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Generating a Multipliciy of Policies for Agent Steering in Crowd
Simulation

Abstract

Pedestrian steering algorithms range from completely procedural to entirely data-driven, but the former
grossly generalize across possible human behaviors and suffer computationally, whereas the latter are limited
by the burden of ever-increasing data samples. Our approach seeks the balanced middle ground by deriving a
collection of machine-learned policies based on the behavior of a procedural steering algorithm through the
decomposition of the space of possible steering scenarios into steering contexts. The resulting algorithm scales
well in the number of contexts, the use of new data sets to create new policies, and in the number of controlled
agents as the policies become a simple evaluation of the rules asserted by the machine-learning process. We
also explore the use of synthetic data from an “oracle algorithm” that serves as an as-needed source of samples,
which can be stochastically polled for effective coverage. We observe that our approach produces pedestrian
steering similar to that of the oracle steering algorithm, but with a significant performance boost. Runtime was
reduced from hours under the oracle algorithm with 10 agents to on the order of 10 frames per second (FPS)
with 3000 agents. We also analyze the nature of collisions in such a framework with no explicit collision
avoidance.

Keywords
machine learning, synthetic data, crowd simulation, steering

Disciplines
Computer Sciences | Engineering | Graphics and Human Computer Interfaces

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/hms/140


http://repository.upenn.edu/hms/140?utm_source=repository.upenn.edu%2Fhms%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages

Generating a Multiplicity of Policies for Agent

Steering in Crowd Simulation

Cory D. Boatright* Mubbasir Kapadia Jennie M. Shapira
Norman I. Badler
Grove City College
100 Campus Drive
Grove City, PA 16127
Tel. +1(724)264-4622 Fax. +1(724)450-1550

email: cdboatright@gcc.edu

Work done while all four authors were at the University of Reylvania

Abstract

Pedestrian steering algorithms range from completelyqatoxal to entirely data-

driven, but the former grossly generalize across possiblaam behaviors and suf-
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fer computationally while the latter are limited by the bemdof ever-increasing data
samples. Our approach seeks the balanced middle groundriwyndea collection
of machine-learned policies based on the behavior of a gduweé steering algorithm
through the decomposition of the space of possible stesdegarios into steering con-
texts. The resulting algorithm scales well in the number aitexts, the use of new
data sets to create new policies, and in the number of ctedralgents as the poli-
cies become a simple evaluation of the rules asserted bydlhine-learning process.
We also explore the use of synthetic data from an “oraclerélgn” that serves as an
as-needed source of samples which can be stochasticaléd ol effective coverage.
We observe that our approach produces pedestrian ste@miigrdo that of the ora-
cle steering algorithm, but with a significant performanocesi. Runtime was reduced
from hours under the oracle algorithm with 10 agents to orotider of 10 FPS with
3,000 agents. We also analyze the nature of collisions ih suitamework with no

explicit collision avoidance.

Keywords: machine learning, synthetic data, crowd simulation, stger



Introduction

Crowd simulations are increasingly called upon for reatwirtual experiences. This push
also includes a component of dynamic interaction with a ugdech adds additional unpre-
dictability to the agents’ decision-making process. Asgtioms such as the reciprocity of
steering algorithm are not sound in the presence of humaurt,ispggesting the need to re-
think how to handle this diversity. The problem of predigtanpriori the possible situations
an agent will encounter is rapidly becoming intractable seysiare given more freedom in
their virtual worlds, and thus we need algorithms that aedadite not only in agent count,
but circumstance as well.

Data-driven steering algorithms are a natural fit for expagdirtual pedestrians’ ca-
pability to handle new problems, but current approachesausagle policy as a “one size
fits all” approach and are data-bound in their ability to Hargkeneral steering. A leading
problem for machine learning in crowd steering is the feagpace itself, especially for a
single-policy system. For behavior as complex and divessieueman steering, increasing
amounts of samples can lead to contradictory data whichezunine an increase in features
to try to accommodate the new factor causing the differeragthermore, the source of
data is often observations of the real world which posesstamil challenges for gathering
samples from an inability to control the observed environm@& his ultimately leads to a
lack of scenario coverage in the training data itself. Peanantic understanding of particu-

lar steering choices also inhibits fully robust usage o thata, which can manifest as what



appear to be poor steering decisions.

