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Generating a Multipliciy of Policies for Agent Steering in Crowd
Simulation

Abstract
Pedestrian steering algorithms range from completely procedural to entirely data-driven, but the former
grossly generalize across possible human behaviors and suffer computationally, whereas the latter are limited
by the burden of ever-increasing data samples. Our approach seeks the balanced middle ground by deriving a
collection of machine-learned policies based on the behavior of a procedural steering algorithm through the
decomposition of the space of possible steering scenarios into steering contexts. The resulting algorithm scales
well in the number of contexts, the use of new data sets to create new policies, and in the number of controlled
agents as the policies become a simple evaluation of the rules asserted by the machine-learning process. We
also explore the use of synthetic data from an “oracle algorithm” that serves as an as-needed source of samples,
which can be stochastically polled for effective coverage. We observe that our approach produces pedestrian
steering similar to that of the oracle steering algorithm, but with a significant performance boost. Runtime was
reduced from hours under the oracle algorithm with 10 agents to on the order of 10 frames per second (FPS)
with 3000 agents. We also analyze the nature of collisions in such a framework with no explicit collision
avoidance.
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Abstract

Pedestrian steering algorithms range from completely procedural to entirely data-

driven, but the former grossly generalize across possible human behaviors and suf-
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fer computationally while the latter are limited by the burden of ever-increasing data

samples. Our approach seeks the balanced middle ground by deriving a collection

of machine-learned policies based on the behavior of a procedural steering algorithm

through the decomposition of the space of possible steeringscenarios into steering con-

texts. The resulting algorithm scales well in the number of contexts, the use of new

data sets to create new policies, and in the number of controlled agents as the poli-

cies become a simple evaluation of the rules asserted by the machine-learning process.

We also explore the use of synthetic data from an “oracle algorithm” that serves as an

as-needed source of samples which can be stochastically polled for effective coverage.

We observe that our approach produces pedestrian steering similar to that of the ora-

cle steering algorithm, but with a significant performance boost. Runtime was reduced

from hours under the oracle algorithm with 10 agents to on theorder of 10 FPS with

3,000 agents. We also analyze the nature of collisions in such a framework with no

explicit collision avoidance.

Keywords: machine learning, synthetic data, crowd simulation, steering

2



Introduction

Crowd simulations are increasingly called upon for realtime virtual experiences. This push

also includes a component of dynamic interaction with a userwhich adds additional unpre-

dictability to the agents’ decision-making process. Assumptions such as the reciprocity of

steering algorithm are not sound in the presence of human input, suggesting the need to re-

think how to handle this diversity. The problem of predicting a priori the possible situations

an agent will encounter is rapidly becoming intractable as users are given more freedom in

their virtual worlds, and thus we need algorithms that are scalable not only in agent count,

but circumstance as well.

Data-driven steering algorithms are a natural fit for expanding virtual pedestrians’ ca-

pability to handle new problems, but current approaches usea single policy as a “one size

fits all” approach and are data-bound in their ability to handle general steering. A leading

problem for machine learning in crowd steering is the feature space itself, especially for a

single-policy system. For behavior as complex and diverse as human steering, increasing

amounts of samples can lead to contradictory data which can require an increase in features

to try to accommodate the new factor causing the difference.Furthermore, the source of

data is often observations of the real world which poses logistical challenges for gathering

samples from an inability to control the observed environment. This ultimately leads to a

lack of scenario coverage in the training data itself. Poor semantic understanding of particu-

lar steering choices also inhibits fully robust usage of this data, which can manifest as what
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appear to be poor steering decisions.

In this paper we define the concept of steering contexts, which are collections of situ-

ations selected for their qualitative similarity. By identifying such contexts, we divide the

problem space, which limits the necessary scope of the data-driven solution and avoids the

single-model problem described above. We propose a pipeline which leverages these con-

texts through the use of a collection of machine-learned models trained on synthetic data

from a space-time planner. This development pipeline is visualized in Figure 2.

