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Abstract
Many challenges in network science and engineering today arise from systems composed of many individual
agents interacting over a network. Such problems range from humans interacting with each other in social
networks to computers processing and exchanging information over wired or wireless networks. In any
application where information is spread out spatially, solutions must address information aggregation in
addition to the decision process itself. Intelligently addressing the trade off between information aggregation
and decision accuracy is fundamental to finding solutions quickly and accurately. Network optimization
challenges such as these have generated a lot of interest in distributed optimization methods. The field of
distributed optimization deals with iterative methods which perform calculations using locally available
information. Early methods such as subgradient descent suffer very slow convergence rates because the
underlying optimization method is a first order method. My work addresses problems in the area of network
optimization and control with an emphasis on accelerating the rate of convergence by using a faster
underlying optimization method. In the case of convex network flow optimization, the problem is
transformed to the dual domain, moving the equality constraints which guarantee flow conservation into the
objective. The Newton direction can be computed locally by using a consensus iteration to solve a Poisson
equation, but this requires a lot of communication between neighboring nodes. Accelerated Dual Descent
(ADD) is an approximate Newton method, which significantly reduces the communication requirement.
Defining a stochastic version of the convex network flow problem with edge capacities yields a problem
equivalent to the queue stability problem studied in the backpressure literature. Accelerated Backpressure
(ABP) is developed to solve the queue stabilization problem. A queue reduction method is introduced by
merging ideas from integral control and momentum based optimization.
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ABSTRACT

FAST, DISTRIBUTED OPTIMIZATION STRATEGIES FOR RESOURCE

ALLOCATION IN NETWORKS

Michael C. Zargham

Ali Jadbabaie

Many challenges in network science and engineering today arise from systems composed of many

individual agents interacting over a network. Such problems range from humans interacting with

each other in social networks to computers processing and exchanging information over wired or

wireless networks. In any application where information is spread out spatially, solutions must

address information aggregation in addition to the decision process itself. Intelligently addressing

the trade off between information aggregation and decision accuracy is fundamental to finding so-

lutions quickly and accurately. Network optimization challenges such as these have generated a

lot of interest in distributed optimization methods. The field of distributed optimization deals with

iterative methods which perform calculations using locally available information. Early methods

such as subgradient descent suffer very slow convergence rates because the underlying optimization

method is a first order method. My work addresses problems in the area of network optimization

and control with an emphasis on accelerating the rate of convergence by using a faster underlying

optimization method. In the case of convex network flow optimization, the problem is transformed

to the dual domain, moving the equality constraints which guarantee flow conservation into the ob-

jective. The Newton direction can be computed locally by using a consensus iteration to solve a

Poisson equation, but this requires a lot of communication between neighboring nodes. Accelerated

Dual Descent (ADD) is an approximate Newton method, which significantly reduces the commu-

nication requirement. Defining a stochastic version of the convex network flow problem with edge

capacities yields a problem equivalent to the queue stability problem studied in the backpressure

literature. Accelerated Backpressure (ABP) is developed to solve the queue stabilization problem.

A queue reduction method is introduced by merging ideas from integral control and momentum

based optimization.
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Chapter 1

Introduction

The convex network flow optimization is a problem of getting commodities from arrival points to

destinations by routing them through a network – a graph composed of nodes and links between

nodes. The problem is characterized by convex functions on the links which encode the cost to

transport the commodity across those links and a set of constraints requiring that the commodities

are conserved at the nodes. The objective is to determine the least costly way to route the com-

modities through the network while ensuring all commodities which enter the network reach their

destination.

While applications vary widely, the transportation problem is the most intuitive way to visualize

the convex network flow problem. Formulations of the problem vary in complexity and may include

one or more unique commodities with their own arrival and destination nodes. Arrivals may be

deterministic or stochastic and there may be local constraints on the edges restricting the units

which may be transported across them at any time.

Convex optimization problems are a broad class of problems which can be solved in polynomial

time. Due to the fundamentally distributed nature of the convex network flow optimization problem,

it may be solved using protocols implemented locally at the nodes in the network. These distributed

algorithms are relevant because in many routing applications nodes are responsible for choosing

how to forward the commodities they recieve but are only aware of their immediate neighborhood–
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the other nodes with which they have links.

In this work, a novel distributed algorithm for convex network flow optimization is proposed

and applied to solve packet routing problems. In Section 1.1, the origins and applications of the

convex network flow problem are outlined. In Section 1.2, the literature on algorithms for convex

network flow optimization is reviewed and state of the art algorithms are critiqued for their strengths

and weaknesses. In Section 1.3, the primary motivating application– packet routing problems are

explored in depth and the connection between queue stabilization formulations and the network flow

optimization problem is detailed.

1.1 Motivation for Network Flow Optimization

The convex network flow optimization problem is fundamental problem in the field of operations

research as it can be used to model transportation as well as complex scheduling, manufacturing

and staffing problems. Early work on the subject comes from the operations research literature and

focused on linear objectives as in [Chen and Saigal, 1977]. Formal problem formulations involving

convex costs for operations research applications can be found in [Goldberg et al., 1990]. Appli-

cations in electrical engineering and computer science are more recent, arriving as the control and

networking communities have adopted powerful tools from convex optimization. Two textbooks fa-

cilitate this cross-over, [Rockafellar, 1984] formulates the convex network flow optimization prob-

lem and analyzes a variety of optimization based methods and [Bertsekas, 1998] formulates an array

network optimization problems and convex optimization algorithms that can be used to solve them.

Applications in recent research range from computer vision to control of smart power grids to the

pack forwarding in wireless networks.

1.1.1 Operations Research

The most basic operations research application is the uncapacitated transshimpment problem which

is one of many problem formulations detailed in [Goldberg et al., 1990]. The transshipment problem
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simply requires finding the least costly way to ship commodities from a source to a destination

within a transportation network. Various generalizes including the additon of capacity constaints,

multiple commodities and randomized commodity demand are relevant making transshipment a

good problem for theoretical study. Further study of the transshipment problem can be found in

[Herer and Tzur, 2001]; demand is dynamic and commodities can be stored. This version of the

transshipment problem is comparable to the packet routing problems where queuing packets for

transmission is part of the underlying model.

Scheduling, staffing and manufacturing problems are less obvious applications of the network

flow optimization problem. These applications are presented alongside the transshipment problem

as motivation for convex network flow problems in [Orlin, 1984]. This work focuses on the cyclic

nature of these problems introducing an objective encoding the efficiency with which tasks are

completed, leading to convex costs where earlier operations research had used primarily linear cost

functions.

Recent research on complex manufacturing tasks maps the flow of materials and the equip-

ment used for processing into a convex network flow optimization problem to solve a simultanous

scheduling and routing problem. In [Shu-Cherng and Qi, 2003], the emphasis is on the problem

formulation which allows the integration of various resource types. The model presented allows ac-

cess to a wide array of convex optimization tools. In [Hindi and Ruml, 2006], the use of the convex

network flow model of a manufacturing process is leveraged to handle re-entry of materials. Since

manufacturing processes are traditionally one directional, the introduction of feedback in the form

of material re-entry renders many common process optimzation schemes inapplicable. Network

optimization methods, however, handle feedback easily.

1.1.2 Electrical Engineering and Computer Science

Power grids face increasing loads as well as heterogeous production modes and an increase in

local power generation through solar and other immerging technologies. In [Adhikari et al., 2012],

a network flow optimization problem is proposed to model power transmission control between
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transfer stations. More extensive, integrated infractructure models are also proposed to leverage

multi-commodity versions of the network flow optimization problem. While this work assumes

a linear objective, the convex optimization literature provides tools sufficient for consideration of

models with more complex cost functions.

In computer vision, the dual form of the convex network flow optimization problem appears in

panaramic image stitching and image restoration problems. In [Kolmogorov and Shioura, 2007],

the authors outline these and other vision related applications and proceed to present an iterative

primal dual algorithm to solve the problem. The algorithm presented is centralized; implementation

of distributed protocols would allow the use of multiple processors reducing time complexity, which

is a often the primary barrier in large scale vision tasks.

The most direct application of the convex network flow problem is packet routing. In [Wu

et al., 2007], a robust packet routing problem for wireless networks where power allocated for

packet transmissions across noisy communication channels determines expected effective transmis-

sion rates. As formulated, the robust routing problem is a convex quadratic cost network flow

optmization problem. This particular application requires an solution method using local protocols,

which until recently have been too slow to be practical. Multi-layer routing problems requiring

simultaneous scheduling and routing also fit into the network flow optimization framework. This

application is discussed extensively in Section 1.3.

1.2 Algorithms for Convex Network Flow Optimization

The convex network flow optimization problem has a fundamentally distributed nature because the

costs are incurred on the edges of an underlying network and the constraints are enforced on the

nodes. In reviewing the literature, algorithms are evaluated primarily on their speed of convergence

and the degree to which they can be implemented using node level protocols. In order to exploit

the distributed structure of the problem, the Lagrange dual is formed, introducing penalty variables

for violations of the conservation constraints at each node. From duality theory, we can compute

the optimal flows by solving for the optimal penalty variables via the Lagrange dual problem and
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reconstruct the optimal primal variables from that solution. Dualization leads to a variety of dual

and primal-dual optimization methods with various degrees of decentralization.

1.2.1 Dual Gradient Methods

Dual subgradient descent is the most basic distributed algorithm. In the Lagrange dual problem,

the conservation constraints enter the objective multiplied by their respective penalties. Due to

the problem structure, the flow on any edge can be determined uniquely from the penalties at its

boundary nodes. In convex network flow optimization, the dual subgradient is a unique gradient

vector under reasonable assumptions on the primal objective. The dual optimal is computed by

alternately updating the penalties by descending the dual gradient and updating the primal (flow)

variables according to the current penalties. The resulting dual gradient descent method is fully

distributed requiring local edge computations and local node observations.

Unfortunately, gradient descent is a very slow method; extensive analysis of basic distributed

gradient methods can be found in [Nedić and Ozdaglar, 2009b] and [Lobel and Ozdaglar, 2011].

These results reflect recent effort to leverage the decentralization capabilities of the gradient meth-

ods, the slow nature of these methods has been established for decades. For earlier analysis, see

[Shor, 1985].

Gradient methods rely on stepsizes in order to guarantee convergence. A major innovation

in gradient based methods is the design of step size rules which accelerate the convergence rate.

Polyak’s step size introduced in [Polyak, 1967], uses a renormalization to ensure that the gradient

step taken has the magnitude of the optimality gap. The downside of Polyak’s stepsize is that it is

not computable easily using local protocols due to a division by the norm of the dual gradient.

Another branch of stepsize accelerations are found in [Nesterov, 1983]. Nesterov’s methods

have two key features, the optimal selection of stepsize values based on strong convexity and Lips-

chitz coefficients and the introduction of a momentum term commonly referred to as the heavy ball

method. In the case of the convex network flow problem, knowledge of global bounding constants

such as Lipschitz or strong convexity coefficients are not assumed to be known therefore, Nesterov’s
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stepsize cannot be implemented. Momementum based methods are relevant and are explored in this

work within the context of packet routing problems.

Another way to characterize these stepsize accelerations is through augementing the statespace

to include a momentum aggregating state and the original state. This notion is independently pro-

posed in [Lessard et al., 2014] and [Zargham et al., 2014a]. In [Lessard et al., 2014], the author

studies the stability of deterministic convex optimization algorithms, treating the gradient update as

non-linear perturbation in an otherwise linear system and using decoupling techniques to analyze

stability properties. In [Zargham et al., 2014a], the state augmentation arises naturally as a conse-

quence of applying a momentum method (detailed in Chapter 5) to a queue stabilization problem

formulated as a stochastic network flow optimization.

Stochastic gradient methods are used when only a noisy version of the gradient is observable.

This is the case for the network flow optimization problem when the demand vectors are stochastic.

The stochastic gradient descent (SGD) algorithm, is the benchmark method in stochastic optimiza-

tion. As detailed in [Bertsekas et al., 2003], it exhibits a linear convergence rate. Convergence to the

optimal point is achieved through the introduction of a decaying stepsize which is square summable

but not summable. Stochastic average gradient (SAG), introduced in [Schmidt et al., 2013] demon-

strates convergence to the optimal point with a fixed stepsize by descending in a direction which is

the average of recent stochastic gradients. In practice, averaging stochastic gradients is similar to

implementing momentum based stochastic gradient methods like those proposed in [Tseng, 1998]

and [Flam, 2004].

1.2.2 Augmented Gradient Methods

Recent efforts to accelerate gradient based methods have focused on augementation of the objective

to include addtional penalty functions. Changes in the objective become reflected in the gradient

and in the ideal case steer the descent algorithm to the optimal solution to the original problem along

a more direct path. Proximal methods augment the objective by applying a quadratic penalty on the

update step. Fast Itertative Shrinking-Threshold Algorithm (FISTA), is the state of the art proxi-
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mal method; first introduced in [Beck and Teboulle, 2009a], FISTA is formulated for distributed

implementation in [Chen and Ozdaglar, 2012].

Proximal methods are shown to be particularly effective in the case of stochastic optimization

problems in [Duchi et al., 2011]. This method improves convergence by adding weight to features

which are observed less frequently. While not designed explicitly for a network flow optimization,

this method is built on stochastic subgradient descent, so derivation of a distributed variant for the

convex network flow problem is plausable. Such a generalization would be particularly relevant for

packet routing applications where only stochastic gradients are observable.

Another augmented method which shows great promise in the distributed optimization literature

is the Alternating Direction Method of Multipliers (ADMM). This method breaks the constraint into

pieces so that the constraint penalties can be updated independently. The augmentation term in the

objective is a coefficient times the norm of the constraint violation. This scaling coefficient dictates

the optimal stepsize leading to a very efficient gradient descent path. Details on ADMM can be

found in chapter 17 of [Bonnans et al., 2006]. Independently in [Wei and Ozdaglar, 2013] and

[Ling and Ribeiro, 2013], ADMM is generalized for distributed implementation.

1.2.3 Newton-Type Methods

Faster convergence rates can generally be achieved moving to algorithms incorporating higher order

information. Newton-type methods are those which use second order information in the form of a

dual Hessian to adjust the descent direction to account for curvature. The foundational second order

methods are Newton’s method and conjugate gradient, the details can be found in [Bertsekas, 1999].

Neither can be applied directly in our case due to global operations: Newton’s method requires the

inversion of the dual Hessian and conjugate gradient requires a variety of global inner product

computations.

An early Newton-type algorithm that leverages the distributed structure of the convex network

flow optimization problem is outlined in [Bertsekas and Gafni, 1983]. An approximation of the

Newton direction is computed by solving a linear equation iteratively. The iterative solver proposed
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is based on the conjugate gradient method, which in each iteration requires an inner product com-

putation, preventing a completely distributed implementation. An asynchronous variation using a

Gauss-Siedel relaxation is proposed in [Bertsekas and Baz, 1987]. Allowing nodes to take turns

updating their penalty variables unitlaterally is shown to eventually lead to optimal penalty vari-

ables for all nodes. The main benefit of this method is its asynchronous and completely distributed

implementation, however it suffers prohibitively slow convergence. Another approach proposed

in [Klincewicz, 1983], computes the Newton direction via conjugate vectors. The method is im-

plemented using spanning trees to compute the necessary inner products. This level of network

wide node coordination is outside the scope of our current research as we do not assume the global

network knowledge needed to build spanning trees.

In each case, the challenge in implementing a distributed Newton-type algorithm is entirely in

the computation of the Newton direction because of the global information required. In the case of

the convex network flow optimization, the equation defining the Newton direction is a node dimen-

sional discrete Poisson equation (with constant input)– a linear system of equations characterized

by a weighted graph Laplacian. A study of the solutions of Laplacian linear equations via spar-

sifiers is presented in [Spielman, 2012]. The most recent methods found in [Peng and Spielman,

2014] are based on sparse matrix factorizations. The development of distributed implementations

of sparsification based solvers would lead to new Newton-type distributed optimization methods.

In Chapter 2, a consensus based primal-dual Newton method first developed in [Jadbabaie et al.,

2009] is presented. Consensus-based schemes have been used extensively in recent literature as dis-

tributed mechanisms for aligning the values held by multiple agents; see [Jadbabaie et al., 2003],

[Olfati-Saber and Murray, 2004], and [Olshevsky and Tsitsiklis, 2006]. Consensus schemes con-

verge assymptotically, resulting in an approximate Newton method. Further study of convergence

rates for inexact Newton methods in [Dembo et al., 1982] and [Kelley, 1995].