In this paper we define the concept of steering contexts,wdue collections of situ-
ations selected for their qualitative similarity. By idéying such contexts, we divide the
problem space, which limits the necessary scope of thedfatan solution and avoids the
single-model problem described above. We propose a pgueliiich leverages these con-
texts through the use of a collection of machine-learnedetsotlained on synthetic data
from a space-time planner. This development pipeline igatlized in Figure 2.

This paper makes the following contributions:

We introduce and use the concept of steering contexts toatepdata for easier ma-

chine learning and allow for scalability of circumstancenad! as help mitigate con-

tradictory training samples.

e We demonstrate the efficacy of synthetic training data fromolsastically generated
samples for better control over data collection resultmgnore universal coverage of

possible situations.

e Our pipeline produces a fast runtime algorithm with simgaering characteristics to

a slower, more optimal algorithm.

e We analyze the performance of an “implicit” approach toisah avoidance with a

data-driven technique.



Related Work

Following seminal work [1] on flocking behaviors using peldisystems, the field of crowd
simulation has grown into a well-developed, multi-facedeela of study. In this section we
review other publications most applicable to this work amdaf broader survey of the field
we refer the reader to the reviews in [2, 3].

Crowd simulation strives to replicate the pedestrian bilmay a group of people as
realistically as possible while remaining computatiopathctable. Due to this pull between
two extremes—human complexity and processing speed—#lgm have been formulated
as an abstraction to human behavior. These abstractiogsrvdwow they approach the
problem of moving so many agents.

Centralized Techniques.This category of approaches looks at the agents as pietlesr, ei
discrete or part of a continuous entity, on a board and maves &gent in accordance with a
desired global outcome. Since a centralized process isiplgtheir actions, agents appear
to have an omniscient knowledge of their environment. Blarg8ystem approaches [1, 4]
replace the Newtonian physics of a typical n-body simutatioth social forces. These
particle approaches are further refined in the social forodeats of [5, 6].

Centralized techniques rely on a broad conformity amortgspbpulation for best ef-
ficiency as seen the fluid-like approach of [7]. This is an ptagle premise for group-
dynamic simulations as used in the study of crowd flows irgrelis pilgrimages [8] and

emergency evacuations [9], but such an approach does ndietaw-level micro-management
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well, which is expected when a user is an active participathe virtual world rather than
a passive observer.

Agent-based TechniquesTo introduce more individuality in a simulation’s agentg van
make steering an integral part of the agents’ abilities.

Geometric algorithms such as [10, 11] determine their netitba based on which ve-
locities may avoid a collision with another agent. This $amio the approach used by [12]
which uses a synthetic sense of vision to determine infaomatbout other agents’ trajec-
tories and adjust accordingly. Agents have also used affaelfields [13] to try to find safe
passage to a goal. A cognitive system was used in the semar&l[#4] which included
utility functions for desires, an attentional system toitiperception of the environment,
and a motor system to carry out actions. Recently, a ruleebadaptive system [15] was
proposed that switched between other steering algoritbrbedt suit an agent’s needs.

Machine learning has been used [16] which takes designeestigns for how agents
should steer in their world and fits a model. Additionallymgdes of real-life steering
behavior can be used with the machine learning to fit bettetaiso
Data-Driven Techniques.Work in data-driven steering has focused primarily on gatieg
local-space samples from observations of real people. AMitieo samples were compiled
into a database which was queried at runtime and trajestargze copied and used by the
agents based solely on the similarity of the agents’ sudimgs to the video examples. The
work of [18] used a more constrained state space of disexeslices around an agent and
focused more on recreating group dynamics than individersg. A similar state space
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is used by [19] as one of two state spaces. A separate state spasisting of a discretized
view frustum was used for environmental navigation. In camrto all these techniques is
using one collection of samples for all navigation undemngl& model.

Comparison to Related Work Our work builds on the adaptive use of algorithms in [15].
While the adaptive algorithm swapped between policies dasehand-coded rules, we
employ machine learning to fit a model that determines whialcy to use for a given
decision. We also expand on the idea of failure sets frompQapking the concept further
with the use of their inverse to create contexts for steei@g use of “contexts” is different
from that found in [21] as our contexts are egocentric, nehacdo-wide. Another data-
driven method seen in [22] focuses on capturing the dynaafitise overall crowd, while
we focus on the individual agents. The closest data-driystesn compared to our pipeline
is that of [19] which uses interchangeable state spacesldnituges clustering to try to
separate data after the fact where we separate the dataliebeginning of the process.