This paper makes the following contributions:

• We introduce and use the concept of steering contexts to separate data for easier ma-

chine learning and allow for scalability of circumstance aswell as help mitigate con-

tradictory training samples.

• We demonstrate the efficacy of synthetic training data from stochastically generated

samples for better control over data collection resulting in more universal coverage of

possible situations.

• Our pipeline produces a fast runtime algorithm with similarsteering characteristics to

a slower, more optimal algorithm.

• We analyze the performance of an “implicit” approach to collision avoidance with a

data-driven technique.
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Related Work

Following seminal work [1] on flocking behaviors using particle systems, the field of crowd

simulation has grown into a well-developed, multi-facetedarea of study. In this section we

review other publications most applicable to this work and for a broader survey of the field

we refer the reader to the reviews in [2, 3].

Crowd simulation strives to replicate the pedestrian behavior of a group of people as

realistically as possible while remaining computationally tractable. Due to this pull between

two extremes—human complexity and processing speed—algorithms have been formulated

as an abstraction to human behavior. These abstractions vary in how they approach the

problem of moving so many agents.

Centralized Techniques.This category of approaches looks at the agents as pieces, either

discrete or part of a continuous entity, on a board and moves each agent in accordance with a

desired global outcome. Since a centralized process is planning their actions, agents appear

to have an omniscient knowledge of their environment. Particle system approaches [1, 4]

replace the Newtonian physics of a typical n-body simulation with social forces. These

particle approaches are further refined in the social force models of [5, 6].

Centralized techniques rely on a broad conformity amongst the population for best ef-

ficiency as seen the fluid-like approach of [7]. This is an acceptable premise for group-

dynamic simulations as used in the study of crowd flows in religious pilgrimages [8] and

emergency evacuations [9], but such an approach does not handle low-level micro-management
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well, which is expected when a user is an active participant in the virtual world rather than

a passive observer.

Agent-based Techniques.To introduce more individuality in a simulation’s agents, we can

make steering an integral part of the agents’ abilities.

Geometric algorithms such as [10, 11] determine their next action based on which ve-

locities may avoid a collision with another agent. This similar to the approach used by [12]

which uses a synthetic sense of vision to determine information about other agents’ trajec-

tories and adjust accordingly. Agents have also used affordance fields [13] to try to find safe

passage to a goal. A cognitive system was used in the seminal work [14] which included

utility functions for desires, an attentional system to limit perception of the environment,

and a motor system to carry out actions. Recently, a rule-based adaptive system [15] was

proposed that switched between other steering algorithms to best suit an agent’s needs.

Machine learning has been used [16] which takes designer suggestions for how agents

should steer in their world and fits a model. Additionally, samples of real-life steering

behavior can be used with the machine learning to fit better models.

Data-Driven Techniques.Work in data-driven steering has focused primarily on generating

local-space samples from observations of real people. In [17] video samples were compiled

into a database which was queried at runtime and trajectories were copied and used by the

agents based solely on the similarity of the agents’ surroundings to the video examples. The

work of [18] used a more constrained state space of discretized slices around an agent and

focused more on recreating group dynamics than individual steering. A similar state space
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is used by [19] as one of two state spaces. A separate state space consisting of a discretized

view frustum was used for environmental navigation. In common to all these techniques is

using one collection of samples for all navigation under a single model.

Comparison to Related Work. Our work builds on the adaptive use of algorithms in [15].

While the adaptive algorithm swapped between policies based on hand-coded rules, we

employ machine learning to fit a model that determines which policy to use for a given

decision. We also expand on the idea of failure sets from [20]by taking the concept further

with the use of their inverse to create contexts for steering. Our use of “contexts” is different

from that found in [21] as our contexts are egocentric, not scenario-wide. Another data-

driven method seen in [22] focuses on capturing the dynamicsof the overall crowd, while

we focus on the individual agents. The closest data-driven system compared to our pipeline

is that of [19] which uses interchangeable state spaces but also uses clustering to try to

separate data after the fact where we separate the data from the beginning of the process.