In the convex network flow optimization problem, implementing a distributed Newton method

requires computation of the Newton direction within every dual iteration. Both the consensus based

and sparsification based solvers are iterative methods requiring communication resources, making

the overall distributed Newton-type methods extremely costly in terms of communication. Limiting
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the conensus scheme to a finite number of iterations is presented in [Zargham et al., 2014c]. There

is a fundamental tradeoff between communication and computation which is explored in [Tsianos

et al., 2012]. In [Zargham et al., 2014c], it is shown that when approximating the Newton method

for convex network flow, two or fewer consensus iterations are necessary to compute a sufficiently

accurate Newton direction. The finite truncation of the consensus based Newton’s method is called

Accelerated Dual descent and is analyzed extensively in Chapter 3.

1.3 Packet Routing as Network Flow Optimization

The apparent instantaneous availability of data in the modern age is made possible by a complex

network of routers, cables, servers and other physical devices. This infrastructure is responsible

for routing packets of data from its host location to a request location. The natural application

to consider is internet service, but distributed systems such as vehicle coordination (e.g. [Fink

et al., 2012]) and sensor fusion problems (e.g. [Al-Karaki and Kamal, 2004]) have underyling

coordination tasks which require efficient communication often in the presence of noisy wireless

channels. The main thrust of the packet routing literature is motivated by wireless networking:

[Tassiulas and Ephremides, 1992], [Neely et al., 2005], and [Georgiadis et al., 2006]. In this section,

the development of Backpressure routing is reviewed and a connection to the stochastic convex

network flow optimizaion problem is established.

1.3.1 Queue Stabilization Literature

The queue stabilization problem models packet routing as continuous flows over communication

links with with fixed capacity in a network which supports multiple data flows. The objective of the

stabilization is to route all packets which enter the network to their destination. Each node maintains

a queue of packets of each type which may accumulate if the packets routed into the node exceed

those routed out. The queue stabilization problem takes its name from that guaranteeing eventual

packet delivery is equivalent to guranteeing the stability of the packet queues at every node.
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The Backpressure Algorithm introduced in [Tassiulas and Ephremides, 1992] addresses the

queue stabilization problem using an analogy to pnuematic pressure in fluid systems. Flows are

routed over the links based on the queue length differentials, allocating the full link capacity to the

data flow with the greatest differential. Since the queue differential is a local variable, Backpres-

sure can be implemented directly using local protocols at the nodes, requiring communication with

immediate neighbors only. Backpressure is shown to be through-put optimal meaning that it is guar-

anteed to prevent any queue from becoming unbounded. The analysis provided assumes stochastic

packet arrival rates and uses a Lyaponuv drift argument to guarantee queue stability.

The study of the Backpressure algorithm is extended in [Neely et al., 2005]. The concept of the

capacity region is introduced in order to analyze the conditions under which it is possible to solve the

queue stabilization problem when each node has limited power available for transmission. Emphasis

is placed on the dynamic nature of routing control generated by the backpressure algorithm and

stability analysis is presented using the Lyapunov drift technique. In [Eryilmaz and Srikant, 2005],

it is shown that Backpressure not only stabilizes the queues but leads to fair resourse allocation with

respect to the end users, represented by data types with unique destination nodes. Fairness of the

Backpressure algorithm is independently addressed in [Neely et al., 2008].

1.3.2 Connection to Convex Network Flow Optimization

Network flow optimization and queue stabilization both solve a network resource allocation prob-

lem. Unlike the network flow optimization problem the packet routing problem explicitly allows the

conservation constraint at each node to be violated at any point in time. Whenever the conservation

constraint is violated, the untransmitted packets are stored in a queue to be transmitted in a later

time slot. In order for a queue to remain stable, it is necessary that the conservation constraint hold

in expectation, [Ribeiro, 2009a]. The packet routing problem can be stated as a stochastic capacity

constrained network flow optimization problem where the conservation constraint is stated using

the expected arrival rates at each node. In [Gatsis et al., 2010], it is shown that dual stochastic

subgradient can be used to solve a packet routing problem using observations of the instantaneous
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conservation constraint violation.

When solving the packet routing problem via an optmization framework the convergence rate

of the methods used determines the stability properties of the queues. Optimization based meth-

ods such as stochastic subgradient descent are iterative methods which approach the optimal point

asymptotically. A suboptimal routing policy may not satisfy the conservation constraint allowing

the queues to build up. When analyzing optimization based methods, one must demonstrate queue

stability as a benchmark. In practice, optimization algorithms which converge faster result in sig-

nificantly shorter queues at steady state. In chapters 4 and 5, fast distributed optimization methods

are implemented to solve the packet routing problem preventing the queues from accumulating.

1.3.3 Optimization based Methods for Packet Routing

In [Ribeiro, 2009b], the Backpressure algorithm is rederived as dual stochastic subgradient descent

applied to a feasibility problem closely related to the network flow problem. This work introduces

Soft Backpressure (SBP), a generalization of of the Backpressure algorithm, which allows the user

to select a convex objective function resulting in a convex network flow optimization problem.

Since the original problem is a feasibility problem, the optimal solution with any objective is still

a solution to the feasibility problem; a well choosen objective can help drive the system to feasible

point much faster. Including a quadratic objective function results in resource sharing; rather than

always allocate all of a links capacity to the flow with the greatest queue differential, the capacity

is divided in proportion to the queue differentials. Provided that the objective function chosen is

separable in the edges, dual stochastic gradient descent can be implemented using local protocols

and is equivalent to Soft Backpressure.

In Section 1.2, it was established that subgradient descent has slow convergence. Having recast

the packet routing problem as a convex network flow optimization more advanced methods can be

implemented in order to achieve faster convergence with local protocols. The Accelerated Dual De-

scent (ADD) method is generalized for stochastic and capacity constrainted problems in [Zargham

et al., 2012] and [Zargham et al., 2013b], respectively. Applying the ADD method to the convex
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network flow problem introduced [Ribeiro, 2009b] yields a new backpressure generalization called

Accelerated Backpressure (ABP).

Accelerated Backpressure differs from Backpressure and Soft Backpressure because the rout-

ings are computed using a set of queue priorities which are Langrange dual variables rather than

simply the queue lengths. These priorities take into account curvature information because they

are computed using ADD, a distributed approximation to the Newton Method. In [Zargham et al.,

2014b], ABP is shown to exceed the queue stabilization benchmark, emptying the queues infinitely

often when implemented with a decaying stepsize. In Chapter 4, queue stability analysis of ABP

is provided using a supermartingale convergence argument rather than Lyaponov drift analysis. Su-

permartingale convergence analysis is better suited to the problem of tracking both queue lengths

and queue priorities (Lagrange dual variables), both of which are random sequences driven by the

realization of the stochastic packet arrival process.

Ongoing research in the area of optimization based methods for packet routing problems in-

cludes the introduction of a discounted integrator to the SBP algorithm. Motivated by the control

literature, the introduction of an integral controller reduces steady state error, in the context of queue

stabilization this means driving down the steady queue lengths. This method shares similarities with

the heavy ball method introduced in [Nesterov, 1983], but is novel in its application to packet routing

problems.

Derivation of the discounted integrator method for queue stabilization as well as preliminary

numerical and analytical results are presented in [Zargham et al., 2014a]. In Chapter 5, these deriva-

tions and results are presented with complete proofs. In order to provide stability analysis, a mod-

ified version of the discounted integral priority routing algorithm is modeled after the stochastic

heavy ball method in [Flam, 2004]. This method allows the implementation of a decaying step-

size consistent with the convergence analysis of stochastic gradient descent. The numerical results

demonstrate performance with a unit stepsize. Without the decaying stepsize, discounted integral

priority routing can be interpreted as a variant of stochastic average gradient (see [Schmidt et al.,

2013]); rather than giving equal weight to a history of stochastic gradients, the discounted integral

method puts more weight on newer stochastic gradients.
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Chapter 2

A Consensus based Newton Method

The basic approach to distributed optimization in networks is to use subgradient methods, which

yield iterative algorithms that operate on the basis of local information. A major shortcoming of

this approach, particularly relevant in today’s large-scale networks, is the slow convergence rate

of the resulting algorithms. In this chapter, an alternative approach based on using Newton-type

methods is proposed for minimum cost network optimization problems. The proposed method can

be implemented in a distributed manner and has faster convergence properties.

The challenges in applying Newton-type methods in this context are twofold. First, the super-

linear convergence rate of this type of method is achieved by using a backtracking stepsize rule,

which requires global information in the form of the norm of a residual vector. This problem is ad-

dressed by using a consensus-based local averaging scheme for estimating the norm of the residual.

Second, the computation of the dual Newton step involves a matrix inversion, which requires global

information. The main contribution is to develop a distributed iterative scheme for the computation

of the dual Newton step. The key idea is to recognize that the dual Newton step is defined through

a discrete Poisson equation (with constant input), which involves the Laplacian of the graph, and

therefore can be solved using a consensus-based scheme in a distributed manner. We show that

the convergence rate of this scheme is governed by the spectral properties of the underlying graph.

For fast-mixing graphs (i.e., those with large spectral gaps), the dual Newton step can be computed
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efficiently using only local information.

Since our method uses consensus-based schemes to compute the stepsize and the Newton direc-

tion in each iteration, exact computation is not feasible. Another contribution of this chapter is to

consider truncated versions of these consensus-schemes at each iteration and present convergence

rate analysis of the constrained Newton method when the stepsize and the direction are estimated

with some error. We show that when these errors are sufficiently small, the value of the residual

function converges superlinearly to a neighborhood of the origin, whose size is explicitly quantified

as a function of the errors and the parameters of the objective function and the constraints of the

minimum cost network flow optimization problem.

2.1 Convex Network Flow Optimization Problem

Consider a network represented by a directed graph G = (N , E). Each edge e in the network has a

convex cost function �e(xe), which captures the cost due to congestion effects as a function of the

flow xe on this edge. The total cost of a flow vector x = [xe]e2E is given by the sum of the edge

costs, i.e.,
P

e2E �e(xe). Given an external supply bi for each node i 2 N , the convex network

flow optimization problem is to find a minimum cost flow allocation vector that satisfies the flow

conservation constraint at each node.1 This problem can be formulated as a convex optimization

problem with linear equality constraints. The application of dual decomposition together with a

dual subgradient algorithm then yields a distributed iterative solution method. Instead, we propose

a distributed primal-dual Newton-type method that achieves a superlinear convergence rate.

2.1.1 Preliminaries

A vector is viewed as a column vector, unless clearly stated otherwise. We denote by xi the i-th

component of a vector x. When xi � 0 for all components i of a vector x, we write x � 0. For a

matrix A, we write Aij or [A]ij to denote the matrix entry in the i-th row and j-th column. We write

1We focus on feasible problems, i.e., we assume that the total in-flow to the network is equal to the total
out-flow,

P

i2N bi = 0.
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Figure 2.1: The network flow optimization problem consists of a directed network with
an external supply vector encoding the sink and source nodes. A feasible solution to this
problem is an edge dimension vector of flow rates which satisfies a conservation constraint
at each node.

x0 to denote the transpose of a vector x. The scalar product of two vectors x, y 2 Rm is denoted by

x0y. We use kxk to denote the standard Euclidean norm, kxk =

p
x0x. For a vector-valued function

f : Rn ! Rm, the gradient matrix of f at x 2 Rn is denoted by rf(x).

A vector a 2 Rm is said to be a stochastic vector when its components ai, i = 1, . . . ,m, are

nonnegative and their sum is equal to 1, i.e.,
Pm

i=1 ai = 1. A square m⇥m matrix A is said to be a

stochastic matrix when each row of A is a stochastic vector. A stochastic matrix is called irreducible

and aperiodic if all eigenvalues (except the eigenvalue at 1) are subunit.

One can associate a discrete-time Markov chain with a stochastic matrix and a graph G as

follows: The state of the chain at time k 2 {1, 2, · · · }, denoted by X(k), is a node in N (the node

set of the graph) and the weight associated to each edge in the graph is the probability with which

X makes a transition between two adjacent nodes. In other words, the transition from state i to

state j happens with probability pij , the weight of edge (i, j). If ⇡(k) with elements defined as

⇡i(k) = P(X(k) = i) is the probability distribution of the state at time k, the state distribution

satisfies the recursion ⇡(k + 1)

T
= ⇡(k)TP . If the chain is irreducible and aperiodic then for all

initial distributions, ⇡ converges to the unique stationary distribution ⇡⇤ [Berman and Plemmons,

1979].
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2.1.2 Problem Formulation

We consider a network represented by a directed graph G = (N , E) with node set N = {1, . . . , N},

and edge set E = {1, . . . , E}. We denote the flow vector by x = [xe]e2E , where xe denotes the flow

on edge e. The flow conservation conditions at the nodes can be compactly expressed asAx = b,

where A is the N ⇥ E node-edge incidence matrix of the graph, i.e.,

Aij =

8

>

>

>

>

<

>

>

>

>

:

1 if edge j leaves node i

�1 if edge j enters node i

0 otherwise,

and the vector b denotes the external sources, i.e., bi > 0 (or bi < 0) indicates bi units of

external flow enters (or exits) node i. We associate a cost function �e : R ! R with each

edge e, i.e., �e(xe
) denotes the cost on edge e as a function of the edge flow xe. We assume

that the cost functions �e are strictly convex and twice continuously differentiable. The

minimum cost network optimization problem can be written as

minimize
E
X

e=1

�e(x
e
) subject to: Ax = b (2.1)

In this paper, our goal is to investigate iterative distributed methods for solving problem

(2.1). In particular, we focus on two methods: first relies on solving the dual of problem

(2.1) using a subgradient method; second uses a constrained Newton method, where, at

each iteration, the Newton direction is computed iteratively using an averaging method.

2.1.3 Dual Subgradient Method

We first consider solving problem (2.1) using a dual subgradient method. To define the

dual problem, we form the Lagrangian function of problem (2.1) L : RE ⇥RN ! R given
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by L(x,�) =
PE

e=1 �e(xe
)� �0

(Ax� b). The dual function q(�) becomes

q(�) = inf

x2RE

L(x,�) = inf

x2RE

 

E
X

e=1

�e(x
e
)� �0Ax

!

+ �0b

=

E
X

e=1

inf

xe2R

⇣

�e(x
e
)� (�0A)exe

⌘

+ �0b.

Hence, in view of the fact that the objective function and the constraints of problem (2.1)

are separable in the decision variables xe, the evaluation of the dual function decomposes

into one-dimensional optimization problems. We assume that each of these optimization

problems has an optimal solution, which is unique by the strict convexity of the functions

�e and is denoted by xe
(�). Using the first order optimality conditions, it can be seen that

for each e, xe
(�) is given by

xe
(�) = (�0

e)
�1
(�i � �j

), (2.2)

where i, j 2 N denote the end nodes of edge e. Thus, for each edge e, the evalua-

tion of xe
(�) can be done based on local information about the edge cost function �e

and the dual variables of the incident nodes i and j. We can write the dual problem as

max�2RN q(�). The dual problem can be solved by using a subgradient method: given an

initial vector �0, the iterates are generated by �k+1 = �k � ↵kgk for all k � 0, where

gk is a subgradient of the dual function q(�) at � = �k given by gk = Ax(�k) � b, and

x(�k) = argminx2RE

L(x,�k), i.e., for all e 2 E , xe
(�k) is given by Eq. (2.2) with � = �k.

This method naturally lends itself to a distributed implementation: each node i updates

its dual variable �i using local (subgradient) information gi obtained from edges e incident

to that node, which in turn updates its primal variables xe
(�) using dual variables of the

incident nodes. Despite its simplicity and distributed nature, however, it is well-known

that the dual subgradient method suffers from slow rate of convergence (see [Nedić and
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Ozdaglar, 2008] and [Nedić and Ozdaglar, 2009a] for rate analysis and construction of

primal solutions for dual subgradient methods), which motivates us to consider a Newton

method for solving problem (2.1).

2.1.4 Equality-Constrained Newton Method

Consider a solution to the problem (2.1) using an (infeasible start) equality-constrained

Newton method (see [Boyd and Vandenberghe, 2004], Chapter 10). We let f(x) =
PE

e=1 �e(xe
)

for notational simplicity. Given an initial primal vector x0, the iterates are generated by

xk+1 = xk + ↵kvk where vk is the Newton step given as the solution to the following

system of linear equations:2

0

B

@

r2f(xk) A0

A 0

1

C

A

0

B

@

vk

wk

1

C

A

= �

0

B

@

rf(xk)

Axk � b

1

C

A

.