Our exclusive use of an oracle algorithm in lieu of real-datalso unique to this paper.

Steering Contexts

A scenarioin scenario space [2( is the global configuration of obstacles, agents, and
their goals in a virtual environment. The high dimensiayatif scenario space makes it
inherently intractable to exhaustively cache, so a moreggmodel of steering behavior

iIs needed. Each agent in a frame of simulation encountersnitssituation .S from its


https://www.researchgate.net/publication/228051015_Footstep_navigation_for_dynamic_crowds?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==
https://www.researchgate.net/publication/227770567_Building_AgentBased_Walking_Models_by_MachineLearning_on_Diverse_Databases_of_SpaceTime_Trajectory_Samples?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==
https://www.researchgate.net/publication/227770567_Building_AgentBased_Walking_Models_by_MachineLearning_on_Diverse_Databases_of_SpaceTime_Trajectory_Samples?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==
https://www.researchgate.net/publication/220789298_Scenario_Space_Characterizing_Coverage_Quality_and_Failure_of_SteeringAlgorithms?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==
https://www.researchgate.net/publication/220789298_Scenario_Space_Characterizing_Coverage_Quality_and_Failure_of_SteeringAlgorithms?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==
https://www.researchgate.net/publication/220507338_Context-Dependent_Crowd_Evaluation?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==
https://www.researchgate.net/publication/44450076_Data-Driven_Animation_of_Crowds?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==

perspective. Situations which are similar, based on soaeirfe spac&™, are grouped
together to form &ontext, C. The similarity-based grouping is performed to give a high-
level perspective on the current situation, and to prostdgr the agents require a policy for
each context. While these could be handwritten rulesegsitiiying contexts and creating
policies for each one quickly becomes work-bound. We uséhimadearning to offset this
burden and automatically generate models to serve as g fotieach context.

We can now give a formal definition of context space and of@dstthemselves. For a
given feature spacE*, context spac€ is a projection ofS onto the coordinate system of
F* and may consist of many overlapping contexts each with baies defined by various
values of the features. An individual conteXt C C is defined in Equation 1 with respect
to the success of steering policyn handling situations. A policy is successful if it can
produce a valid action from action spakédor the situation, which is one where a collision
does not occur and the overall scenario does not deadloateresio then can be considered

a sequence of situations and actions with some transitioetifond (S, a).

Ci={SeC|3a: (f,a),f €F ach S+5(5a) (1)

A situation is guaranteed membership in at least one cobtoduse in the worst case,
it could have a special-case policy defined for it. This letgedefine scenario space as
S = |, C;. This redefinition yields interesting insight into the puitof generalized steer-

ing. While it would be convenient to know if a set of policiegsts that provide optimal



behavior for all scenarios i, this requires the corresponding contexts partiidrased on
the “best” context and is thus a direct application of thecéxaver problem. Furthermore,
it is intractable to know if a set of contexts is sufficient tiverS as it is an example of the
set cover problem. Both of these are known to be NP-Comp&3E [This important fact
necessitates approximating contexts rather than stdetiying them.

These contexts express how different situations requfferdnt policies and improve
scenario space by better characterizing regions of sueses$ailure. By approximating
contexts, we can also identify a more constrained domaiddta-driven techniques. This
allows for a more modular and thus extensible approach tllibgia model for general
steering. Examples of contexts we defined by intuition ac¥iged in Figure 3 with a full

index in Table 2.

Initial Implementation

We now explain our pipeline for the integration of variousiaxts into a unified steering
algorithm. First, training data must be collected, whichgeaerate by means of an oracle
algorithm. Next, the various machine-learned models meditlo the data. Finally, these

models are used at runtime to decide where an agent’s nestéposhould be placed.