Our exclusive use of an oracle algorithm in lieu of real-datais also unique to this paper.

Steering Contexts

A scenario in scenario space [20]S is the global configuration of obstacles, agents, and

their goals in a virtual environment. The high dimensionality of scenario space makes it

inherently intractable to exhaustively cache, so a more general model of steering behavior

is needed. Each agent in a frame of simulation encounters itsown situation S from its
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perspective. Situations which are similar, based on some feature spaceF∗, are grouped

together to form acontext, C. The similarity-based grouping is performed to give a high-

level perspective on the current situation, and to properlysteer the agents require a policy for

each context. While these could be handwritten rulesets, identifying contexts and creating

policies for each one quickly becomes work-bound. We use machine learning to offset this

burden and automatically generate models to serve as a policy for each context.

We can now give a formal definition of context space and of contexts themselves. For a

given feature spaceF∗, context spaceC is a projection ofS onto the coordinate system of

F∗ and may consist of many overlapping contexts each with boundaries defined by various

values of the features. An individual contextCi ⊆ C is defined in Equation 1 with respect

to the success of steering policyi in handling situations. A policy is successful if it can

produce a valid action from action spaceA for the situation, which is one where a collision

does not occur and the overall scenario does not deadlock. A scenario then can be considered

a sequence of situations and actions with some transition functionδ (S, a).

Ci =
{

S ∈ C | ∃a : 〈f , a〉 , f ∈ Fi, a ∈ A, S 6= δ (S, a)
}

(1)

A situation is guaranteed membership in at least one contextbecause in the worst case,

it could have a special-case policy defined for it. This lets us redefine scenario space as

S =
⋃

i
Ci. This redefinition yields interesting insight into the pursuit of generalized steer-

ing. While it would be convenient to know if a set of policies exists that provide optimal
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behavior for all scenarios inS, this requires the corresponding contexts partitionS based on

the “best” context and is thus a direct application of the exact cover problem. Furthermore,

it is intractable to know if a set of contexts is sufficient to coverS as it is an example of the

set cover problem. Both of these are known to be NP-Complete [23]. This important fact

necessitates approximating contexts rather than strictlydefining them.

These contexts express how different situations require different policies and improve

scenario space by better characterizing regions of successand failure. By approximating

contexts, we can also identify a more constrained domain fordata-driven techniques. This

allows for a more modular and thus extensible approach to building a model for general

steering. Examples of contexts we defined by intuition are provided in Figure 3 with a full

index in Table 2.

Initial Implementation

We now explain our pipeline for the integration of various contexts into a unified steering

algorithm. First, training data must be collected, which wegenerate by means of an oracle

algorithm. Next, the various machine-learned models must be fit to the data. Finally, these

models are used at runtime to decide where an agent’s next footstep should be placed.
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Training Data Generation

We define two orthogonal features for the area in each cardinal direction about the agent

for a total of 8 features, with a ninth feature special to the region ahead of the agent. The

components of each area are agent density and the net flow of agents in that area, with

the area directly in front of the agent detecting the presence or lack of obstacles.Agent

density is a rough approximation of overall crowding in the cardinaldirections and includes

obstacles.Net flow is the average velocity direction of agents in a particular area. This

helps determine whether or not the general crowd is moving with or against the agent, which

requires different care for such things as collision avoidance.

Our feature space for learning specialized policies are based on a circular neighborhood

about the agent with discretized wedges that track the nearest agent or obstacle in that region.

Our feature spaces can be seen in Figure 4 and are in part inspired by the state spaces

of [18, 19]. In particular, the context classifier’s state space is built of two values for each

of the four regions and an additional value denoting the presence of obstacles in front of the

agent for a 9-dimensional vector. The specialized feature space is a 29-dimensional vector

broken down into three values for each slice: the distance, speed, and orientation of the

nearest entity. The distance to the goal and its orientationare the final two values.

