in response to a player, and then resume its
default behavior afterwards.

• Constraints are satisfied simultaneously even with non-trivial
dependencies between activities.

• The complexity of solving the optimization problem depends
on the number of activities/locations rather than the number of
agents. For many scenarios, the number of modeled activities
is small enough that we can pre-compute probabilities on the
fly to account for changes dynamically.

• The simulation of agents according to transition rates can be
easily decentralized (e.g. each agent chooses activities on its
own without having to consult a centralized controller).

• Because the rates can be pre-computed, no additional runtime
processing is required.

• Because our problem formulation is convex, we are guaran-
teed to compute transition rates as long as the input constraints
are feasible (the author has immediate feedback on constraint
feasibility without needing to run the simulation).

To summarize, the main contribution of this paper is a new way
to compute randomization parameters for crowd simulation which
supports direct control of the crowd by a user. The techniques in
this paper help with computing agent-level parameters, can be used
to author stochastic crowd behaviors, and enable new interfaces for
controlling groups of characters, as in real-time strategy games.
Our approach takes into account the spatial and timing properties
of agent activities and provides guarantees on the high-level behav-
ior of the crowd. We discuss the properties, advantages and limita-
tions of our approach, and demonstrate its ease of use, scalability
and robustness for controlling groups of agents having randomized
behaviors.

2 Related Work

Randomization is a frequently used technique in games. [Mark
2011] gives a good overview, including a description of the use
of distributions for selecting agent reactions. [Brockington 2002]
describes the use of random walks for creatures in Never Winter
Nights. In Grand Theft Auto 4, pedestrians use weighted random
walks for visible characters. Additionally, stochastic spawn rates
are often used to populate regions near the payer, for example, in
[Admiza 2001], cars turned randomly and were replaced as neces-
sary to keep cars close to the player.

In crowd systems, random variables are often used to add hetero-
geneity to behaviors according to a distribution, for example, the
aleatoric actions in CAROSA [Allbeck 2010; Stocker et al. 2010],
the action distribution features in [Musse and Thalmann 2001;
Shoulson and Badler 2011], the distribution tools used by Industrial
Light and Magic and Dreamworks [Thalmann et al. 2004], and the
stochastic state machine transitions used in [Curtis et al. 2011].
Frequently, the crowd designer specifies the transition rates directly
which are then sampled at the agent level. Alternatively, one may
use a centralized controller to maintain a given distribution macro-
scopically by explicitly moving agents from over-populated areas to
under-populated areas [Shoulson and Badler 2011]. Our technique
provides a unified framework for directly computing transition rates
which simultaneously handles multiple activity constraints. Our
framework automatically handles cases which would normally re-
quire iterative, manual tuning. Lastly, because rates can be precom-
puted, there is no additional runtime cost.

Our method for computing rates is based on a stochastic model of
agent decision-making. Similar stochastic models have been pro-
posed for crowd simulation. For example, [Sewall et al. 2011]
describes a hybrid traffic model based on Poisson processes which
couples an agent-based simulation with a macroscopic traffic flow

simulation. [Sunshine-Hill and Badler 2010] shows how a stochas-
tic crowd simulation can be used as the basis for efficiently com-
puting AI level-of-detail on demand. [Liu et al. 2012] introduces
a technique for computing population distributions across activities
based on a negative/positive feedback loop. In urban planning and
occupational modeling, [Lovas 1994] models pedestrians using a
stochastic network and [Wang et al. 2011] uses a two state Markov
chain model to model entry and exit behavior from a building. In
[Stylianou et al. 2004] stochastic processes are used to create large
populations in urban environments. In [Sung et al. 2004] agent
behaviors are influenced by action choice distributions embedded
in objects in the environment. Many of these works demonstrate
the massive scalability potential of stochastic modeling for crowds,
but our focus is primarily authoring: how can we directly compute
randomization parameters which when sampled at the agent-level,
result in a desired high-level distribution?

This work is inspired by [Berman et al. 2009], which studies how
to distribute a group of autonomous robots across different tasks,
and [Boyd et al. 2003], which showed how to compute the fastest
mixing Markov chain as a convex optimization problem. Our ac-
tivity formulation is based on Markov chains (for a good introduc-
tion, please see [Ross 1996]) which have well-known steady state
properties. We show how to use this work in the context of crowd
simulation and extend this work to support a variety of constraints
such as ordering of activities, duration of activities and preferences.

