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Survival Analysis With Uncertain Endpoints Using an Internal Validation
Subsample

Abstract
When a true survival endpoint cannot be assessed for some subjects, an alternative endpoint that measures
the true endpoint with error may be collected, which often occurs when the true endpoint is too invasive or
costly to obtain. We develop nonparametric and semiparametric estimated likelihood functions that
incorporate both uncertain endpoints available for all participants and true endpoints available for only a
subset of participants. We propose maximum estimated likelihood estimators of the discrete survival function
of time to the true endpoint and of a hazard ratio representing the effect of a binary or continuous covariate
assuming a proportional hazards model. We show that the proposed estimators are consistent and
asymptotically normal and develop the analytical forms of the variance estimators. Through extensive
simulations, we also show that the proposed estimators have little bias compared to the naÃ¯ve estimator,
which uses only uncertain endpoints, and are more efficient with moderate missingness compared to the
complete-case estimator, which uses only available true endpoints. We illustrate the proposed method by
estimating the risk of developing Alzheimer's disease using data from the Alzheimer's Disease Neuroimaging
Initiative. Using our proposed semiparametric estimator, we develop optimal study design strategies to
compare survival across treatment groups for a new trial with these data characteristics. We demonstrate how
to calculate the optimal number of true events in the validation set with desired power using simulated data
when assuming the baseline distribution of the true event, effect size, correlation between outcomes, and
proportion of true outcomes that are missing can be estimated from pilot studies. We also propose a sample
size formula that does not depend on baseline distribution of the true event and show that power calculated
by the formula matches well with simulation based results. Using results from a Ginkgo Evaluation of Memory
study, we calculate the number of true events in the validation set that would need to be observed for new
studies comparing development of Alzheimer's disease among those with and without antihypertensive use,
as well as the total number of subjects and number in the validation set to be recruited for these new trials.
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ABSTRACT

SURVIVAL ANALYSIS WITH UNCERTAIN ENDPOINTS USING AN INTERNAL VALIDATION

SUBSAMPLE

Jarcy Zee

Sharon X. Xie

When a true survival endpoint cannot be assessed for some subjects, an alternative endpoint that

measures the true endpoint with error may be collected, which often occurs when the true end-

point is too invasive or costly to obtain. We develop nonparametric and semiparametric estimated

likelihood functions that incorporate both uncertain endpoints available for all participants and true

endpoints available for only a subset of participants. We propose maximum estimated likelihood

estimators of the discrete survival function of time to the true endpoint and of a hazard ratio rep-

resenting the effect of a binary or continuous covariate assuming a proportional hazards model.

We show that the proposed estimators are consistent and asymptotically normal and develop the

analytical forms of the variance estimators. Through extensive simulations, we also show that the

proposed estimators have little bias compared to the naı̈ve estimator, which uses only uncertain

endpoints, and are more efficient with moderate missingness compared to the complete-case esti-

mator, which uses only available true endpoints. We illustrate the proposed method by estimating

the risk of developing Alzheimer’s disease using data from the Alzheimer’s Disease Neuroimaging

Initiative. Using our proposed semiparametric estimator, we develop optimal study design strate-

gies to compare survival across treatment groups for a new trial with these data characteristics. We

demonstrate how to calculate the optimal number of true events in the validation set with desired

power using simulated data when assuming the baseline distribution of the true event, effect size,

correlation between outcomes, and proportion of true outcomes that are missing can be estimated

from pilot studies. We also propose a sample size formula that does not depend on baseline distri-

bution of the true event and show that power calculated by the formula matches well with simulation

based results. Using results from a Ginkgo Evaluation of Memory study, we calculate the number

of true events in the validation set that would need to be observed for new studies comparing de-

velopment of Alzheimer’s disease among those with and without antihypertensive use, as well as

the total number of subjects and number in the validation set to be recruited for these new trials.
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CHAPTER 1

INTRODUCTION

In many clinical trials and epidemiological studies, the outcome of interest is time to an event, such

as disease progression. The true outcome in these studies is often too invasive or costly to ob-

tain, but alternative outcomes measure the true outcome with error. For example, the gold standard

method for assessing time to renal function halving measures glomerular filtration rate (GFR), which

is expensive and cumbersome to patients, but using equations based on serum creatinine to esti-

mate GFR is inexact (Stevens et al., 2006). Another example is in the time to pathological diagnosis

of Alzheimer’s disease (AD), which can be accurately obtained with a cerebral spinal fluid (CSF)

assay of amyloid beta (Aβ) protein concentrations (Shaw et al., 2009), but the lumbar puncture

required for the procedure is often considered too painful for patients. An alternative method of AD

diagnosis more widely used in practice is based on evaluation of clinical symptoms and cognitive

tests, but the symptoms of AD are often mistaken for other types of dementia (Jack Jr et al., 2010).

Sometimes, it is possible to obtain both the uncertain or mismeasured outcome on all patients and

the true outcome on just a subset of patients. For these situations, it is important to develop powerful

analytical approaches to use the combined data, since standard methods for conducting survival

analysis utilize only one endpoint. This dissertation will develop innovative statistical methods to

conduct analyses on discrete time-to-event data with these characteristics. The proposed approach

can estimate survival functions and hazard ratios for the effects of binary or continuous covariates,

and it is shown to be superior to standard approaches that use only one of the outcomes. Optimal

study design strategies for designing new studies to implement the proposed method are also

developed.

1.1. Background

1.1.1. Methods with Uncertain Endpoints

When true outcomes are difficult to obtain, uncertain outcomes are often used as an alternative due

to their wide availability. Standard survival analysis methods, such as the Kaplan-Meier estimate of

the survival function or Cox proportional hazards model for assessing covariate effects, may give
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biased results when using these uncertain outcomes. Several novel statistical methods have been

proposed to address this issue, but many rely on prior knowledge of the mismeasurement rates of

the uncertain endpoint.

Snapinn (1998) used weights representing certainty of potential endpoints to modify the Cox pro-

portional hazards model. Each of these weights are based on posterior probabilities that the po-

tential endpoint is a true endpoint, which rely either on assumptions about the characteristics of

the diagnostic tools or on an “endpoint committee” who must estimate them. As Snapinn indi-

cates, however, it may be difficult to obtain the appropriate weights accurately, which diminishes

the method’s performance (Snapinn, 1998).

Richardson and Hughes (2000) developed Expectation-Maximization (EM) algorithms for estimat-

ing the distribution of time to an event using uncertain outcomes. Meier, Richardson, and Hughes

(2003) extended this work to a semiparametric version assuming a proportional hazards model.

Both methods produce less biased survival estimates than standard survival analysis methods

and use supplemented EM algorithms to estimate variance-covariance matrices of parameter es-

timates. Similarly, Balasubramanian and Lagakos (2001) assumed a known time-dependent sen-

sitivity function to estimate the distribution of the time to perinatal HIV transmission. However, all

of these methods rely on known rates of sensitivity and specificity of the diagnostic tool used to

determine the uncertain outcome. These rates may not be available and estimates may not be

accurate. Magaret (2008) showed that even a 2 percent inaccuracy of specificity can cause a 14.5

percent bias in parameter estimates.

1.1.2. Use of a Validation Subsample

Although uncertain outcomes are mismeasured and can lead to biased parameter estimates, true

outcomes may also be available for a subset of patients. Using standard analysis methods on just

the true outcomes limits the sample size and therefore power in making inference. However, statis-

tical methods have been developed for the situation where both uncertain outcomes are available

on all patients and true outcomes available in a subset, known as a validation subsample. Specifi-

cally, Pepe (1992) developed an estimated likelihood method for these types of data, although not

specifically for a survival setting.

For true outcome Y , uncertain outcome S , covariates, Z , and parameters of interest, β, Pepe’s

2



estimated likelihood takes the following form:

L̂(β) =
∏
i∈V

Pβ(Yi |Zi )
∏
j∈V̄

∫
y

Pβ(y |Z )P̂(S |y ,Z )dy (1.1)

where V represents the validation subsample, the set of patients who have both true and uncertain

outcomes, V̄ represents the non-validation set, in which patients only have uncertain outcomes,

and P̂(S |y ,Z ) is estimated empirically (Pepe, 1992). Therefore, those who have the true outcomes

contribute the probability distribution of the true outcomes, as in a standard likelihood. Those who

only have the uncertain outcomes contribute an estimated probability distribution of the uncertain

outcomes, which incorporates the relationship between the true and uncertain outcomes. This

relationship is estimated by observing the values of the true and uncertain outcomes within the

validation subsample.

Although Pepe’s original work was not designed for survival outcomes, Fleming et al. (1994) used

the estimated likelihood method for the proportional hazards model by incorporating a validation set

available on all subjects (i.e., no missing true endpoint measures). In this special case, having the

uncertain outcomes is only useful in augmenting the likelihood for subjects with censored true failure

times. Magaret (2008) also extended Pepe’s work to the discrete proportional hazards model for

situations where outcomes are only validated when the uncertain event status is positive. Therefore,

Magaret’s method is useful for data with only a subsample of true outcomes, but it does not allow

for any false negatives. In addition, the method assumes there are no missed visits, so only type 1

right censoring (i.e., censoring time is not random) is allowed. Finally, the method only considers

discrete covariates of interest.

1.1.3. Study Design

Several methods exist to compute sample size for standard survival analysis studies (Freedman,

1982; Lakatos, 1986, 1988; Schoenfeld, 1981, 1983; Shih, 1995). Freedman (1982) developed

a sample size formula for the logrank test and compared the power calculated by the formula to

that using Monte Carlo simulations to show that the formula worked well. Schoenfeld (1981; 1983)

developed a similar formula for use with either a logrank test or a Cox proportional hazards model,

derived by exploiting asymptotic properties of the corresponding score test statistics. Both sample

size formulas are widely used for clinical trials using standard survival analysis methods, but these

3



methods are for single outcomes and do not take into account any potential mismeasurement.

1.2. Novel Developments

In this dissertation, we fill in the gaps in the literature by developing flexible methods for the design

and analysis of time-to-event data with uncertain outcomes using a validation subsample. The dis-

sertation consists of three parts. In Chapter 2, we first propose a nonparametric discrete survival

function estimator. There are three new contributions to the literature from this paper which we

summarize below. First, we propose a maximum estimated likelihood estimator that incorporates

both uncertain outcomes on all subjects and true outcomes on a validation subsample without as-

suming known mismeasurement rates of the uncertain outcomes. We assume study subjects are

evaluated at predetermined time points by study design, so survival time is a discrete random vari-

able for both true and uncertain endpoints. Second, we allow for missingness of the true outcome

regardless of the value of the uncertain event indicator, so both false negatives and false positives

are allowed. Third, our proposed estimator is able to handle both type 1 and random right cen-

soring mechanisms. We develop the asymptotic distribution theory for the proposed estimator and

provide an asymptotic variance estimator. We also demonstrate the performance of our proposed

estimator through extensive simulations and illustrate the use of the method by estimating the sur-

vival function for the time to AD diagnosis using data from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI).

In Chapter 3, we develop a semiparametric approach to estimate a hazard ratio representing the

effect of a covariate of interest assuming a proportional hazards model. In addition to the contri-

butions to the literature above, the method discussed in this chapter allows for either a binary or a

continuous covariate. Unlike in previous literature and in the nonparametric version, the estimated

likelihood that incorporates a continuous covariate requires the use of a smooth kernel-type func-

tion in estimation. For both the binary and continuous covariate cases, we develop the asymptotic

theory for the estimate of the log hazard ratio and its asymptotic variance estimator while treating all

other parameters as nuisance parameters. We test the semiparametric estimated likelihood method

using extensive simulations. Finally, using the ADNI data, we illustrate the method by estimating

the effect of gender (binary) and years of education (continuous) on time to AD diagnosis.

In Chapter 4, we develop study design strategies to find the optimal number of true events in the

4



validation subsample when using the semiparametric estimated likelihood method to assess treat-

ment effects. We calculate sample sizes assuming the goal is to achieve a pre-specified power for a

Wald-type test to detect differences between treatment groups. We develop optimal designs based

on simulations for a range of study conditions, including varying effect sizes, correlations between

outcomes, percentage of missing true outcomes, number of time points in the study, and baseline

distributions. We also propose the use of a sample size formula adapted from Schoenfeld’s (1983)

formula for the Cox proportional hazards model and demonstrate its performance by comparing

calculated power to those from Monte Carlo simulations. Finally, we conclude in Chapter 5 and

discuss future directions of study.

5



CHAPTER 2

NONPARAMETRIC DISCRETE SURVIVAL FUNCTION ESTIMATION WITH UNCERTAIN

ENDPOINTS USING AN INTERNAL VALIDATION SUBSAMPLE

2.1. Introduction

Survival function estimation is crucial in studying disease progression and therapeutic benefits of

drugs in epidemiology studies and clinical trials that involve time-to-event data. However, event

outcomes may be subject to measurement error, which can lead to misclassification of the true

event outcome. Gold standard or better outcome measurements are sometimes unavailable due

to high costs or invasive procedures, and using only complete, true outcomes may exclude many

subjects due to missing data. For example, the pathological diagnosis of Alzheimer’s disease (AD)

has been traditionally determined by autopsy. Recently, as we enter the exciting new era of “per-

sonalized medicine,” AD biomarker research has been very successful. It is well accepted now that

time to pathological diagnosis of AD can be reliably measured by time to an abnormal biomarker

value among living participants in research studies (Shaw et al., 2009). Specifically, the amyloid

beta (Aβ) protein biomarker from a cerebral spinal fluid (CSF) assay has been shown to represent

the pathological aspects of AD well and the abnormality of Aβ can be used as a reliable (true)

endpoint for studying time to pathological diagnosis of AD among living participants (Shaw et al.,

2009). However, the CSF biomarker assay involves a lumbar puncture, so it is often considered

too invasive for many patients and therefore has limited availability. An alternative outcome is time

to diagnosis of AD by clinical assessment, which relies primarily on cognitive tests. The clinical

diagnosis is widely available, but it measures the outcome of pathological diagnosis with error.

Sources of error in clinical diagnosis include normal aging independent of AD, “cognitive reserve”

due to education-linked factors, and disease heterogeneity (Nelson et al., 2012). Thus, the clinical

diagnosis is an uncertain endpoint. Under these circumstances, it is important to develop powerful

analytical approaches to use combined information from both true and uncertain endpoints to ob-

tain consistent and more efficient estimators compared to the naı̈ve estimator, which ignores true

endpoint measures, and the complete-case estimator, which uses only the available true endpoint

measures.
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Our proposed method is motivated by survival function estimation of time to pathological develop-

ment of AD using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Weiner et al.,

2012). Participants in the ongoing ADNI study were evaluated at predetermined time points to as-

sess AD development based on cognitive tests. Regardless of these clinical diagnoses, a subset

of participants also had longitudinal CSF assays to measure Aβ values, from which time to CSF

diagnoses could be determined. Some study participants randomly withdrew from the study be-

fore developing cognitive or pathological signs of AD. Therefore, survival time is a discrete random

variable subject to random right censoring. Although several nonparametric and semiparametric

methods for estimating survival outcomes when the outcome is uncertain have been proposed,

many rely on prior knowledge of the mismeasurement rates of the uncertain endpoint without an in-

ternal validation subsample of true endpoints (Snapinn, 1998; Richardson and Hughes, 2000; Meier

et al., 2003; Balasubramanian and Lagakos, 2001). Among those that do incorporate a validation

subsample, the method primarily focused on the discrete proportional hazards model requiring that

validation is only performed on those with positive uncertain endpoints, and the method cannot

handle the random censoring we have in the ADNI data (Magaret, 2008).

Specifically, Snapinn (1998) estimated weights representing certainty of potential endpoints to mod-

ify the Cox proportional hazards model. Richardson and Hughes (2000) obtained unbiased prod-

uct limit estimates of time to an event when the event indicator has measurement error using an

Expectation-Maximization (EM) algorithm. Their estimate uses known information about the sensi-

tivity and specificity of the diagnostic test for having the event without a validation sample. Meier,

Richardson, and Hughes (2003) extended this work for the adjusted proportional hazards model

for discrete failure times, also assuming known sensitivity and specificity. Similarly, Balasubrama-

nian and Lagakos (2001) assumed a known time-dependent sensitivity function to estimate the

distribution of the time to perinatal HIV transmission.