A data-driven approach relies on the quality and coverage ofits training samples. Real-

world data is often used as a source because humans empirically solve any presented steering

challenges and we wish to create virtual representations ofhumans. However, we cannot
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completely control the steering scenarios or know all the variables in the decision-making

process of the people observed. To enforce artificial limitations on the scenarios would im-

pact the integrity of the data through the influences of the observer effect. Second, we have

no way of knowinga priori whether the data set collected has adequate sample coverage

for the situations the agents will need to handle. The problem of this potential incomplete-

ness is compounded by the overhead—or impracticality—of collecting additional data. For

these reasons, our pipeline uses synthetic data from which we can be conveniently gather

additional samples and know all the influences in advance.

Oracle Algorithm

Our oracle algorithm is based on a memory-bounded A⋆ planner with a discrete footstep

action space similar to the action space in [15]. We choose a footstep action space because

our machine learning can use classifiers instead of being constrained to regression. When the

oracle is run on the generated scenarios, each agent uses thememory-bounded A⋆ planner to

calculate the optimal path from its current location to the goal. The bound on the memory is

raised if a path is not found, as a last resort Iterative Deepening A⋆ (IDA ⋆) is used. The oracle

planner’s overall algorithm is given in Algorithm 1, and theheuristic used is in Equation 2

and is based on the distance to the goal and average expected energy cost to reach that goal.

h (p, g) =
‖p− g‖ · energyavg

strideavg
(2)
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Each agent has full knowledge only of the obstacles and agents within the horizon of

its field of view. Since other agents may enter or leave this field of view, each agent must

monitor its path for new collisions and invoke the planner again if such a problem is found.

We chose this limitation on the oracle because of the radius of the feature spaces used to

sample the data, and the human-factors nature of the featurespace designs.

The simulations using the oracle are recorded for later extraction of training samples. As

the oracle does not use any feature spaces, the same oracle recordings can be used to extract

data with different feature spaces, allowing for future exploration of such possibilities. We

extract a state-action pair〈f , a〉 where f is a vector from feature spaceF and a is the

parameters of the agent’s current step, and use it as a samplefor training.

Decision Trees

Avoiding the requirement that the learned policy be a monolithic, universal solution has

several key benefits. First, the policies can be simpler and thus executed faster at runtime.

Second, we avoid the catastrophically high dimensionalitycommon to such approaches,

which are held back by all the factors that can influence everypotential action. Finally,

we do not need to relearn the entire system to assimilate new data. By using one model

to select more specialized models, new data requires only the specialized model it belongs

to be relearned. Even the creation of a new context only requires the top-level model be

recomputed while the other models are still valid and will not be harmed by potentially
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contradictory data.

The pipeline proposed by this paper is agnostic to the specific learning algorithms used

at the different levels of the hierarchy, and different algorithms can even coexist on different

levels of the hierarchy if particular contexts are better handled by different models. We have

chosen to use two levels of boosted decision trees [24] for our instantiation of the pipeline

based on the similar problem domain of [25] that showed success for learning different

policies that both classified different types of soccer behavior and could be used to decide

the actual action itself.

Each of our policies consists of two boosted decision trees;one for each foot. We use

a Windows port of the GPL release of the C5.0 decision tree system (rulequest.com).

We chose ten trees as the amount of boosting empirically based on cross-validation. In

total 2500 scenarios were sampled from each context and eachscenario was generated with

respect to a central agent, which provided a variable numberof steps per scenario. These

steps then became the situations representative of the context for the specialized classifier.