3 Methodology

In this section, we describe our approach. First, agent activity con-
straints are modeled as a graph. Given this graph, we solve for
transition probabilities which satisfy a variety of constraints.

3.1 Activity modeling

Suppose we have a group of background agents who wish to per-
form some set of activities A. Activities might be buying food and
eating at a food court, gathering resources for a real-time strategy
game, controlling the proportions of idling behaviors in a group, or
wandering in a large mall at night.

Suppose also that there are restrictions on when different activities
can occur. For example, characters may need to order food before
picking it up. To model these dependencies, let the activities ai ∈
A be modeled as nodes in a directed graph such that an edge eij
exists if and only if ai can be performed after aj . Each edge will
have a transition rate kij associated with it, which represents the
probability with which an agent performing activity aj transitions
to ai (Figure 2). For example, deterministic transitions will have
kij = 1. Suppose we have M activities in the set A. We define the
M×M matrix K as our stochastic activity transition matrix, where
the elements kij correspond to rates between activities. Columns of
K represent the expected outgoing flow from node ai per unit time.
Rows of K represent the expected incoming flow into node ai per
unit time. An element kii is non-zero only if a character may repeat
activity ai before switching to a new activity.

The aggregate state of our system can be represented as the pro-
portion of characters performing each activity. Specifically, if
our scenario contains N characters, let ni(t) represent the num-
ber of agents performing activity i at time t and let xi(t) =
ni(t)/N represent the corresponding fraction of agents perform-
ing activity i at time t. The state of the system is then given by
x(t) = [x1(t) . . . xM (t)]T . Each iteration, the system is expected
to change according to K, e.g. E[x(t + 1)] = E[Kx(t)]. Define
the initial state of the system as x0.

k41

k34k12

k23

k32

k14

k43k21

k11 k44

k33k22

2 3

41

444341

343332

232221

141211

0

0

0

0

kkk

kkk

kkk

kkk

K=

Figure 2: Activity Modeling. Activity dependencies are modeled
with a directed graph. In this example, it is not possible to per-
form activity 1 and 3 consecutively, nor activity 2 and 4 consecu-
tively. Rows of the transition matrix correspond to incoming edges.
Columns correspond to outgoing edges. The state of the system
x(t) is the proportion of agents performing each activity. For ex-
ample, if every agent is performing activity 1, the state of the system
is x(t) = [1, 0, 0, 0]T . The desired steady state of this system, xd,
is the user-desired proportion of agents in each activity. Given the
graph and xd, we wish to solve for the corresponding transition
rates kij .

Regardless of the initial state, the system state x(t) is guaranteed
to converge to a unique steady state, xd = Kxd, provided the ac-
tivity graph satisfies two properties [Ross 1996]. First, the activity
graph must be strongly connected (e.g. a path exists between any
two nodes). We enforce this property by adding a special activ-
ity, called “outside-system”. For example, in systems where agents
enter and exit, we introduce an ”outside-system” node with a con-
nection to the start and a connection from the end. Agents who are
”outside-system” are not visible to the viewer. In general, the edges
of “outside-system” provide paths between each pair of nodes. Sec-
ond, at least one activity must not repeat on a fixed period. To un-
derstand this restriction, imagine a graph with two nodes, a0 and
a1, each connected only to the other (e.g. no self-loops). Each
frame, all agents performing a0 will switch to a1 and all agents at
a1 will switch to a0. The distribution of agents can only oscillate in
this case. Lastly, note that agents will generally continue to switch
activities even after the steady state is reached. This behavior is
desirable for producing heterogeneous-looking populations.

The system state x(t) succinctly describes the high-level behavior
of the system. Thus, if a designer gives us a desired high-level
state, xd = [xd1 . . . x

d
M]T , our goal is to compute the corresponding

matrix K which converges to xd. Following the method described
by [Berman et al. 2009], we define ẋi(t) as the rate of change at
activity ai at time t, given by

ẋi(t) =
∑

∀j|(i,j)∈E

kijxj(t)−
∑

∀j|(j,i)∈E

kjixi(t) (1)

The first term represents the percentage of agents starting activity
ai and the second term represents the percentage of agents finishing
activity ai and starting to do something else. The rates at which
agents change activities correspond to the M ×M matrix K̇ such
that ẋt = K̇xt where each entry of K̇ is given by,

k̇ij =

 −
∑
∀l|(l,j)∈E klj if i = j;

0 if eij /∈ E;
kij if i 6= j and eij ∈ E.