Training Data Generation

We define two orthogonal features for the area in each cdrdirection about the agent
for a total of 8 features, with a ninth feature special to thgion ahead of the agent. The
components of each area are agent density and the net floneafsag that area, with
the area directly in front of the agent detecting the preserdack of obstaclesAgent
densityis a rough approximation of overall crowding in the cardidiaéctions and includes
obstacles.Net flow is the average velocity direction of agents in a particutaaa This
helps determine whether or not the general crowd is movitigeviagainst the agent, which
requires different care for such things as collision avoc#a

Our feature space for learning specialized policies aredas a circular neighborhood
about the agent with discretized wedges that track the seagent or obstacle in that region.
Our feature spaces can be seen in Figure 4 and are in parteddpy the state spaces
of [18, 19]. In particular, the context classifier's stataspis built of two values for each
of the four regions and an additional value denoting thegures of obstacles in front of the
agent for a 9-dimensional vector. The specialized featpaeeis a 29-dimensional vector
broken down into three values for each slice: the distangeed, and orientation of the
nearest entity. The distance to the goal and its orientatierthe final two values.

A data-driven approach relies on the quality and coveragfs tfaining samples. Real-
world data is often used as a source because humans enipsaak any presented steering

challenges and we wish to create virtual representatiofsigfans. However, we cannot

10


https://www.researchgate.net/publication/220789304_Group_behavior_from_video_A_data-driven_approach_to_crowd_simulation?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==
https://www.researchgate.net/publication/227770567_Building_AgentBased_Walking_Models_by_MachineLearning_on_Diverse_Databases_of_SpaceTime_Trajectory_Samples?el=1_x_8&enrichId=rgreq-b1795905-6c02-42d5-aa1d-5600bad00cb0&enrichSource=Y292ZXJQYWdlOzI2MTkyNTEzMztBUzoyMDE1NDY4OTA1MTg1MjhAMTQyNTA2MzkzMTYwMw==

completely control the steering scenarios or know all theéatdes in the decision-making
process of the people observed. To enforce artificial litiites on the scenarios would im-
pact the integrity of the data through the influences of theeoler effect. Second, we have

no way of knowinga priori whether the data set collected has adequate sample coverage
for the situations the agents will need to handle. The pral@éthis potential incomplete-
ness is compounded by the overhead—or impracticality—bécting additional data. For
these reasons, our pipeline uses synthetic data from whecbam be conveniently gather

additional samples and know all the influences in advance.

Oracle Algorithm

Our oracle algorithm is based on a memory-boundéglanner with a discrete footstep
action space similar to the action space in [15]. We choosetstep action space because
our machine learning can use classifiers instead of beingji@ned to regression. When the
oracle is run on the generated scenarios, each agent usesith@y-bounded Aplanner to
calculate the optimal path from its current location to tbalg The bound on the memory is
raised if a path is not found, as a last resort Iterative DeiegeA* (IDA*) is used. The oracle
planner’s overall algorithm is given in Algorithm 1, and theuristic used is in Equation 2

and is based on the distance to the goal and average expeetgy eost to reach that goal.

_ ”p - g” * CNETEYavg
strideayg

h(p,g)

(@)
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Each agent has full knowledge only of the obstacles and ageitiiin the horizon of
its field of view. Since other agents may enter or leave thid i view, each agent must
monitor its path for new collisions and invoke the planneingf such a problem is found.
We chose this limitation on the oracle because of the raditiseofeature spaces used to
sample the data, and the human-factors nature of the fesgase designs.

The simulations using the oracle are recorded for lateaettm of training samples. As
the oracle does not use any feature spaces, the same oEwidimgs can be used to extract
data with different feature spaces, allowing for futurelergtion of such possibilities. We
extract a state-action pa{f, a«) wheref is a vector from feature spade anda is the

parameters of the agent’s current step, and use it as a seonpiaining.

Decision Trees

Avoiding the requirement that the learned policy be a mahilj universal solution has
several key benefits. First, the policies can be simpler hag éxecuted faster at runtime.
Second, we avoid the catastrophically high dimensionalynmon to such approaches,
which are held back by all the factors that can influence epetgntial action. Finally,

we do not need to relearn the entire system to assimilate a¢sv By using one model
to select more specialized models, new data requires oalgghcialized model it belongs
to be relearned. Even the creation of a new context only reguhe top-level model be

recomputed while the other models are still valid and wilt be harmed by potentially
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contradictory data.

The pipeline proposed by this paper is agnostic to the spédedrning algorithms used
at the different levels of the hierarchy, and different aipons can even coexist on different
levels of the hierarchy if particular contexts are betterdiad by different models. We have
chosen to use two levels of boosted decision trees [24] forsiantiation of the pipeline
based on the similar problem domain of [25] that showed sscéer learning different
policies that both classified different types of soccer baitaand could be used to decide
the actual action itself.