A context classification sample was only generated for the first five steps of each recording

due to the total number of scenarios that were sampled, all ofwhich supplied data to the

context classifier.
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Steering At Runtime

At runtime the agent generates feature vectors corresponding to both the context classifier’s

feature space and the corresponding specialized model’s feature space and receives parame-

ters used to derive its next footstep. These parameters include a relative offset and rotational

angle to the next step’s location, while specifics such as stride length are calculated on the fly

based on the agent’s inherent characteristics. This step isvalidated and if found to be unfit,

a default “emergency action” takes place, wherein the agentimmediately stops. This allows

the agent to try again after a short cool-down period. This safety net was implemented to

account for the worst-case where a returned action is outside of the parameters permitted

by the agents’ walking such as two steps in a row from the same foot or too wide a turn.

The models cannot be expected to be 100% accurate, which is the source of these potential

errors. Pseudocode for the agents’ runtime is listed in Algorithm 2.

As shown earlier in the paper, it is NP-Complete to know if ourcontexts cover all possi-

ble scenarios. Furthermore, decision trees are susceptible to high variance depending on the

dataset we generate through our stochastic sampling. This causes uncertainty in the deci-

sions our agents will make. We account for this uncertainty through the use of a confidence

threshold defined by the C5.0 algorithm. This rating is roughly defined as the number of

correct classifications made by the leaf nodes divided by thetotal number of classifications

made by the same node, making it a static quantity once the tree is learned. If the confi-

dence threshold is not met by the classification the agent stops with the ability to resume as
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conditions change. This confidence value is not a direct reflection on the technique itself,

but is instead heavily affected by pruning the decision trees to yield a more general model.

Note in Algorithm 2 there is no explicit collision detectionor avoidance. In our sys-

tem, runtime collision detection and avoidance is handled implicitly through the training

data itself. This is different from other techniques such as[17] where training samples are

used but thorough handling of collisions is required. As will be shown, the training data

itself is sufficient to prevent many significant collisions from occurring with dense scenarios

experiencing relatively few collisions per capita when allfactors are considered.

Results

We generated approximately 2,500 samples for each of our initial 24 contexts. The oracle

algorithm required two weeks of continuous computation to return paths for all of the sample

scenarios. Those scenarios which were shown to require IDA⋆ were culled in the interest of

time. All results were generated on a desktop with 16.0GB of RAM, Intel Core i7 860 CPU

at 2.8GHz, and an NVIDIA GeForce GTX 680.

Classifier Accuracy

Figure 7 plots the error rate for the classifiers used in our experiments. Simulations were run

using models trained on amounts of data ranging from 100 to 2000 scenarios per context.

A separate validation set of 200 scenarios per context were kept back to calculate the error
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rate of the resulting trees.

Error rates were high but did decrease as data size increased, showing improvement in

generalization and not simply noise. Additionally, the average number of steps used for

each context was approximately 12, which sets random guess accuracy at 8%, which we

clearly overcame. Furthermore, random guess accuracy of 24contexts is 4% which we also

surpassed. The error rate seen in the context classifier is likely a result of how the training

data was generated in a noisy manner, for instance some overlap in density between a high

density scenario and a medium density scenario exists. A large burden is also placed on the

decision trees to distinguish theChaos context from other contexts but this by its nature

adds a lot of noise and has no structure, making it difficult todefine hyperplanes to separate

such scenarios.

Runtime

Our initial instantiation of a context-sensitive pipelineis much faster at runtime than the

oracle. As seen in Table 1, all contexts experienced speedup, especially significant for the

most challenging scenarios involving obstacles. TheChaos context, both with and with-

out obstacles, was the most challenging for the oracle and resulted in skewed performance

data due to the number of scenarios which were culled. Our method showed an extremely

constant amount of time across the different contexts owingto its dynamic model-swapping.

To test the robustness of our collection of models, we created a large-scale simulation
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consisting of randomly generated obstacles, agents, and goals, as seen in Figure 1. We mea-

sured the time to generate the paths for varying numbers of agents to simulate 1,200 frames,

with the results given in Figure 6. All tests were run using a single-threaded implementa-

tion and realtime framerates were experienced at 1,500 agents and interactive framerates of

about 10FPS were experienced with as many as 3,000 agents.