We let Hk = r2f(xk) and hk = Axk � b for notational convenience. Solving for vk

and wk in the preceding yields vk = �H�1
k (rf(xk) + A0wk), and

(AH�1
k A0

)wk = hk � AH�1
k rf(xk). (2.3)

Since the matrix H�1
k is a diagonal matrix with entries [H�1

k ]ee = (

@2�
e

(@xe)2 )
�1, given the

vector wk, the Newton step vk can be computed using local information. However, the

computation of the vector wk at a given primal vector xk cannot be implemented in a

decentralized manner in view of the fact that solving equation (2.3) (AH�1
k A0

)

�1 requires

global information. The following section provides an iterative scheme to compute the

vector wk using local information.
2This is essentially a primal-dual method with the vectors vk and wk acting as primal and dual steps; see

Section 2.2.
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2.1.5 Distributed Computation of the Newton Direction

Consider the vector wk defined in Eq. (2.3). The key step in developing a decentralized it-

erative scheme for the computation of the vector wk is to recognize that the matrix AH�1
k A0

is the weighted Laplacian of the underlying graph G = (N , E), denoted by Lk. Hence, Lk

can be written as Lk = AH�1
k A0

= Dk � Bk. Here Bk is an N ⇥N matrix with entries

(Bk)ij =

8

>

<

>

:

⇣

@2�
e

(@xe)2

⌘�1

if e = (i, j) 2 E ,

0 otherwise,
(2.4)

and Dk is an N⇥N diagonal matrix with entries (Dk)ii =
P

j2N
i

(Bk)ij, where Ni denotes

the set of neighbors of node i, i.e., Ni = {j 2 N | (i, j) 2 E}. Letting sk = hk �

AH�1
k rf(xk) for notational convenience, Eq. (2.3) can be then rewritten as

(I � (Dk + I)�1
(Bk + I))wk = (Dk + I)�1sk. This motivates the following iterative

scheme (known as splitting) to solve for wk. For any t � 0, the iterates are generated by

w(t+1) = (D+I)�1
(B+I)w(t)+(D+I)�1s, (where we suppressed the indices k for

notational convenience). Note that the matrix P := (D+I)�1
(B+I) is row stochastic, and

when the graph of the network is connected, it is irreducible and aperiodic (i.e., a primitive

matrix) [Horn and Johnson, 1985]. Furthermore, P is diagonally similar to a symmetric

matrix, therefore all of its eigenvalues are real and by Perron-Frobenius theorem [Berman

and Plemmons, 1979] they satisfy

1 = �1(P ) > �2(P ) � · · · � �n(P ) > �1. (2.5)

Aside from one eigenvalue at 1 (corresponding to the all-one eigenvector 1), all other eigen-

values are subunit [Horn and Johnson, 1985]. As a result, the projection of the dynamics to

the orthogonal complement of the span of 1 is stable. Let V be the n⇥ (n�1) dimensional

matrix whose orthonormal n � 1 columns span 1?, the orthogonal subspace to 1. Denote
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w(t) = V w̄(t), s = V s̄ , where V 0V = In�1, and V V 0
= In� 11T

n
. The projected dynamics

can now be written as

w̄(t+ 1) = V 0PV w̄(t) + V 0
(D + I)�1V s̄. (2.6)

Equation (2.6) depicts the dynamics of a stable linear system with a constant (step)

input, which from basic linear systems theory is known to converge to the solution of

equation (2.3). The exponential convergence rate is determined by the convergence rate of

the random walk w(t+1) = Pw(t) to its stationary distribution. More precisely, the speed

of convergence of w(t) to the stationary distribution, depends on the eigenstructure of the

probability transition (weight) matrix P .

2.1.6 Convergence Rates

It is well known that the rate of convergence to the stationary distribution of a Markov chain

is governed by the second largest eigenvalue modulus of matrix P defined as

µ(P ) = max

i=2,··· ,n
{|�i(P )|} = max{�2(P ), |�n(P )|}. (2.7)

To make this statement more precise, let i be the initial state and define the total variation

distance between the distribution at time k and the stationary distribution⇡⇤ as

�i(k) =
1

2

X

j2V

|P k
ij � ⇡⇤

j |. (2.8)

The rate of convergence to the stationary distribution is measured using the following quan-

tity known as the mixing time:

T
mix

= max

i
min{k : �i(k

0
) < e�1 for all k0 � k}. (2.9)
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The following theorem indicates the relationship between the mixing time of a Markov

chain and the second largest eigenvalue modulus of its probability transition matrix [Al-

dous, 1982; Sinclair, 1992].

Theorem 1. The mixing time of a reversible Markov chain with transition probability ma-

trix W and second largest eigenvalue modulus µ satisfies

µ

2(1� µ)
(1� ln 2)  T

mix

 1 + log n

1� µ
.

Therefore, the speed of convergence of the Markov chain to its stationary distribution

is determined by the value of 1� µ known as the spectral gap; the larger the spectral gap,

the faster the convergence. This suggests that for each iteration k, the dual Newton step wk

can be computed faster on graphs with large spectral gap.

The above convergence results indicate that the dual Newton step can be computed in

a decentralized fashion with a diffusion scheme, or more precisely, with a discrete Poisson

equation. Since our distributed solution involves an iterative scheme, exact computation is

not feasible. In what follows, we show that the Newton method has desirable convergence

properties even when the Newton direction is computed with some error provided that the

errors are sufficiently small.

2.2 Inexact Newton Method

In this section, we consider the following convex optimization problem with equality con-

straints:

minimize f(x) (2.10)

subject to Ax = b,

21



where f : Rn ! R is a twice continuously differentiable convex function, and A is an

m⇥ n matrix. The minimum cost network optimization problem (2.1) is a special case of

this problem with f(x) =
PE

e=1 �e(xe
) and A is the N ⇥ E node-edge incidence matrix.

We denote the optimal value of this problem by f ⇤. Throughout this section, we assume

that the value f ⇤ is finite and problem (2.10) has an optimal solution, which we denote by

x⇤.

We consider an inexact (infeasible start) Newton method for solving problem (2.10)

(see [Boyd and Vandenberghe, 2004]). In particular, we let y = (x, ⌫) 2 Rn ⇥ Rm, where

x is the primal variable and ⌫ is the dual variable, and study a primal-dual method which

updates the vector y at iteration k as follows:

yk+1 = yk + ↵kdk, (2.11)

where ↵k is a positive stepsize, and the vector dk is an approximate constrained Newton

direction given by

Dr(yk)dk = �r(yk) + ✏k. (2.12)

Here, the residual function r : Rn ⇥ Rm ! Rn ⇥ Rm is defined as

r(x, ⌫) = (rdual(x, ⌫), rpri(x, ⌫)), (2.13)

rdual(x, ⌫) = rf(x) + A0⌫ (2.14)

rpri(x, ⌫)) = Ax� b. (2.15)

Moreover, Dr(y) 2 R(n+m)⇥(n+m) is the gradient matrix of r evaluated at y, and the vector

✏k is an error vector at iteration k. We assume that the error sequence {✏k} is uniformly
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bounded from above, i.e., there exists a scalar ✏ � 0 such that

k✏kk  ✏ for all k � 0. (2.16)

We adopt the following standard assumption:

Assumption 1. Let r : Rn ⇥ Rm ! Rn ⇥ Rm be the residual function defined in Eqs.

(2.13)-(2.15). Then, we have:

(a) (Lipschitz Condition) There exists some constant L > 0 such that

kDr(y)�Dr(ȳ)k  Lky � ȳk 8y, ȳ 2 Rn ⇥ Rm.

(b) There exists some constant M > 0 such that

kDr(y)�1k  M 8y 2 Rn ⇥ Rm.

2.2.1 Basic Relation

We use the norm of the residual vector kr(y)k to measure the progress of the algorithm.

In the next proposition, we present a relation between the iterates kr(yk)k, which holds

for any stepsize rule. The proposition follows from a multi-dimensional extension of the

descent lemma (see [Bertsekas et al., 2003]).

Proposition 1. Let Assumption 1 hold. Let {yk} be a sequence generated by the method

(2.11). For any stepsize rule ↵k, we have

kr(yk+1)k  (1� ↵k)kr(yk)k+M2L↵2
kkr(yk)k2 + ↵kk✏kk+M2L↵2

kk✏kk2.
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Proof : We consider two vectors w 2 Rn ⇥ Rm and z 2 Rn ⇥ Rm. We let ⇠ be a scalar

parameter and define the function g(⇠) = r(w + ⇠z). From the chain rule, it follows that

rg(⇠) = Dr(w + ⇠z)z. Applying this equality and the fundamental theorem of calculus,

r(w + z)� r(w) = g(1)� g(0) (2.17)

=

Z 1

0

rg(⇠)d⇠ (2.18)

=

Z 1

0

Dr(w + ⇠z)zd⇠. (2.19)

Adding and subtracting
R 1

0 Dr(w)zd⇠ and taking an absolute value over the two leading

terms yields the inequality

r(w + z)� r(w) 
�

�

�

�

Z 1

0

(Dr(w + ⇠z)�Dr(w))zd⇠

�

�

�

�

+

Z 1

0

Dr(w)zd⇠. (2.20)

Using Jensen’s inequality on (2.20), we have

r(w + z)� r(w) 
Z 1

0

kDr(w + ⇠z)�Dr(w)k kzkd⇠ +Dr(w)z. (2.21)

Applying Cauchy-Schwartz inequality allows us to factor our ||z|| and apply the Lipschitz

continuity of the residual function gradient [cf. Assumption 1(a)],

r(w + z)� r(w)  kzk
Z 1

0

L⇠kzkd⇠ +Dr(w)z (2.22)

=

L

2

kzk2 +Dr(w)z. (2.23)

We apply equation (2.23) with w = yk and z = ↵kdk to obtain

r(yk + ↵kdk)� r(yk)  ↵kDr(yk)dk +
L

2

↵2
kkdkk2. (2.24)
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By Eq. (2.12), we have Dr(yk)dk = �r(yk) + ✏k. Substituting this into (2.24) yields

r(yk + ↵kdk)  (1� ↵k)r(yk) + ↵k✏k +
L

2

↵2
kkdkk2. (2.25)

Moreover, using Applying (2.12), isolating dk and applying the || · ||2 operator yields

kdkk2 = kDr(yk)
�1
(�r(yk) + ✏k)k2. (2.26)

Applying the Cauchy-Schwartz inequality and Assumption 1(b), we have

kdkk2  kDr(yk)
�1k2 k � r(yk) + ✏kk2 (2.27)

 M2
⇣

2kr(yk)k2 + 2k✏kk2
⌘

. (2.28)

Combining the above relations, we obtain

kr(yk+1)k  (1� ↵k)kr(yk)k+M2L↵2
kkr(yk)k2 + ↵kk✏kk+M2L↵2

kk✏kk2, (2.29)

establishing the desired relation. ⌅

2.2.2 Inexact Backtracking Stepsize Rule

We use a backtracking stepsize rule in our method to achieve the superlinear local conver-

gence properties of the Newton method. However, this requires computation of the norm

of the residual function kr(y)k. In view of the distributed nature of the residual vector r(y)

[cf. Eq. (2.13)], this norm can be computed using a distributed consensus-based scheme.

Since this scheme is iterative, in practice the residual norm can only be estimated with

some error.

Let {yk} be a sequence generated by the inexact Newton method (2.11). At each iter-
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ation k, we assume that we can compute the norm kr(yk)k with some error, i.e., we can

compute a scalar nk � 0 that satisfies

�

�

�

nk � kr(yk)k
�

�

�

 �/2, (2.30)

for some constant � � 0. Hence, nk is an approximate version of kr(yk)k, which can be

computed for example using distributed iterative methods. For fixed scalars � 2 (0, 1/2)

and � 2 (0, 1), we set the stepsize ↵k equal to ↵k = �m
k , where mk is the smallest

nonnegative integer that satisfies

nk+1  (1� ��m
)nk +B + �. (2.31)

Here, � is the maximum error in the residual function norm [cf. Eq. (2.30)], and B is a

constant given by

B = ✏+M2L✏2, (2.32)

where ✏ is the upper bound on the error sequence in the constrained Newton direction [cf.

Eq. (2.16)] and M and L are the constants in Assumption 1.

2.2.3 Convergence Rate for Damped Newton Phase

We first show a strict decrease in the norm of the residual function if the errors ✏ and � are

sufficiently small, as quantified in the following assumption.

Assumption 2. The errors B and e [cf. Eqs. (2.32) and (2.30)] satisfy

B + 2�  �

16M2L
,

where � is the constant used in the inexact backtracking stepsize rule, and M and L are
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the constants defined in Assumption 1.

Under this assumption, the next proposition establishes a strict decrease in the norm of

the residual function as long as kr(y)k > 1
2M2L

.

Proposition 2. Let Assumptions 1 and 2 hold. Let {yk} be a sequence generated by the

method (2.11) when the stepsize sequence {↵k} is selected using the inexact backtracking

stepsize rule [cf. Eq. (2.31)]. Assume that kr(yk)k > 1
2M2L

. Then, we have

kr(yk+1)k  kr(yk)k �
�

16M2L
.

Proof : For any k � 0, we define

↵̄k =
1

2M2L(nk + �/2)
. (2.33)

In view of the condition on nk [cf. Eq. (2.30)], we have

1

2M2L(kr(yk)k+ �)
 ↵̄k 

1

2M2Lkr(yk)k
< 1, (2.34)

where the last inequality follows by the assumption kr(yk)k > 1
2M2L

. Substituting ↵k = ↵̄k

in the basic relation in Proposition 1, we obtain:

kr(yk+1)k  kr(yk)k+↵̄kk✏kk+M2L↵̄2
kk✏kk2�↵̄kkr(yk)k

⇣

1�M2L↵̄kkr(yk)k
⌘

. (2.35)

Applying the second relation in (2.34),

kr(yk+1)k  kr(yk)k+ ↵̄kk✏kk+M2L↵̄2
kk✏kk2 (2.36)

�↵̄kkr(yk)k
⇣

1�M2L
kr(yk)k

2M2Lkr(yk)k

⌘
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. Simplifying by applying the defintion of ↵̄ from (2.33) yields

kr(yk+1)k  ↵̄kk✏kk+M2L↵̄2
kk✏kk2 +

⇣

1� ↵̄k

2

⌘

kr(yk)k. (2.37)

From (2.34), ↵̄  1 so applying the definition of B in (2.32) yields

kr(yk+1)k  B +

⇣

1� ↵̄k

2

⌘

kr(yk)k. (2.38)

The constant � used in the definition of the inexact backtracking line search satisfies � 2

(0, 1/2), therefore, it follows from the preceding relation that

kr(yk+1)k  (1� �↵̄k)kr(yk)k+B. (2.39)

Using condition (2.30), this implies

nk+1  (1� �↵̄k)nk +B + �, (2.40)

showing that the steplength ↵k selected by the inexact backtracking line search satisfies

↵k � �↵̄k. From condition (2.31), we have

nk+1  (1� �↵k)nk +B + �, (2.41)

which implies

kr(yk+1)k  (1� ��↵̄k)kr(yk)k+B + 2�. (2.42)

Combined with Eq. (2.34), this yields

kr(yk+1)k 
⇣

1� ��

2M2L(kr(yk)k+ �)

⌘

kr(yk)k+B + 2�. (2.43)
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By Assumption 2 and the fact that � � 0, we have �  B + 2�  �
16M2L

, which in view

of the assumption kr(yk)k > 1
2M2L

implies that �  kr(yk)k. Substituting this into (2.43)

and using the fact � 2 (0, 1/2), we obtain

kr(yk+1)k  kr(yk)k �
�

8M2L
+B + 2�. (2.44)

Combined with Assumption 2, this yields the desired result. ⌅

The preceding proposition shows that, under the assumptions on the size of the errors,

at each iteration, we obtain a minimum decrease (in the norm of the residual function) of
�

16M2L
, as long as kr(yk)k > 1/2M2L. This establishes that we at most

16kr(y0)kM2L

�
, (2.45)

iterations are needed to reach the local convergence phase, defined as kr(yk)k  1/2M2L.

2.2.4 Convergence Rate for Local Convergence Phase

In this section, we show that when kr(yk)k  1/2M2L, the inexact backtracking stepsize

rule selects a full step ↵k = 1 and the norm of the residual function kr(yk)k converges

quadratically within an error neighborhood, which is a function of the parameters of the

problem (as given in Assumption 1) and the error level in the constrained Newton direction.

Proposition 3. Let Assumption 1 hold. Let {yk} be a sequence generated by the method

(2.11) when the stepsize sequence {↵k} is selected using the inexact backtracking stepsize

rule [cf. Eq. (2.31)]. Assume that there exists some k such that

kr(yk)k  1

2M2L
.
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Then, the inexact backtracking stepsize rule selects ↵k = 1. We further assume that for

some � 2 (0, 1/2),

B +M2LB2  �

4M2L
,

where B is the constant defined in Eq. (2.32). Then, we have

kr(yk+m)k  1

2

2mM2L
+B +

�

M2L

(2

2m�1 � 1)

2

2m
(2.46)

for all m > 0. As a particular consequence, we obtain

lim sup

m!1
kr(ym)k  B +

�

2M2L
.