Each of our policies consists of two boosted decision trees;for each foot. We use
a Windows port of the GPL release of the C5.0 decision tretesy$ ul equest . com).
We chose ten trees as the amount of boosting empiricallydbasecross-validation. In
total 2500 scenarios were sampled from each context andseadario was generated with
respect to a central agent, which provided a variable nurobsteps per scenario. These
steps then became the situations representative of thextdat the specialized classifier.
A context classification sample was only generated for tiséfiire steps of each recording
due to the total number of scenarios that were sampled, alhath supplied data to the

context classifier.
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Steering At Runtime

At runtime the agent generates feature vectors correspgnaiboth the context classifier’s
feature space and the corresponding specialized modatigréespace and receives parame-
ters used to derive its next footstep. These parametergded relative offset and rotational
angle to the next step’s location, while specifics such &$eslength are calculated on the fly
based on the agent’s inherent characteristics. This stegigated and if found to be unfit,
a default “emergency action” takes place, wherein the agemediately stops. This allows
the agent to try again after a short cool-down period. Thistganet was implemented to
account for the worst-case where a returned action is autdidhe parameters permitted
by the agents’ walking such as two steps in a row from the sawoedr too wide a turn.
The models cannot be expected to be 100% accurate, which sotlrce of these potential
errors. Pseudocode for the agents’ runtime is listed in Allgm 2.

As shown earlier in the paper, itis NP-Complete to know if comtexts cover all possi-
ble scenarios. Furthermore, decision trees are susceftibigh variance depending on the
dataset we generate through our stochastic sampling. &hses uncertainty in the deci-
sions our agents will make. We account for this uncertaimtgugh the use of a confidence
threshold defined by the C5.0 algorithm. This rating is rdyglefined as the number of
correct classifications made by the leaf nodes divided byatad number of classifications
made by the same node, making it a static quantity once teadrearned. If the confi-

dence threshold is not met by the classification the ageps stith the ability to resume as
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conditions change. This confidence value is not a directatifle on the technique itself,
but is instead heavily affected by pruning the decisionsttegyield a more general model.
Note in Algorithm 2 there is no explicit collision detecti@n avoidance. In our sys-
tem, runtime collision detection and avoidance is handheglicitly through the training
data itself. This is different from other techniques suclild$ where training samples are
used but thorough handling of collisions is required. Ad Wé shown, the training data
itself is sufficient to prevent many significant collisiomsrh occurring with dense scenarios

experiencing relatively few collisions per capita whenfatitors are considered.

Results

We generated approximately 2,500 samples for each of atiali@é4 contexts. The oracle
algorithm required two weeks of continuous computatioretam paths for all of the sample
scenarios. Those scenarios which were shown to requiré Vizgke culled in the interest of
time. All results were generated on a desktop with 16.0GBAI¥RIntel Core i7 860 CPU

at 2.8GHz, and an NVIDIA GeForce GTX 680.

Classifier Accuracy

Figure 7 plots the error rate for the classifiers used in opegrents. Simulations were run
using models trained on amounts of data ranging from 100 @® 2@enarios per context.

A separate validation set of 200 scenarios per context wapehack to calculate the error
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rate of the resulting trees.

Error rates were high but did decrease as data size incrests®ding improvement in
generalization and not simply noise. Additionally, the ragge number of steps used for
each context was approximately 12, which sets random gwessaxy at 8%, which we
clearly overcame. Furthermore, random guess accuracy ad2éxts is 4% which we also
surpassed. The error rate seen in the context classifideely & result of how the training
data was generated in a noisy manner, for instance somepvartiensity between a high
density scenario and a medium density scenario exists.g& laurden is also placed on the
decision trees to distinguish tl@haos context from other contexts but this by its nature
adds a lot of noise and has no structure, making it difficuttebne hyperplanes to separate

such scenarios.

Runtime

Our initial instantiation of a context-sensitive pipeliremuch faster at runtime than the
oracle. As seen in Table 1, all contexts experienced speedpecially significant for the
most challenging scenarios involving obstacles. Thaos context, both with and with-
out obstacles, was the most challenging for the oracle asudtesl in skewed performance
data due to the number of scenarios which were culled. Ounaodethowed an extremely
constant amount of time across the different contexts ovarg dynamic model-swapping.