Collisions

Recall our virtual agents navigate without an explicit collision avoidance stage to their nav-

igation. Generally, the agents do not collide on the basis that their training samples contain

no collisions, and thus they inherently steer around one another. However, as the models are

not 100% accurate, collisions are to be expected.

We have run several medium-scale scenarios that are beyond the type of scenarios used

for training the models. These scenarios were as follows:

Hallway Two opposing groups of 100 agents cross a hallway.

Random 500 randomly placed agents with 696 randomly placed obstacles throughout the

environment.

Urban 2500 randomly placed agents in an environment simulating anurban area with ob-

stacles as city blocks.

These tests were run for varying numbers of training scenarios, from 100 to 2000 in

increments of 100 and each test was run for 3600 frames. Afterwards, we tabulated the
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number of collisions and created the graphs in Figure 8. The collisions were recorded by

severity. Type A collisions have occlusions in the range(0%, 10%] at the worst point. These

collisions could be registered due to the circular profile ofthe agents’ bounding volume and

thus may not be visible when the simulation is rendered. TypeB collisions have occlusion

in the range(10%, 35%] and while more severe than before, could be alleviated with abet-

ter anthropomorphic model with torso-rotation. This type of collision is often dealt with in

real pedestrians by turning the shoulders to more easily pass one another in cramped con-

ditions. Type C collisions occlude on the range(35%, 75%] and are major collisions which

require more tuning to the algorithm to avoid. Type D collisions complete the possibilities

at (75%, 100%] and would most likely need a fully reactive collision avoidance system to

prevent.

The results were counterintuitive at first. As training samples grew in quantity, so did

collisions and even the severity of the collisions. We hypothesize two main factors behind

this increase. First, the oracle algorithm is collision-free. Thus a sort of “event horizon” was

established in the training data where no reaction to an agent occurs once the agent is too

close to another. This means once two agents are too close, there is no force to push them

apart, which explains the increased amount of more serious collisions compared to the more

minor offenses.

The second factor is that with increased sample counts, the models better attempt the

mimicry of the oracle algorithm’s behavior. The oracle has the ability to steer agents together

in a very tight, close-call manner. While this is good for theoracle and such nearby passing
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can be accommodated by it, as the training data increases in size and the agents steer more

like the oracle, a misstep is more likely to cause a collision. In essence, more training data

made the agents attempt to steer in a more precise manner, butthe inherent inaccuracy of any

machine learning algorithm simultaneously leads to higherrisk. Thus a collision avoidance

algorithm is necessary for a data-driven approach to steering.

Conclusion and Future Work

In this paper, we have defined steering contexts, a new view onthe space of possible scenar-

ios an agent may encounter as it steers through its virtual world. These contexts provide new

insight into the task of creating a general steering controller capable of handling anything it

encounters. Unless the controller can be independently proven to be general and thus con-

sist of a single context, the algorithm will shatter scenario space into subsets which must

each be handled by a separate policy. This creates a coverageuncertainty that is by nature

NP-Complete and to our knowledge no realtime algorithm is unaffected by this discovery.

We have also proposed a pipeline for constructing a steeringalgorithm that is both

context-sensitive and scalable to circumstance. Through the use of a multiplicity of models

fit to steering contexts, machine learned can be combined forbetter, and more structured,

coverage of the space of possible scenarios than would otherwise be possible by a single-

model approach generalizing to all situations. We used an oracle algorithm to get high

quality, on-demand training data which can be used for new contexts without the overhead
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or uncertainty of real-world data. This training data was then broken into contexts based on

intuition and policies fit for each context using machine learning.