Pepe (1992) developed an estimated likelihood method to incorporate both uncertain endpoints

and a validation subsample to make inference without assuming known sensitivity or specificity, but

not specifically for a survival setting. Fleming et al. (1994) used Pepe’s method for the proportional

hazards model by incorporating a validation set available on all subjects (i.e., no missing true end-

point measures) to augment the likelihood for subjects with censored failure times. Magaret (2008)

also extended Pepe’s work to the discrete proportional hazards model in a method designed for
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situations where outcomes were only validated when the mismeasured event status was positive,

so false-negatives were not possible. Because the method assumes no missed visits, only type 1

right censoring (i.e., censoring time is not random) is allowed. Therefore, these previous methods

are unable to address the unique challenges seen in the ADNI data.

We propose a nonparametric discrete survival function estimator for data with characteristics sim-

ilar to those of the ADNI study. There are three new contributions to the literature from this paper

which we summarize below. First, we propose a nonparametric discrete survival function estimator

without assuming known mismeasurement rates of the uncertain outcome. Instead, we incorporate

information from an internal validation subsample to construct the survival function estimator. We

use Pepe’s (1992) framework to construct an estimated likelihood for the survival function of time

to an event, incorporating both an uncertain observed time and event indicator on all subjects and

a true observed time and event indicator on a validation subsample. The proposed estimator is

the nonparametric maximum estimated likelihood survival function estimator. In addition, because

study subjects are evaluated at predetermined time points by study design, survival time is a dis-

crete random variable for both true and uncertain endpoints. We develop the asymptotic distribution

theory and provide an asymptotic variance estimator. Second, the proposed nonparametric survival

function estimator allows missingness of the true endpoint regardless of the value of the uncertain

event indicator. In other words, validation can be conducted on subjects with either observed or

censored uncertain events. Third, the proposed estimator is able to handle both type 1 and random

right censoring mechanisms. Our allowance of random censoring and objective of estimating an

entire survival function provide some unique challenges in using survival outcomes as compared

to Pepe’s (1992) original work.

We organize the rest of the article as follows. We first describe the estimated likelihood and non-

parametric maximum estimated likelihood estimator (Section 2.2). We then develop the asymptotic

properties of the proposed estimator (Section 2.3). We perform extensive simulations to assess

the performance of our proposed estimator and compare it to the complete-case and naı̈ve Kaplan-

Meier survival function estimators (Section 2.4). The simulations consider different correlations

between true and uncertain endpoints, different amounts and types of censoring, as well as differ-

ent amounts of missingness of true endpoints. This is followed by an application to the estimation

of the survival function of time to pathological diagnosis of Alzheimer’s disease using data from the
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ongoing ADNI study (Section 2.5). Finally, we summarize our findings and point to applications

where incorporating both true and uncertain endpoints are particularly useful (Section 2.6).

2.2. Proposed Nonparametric Maximum Estimated Likelihood Estimator

Let T represent the true time to event and C represent the true right censoring time, with event

indicator δ = I (T ≤ C ). Similarly, let T ∗ represent the uncertain time to event and C∗ be the

uncertain right censoring time, with indicator δ∗ = I (T ∗ ≤ C∗). Define X = min{T ,C} and X ∗ =

min{T ∗,C∗}. Then X and X ∗ represent the true and uncertain observed times, respectively. Let xk

represent the kth unique, ordered observed true time point for k = 1, · · · ,K , where K is the total

number of unique true observed times. Let F represent the survival function of the true time to

event and let G represent the survival function of the true censoring time.

Let V represent the validation set, where both the uncertain and true outcomes are available. There

are nV subjects in the validation set. It is assumed that the validation subsample is a representative

sample of the entire cohort, implying that data are missing completely at random. Then V̄ is the

non-validation set, where only the uncertain outcome is available and the true outcome is missing.

With a total of n subjects in the study, there are n− nV subjects in the non-validation set. The entire

observed data are (Xi , δi ,X
∗
i , δ∗i ) for i = 1, · · · , nV and (X ∗j , δ∗j ) for j = 1, · · · , n − nV . Using similar

arguments as in Pepe (1992), the full likelihood would then be

L =
∏
i∈V

P(Xi , δi )P(X ∗i , δ∗i |Xi , δi )
∏
j∈V̄

P(X ∗j , δ∗j ). (2.1)

To avoid having to specify or assume the form of the relationship between the true and uncertain

endpoints, we propose to use the estimated likelihood

L̂ =
∏
i∈V

P(Xi , δi )P̂(X ∗i , δ∗i |Xi , δi )
∏
j∈V̄

P̂(X ∗j , δ∗j ), (2.2)

where for discrete data,

P̂(X ∗j , δ∗j ) =
K∑

k=1

1∑
δ=0

P(xk , δ)P̂(X ∗j , δ∗j |xk , δ). (2.3)

The sum marginalizes the joint distribution to obtain the marginal distribution of the uncertain out-
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come, so the outer sum is taken over all possible time points, k = 1, · · · ,K . The estimated condi-

tional probability P̂(X ∗j , δ∗j |xk , δ) is given by

P̂(X ∗j , δ∗j |xk , δ) =
P̂(X ∗j , δ∗j , xk , δ)

P̂(xk , δ)
(2.4)

=
1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ)

1
nV

∑
i∈V I (Xi = xk , δi = δ)

, (2.5)

where I (·) is the indicator function. Conceptually, the conditional probability is estimated empirically

by counting the proportion of subjects in the validation set whose uncertain outcomes match those

of the given non-validation set subject. Because the conditional probability P̂(X ∗i , δ∗i |Xi , δi ) from the

validation set contribution does not contain any parameters, it can be factored out of the likelihood

and the estimated likelihood to be maximized becomes

L̂ ∝
∏
i∈V

P(Xi , δi )
∏
j∈V̄

P̂(X ∗j , δ∗j ). (2.6)

Then for a subject i ∈ V , the contribution to the likelihood is the same as it would be in a standard

discrete survival setting,

P(Xi , δi ) = {F (xki−1)− F (xki )}δiF (xki )
1−δiG (xki−1)δi{G (xki−1)− G (xki )}1−δi (2.7)

∝ {F (xki−1)− F (xki )}δiF (xki )
1−δi (2.8)

where xki is the observed time for subject i corresponding to the kth unique observed time point.

Only the true outcome contributes to the likelihood for those in the validation set, implying that un-

certain outcomes do not provide any additional information when the true outcome is known. How-

ever, the uncertain outcomes for those in the validation set are still used to estimate the relationship

between the uncertain and true outcomes, which are then used to weight likelihood contributions

for those in the non-validation set. For a subject j ∈ V̄ , the contribution to the likelihood is

P̂(X ∗j , δ∗j ) =
K∑

k=1

1∑
δ=0

[
{F (xk−1)− F (xk)}δF (xk)1−δG (xk−1)δ{G (xk−1)− G (xk)}1−δ ·

1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ)

1
nV

∑
i∈V I (Xi = xk , δi = δ)

]
. (2.9)
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Unlike in the validation set contribution, the censoring distribution cannot be factored out of the

likelihood from the non-validation set contribution. This distribution is important in allowing random

censoring for survival outcomes in the estimated likelihood method. Note that any subjects in the

non-validation set with an observed uncertain time that does not match any observed uncertain

times in the validation set do not contribute to the likelihood.

There are two special cases worth considering. First, in the situation where the uncertain outcome

is perfect, or P(X , δ|X ∗, δ∗) = 1, the likelihood reduces to that of the standard likelihood where all

subjects have the true outcome. An example of this situation is when the uncertain outcome has

no measurement error or is exactly the same as the true outcome. Second, in the situation where

the uncertain outcome is useless, or P(X ∗, δ∗|X , δ) = P(X ∗, δ∗), the likelihood reduces to that of

the standard likelihood where there is no non-validation set. Additional details on the derivation of

the estimated likelihood and on these special cases are available in Appendix A.1.

The estimated likelihood is a function of possible survival function values for the event distribution

and censoring distribution at each time point. The parameters representing the censoring distribu-

tion G are estimated jointly with the parameters representing the event distribution F , but treated

as nuisance parameters. When the study only has type 1 right censoring, though, the contribution

to the likelihood by the censoring distribution will always be 1, so the censoring distribution can be

factored out of the likelihood and does not need to be estimated. In order to solve for the nonpara-

metric maximum estimated likelihood survival function estimator F using the estimated likelihood

we developed, we first note that the maximum estimate will be a step function that is continuous

from the right with left limits that falls only at event times observed in the validation set, t1, · · · , tK̃ ,

where K̃ is the number of unique true event times. Similarly, if the censoring distribution is being

estimated, the maximum estimator will be a step function that is continuous from the right with left

limits that falls only at censoring times observed in the validation set. To solve for the parameters,

we used the Nelder-Mead algorithm to conduct constrained maximization. We required that both

F and G survival functions are monotonically non-increasing as time increases and are bounded

between 0 and 1. In the case where the parameter space is one-dimensional, meaning there is only

one observed event time in the validation set data and only type 1 censoring, we used the Brent al-

gorithm. To obtain initial estimates for the event distribution parameters, we used the complete-case

Kaplan-Meier estimates based on the true observed times and true event indicators from the vali-
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dation set. Initial parameters for the censoring distribution were determined by the complete-case

Kaplan-Meier estimates calculated by inverting the event indicator to obtain a censoring indicator.

Let F̂ (tk̃) represent the event distribution estimates obtained from the algorithm for k̃ = 1, · · · , K̃ .

The maximum estimated likelihood survival function estimator is then the step function that takes

value 1 in the interval [0, t1), F̂ (tk̃) in each interval [tk̃ , tk̃+1) for k̃ = 1, · · · , K̃ − 1, and F̂ (tK̃ ) in the

interval [tK̃ , xK ], where xK is the last true observed time and may be equal to tK̃ if a true event

occurs at the last true observed time. The estimator is considered undefined after xK .

2.3. Asymptotic Properties of the Proposed Nonparametric Maximum Estimated

Likelihood Estimator

The asymptotic properties of the proposed estimator refer to the situation when the total number of

subjects n → ∞. As long as the proportion of subjects in the validation set to the total number of

subjects does not have a zero limit, limn→∞
nv
n = pV > 0, similar arguments as in Theorem 3.1 of

Pepe (1992) imply that F̂ (t) is a consistent estimator for F (t) for all times t. Although F̂ (t) is only

estimated at observed event times, t1, · · · , tK̃ , this set of observed event times will approach the set

of all possible observed event times, or K̃ → K as n → ∞. Because we have discrete time points,

F (t) is also a step function that can be defined by the survival function values at each time point,

F (t1), · · · ,F (tK ), and we have that

√
n





F̂ (t1)

F̂ (t2)

...

F̂ (tK )


−



F (t1)

F (t2)

...

F (tK )




converges to a zero-mean Gaussian random variable in distribution with asymptotic variance co-

variance matrix equal to ΣF , where ΣF is the top left K ×K quadrant of the full variance covariance

matrix

Σ = I−1 +
(1− pV )2

pV
I−1KI−1, (2.10)
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where I is the information matrix based on the (non-estimated) log likelihood and K is the expected

conditional variance of the non-validation contribution to the log likelihood (Pepe, 1992),

K = E

[
Var

{
∂ logP(X ∗, δ∗)

∂θ

∣∣∣∣X , δ

}]
(2.11)

for parameters θ = {F ,G}. The first term in the Σ variance expression represents the variance

component based on the maximum likelihood estimator and the second term represents a penalty

from estimating the likelihood with empirical probabilities. The I and K matrices can be estimated

consistently by

Î =
1

n

∂2 log L̂

∂θ2

∣∣∣∣∣
θ=θ̂

(2.12)

for maximum estimated likelihood estimates θ̂ = {F̂ , Ĝ} and

K̂ =
1

nV

∑
i∈V

Q̂i Q̂
T
i

∣∣∣∣∣
θ=θ̂

, (2.13)

where

Q̂i =
1

n − nV

1

P̂(Xi , δi )

∑
j∈V̄

[{
I (X ∗j = X ∗i , δ∗j = δ∗i )− P̂(X ∗j , δ∗j |Xi , δi )

}

·

{
D(Xi , δi )

P̂(X ∗j , δ∗j )
−

D̂(X ∗j , δ∗j )

P̂2(X ∗j , δ∗j )
P(Xi , δi )

}]
(2.14)

and

D(Xi , δi ) =
∂P(Xi , δi )

∂θ
(2.15)

D̂(X ∗j , δ∗j ) =
K∑

k=1

1∑
δ=0

∂P(X , δ)

∂θ
P̂(X ∗j , δ∗j |X , δ). (2.16)

In practice, derivatives in the variance expression can be calculated numerically. We found that

the numerical derivatives were sometimes unable to be computed or led to negative variances with

data that had large amounts of missingness or large numbers of parameters to estimate. In these

cases, bootstrapped variance estimates can be calculated or analytical forms of the derivatives

should be used.
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2.4. Simulations

Our proposed survival function estimator is motivated by the fact that true endpoints are missing

for some subjects while uncertain endpoints are available for all subjects and carry useful informa-

tion for survival function estimation. In order to assess the performance of our proposed survival

function estimator, we conducted a series of simulation studies. We simulated the true event time

from a discrete uniform distribution, T ∼Unif[1, 8], where survival time can only take integer values,

and assumed right censoring at C = 7. The uncertain time to event was calculated as T ∗ = T + ε,

where ε ∼Unif[0, ζ] and ε is independent of T . The maximum integer value of the discrete uniform

distribution for ε was calculated as ζ =
⌊√

63 · 1−ρ2

ρ2 + 1− 1
⌋
, where bac represents the largest inte-

ger not greater than a, where ρ represents the correlation between T and T ∗. The expression for

ζ was computed using the definition of correlation between T and T ∗, independence of ε and T ,

and variance expressions for T and ε. Mathematical details of the derivation can be found in Ap-

pendix A.2. We considered correlations of ρ ∈ {0.01, 0.25, 0.50, 0.75, 1}. We set the right-censoring

time for the uncertain endpoint also at C∗ = 7. To create a representative validation subsam-

ple, we simulated data missing completely at random (MCAR) by randomly selecting a proportion

r ∈ {0.25, 0.50, 0.75} of the sample to be missing true endpoints. We used total sample sizes of

n ∈ {200, 500} and conducted 500 repetitions of the simulation for each set of parameter values.

For each simulation, we used the proposed method to calculate survival function estimates at

each observed time. We also calculated complete-case Kaplan-Meier estimates using only true

endpoints in the validation set, the naı̈ve Kaplan-Meier estimates using only uncertain endpoints

from all subjects, and the true Kaplan-Meier estimates using true endpoints from all subjects

(which would be unavailable in real data). For the proposed estimator, the complete-case Kaplan-

Meier estimator, and the naı̈ve Kaplan-Meier estimator, we calculated estimated bias (parameter

estimate−true parameter values), observed sample standard deviations (SD), estimated standard

errors (ŜE), relative efficiency (RE) compared to the true Kaplan-Meier estimator (where lower RE

implies greater efficiency and RE equal to 1 implies optimal efficiency), mean squared error (MSE)

estimates, and 95% coverage (Cov) at each of the observed time points. Each statistic was then

averaged over all time points. We note that for all simulations presented in Tables 2.1, 2.2, and 2.3,

the observed sample standard deviation corresponds well with the standard error estimates from

the asymptotic theory for the proposed estimator.
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Table 2.1 shows the results from the simulation study with type 1 censoring and n = 200. The

proposed estimator behaves similarly to the complete-case Kaplan-Meier estimator in terms of

bias. Both have little bias, whereas the naı̈ve Kaplan-Meier estimator is heavily biased. When

the proportion of missingness is low or moderate (r = 0.25 or r = 0.50), the relative efficiency

of our proposed estimator is similar to that of the complete-case Kaplan-Meier estimator when

correlation is low and improves until it reaches optimal efficiency with correlation of 1, which can be

interpreted as the situation where the uncertain outcome has no measurement error. The MSE of

the proposed estimator is also similar to then becomes smaller than the MSE of the complete-case

Kaplan-Meier estimator as correlation increases, and it is consistently smaller than the MSE of the

naı̈ve Kaplan-Meier estimator. This demonstrates that using the internal validation subsample can

reduce the bias of survival estimates compared to using only uncertain endpoints and that using

uncertain endpoints in the non-validation subsample can improve efficiency compared to using

only true endpoints. When the amount of missing true outcomes is high (r = 0.75), though, our

proposed estimator is actually slightly less efficient than the complete-case Kaplan-Meier estimator

at low correlations between outcomes.