(2)

By construction, each column of the matrix K̇ sums to zero. It
can be shown that this system, described in terms of rates, also
converges to a unique, stable equilibrium xd, which corresponds to

the system steady state when the rate of change is zero [Berman
et al. 2009], e.g., 0 = K̇x

d
.

Given this formulation, we can find some matrix K which con-
verges to xd using the following constraints

K̇x
d
= 0

K̇T1 = 0

KT1 = 1

kij ≥ 0

kij = 0 if eij /∈ E (3)

Because the above formulation is convex, we are guaranteed to find
a solution so long as the graph structure and constraints are feasi-
ble. Typical infeasible cases occur when activities cannot repeat be-
cause such activities require agents to switch to a new activity after
completion. Thus, distribution constraints which require some pro-
portion to stay in that activity state become impossible. To solve for
K, we use the optimization package CVX [Grant and Boyd 2013]
with SDPT3 [Toh et al. 1999] in Matlab.

Although each matrix K is guaranteed to converge to a unique,
steady state xd, several choices of K can converge to the same xd.
Thus, we can further tailor our choice of K to incorporate addi-
tional design considerations.

3.2 Activity Durations

Activity durations can greatly affect the high-level distribution of
a crowd when they vary greatly between activities. If they are not
modeled, the computed rates can fail to converge to the desired dis-
tribution.

We consider several models of activity duration (Figure 3). In the
first, the amount of time each agent spends performing an activity
ai follows an exponential distribution with mean 1/(1− kii) (Fig-
ure 3(a)). Constraints on the mean of this duration can be achieved
by either adding a soft constraint to the objective function,

min
∑

ti∈TimingConstraints

| kii −
(ti − 1)

ti
| (4)

, or adding hard constraints of the form kii = (ti − 1)/ti.

We also model activities having a fixed duration (Figure 3(b) and
Figure 3(c)). These cases arrive frequently in animation, where
the duration corresponds to the length of a character motion clip.
Here, we model the duration as a chain of nodes, where each node
represents a unit of time δt. Thus, if the activity takes t units of
time, we create a chain consisting of t/δt subnodes and divide the
desired distribution evenly among them. K is then solved as before.
If the activity can repeat, we add an edge from the last subnode in
the chain to the first.

3.3 Modeling travel time between activities

In cases where some activities are far apart, the time needed for a
character to travel to their destination can significantly affect the
high-level appearance of the simulation (See figure 5). In this case,
our approach is to maintain the relative proportions of agents in
each activity, but model the proportion of agents in transition. De-
fine the proportion performing activities as α ∈ (0, 1) and the pro-
portion in transition as 1 − α. The desired state of the system be-
comes [αxd (1 − α)yd]T , where αxd is the desired proportion
of characters performing each activity and (1−α)yd is the desired
proportion transitioning between activities.

(a) (b) (c)

(d) (e) (f)

Figure 3: Activity Durations. The graph structure can model dif-
ferent activity durations. Histograms below each graph shows the
result of simulating agents whose activity durations correspond to
the graph. The x-axis corresponds to duration of activity (minutes).
The y-axis corresponds to counts of activities having each dura-
tion. 3(a) shows how to model an activity duration which follows
an exponential distribution. The mean duration is a function of the
transition rate for repeating the same activity. 3(b) shows how
to model an activity duration which is constant, but can repeat. In
this case, we model the node duration as a chain of subnodes, where
each transition corresponds to a unit amount of time δt. 3(c) shows
how to model a constant activity duration. In this case, we do not
have a transition that allows us to repeat the activity.

To model travel time, we replace each edge eij with a node yi which
has a single incoming edge from xj and a single outgoing edge into
xi. To keep the graph size smaller, edges which correspond to short
travel distances do not need to be expanded, and pairs of activities
which share start and end locations may share the same yi. The rate
of change at each activity ẋi(t) is now,

ẋi(t) =α

 ∑
∀j|(i,j)∈E

kijxj(t)−
∑

∀j|(j,i)∈E

kjixi(t)

−
(1− α)

 ∑
∀j|(i,j)∈E

yj(t)−
∑

∀j|(j,i)∈E

yi(t)

 (5)

Similarly to activity durations, travel time is then modeled by ex-
panding each node (section 3.1.1). In the above formulation, both
the rates kij and the agents in transition y are unknown. Both may
be solved for simultaneously by substituting the above rate equation
for the one given in section 3.1.