Our technique has shown a massive increase in efficiency as realtime simulation was

achieved with far higher population counts than the oracle algorithm could handle. Further-

more, training on this data resulted in relatively small numbers of collisions, many of them

minor. This system would be ideal for populating a space with“extras” which are not the

focus of an end-user’s attention. In such a background application, the infrequent collisions

would be more likely to go unnoticed.

Future Work.

The decision tree models used to prototype our pipeline are too restricting if the chosen

action is incorrect. A naı̈ve Bayesian approach would allowa better “next best” progression

of footstep selection rather than the current all-or-nothing approach. Multiple algorithms

can coexist throughout the collection of policies allowingeach context to be fit as needed

for better overall accuracy. Furthermore the contexts themselves could be defined from a

collection of data using unsupervised clustering, furtherremoving the human element from

the problem.

Currently we decide the next step an agent should take and deciding multiple steps would

require an exponential increase in the size of the action space if done naı̈vely. However, we

postulate that analysis of step sequences would reveal thatnot all step combinations need

to be learned, drastically decreasing the overhead. Maneuvers such as overtaking other

pedestrians or rounding corners could then be encapsulated, rather than depending on each
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step in the process being decided accurately. Even with 90% decision accuracy, a 5-step

sequence has a probability of being correct of only about 60%. Furthermore, we rather than

such a short horizon of a single step, this machine learning approach could tackle navigation

instead and plot a waypoint, while a fast but reactive algorithm such as RVO moves the agent

through the waypoints.

Finally, this data-driven approach is highly amenable to parallelization, and the results in

this paper only for single-threaded performance. Exploring scalability with increased thread

count would further show the strength of our technique.
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Figure 1: Multiple views of a 3,000 agent simulation with high quality rendering.
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Figure 2: Our pipeline for using steering contexts to develop a machine-learned model for

use at runtime. The majority of the pipeline is offline processing. A collection of models

is trained on data extracted from an oracle algorithm’s solution to steering situations, which

are stochastically generated. Then each model is a boosted decision tree with its own spe-

cialization. The action space consists of footsteps as an advantageous discretization which

permits direct control and modeling of human locomotion.
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Context 0 1 2 3 4 5 6 7 8 9 10 11

Oracle 0.73 13.84 5.11 15.53 12.35 9.26 1.68 67.27 101.56 19.90 14.71 1.20

Models 0.07 0.07 0.06 0.06 0.06 0.06 0.07 0.06 0.06 0.06 0.06 0.06

Context 12 13 14 15 16 17 18 19 20 21 22 23

Oracle 123.95 785.0 1945.24 365.25 565.43 574.52 916.30 462.53 3384.10 577.54 396.79 64.78

Models 0.15 0.15 0.17 0.18 0.17 0.18 0.13 0.13 0.15 0.16 0.17 0.16

Table 1: Total time for step planning for all contexts in seconds to calculate steps over short

scenarios. The first 12 are contexts without obstacles and are based on oncoming and cross

traffic patterns with varying levels of agent density. Contexts 12 and above have obstacles

and agent patterns matching the upper 12.
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Context ID Obstacles
North South East West