We saw similar results for simulations with n = 500, as shown in Appendix A.4. In addition, we

tested the performance of our method at smaller sample sizes, n ∈ {10, 20, 30, · · · }, to determine

an approximate threshold for the number of subjects per parameter or events per variable (EPV)

needed for estimation. We calculated the EPV as the smallest number of events in the validation

set divided by 7, the number of parameters to estimate, such that average bias was less than 0.01

and average coverage was between 93% and 97%. Through these simulation studies, we found

an EPV of 4. We also increased the proportion of censored subjects (results not shown) by setting

an earlier censoring time for both endpoints and arrived at the same conclusions. Although we

assumed only non-negative measurement error of the uncertain endpoint for our simulations to

demonstrate the potentially large bias in the naı̈ve estimator and to better control the correlation

between outcomes, we also conducted simulations allowing for negative or positive measurement

error and the results (not shown) for our estimator and the complete-case estimator are similar.

To compare the efficiency between our proposed estimator and the complete-case Kaplan-Meier

estimator over various amounts of missingness, we computed the relative efficiencies (averaged

over times) at 5% increments of the percentage of missingness of true endpoints for correlations of
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Table 2.1: Simulation Results for Type 1 Censoring and n = 200

r ρ Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

0.01
Proposed -0.26 0.035 0.035 1.27 1.36 0.96

Comp K-M -0.55 0.035 0.035 1.27 1.36 0.95
Naı̈ve K-M 498.41 0.003 0.002 310.32 0.01 0.00

0.25
Proposed 0.79 0.035 0.035 1.28 1.36 0.96

Comp K-M -0.55 0.035 0.035 1.27 1.36 0.95
Naı̈ve K-M 449.43 0.014 0.014 247.32 0.28 0.00

25 0.50
Proposed 0.57 0.035 0.034 1.26 1.34 0.96

Comp K-M -0.55 0.035 0.035 1.27 1.36 0.95
Naı̈ve K-M 384.50 0.020 0.020 175.53 0.56 0.00

0.75
Proposed 0.32 0.034 0.033 1.18 1.26 0.96

Comp K-M -0.55 0.035 0.035 1.27 1.36 0.95
Naı̈ve K-M 285.90 0.025 0.025 91.52 0.83 0.00

1.00
Proposed 0.02 0.030 0.030 0.94 1.00 0.96

Comp K-M -0.55 0.035 0.035 1.27 1.36 0.95
Naı̈ve K-M 0.03 0.030 0.030 0.94 1.00 0.95

0.01
Proposed -0.15 0.043 0.043 1.88 1.99 0.95

Comp K-M -1.01 0.043 0.042 1.87 1.98 0.95
Naı̈ve K-M 498.41 0.003 0.002 310.32 0.01 0.00

0.25
Proposed 4.62 0.044 0.042 2.02 2.14 0.95

Comp K-M -1.01 0.043 0.042 1.87 1.98 0.95
Naı̈ve K-M 449.43 0.014 0.014 247.32 0.28 0.00

50 0.50
Proposed 3.10 0.044 0.042 1.94 2.05 0.95

Comp K-M -1.01 0.043 0.042 1.87 1.98 0.95
Naı̈ve K-M 384.50 0.020 0.020 175.53 0.56 0.00

0.75
Proposed 2.32 0.042 0.040 1.76 1.88 0.95

Comp K-M -1.01 0.043 0.042 1.87 1.98 0.95
Naı̈ve K-M 285.90 0.025 0.025 91.52 0.83 0.00

1.00
Proposed 0.02 0.030 0.030 0.94 1.00 0.96

Comp K-M -1.01 0.043 0.042 1.87 1.98 0.95
Naı̈ve K-M 0.03 0.030 0.030 0.94 1.00 0.95

0.01
Proposed 3.35 0.061 0.060 3.86 4.11 0.96

Comp K-M 1.86 0.061 0.060 3.83 4.07 0.96
Naı̈ve K-M 498.41 0.003 0.002 310.32 0.01 0.00

0.25
Proposed 24.12 0.065 0.065 4.39 4.65 0.98

Comp K-M 1.86 0.061 0.060 3.83 4.07 0.96
Naı̈ve K-M 449.43 0.014 0.014 247.32 0.28 0.00

75 0.50
Proposed 21.49 0.067 0.063 4.58 4.83 0.96

Comp K-M 1.86 0.061 0.060 3.83 4.07 0.96
Naı̈ve K-M 384.50 0.020 0.020 175.53 0.56 0.00

0.75
Proposed 9.84 0.061 0.058 3.83 4.13 0.95

Comp K-M 1.86 0.061 0.060 3.83 4.07 0.96
Naı̈ve K-M 285.90 0.025 0.025 91.52 0.83 0.00

1.00
Proposed -0.22 0.031 0.030 0.97 1.03 0.96

Comp K-M 1.86 0.061 0.060 3.83 4.07 0.96
Naı̈ve K-M 0.03 0.030 0.030 0.94 1.00 0.95

r is the percent missing and ρ is the correlation between true and uncertain outcomes. Proposed refers to the
proposed estimator, Comp K-M refers to the complete-case Kaplan-Meier estimator, and Naı̈ve K-M refers to
the naı̈ve Kaplan-Meier estimator. SD is standard deviation of estimates across simulations, ŜE is estimated
standard error of the estimate, MSE is mean squared error, RE is relative efficiency, Cov is 95% coverage, all
averaged across time.
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ρ ∈ {0.25, 0.50, 0.75} (Figure 2.1). For these simulations, we used a larger sample size of n = 500 to

ensure that the EPV was adequate even at the largest amounts of missingness. For correlations of

0.50 and 0.75, our proposed estimator is more efficient (lower RE) than the complete-case Kaplan-

Meier estimator when the proportion of missing data is low, then the efficiency curves cross and

our proposed estimator becomes less efficient. The point of crossing is at a higher percentage of

missingness with higher values of the correlation between outcomes. Even with low correlation (ρ =

0.25) between outcomes, though, our estimator has similar or lower efficiency than the complete-

case Kaplan-Meier estimator when the amount of missingness is 50% or less. This is consistent

with Pepe’s recommendation for non-survival data with one parameter of interest (Pepe, 1992).

Figure 2.1: Relative Efficiencies by Correlation Between True and Uncertain Endpoints (ρ) and
Amount of Missingness of True Endpoints
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Proposed refers to the proposed estimator and Comp K-M refers to the complete-case Kaplan-Meier
estimator. This figure appears in color in the electronic version of this article.

We explored the behavior of our proposed estimator under random censorship by simulating true

event times T ∼Unif[1, 8], uncertain event times T ∗ = T + ε where ε ∼Unif[0, 2], true censor-
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ing times C ∼Unif[5, 7], and uncertain censoring times C∗ = C + γ where γ ∼Unif[0, 2]. These

simulations resulted in a small amount of censoring (approximately 30%). We also increased the

amount of censoring by simulating true censoring times C ∼Unif[3, 7], which resulted in a larger

amount of censoring (approximately 50%). The results of these random censoring simulations are

shown in Table 2.2. Similar to the results from type 1 censoring, our proposed estimator has little

bias compared to the naı̈ve Kaplan-Meier estimator and is more efficient than the complete-case

Kaplan-Meier estimator for both small and large amounts of censoring. We saw similar results with

n = 500 as seen in Appendix A.5.

Table 2.2: Simulation Results for Random Censoring and n = 200

r C Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

25

S
Proposed 0.24 0.035 0.034 1.25 1.17 0.96

Comp K-M 0.39 0.038 0.037 1.47 1.39 0.95
Naı̈ve K-M 119.63 0.030 0.029 15.47 0.83 0.03

L
Proposed 0.57 0.040 0.038 1.65 1.20 0.96

Comp K-M 0.37 0.043 0.041 1.94 1.44 0.94
Naı̈ve K-M 119.98 0.032 0.032 15.75 0.78 0.05

50

S
Proposed -2.18 0.040 0.041 1.64 1.54 0.95

Comp K-M -0.12 0.047 0.046 2.23 2.10 0.95
Naı̈ve K-M 119.63 0.03 0.029 15.47 0.83 0.03

L
Proposed -1.99 0.049 0.044 2.68 1.84 0.96

Comp K-M -0.52 0.053 0.050 2.95 2.18 0.93
Naı̈ve K-M 119.98 0.032 0.032 15.75 0.78 0.05

r is the percent missing and C is the amount of censoring, where S means small (30%) and L means large
(50%). Proposed refers to the proposed estimator, Comp K-M refers to the complete-case Kaplan-Meier
estimator, and Naı̈ve K-M refers to the naı̈ve Kaplan-Meier estimator. SD is standard deviation of estimates
across simulations, ŜE is estimated standard error of the estimate, MSE is mean squared error, RE is relative
efficiency, Cov is 95% coverage, all averaged across time.

To test the robustness of the MCAR assumption of the proposed method, we relaxed this assump-

tion and simulated data missing at random (MAR). We defined a missingness indicator R, where

R = 1 denotes a missing true endpoint and R = 0 denotes a non-missing true endpoint, based on
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the uncertain indicator δ∗ such that

R|(δ∗ = 0) =

 1 with probability pR

0 with probability 1− pR

R|(δ∗ = 1) =

 1 with probability 1− pR

0 with probability pR

for probability pR = 0.60. This implies that the probability of missingness of the true endpoint

depends on the observed censoring indicator of the uncertain endpoint. In the AD example, this

would imply that subjects who are clinically determined to be non-AD during the study are more

likely to miss the CSF biomarker endpoint. In the results from the MAR data in Table 2.3, we

see that both the proposed estimator and the complete-case Kaplan-Meier estimator is sometimes

slightly biased. However, the proposed estimator is less biased than the complete-case Kaplan-

Meier estimator, particularly when the correlation between outcomes is very high. Because of

these differences in bias, the coverage of the proposed estimator is better than the coverage of

the complete-case Kaplan-Meier estimator when the correlation between outcomes is greater than

0.01. We saw similar results with n = 500 as seen in Appendix A.6.

2.5. Application to the Alzheimer’s Disease Neuroimaging Initiative Study

We illustrated our method by considering data (retrieved on July 26, 2013) from the ongoing ADNI

study (Weiner et al., 2012). See Appendix A.3 for more detailed information about the ADNI study.

Participants in this study were seen every 6 months until the end of two years, then annually there-

after, at which time clinical diagnoses of non-AD (cognitively normal or MCI) or AD were assessed.

These follow-up times were predetermined by study design, and thus discrete survival estimates

would be appropriate in this study. The current study includes data from participants in the ADNI-

1 and ADNI-GO segments of the ADNI study. For those who agreed to a lumbar puncture, CSF

assays were performed and Aβ protein concentrations were measured. Participants with an Aβ

biomarker value greater than 192 pg/ml were classified as non-AD at baseline and those with an

Aβ value less than or equal to 192 pg/ml were classified as AD at baseline (Shaw et al., 2009).

There were 186 patients who were non-AD at the time of enrollment according to both the clini-

cal diagnosis and CSF diagnosis. For each patient, the time to clinical AD or last follow-up was
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Table 2.3: Simulation Results for Data Missing at Random and n = 200

Censoring ρ/C Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

0.01
Proposed 2.53 0.048 0.048 2.31 2.47 0.96

Comp K-M 0.91 0.048 0.048 2.31 2.47 0.95
Naı̈ve K-M 498.41 0.003 0.002 310.32 0.01 0.00

0.25
Proposed 17.06 0.048 0.049 2.38 2.56 0.97

Comp K-M -11.75 0.046 0.046 2.17 2.31 0.94
Naı̈ve K-M 449.43 0.014 0.014 247.32 0.28 0.00

Type 1 0.50
Proposed 21.47 0.047 0.046 2.22 2.38 0.98

Comp K-M -26.55 0.045 0.045 2.06 2.19 0.90
Naı̈ve K-M 384.50 0.020 0.020 175.53 0.56 0.00

0.75
Proposed 16.27 0.042 0.041 1.78 1.94 0.96

Comp K-M -44.30 0.043 0.042 1.89 2.00 0.81
Naı̈ve K-M 285.90 0.025 0.025 91.52 0.83 0.00

1.00
Proposed 0.02 0.030 0.030 0.94 1.00 0.96

Comp K-M -22.56 0.039 0.039 1.57 1.65 0.88
Naı̈ve K-M 0.03 0.030 0.030 0.94 1.00 0.95

Random

S
Proposed 0.32 0.039 0.044 1.62 1.49 0.96

Comp K-M -33.92 0.043 0.042 1.87 1.78 0.86
Naı̈ve K-M 119.63 0.03 0.029 15.47 0.83 0.03

L
Proposed 1.66 0.047 0.044 2.49 1.69 0.96

Comp K-M -41.74 0.048 0.047 2.31 1.81 0.83
Naı̈ve K-M 119.98 0.032 0.032 15.75 0.78 0.05

Censoring is the type of the censoring mechanism and ρ/C either represents the correlation ρ between true
and uncertain outcomes or represents the amount of censoring, where S means small (30%) and L means
large (50%). Proposed refers to the proposed estimator, Comp K-M refers to the complete-case
Kaplan-Meier estimator, and Naı̈ve K-M refers to the naı̈ve Kaplan-Meier estimator. SD is standard deviation
of estimates across simulations, ŜE is estimated standard error of the estimate, MSE is mean squared error,
RE is relative efficiency, Cov is 95% coverage, all averaged across time.
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recorded to obtain an uncertain, mismeasured outcome on all patients. A subset of 110 patients

continued to have CSF assays performed annually. For these 110 patients in the validation set,

patients were classified as non-AD or AD at each time point using the same cutoff of 192 pg/ml and

the true time to AD or last follow-up was also recorded. Thus, patients with any CSF assays during

follow-up were considered to be in the validation set and those with no CSF assays during follow-

up were considered to be in the non-validation set, or nV = 110 and n = 186 using the notation of

Section 2.2.

First, we assessed the missingness mechanism in the data. We used a log-rank test to compare the

survival functions for time to clinical AD diagnosis between the non-validation set and the validation

set. The χ2 test statistic was 0.2 with 1 degree of freedom, yielding a p-value of 0.662. We also used

Fisher’s exact test to test for an association between the clinical event indicator and missingness.

The p-value was 1. Further, because we used all available longitudinal CSF assays, those who

were missing CSF diagnoses were missing immediately after baseline. Since all subjects begin as

non-AD at baseline, the missingness could not be dependent on baseline CSF or clinical diagnoses.

Therefore, we did not find strong evidence against the MCAR assumption.

Figure 2.2 shows the estimated survival functions using our proposed estimator which maximized

the estimated likelihood, the complete-case Kaplan-Meier estimator which only uses 110 CSF diag-

noses, and the naı̈ve Kaplan-Meier estimator which only uses the 186 clinical diagnoses. The three

survival functions are very similar until 36 months, at which time the naı̈ve Kaplan-Meier estimate

begins to diverge from the other two survival curves. With higher survival probabilities, the naı̈ve

estimate overestimates the probability of being AD-free after 36 months compared to the proposed

estimator and complete-case Kaplan-Meier estimator. Since the naı̈ve estimate is based on only

clinical diagnoses, this would indicate that abnormality of Aβ occurred earlier than cognitive impair-

ment. This finding is consistent with the recent theoretical model of AD pathology developed by

Jack et al. (2010).

Table 2.4 shows the standard error estimates at each time point. The standard errors of the pro-

posed estimate are similar to or smaller than those of the complete-case Kaplan-Meier estimate at

all time points. This further supports the conclusion that the proposed estimator helps to improve

efficiency relative to the complete-case estimator.
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Figure 2.2: Data Example Survival Function Estimates for Time to AD
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Proposed refers to the proposed estimator, Comp K-M refers to the complete-case Kaplan-Meier estimator,
and Naı̈ve K-M refers to the naı̈ve Kaplan-Meier estimator. This figure appears in color in the electronic
version of this article.