3.4 Preferences between activities

A designer may want characters to prefer some activities over others
while still maintaining a desired high-level appearance. For exam-
ple, agents might prefer closer locations to further ones, or prefer to
gather a resource from a safe location over an unsafe one. Such con-
straints can be achieved by weighting the probability for preferred
activities to be higher than others, specifically, by adding hard con-
straints of the form kik ≤ kij , or soft constraints to our objective
function of the form | kij − kik − c |, c ≥ 0.

3.5 Mapping activities to locations

So far, we have considered the set of activities (e.g. gold mining,
farming, etc.) without considering the actual locations, or sites,
where they are performed. Although it is possible to use the ap-
proach above to explicitly model both activity and location (each

graph node could represent an activity and location tuple), such de-
tails can be easily abstracted from the designer by computing how
activities should map to sites. Because the number of locations will
often be much larger than the number of activities, this can greatly
simplify authoring for the designer. Additionally, this approach al-
lows the designer to apply the same activity model to new environ-
ments as well as dynamically support changes to same environment,
for example, if a location is destroyed.

Let xd now represent the desired spatial distribution of activities
over specific locations. Each element of xd will correspond to a
tuple (ai, `k), where activity ai can be performed at location `k.
We will refer to these tuples as sites. Examples of sites might be
shopping at a grocery store or sleeping in a park. Let the number of
sites in our scenario be S.

Let ad be the corresponding desired distribution in terms of activ-
ities across all sites. First, assume ad is fully specified (if not, we
can distribute evenly among the remaining activities). We can ini-
tialize each element xdj of xd as

xdj =
ak
| Ak |

(6)

where ak is the activity that can be performed at this site and Ak
is the set of sites that support activity ak. For example, ak might
correspond to the activity ”shopping” and the set Ak might consist
of 10 stores where agents can shop. The initial density of shoppers
in each store is ak/10. If the user simply wants to distribute the
desired proportion of agents across all sites evenly, we are done.
However, in many cases, we would like to automatically weight the
distribution across sites based on properties on the environment.

Thus, we define a SxS weighting matrix W to encode how activities
should be distributed across sites, e.g. the elements of W encode
which sites should have the greater proportion of agents. Elements
in W that correspond to nonexistent edges in our graph are set to
zero. We compute xd iteratively by re-weighting the proportions at
each site according to W and then projecting back onto the desired
distribution across activities, e.g.

xd =
Wxd

cTxd
(7)

where the elements ci in c are the sum of each column i of W.
Dividing the vector Wxd by the scalar cTxd renormalizes the sum
of elements in xd to one. This process converges to a new xd with
sites weighted according to W. We then renormalise xd again to
ensure that the given activity distribution is maintained,

xd = ad Diag(xd) Diag(Axd)−1 (8)

where the SxS matrix A encodes which sites belong to the same
activity: element aij in A is one if site j belongs to the same activ-
ity as site i, and zero otherwise. Additionally, we can easily encode
that sites are unavailable by explicitly setting the corresponding row
in W to all zeros.

We can then solve for transition rates which satisfy the distribution
of sites in the same way as before (section 3.1)

3.6 Using computed rates

Once rates are computed, the corresponding agent simulation is
guaranteed to converge to a desired high-level distribution regard-
less of its initial state. In other words, agents may operate inde-
pendently, selecting their next activity randomly according to the
distributions in each column of K. Thus, if an agent has completed

activity ai, it can select a new activity by sampling from the distri-
bution given in the i’th column of K.

Additionally, the exponential distribution may be used to simulta-
neously model both the decision of where to travel next and the
amount to time to spend at the next activity.

Tji ∼ P expji (t | λji) =
{
λjie

−λjit t ≥ 0
0 t < 0

(9)

where λji = kji. The choice of location will correspond to the site
xj with the soonest transition time.

min
j|eji∈E

Tji (10)

The advantage of this approach is that activities are automatically
staggered in time. Otherwise, an additional parameter to offset
agent choices is needed to avoid characters switching activities in
unison at the same discrete timesteps.

4 Applications and Examples

The following examples, created with the Unity Game Engine
[Unity 2013], show how the techniques in this paper can be applied
to applications in games and animation.

Bird Behaviors

The methods in this paper can remove the need for tweaking crowd
parameters. In this example, we animate a flock of birds who may
peck, sleep, or jump at random. Animation clips for each activity
have durations of 2 seconds, 8 seconds, and 1 second respectively
and birds must travel to sleep (which takes 7 seconds). Figure 4
shows a state machine for controlling the bird’s behaviors.