Flow Density Flow Density Flow Density Flow Density

0 Yes Neutral Light Neutral Light Neutral Light Neutral Light

1 Yes Towards Light Neutral Light Neutral Light Neutral Light

2 Yes Towards Medium Neutral Light Neutral Light Neutral Light

3 Yes Towards High Neutral Light Neutral Light Neutral Light

4 Yes Towards Medium Towards Medium Neutral Light Neutral Light

5 Yes Towards Light Towards High Neutral Light Neutral Light

6 Yes Neutral Light Neutral Light Towards—Away Light Away—Towards Light

7 Yes Neutral Light Neutral Light Towards—Away Medium Away—Towards Medium

8 Yes Neutral Light Neutral Light Away—Towards High Away—Towards High

9 Yes Neutral Light Towards Medium Away—Towards Medium Away—Towards Medium

10 Yes Neutral Light Towards High Away—Towards Light Away—Towards Light

11 Yes Towards High Towards High Towards High Towards High

12 No Neutral Light Neutral Light Neutral Light Neutral Light

13 No Towards Light Neutral Light Neutral Light Neutral Light

14 No Towards Medium Neutral Light Neutral Light Neutral Light

15 No Towards High Neutral Light Neutral Light Neutral Light

16 No Towards Medium Towards Medium Neutral Light Neutral Light

17 No Towards Light Towards High Neutral Light Neutral Light

18 No Neutral Light Neutral Light Towards—Away Light Away—Towards Light

19 No Neutral Light Neutral Light Towards—Away Medium Away—Towards Medium

20 No Neutral Light Neutral Light Away—Towards High Away—Towards High

21 No Neutral Light Towards Medium Away—Towards Medium Away—Towards Medium

22 No Neutral Light Towards High Away—Towards Light Away—Towards Light

23 No Towards High Towards High Towards High Towards High

Table 2: Parameters which define the 24 contexts we use to prototype our pipeline.
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Algorithm 1: Oracle Planner
Data: Start, goal, low memory bound, max memory bound, memory

increment size.

Result: The path from start to goal.

1 for i ←memMinto memMaxdo

2 path← BoundAStar (start, goal, i)

3 if path.size = 0then

4 i← i + memBlock

5 else

6 return path

// Could not find path with BoundAStar

7 path← IDAStar (start, goal)

8 return path
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Algorithm 2: Agent Decision at Runtime
Data: The environment with respect to the agent.

Result: The next footstep action.

1 fStar← ObserveEnvironment ()

2 contextID← ContextClassifier (fStar)

3 f ← ObserveLocalSpace (contextID)

4 action← Classifier (f ,contextID)

5 if action.confidence≤ thresholdthen

6 action← StopInPlace

7 return action.step
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(a) Clear View (b) Obstacles Ahead (c) Light Oncoming

(d) Groups Crossing (e) Chaos

=  Net Flow of Agents =  Subject   

Clear                                                                            Heavy

Agent Density

(f) Symbols Key

Figure 3: Examples from our set of contexts. Net flow is represented by the arrow in each

region, density of the region is depicted by darker shades ofred, and obstacles are gray

boxes. Each of these contexts was stochastically generatedwith overlap in the permissible

values for density. Chaos was generated randomly without regard to any structure as seen in

the other contexts. We used a total of 24 contexts.
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(a)F∗ (b) F

Figure 4: The feature sets used in our pipeline, where other agents are circles and static

obstacles are depicted as boxes.F∗ is used by the context classifier to dynamically choose

the best model based on high-level features, whileF is used to choose the agent’s next step

based on the local neighborhood.
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Figure 5: The multilevel decision trees used by our models. At runtime the agent gives the

model information about its current goal and environment inlocal-space. This data is used

to calculatef for each model used. First the context classifier informs theagent of its current

context, and the corresponding policy is used to determine the next footstep.
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Figure 6: Total time taken for computing the steps of a simulation 1,200 frames long for

varying numbers of agents with randomly generated obstacles and an overall small area.

Overhead was mostly incurred from a naı̈ve implementation of agent density measurement

which isO (n2) wheren is the number of agents.
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Figure 7: Classifier error rates for both context classifier (blue) and an average over the

specialized classifiers (red). While the context classifierhas a high error rate, a 96% error

rate is random chance given the large number of classes to choose from.
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Figure 8: Counts for collisions in 3 minute simulations in different test scenarios. Type A

collisions are blue, Type B collisions are red, Type C are yellow, and Type D are green.

Once collisions occurred, there was little pressure for agents to move apart as the training

data was collision-free, thus no samples existed for overlapping agents. Note that while

high, per capita an agent in each of these simulations is onlylikely to encounter around 1-3

collisions with approximately one third of them minor in nature in spite of the lack of any

explicit collision avoidance.
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