2.6. Discussion

We proposed a nonparametric maximum likelihood estimator for the discrete survival function in the

presence of uncertain endpoints by using an internal validation subsample. We allowed for random

censoring for survival outcomes by incorporating a censoring distribution in the likelihood, showed

that the survival function estimator is a step function that drops only at observed event times, and

proved that the proposed estimator is consistent and asymptotically normal at each discrete time

point. We evaluated the finite sample performance of the proposed estimator through extensive

simulations. We found that the proposed estimator has little bias and can improve efficiency rela-

tive to the complete-case Kaplan-Meier estimator. It can also reduce bias compared to the naı̈ve

Kaplan-Meier estimator. The proposed estimator also works better than the complete-case and

naı̈ve estimators under departure from the MCAR assumption.

The efficiency gains of the proposed estimator have useful implications in clinical trials. A true
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Table 2.4: Data Example Standard Error Estimates

Month Proposed Complete-Case Naı̈ve
Estimator Kaplan-Meier Kaplan-Meier

6 0.000 0.000 0.005
12 0.008 0.013 0.012
18 0.008 0.013 0.016
24 0.022 0.019 0.017
36 0.036 0.036 0.023
48 0.038 0.040 0.031
60 0.040 0.045 0.036
72 0.046 0.051 0.036
84 0.046 0.051 0.074

outcome may be costly to obtain on all subjects, but using the proposed method can incorporate

a less costly uncertain outcome assessed on all subjects and the true outcomes on a smaller

subsample. Compared to obtaining true outcomes on all subjects which can be very costly or using

a complete-case estimator on the smaller subsample, our estimator can reduce costs of the trial

without sacrificing power.

The proposed approach does not require that only subjects with positive uncertain endpoints (e.g.,

having clinical AD in our data example) can be validated in contrast to previous literature. Our ap-

proach allows that all subjects can have the opportunity to be validated. Through simulations, we

found that the efficiency gains of our proposed estimator depends on both the correlation between

the uncertain and true outcome and the size of the validation sample. However, in general, the

proposed estimator seems to work well when the size of the validation sample is 50% or more of

the total sample size. The proposed method can be used with data that have both type 1 right

censoring and random right censoring, whereas previous methods only allowed type 1 right cen-

soring. The proposed method also assumes that study subjects are seen at predetermined time

points and relies on a discrete time framework. In studies where subjects are evaluated at any time,

the proposed estimator may not improve efficiency compared to the complete-case Kaplan-Meier

estimator. For this situation, a modified approach must be developed.

The proposed method only estimates a single survival function. A natural extension of the method

would be a semiparametric version that is able to incorporate covariates and conduct between-

group comparisons. The extension of our proposed method for a proportional hazards model with

a binary or continuous covariate of interest is discussed in Chapter 3.
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As early detection of Alzheimer’s disease and other chronic diseases becomes increasingly impor-

tant, but event outcomes may be hard to obtain for everyone, we recommend collecting an internal

validation sample when the measures of the event outcome are uncertain so that statistical analysis

can be improved with greater accuracy and power.
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CHAPTER 3

SEMIPARAMETRIC SURVIVAL ANALYSIS WITH UNCERTAIN ENDPOINTS USING AN

INTERNAL VALIDATION SUBSAMPLE

3.1. Introduction

In epidemiological studies and clinical trials, interest often lies in comparing the effects of treat-

ment on time to an event. The Cox proportional hazards model is a common, standard method of

survival analysis for analyzing true outcome data, but true outcomes are often unavailable due to

invasiveness or cost restrictions. For example, in the pathological diagnosis of Alzheimer’s disease

(AD), the outcome of interest may be a cerebral spinal fluid (CSF) diagnosis. However, the CSF

assay requires a lumbar puncture to measure Aβ protein concentrations in the spinal fluid, which is

considered too painful for some patients. In these cases, true outcomes data may be supplemented

by alternative outcomes that measure the true outcomes with some error. In the case of diagnos-

ing AD, a clinical diagnosis based on cognitive tests may be used. The clinical diagnosis presents

differently from the CSF diagnosis and therefore measures the true outcome with error because

clinical symptoms of AD are easily mistaken for other types of dementia. However, clinical diag-

noses are more widely available than the CSF diagnoses. Using both the uncertain, mismeasured

outcome on all subjects and the true outcome on a subsample of subjects, called the validation

sample, estimates of covariate effects can be improved.

Previous methods for estimating survival outcomes in these situations assumed known mismea-

surement rates of the uncertain outcome, allowed only positive uncertain outcomes to be validated

with an assessment of the true outcome, and/or only allowed for fixed censoring (Richardson and

Hughes, 2000; Meier et al., 2003; Balasubramanian and Lagakos, 2001; Magaret, 2008). For ex-

ample, Magaret (2008) adapted a method first introduced by Pepe (1992) for discrete survival data

and only discrete covariates using the proportional hazards model. Pepe’s method involved an

estimated likelihood method that incorporates information from both uncertain outcomes and true

outcomes, where estimation is performed for the conditional probability of the uncertain outcome

given the true outcome (Pepe, 1992). Zee and Xie (Chapter 2) adapted the estimated likelihood

method to estimate a survival function allowing any subject to be validated and allowing for either
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fixed or random censoring mechanisms.

In this paper, we extend the work of Zee and Xie (Chapter 2, under revision for Biometrics) to a

semiparametric estimated likelihood method to estimate a parameter representing a covariate ef-

fect for data with uncertain outcomes on all subjects and true outcomes on a subset. We assume

a proportional hazards model and estimate the log hazard ratio of the survival outcome comparing

different covariate values. Unlike Magaret’s (2008) method which only considered discrete covari-

ates of interest, we consider both a binary or a continuous covariate. Although we express our

approach with a binary categorical variable for ease of notation, the method can be easily modified

to consider categorical variables with more than two levels. For the continuous covariate, we use a

smooth kernel type estimator within the likelihood. The proposed estimator of the log hazard ratio

is consistent and asymptotically normal. The rest of the article is organized as follows. Section 3.2

describes the estimated likelihood and asymptotic properties for a binary covariate. Section 3.3

describes the method and asymptotic properties for a continuous covariate. Section 3.4 contains

results of our simulation study. In Section 3.5, we demonstrate the use of our method using data

from the Alzheimer’s Disease Neuroimaging Initiative to estimate covariate effects. Finally, we sum-

marize our results and discuss implications of using our proposed method in Section 3.6.

3.2. Semiparametric Estimated Likelihood with a Binary Covariate

3.2.1. Maximum Estimated Likelihood Estimation

Let T represent the true time to event and C represent the true right censoring time, with event

indicator δ = I (T ≤ C ). Similarly, let T ∗ represent the uncertain time to event and C∗ be the

uncertain right censoring time, with indicator δ∗ = I (T ∗ ≤ C∗). Define X = min{T ,C} and X ∗ =

min{T ∗,C∗}. Then X and X ∗ represent the true and uncertain observed times, respectively. Let Xk

represent the kth unique, ordered observed true time point for k = 1, · · · ,K , where K is the total

number of unique true observed times. Let F0 represent the baseline survival function of the true

time to event. We assume a proportional hazards model with F (t) = F0(t)exp(βZ) where Z ∈ {0, 1} is

the binary covariate of interest and β represents the log hazard ratio of the event comparing Z = 1

to Z = 0. We assume that the covariate is available for all subjects. Finally, we assume independent

censoring, and to allow for random censoring, we let G represent the censoring survival function.
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Let V represent the validation set, where both the uncertain and true outcomes are available. There

are nV subjects in the validation set. Then V̄ is the non-validation set, where only the uncertain

outcome is available and the true outcome is missing. The estimated likelihood would then be

L̂(β,F0,G ) ∝
∏
i∈V

P(Xi , δi |Zi )
∏
j∈V̄

P̂(X ∗j , δ∗j |Zj). (3.1)

where

P̂(X ∗j , δ∗j |Zj) =
K∑

k=1

1∑
δ=0

P(xk , δ|Zj)P̂(X ∗j , δ∗j |xk , δ,Zj). (3.2)

The conditional probability is estimated empirically by

P̂(X ∗j , δ∗j |xk , δ,Zj) =
P̂(X ∗j , δ∗j , xk , δ,Zj)

P̂(xk , δ,Zj)
(3.3)

=
1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ,Zi = Zj)

1
nV

∑
i∈V I (Xi = xk , δi = δ,Zi = Zj)

(3.4)

where I (·) is the indicator function. In the estimated likelihood function, only the true outcome

contributes to the likelihood for those in the validation set, implying that uncertain outcomes do

not provide any additional information when the true outcome is known. However, the uncertain

outcomes for those in the validation set are still used to estimate the relationship between the

uncertain and true outcomes, which are then used to weight likelihood contributions for those in the

non-validation set.

Then for subjects i ∈ V , the contribution to the likelihood is

P(Xi , δi |Zi ) =
{
F0(xki−1)exp(βZi ) − F0(xki )

exp(βZi )
}δi {

F0(xki )
exp(βZi )

}1−δi

· G (xki−1)δi {G (xki−1)− G (xki )}
1−δi (3.5)

∝
{
F0(xki−1)exp(βZi ) − F0(xki )

exp(βZi )
}δi {

F0(xki )
exp(βZi )

}1−δi
(3.6)
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where xki is the observed time for subject i . For subjects j ∈ V̄ , the contribution to the likelihood is

P̂(X ∗j , δ∗j |Zj) =
K∑

k=1

1∑
δ=0

[{
F0(xk−1)exp(βZj ) − F0(xk)exp(βZj )

}δ {
F0(xk)exp(βZj )

}1−δ

· G (xk−1)δ{G (xk−1)− G (xk)}1−δ

·
1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ,Zi = Zj)

1
nV

∑
i∈V I (Xi = xk , δi = δ,Zi = Zj)

]
. (3.7)

The estimated likelihood is a function of the log hazard ratio, β, and possible survival function values

for the baseline event distribution and censoring distribution at each time point. We maximize the

estimated likelihood jointly over all possible parameter values. As in the nonparametric case, the

maximum estimated likelihood estimate for the event (censoring) survival function is a step function

that falls only at event (censoring) times observed in the validation set. We solve for parameters

using the Nelder-Mead algorithm with constraints on both F0 and G survival functions to be mono-

tonically non-increasing as time increases and bounded between 0 and 1. To obtain initial estimates

for the event distribution parameters, we used the complete-case Kaplan-Meier estimates based on

the true observed times and true event indicators from the validation set. Initial parameters for the

censoring distribution were determined by the complete-case Kaplan-Meier estimates calculated by

inverting the event indicator to obtain a censoring indicator. The initial parameter for the covariate

effect is set at 0 and is unconstrained.

3.2.2. Asymptotic Properties of β̂

The asymptotic properties of the proposed estimator refer to the situation when the total number of

subjects n → ∞. As long as the proportion of subjects in the validation set to the total number of

subjects does not have a zero limit, limn→∞
nv
n = pV > 0, similar arguments as in Theorem 3.1 of

Pepe (1992) imply that β̂ is a consistent estimator for β and

√
n
(
β̂ − β

)
D−→ N(0,σ2)

where σ2 is the [1,1] element of the full variance covariance matrix

Σ = I−1 +
(1− pV )2

pV
I−1KI−1, (3.8)
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where I is the information matrix based on the (non-estimated) log likelihood and K is the expected

conditional variance of the non-validation contribution to the log likelihood (Pepe, 1992),

K = E

[
Var

{
∂ logP(X ∗, δ∗|Z )

∂θ

∣∣∣∣X , δ,Z

}]
(3.9)

for parameters θ = {β,F ,G}. The first term in the Σ variance expression represents the variance

component based on the maximum likelihood estimator and the second term represents a penalty

from estimating the likelihood with empirical probabilities. The I and K matrices can be estimated

consistently by

Î =
1

n

∂2 log L̂

∂θ2

∣∣∣∣∣
θ=θ̂

(3.10)

for maximum estimated likelihood estimates θ̂ = {β̂, F̂ , Ĝ} and

K̂ =
1

nV

∑
i∈V

Q̂i Q̂
T
i

∣∣∣∣∣
θ=θ̂

, (3.11)

where

Q̂i =
1

n − nV

1

P̂(Xi , δi ,Zi )

∑
j∈V̄

[{
I (X ∗j = X ∗i , δ∗j = δ∗i )− P̂(X ∗j , δ∗j |Xi , δi ,Zi )

}
I (Zi = Zj)

·

{
D(Xi , δi |Zj)

P̂(X ∗j , δ∗j |Zj)
−

D̂(X ∗j , δ∗j |Zj)

P̂2(X ∗j , δ∗j |Zj)
P(Xi , δi |Zj)

}]
(3.12)

and

P̂(Xi , δi ,Zi ) =
1

nV

∑
a∈V

I (Xa = Xi , δa = δi ,Za = Zi ) (3.13)

P̂(X ∗j , δ∗j |Xi , δi ,Zi ) =
1
nV

∑
a∈V I (X ∗a = X ∗j , δ∗a = δ∗j ,Xa = Xi , δa = δi ,Za = Zi )

1
nV

∑
a∈V I (Xa = Xi , δa = δi ,Za = Zi )

(3.14)

D(Xi , δi |Zj) =
∂P(Xi , δi |Zj)

∂θ
(3.15)

D̂(X ∗j , δ∗j |Zj) =
K∑

k=1

1∑
δ=0

∂P(xk , δ|Zj)

∂θ
P̂(X ∗j , δ∗j |xk , δ,Zj). (3.16)

In practice, derivatives in the variance expression can be calculated numerically. As in the non-

parametric case, we found that the numerical derivatives were sometimes unable to be computed
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or led to negative variances with data that had large amounts of missingness or large numbers

of parameters to estimate. In these cases, bootstrapped variance estimates can be calculated or

analytical forms of the derivatives should be used.

3.3. Semiparametric Estimated Likelihood with a Continuous Covariate

3.3.1. Maximum Estimated Likelihood Estimation

For a continuous covariate, using the method above will lead to a 0 contribution by most if not all

subjects in the non-validation set. This occurs because the indicator functions used to estimate

the conditional probability will be non-zero only if the non-validation set subject’s covariate value

matches that of some validation set subject. With a continuous covariate, this is extremely unlikely

in real data. To address this issue, we use a smooth kernel function to give non-zero values to the

probability estimates. The kernel function gives larger values as the non-validation set subject’s

covariate value is closer to that of validation set subject’s covariate values and smaller values when

it is further away. Here, we let Z represent the covariate of interest again, but Z is now a continuous

random variable. Then β represents the log hazard ratio of an event for a one unit change in Z .

Let φ represent a symmetric density function and h represent a pre-specified bandwidth. The

estimated likelihood is similar as above, but with conditional probability in the non-validation portion

estimated by

P̂(X ∗j , δ∗j |xk , δ,Zj) =

1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ) 1

hφ
(

Zi−Zj

h

)
1
nV

∑
i∈V I (Xi = xk , δi = δ) 1

hφ
(

Zi−Zj

h

) . (3.17)

As in other applications of kernel smoothing techniques, the choice of kernel function and bandwidth

may be chosen based on shape of the function, minimization of some measure of mean-squared

error, and a desired amount of smoothness (Klein and Moeschberger, 2003; Simonoff, 1996). Com-

mon choices of kernel functions include Epanechnikov, Gaussian, Biweight, Triweight, and Uniform,

all of which are second-order kernels, meaning the second moment is the first non-zero moment.

3.3.2. Asymptotic Properties of β̂

The pth order kernel function and bandwidth chosen must satisfy the limits nh2 −→∞ and nh2p −→

0 as n −→ ∞, where the order of the kernel function is the first non-zero moment. Then using
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similar arguments as in Pepe (1992), the same asymptotic properties as for the binary covariate

hold.