Although randomized, we want to the behavior of the birds overall
to give the impression of pecking for worms. The purpose of the
other activities is to add heterogeneity to the flock’s appearance.
However, because the sleeping animation is much longer than the
others and involves a change of location, it is not intuitive to choose
rates that maintain the majority of birds pecking. Suppose the ani-
mator begins by setting transition rates such that after finishing an
activity, 90% of the time, birds switch to pecking and 10% of the
time, birds switch to sleeping or jumping. One might expect that
the high-level distribution would be [0.90, 0.05, 0.05]. In fact, the
simulated proportion of pecking birds turns out to be far less (Fig-
ure 4(b)). The resulting visual appearance is also much different,
resulting in too many birds sleeping and too many birds in flight
(Figure 5).

Our approach can compute correct transition rates directly by mod-
eling the durations (section 3.1.1) and travel time (section 3.1.2).
By specifying that only 5% of birds should be in transition, the
steady state becomes 85.5% pecking, 4.75% sleeping, and 4.75%
jumping. The desired steady state is now maintained using the new
rates shown in Figure 4(d). In a simulation of 100 birds (10 runs,
1000 time steps each), the average deviation from the specified dis-
tribution (where deviation is computed as ‖xt − xd‖) is 0.04 with
our approach, as opposed to 0.24 without our approach.

Food Court

The methods in this paper can be integrated into intuitive authoring
tools for crowds. In this example, we animate the activities of a
food court over the course of a day. Suppose that agents using the
food court must order food before picking it up to eat it, that agents
may get seconds, and that activities take some duration to complete
(Figure 6). In this scenario, ordering food takes 10 minutes; pick-
ing up food takes 2 minutes; and eating takes 20 minutes. Because

(a) (b)

(c) (d)

Figure 4: Bird finite state machines. 4(a) 4(b) The top row shows
a finite state machine for controlling bird behaviors which doesn’t
maintain the user’s desired distribution. 4(c) 4(d) Our approach
which models timing can directly compute rates which maintain a
desired distribution.

(a) (b)

Figure 5: Modeling timing. In this example, birds either peck,
sleep, and jump. Left, a straight-forward approach where the next
activity is selected according to the desired high-level distribution
[0.90, 0.05, 0.05]T results in birds accumulating in the sleeping
area. Right, by modeling the timing of the scenario correctly, we
can directly compute the transition rates corresponding to the de-
sired high-level behavior.

the travel times between activities is much shorter than the dura-
tions for each activity, we do not need to model travel time for this
example. For bookkeeping, the counts of agents performing each
activity include agents transitioning to that activity.

A user does not need to know the underlying timing and spatial
constraints to author characters using the food court. Instead, the
numbers of agents performing each activity can be specified at a
high-level using sliders and then automatically mapped to kiosks in
the environment using the method in section 3.1.4. Additionally,
the user can tweak the proportions in particular locations on the
map using a crowd brush [Ulicny et al. 2005]. Once the designer is
happy with the high-level appearance, she can associate the scene
with a time of day and then click a button to compute random tran-
sition rates for maintaining the given appearance.

We compare using our computed rates against manually selected
rates based on the desired high-level distribution. When activities
can be performed in any order and take the same amount of time,
there is no need to compute rates. Sampling directly from the de-
sired distributions yields the desired high-level distribution. How-
ever, when activities take different durations and must be performed

(a) (b)

(c)

Figure 6: Food court scenario. 6(a) shows the spatial layout of a
central eating area surrounded by seven buffet-style food stations.
6(b) shows the activity graph for this scenario. Agents must order
food and pick it up before eating. 6(c) shows the spatial graph
which corresponds to the scenario map.

Geometry Activities

Solve

Map User Input

Figure 7: Authoring keyframes. A user can author keyframes with-
out knowing the details of the scenario. Our algorithm for com-
puting rates depends on the geometry, map of where activities can
be performed, and activity timing and sequence constraints. How-
ever, the user does not need to be aware of these details to author
a scene. Instead, she can use high-level sliders and crowd brushes
to set a desired high-level appearance for the crowd. At the click
of a button, our technique computes rates for maintaining the given
distribution.

in sequence, it is unclear how rates affect the high-level appearance,
and the computation of rates becomes necessary (Figure 8).