Proof : We first show that if kr(yk)k  1
2M2L

for some k > 0, then the inexact backtrack-

ing stepsize rule selects ↵k = 1. Replacing ↵k = 1 in the basic relation of Proposition 1

and using the definition of the constant B defined in (2.32), we obtain

kr(yk+1)k  M2Lkr(yk)k2 +B (2.47)

 1

2

kr(yk)k+B. (2.48)

Recalling that � 2 (0, 1/2) we can rewrite (2.48) as

kr(yk+1)k  (1� �)kr(yk)k+B. (2.49)

Using the condition on nk [cf. Eq. (2.30)], this yields

nk+1  (1� �)nk +B + �, (2.50)

guaranteeing that the steplength ↵k = 1 satisfies condition (2.31) in the inexact backtrack-
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ing stepsize rule.

We show Eq. (2.46) using induction on the iteration m. Using ↵k = 1 in the basic

relation of Proposition 1, we obtain

kr(yk+1)k  1

2

kr(yk)k+B  1

4M2L
+B, (2.51)

where the second inequality follows from the assumption kr(yk)k  1
2M2L

. This establishes

relation (2.46) for m = 1.

Given that (2.46) holds for some m > 0, and we show that that it also holds for m+ 1.

Eq. (2.46) implies that

kr(yk+m)k  1

4M2L
+B +

�

4M2L
. (2.52)

Using the assumption B +M2LB2  �
4M2L

,

kr(yk+m)k  1 + 2�

4M2L
<

1

2M2L
, (2.53)

where the strict inequality follows from � 2 (0, 1/2). Hence, the inexact backtracking

stepsize rule selects ↵k+m = 1. Using ↵k+m = 1 in the basic relation, we obtain

M2Lkr(yk+m+1)k 
⇣

M2Lkr(yk+m)k
⌘2

+B. (2.54)

Applying Eq. (2.46) and simplifying yields

M2Lkr(yk+m+1)k 
✓

1

2

2m
+M2LB +

�(22
m�1 � 1)

2

2m

◆2

+M2LB (2.55)
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Writing out the square, we have

M2Lkr(yk+m+1)k 
✓

1

2

2m

◆2

+ 2

✓

1

2

2m

◆✓

M2LB +

�(22
m�1 � 1)

2

2m

◆

(2.56)

+

✓

M2LB +

�(22
m�1 � 1)

2

2m

◆2

+M2LB

and simplifying terms yields

M2Lkr(yk+m+1)k  1

2

2m+1

+

M2LB

2

2m�1
+ �

2

2m�1 � 1

2

2m+1�1
(2.57)

+M2L

✓

B +

�

M2L

(2

2m�1 � 1)

2

2m

◆2

+M2LB.

Using algebraic manipulations and the assumption B +M2LB2  �
4M2L

, this yields

kr(yk+m+1)k  1

2

2m+1M2L
+B +

�

M2L

(2

2m+1�1 � 1)

2

2m+1

, (2.58)

completing the induction and therefore the proof of relation (2.46). Taking the limit supe-

rior in Eq. (2.46) establishes the final result. ⌅

2.3 Numerical Results

Our simulation results demonstrate that the decentralized Newton significantly outperforms

the dual subgradient method algorithm in terms of runtime. Simulations were conducted

as follows: Network flow problems with conservation constraints and the cost function

�(x) =
PE

e=1 �e(xe
) where �e(xe

) = 1 �
p

1� (xe
)

2 3 were generated on Erdös-Rényi

random graphs with n = 10, 20, 80, and 160 nodes and an expected node degree, np = 5.
3the cost function is motivated by the Kuramoto model of coupled nonlinear oscillators [Jadbabaie et al.,

2004].

32



100 101 102 103
0

0.5

1

1.5

2

2.5
Network Flow Optimization: Random Graph with 80 nodes

iteration

f(x
)

100 101 102 103
10−6

10−4

10−2

100

102

iteration

||A
x−

s|
|

100 101 102 103
10−6

10−4

10−2

100

102

iteration

||x
k−

x*
||

 

 
Subgradient, runtime = 2.6854(sec)
Newton, runtime = 0.65446(sec)

Figure 2.2: Sample convergence trajectory for a random graph with 80 nodes and mean
node degree 5.

We limit the simulations to optimization problems which are well behaved in the sense that

the Hessian matrix remains well conditioned, defined as �
max

�
min

 200. For this subclass of

problem, the runtime of the Newton’s method algorithm is significantly less than the sub-

gradient method for all trials. Note that the stopping criterion is also tested in a distributed

manner for both algorithms.

In any particular experiment the Newton’s method algorithm discovers the feasible di-

rection in one iteration and proceeds to find the optimal solution in two to four additional

iterations. One such experiment is shown in Figure 2.2. A sample runtime distribution for

150 trials is presented in Figure 2.3a. The fact that of course Newton’s method outper-

form the subgradient scheme is not surprising. Perhaps the surprising fact is that Newton’s

method outperforms subgradient scheme, despite the fact the computation of the dual New-

ton step is based on a discrete Poisson equation (essentially diffusion with input).
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On average the Newton’s method terminates in less than half of the subgradient runtime

and exhibits a tighter variance. This is a representative sample with respect to varying the

number of nodes. As shown in Figure 2.3b, the Newton’s method algorithm completes in

significantly less time on average for all of the graphs evaluated.

2.3.1 Hidden Costs of Consensus

A completely distributed implementation of Newton’s method is the main benefit of the

consesus based Newton method proposed. Throughout this chapter, convergence rate is

measured by the number of primal-dual iterations required. This measure is misleading

because within each primal-dual iteration a consensus process is used, first to compute the

direction of descent and then another is used to approximate the backtracking line search.

Each of these internal iterations require nodes to communicate with neighboring nodes,

significantly increasing the communication overhead of the method. While this trade off

is not addressed in Chapter 2, Chapter 3 addresses it directly, taking into account both the

primal-dual iterations required for convergence and the communication overhead.
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Chapter 3

Accelerated Dual Descent

This chapter develops the Accelerated Dual Descent (ADD) algorithm for solving the minimum

convex cost network flow problem using a limited number of local information exchanges while

guaranteeing superlinear convergence to a neighborhood of the optimum. The convex minimum

cost network flow problem and the study of its dual problem are key building blocks in the study of

network optimization.

Minimum convex cost network flow problems can be solved in a distributed manner via dual

subgradient descent, [Bertsekas, 1998]. Nodes keep track of variables associated with their outgo-

ing edges and undertake updates based on their local variables and variables available at adjacent

nodes. Unfortunately, subgradient descent is known to exhibit prohitively slow convergence in

many applications. The natural alternative to accelerate convergence is to use second order Newton

methods (see Algorithm 9.2 in [Boyd and Vandenberghe, 2004]), but they cannot be implemented

in a distributed manner because matrix inversion is a global operation. As discussed in the previ-

ous chapter, a consensus process can be used to approximate the Newton direction but this method

requires an additional iterative layer to compute the approximate Newton direction resulting in an

arbitrarily large communication requirement between neighboring nodes with each dual update.

Another way to achieve improvements over subgradient methods is to implement Nesterov type

accelerated methods summarized in [Tseng, 2008]. These methods work well when the proximal
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operator has a simple closed form. To be distributed, it is required that the proximal operator be

computable using local information, which limits the convergence rates that can be achieved. State

of the art proximal gradient methods are compared with ADD in Section 3.5.2. Krylov subspace

methods, in particular conjugate gradient descent, can achieve second order convergence when com-

puted centrally, see chapter 6 of [Saad, 2003]. Unfortunately, conjugate gradient and other second

order Krylov subspace methods rely heavily on inner products for an orthogonalization procedure

which leads to improved convergence rates, see chapter 9 of [Watkins, 2007]. Even in the best case,

these inner products violate the communication limitations for this problem, for example see the

method proposed in [Klincewicz, 1983].

In this chapter, the underlying structure of the network flow optimization problem is exploited

to implement an approximate Newton-type method using only local information. The dual Hessian

is a weighted Laplacian of the graph representing our communication network. Using this structure,

we can approximate the dual Hessian inverse using local information. Our particular insight is

to consider a Taylor’s expansion of the inverse Hessian (as in Section 5.8 of [Horn and Johnson,

1985]), which, being a polynomial with the Hessian matrix as variable, can be implemented through

local information exchanges. More precisely, considering only the zeroth order term in the Taylor’s

expansion yields an approximation to the Hessian inverse based immediately available information.

The first order approximation requires information available at neighboring nodes and in general, the

N th order approximation necessitates information from nodes located N hops away. The resultant

family of ADD algorithms permits a tradeoff between the accuracy of the Hessian approximation

and communication cost. We use ADD-N to represent the N th member of the ADD family which

uses information from terminals N hops away.

3.1 Preliminaries

Consider a network represented by a directed graph G = (N , E) with node set N = {1, . . . , n}, and

edge set E = {1, . . . , E}. The network is deployed to support a single information flow specified by

incoming rates bi > 0 at source nodes and outgoing rates bi < 0 at sink nodes. Rate requirements
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are collected in a vector b, which to ensure problem feasibility has to satisfy
Pn

i=1 bi = 1T b = 0.

Our goal is to determine a flow vector x = [xe]e2E , with xe denoting the amount of flow on edge

e = (i, j). Flow conservation is enforced as Ax = b, where A the n ⇥ E node-edge incidence

matrix defined

[A]ie =

8

>

>

>

>

<

>

>

>

>

:

1 if edge e leaves node i,

�1 if edge e enters node i,

0 otherwise.

The Algebraic connectivity of G is the second smallest eigenvalue of the graph Laplacian AA0 and

dmax, the maximum degree of any node in the graph G is an upper bound on the largest eigenvalue

of AA0. We define the penalty as a convex scalar cost function �e(xe) denoting the cost of xe units

of flow traversing edge e. The convex min-cost flow network optimization problem is then defined

as

minimize f(x) =
E
X

e=1

�e(xe), subject to: Ax = b. (3.1)

Assumption 3. The Network G has the following properties:

(a) Connected with algebraic connectivity lower bounded by a constant !

(b) Non-bipartite

In Assumption 3(a), we quantify the ability of the network to spread information via an alge-

braic connectivity bound. Assumption 3(b) that G is non-bipartite guarantees that the normalized

Laplacian on the G has largest eigenvalue strictly upper bounded by 2. Due to our use of � for dual

variables, we use µ(X) to denote eigenvalues of a matrix X and we order them |µ1|  |µ2| 

· · ·  |µn|. Norm notation, ||v|| and ||X|| are the Euclidean 2-norm and induced Euclidean 2-norm,

respectively. The notation X � Y for matrices X,Y 2 Sn indicates that v0Xv < v0Y v, 8v 2 Rn.

Assumption 4. The objective functions �e(·) have the following properties for all e:

(a) Twice continuously differentiable, strongly convex and satisfies �  �00
e(·)  �

(b) Lipschitz Hessian Inverse |1/�00
e(y)� 1/�00

e(ȳ)|  ⇠|y � ȳ|
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Assumption 4 restricts the allowable primal objective functions to those which will yield a dual

problem meeting the standard criteria for application of Newton’s method, see Chapter 9.5 of [Boyd

and Vandenberghe, 2004]. These assumptions are sufficient for convergence, but are not necessary.

Restricting to this case allows us to focus on the core mechanisms of a Newton type method in

the dual domain. The conditioning assumption on the primal objective can be very limiting as

it disallows the negative log function, the minimum delay utility and other potentially interesting

objectives. However, this becomes a non-issue when capacity constraints are introduced, because

these functions become well conditioned on appropriately bounded domains. Generalization to a

capacity constrained variant of this problem is addressed in Chapter 4. For analysis of additional

relaxations on the conditions in Assumption 4, the reader is directed to [Kelley, 2003] and [Bonnans

et al., 2006].

3.2 Network Optimization

Attention is focused on solutions in the dual domain. Computing the Lagrange dual of a convex

minimization with equality constraints yields maximization of a concave function. In the case of

(3.1) the Lagrange dual is given by

max

�
f(x(�))� �0

(Ax(�)� b) (3.2)

where the primal optimizers of the Lagrangian are defined

x(�) = argmin

x
f(x)� �0

(Ax� b). (3.3)

Due to the separability of the objective f(x) =
P

e �e(xe) and Assumption 4 we can compute the

flow on edge e = (i, j) directly from the dual variables at node i and j:

xe(�) = (�0
e)

�1
(�i � �j). (3.4)
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Subscript notation, �i is used for elements of the vector � 2 Rn. For notational convenience the

dual is recast,

min

�
q(�) = �0

(Ax(�)� b)� f(x(�)), (3.5)

by minimizing the negation of the objective in (3.2). From this point on we will consider solutions to

the dual problem (3.5) and use (3.4) to compute the associated primal optimal variables. To further

proceed we outline the consequences of Assumptions 3 and 4 with regards to (3.5).

Lemma 1. The dual objective q(�) = �0
(Ax(�)� b)� f(x(�)) has the following properties.

(a) The dual Hessian is the weighted Laplacian

r2q(�) = A[r2f(x(�))]�1A0,

(b) is strongly convex on the subspace 1?

1

M
v0v  v0r2q(�)v 8v 2 1?,

with M =

�
! where ! and � are defined in Assumptions 3 and 4,

(c) has uniformly upper bounded spectrum

v0r2q(�)v  1

m
v0v 8v 2 Rn,

with m =

�
2d

max

where � is defined in Assumption 4

(d) and is a Lipschitz function of �, i.e.,

||r2q(�)�r2q(¯�)||  L||�� ¯�||.

where L = 4dmax⇠/�; ⇠ and � are defined in Assumption 4.
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Proof :

(a) Consider given dual ¯� and primal x̄ = x(¯�) variables, and consider the second order approxi-

mation of the primal objective centered at x̄,

ˆf(y) = f(x̄) +rf(x̄)0(y � x̄) +
1

2

(y � x̄)0r2f(x̄)(y � x̄) (3.6)

which is equivalent to approximating each primal objective �e(·) by its local approximation

ˆ�e(·) constructed using the a second order Taylor expansion around the point x̄e. We consider

the optimization problem maxy � ˆf(y) subject to Ay = b, which is a quadratic maximization

approximating (3.1). The dual of the approximate problem is also quadratic,

min

�2Rn

q̂(�) = min

�2Rn

1

2

�0Ar2f(x̄)�1A0�+ p0�+ r. (3.7)

The dual Hessian r2q̂(�) = A[r2f(x̄)]�1A0 is computed by differentiating (3.7) twice with

respect to �. By building our approximation at the point x̄ = x(¯�), the expression (3.7) is exact

at the primal dual point (x̄, ¯�), yielding the dual Hessian r2q(¯�) = A[r2f(x(¯�))]�1A0. ⌅

(b) From part (a) we have r2q(�) = A[r2f(x(�))]�1A0. We can get the lower bound by choosing

y = A0v to correspond with the eigenvector of r2f(x(�)) with the largest eigenvalue � defined

in Assumption 4(a). Then v0H(�)v = y0[r2f(x(�))]�1y � y0y 1
� . Since v 2 1?, y0y � !v0v

thus M = �/! where is ! is the algebraic connectivity defined in Assumption 3(a). ⌅

(c) We construct the upper bound by condsidering v0H(�)v = y0[r2f(x(�))]�1y  y0y
� from

Assumption 4(a) where y = A0v. The bound can be rewritten in terms of v as y0y
� =

v0(AA0)v
� .

The relation µn(AA0
)  2dmax is given by Theorem 2(b) in [Mohar and Alavi, 1991] from

the fact that AA0 is the unweighted graph Laplacian of G, leaving us with final upper bound

v0H(�)v  v0v 2d
max

� . We let m = �/(2dmax) completing the proof. ⌅

(d) From part (a) we have r2q(�) = A[r2f(x(�))]�1A0. Considering a change of coordinates
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y = A0v and the definition of the matrix norm as ||X|| = maxy 6=0 ||Xy||/||y|| we have

||r2q(�)�r2q(¯�)||  2dmax||[r2f(x(�))]�1 � [r2f(x(¯�))]�1|| (3.8)

because µn(AA0
)  2dmax holds from the fact that AA0 is the unweighted graph Laplacian

of G. Since [r2f(x(�))]�1 is diagonal, the matrix norm ||[r2f(x(�))]�1 � r2f(x(¯�))]�1||

reduces to maxe |1/�00
e(x(�))�1/�00

e(x(¯�))|, which is finite and positive from Assumption 4(a).

Applying Assumption 4(b), we have

||r2q(�)�r2q(¯�)||  2dmax⇠max

e
||xe(�)� xe(¯�)||. (3.9)

We can differentiate equation (3.4) using the chain rule,

�

�

�

�

@

@�s
[�0

e]
�1

(�i � �j)

�

�

�

�

=

8

>

<

>

:

1
�00
e

([�0
e

]�1(�
i

��
j

)) if s = i or s = j

0 else.
(3.10)

Applying the assumption that �  �00
e(·)  �,

�

�

�

�

@

@�s
[�0

e]
�1

(�i � �j)

�

�

�

�

 1

�
(3.11)

for all edges. Using the fact that |�i � �j |  2||�|| and the definition of the derivative,

|xe(�)� xe(¯�)| 
|�i � �j +

¯�j � ¯�i|
�

 2||�� ¯�||
�

8e (3.12)

Applying (3.12) to (3.9), we have

||r2q(�)�r2q(¯�)||  4dmax⇠

�
||�� ¯�|| (3.13)

and we conclude that r2q(�) is Lipschitz with constant L = 4dmax⇠/�.