To test the robustness of our collection of models, we cdeatiarge-scale simulation
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consisting of randomly generated obstacles, agents, ad,@s seen in Figure 1. We mea-
sured the time to generate the paths for varying numbersaritago simulate 1,200 frames,
with the results given in Figure 6. All tests were run usingrgte-threaded implementa-

tion and realtime framerates were experienced at 1,500sged interactive framerates of

about 10FPS were experienced with as many as 3,000 agents.

Collisions

Recall our virtual agents navigate without an explicit isbdin avoidance stage to their nav-
igation. Generally, the agents do not collide on the basisttieir training samples contain
no collisions, and thus they inherently steer around onéh@&noHowever, as the models are
not 100% accurate, collisions are to be expected.

We have run several medium-scale scenarios that are belgertyge of scenarios used

for training the models. These scenarios were as follows:

Hallway Two opposing groups of 100 agents cross a hallway.

Random 500 randomly placed agents with 696 randomly placed oletdabfoughout the

environment.

Urban 2500 randomly placed agents in an environment simulatingrban area with ob-

stacles as city blocks.

These tests were run for varying numbers of training scesafrom 100 to 2000 in
increments of 100 and each test was run for 3600 frames. wdtels, we tabulated the
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number of collisions and created the graphs in Figure 8. Dhiesions were recorded by
severity. Type A collisions have occlusions in the rafi@gig, 10%| at the worst point. These
collisions could be registered due to the circular profilthefagents’ bounding volume and
thus may not be visible when the simulation is rendered. Bpellisions have occlusion
in the rangg(10%, 35%] and while more severe than before, could be alleviated witéta
ter anthropomorphic model with torso-rotation. This typeallision is often dealt with in
real pedestrians by turning the shoulders to more easily pas another in cramped con-
ditions. Type C collisions occlude on the ran@é%, 75%| and are major collisions which
require more tuning to the algorithm to avoid. Type D colliss complete the possibilities
at (75%, 100%] and would most likely need a fully reactive collision avaida system to
prevent.

The results were counterintuitive at first. As training séagrew in quantity, so did
collisions and even the severity of the collisions. We hiapstze two main factors behind
this increase. First, the oracle algorithm is collisioeefr Thus a sort of “event horizon” was
established in the training data where no reaction to antagmurs once the agent is too
close to another. This means once two agents are too cl@se,ithno force to push them
apart, which explains the increased amount of more serillisions compared to the more
minor offenses.

The second factor is that with increased sample counts, taels better attempt the
mimicry of the oracle algorithm’s behavior. The oracle heesdbility to steer agents together
in a very tight, close-call manner. While this is good for dracle and such nearby passing
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can be accommodated by it, as the training data increasezeiasd the agents steer more
like the oracle, a misstep is more likely to cause a collisibressence, more training data
made the agents attempt to steer in a more precise manngrelabherent inaccuracy of any
machine learning algorithm simultaneously leads to higis& Thus a collision avoidance

algorithm is necessary for a data-driven approach to sigeri

Conclusion and Future Work

In this paper, we have defined steering contexts, a new vieWwespace of possible scenar-
ios an agent may encounter as it steers through its virtudtiwdhese contexts provide new
insight into the task of creating a general steering colarabpable of handling anything it
encounters. Unless the controller can be independentiyeprto be general and thus con-
sist of a single context, the algorithm will shatter scemapace into subsets which must
each be handled by a separate policy. This creates a cowuenaggainty that is by nature
NP-Complete and to our knowledge no realtime algorithm eff@cted by this discovery.
We have also proposed a pipeline for constructing a stealiggrithm that is both
context-sensitive and scalable to circumstance. Throogluse of a multiplicity of models
fit to steering contexts, machine learned can be combinetddtter, and more structured,
coverage of the space of possible scenarios than wouldvagebe possible by a single-
model approach generalizing to all situations. We used asl®ralgorithm to get high

quality, on-demand training data which can be used for navtests without the overhead
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or uncertainty of real-world data. This training data wasntbroken into contexts based on
intuition and policies fit for each context using machinehéag.

Our technique has shown a massive increase in efficiencyadtsne simulation was
achieved with far higher population counts than the oralgerdhm could handle. Further-
more, training on this data resulted in relatively small fo@ns of collisions, many of them
minor. This system would be ideal for populating a space Vattiras” which are not the
focus of an end-user’s attention. In such a background e, the infrequent collisions
would be more likely to go unnoticed.