Wandering Zombies

In this example, we use the techniques from section 3.1.4 to dis-
tribute wandering behaviors across a large mall environment con-
sisting of 69 locations. Because of the large number of spatial lo-
cations, setting densities across the entire mall by hand would be
tedious. In this section, we show the result of automatically dis-
tributing agents across sites based on the desired activities set by
the user.

In the first example (Figure 9(a)), we weight the distribution of
agents across mall locations so that densities are highest in areas
where sites are close together. To compute the elements of W , we
use the travel distances between each pair of locations using a nav-
igation mesh. The start and end points are located at the center
(determined by bounding box) of each location. We then define our
weights as

Wij =

 0, eij /∈ E
0,Distance(xi, xj) > Thresholdmax
Dmax − Distance(xi, xj),

(11)

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

0

0.2

0.4

0.6

0.8

1

Time (hours)

P
er

ce
nt

ag
e

Pickup
Outside
Eat
Order

No Constraints

Outside

Eat

Order

Pickup

(a)

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Outside
Eat
Pickup
Order

Time (hours)

Ordering Constraints

Outside

Eat

Order

Pickup

(b)

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

Outside
Eat
Pickup
Order

Time (hours)

Duration Constraints

Outside

Eat

Order

Pickup

(c)

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

0

0.2

0.4

0.6

0.8

1

All Constraints - Our Method

P
er

ce
nt

ag
e

Outside

Eat
Pickup

Order

Time (hours)

Outside

Eat

Order

Pickup

(d)

Figure 8: Food court scenario. These graphs show changes in ac-
tivity over time. The x-axis is the simulation time in hours. The
y-axis is the proportions of agents who are either eating, ordering
food, picking up food, or outside. 8(a) If activities can be executed
in any order and have the same duration, there is no need to com-
pute rates: sampling directly from the desired distribution yields
the same high-level distribution (average deviation: 0.03). 8(b)
However, if the sequence of activities matter, it is unclear how rates
should be changed to yield a desired high-level appearance. In this
example, we set the transition probability for invalid transitions to
zero and renormalized. The high-level distribution now accumu-
lates agents in the food ordering activity (average deviation: 0.43).
8(c) Similarly, differences between activity durations will also af-
fect the high-level distribution. Here, the rates are the same as in
8(a), but the durations of each activity is different. Agents now ac-
cumulate in the longest activity, eating (average deviation: 0.73).
8(d) Our proposed method can directly compute valid rates which
take into account both sequences and durations simultaneously (av-
erage deviation: 0.03).

where Dmax is the maximum distance between two locations in the
environment and Thresholdmax can be used to set a maximum dis-
tance for comparing locations.

In the second example (Figure 9(b)), we weight the distribution of
agents across mall locations so that more agents are located in large
areas than in small areas. In this case, the weights of W are the
ratio of the areas between the target location and the start location.

Wij =

{
Area(xi)/Area(xj)
0, eij /∈ E (12)

In the third example (Figure 10), we distribute wandering behaviors
evenly across all locations, but add preferences for closer locations
over further ones using hard constraints (section 3.1.3). To keep the
number of additional constraints smaller, we don’t consider each
pair of locations, but instead use a threshold around each location
that separates near locations from far ones, e.g. kij >= kkj if site
xi is closer than our threshold distance and site xj is farther than
our threshold distance.

Medieval Gatherers

In this example, we show how the methods in this paper could be
used to interactively control a group of characters, for example, as

Weight by distance

(a)

Weight by area

(b)

Figure 9: Computing spatial distributions automatically. This fig-
ure shows maps of the mall environment used for our zombie demo.
The shaded areas on the map indicate locations where zombies can
wander: lighter regions have more zombies than darker regions.
Left, we distribute wandering behaviors based on distance. Re-
gions with many places close together will have more zombies than
spread out regions. Right, we distribute wandering behaviors based
on the region’s area. Regions with more floor space will have more
zombies than smaller regions.

in a real-time strategy game. Here, the player assigns different pro-
portions of agents to collect different resources, either wheat, gold,
or wood. The underlying model for this demo is simple so that we
may solve quickly for new rates (Figure 11). Rather than model the
travel times separately, we lump the round trip travel time with the
resource collection time into a single duration for modeling.