⌅
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Lemma 1 recovers the key assumptions of Newton’s Method defined in Section 9.5 of [Boyd

and Vandenberghe, 2004], for the problem defined in (3.5). These results are direct consequences

of Assumptions 3 and 4.

3.2.1 Gradient Descent

The benchmark distributed solution to (3.1) is the dual subgradient method. In our problem q(�) is

differentiable so we have access to the gradient g(�) = rq(�). Consider an iteration index k, an

arbitrary initial vector �0 and define iterates �k generated by the recursion

�k+1 = �k � ↵kgk for all k � 0, (3.14)

where gk = g(�k) = rq(�k) denotes the gradient of the dual function q(�) at � = �k. A first

important observation is that one can compute the gradient as gk = Ax(�k)�b with the vector x(�k)

having components xe(�k) as determined by (3.4) with � = �k, as in Section 6.4 of [Bertsekas,

1999]. A second important observation is that because of the sparsity pattern of the node-edge

incidence matrix A the ith element [gk]i of the gradient gk can be computed as

[gk]i =
X

e=(i,j)

xe(�k)�
X

e=(j,i)

xe(�k)� bi (3.15)

The algorithm in (3.14)-(3.15) lends itself to distributed implementation. Each node i maintains

information about its dual iterates [�k]i and primal iterates xe(�k) of outgoing edges e = (i, j).

Gradient components [gk]i are evaluated as per (3.15) using local primal iterates xe(�k) for e =

(i, j) and primal iterates of neighboring nodes xe(�k) for e = (j, i). Dual variables are then updated

as per (3.14). We proceed to update primal variables as per (3.4). This update necessitates local

multipliers [�k]i and neighboring multipliers [�k]j .

Distributed implementation is appealing because it avoids the cost and fragility of collecting

all information at a centralized location. However, the practical applicability of gradient descent is

hindered by slow convergence rates; see e.g., [Nedić and Ozdaglar, 2008, 2009a].
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3.2.2 Newton’s Method

The Newton method is a scaled version of gradient descent. In lieu of (3.14), iterates are given by

�k+1 = �k + ↵kdk for all k � 0, (3.16)

where dk is the Newton direction at iteration k and ↵k is a properly selected step size. The Newton

direction,

Hkdk = �gk, (3.17)

where Hk = H(�k) = r2q(�k) is the Hessian of the dual function. From Lemma 1(a) we have

Hk = A[r2f(x(�k))]
�1A0. (3.18)

From the definition of f(x) in (3.1) it follows that the primal Hessian r2f(xk) is a diagonal matrix.

From Assumption 1(a), we know [r2f(xk)]�1 exists and can be computed locally for each edge.

From Lemma 1(a) we know that Hk is a weighted Laplacian of the connected graph G and thus

has rank n � 1 and zero eigenvalue associate with the eigenvector 1. The Newton direction can be

represented exactly using the pseudoinverse

dk = �H†
kgk (3.19)

because gk lies in the subspace 1?. However, the pseudoinverse H†
k is a dense matrix and comput-

ing dk requires global information. We are therefore interested in approximations of the Newton

direction requiring local information only.

3.2.3 Matrix Splitting and the Dual Hessian Psuedoinverse

Matrix splitting is technnique used to shift and scale eigenvalues in order to make iterative methods

tractable.
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Definition 3.1. Define the Matrix Splitting Hk = Dk � Bk, where diagonal matrix Dk is con-

structed

[Dk]ii = [Hk]ii 8i 2 V (3.20)

and the matrix Bk is

[Bk]ii = 08i and [Bk]ij = �[Hk]ij 8i, j 6= i. (3.21)

Using the splitting from Definition 3.1, a symmetric weighted adjacency matrix with desirable

spectral properties can be constructed as follows.

Definition 3.2. Define the Weighted Adjacency matrix as

Fk =

1

�
(Bk + �I �Dk) (3.22)

where Dk and Bk are defined in Definition 3.1 and the constant � is defined

� =

4dmax

�
=

2

m
(3.23)

where m and � are defined in Assumption 4.

Definitions 3.1 and 3.2 allow us to rewrite the Hessian matrix as

Hk = �(I � Fk). (3.24)

This construction is motivated by the properties of lazy random walks. A lazy random is created

by taking a random walk matrix P and replacing it with the random walk matrix 1/2(I + P ). The

addition of self loops for all nodes eliminates periodicity giving us nonnegative eigenvalues and

stochasticity leads to upper bounding those eigenvalues by 1. For more on the properties of lazy

random walks see Chapter 1 in [Chung, 1997]. With our splitting, we do not precisely construct a

lazy random walk so we prove stochasticity and characterize the spectral properties of our splitting
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in the following lemmas.

Lemma 2. The spectrum of the Weighted Adjacency matrix Fk is bounded

0 � Fk � I.

Proof : From Lemma 1, Hk is a weighted graph Laplacian yielding the following properties by

defintion (see [Chung, 1997]),

[Hk]ii = �
X

j 6=i

[Hk]i,j � 0 8i, (3.25)

and

[Hk]ij  0 8(i, j), j 6= i. (3.26)

Combining these Laplacian properties with our Definition 3.2, we have

[Fk]ii =
1

�
([Bk]ii + � � [Dk]ii) 8i. (3.27)

Applying Definition 3.1, [Bk]ii = 0, yielding

[Fk]ii =
1

�
(� � [Dk]ii) = 1� 1

�
[Hk]ii 8i. (3.28)

Similarly considering the off diaginal elements yields

[Fk]ij =
1

�
[Bk]ij = �1

�
[Hk]ij � 0 8(i, j), j 6= i. (3.29)

Furthermore, from nonegativity in (3.29), the absolute sum of the off-diagonal elements equals the

simple sum of the off-diagonal elements

X

j 6=i

|[Fk]ij | =
X

j 6=i

[Fk]ij = �1

�

X

j 6=i

[Hk]ij � 0. (3.30)
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In the following argument we apply the Gersgorin disc Theorem, to characterize the eigenvalues of

Fk. From the statement of Theorem 6.1.1 in [Horn and Johnson, 1985], the eigenvalues of Fk must

lie in the set Z , where

Z = [iDi (3.31)

and the discs Di are defined

Di =

8

<

:

z 2 C : |z � [Fk]ii| 
X

j 6=i

|[Fk]ij |

9

=

;

8i. (3.32)

Since Fk is a symmetic matrix, it must have real eigenvalues allowing us to reduce the discs to

intervals on the real line,

Di =

8

<

:

z 2 R : |z � [Fk]ii| 
X

j 6=i

|[Fk]ij |

9

=

;

8i. (3.33)

Using (3.28) and (3.30), we can rewrite (3.33) as

Di =

⇢

z 2 R : 1� 2

�
[Hk]ii  z  1� 1

�
[Hk]ii +

1

�
[Hk]ii

�

8i (3.34)

and using Lemma 1, [Hk]ii  1
m =

�
2 , we simplify to

Di ✓ {z 2 R : 0  z  1} 8i. (3.35)

Since (3.35) holds for all discs i, it holds for the union of discs

Z ✓ {z 2 R : 0  z  1} , (3.36)

guaranteeing that all eigenvalues of Fk lie in the interval [0, 1], completing the proof. ⌅

Lemma 3. The matrix Fk is doubly stochastic.
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Proof : From equation (3.24), we can write

Fk = I � ��1Hk. (3.37)

From Lemma 1, Hk is a graph Laplacian. Therefore, Fk is symmetric and has eigenvalue 1 associ-

ated with the vector of all ones. From (3.29) and (3.30), we have elementwise nonnegativity of Fk.

Finally from Lemma 1, [Hk]ii  1/m = �/2 which combined with the Laplacian structure of Hk

guarantees [Fk]ij  1/2 < 1 for all i, j. ⌅

Definition 3.3. We compute the Newton Direction

dk = lim

N!1
d(N)
k (3.38)

= ���1
1
X

r=0

F r
k gk (3.39)

and the Hessian Inverse on 1?

H†
k = lim

N!1
¯H(N)
k (3.40)

= ��1
1
X

r=0

F r
k (3.41)

which naturally arises from the Neumann expansion of H†
k in light of equation (3.24).

Remark 1. An important consequence of Definitions 3.1, 3.2 and 3.3 is that � serves as an internal

scaling factor in the computation of the Newton direction. This internal scaling is necessary for

the asymptotic expression of the Newton direction in (3.41) to converge, which allows for iterative

implementation as outlined in Section 3.2.4. Furthermore, � serves as an explicit scaling factor for

the approximate Newton direction, computed in Section 3.3 by truncating (3.41). It is this internal

scaling which allows our method to be implemented with relatively large fixed sizes in Section 3.4.1.
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3.2.4 Consensus Implementation

Defining a consensus scheme to solve the Newton equation, (3.17) we have the following update

d(r+1)
k = Fkd

(r)
k � ��1gk (3.42)

where the Fk is the weighted adjacency matrix defined in Definition 3.2. In this case we can limit

communication costs by iteratively sharing information with 1-hop neighbors. Choosing the initial

value to be d(0)k = ���1gk results in a sequence of approximations of the Newton direction:

d(0)k = ���1gk = � ¯H(0)
k gk

d(1)k = Fk(���1gk)� ��1gk = � ¯H(1)
k gk

...

d(N)
k = �

N
X

r=0

F r
k (�

�1gk) = � ¯H(N)
k gk

satisfying the assymptotic condition specified in (3.38) as N approaches infinity. However, one can-

not execute the update in (3.42) infinitely for each iteration k. It is therefore necessary to implement

a stopping criteria.

3.3 Accelerated Dual Descent

The approximate Newton algorithm is obtained by replacing the Newton step dk in (3.16) by its

approximations d(N)
k = � ¯H(N)

k gk. The resultant algorithm is characterized by the iteration

�k+1 = �k � ↵k
¯H(N)
k gk. (3.43)

The choice of N in dictates how much information node i needs from the network to compute the

ith element of the approximate Newton direction d(N)
k ; recall that node i is associated with dual

variable [�k]i.
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3.3.1 Local Information Dependence

For the zeroth order approximation d(0)k only the first term of the sum in (3.38) is considered and it

therefore suffices to have access to the local gradient value [gk]i to compute the approximate Newton

step. The approximation in this case reduces to d(0)k = ��1gk. The first order approximation d(1)k

uses the first two terms of the sum in (3.38) yielding d(1)k = ��1
(I + Fk) gk. The key observation

here is the sparsity pattern of Fk; it is a weighted adjacency matrix so [Fk]ij = 0 for all (i, j) 62 E .

As a consequence, to compute the ith element of d(1)k node i needs to collect information that

is either locally available or available at nodes that share an edge with i. For the second order

approximation d(2)k we add the term ��1F 2
k gk to the approximation d(1)k . The sparsity pattern of

F 2
k has nonzero entries matching the 2-hop neighborhoods of each node. Therefore, to compute

the ith element of d(2)k node i requires access to information from neighboring nodes and from

neighbors of these neighbors. In general, the N th order approximation adds a term of the form

FN
k to the N � 1st order approximation. The sparsity pattern of FN

k coincides with the N -hop

neighborhood, and computation of the local elements of the Newton step necessitates information

from N hops away. We thus interpret (3.38) as a family of approximations indexed by N that yields

Hessian approximations requiring information from N -hop neighbors in the network. This family

of methods offers an explicit trade off between communication cost and precision of the Newton

direction.

3.3.2 Basic Properties

Analysis of the Newton’s method takes advantage of the conditioning results from Lemma 1 by

using the psuedo-inverse eigenvalue bounds

mv0v  v0H(�)†v 8v 2 1?, (3.44)

v0H(�)†v  Mv0v 8v 2 Rn. (3.45)
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Our algorithm uses ¯H(N)
(�) in place of H†

(�), so we proceed to prove a conditioning bound on

our approximation of the Hessian inverse.

Lemma 4. The approximate inverse Hessian remains well conditioned; i.e., for given ADD family

index N and dual variable � it holds that

m̄ v0v  v0 ¯H(N)
(�)v  ¯M v0v, 8v 2 Rn (3.46)

where m̄ = ��1 and ¯M = ��1
(N + 1).

Proof : From the definition of ¯H(N)
(�), as characterized in (3.41), we have

v0 ¯H(N)
(�)v = v0

 

N
X

r=0

��1F r

!

v (3.47)

where H := �(I � ��1F ), defined in accordance with Defintion 3.24. We form an upper bound

using the induced matrix norm,

v0 ¯H(N)
(�)v  v0v ��1||

N
X

r=0

F r||. (3.48)

From Lemma 2, we know that ||F r
k ||  1; applying the triangle inequality and counting up the terms

yields

v0 ¯H(N)
(�)v  v0v(N + 1)��1, (3.49)

establishing the upper bound for all v 2 Rn.

Starting with (3.47) and recalling from Lemma 2 that each term in the sum is positive semidefi-

nite; we establish the lower bound

v0 ¯H(N)
k v � v0F 0

k v�
�1

= v0v��1, 8v 2 Rn (3.50)

by throwing away (necessarily nonnegative) terms r = 1, . . . , N . ⌅

Lemma 4 guarantees uniform conditioning and strong convexity of our approximate Hessian inverse
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which are key analytical building blocks for our convergence analysis.

A basic guarantee for any iterative optimization algorithm is to show that it eventually ap-

proaches a neighborhood of the optimal solution. This is not immediate for ADD as defined by

(3.43) because the errors in the ¯H(N)
k approximations to H†

k may be significant. Notwithstanding,

it is shown in Lemma 4 that the ¯H(N)
k approximations are positive definite for all N and from there

it is possible to conclude that the �k iterates in (3.43) eventually approach a neighborhood of the

optimal �⇤. This claim is summarized in the following theorem, for proof see Proposition A.24 in

[Bertsekas, 1999].

Theorem 2. Let �⇤ denote the optimal argument of the dual function q(�) of the optimization

problem in (3.1) and consider the ADD-N algorithm characterized by iteration (3.43) with ¯H(N)
k

as in (3.38). Assume ↵k = ↵ for all k and that the network graph is not bipartite. Then, for all

sufficiently small ↵,

lim

k!1
�k = �⇤. (3.51)

By continuity of (3.4), convergence of the dual variable to an error neighborhood implies con-

vergence of the primal variables to an error neighborhood. Theorem 2 is the weakest convergence

proof presented, but it is included because it serves as a benchmark for algorithm performance.

Also, Theorem 2 uses a fixed step size which in many applications of interest is more practical than

implementing a line search method.

Definition 3.4. We define the Newton Error to be

✏k = Hkd
(N)
k + gk. (3.52)

This is a measure of the deviation from true Newton direction because Hkdk = �gk [cf. (3.17)]

where dk is the true Newton direction, which is equivalent to having ✏k = 0 in (3.52). Therefore,

the Newton step approximation error ✏k quantifies the deviation of the approximate Newton steps

d(N)
k with respect to the actual Newton step dk.
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Definition 3.5. The connectivity modulus is defined as the uniform upper bound ⇢̄,

�

�µn�1
�

Fk

�

�

�  ⇢̄ 8k. (3.53)

We can characterize the connectivity modulus by recalling from Lemma 3 that Fk is a stochastic

matrix and applying the eigenvalue bound from [Landau and Odlyzko, 1981],

|µn�1 (Fk) |  1� �

ndmax(1 + diam(G)) (3.54)

where diam(G) is the diameter of the graph G and dmax is the maximal degree of any node in G.

Table 3.1: Network Coeficient for Connectivity Modulus; Examples with n = 10 nodes

Network Diameter Max Degree ndmax(1 + diam(G))
Line Graph 9 2 200
Cycle 5 2 120

Cycle w/ crosslinks 3 3 120

Complete Graph 1 9 180

Star Graph 2 9 270

Petersen Graph 2 3 90

In Table 3.1, we exame the effect of the network structure on the connectivity modulus. Based

on (3.54) from [Landau and Odlyzko, 1981], the best networks are those which have both small

maximum degree and small diameter. Moore graphs, which are n = 1 + d
Pk�1

r=0(d � 1)

r node

regular graphs of degree d with fixed diameter k are nearly optimal with respect to this metric,

[Hoffman and R, 1960]. The best example presented, the Petersen Graph is a Ramanujan graph,

a well known class of expander graphs, [Murty, 2003]. Expander graphs are noted for rapid mix-

ing in accordance with their spectral characterization; an approach to interpreting the connectivity

modulus through spectral bounds is presented [Tutunov et al., 2014]:

1� 2

��

p
2!  ⇢̄  1� !2

8�2�2
. (3.55)
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The bound in (3.55) connects the connectivity modulus directly to the algebraic connectivity, ! of

the graph G as defined in Assumption 3 and provides a lower bound for the connectivity modulus.