Future Work.

The decision tree models used to prototype our pipelinecaregstricting if the chosen
action is incorrect. A naive Bayesian approach would abdvetter “next best” progression
of footstep selection rather than the current all-or-noghepproach. Multiple algorithms
can coexist throughout the collection of policies allowesrh context to be fit as needed
for better overall accuracy. Furthermore the contexts gedwes could be defined from a
collection of data using unsupervised clustering, furteenoving the human element from
the problem.

Currently we decide the next step an agent should take anmdinigenultiple steps would
require an exponential increase in the size of the actiooesppa@one naively. However, we
postulate that analysis of step sequences would reveahthatll step combinations need
to be learned, drastically decreasing the overhead. Mamswsuch as overtaking other
pedestrians or rounding corners could then be encapsutatéér than depending on each
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step in the process being decided accurately. Even with 988&idn accuracy, a 5-step
sequence has a probability of being correct of only about.@83fthermore, we rather than
such a short horizon of a single step, this machine learrmppgoach could tackle navigation
instead and plot a waypoint, while a fast but reactive atgorisuch as RVO moves the agent
through the waypoints.

Finally, this data-driven approach is highly amenable talpaization, and the results in
this paper only for single-threaded performance. Exptpsicalability with increased thread

count would further show the strength of our technique.
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Figure 1: Multiple views of a 3,000 agent simulation with niguality rendering.
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Figure 2: Our pipeline for using steering contexts to degelonachine-learned model for
use at runtime. The majority of the pipeline is offline praieg. A collection of models

is trained on data extracted from an oracle algorithm’stgmitto steering situations, which
are stochastically generated. Then each model is a boostéslah tree with its own spe-
cialization. The action space consists of footsteps as aangageous discretization which

permits direct control and modeling of human locomotion.
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Context 0 1 2 3 4 5 6 7 8 9 10 11

Oracle | 0.73 |13.84| 5.1 1553 | 12.35| 9.26 1.68 | 67.27 | 101.56| 19.90 | 14.71 | 1.20

Models | 0.07 | 0.07 | 0.06 0.06 | 0.06 | 0.06 | 0.07 | 0.06 0.06 0.06 | 0.06 | 0.06

Context 12 13 14 15 16 17 18 19 20 21 22 23

Oracle || 123.95| 785.0| 1945.24| 365.25| 565.43| 574.52| 916.30| 462.53| 3384.10| 577.54| 396.79| 64.78

Models | 0.15 | 0.15 | 0.17 0.18 | 0.17 | 0.18 | 0.13 | 0.13 0.15 0.16 | 0.17 | 0.16

Table 1: Total time for step planning for all contexts in set®to calculate steps over short
scenarios. The first 12 are contexts without obstacles antdased on oncoming and cross

traffic patterns with varying levels of agent density. Catgel?2 and above have obstacles

and agent patterns matching the upper 12.
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North South East West
Context ID | Obstacles

Flow | Density | Flow | Density Flow Density Flow Density
0 Yes Neutral | Light | Neutral | Light Neutral Light Neutral Light
1 Yes Towards| Light | Neutral | Light Neutral Light Neutral Light
2 Yes Towards| Medium | Neutral | Light Neutral Light Neutral Light
3 Yes Towards| High Neutral | Light Neutral Light Neutral Light
4 Yes Towards| Medium | Towards| Medium Neutral Light Neutral Light
5 Yes Towards| Light | Towards| High Neutral Light Neutral Light
6 Yes Neutral | Light | Neutral | Light | Towards—Away| Light | Away—Towards| Light
7 Yes Neutral | Light | Neutral | Light | Towards—Away| Medium | Away—Towards| Medium
8 Yes Neutral | Light | Neutral | Light | Away—Towards| High | Away—Towards| High
9 Yes Neutral | Light | Towards| Medium | Away—Towards| Medium | Away—Towards| Medium
10 Yes Neutral | Light | Towards| High | Away—Towards| Light | Away—Towards| Light
11 Yes Towards| High | Towards| High Towards High Towards High
12 No Neutral | Light | Neutral | Light Neutral Light Neutral Light
13 No Towards| Light | Neutral | Light Neutral Light Neutral Light
14 No Towards| Medium | Neutral | Light Neutral Light Neutral Light
15 No Towards| High Neutral | Light Neutral Light Neutral Light
16 No Towards| Medium | Towards| Medium Neutral Light Neutral Light
17 No Towards| Light | Towards| High Neutral Light Neutral Light
18 No Neutral | Light | Neutral | Light | Towards—Away| Light | Away—Towards| Light
19 No Neutral | Light | Neutral | Light | Towards—Away| Medium | Away—Towards| Medium
20 No Neutral | Light Neutral | Light | Away—Towards| High | Away—Towards| High
21 No Neutral | Light | Towards| Medium | Away—Towards| Medium | Away—Towards| Medium
22 No Neutral | Light | Towards| High | Away—Towards| Light | Away—Towards| Light
23 No Towards| High | Towards| High Towards High Towards High