The form for the variance estimator is similar as above, but the Q̂i portion is instead given by

Q̂i =
1

n − nV

1

P̂(Xi , δi ,Zi )

∑
j∈V̄

[{
I (X ∗j = X ∗i , δ∗j = δ∗i )− P̂(X ∗j , δ∗j |Xi , δi ,Zi )

} 1

h
φ

(
Zi − Zj

h

)

·

{
D(Xi , δi |Zj)

P̂(X ∗j , δ∗j |Zj)
−

D̂(X ∗j , δ∗j |Zj)

P̂2(X ∗j , δ∗j |Zj)
P(Xi , δi |Zj)

}]
(3.18)

where

P̂(Xi , δi ,Zi ) =
1

nV

∑
a∈V

I (Xa = Xi , δa = δi )
1

h
φ

(
Za − Zi

h

)
(3.19)

P̂(X ∗j , δ∗j |Xi , δi ,Zi ) =
1
nV

∑
a∈V I (X ∗a = X ∗j , δ∗a = δ∗j ,Xa = Xi , δa = δi )

1
hφ
(
Za−Zi

h

)
1
nV

∑
a∈V I (Xa = Xi , δa = δi )

1
hφ
(
Za−Zi

h

) . (3.20)

The inclusion of kernel functions allows probability estimates to be non-zero, as desired. However,

there are rare cases where for some non-validation subject j , the probability estimate P̂(X ∗j δ
∗
j |Zj)

in the denominators of the Q̂i expression is extremely close to zero. Although the numerically

computed derivatives in the numerators are also extremely close to zero, the contribution to Q̂i by

subject j is extremely large, which makes the variance estimate extremely large. For these cases,

it may be necessary to define a zero tolerance such that subjects with probability estimates smaller

than that tolerance contribute 0 to the Q̂i expression.

3.4. Simulation Study

To test the performance of our proposed method in estimating a covariate effect, we conducted a

series of simulation studies. For a binary covariate, we randomly sampled values Z ∼Bernoulli(0.5)

and for the continuous case, Z ∼N(0, 1). We set the log hazard ratio at β = 1. We sampled

true event times assuming a proportional hazards model with baseline distribution, T ∼Unif[1, 5],

where survival time can only take integer values. We assumed right censoring at C = 4. The

uncertain time to event was calculated as T ∗ = T + ε, where ε ∼Unif[0, ζ] and ε is indepen-

dent of T . The maximum integer value of the discrete uniform distribution for ε was calculated as

ζ =
⌊√

Var(T ) · 1−ρ2

ρ2 + 1− 1
⌋
, where bac represents the largest integer not greater than a and ρ
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represents the correlation between T and T ∗. The expression for ζ was computed using the def-

inition of correlation between T and T ∗, independence of ε and T , and variance expressions for

T and ε. We considered correlations of ρ ∈ {0.01, 0.25, 0.50, 0.75, 1}. We set the right-censoring

time for the uncertain endpoint also at C∗ = 4. To create a representative validation subsam-

ple, we simulated data missing completely at random (MCAR). We randomly selected a proportion

r ∈ {0.25, 0.50} of the sample to be missing true endpoints, since our previous work suggested

efficiency gains with missingness of 50% or less.

For the smooth kernel estimate in the continuous covariate case, we used a standard normal dis-

tribution. Silverman (1992) suggested an optimal bandwidth for the standard normal distribution of

h = 0.9 A

n
1/5
V

where A = min{standard deviation, interquartile range/1.34}. Because this bandwidth

does not satisfy the nh2 −→ ∞ assumption for the asymptotic properties of the estimator, we used

a similar bandwidth of h = 0.9 A

n
1/3
V

which does satisfy all assumptions. The standard deviation and

interquartile range were calculated over subjects in the validation set on the difference in continuous

covariate values (numerator of expression within φ in estimated likelihood and variance estimate).

We used total sample size of n = 500 and conducted 500 repetitions of the simulation for each set

of parameter values. For each simulation, we used the proposed method to calculate estimates of

the log hazard ratio, β̂. We also calculated complete-case estimate using only true endpoints in

the validation set, the naı̈ve estimate using only uncertain endpoints from all subjects, and the true

estimate using true endpoints from all subjects (which would be unavailable in real data). For each

of the standard estimators, we used the maximum likelihood estimate rather than a partial likelihood

estimate to better compare to our proposed method. We calculated estimated bias (parameter

estimate−true parameter values), observed sample standard deviations (SD), estimated standard

errors (ŜE), relative efficiency (RE) compared to the true estimator (where lower RE implies greater

efficiency and RE equal to 1 implies optimal efficiency), mean squared error (MSE) estimates,

and 95% coverage (Cov) at each of the observed time points. For all simulations presented in

Tables 3.1 and 3.2, the observed sample standard deviation corresponds well with the standard

error estimates from the asymptotic theory for the proposed estimator.

Table 3.1 shows the results from the simulations for a binary covariate. The log hazard ratio esti-

mates estimated by our proposed method and the complete-case estimator are always unbiased,

whereas the naı̈ve estimates are biased whenever the correlation between outcomes is less than
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1. Our proposed estimator has similar standard errors compared to the complete-case estimator

when the correlation between outcomes is low. However, as the correlation between outcomes

increases, our proposed estimator is able to incorporate more information from the non-validation

set subjects and therefore improves in efficiency. This behavior is similar to what was seen in the

nonparametric case.

Table 3.1: Simulation Results for Type 1 Censoring and a Binary Covariate

r ρ Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

0.01
Proposed 0.013 0.124 0.119 0.016 1.44 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95
Naı̈ve -1.115 0.697 0.912 1.731 45.47 0.92

0.25
Proposed 0.013 0.124 0.119 0.016 1.44 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95
Naı̈ve -0.510 0.251 0.246 0.323 5.89 0.41

25 0.50
Proposed 0.012 0.122 0.117 0.015 1.39 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95
Naı̈ve -0.445 0.170 0.163 0.227 2.70 0.23

0.75
Proposed 0.008 0.115 0.113 0.013 1.24 0.95

Comp 0.010 0.123 0.119 0.015 1.42 0.95
Naı̈ve -0.223 0.124 0.116 0.065 1.44 0.51

1.00
Proposed 0.007 0.106 0.103 0.011 1.04 0.94

Comp 0.010 0.123 0.119 0.015 1.42 0.95
Naı̈ve 0.004 0.103 0.103 0.011 1.00 0.94

0.01
Proposed 0.038 0.158 0.146 0.026 2.34 0.93

Comp 0.026 0.153 0.147 0.024 2.18 0.95
Naı̈ve -1.105 0.715 0.917 1.733 47.81 0.92

0.25
Proposed 0.040 0.160 0.146 0.027 2.40 0.92

Comp 0.026 0.153 0.147 0.024 2.18 0.95
Naı̈ve -0.510 0.251 0.246 0.323 5.89 0.41

50 0.50
Proposed 0.033 0.154 0.143 0.025 2.21 0.93

Comp 0.026 0.153 0.147 0.024 2.18 0.95
Naı̈ve -0.445 0.170 0.163 0.227 2.70 0.23

0.75
Proposed 0.020 0.137 0.130 0.019 1.76 0.94

Comp 0.026 0.153 0.147 0.024 2.18 0.95
Naı̈ve -0.223 0.124 0.116 0.065 1.44 0.51

1.00
Proposed 0.016 0.110 0.103 0.012 1.13 0.93

Comp 0.026 0.153 0.147 0.024 2.18 0.95
Naı̈ve 0.004 0.103 0.103 0.011 1.00 0.94

r is the percent missing and ρ is the correlation between true and uncertain outcomes. Proposed refers to the
proposed estimator, Comp refers to the complete-case estimator, and Naı̈ve refers to the naı̈ve estimator. SD
is standard deviation of estimates across simulations, ŜE is estimated standard error of the estimate, MSE is
mean squared error, RE is relative efficiency, Cov is 95% coverage, all averaged across time.
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We also simulated data assuming random censoring and changed the amount of censoring by

sampling true censoring times C from a uniform distribution. We considered a small amount of cen-

soring (approximately 17%) using C ∼Unif[3, 4], a moderate amount of censoring (approximately

36%) using C ∼Unif[1, 4], and a large amount of censoring (approximately 84%) using C ∼Unif[1, 2].

Uncertain censoring times were simulated by C∗ = C + γ where γ ∼Unif[0, 2]. The results of these

random censoring simulations for the binary covariate are shown in Table 3.2. Similar to the results

with type 1 censoring, our proposed estimator and complete-case estimators have little bias com-

pared to the naı̈ve estimator and our proposed estimator is more efficient than the complete-case

estimator regardless of the amount of censoring.

Table 3.2: Simulation Results for Random Censoring and a Binary Covariate

r C Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

17
Proposed 0.007 0.114 0.112 0.013 1.17 0.94

Comp -0.000 0.121 0.122 0.015 1.32 0.95
Naı̈ve -0.145 0.110 0.107 0.033 1.09 0.73

25 36
Proposed 0.010 0.129 0.129 0.017 1.14 0.94

Comp 0.009 0.135 0.140 0.018 1.25 0.96
Naı̈ve -0.125 0.132 0.123 0.033 1.19 0.80

84
Proposed 0.005 0.161 0.157 0.026 1.18 0.95

Comp 0.004 0.165 0.166 0.027 1.25 0.95
Naı̈ve -0.132 0.149 0.153 0.040 1.01 0.86

17
Proposed 0.023 0.129 0.124 0.017 1.50 0.93

Comp 0.004 0.152 0.151 0.023 2.08 0.94
Naı̈ve -0.145 0.110 0.107 0.033 1.09 0.73

50 36
Proposed 0.026 0.151 0.147 0.023 1.56 0.96

Comp 0.022 0.169 0.173 0.029 1.95 0.96
Naı̈ve -0.125 0.132 0.123 0.033 1.19 0.80

84
Proposed 0.013 0.186 0.184 0.035 1.59 0.95

Comp 0.003 0.201 0.205 0.040 1.85 0.95
Naı̈ve -0.132 0.149 0.153 0.040 1.01 0.86

r is the percent missing and C is the percent censoring. Proposed refers to the proposed estimator, Comp
refers to the complete-case estimator, and Naı̈ve refers to the naı̈ve estimator. SD is standard deviation of
estimates across simulations, ŜE is estimated standard error of the estimate, MSE is mean squared error, RE
is relative efficiency, Cov is 95% coverage, all averaged across time.

Results from simulations using the continuous covariate are forthcoming.
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3.5. Data Example: Time to Development of Alzheimer’s Disease

We illustrated our proposed semiparametric estimated likelihood method by considering data (re-

trieved on July 26, 2013) from the ongoing ADNI study (Weiner et al., 2012). Participants in this

study were seen every 6 months until the end of two years, then annually thereafter, at which time

clinical diagnoses of non-AD (cognitively normal or MCI) or AD were assessed. These follow-up

times were predetermined by study design, and thus discrete survival estimates would be appro-

priate in this study. The current study includes data from participants in the ADNI-1 and ADNI-GO

segments of the ADNI study. For those who agreed to a lumbar puncture, CSF assays were per-

formed and Aβ protein concentrations were measured. Participants with an Aβ biomarker value

greater than 192 pg/ml were classified as non-AD at baseline and those with an Aβ value less

than or equal to 192 pg/ml were classified as AD at baseline (Shaw et al., 2009). There were 186

patients who were non-AD at the time of enrollment according to both the clinical diagnosis and

CSF diagnosis. For each patient, the time to clinical AD or last follow-up was recorded to obtain an

uncertain, mismeasured outcome on all patients. A subset of 110 patients continued to have CSF

assays performed annually. For these 110 patients in the validation set, patients were classified as

non-AD or AD at each time point using the same cutoff of 192 pg/ml and the true time to AD or last

follow-up was also recorded. Thus, nV = 110 and n = 186. All patients also have information on

gender and years of education.

We estimated the log hazard ratio, β̂ of AD in females compared to males and comparing a one-

year increase in education using our proposed method, the complete-case estimator using only

110 CSF diagnoses, and the naı̈ve estimator using only 186 clinical diagnoses. For the complete-

case and naı̈ve estimators, we conducted estimation using both the maximum likelihood method

and the more widely used partial likelihood method. For the partial likelihood method, we used

Efron’s approximation for ties (Efron, 1977). Table 3.3 shows the log hazard ratio and standard error

estimates for both covariates. Both our proposed estimator and the complete-case estimator found

a small positive log hazard ratio comparing females to males, which is similar to some literature

indicating higher incidence of AD in women (Mielke et al., 2014; Andersen et al., 1999; Letenneur

et al., 1999; Fratiglioni et al., 1997; Ott et al., 1998). However, the naı̈ve estimate is large and

negative. In this particular example comparing genders, the estimated standard errors from our

proposed method and the complete-case method were similar. All estimators found a small positive
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log hazard ratio of AD for a one-year increase in education, the direction of which initially appears

to be inconsistent with the literature (Stern et al., 1994; Lindsay et al., 2002; Qiu et al., 2001; Sattler

et al., 2012; Letenneur et al., 1999). However, previous studies often compared very low levels of

education (i.e., less than eight years) to higher levels, whereas our sample had a mean of 16 years

of education with very little variability. Therefore, along with the fact that the effect we observed

was not significant, definitive conclusions about the true effect of education on time to AD cannot

be made based on the current data. Nonetheless, our proposed estimator had a smaller estimated

standard error than any other method, demonstrating improvements in efficiency.

Table 3.3: Data Example Log Hazard Ratio and Standard Error Estimates

Proposed Comp Comp Naı̈ve Naı̈ve
(MLE) (Partial) (MLE) (Partial)

Female
β̂ 0.306 0.164 0.218 -1.609 -1.689
SE 0.630 0.610 0.556 0.839 0.775
Education
β̂ 0.114 0.035 0.034 0.093 0.092
SE 0.070 0.118 0.103 0.089 0.102

Proposed refers to the proposed estimator, Comp refers to the complete-case estimator, and Naı̈ve refers to
the naı̈ve estimator. MLE refers to estimated using the maximum likelihood method and Partial refers to
estimated using the partial likelihood method. SE is the estimated standard error.

3.6. Discussion

We extended the nonparametric estimated likelihood method for data with uncertain endpoints and

an internal validation subsample to the proportional hazards model with a binary or continuous

covariate. The continuous covariate required a smooth kernel function to estimate probability dis-

tribution functions. Our proposed semiparametric method is consistent and asymptotically normal.

Through simulation studies, we found that our proposed covariate effect parameter estimate is

unbiased and its variance decreases as correlation between the uncertain and true outcome in-

creases. By incorporating both uncertain and true endpoints in estimation, the proposed estimator

can outperform both complete-case and naı̈ve estimators.

As in the nonparametric case, we found that our proposed estimator behaves similarly to the

complete-case estimator when the correlation between the uncertain and true outcomes is low.

As correlation increases, the non-validation set subjects contribute more information and therefore
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decrease variances of parameter estimates by providing more power. When correlation between

outcomes is 1, or when the uncertain outcome has no measurement error, then our proposed

estimator reduces to the maximum likelihood estimate based on complete true outcomes (no miss-

ingness).

In our current study, we evaluated the use of an estimated likelihood method with a single binary or

a single continuous covariate. The method can easily be extended to consider multiple covariates,

which would be useful in order to adjust for confounding variables or to consider categorical vari-

ables with more than two levels. Further study on the number of allowable covariates is warranted;

however, based on the events per variable (EPV) testing in Chapter 2, it is expected that a similar

EPV of 4 would apply to multivariate models. In these cases, the parameter vector would have

dimension equal to the number of coefficients (or covariates) plus the number of time points for the

event distribution plus the number of time points for the censoring distribution if there is random

censoring.

Interesting study design issues arise with regard to the size of the validation sample that is needed

to adequately accommodate the uncertainty of the mismeasured endpoints. For example, in clinical

trials that aim to evaluate a treatment effect, it is valuable to determine the optimum size of the study

cohort and optimum size of the validation subsample to achieve a pre-specified power. These

design issues are discussed in Chapter 4.

Due to the difficulty in obtaining true outcomes on many subjects, the methods we have proposed

have useful applications in clinical trials. Designing studies such that uncertain outcomes are col-

lected on all patients and true outcomes only collected on a subsample of patients can save on

trial costs and ensure that an adequate number of patients are enrolled. Using our proposed semi-

parametric estimated likelihood method to analyze these data can provide accurate and powerful

statistical inference to evaluate treatment effects.
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CHAPTER 4

OPTIMAL STUDY DESIGN FOR ASSESSING TREATMENT EFFECTS IN

TIME-TO-EVENT DATA WITH UNCERTAIN ENDPOINTS AND A VALIDATION

SUBSAMPLE

4.1. Introduction

In clinical trials involving time-to-event data, many outcomes of interest are too cost-prohibitive or

invasive to obtain on a large sample of patients. Often, alternative outcomes that measure the

true outcome with some error can be used to increase the total sample size. In these situations

where mismeasured, uncertain outcomes may be available on many subjects and true outcomes

are only available on a smaller subsample, there are new methods that have been developed to

estimate the hazard ratio of a treatment effect (see Chapter 3). It is important to develop optimal de-

sign strategies under circumstances with uncertain endpoints and an internal validation subsample

when using these methods of survival analysis.