Lemma 5. The norms of the Newton approximation errors ✏k defined in (3.52) satisfy

k✏kk  ⇢̄N+1kgkk. (3.56)

Proof : Combining the definition of ✏k with equation (3.41), we have

✏k = �Hk
¯H(N)
k gk + gk. (3.57)

Consider Hk
¯H(N)
k , applying equation (3.24),

Hk
¯H(N)
k = �(I � Fk)

 

��1
N
X

r=0

F r
k

!

= (I � Fk)

N
X

r=0

Fk (3.58)

which is a telescoping sum, simplifying to

Hk
¯H(N)
k = I � FN+1

k . (3.59)

Substituting (3.59) back into (3.57) yields

✏k = FN+1
k gk. (3.60)

The matrix Fk is symmetric and positive definite allowing us to state the eigenvector decomposition

Fk =

n
X

i=1

µiviv
0
i (3.61)

where the vectors vi form an orthonormal basis and the eigenvalues 0  µi  µn. Since the vectors

vi form an orthonormal basis we have v0ivj = 0 for all i 6= j and v0ivi = 1 for all i, allowing us to
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write

FN+1
k =

n
X

i=1

µN+1
i viv

0
i. (3.62)

Since Fk is stochastic, µn = 1 with vn =

1p
n
1. Consider,

||FN+1
k gk||  max

u21?;u 6=0

||FN+1
k u||
||u|| ||gk|| (3.63)

because gk 2 1

?. The vector Fku can be expressed as

FN+1
k u =

n
X

i=1

µN+1
i viv

0
iu (3.64)

but u0vn = 0 becuase vn 2 span{1} yielding

FN+1
k u =

n�1
X

i=1

µN+1
i viv

0
iu. (3.65)

Since the eigenvalues are listed in ascending order the maximum in (3.63) is achieved for u 2

span{vn�1}, yielding

||FN+1
k gk||  µN+1

n�1

vn�1v0n�1u

||u|| ||gk|| = µN+1
n�1 ||gk||. (3.66)

Taking the norm of (3.60) and substituting (3.66) yields

||ek||  µN+1
n�1 ||gk||; (3.67)

applying the definition of ⇢̄ completes the proof. ⌅

Lemma 5 establishes the connectivity modulus, ⇢̄ as a key coefficient capturing the ability of

information to spread through the network. Its appearance is natural because the accuracy of our

local approximations to the Newton step depend on the network’s ability to percolate information.

Another key observation about Lemma 5 is that the Newton step approximation error is proportional
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to the norm of the dual gradient. Another way to interpret Lemma 5 is to observe that the relative

Newton error ||✏k||/||gk|| is at worst a constant. Since the dual gradient norm kgkk tends to zero as

we approach the dual optimum argument, the approximation error norm k✏kk also approaches zero

as iterations progress towards the optimum.

3.4 Convergence Analysis

In this section, we characterize the convergence rate properties of the Accelerated Dual Descent as

defined in (3.43). Our results are presented in three phases characterized by ranges of the residual

||gk||, modeled after the convergence properties of the Newton method.

3.4.1 Main Results

The first result presented characterizes the phases of convergence of the ADD algorithm with pa-

rameter N and the connectivity modulus ⇢̄. In accordance with analysis of the Newton method,

convergence is presented as a global phase with a strict decrease guarantee and a local phase with a

stronger convergence rate guarantee. Due to ADD using an approximation of the Netwon direction,

the local phase must be divided into two phases: quadratic phase and terminal phase.

Theorem 3. Consider an ADD-N algorithm with iterates �k as with approximate Newton step

�↵kH
(N)
k gk for given N . The step size ↵k = ↵ is selected such that 0 < ↵  min

n

1, 2
(N+1)

o

.

(i) Global Phase. For ||gk|| > ⌘1, we have strict decrease in the objective:

q(�k+1) < q(�k)�
↵m⌘21
4

. (3.68)

(ii) Quadratic Phase. For ⌘0 < ||gk||  ⌘1, we have quadratic decrease

||gk+1|| < ⌘�1
1 ||gk||2 (3.69)

56



(iii) Terminal Phase. For ||gk||  ⌘0, we have

||gk+1||  p̂||gk||. (3.70)

The phase boundaries ⌘0 and ⌘1 are defined

⌘0 =

2

↵2L ¯M2
(1� p̂) p̂, (3.71)

⌘1 =

2

↵2L ¯M2
(1� p̂) , (3.72)

with coefficient

p̂ =

q

1� ↵(1� ⇢̄N+1
) 2 (0, 1). (3.73)

The complete proof of Theorem 3 is presented in Sections 3.4.2 and 3.4.3. Section 3.4.2 con-

siders the fixed stepsize selection to prove the existence of the strict decrease phase of Part (i). In

Section 3.4.3, the proofs of the quadratic and terminal phases are presented.

Theorem 3 characterizes the convergence of the ADD-N algorithm. A neighborhood around

the optimal is characterized by the boundary ⌘1, outside which strict decrease in the objective is

guaranteed. Inside the neighborhood, convergence is quadratic until the neighborhood character-

ized by ⌘0 is reached. Within the terminal neighborhood progress is guaranteed to continue at the

exponential rate p̂.

From Theorem 3, it is clear that ADD-N with small parameter N allows for relatively large

fixed stepsizes. In particular, ADD-1 exhibits global convergence with any fixed step size ↵  1.

For ADD-0, Theorem 3 also admits the stepsize ↵ = 1; this may be suprising at first glance, but

due to the internal scaling of ADD, the resulting algorithm is equivalent to gradient descent with a

stepsize proportional to 1
L . Observe ¯H(0)

k = ��1I and from the constant definitions in Assumption

4, Lemma 1, and Definition 3.2: � / L. It is precisely this internal scaling feature, built into

the Newton direction approximation, that allows the ADD algorithm to operate with large fixed

stepsizes. Alternatively, this feature can be thought of as a stepsize selection process built into the

algorithm.
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Remark 2. Theorem 3 tells us that network structure affects the performance of ADD-N algorithms

through the connectivity modulus ⇢̄ because the residual value defining the local convergence neigh-

borhood is bounded by ⇢̄N+1. When ⇢̄ is small, p̂ is small which yields larger ⌘1. Large ⌘1 expands

the size of the quadratic decrease phase and reduces the constant term in the update expression.

It is fair to say that ADD-N works well in networks with small ⇢̄ while networks with large ⇢̄ are

difficult in that they require larger N to experience the same rate of convergence. From the bound

in (3.54) we can infer topological conditions that effect ⇢̄. This bound approaches 1 if some of the

following situations happen: (i) the number of nodes n is large, (ii) the graph diameter diam(G)

is large, (iii) while not directly obvious from (3.54), the derivation from of (3.54) in [Landau and

Odlyzko, 1981] indicates that ⇢̄ tends toward 1 when then network has large maximum degree,

�(G).

Poor performance for large n and large diam(G) matches the intuition that convergence towards

�⇤ necessitates propagation of information through the network. Poor performance for large �(G)

is counterintuitive but not incongruous with results on consensus on scale free networks, [Newman,

2003]. For a graph of fixed size n the network structure for which the bound in (3.54) is smallest is

the one with the minimum product �(G)diam(G) of maximum degree and diameter. Small world

networks [Watts and Strogatz, 1998] have small degree and small diameter by design. It has already

being observed that networks which have simultaneously low diameter and low maximum degree

have desirable properties in engineered systems, such as fault tolerance and algebraic connectivity,

[Olfati-Saber, 2005]. Additional study of the impacts of network connectivity on Accelerated Dual

Descent and further characterizations of ⇢̄ are explored in [Tutunov et al., 2014].

3.4.2 Global Phase Proof for Theorem 3

For the proof of Theorem 3(i), we begin by writing the quadratic representation of q(�) centered at

�k using the mean value theorem,

q(�k+1) = q(�k) + g0k(�k+1 � �k) +
1

2

(�k+1 � �k)
0H(z)(�k+1 � �k) (3.74)
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for z 2 [�k+1,�k]. Applying the dual Hessian spectrum bound from Lemma 1 and the definition of

the ADD-N update from (3.43) with stepsize ↵, we have

q(�k+1)  q(�k)� ↵g0k ¯H(N)
k gk +

↵2

2m

�

�

�

¯H(N)
k gk

�

�

�

2
. (3.75)

Since ¯H(N) is symmetric and positive definite with maximum eigenvalue ¯M from Lemma 4, we

have

q(�k+1)  q(�k)� ↵g0k ¯H(N)
k gk +

↵2
¯M

2m
g0k ¯H(N)

k gk (3.76)

which simplifies to

q(�k+1)  q(�k)� ↵

✓

1� ↵
¯M

2m

◆

g0k ¯H(N)
k gk. (3.77)

Consider our restriction that ↵  2
N+1 , recalling that m = 2m̄ and M̄

m̄ = N + 1, we have ↵  m
M̄
.

Applying this relation yields

q(�k+1)  q(�k)�
↵

2

g0k ¯H(N)
k gk. (3.78)

Applying the lower bound on the spectrum of ¯H(N)
k from Lemma 4 and the global phase condition

||gk|| > ⌘1, yields

q(�k+1)  q(�k)�
↵m̄

2

⌘21 (3.79)

and observing again that m = 2m̄, completes the proof of Theorem 3(i).

3.4.3 Local Phase Proofs for Theorem 3

The result in Theorem 3 (i) guarantees global convergence into any error neighborhood kgkk  ⌘1

of the optimal value because the dual objective is strictly decreasing by, at least, a noninfinitesimal

quantity while we remain outside of this neighborhood. In particular, we are guaranteed to reach a

point inside the neighborhood kgkk  ⌘1. In order to proceed with the characterization of the the

convergence rate inside the neighborhood kgkk  ⌘1, the following property for Lipschitz Hessian

functions is derived.
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Lemma 6. Consider a twice differentiable objective function F (y) with a Lipschitz continuous

Hessian r2F (y) with Lipschitz coeficient L. For any y and ŷ

||rF (ŷ)||  ||rF (y) +r2F (y)(y � ŷ)||+ L

2

||y � ŷ||2. (3.80)

Proof : We begin with a statement of the fundamental theorem of calculus,

rF (ŷ) = rF (y) +

Z 1

0
r2F (y + t(ŷ � y))(ŷ � y)dt. (3.81)

Adding and subtracting the term r2F (y)(y � ŷ), we acquire

rF (ŷ) = rF (y) +

Z 1

0
r2
�

F (y + t(ŷ � y))�r2F (y)
�

(ŷ � y) +r2F (y)(y � ŷ)dt (3.82)

which observing that the final term int he integral does not depenf on t can be reduced to

rF (ŷ) = rF (y) +r2F (y)(ŷ � y) +

Z 1

0
r2
�

F (y + t(ŷ � y))�r2F (y)
�

(ŷ � y)dt. (3.83)

Taking the 2-norm, and applying the triangle inequality,

krF (ŷ)k 
�

�rF (y) +r2F (y)(y � ŷ)
�

�

+

�

�

�

�

Z 1

0
r2
�

F (y + t(ŷ � y))�r2F (y)
�

(ŷ � y)dt

�

�

�

�

.

(3.84)

The norm of the integral is less than the integral of the norm, yielding

krF (ŷ)k 
�

�rF (y) +r2F (y)(y � ŷ)
�

�

+

Z 1

0

�

�r2
�

F (y + t(ŷ � y))�r2F (y)
�

� kŷ � yk dt.

(3.85)

Applying our assumption that the Hessian is Lipschitz, we have

krF (ŷ)k 
�

�rF (y) +r2F (y)(y � ŷ)
�

�

+

Z 1

0
Lt kŷ � yk2 dt (3.86)

and computing the integral completes the proof. ⌅
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Using Lemma 6, the relation that fundamentally characterizes progress in the local phase is

proven in the following lemma.

Lemma 7. Consider the dual update in (3.43) with stepsize ↵k. The norm of the dual gradient is

reduced at each iteration according to the relation

||gk+1||  (1� ↵k + ↵k⇢̄
N+1

)||gk||+
↵2
kL

¯M2

2

||gk||2 (3.87)

where ⇢̄ is the connectivity modulus defined in (3.54).

Proof : Applying Lemma 6 for the dual objective q(�) for values �k+1 and �k, we have

||gk+1||  ||gk +Hk(�k+1 � �k)||+
L

2

||�k+1 � �k||2. (3.88)

Substituting our update rule from (3.43),

||gk+1||  ||gk � ↵kHk
¯H(N)
k gk||+

L

2

||↵k
¯H(N)
k gk||2. (3.89)

Now consider the term ||I � ↵kHk
¯H(N)
k ||, decomposed according to Definition 3.2 and applying

equation 3.59,

||I � ↵kHk
¯H(N)
k || = ||I � ↵k(I � FN+1

k )||  1� ↵k + ↵k||FN+1
k ||. (3.90)

Applying Definition 3.56,

||I � ↵kHk
¯H(N)
k ||  1� ↵k + ↵k⇢̄

N+1 (3.91)

which substituted into (3.89), yields

||gk+1||  (1� ↵k + ↵k⇢̄
N+1

)||gk||+
L

2

||↵k
¯H(N)
k gk||2, (3.92)
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and applying the upper bound from Lemma 4 completes the proof. ⌅

Lemma 7 shows that the reduction in the dual gradient at each iteration, (3.87) has a linear term

and a quadratic term. The quadratic term is the same term that appears in the analysis of Newton’s

method, see Chapter 9 in [Boyd and Vandenberghe, 2004] up to multiplication by the coeficient p̂.

The linear term corresponds to the error in the step approximation due to the truncation of the series

in (3.38). Despite the error term, we achieve convergence to the optimal point.

The local phase of the ADD-N algorithm is broken up into a quadratic phase (ii) and a terminal

phase (iii). For the proof of part (ii), begin by applying Lemma 7

||gk+1||  p̂2||gk||+ c||gk||2 (3.93)

where we denote c =

↵2LM̄2

2 and apply the definition of p̂. Applying the lower bound for the

quadratic phase, we have

||gk+1|| <
✓

p̂2

⌘0
+ c

◆

||gk||2 (3.94)

and applying ⌘0 = c�1p̂(1� p̂) yields

||gk+1|| < c

✓

p̂

1� p̂
+ 1

◆

||gk||2. (3.95)

Observing that 1 =

1�p̂
1�p̂ , we simplify to

||gk+1|| <
c

1� p̂
||gk||2 (3.96)

and recalling ⌘1 = c�1
(1� p̂) proves our expression for the quadratic phase update.

Proceeding with the proof of Theorem 3(iii), we again consider the statement of Lemma 7 and

apply the conditions for the terminal phase, ||gk||  ⌘0,

||gk+1|| 
�

p̂2 + c⌘0
�

||gk||. (3.97)
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Figure 3.1: Primal objective (top), f(xk) and primal feasibility (bottom), kAxk � bk with
respect to number of local information exchanges for a sample network optimization prob-
lem with 25 nodes and 75 edges.

Applying ⌘0 = c�1p̂(1� p̂),

||gk+1|| 
�

p̂2 + p̂(1� p̂)
�

||gk|| = p̂||gk||. (3.98)

3.5 Numerical Experiments

Numerical experiments are used to verify the practicality of the ADD-N algorithm. The algorithm

is implemented with fixed stepsize ↵k = 1 for all numerical experiments presented. Our first

key result is that the ADD-N algorithm requires significantly fewer iterations to converge than the

gradient algorithm, [Nedić and Ozdaglar, 2009b] and can be executed with smaller communication

overhead than the consensus based Newton algorithm, [Jadbabaie et al., 2009]. Additionally, the

robust routing problem proposed in [Wu et al., 2007] is considered. We demonstrate that the convex

network flow framework not solves this problem and that ADD-1 outperforms gradient descent and

is competitive with other state of the art methods.
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Figure 3.2: Dual objective with respect to dual iterations(top), Dual Objective with respect
to communication cost (bottom) for a sample network optimization problem with 25 nodes
and 75 edges.

3.5.1 Parameter Selection and Communication Overhead

Figure 3.1 shows convergence metrics in the primal domain for a randomly generated network with

25 nodes and 75 edges. Edges in the network are selected uniformly at random. The flow vector b

is chosen to place sources a full diam(G) from the single sink. We use

�e(xe) = exp(�xe) + exp(xe) (3.99)

as our objective function. Communication cost is defined in terms of information exchanges where

one information exchange is a transmit/receive event where each node i updates any subset of its

local copies of variables belonging to its neighbors j 2 Ni. Due to our interest limiting to local

information, ADD-0 and ADD-1 are studied in Figures 3.1 and 3.2. However, ADD-0 through

ADD-3 are studied in the repeated experiments show in Figure 3.4 in order to further characterize

the dependence on parameter N .