5 Performance

Because rates can be precomputed, no additional computations
need to be performed at runtime, unless one wants to dynamically
modify the distributions. We collected performance statistics with
a Intel Core2 Duo 2.1 GHz with 4GB of RAM. The cost of com-
puting rates for the demos in the previous sections can be found
in Table 1. On the same machine, sampling for the next activities
based on rates took no more than 1 msec. In general, the com-
putation time increases with the number of nodes and number of
constraints in the transition graph.

6 Discussion

We investigate a method for computing random parameters that
supports direct animator control. Using these techniques can reduce
the need for manually tweaking stochastic behaviors, can facilitate
intuitive tools for crowd authoring, and can support interactively
controlling characters in real-time.

The methods in this paper are best applied to large numbers of
agents, such as background characters in open-world video games,
or for controlling populations in aggregate, such as in real-time
strategy games. In these cases, the high-level appearance of back-
ground characters is more important than simulating the internal
processes of each agent and the stringent runtime and memory re-
quirements favors lightweight and highly scalable approaches such
as stochastic models.

However, the factors which make stochastic models appealing for
large groups of background agents make them inappropriate for
simulating small numbers of detailed agents. First, the accuracy
of the model, e.g. how closely we match a desired distribution, be-
comes more accurate as the number of agents increase. In our de-
mos, 100+ agents had good convergence. Second, it is difficult to
build state machines for extremely large numbers of actions (future
work could look at hierarchal stochastic models) and furthermore,

(a) (b)

(c) (d)

Figure 10: Modeling preferences for closer locations. This figure
shows maps of the mall environment used for our zombie demo. Lo-
cations in the mall are shaded to show how often they were visited
from a starting location. For this demo, zombies were distributed
evenly across the environment, but we added hard constraints so
that zombies are more likely to visit closer locations than further
ones. The start location is indicated with a circle. Lighter areas
indicate locations more frequently visited from the start location.

this technique does not support reactive behaviors, such as those in
response to the player. To support reactions, an agent could switch
to a detailed AI script as necessary and then return to the more basic
model. Small disturbances will not have a big effect on the aggre-
gate appearance of the crowd.

Additionally, this model makes assumptions that an agent can al-
ways reach a destination, all interactions with other agents (such
as tellers, shop keepers) are deterministic, and that resources are
always available. Environmental changes can be handled by re-
computing transition matrices to support more dynamic group be-
haviors.

We only consider a subset of the types of distributions used for
stochastic agent modeling. Future work could also look into mod-
eling arbitrary distributions for durations and conditional probabil-
ities between states.In the future, we may investigate how to apply
these techniques to AI level-of-detail and for dynamically com-
puting spawn entry and exit rates in moving regions around the
player. We investigated this approach for authoring the appearance
of crowds, but it might also be applied to sound authoring. For
example, a sports game might use this approach to control the pro-
portions of cheers, whistles, and shouts in response to game events.
Other future work could verify the potential of this approach for
massive scalability. Many massively multiplayer online games do
not contain dynamic background characters. The robustness of this
method and ability to run decentralized has the potential to let de-
signers easily script daily routines for agents with minimal manual
effort and little increased computational cost.

Acknowledgements

The authors wish to thank everyone who provided feedback and
support for this project: Jan Allbeck, Norm Badler, Benedict
Brown, Penfei Huang, Stephen Lane, Yusuf Sahillioglu, Ben
Sunshine-Hill, and Rossana Queiroz. We also thank Fannie Liu and
Corey Novich for their help with assets and videos. This work was

Demo Activities Sites Nodes Edges Constraints Time (s)
Birds 3 3 32 38 72 0.769
Food court - breakfast 4 16 105 134 499 8.76
Food court - lunch/dinner 4 16 105 134 499 8.65
Food court - coffee 4 16 105 134 499 8.73
Food court - closed 4 16 105 134 499 10.95
Zombies (no distance preferences) 2 69 69 4761 4899 3.32
Zombies (distance preferences) 2 69 69 4761 33876 651.23
Medieval 4 9 20 36 155 0.5

Table 1: Precomputation times for our demos. Modeling distance preferences for the zombie mall environment takes much longer to compute
because of the large number of additional constraints.

(a) (b)

Figure 11: Medieval gatherers. 11(a) shows the demo environ-
ment. There is a main village where people idle, 4 wheat fields for
gathering wheat, 1 lumber yard, and 3 gold mines. The user can
control the resource gathering across sites by assigning agents to
activities. 11(b) shows the activity graph. Each gathering activ-
ity is executed as a self contained FSM which continuously fetches
resources and brings them back to the village.

supported by NSF Grant IIS-1018486 and ONR MURI DR-IRIS
N00014-09-1-1052.