There are several methods that have been developed for computing optimal sample sizes required

for survival analysis studies (Freedman, 1982; Lakatos, 1986, 1988; Schoenfeld, 1981, 1983; Shih,

1995). Freedman (1982) and Schoenfeld (1981; 1983) proposed simple sample size formulas that

are in wide use today, but their formulas do not take into account potential mismeasurement of

uncertain outcomes and cannot incorporate both an uncertain outcome on all subjects and true

outcomes on a subsample of subjects.

The methods developed in Chapter 3 rely on estimated likelihood functions, where the conditional

probability of the uncertain outcome given the true outcome is estimated. As the correlation be-

tween the uncertain and true outcome increases, the uncertain outcome is able to provide more

information and therefore power to the parameter estimate of interest. Furthermore, it is not only

the total sample size that drives the power and variance estimates of the survival function estima-

tor, but also the size of the validation set, where the validation set is the subsample of patients for

whom both the uncertain and true outcomes are available.

In this paper, we develop optimal design strategies for a range of study conditions, including varying
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effect sizes, correlations between outcomes, percentage of missing true outcomes, and baseline

distributions. We use simulations to calculate sample sizes given a pre-specified power of a Wald-

type test for detecting a difference across treatment groups and describe the steps in Section 4.2.

We also propose a sample size formula in Section 4.3 based on pre-specified power, effect size,

correlation between outcomes, and percent missingness. Finally, we compare the advantages and

disadvantages of each method in Section 4.5 and discuss future directions.

4.2. Sample Size Calculation through Simulations

We conducted simulations to calculate the total number of true events in the total sample and in

the validation set needed to detect a log hazard ratio between two equally-sized treatment groups

when using the estimated likelihood method developed in Chapter 3. The parameters needed to

conduct the simulations include a baseline distribution of the true event, F0, the log hazard ratio

of interest, β, the correlation between the uncertain and true outcomes, ρ, the proportion of true

outcomes that are missing, r , and the desired power. We assume M simulation repetitions will be

conducted.

First, the probability distribution function of the true event in each treatment group is calculated by

using the baseline distribution F0 and effect size assuming proportional hazards between groups

over time. We assume positive, uniformly distributed measurement error and use the correlation

between outcomes to determine the conditional distribution of uncertain outcomes given true out-

comes and treatment group as in Chapter 3. For a given even-valued total number of events, d ,

the proportion of missingness is used to calculate the number of events in the validation set by first

calculating d · (1− r), then rounding this value to the smallest even integer greater than d · (1− r),

dV . This ensures that the treatment groups are also equal in size among the validation set as well

as the total sample. Without loss of generality, a binary validation set indicator is used to mark the

first d − dV subjects as subjects in the non-validation set and the rest of the dV subjects as those

in the validation set.

For each simulation repetition, a treatment indicator, Z , is evenly distributed across the validation

set and total sample. Then based on the value of the treatment indicator, event times are randomly

sampled from the probability distribution function of the true event given treatment group. However,

if the provided baseline survival function reaches 0 at the last time point, then there will be a
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boundary value problem with the Newton-Raphson maximization algorithm. In this case, d event

times are randomly sampled from all time points except the last time point. Then, the data are

augmented by events at the last time point and these extra observations are considered censored

at the second to last time point. All other event indicator values will be 1, such that there are

always d total true events. Given each subject’s true event times and treatment indicator value,

uncertain event times are sampled from the conditional distribution of uncertain event times given

true outcome and treatment group. All uncertain event indicators before the last time point are

given value 1 and those with value at the last time point are considered censored at the second to

last time point. Finally, the true event times and indicators for subjects in the non-validation set are

removed to be missing.

Now that a full dataset has been generated, the maximization algorithm and variance calculation

from Chapter 3, Section 3.2 can be utilized to estimate β̂ and Var(β̂). We conduct a two-sided

Wald-type test of the null hypothesis H0 : β = 0 and record whether the test is rejected or not

rejected. This procedure is repeated for all simulation repetitions and the proportion of rejections

out of M repetitions is calculated. This proportion represents the calculated power of the test given

d total true events and dV true events in the validation set.

To determine optimal sample size, a binary search algorithm is used. The algorithm is initiated at the

value given by Schoenfeld’s (1983) sample size formula for a standard Cox proportional hazards

model, dS . Following the procedure described above, the calculated power from M simulation

repetitions is compared to the pre-specified power, for example, 0.80. One of two situations can

occur:

1. If the calculated power is greater than or equal to 0.80, then the next sample size to be tested

is halfway between the minimum sample size and the current sample size. Since the minimum

sample size after the first iteration of the binary search algorithm is 2, then the next sample

size to be tested is (dS + 2)/2 (or (dS + 2)/2 + 1 if (dS + 2)/2 is odd). The new maximum

sample size would then become dS .

2. If the calculated power is less than 0.80, then the next sample size to be tested is halfway

between the maximum sample size and the current sample size. Since there is no maximum

sample size after the first iteration of the binary search algorithm, we make the maximum
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equal to 40 more than the current size. Then the next sample size to be tested is (dS + dS +

40)/2 (or (dS +dS + 40)/2 + 1 if (dS +dS + 40)/2 is odd). The new minimum sample size would

then become dS .

These steps are repeated until the previous and current sample sizes being tested are within 2 of

each other. The optimal sample size is then considered to be the smallest sample size such that

the calculated power is within the interval (0.795,0.820).

Using simulations, we calculated optimal sample sizes for baseline distribution T ∼Unif[1, 5], cor-

relations of ρ ∈ {0.25, 0.50, 0.75, 1.00}, proportions of missingness of r ∈ {0, 0.25, 0.50}, effect sizes

of β ∈ {0.41, 0.50, 0.69}, and desired power of 0.80. An example is given in Figure 4.1 for β = 0.50

to show the total number of true events in the sample (d , solid lines) and number of true events

in the validation set (dV , dashed lines). We found that the optimal total number of true events and

number of true events in the validation set was similar to the optimal number of events calculated

by Schoenfeld’s (1983) sample size formula when there was no missingness. When missingness

was greater than 0 and correlation between outcomes was low, the number of true events in the

validation set was similar to the standard value. As correlation between outcomes increased, the

number of true events in the validation set decreased. At perfect correlation of ρ = 1, the total

number of true events in the sample was similar to the standard value.

Although our simulation results give both total number of true events in the sample and number of

true events in the validation set, the number of true events in the non-validation set would not be

observed in a real study. Therefore, it would be most relevant to use the number of true events in

the validation set for planning a trial. In order to calculate the total number of subjects to recruit, we

can use the missingness proportion r as well as an assumed constant proportion of censoring, c .

The total number of subjects needed to be recruited in the study would be

n =

⌈⌈
dV

(1− r)(1− c)

⌉⌉
(4.1)

and the number of subjects needed for the validation set would be

nV =

⌈⌈
dV

1− c

⌉⌉
(4.2)
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Figure 4.1: Optimal Number of True Events for T ∼Unif[1, 5] and β = 0.50
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This figure appears in color in the electronic version of this article.

where ddaee here represents the smallest even integer greater than a. The even value ensures that

the two treatment groups can have equal sizes in the total sample and in the validation set. The

value of c can either be assumed or estimated according to the study design, such as by using the

steps in Section 2.1 of Schoenfeld (1983) for estimating the proportion of patients that will have an

event.

Although the estimated likelihood method sometimes requires a greater number of total subjects

compared to the standard method, it requires a similar or smaller number of true outcomes. There-

fore, when the true outcomes are expensive or otherwise difficult to obtain, the estimated likelihood

method can save on costs without sacrificing power. This is particularly true when there is high

correlation between the uncertain and true outcomes.

Computing optimal sample sizes by conducting simulations allows great flexibility in the specifica-

tion of study parameters. However, running the simulations is time-consuming, especially when M

is large and when standard errors must be calculated by bootstrap samples. An ideal alternative

would be to use a sample size formula.
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4.3. Sample Size Formula

Consider testing the null hypothesis H0 : β = β0, against the alternative of Ha : β = βa. Then our

effect size of interest is βa−β0. We adapted Schoenfeld’s (1983) sample size formula by multiplying

by relative efficiency of the estimated log hazard ratio based on our proposed method to the true

estimate using complete data with no missing true outcomes. The number of true events in the

validation set can be calculated by

dV =

⌈⌈
4 ·

(z1−α/2 − z1−Power)
2

(βa − β0)2

(
1

1− r
− r

1− r
ρ2

)
(1− r)

⌉⌉
. (4.3)

where zα = Φ−1(α) is the α percentile of the normal distribution. We can then use Equations 4.1

and 4.2 to calculate the total number of subjects and number in the validation set needed to be

recruited for the trial.

The relative efficiency expression is a function of proportion missingness r and correlation ρ be-

tween the true and uncertain outcomes. The concave shape is based on observations from simu-

lations in previous work (Chapter 3). Specifically, our proposed estimator reduces to the complete-

case estimator for a useless uncertain outcome, so the relative efficiency of the proposed estimator

at ρ = 0 is equal to the relative efficiency of the complete-case estimator for a given percent of

missingness, REmax . Similarly, for the case of a perfect uncertain outcome with no measurement

error, the relative efficiency of the proposed estimator at ρ = 1 is 1. From previously conducted sim-

ulations, the relative efficiency begins decreasing slowly as correlation increases, then falls quickly

as correlation approaches 1. Therefore, we write the relative efficiency as

RE = REmax − (REmax − 1) · ρ2. (4.4)

Although Schoenfeld’s sample size formula is based on a score test, it can be re-written as a Wald

test. When written as a Wald test, the variance component of the estimator is 4/d , where d is the

number of events. For the complete-case estimator, the number of events is the number of events

in the validation subsample, or (1 − r)n. For the true estimator, the number of events is the total
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sample size, n. Therefore, the maximum relative efficiency is

REmax =
4/{(1− r)n}

4/n
=

1

1− r
(4.5)

and the relative efficiency equation can be written as

RE =
1

1− r
− r

1− r
ρ2. (4.6)

This equation multiplied by Schoenfeld’s sample size formula and (1 − r) for the proportion in the

validation set gives Formula 4.3.

We tested the performance of our proposed sample size formula by calculating power based on

the proposed formula and determining power by Monte Carlo simulations for several sample sizes.

Simulations are based on data sampled from baseline distribution T ∼Unif[1, 5], correlations of

ρ ∈ {0.25, 0.50, 0.75, 1.00}, proportions of missingness of r ∈ {0, 0.25, 0.50}, and effect sizes of

β ∈ {0.41, 0.50, 0.69}. Results are shown in Table 4.1 for values of dV up to 100 and in Table 4.2

for values of dV up to 200. The power calculations are mostly similar, indicating that the proposed

sample size formula can give good estimates of the optimal sample size. In some cases, the formula

slightly underestimates power, but this is the preferred direction in that it would slightly overestimate

optimal sample sizes needed.

Although the sample size formula performs well compared to these simulations, further work to

test its robustness under different study parameters is under way. We will use a baseline dis-

tribution of T ∼Unif[1, 8] to demonstrate a different number of time points, baseline distribution

of T ∼Geometric(0.5) to demonstrate a different discrete distribution, and ε ∼Geometric(0.5) to

demonstrate a different measurement error distribution, results of which are forthcoming.

4.4. Example

The Ginkgo Evaluation of Memory (GEM) study was a randomized controlled trial with the pri-

mary objective of comparing Ginkgo biloba extract to a placebo for prevention of all-cause demen-

tia (DeKosky et al., 2006). A retrospective secondary study using the GEM data evaluated sev-

eral antihypertensive drugs and found that diuretics, angiotensin-1 receptor blockers (ARB), and

angiotensin-converting enzyme inhibitors (ACE-I) were associated with reduced risk of Alzheimer’s
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Table 4.1: Power Estimated by Formula 4.3 and by Simulations for dV up to 100

dV β r ρ
Power Power

(Formula) (Monte Carlo)
100 0.41 0.00 0.25 0.536 0.530
100 0.41 0.00 0.50 0.536 0.530
100 0.41 0.00 0.75 0.536 0.530
100 0.41 0.00 1.00 0.536 0.530

76 0.41 0.25 0.25 0.437 0.450
76 0.41 0.25 0.50 0.454 0.458
76 0.41 0.25 0.75 0.485 0.478
76 0.41 0.25 1.00 0.536 0.534

50 0.41 0.50 0.25 0.313 0.336
50 0.41 0.50 0.50 0.341 0.368
50 0.41 0.50 0.75 0.401 0.418
50 0.41 0.50 1.00 0.536 0.560

100 0.50 0.00 0.25 0.705 0.676
100 0.50 0.00 0.50 0.705 0.676
100 0.50 0.00 0.75 0.705 0.676
100 0.50 0.00 1.00 0.705 0.676

76 0.50 0.25 0.25 0.593 0.566
76 0.50 0.25 0.50 0.613 0.586
76 0.50 0.25 0.75 0.649 0.620
76 0.50 0.25 1.00 0.705 0.680

50 0.50 0.50 0.25 0.435 0.442
50 0.50 0.50 0.50 0.472 0.458
50 0.50 0.50 0.75 0.550 0.520
50 0.50 0.50 1.00 0.705 0.698

100 0.69 0.00 0.25 0.932 0.914
100 0.69 0.00 0.50 0.932 0.914
100 0.69 0.00 0.75 0.932 0.914
100 0.69 0.00 1.00 0.932 0.914

76 0.69 0.25 0.25 0.858 0.836
76 0.69 0.25 0.50 0.873 0.842
76 0.69 0.25 0.75 0.899 0.894
76 0.69 0.25 1.00 0.932 0.916

50 0.69 0.50 0.25 0.698 0.692
50 0.69 0.50 0.50 0.742 0.704
50 0.69 0.50 0.75 0.821 0.802
50 0.69 0.50 1.00 0.932 0.918

Power (Formula) refers to the power calculated by the proposed sample size formula and Power (Monte
Carlo) refers to the power calculated through simulations.
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Table 4.2: Power Estimated by Formula 4.3 and by Simulations for dV up to 200

dV β r ρ
Power Power

(Formula) (Monte Carlo)
200 0.41 0.00 0.25 0.826 0.834
200 0.41 0.00 0.50 0.826 0.834
200 0.41 0.00 0.75 0.826 0.834
200 0.41 0.00 1.00 0.826 0.834

150 0.41 0.25 0.25 0.716 0.734
150 0.41 0.25 0.50 0.737 0.732
150 0.41 0.25 0.75 0.773 0.790
150 0.41 0.25 1.00 0.826 0.834

100 0.41 0.50 0.25 0.549 0.538
100 0.41 0.50 0.50 0.592 0.550
100 0.41 0.50 0.75 0.677 0.626
100 0.41 0.50 1.00 0.826 0.834
200 0.50 0.00 0.25 0.942 0.928
200 0.50 0.00 0.50 0.942 0.928
200 0.50 0.00 0.75 0.942 0.928
200 0.50 0.00 1.00 0.942 0.928

150 0.50 0.25 0.25 0.870 0.872
150 0.50 0.25 0.50 0.885 0.874
150 0.50 0.25 0.75 0.910 0.882
150 0.50 0.25 1.00 0.942 0.928

100 0.50 0.50 0.25 0.719 0.738
100 0.50 0.50 0.50 0.762 0.744
100 0.50 0.50 0.75 0.839 0.784
100 0.50 0.50 1.00 0.942 0.928
200 0.69 0.00 0.25 0.998 1.000
200 0.69 0.00 0.50 0.998 1.000
200 0.69 0.00 0.75 0.998 1.000
200 0.69 0.00 1.00 0.998 1.000

150 0.69 0.25 0.25 0.989 0.986
150 0.69 0.25 0.50 0.992 0.982
150 0.69 0.25 0.75 0.995 0.992
150 0.69 0.25 1.00 0.998 1.000

100 0.69 0.50 0.25 0.939 0.944
100 0.69 0.50 0.50 0.958 0.944
100 0.69 0.50 0.75 0.983 0.966
100 0.69 0.50 1.00 0.998 1.000

Power (Formula) refers to the power calculated by the proposed sample size formula and Power (Monte
Carlo) refers to the power calculated through simulations.