In Figure 3.2, convergence of the dual objective is demonstrated with respect to both dual it-

erations and number of local information exchanges required. Different versions of ADD differ
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Figure 3.3: The number of local information exchanges required per dual descent iteration
is shown for sample network optimization problem with 25 nodes and 75 edges. ADD-N
has a fixed local communication requirement per iteration equal to N + 2 which yields
more consistent convergence rates with respect to communication requirements.

in the number of communication instances required per iteration. When measured in information

exchanges ADD-0 and ADD-1 converge at similar rates. Although Consensus based Newton con-

verges in fewer dual iterations that ADD-1, it can be seen in Fig. 3.2 that ADD-1 converges with

fewer total information exchanges. In Fig. 3.1, the faster convergence relative to communication

cost for ADD-N with smaller N can also be observed in the primal domain.

The communication costs per dual iteration for consensus-based Newton and the gradient de-

scent algorithm also differ from ADD-N . Fig. 3.1 demonstrates the algorithms’ progress with

respect to the number of times nodes exchange information with their 1-hop neighbors. As shown

in Fig. 3.3, ADD-N has a fixed communication cost per iteration while consensus can require

arbitrarily many communications– especially during the globally convergent phase during which

percise calculation of the Newton direction has limited value. A major benefit of the ADD family

is that unlike the consensus based Newton algorithm, precious communication resources are not

wasted computing an extremely accurate Newton direction in early iterations when the return on

this investment is minimal. Fig. 3.3 also shows that once the consensus Newton algorithm reaches

its local phase it requires a very small number of dual iterations to remain below the error threshold.

In Figurs 3.1 and 3.2, it is observed that the consensus based Newton method is able to eventually
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Figure 3.4: The number of local communications required to reach kg(�k)k  10

�10 for
gradient descent, consensus-based Newton and ADD-1 for 50 trials of the network opti-
mization problem on random graphs with 25 nodes and 75 edges. Markers indicate distri-
bution and vertical lines indicate the mean.

achieve a faster convergence rate but communication effort wasted in reaching that phase causes

ADD-N to perform better overall.

While Figures 3.1–3.3, indicate a single trial demonstration, Figure 3.4 demonstrates perfor-

mance over 50 trials of the network optimization problem on random graphs with 25 nodes and 75

edges. Figure 3.4 show that ADD-1 converges (to precision kg(�k)k  10

�10) faster and with much

more consistency than gradient descent or consensus-based Newton. Though increasing N in ADD

decreases the number of iterations required, there is not a strict decrease in the number of com-

munications; there is an inherent trade off between spending communication instances to refine the

Newton step d(N)
k versus spending communicate to apply the dual update, (3.43). This phenomenon

is visible in Fig. 3.5. These experiments are on random graphs of three sizes, small: 25 nodes and

75 edges, medium: 50 nodes and 350 edges and large: 100 nodes and 1000 edges. The flow vector b

is selected by placing a source and a sink at diam(G) away from each other. Convergence is defined

when residual kgkk  10

�10 is achieved.

Fig. 3.5 summarizes the comparison between the ADD family and existing methods. Using

ADD-N for N = 0 or N = 1, requires less communication overall than ADD-N for N = 2

or N = 3; all ADD methods converge on average an order of magnitiude faster than the other
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kg(�k)k  10

�10 for gradient descent, consensus-based Newton and ADD, computed for
35 trials each on random graphs with 25 nodes and 75 edges(small), 50 nodes and 350
edges(medium), and 100 nodes and 1000 edges (large).

algorithms. Consensus-based Newton achieves the rates of ADD on some trials, but fails to do

so consistently. The consensus-based Newton is inconsistent due to the wasted communication

resources demonstrated by the dual iterations per primal iteration peak shown in Fig. 3.3. This

inconsistency comes primarily from variations in the number of dual iterations required to approxi-

mate the Newton direction. Thus, the main benefit of ADD-N is consistency as a result of the fixed

communication cost per iteration. The behavior of ADD is also explored for graphs of varying size

and degree in Fig. 3.5. As the graph size increases the performance gap between ADD and com-

peting methods increases. Consistency of ADD is also apparent since the maximum, minimum, and

average information exchanges required to solve (3.1) for different network realizations are similar.

This is not the case for consensus-based Newton or for gradient descent. Interestingly, the size of

the problem does not significantly impact the performace of the algorithms. This is likely because

the crucial factor is the connectivity of the networks. Due to our choice of random graph model

and the fact node (squared) to edge ratios remain relatively consistent between network sizes, the

connectivities remain comparable.
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Figure 3.6: The robust routing problem is solved efficiently by the ADD-1 algorithm, while
the gradient descent method and FISTA method both require 10s of thousands of iterations.
The top figure shows the total variance of the routing selected at iteration t. The bottom
figure shows whether the current routing is feasible.

3.5.2 The Robust Routing Problem

The robust routing problem is a network optimization problem focusing on selecting an optimal

routing when links have uncertainties in their channel capacity, [Wu et al., 2007]. Each edge has a

known variance �e and expected capacity re. The objective is to select a the flow variable Te 2 [0, 1]

that satisfies the conservation of constraint with the minimum total variance, when the expected flow

arrivals are given by the vector b.

min

T
e

2[0,1]

X

e

�eT
2
e s.t. ART = b (3.100)

We can recover the network flow problem by taking the local coordinate transform xe = ReTe.

Defining the diagonal matrices ⌃ = diag(�e) and R = diag(Re) we can state the robust routing

problem:

min

x
e

2[0,R
e

]
x0R�1

⌃R�1x s.t. Ax = b (3.101)
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We solve (3.101) by applying the ADD-1 algorithm and projecting the primal variables onto the

interval [0, Re] during each primal update. While the effect of this projection is not considered

analytically in this work, the effect of capacity constraints is discussed at length in [Zargham et al.,

2013b]. Figure 3.6 shows a sample solution to (3.101) on a proximity network with 50 nodes, 224

edges. The matrix R is diagonal with values selected uniformly random on [0,1]. The diagonal

matrix ⌃ has nonzero elements ⌃ii selected uniformly random on [0,10]. The vector b has a single

sink with all other nodes being sources. This example emulates a wireless sensor network streaming

data to a base station.

In our example, ADD-1 is compared to gradient descent and the fast iterative shrinking thresh-

old algorithm (FISTA) presented in [Beck and Teboulle, 2009a] and updated for distributed imple-

mentation in [Chen and Ozdaglar, 2012]. Distributed FISTA represents the state of the art for fast

distributed gradient methods, when methods requiring network-wide message passing are excluded.

In figure 3.6, FISTA is a significant improvement over gradient descent but it still requires an order

of magnitude more iterations to reach feasibility ||Ax � b||  10

�4 than ADD-1. The experiment

is repeated 100 times and the progress of each algorithm is examined as a histogram after 100 and

1000 iterations; see Figure 3.7. After 100 iterations ADD-1 had reached ||Ax � b||  10

�4 for

nearly 20% of the trials while neither gradient nor FISTA had reached that threshold for any trials.

After 1000 iterations ADD-1 had reached feasibility with 60% at machine precision and over 95%

smaller than 10

�4. Furthermore, relative error in the objective also had over 60% at machine preci-

sion and over 95% smaller than 10

�4. As with the ADD-1 method the error in the objective is on

the same order as the feasibility, 10�5. These experiments demonstrate that while FISTA signifi-

cantly accelerates gradient descent, the ADD-1 algorithm still consistently solves the robust routing

problem an order of magnitude faster than FISTA.
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Figure 3.7: Given 100 hundred trials of the robust routing problem, we find that after
100 iterations ADD-1 makes significantly more progress towards the optimal point than
FISTA and gradient descent which have high values of infeasibility. After 1000 iterations
ADD-1 was reached the optimal to machine precision in more than 60% of the trials while
gradient descent and FISTA have at best a feasibility threshold of 10

�5 and significant
errors remaining in the objective value.
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Chapter 4

Accelerated Backpressure

Chapter 4 considers the problem of joint routing and scheduling in networks. Packets are accepted

from upper layers as they are generated and marked for delivery to intended destinations. To ac-

complish delivery of information, nodes need to determine routes and schedules capable of accom-

modating the generated traffic. From a node-centric point of view, individual nodes handle packets

that are generated locally as well as packets received from neighboring nodes. The goal of each

node is to determine suitable next hops for each flow conducive to successful packet delivery.

A joint solution to this routing and scheduling problem is offered by the Backpressure algorithm

[Tassiulas and Ephremides, 1992]. In Backpressure nodes keep track of the number of packets

in their local queues for each flow and share this information with neighboring agents. Nodes

compute the differences between the number of packets in their queues and the number of packets

in neighboring queues for all flows and assign the transmission capacity of the link to the flow with

the largest queue differential. The term backpressure is used because the algorithm emulates the

physical behaviors of fluids under pressure. Regardless of interpretation and despite its simplicity,

Backpressure can be proved to be an optimal policy in the following sense: if given arrival rates can

be supported by some routing-scheduling policy, they can be supported by Backpressure. Notice

that Backpressure relies on queue lengths only and does not need knowledge or estimation of packet

arrival rates. It is also important to recognize that Backpressure is an iterative algorithm. Packets are
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initially routed more or less at random but as queues build throughout the network suitable routes

and schedules are eventually learned.

The main drawback of Backpressure is the slow convergence rate of this iterative process for

route discovery. This is better understood through an alternative interpretation of Backpressure

as a dual stochastic subgradient descent algorithm [Georgiadis et al., 2006; Neely et al., 2005].

Joint routing and scheduling can be formulated as the determination of per-flow routing variables

that satisfy link capacity and flow conservation constraints. In this model the packet transmission

rates are abstracted as continuous variables. To solve the resulting feasibility problem we associate

Lagrange multipliers with the flow conservation constraints and proceed to implement subgradient

descent in the dual domain. This solution methodology leads to distributed implementations and for

that reason is commonly utilized to find optimal operating points of wired [Eryilmaz and Srikant,

2006; Kelly et al., 1998; Low and Lapsley, 1999] and wireless communication networks [Chiang

et al., 2007; Neely, 2006; Ribeiro and Giannakis, 2010]. More important to the discussion here, the

resulting algorithm turns out to be equivalent to Backpressure with queue lengths taking the place

of noisy versions of the corresponding dual variables. The slow convergence rate of Backpressure

is thus expected because the convergence rate of subgradient descent is of order O(1/
p
t) when

measured with respect to the expected objective suboptimality of tth iterate, [Nedić and Ozdaglar,

2009b]. Simple modifications can speed up the convergence rate of Backpressure by rendering it

equivalent to stochastic gradient descent [Ribeiro, 2009b] which has a convergence rate of order

O(1/t) for the expected suboptimality of tth iterate.

Accelerated Backpressure is derived by formulating the packet routing problem as an optimiza-

tion and applying a variant of the Accelerated Dual Descent method presented in Chapter 3. Unlike

Backpressure and Soft Backpressure, the dual variables and the queue lengths do not coincide. The

dual variables, referred to as queue priorities converge leading to static routing policy which stabi-

lizes the queues by ensuring that the total packets flowing into the network is balanced by the packets

reaching their destinations. Formal proof that the queues are always eventually empty is presented;

a decaying stepsize is used for this result which is consistent with stochastic optimization literature.

Numerical experiments consider a fixed unit stepsize and demonstrate fast convergence times and
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small steady state queues relative to Backpressure and Soft Backpressure.

4.1 Backpressure and Queue Stabilization

Consider a given network G = {V, E} where V is the set of nodes and E ✓ V ⇥ V is the set of links

between nodes. Denote as Cij the capacity of link (i, j) 2 E and define the neighborhood of i as

the set ni = {j 2 V|(i, j) 2 E} of nodes j that can communicate directly with i. There is also a set

of information flows K with the destination of flow k 2 K being the node ok 2 V .

At time index t terminal i 6= ok generates a random number aki (t) packets to be delivered to

ok. The random variables aki (t) � 0 are assumed independent and identically distributed across

time with expected value E
⇥

aki (t)
⇤

= aki . In the same time slot node i routes rkij(t) � 0 units of

information through neighboring node j 2 ni and receives rkji(t) � 0 packets from neighbor j.

Algorithm 1: Backpressure at node i

1 for t = 0, 1, 2, · · · do
2 Observe local queue lengths {qki (t)}k for all flows k
3 for all neighbors j 2 ni do
4 Send queue lengths {qki (t)}k – Receive {qkj (t)}k
5 Determine flow with largest pressure:

k⇤ij = argmax

k

h

qki (t)� qkj (t)
i+

6 Set routing variables to rkij(t) = 0 for all k 6= k⇤ij and

r
k⇤
ij

ij (t) = CijI
n

q
k⇤
ij

i (t)� q
k⇤
ij

j (t) > 0

o

Transmit r
k⇤
ij

ij (t) packets for flow k⇤ij
7 end
8 end

The difference between the total number of received packets aki (t) +
P

j2n
i

rkji(t) and the sum

of transmitted packets
P

j2n
i

rkij(t) is added to the local queue – or subtracted if this quantity is
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negative. Therefore, the number qki (t) of k-flow packets queued at node i evolves according to

qki (t+ 1) =



qki (t) + aki (t) +
X

j2n
i

rkji(t)� rkij(t)

�+

, (4.1)

where the projection [·]+ into the nonnegative reals is because the number of packets in queue cannot

become negative. We remark that (4.1) is stated for all nodes i 6= ok because packets routed to their

destinations are removed from the system.

To ensure packet delivery it is sufficient to guarantee that all queues qki (t + 1) remain stable.

In turn, this can be guaranteed if the average rate at which packets exit queues is less than the

rate at which packets are loaded into them. To state this formally observe that the time average

limit of arrivals satisfies limt!1
1
t

Pt
⌧=0 a

k
i (⌧) = E

⇥

aki (t)
⇤

:= aki and define the ergodic limit

rkij := limt!1
1
t

Pt
⌧=0 r

k
ij(⌧). If the processes rkij(t) controlling the movement of information

through the network are asymptotically stationary, queue stability follows if

X

j2n
i

rkij � rkji � aki + ⇠ 8 k, i 6= ok (4.2)

where ⇠ > 0 is a small constant. For future reference, define the vector r := {rkij}k,i 6=o
k

,j , built by

stacking all the routing variables rkij . Since at most Cij packets can be transmitted by the link (i, j)

the routing variables rkij(t) always satisfy

X

k

rkij(t)  Cij (4.3)

We emphasize that (4.3) holds for all times whereas (4.2) holds in terms of time averages. The

joint routing and scheduling problem can be formally stated as the determination of nonnegative

variables rkij(t) � 0 that satisfy (4.3) for all times t and whose time average limits rkij satisfy (4.2).

The Backpressure algorithm solves this problem by assigning all the capacity of the link (i, j) to

the flow with the largest queue differential qki (t) � qkj (t). Specifically, for each link we determine
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the flow pressure

k⇤ij = argmax

k

h

qki (t)� qkj (t)
i+

. (4.4)

If the maximum pressure maxk

h

qki (t)� qkj (t)
i+

> 0 is strictly positive we set rkij(t) = Cij for k =

k⇤ij . Otherwise the link remains idle during the time frame. The resulting algorithm is summarized

in Algorithm 1. The Backpressure algorithm works by observing the queue differentials on each

link and then assigning the capacity for each link to the data type with the largest positive queue

differential, thus driving the time average of the queue differentials to zero and stabilizing the queues

as a consequence. For the generalizations developed in this paper it is necessary to reinterpret

Backpressure as a dual stochastic subgradient descent as we do in the following section.

4.1.1 Dual Stochastic Subgradient Descent

Since the parameters that are important for queue stability are the time averages rkij of the routing

variables rkij(t) an alternative view of the joint routing and scheduling problem is the determination

of variables rkij satisfying (4.2) and (4.3). This can be formulated as the solution of an optimization

problem. Let fk
ij(r

k
ij) be arbitrary concave functions on R+ and consider the optimization problem

r⇤ := argmax

X

k,i 6=o
k

,j

fk
ij(r

k
ij) (4.5)

s.t.
X

j2n
i

rkij � rkji � aki + ⇠, 8 k, i 6= ok,

X

k2K
rkij  Cij , 8 (i, j) 2 E .

where the optimization is over nonnegative variables rkij � 0. Since only feasibility is important

for queue stability, solutions to (4.5) ensure stable queues irrespectively of the objective functions

fk
ij(r

k
ij).