Table 2: Parameters which define the 24 contexts we use totppetour pipeline.
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Algorithm 1: Oracle Planner

Data: Start, goal, low memory bound, max memory bound, memory
increment size.

Result The path from start to goal.

1 for i + memMinto memMaxdo

2 path «+— BoundASt ar (start, goal, i)
3 if path.size = Othen

4 ‘ i < i+ memBlock

5 else

6 L return path

/1l Could not find path wi th BoundASt ar

7 path < | DASt ar (start, goal)

[ee]

return path
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Algorithm 2: Agent Decision at Runtime

Data: The environment with respect to the agent.

Result The next footstep action.

1 fStar «+ Gbser veEnvi ronnent ()

2 contextID < Cont ext Cl assi fi er (fStar)

3 f «+ ObserveLocal Space (contextlD)

4 action «+ C assi fi er (f,contextID)

5 if action.confidence< thresholdthen

6 L action « StopInPlace

return action.step

~
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(a) Clear View (b) Obstacles Ahead (c) Light Oncoming

(d) Groups Crossing (e) Chaos
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Figure 3: Examples from our set of contexts. Net flow is regmésd by the arrow in each
region, density of the region is depicted by darker shadegafand obstacles are gray
boxes. Each of these contexts was stochastically genesdtiedverlap in the permissible
values for density. Chaos was generated randomly withgatrdeto any structure as seen in

the other contexts. We used a total of 24 contexts.
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(a) F* (b) F

Figure 4: The feature sets used in our pipeline, where othenta are circles and static
obstacles are depicted as box®$.is used by the context classifier to dynamically choose
the best model based on high-level features, whils used to choose the agent’s next step

based on the local neighborhood.
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Figure 5: The multilevel decision trees used by our modetsuAtime the agent gives the
model information about its current goal and environmenoaal-space. This data is used
to calculatef for each model used. First the context classifier informsgient of its current

context, and the corresponding policy is used to deternmeaéxt footstep.
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Steering Time For Agent Count
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Figure 6: Total time taken for computing the steps of a sitnutal,200 frames long for
varying numbers of agents with randomly generated obstaute an overall small area.
Overhead was mostly incurred from a naive implementatf@gent density measurement

which isO (n?) wheren is the number of agents.
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Classifier Error for Varying Scenario Counts
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Figure 7: Classifier error rates for both context classifidug€) and an average over the
specialized classifiers (red). While the context classifees a high error rate, a 96% error

rate is random chance given the large number of classes tseHmm.

36



Hallway Random

1507 ° a 250’ ° ' n
2000 . e T
%) » %)
S 100] . &
2 B 150| ° 7
5 5 r/\-%/ki n
(@] (@]
ol 100 | .
501 '/./\/’/‘\'\/.\. B
| | | | | | | | |
0 500 1,000 1,500 2,000 500 1,000 1,500 2,000
Training Samples Training Samples
Urban
T
2,500 | .
@ 2,000 | 1
c
2
= 1,500 | .//_\‘/A//\' |
(@]
1,000 | .
5007 ‘\'/./‘\'/r/"/.‘./. |

| | | | |
200 400 600 800 1,000
Training Samples

Figure 8: Counts for collisions in 3 minute simulations iffelient test scenarios. Type A
collisions are blue, Type B collisions are red, Type C ardoyeland Type D are green.
Once collisions occurred, there was little pressure fontgg® move apart as the training
data was collision-free, thus no samples existed for ogpiay agents. Note that while
high, per capita an agent in each of these simulations islixelly to encounter around 1-3
collisions with approximately one third of them minor in neg in spite of the lack of any

explicit collision avoidance.
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