46



disease (AD) among patients who had normal cognition at baseline, but only diuretics were signifi-

cantly associated with reduced risk of AD among those with mild cognitive impairment (MCI) (Yasar

et al., 2013). Yasar et al. (2013) suggested that the lack of significant associations with other antihy-

pertensives was due to lack of power, since hazard ratios showed trends for an effect and only 110

out of 320 patients who had MCI at baseline eventually developed AD. Specifically, hazard ratios

comparing antihypertensive medication use to no antihypertensive medication use from adjusted

Cox proportional hazards models were 0.38 for diuretics, 0.37 for ARB, and 0.53 for ACE-I (Yasar

et al., 2013).

Suppose that investigators were interested in conducting new, separate randomized controlled trials

to compare diuretics, ARB, and ACE-I against no antihypertensive use among patients with MCI

to evaluate effects on development of AD. In order to obtain accurate and efficient hazard ratio

estimates, the methods developed by Zee and Xie (Chapter 3) can be used after obtaining an

uncertain, clinically diagnosed time to AD outcome on all patients and a true time to pathological

AD outcome on a validation subset of patients, measured based on cerebral spinal fluid (CSF)

assays of Aβ protein concentrations (Shaw et al., 2009). Suppose that the non-validated set was

predicted to be 41% of the total sample, as in the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) data from Section 3.5. Using the validation set from the same ADNI data, we estimated the

correlation between true and uncertain observed times to be 0.788.

We assumed values r = 0.41, ρ = 0.788, power of 0.80, and log hazard ratios of βa = log(0.38) =

−0.968 for diuretics, βa = log(0.37) = −0.994 for ARB, and βa = log(0.53) = −0.635 for ACE-I. For

two-sided Wald tests at significance level α = 0.05 and null hypothesis of H0 : β0 = 0, the numbers

of true events in the validation set, dV , calculated by Formula 4.3 are shown in Table 4.3, along with

the number of true events needed if using standard methods, dS . Using a censoring proportion of

c = 210/320 = 0.656 based on the proportion observed in the GEM study, we also calculated the

total number of subjects, n, and number of subjects in the validation set, nV , that would need to

be recruited using Equations 4.1 and 4.2. Finally, we used Equation 4.2 but substituted dS for dV

to calculate nS , the number of subjects that would need to be recruited if using standard survival

methods.

The example results show that the numbers of true events that need to be observed would be

smaller if using the estimated likelihood method compared to the standard method (dV vs. dS ). The
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Table 4.3: Optimal Number of Events in Study Design Example

Proposed Method Standard
Antihypertensive dV n nV dS nS
diuretic 26 130 76 34 100
ARB 24 120 70 32 94
ACE-I 60 296 176 78 228

total number of subjects that would need to be recruited for the estimated likelihood method (n) is

higher than the total number of subjects to be recruited for the standard method (nS ). However,

there is a smaller number of subjects for which the true outcome must be collected (nV vs. nS ). For

expensive or otherwise difficult to obtain true outcomes, this shows potential savings in cost or an

increase in power when using the estimated likelihood method.

4.5. Discussion

We developed two methods for calculating the optimal number of true events in the validation set

when using the estimated likelihood method developed by Zee and Xie (Chapter 3). We also

demonstrated how to calculate the total number of subjects and number in the validation set that

would need to be recruited for a trial. We found that the number of true outcomes needed is

similar to that according to Schoenfeld’s (1983) formula for using the standard proportional hazards

model when there are no true outcomes missing or when the correlation between uncertain and true

outcomes is low. As correlation between outcomes increases, the number of true outcomes needed

decreases. Therefore, using the estimated likelihood method can save on costs by obtaining fewer

true outcomes.

By simulating data and using a binary search algorithm, we calculated optimal sample sizes such

that all study parameters can be controlled. However, this complex procedure takes a long time to

complete. As an alternative, we have proposed a sample size formula that is easy and fast to use

and gives similar results to those from simulations. Robustness checks and methods on further

improving the precision of the sample size formula are currently under investigation.

The parameters required for the sample size formula include the effect size of interest measured as

the log hazard ratio, β, the correlation between the uncertain and true outcome, ρ, the proportion

of true outcomes that are missing, r , and the desired power. Power can be set at 0.80 or 0.90.

For all other parameters, values can be obtained from pilot data or from the literature, as we did in
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our data example. The simulation method requires that an additional parameter be specified: the

baseline survival distribution of the true outcome, F0. This parameter is one that would not typically

be available from the literature. Therefore, it must be assumed or estimated from pilot data. This

may be considered another drawback of using the simulation method.

Following either method for calculating optimal sample sizes should allow an investigator to design

a new trial where uncertain outcomes will be collected on all participants and true outcomes col-

lected on a subsample. We recommend using this data structure and the methods of Zee and Xie

(Chapter 3) to analyze these data in order to obtain accurate and efficient survival estimates while

saving on costs of a trial.
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CHAPTER 5

CONCLUSION

In this dissertation, we developed methods to conduct survival analysis using data with uncertain

outcomes on all subjects and true outcomes on a validation subsample. We also developed optimal

study design strategies for new trials with these data characteristics. In Chapter 2, we developed

a nonparametric discrete survival function estimator using an estimated likelihood method, derived

from Pepe’s (1992) framework for general outcomes. The likelihood allowed for fixed or random

censoring mechanisms and allowed for any subject to be validated. Due to the discrete nature of

the time points, conditional probabilities within the likelihood were estimated empirically using pro-

portions based on observed data in the validation set. We maximized the likelihood function using

a Nelder-Mead algorithm to calculate the maximum estimated likelihood estimator. We showed

that the estimator is consistent and asymptotically normal, and we conducted a series of simula-

tions to test the performance of our method. We found that the proposed estimator was unbiased,

whereas the naı̈ve Kaplan-Meier survival function estimator, which uses only uncertain outcomes

on all subjects, was often biased. Our proposed estimator also behaved similarly to the complete-

case Kaplan-Meier survival function estimator, which uses only true outcomes from the validation

set, when the correlation between the true and uncertain outcomes was low. As the correlation

increased, our proposed estimator was able to use more information from the non-validation set

subjects to improve in efficiency. At perfect correlation between outcomes, or when the uncertain

outcome had no measurement error, our proposed estimator reached optimal efficiency. We found

these results whether we used fixed or random censoring mechanisms. Through our simulations,

we found that these properties held when there was 50% or less missingness of the true outcomes

and when there was an EPV of at least 4. Finally, we illustrated our method by calculating survival

function estimates of the time to AD and standard errors using data from the ADNI study. In the

data example, we saw that the survival function estimate calculated by our proposed method was

similar to that of the complete-case Kaplan-Meier estimate, whereas the naı̈ve Kaplan-Meier esti-

mate was slightly separated from the other two curves. We also observed slight gains in efficiency

when using our proposed method as compared to the complete-case estimate.

In Chapter 3, we extended our methods to the semiparametric case in order to assess the effects of

50



a binary or continuous covariate. We assumed a proportional hazards model and aimed to estimate

the log hazard ratio of the event of interest for different values of the covariate. For a single binary

covariate, the estimator and its variance was similar to the nonparametric case, but with the addition

of a random variable and the proportional hazards model. For the continuous covariate, however,

the empirically estimated probabilities based on indicator functions would lead to zero-valued con-

tributions by many if not all non-validation set subjects. Therefore, we used a smooth kernel function

and bandwidth in the likelihood and variance estimate when we had a continuous covariate. Two

additional assumptions about the choice of bandwidth were required for the asymptotic properties

to hold. With the assumptions in place, we showed that the estimate of the log hazard ratio for

both the binary and continuous case was consistent and asymptotically normal. Using simulations,

we compared our proposed semiparametric estimated likelihood method to the complete-case and

naı̈ve estimators based on the maximum likelihood method for the Cox proportional hazards model.

We found similar results as in the nonparametric version: our proposed estimator was unbiased and

was as or more efficient than the complete-case estimator. We illustrated the semiparametric meth-

ods by using the ADNI data to estimate the effect of gender (binary) and education (continuous) on

time to AD. We observed that our proposed estimator of the log hazard ratio had similar standard

error as the complete-case estimator for gender but lower standard error for education.

In Chapter 4, we developed optimal study design strategies to calculate the number of true events

in the validation set that would need to be observed to achieve a pre-specified power when com-

paring survival across two groups. We did so using simulations, which allows great flexibility in

specification of parameters but takes a long time to complete. As expected from the properties ob-

served from our semiparametric estimated likelihood estimator, the optimal number of true events

in the validation set was similar to the standard number of events when correlation between out-

comes was low. As correlation increased, the optimal number of true events in the validation set

decreased. We also proposed a sample size formula adapted from Schoenfeld’s (1983) formula

for the standard proportional hazards model, which is much easier to use than the simulations. By

comparing power calculated by both methods, we found the sample size formula gives close but

not exactly the same values as the simulations do. The parameters that need to be specified for

both simulation and formula methods include effect size, correlation between outcomes, proportion

of missingness, and desired power. Using simulations also requires that the baseline distribution

of true event times be specified, which may be difficult to obtain. We demonstrated the use of our
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proposed sample size formula by using parameters from a follow-up study to the GEM trial and from

the ADNI data to estimate the number of true events that would need to be observed in new trials

comparing use of three antihypertensive medications to no antihypertensive use on development

of AD. We found that our proposed method would require fewer true events to be observed than the

standard method would. We also calculated the number of total subjects and number of subjects

in the validation set that would need to be recruited based on proportion missingness and a fixed

proportion of censoring. Our example showed that our proposed method would require a larger

total number of subjects to be recruited, but a smaller number of subjects on which to obtain the

true outcome, as compared to the standard method.

Because true survival outcomes may be difficult to obtain for a large number of subjects, we recom-

mend collecting an uncertain outcome on all subjects as well as an internal validation subsample

of true outcomes. The uncertain outcomes can be surrogate or auxiliary markers that measure

the true outcomes with some error and their mismeasurement rates do not have to be known or

estimated. The correlation between uncertain and true outcomes is also unnecessary in order to

use our proposed methods. We showed that the nonparametric and semiparametric estimated

likelihood methods can be used to analyze discrete survival data with these characteristics to im-

prove accuracy and power as compared to the standard methods. As more efficient (both in cost

and in parameter estimation) clinical trials becomes increasingly necessary, we recommend using

our proposed methods to save on trial costs without sacrificing power or to increase power without

sacrificing costs.

5.1. Future Directions

5.1.1. Multivariable Models

There are several interesting areas of future study to consider. The semiparametric methods that

we developed are specifically designed for the situation where only a single binary or single con-

tinuous covariate is considered. It is natural to extend this to a multivariable model, in order to

incorporate discrete, multi-level categorical covariates and to adjust estimates for confounding vari-

ables. Although the extension to multivariable modeling should be somewhat straightforward, there

are a few additional details that must be examined.
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First, the number of covariates that can be included in the model may need to be limited. As in stan-

dard regression modeling, there are limits on the number of parameters to allow in a model based

on the sample size in order to avoid overfitting (Harrell Jr, 2001). In a semiparametric estimated

likelihood method with multiple covariates, it is not only the number of covariates that have associ-

ated parameters but also the event and censoring survival functions that must be estimated. Based

on our simulations studies in Chapter 2, we found that the events per variable (EPV) required for

the nonparametric method was 4. It is expected that we would find a similar EPV when considering

multivariable models, but this must be verified, particularly when considering continuous covariates.

Second, the form of the likelihood and associated asymptotic theory may need to be altered when

considering complex models. For example, if potential effect modification must be evaluated, an

interaction term may be included in the model. Specifically, consider an interaction term between

years of education and female gender, which will have 0 values for all males. When calculating the

likelihood contribution for a male non-validation set subject with 12 years of education, the zero-

valued interaction term for this subject will seem close to an interaction term with value 1, which

would correspond to a female with 1 year of education. The kernel function would then give a large

value, implying that these two subjects are closely matched. The effects of such anomalies when

considering interaction terms or other more complicated covariates in the estimated likelihood must

be studied.

5.1.2. Sample Size Formula Improvements

The sample size formula proposed in Section 4.3 produced power values close to those from simu-

lations overall. However, some values were slightly lower. Therefore, additional work on improving

the precision of the formula would be useful. To do so, we can explore the shape of the convex

function relating relative efficiency to the correlation between outcomes. In the development of our

proposed formula, we attempted to fit several different convex functions. We used both quartic and

negative log functions before concluding that the quadratic function produced the closest relative

efficiency values to the ones observed and did not suffer from boundary condition issues. Further

research on the best fitting function may give an even more accurate formula.

It may also be beneficial to develop an alternative sample size formula that relies on fewer param-

eter specifications. For example, we currently assume that the proportion of missingness is fixed.
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However, it may be possible to control the proportion of missingness in some clinical trials through

recruitment efforts. In these cases, study design strategies that allow for a flexible proportion of

missingness may be needed to calculate optimal sample sizes across varying levels of missing-

ness. Rather than a one-dimensional problem of solving for only the number of true events in the

validation set, we would also need to solve for the number of total events in the study simultane-

ously.

5.1.3. Continuous Survival Times

The survival analysis and study design methods proposed in this dissertation rely on the assump-

tion that study visit times are pre-determined. This results in a discrete survival time. However,

some studies may have survival times measured on what would be considered a continuous scale.

For example, if the time unit of interest is in days but patients cannot be evaluated every day, we can

consider time to be continuous and the possible observed visit times are no longer pre-determined.

The proposed estimated likelihood methods would not be useful in this case because the non-

validation set subjects would often if not always contribute zero values to the likelihood. As we did

for the continuous covariate, we could use a smooth kernel function instead of an indicator function

in the empirical probability estimates for the continuous outcome. However, the infinite dimensional

parameter space produced by the continuous time data poses a problem. Although the times can

be discretized based on observed times, as can be done for the Kaplan-Meier estimator, the di-

mensionality of the parameter space is typically still large. Maximization of the estimated likelihood

over a large number of parameters is not only slow to converge but may also fail to converge at

all. Furthermore, assuming an EPV of about 4, the large number of parameters would require an

even larger sample. In the case of continuous times, however, a larger sample typically implies a

larger number of parameters. This endless cycle makes it difficult if not impossible to acquire a

large enough sample size for parameter estimation with the estimated likelihood method.

Rather than using an estimated likelihood method to analyze continuous survival times when there

is data on uncertain outcomes for all subjects and true outcomes for a subsample, another potential

method is the mean score method developed by Pepe et al. (1994). The mean score method also

has a validation set portion and a non-validation set portion. The validation set subjects contribute

the standard score function of the true survival outcome. The non-validation set subjects contribute

an estimated conditional expected score function of the true survival outcome given the observed
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uncertain outcome. The applicability of such a method to survival outcomes is currently under

investigation.
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APPENDIX A

CHAPTER 2 SUPPLEMENTARY MATERIALS

A.1. Development of Estimated Likelihood

Those in the validation set have both true and uncertain outcomes, so they contribute the joint

probability distribution function, P(X , δ,X ∗, δ∗), to the likelihood. Those in the non-validation set

only have the uncertain outcome available so they contribute the probability distribution function of

the uncertain outcome only, P(X ∗, δ∗). By re-writing the joint distribution using Bayes’ formula, the

full likelihood is given by

L =
∏
i∈V

P(Xi , δi )P(X ∗i , δ∗i |Xi , δi )
∏
j∈V̄

P(X ∗j , δ∗j ). (A.1)

The distribution of the uncertain outcome can also be re-written by marginalizing the joint probability.