References

ADMIZA, J. 2001. AI madness: Using AI to bring open-city racing
to life. Game Developer Magazine (January).

ALLBECK, J. M. 2010. CAROSA: A tool for authoring NPCs. In
Motion in Games, Springer, 182–193.

BERMAN, S., HALÁSZ, A., HSIEH, M. A., AND KUMAR, V.
2009. Optimized stochastic policies for task allocation in swarms
of robots. Trans. Rob. 25 (August), 927–937.

BOYD, S., DIACONIS, P., AND XIAO, L. 2003. Fastest mixing
markov chain on a graph. SIAM REVIEW 46, 667–689.

BROCKINGTON, M. 2002. Level-of-detail AI for a large role-
playing game. In AI Game Programming Wisdom, Charles River
Media, 419–425.

CURTIS, S., GUY, S. J., ZAFAR, B., AND MANOCHA, D. 2011.
Virtual Tawaf: A case study in simulating the behavior of dense,
heterogeneous crowds. In IEEE Workshop on Modeling, Simu-
lation and Visual Analysis of Large Crowds.

GRANT, M., AND BOYD, S., 2013. CVX: Matlab software for
disciplined convex programming, version 2.0 beta. http://
cvxr.com/cvx, Sept.

LIU, W., LAU, R., AND MANOCHA, D. 2012. Crowd simulation
using discrete choice model. In Virtual Reality Workshops (VR),
2012 IEEE, 3 –6.

LOVAS, G. G. 1994. Modeling and simulation of pedestrian traffic
flow. Transportation Research Part B: Methodological 28, 6,
429–443.

MARK, D., 2011. Using randomness in AI: Both sides of the coin.
GDC AI Summit.

MUSSE, S. R., AND THALMANN, D. 2001. Hierarchical model for
real time simulation of virtual human crowds. IEEE Transactions
on Visualization and Computer Graphics 7, 152–164.

ROSS, S. 1996. Stochastic Processes. Wiley and Sons, second
edition.

SEWALL, J., WILKIE, D., AND LIN, M. C. 2011. Interactive
hybrid simulation of large-scale traffic. ACM Transaction on
Graphics (Proceedings of SIGGRAPH Asia) 30, 6 (December).

SHOULSON, A., AND BADLER, N. I. 2011. Event-centric control
for background agents. In International Conference on Interac-
tive Digital Storytelling, ICIDS’11, 193–198.

STOCKER, C., SUN, L., HUANG, P., QIN, W., ALLBECK, J., AND
BADLER, N. 2010. Smart events and primed agents. Proc.
Intelligent Virtual Agents (IVA).

STYLIANOU, S., FYRILLAS, M. M., AND CHRYSANTHOU, Y.
2004. Scalable pedestrian simulation for virtual cities. In Sym-
posium on Virtual reality software and technology, VRST ’04.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable
behaviors for crowd simulation. Computer Graphics Forum 23,
3, 519–528.

SUNSHINE-HILL, B., AND BADLER, N. 2010. Perceptually re-
alistic behavior through alibi generation. Artificial Intelligence
and Interactive Digital Entertainment (AIIDE).

THALMANN, D., HERY, C., LIPPMAN, S., ONO, H., REGELOUS,
S., AND SUTTON, D., 2004. Crowd and group animation. ACM
SIGGRAPH Course Notes.

TOH, K., TODD, M., AND TUTUNCU, R. 1999. SDPT3 — a
matlab software package for semidefinite programming. Opti-
mization Methods and Software 11, 545–581.

ULICNY, B., DE HERAS CIECHOMSKI, P., AND THALMANN, D.
2005. CrowdBrush: interactive authoring of real-time crowd
scenes. In Symposium on Computer Animation (SCA).

UNITY, 2013. www.unity3d.com.

WANG, C., YAN, D., AND JIANG, Y. 2011. A novel approach for
building occupancy simulation. Building Simulation 4, 149–167.

http://cvxr.com/cvx
http://cvxr.com/cvx

	University of Pennsylvania
	ScholarlyCommons
	2014

	Stochastic Activity Authoring With Direct User Control
	Aline Normoyle
	Maxim Likhachev
	Alla Safonova
	Recommended Citation

	Stochastic Activity Authoring With Direct User Control
	Abstract
	Keywords
	Disciplines
	Comments

	Stochastic Activity Authoring with Direct User Control