The true outcome consists of both the true observed time and true event indicator, both of which

are discrete, so we sum the joint distribution over all possible values of those variables to obtain the

marginal distribution of the uncertain outcome. For an individual subject j ,

P(X ∗j , δ∗j ) =
K∑

k=1

1∑
δ=0

P(xk , δ,X ∗j , δ∗j ). (A.2)

We can re-write the joint distribution using Bayes’ formula again to obtain

P(X ∗j , δ∗j ) =
K∑

k=1

1∑
δ=0

P(xk , δ)P(X ∗j , δ∗j |xk , δ) (A.3)

and our likelihood then becomes

L =
∏
i∈V

P(Xi , δi )P(X ∗i , δ∗i |Xi , δi )
∏
j∈V̄

K∑
k=1

1∑
δ=0

P(xk , δ)P(X ∗j , δ∗j |xk , δ). (A.4)
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To avoid having to specify or assume the form of the relationship between the true and uncertain

endpoints, we estimate the conditional probabilities empirically and get an estimated likelihood,

L̂ =
∏
i∈V

P(Xi , δi )P̂(X ∗i , δ∗i |Xi , δi )
∏
j∈V̄

K∑
k=1

1∑
δ=0

P(xk , δ)P̂(X ∗j , δ∗j |xk , δ). (A.5)

We estimate the conditional probability by first re-writing the expression using Bayes’ formula. Since

the validation set contains both true and uncertain endpoints, we use the validation set to empirically

estimate each of the resulting probability distributions. For a subject j in the non-validation set,

P̂(X ∗j , δ∗j |xk , δ) =
P̂(X ∗j , δ∗j , xk , δ)

P̂(xk , δ)

=
1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ)

1
nV

∑
i∈V I (Xi = xk , δi = δ)

. (A.6)

Each of the empirical probabilities are proportions that consistently estimate the probability distri-

butions. We can similarly use empirical probabilities to estimate the conditional probability in the

validation set. By doing so, the conditional probability does not contain any parameters and can

therefore be factored out of the likelihood. Our estimated likelihood to be maximized then takes the

form

L̂ ∝
∏
i∈V

P(Xi , δi )
∏
j∈V̄

K∑
k=1

1∑
δ=0

P(xk , δ)
1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ)

1
nV

∑
i∈V I (Xi = xk , δi = δ)

. (A.7)

Finally, for the marginal distribution of the true outcome, we use the same distribution as we would

in a standard survival setting. For a subject in the validation set i ,

P(Xi , δi ) = {F (xki−1)− F (xki )}δiF (xki )
1−δiG (xki−1)δi{G (xki−1)− G (xki )}1−δi . (A.8)

In the validation set portion of the likelihood, the censoring distributions can also be factored out

of the likelihood. However, the sum in the non-validation set portion of the likelihood prevents the
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censoring distribution from being factored out. Our final estimated likelihood is

L̂ ∝
∏
i∈V

{F (xki−1)− F (xki )}δiF (xki )
1−δi

·
∏
j∈V̄

K∑
k=1

1∑
δ=0

[
{F (xk−1)− F (xk)}δF (xk)1−δG (xk−1)δ{G (xk−1)− G (xk)}1−δ

·
1
nV

∑
i∈V I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xk , δi = δ)

1
nV

∑
i∈V I (Xi = xk , δi = δ)

]
. (A.9)

In the case of a perfect uncertain outcome, we assume P(X , δ|X ∗, δ∗) = 1. Then for all j ∈ V̄ , there

exists a unique (xkj , δj) such that I (X ∗i = X ∗j , δ∗i = δ∗j ,Xi = xkj , δi = δj) > 0. Then the sum in the

non-validation set becomes

K∑
k=1

1∑
δ=0

{F (xk−1)− F (xk)}δF (xk)1−δG (xk−1)δ{G (xk−1)− G (xk)}1−δP̂(X ∗j , δ∗j |xk , δ)

= {F (xkj−1)− F (xkj )}δjF (xkj )
1−δjG (xkj−1)δj{G (xkj−1)− G (xkj )}1−δj P̂(X ∗j , δ∗j |xkj , δj) (A.10)

and the estimated likelihood simplifies to

L̂ ∝
∏
i∈V

{F (xki−1)− F (xki )}δiF (xki )
1−δi

·
∏
j∈V̄

{F (xkj−1)− F (xkj )}δjF (xkj )
1−δjG (xkj−1)δj{G (xkj−1)− G (xkj )}1−δj P̂(X ∗j , δ∗j |xkj , δj) (A.11)

∝
∏
i∈V

{F (xki−1)− F (xki )}δiF (xki )
1−δi

∏
j∈V̄

{F (xkj−1)− F (xkj )}δjF (xkj )
1−δj (A.12)

=
n∏

i=1

{F (xki−1)− F (xki )}δiF (xki )
1−δi . (A.13)

This is the likelihood in a standard survival setting using only true outcomes in all subjects.

In the case of a useless uncertain outcome, we assume P(X ∗, δ∗|X , δ) = P(X ∗, δ∗). Then we can

use an estimate of the marginal probability to estimate the conditional probability, or P̂(X ∗, δ∗|X , δ)=
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P̂(X ∗, δ∗). Then the sum in the non-validation set becomes

K∑
k=1

1∑
δ=0

{F (xk−1)− F (xk)}δF (xk)1−δG (xk−1)δ{G (xk−1)− G (xk)}1−δP̂(X ∗j , δ∗j |xk , δ)

=
K∑

k=1

1∑
δ=0

{F (xk−1)− F (xk)}δjF (xk)1−δjG (xk−1)δj{G (xk−1)− G (xk)}1−δj P̂(X ∗j , δ∗j ). (A.14)

Because the estimated probability of the uncertain outcome does not contain any true outcome

values, it can be factored out of the sum. The remaining sum then equals 1, since it is the sum

of the probability distribution of the true outcome taken over all possible true outcome values. The

estimated likelihood then simplifies to

L̂ ∝
∏
i∈V

{F (xki−1)− F (xki )}δiF (xki )
1−δi

∏
j∈V̄

P̂(X ∗j , δ∗j )

∝
∏
i∈V

{F (xki−1)− F (xki )}δiF (xki )
1−δi . (A.15)

This is the likelihood in a standard survival setting using only true outcomes in the validation set.

A.2. Correlation Calculation

Assume T ∼Unif[1, 8], T ∗ = T + ε, ε ∼Unif[0, ζ], and ε is independent of T . Then the correlation

between T and T ∗ can be written as

ρ =
Cov(T ,T ∗)√
Var(T )Var(T ∗)

=
Cov(T ,T + ε)√
Var(T )Var(T + ε)

=
Var(T )√

Var(T )[Var(T ) + Var(ε)]

⇒ ρ2 =
Var(T )2

Var(T )[Var(T ) + Var(ε)]
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We then solve for Var(ε) since this is the only part that contains ζ.

⇒ Var(T )2 = ρ2Var(T )2 + ρ2Var(T )Var(ε)

⇒ Var(ε) =
Var(T )2(1− ρ2)

Var(T )ρ2

= Var(T )
1 + ρ2

ρ2

Finally, we substitute the variances of T and ε using the variance formula for a discrete uniform

random variable.

⇒ (ζ + 1)2 − 1

12
=

82 − 1

12

1− ρ2

ρ2

⇒ (ζ + 1)2 = (82 − 1)
1− ρ2

ρ2
+ 1

⇒ ζ =

√
63

1− ρ2

ρ2
+ 1− 1

To ensure that ζ is an integer, we take the floor of the function as the maximum possible value for ε.

A.3. Description of the Alzheimer’s Disease Neuroimaging Initiative

The ADNI was launched in 2003 by the National Institute on Aging, the National Institute of Biomed-

ical Imaging and Bioengineering, the Food and Drug Administration, private pharmaceutical com-

panies and non-profit organizations, as a $60 million, 5-year public-private partnership. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging, positron emission to-

mography, other biological markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive impairment (MCI) and early AD. Determination

of sensitive and specific markers of very early AD progression is intended to aid researchers and

clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and

cost of clinical trials.

The Principal Investigator of ADNI is Michael W. Weiner, MD, VA Medical Center and University of

California - San Francisco. ADNI is the result of efforts of many co- investigators from a broad range

of academic institutions and private corporations, and subjects have been recruited from over 50

sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI
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has been followed by ADNI-GO and ADNI-2. To date these three protocols have recruited over

1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively normal older

individuals, people with early or late MCI, and people with early AD. The follow up duration of each

group is specified in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited

for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-date information, see

www.adni-info.org.

ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and

Bioengineering, and through generous contributions from the following: Abbott; Alzheimer’s Asso-

ciation; Alzheimer’s Drug Discovery Foundation; Amorfix Life Sciences Ltd.; AstraZeneca; Bayer

HealthCare; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan

Pharmaceuticals Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company

Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunother-

apy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development

LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; Novartis Pharmaceuticals

Corporation; Pfizer Inc.; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Cana-

dian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada.

Private sector contributions are facilitated by the Foundation for the National Institutes of Health

(www.fnih.org). The grantee organization is the Northern California Institute for Research and Edu-

cation, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University

of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the

University of California, Los Angeles.

A.4. Supplementary Table 1
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Table A.1: Simulation Results for Type 1 Censoring and n = 500

r ρ Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

0.01
Proposed 0.57 0.022 0.022 0.49 1.33 0.95

Comp K-M 0.34 0.022 0.022 0.49 1.33 0.95
Naı̈ve K-M 498.02 0.002 0.002 309.79 0.01 0.00

0.25
Proposed 0.59 0.022 0.022 0.49 1.32 0.96

Comp K-M 0.34 0.022 0.022 0.49 1.33 0.95
Naı̈ve K-M 450.70 0.008 0.009 248.67 0.26 0.00

25 0.50
Proposed 0.19 0.022 0.022 0.48 1.28 0.96

Comp K-M 0.34 0.022 0.022 0.49 1.33 0.95
Naı̈ve K-M 385.52 0.013 0.013 175.92 0.59 0.00

0.75
Proposed -0.15 0.021 0.021 0.45 1.21 0.96

Comp K-M 0.34 0.022 0.022 0.49 1.33 0.95
Naı̈ve K-M 286.65 0.016 0.016 91.47 0.90 0.00

1.00
Proposed -0.25 0.019 0.019 0.38 1.00 0.95

Comp K-M 0.34 0.022 0.022 0.49 1.33 0.95
Naı̈ve K-M -0.24 0.019 0.019 0.38 1.00 0.95

0.01
Proposed 0.54 0.028 0.027 0.78 2.08 0.96

Comp K-M -0.26 0.028 0.027 0.78 2.08 0.95
Naı̈ve K-M 498.02 0.002 0.002 309.79 0.01 0.00

0.25
Proposed 1.00 0.028 0.027 0.79 2.11 0.96

Comp K-M -0.26 0.028 0.027 0.78 2.08 0.95
Naı̈ve K-M 450.70 0.008 0.009 248.67 0.26 0.00

50 0.50
Proposed -0.00 0.027 0.027 0.77 2.04 0.95

Comp K-M -0.26 0.028 0.027 0.78 2.08 0.95
Naı̈ve K-M 385.52 0.013 0.013 175.92 0.59 0.00

0.75
Proposed -0.39 0.025 0.025 0.65 1.75 0.96

Comp K-M -0.26 0.028 0.027 0.78 2.08 0.95
Naı̈ve K-M 286.65 0.016 0.016 91.47 0.90 0.00

1.00
Proposed -0.24 0.019 0.019 0.38 1.00 0.95

Comp K-M -0.26 0.028 0.027 0.78 2.08 0.95
Naı̈ve K-M -0.24 0.019 0.019 0.38 1.00 0.95

0.01
Proposed 0.79 0.038 0.039 1.44 3.86 0.97

Comp K-M -1.93 0.037 0.038 1.39 3.74 0.96
Naı̈ve K-M 498.02 0.002 0.002 309.79 0.01 0.00

0.25
Proposed 8.77 0.041 0.041 1.75 4.66 0.97

Comp K-M -1.93 0.037 0.038 1.39 3.74 0.96
Naı̈ve K-M 450.70 0.008 0.009 248.67 0.26 0.00

75 0.50
Proposed 4.59 0.042 0.042 1.82 4.88 0.96

Comp K-M -1.93 0.037 0.038 1.39 3.74 0.96
Naı̈ve K-M 385.52 0.013 0.013 175.92 0.59 0.00

0.75
Proposed 1.87 0.038 0.038 1.47 4.04 0.96

Comp K-M -1.93 0.037 0.038 1.39 3.74 0.96
Naı̈ve K-M 286.65 0.016 0.016 91.47 0.90 0.00

1.00
Proposed -0.25 0.019 0.019 0.38 1.00 0.95

Comp K-M -1.93 0.037 0.038 1.39 3.74 0.96
Naı̈ve K-M -0.24 0.019 0.019 0.38 1.00 0.95

r is the percent missing and ρ is the correlation between true and uncertain outcomes. Proposed refers to the
proposed estimator, Comp K-M refers to the complete-case Kaplan-Meier estimator, and Naı̈ve K-M refers to
the naı̈ve Kaplan-Meier estimator. SD is standard deviation of estimates across simulations, ŜE is estimated
standard error of the estimate, MSE is mean squared error, RE is relative efficiency, Cov is 95% coverage, all
averaged across time.

62



A.5. Supplementary Table 2

Table A.2: Simulation Results for Random Censoring and n = 500

r C Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

25
S

Proposed 0.33 0.022 0.022 0.50 1.18 0.95
Comp K-M -0.72 0.024 0.024 0.58 1.36 0.95
Naı̈ve K-M 119.47 0.019 0.019 14.86 0.83 0.00

L
Proposed 0.24 0.025 0.024 0.63 1.18 0.95

Comp K-M -0.79 0.026 0.026 0.69 1.32 0.96
Naı̈ve K-M 119.28 0.02 0.02 14.87 0.76 0.00

50
S

Proposed -0.19 0.025 0.027 0.64 1.51 0.96
Comp K-M -1.12 0.029 0.029 0.85 2.00 0.96
Naı̈ve K-M 119.47 0.019 0.019 14.86 0.83 0.00

L
Proposed -0.19 0.029 0.032 0.89 1.64 0.96

Comp K-M -0.29 0.033 0.032 1.12 2.12 0.95
Naı̈ve K-M 119.28 0.020 0.020 14.87 0.76 0.00

r is the percent missing and C is the amount of censoring, where S means small (30%) and L means large
(50%). Proposed refers to the proposed estimator, Comp K-M refers to the complete-case Kaplan-Meier
estimator, and Naı̈ve K-M refers to the naı̈ve Kaplan-Meier estimator. SD is standard deviation of estimates
across simulations, ŜE is estimated standard error of the estimate, MSE is mean squared error, RE is relative
efficiency, Cov is 95% coverage, all averaged across time.
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A.6. Supplementary Table 3

Table A.3: Simulation Results for Data Missing at Random and n = 500

Censoring ρ/C Method Bias SD ŜE MSE RE Cov
×10−3 ×10−3

0.01
Proposed 0.56 0.029 0.030 0.89 2.36 0.97

Comp K-M -1.32 0.029 0.030 0.88 2.34 0.96
Naı̈ve K-M 498.02 0.002 0.002 309.79 0.01 0.00

0.25
Proposed 13.93 0.030 0.031 0.92 2.46 0.97

Comp K-M -12.17 0.028 0.029 0.82 2.20 0.93
Naı̈ve K-M 450.70 0.008 0.009 248.67 0.26 0.00

Type 1 0.50
Proposed 20.72 0.029 0.029 0.85 2.30 0.93

Comp K-M -25.75 0.027 0.028 0.76 2.03 0.85
Naı̈ve K-M 385.52 0.013 0.013 175.92 0.59 0.00

0.75
Proposed 15.75 0.026 0.026 0.70 1.92 0.92

Comp K-M -42.67 0.026 0.027 0.71 1.89 0.64
Naı̈ve K-M 286.65 0.016 0.016 91.47 0.90 0.00

1.00
Proposed -0.25 0.019 0.019 0.38 1.00 0.95

Comp K-M -21.32 0.025 0.025 0.65 1.70 0.80
Naı̈ve K-M -0.24 0.019 0.019 0.38 1.00 0.95

Random
S

Proposed 2.43 0.025 0.026 0.62 1.44 0.95
Comp K-M -34.72 0.027 0.027 0.75 1.77 0.74
Naı̈ve K-M 119.47 0.019 0.019 14.86 0.83 0.00

L
Proposed 4.68 0.029 0.031 0.91 1.62 0.95

Comp K-M -43.16 0.031 0.030 0.95 1.90 0.69
Naı̈ve K-M 119.28 0.020 0.020 14.87 0.76 0.00

Censoring is the type of the censoring mechanism and ρ/C either represents the correlation ρ between true
and uncertain outcomes or represents the amount of censoring, where S means small (30%) and L means
large (50%). Proposed refers to the proposed estimator, Comp K-M refers to the complete-case
Kaplan-Meier estimator, and Naı̈ve K-M refers to the naı̈ve Kaplan-Meier estimator. SD is standard deviation
of estimates across simulations, ŜE is estimated standard error of the estimate, MSE is mean squared error,
RE is relative efficiency, Cov is 95% coverage, all averaged across time.
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