Since the problem in (4.5) is concave, it has null duality gap and can be solved in dual domain

using a descent algorithm. We associate the multipliers �k
i with the constraints

P

j2n
i

rkij � rkji �

aki + ⇠ and keep the constraints
P

k r
k
ij  Cij implicit. The Lagrangian associated with the opti-
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mization problem in (4.5) is then defined as

L(r,�) =
X

k,i 6=o
k

,j

fk
ij(r

k
ij) +

X

k,i 6=o
k

�k
i

✓

X

j2n
i

rkij � rkji � aki � ⇠

◆

, (4.6)

where we have introduced the vector � := {�i}ni=1 stacking the n local multipliers �i := {�k
i }k:i 6=o

k

which in turn stack all the multipliers at node i that are associated with different flows. The Lagrange

dual function is defined as

h(�) := maxP
k

rk
ij

C
ij

L(r,�). (4.7)

To compute a descent direction for h(�) define the primal Lagrangian maximizers as a function of

the dual variables,

Rk
ij(�) := argmaxP

k

rk
ij

C
ij

L(r,�). (4.8)

A descent direction for the dual function is available in the form of the dual subgradient whose

components ḡki (�) are obtained by evaluating the constraint slack associated with the Lagrangian

maximizers

ḡki (�) :=
X

j2n
i

Rk
ij(�)�Rk

ji(�)� aki � ⇠. (4.9)

Since the Lagrangian L(r,�) in (4.6) is separable in the routing functions Rk
ij(�) the determination

of the maximizers Rk
ij(�) := argmax

P
k

rk
ij

C
ij

L(r,�) can be decomposed into the maximization

of separate summands. Considering the coupling constraints
P

k r
k
ij  Cij it suffices to consider

variables {rkij}k for all flows across a given link. After reordering terms it follows that we can

compute the routing on each edge (i, j),

Rk
ij(�) = argmax

X

k

fk
ij(r

k
ij) + rkij

�

�k
i � �k

j

�

(4.10)

s.t.
X

k2K
rkij  Cij .
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Introducing a time index t, subgradients ḡki (�(t)) could be computed using (4.9) with Lagrangian

maximizers Rk
ij(�(t)) given by (4.10). A subgradient descent iteration could then be defined to find

the variables r⇤ that solve (4.5); see e.g., [Ribeiro and Giannakis, 2007].

The problem in computing ḡki (�) is that we don’t know the average arrival rates aki . We do

observe, however, the instantaneous rates aki (t) that are known to satisfy E
⇥

aki (t)
⇤

= aki . Therefore,

gki (�, t) :=
X

j2n
i

Rk
ij(�)�Rk

ji(�)� aki (t)� ⇠, (4.11)

is a stochastic subgradient of the dual function in the sense that its expected value E
⇥

gki (�, t)
⇤

=

ḡki (�) is the subgradient defined in (4.9). We can then minimize the dual function using a stochastic

subgradient descent algorithm. At time t we have multipliers �(t) and determine Lagrangian max-

imizers rkij(t) = Rk
ij(�(t)) as per (4.10). We then proceed to determine the stochastic subgradient

gki (t) = gki (�(t), t) using (4.11) and update multipliers along the stochastic subgradient direction,

�k
i (t+ 1) =

h

�k
i (t)� ↵tg

k
i (�(t), t)

i+
=

h

�k
i (t)� ↵tg

k
i (t)

i+
, (4.12)

where the projection [·]+ into the nonnegatives is to ensure the dual variables stay feasible and ↵t

is a stepsize sequence appropriately chosen so as to ensure convergence; see e.g., [Ribeiro, 2009b].

For future reference define the local vector gi(t) := {gki (t)}k:i 6=o
k

that stacks all the stochastic sub-

gradients at node i that are associated with different flows and the global vector g(t) := {gi(t)}ni=1

that stacks the n local stochastic subgradient vectors gi(t).

Substituting gki (t) for its explicit expression in (4.11) with rkij(t) = Rk
ij(�(t)) yields the dual

variable update

�k
i (t+ 1) =



�k
i (t)� ↵t

✓

X

j2n
i

rkij(t)� rkji(t)� aki (t)� ⇠

◆�+

, (4.13)

which, except for the presence of the step size ↵t and the constant ⇠, is equivalent to the queue

update in (4.1). Properties of the descent algorithm in (4.13) vary with the selection of the func-
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tions fk
ij(r

k
ij). Two cases of interest are when fk

ij(r
k
ij) = 0 and when fk

ij(r
k
ij) are continuously

differentiable, strongly concave, and monotone decreasing on R+ but otherwise arbitrary. The for-

mer allows an analogy with the backpressure as given by Algorithm 1 while the latter leads to a

variation termed Soft Backpressure.

Algorithm 2: Dual stochastic subgradient descent
1 for t = 0, 1, 2, · · · do
2 for all neighbors j 2 n(i) do
3 Send duals {�k

i (t)}k – Receive duals {�k
j (t)}k

4 Determine flow with largest dual variable differential:

k⇤ij = argmax

k

h

�k
i (t)� �k

j (t)
i+

5 Set routing variables to rkij(t) = 0 for all k 6= k⇤ij and

r
k⇤
ij

ij (t) = CijI
n

�
k⇤
ij

i (t)� �
k⇤
ij

j (t) > 0

o

Transmit r
k⇤
ij

ij (t) packets for flow k⇤ij
6 end
7 Send variables {rkij(t)}kj – Receive variables {rkji(t)}kj
8 Update multipliers {�k

i (t)}k along stochastic subgradient

�k
i (t+ 1) =



�k
i (t)� ↵t

✓

X

j2n(i)

rkij(t) + rkji(t)� aki (t)� ⇠

◆�+

9 end

4.1.2 Backpressure as Stochastic Subgradient Descent

The classical Backpressure algorithm, [Tassiulas and Ephremides, 1992] can be recovered by setting

fk
ij(r

k
ij) = 0 for all links flows k and links (i, j). With this selection the objective to be maximized

in (4.10) becomes
P

k r
k
ij

⇣

�k
i (t)� �k

j (t)
⌘

. To solve this maximization it suffices to find the flow

with the largest dual variable differential

k⇤ij = argmax

k

h

�k
i (t)� �k

j (t)
i+

. (4.14)
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If the value of the corresponding maximum is nonpositive, i.e., maxk

h

�k
i (t)� �k

j (t)
i+

 0, all

summands in (4.10) are nonpositive and the largest objective in (4.10) is attained by making rkij(t) =

0 for all flows k. Otherwise, since the sum of routing variables rkij(t) must satisfy
P

k2K rkij  Cij

the maximum objective is attained by making rkij(t) = Cij for k = k⇤ij and rkij(t) = 0 for all

k 6= k⇤ij .

The algorithm that follows from the solution of this maximization is summarized in Algorithm

2. The dual stochastic subgradient descent is implemented using node level protocols. At each time

instance nodes send their multipliers �k
i (t) to their neighbors. After receiving multiplier informa-

tion from its neighbors, each node can compute the multiplier differentials �k
i (t) � �k

j (t) for each

edge. The node then allocates the full capacity of each outgoing link to whichever commodity has

the largest differential. Once the transmission rates rkij(t) are set they are used for communication.

Nodes also share these variables as shown in Step 7 so that they can be used to compute the stochas-

tic gradient in (4.11). This stochastic gradients are used to update the multipliers as shown in Step

8 [cf. (4.13)].

Comparing (4.4) with (4.14) we see that the assignments of flows to links are the same if we

identify multipliers �k
i (t) with queue lengths. Furthermore, if we consider the Lagrangian update

in (4.13) with ↵t = 1 for all times t and ⇠ = 0 we see that they too coincide. Thus, we can

think of Backpressure as a particular case of stochastic subgradient descent. From that point of

view algorithms 1 and 2 are identical. The only difference is that since queues take the place of

multipliers the update in Step 8 of Algorithm 2 is not necessary in Algorithm 1. The exchange of

routing variables {rkij(t)}kj in Step 7 that is necessary to implement Step 8 is not needed as well.

4.1.3 Soft Backpressure

Assume that the functions fk
ij(r

k
ij) are continuously differentiable, strongly convcave, and monotone

decreasing on R+. In this case the derivatives y = @fk
ij(x)/@x  0 for all x � 0 and thus have
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Algorithm 3: Soft Backpressure at node i

1 Observe qki (0). Initialize �k
i (0) = qki (0) for all k and i 6= ok

2 for t = 0, 1, 2, · · · do
3 for all neighbors j 2 n(i) do
4 Send duals {�k

i (t)}k – Receive duals {�k
j (t)}k

5 Compute µij such that:
P

k F
k
ij

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

= Cij

6 Transmit packets at rate: rkij(t) = F k
ij

⇣

�[�k
i (t)� �k

j (t)� µij ]
+
⌘

7 end
8 Send variables {rkij(t)}kj – Receive variables {rkji(t)}kj
9 Update multipliers {�k

i (t)}k along stochastic subgradient

�k
i (t+ 1) =



�k
i (t)� ↵t

✓

X

j2n
i

rkij(t)� rkji(t)� aki (t)� ⇠

◆�+

10 end

inverse functions that we denote as

F k
ij(y) :=

h

@fk
ij(x)/@x

i�1
(y) � 0, 8y  0. (4.15)

The Lagrangian maximizers in (4.10) can be explicitly written in terms of the derivative inverses

F k
ij(y). Furthermore, the maximizers are unique for all � implying that the dual function is differ-

entiable. We detail these two statements in the following proposition.

Proposition 4. If the functions fk
ij(r

k
ij) in (4.5) are continuously differentiable, strongly convcave,

and monotone decreasing on R+, the dual function h(�) := max

P
k

rk
ij

C
ij

L(r,�) is differentiable

for all �. Furthermore, the gradient component along the �k
i direction is ḡki (�) as defined in (4.11)

with

Rk
ij(�) = F k

ij

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

. (4.16)

where µij(�) is either 0 if
P

k F
k
ij

�

�
⇥

�k
i � �k

j

⇤+�  Cij or chosen as the solution to the equation

X

k

F k
ij

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

= Cij . (4.17)
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Proof : The dual problem (4.7) is convex because it is the Lagrange dual of a concave maxi-

mization problem. Since f(r) is strongly concave, the maximizers R(�) generated by (4.10) are

unique. Thus ḡ(�) is unique for any �, ensuring that h(�) is differentiable, appendix A.4 [Boyd and

Vandenberghe, 2004].

To compute the maximizers R(�), we consider the primal optimization (4.10). Taking the

Lagrange dual of the domain constraints yields the extended Lagrangian,

¯L(r, µ) =
X

k

fk
ij(r

k
ij) + rkij(�

k
i � �k

j ) + µij(Cij �
X

k

rkij). (4.18)

Considering the Karush-Kuhn-Tucker (KKT) optimality conditions as defined in [Boyd and Van-

denberghe, 2004][Section 5.5] for (4.18) yields the equations

f 0
ij,k(r

k
ij) = �

h

�k
i � �k

j � µij

i+
(4.19)

X

k

rkij  Cij (4.20)

for all (i, j) 2 E where f 0
ij,k(x) = @fk

ij(x)/@x. Applying the definition of F k
ij(·) from equation

(4.15) to (4.19) we get the desired relation in (4.16). It remains to enforce (4.20) by selection of µij

which gives us condition (4.17). The assertion that

µij = 0 when
X

k

F k
ij

�

�
⇥

�k
i � �k

j

⇤+�  Cij (4.21)

holds by complementary slackness, Section 5.5 in [Boyd and Vandenberghe, 2004]. ⌅

While (4.17) does not have a closed form solution it can be computed quickly numerically using

a binary search because it is a simple single variable root finding problem. We operate under the

assumption that computation time cost is small compared to communication time cost.

The result in Proposition 4 combined with the stochastic subgradient descent iteration in (4.13)

yields the Soft Backpressure algorithm summarized in Algorithm 3. Soft Backpressure is imple-

mented using node level protocols. At each time instance nodes send their multipliers �k
i (t) to their
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Node i

�2
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�1
j

�3
j

Node j

r2ij = F 2
ij(�[�2

i � �2
j � µij(�)]+)

r1ij = F 1
ij(�[�1

i � �1
j � µij(�)]+)

r3ij = F 3
ij(�[�3

i � �3
j � µij(�)]+)

edge (i, j)

Figure 4.1: Flow variables rkij encoding packet transmission rates are computed from dual
variables at nodes i and j. For Backpressure and Soft Backpressure the variables �k

i are
equivalent to the queue lengths qki . For Accelerated Backpressure, �k

i is a priority rating
for qki . The constant µij(�) is chosen so that the total rate

P

k r
k
ij stays below the edge’s

capacity Cij .

neighbors. After receiving multiplier information from its neighbors, each node can compute the

multiplier differentials �k
i (t) � �k

j (t) for each edge. The nodes then solve for µij on each of its

outgoing edges to satisfy (4.17). The capacity of each edge is then allocated to the different com-

modities using the expression in (4.16). With the transmission rates {rkij(t)}kj set, we proceed as in

regular Backpressure. The communication rates are used for communication and also shared with

neighbors as shown in Step 7. These variables determine the stochastic gradient in (4.11) which is

used to update the multipliers as shown in Step 8 [cf. (4.13)].

Algorithm 3 is called Soft Backpressure because rather than allocating all of an edge’s capacity

to the data type with the largest pressure �k
i � �k

j , it divides the capacity among the different data

types based on their respective pressures via (4.16). This expression has a reverse water filling

interpretation; see [Ribeiro, 2009b]. We further observe that Soft Backpressure is solved using the

same information required of Backpressure, the lengths of the queues for all data types on either

end of the link whose flow you are computing. This means that assuming a step size ↵t = 1 and

constant ⇠ = 0, Algorithm 3 can be implemented without computing the multipliers but rather by

simply observing the queue lengths qki (t) which are equal to the dual variables �k
i (t).

An important difference between Backpressure and Soft Backpressure is that the former is

equivalent to stochastic subgradient descent whereas the latter is tantamount to stochastic gradi-

82



g2i

g1i

g3i

a1i a2i a3i

d(m)
i

Node i

g2j

g1j

g3j

a1j a2j a3j

d(m)
j

Node j

g2l

g1l

g3l

a1l a2l a3l

d(m)
l

Node l

r1ij
r1ji

r2ij
r2ji

r3ij
r3ji

r1il
r1li

r2il
r2li

r3il
r3li

d(m�1)
id(m�1)

i

d(m�1)
jd(m�1)

l

Figure 4.2: The Update of the queue priorities �k
i is determined by the value of the gra-

dient component gki =

P

j2n
i

rkji � rkij � aki � ⇠ which is determined by the values of
local and neighboring routing variables as well as the arrival rates observed from upper
layers. In Backpressure and Soft Backpressure the gradient is just subtracted from �k

i . In
Accelerated Backpressure the gradient is used along with local curvature information to
determine the approximate Newton direction d(N)

i . This is accomplished by the embedded
communication loop that we summarize in Algorithm 5.

ent descent because the dual function is differentiable. This improves the average convergence rate

from O(1/
p
k) to O(1/k). In practice, Soft Backpressure is still slow to converge, motivating the

ABP algorithm that we introduce in the following section.

4.2 Accelerated Backpressure

The backpressure-type algorithms of Section 4.1 exhibit slow convergence because they use rate

of change information, but have no knowledge of curvature. In twice differentiable centralized

deterministic problems, second order methods such as Newton method are used to take advantage

of curvature information. Direct application of Newton-type methods is not possible here because:

(i) the dual function is not twice differentiable; (ii) only a stochastic gradient can be observed
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in accordance with (4.11); (iii) the Newton direction requires data gathering and processing at a

central node. We solve (i) by introducing a generalized Hessian; (ii) is resolved by the fact that the

generalized Hessian is deterministic in this case and (iii) is resolved by using a Taylor’s expansion

of the Hessian inverse to approximate the Newton direction.

4.2.1 The Generalized Hessian

The dual function is not twice differentiable because the Lagrange dual defined in (4.7) has domain

constraints which cause lack of smoothness in its gradient – see propositions 5 and 6. However,

the second order behavior can be characterized by a Generalized Hessian, which is analagous to a

subgradient because it may be taken from a set of values defined by the convex hull of the left and

right limits approaching the points of discontinuity.

Definition 4.1 (Generalized Hessian [Sun and Kuo, 1998]). We say that H(�) is a generalized

Hessian of the dual function h(�) = L(R(�),�) if and only if

H(�) 2 @2L(R(�),�) = co

⇢

lim

�̄!�,�̄2D
g

r2L(R(�),�)

�

(4.22)

where co{·} denotes convex hull and Dg is the set of points on which L(R(�),�) is twice differen-

tiable.

Writing H(�) in block form we have,

H(�) =

2

6

6

6

6

6

6

6

4

H11(�) H12(�) · · · H1n(�)

H21(�) H22(�) . . . H2n(�)
...

...
. . .

...

Hn1(�) Hn2(�) · · · Hnn(�)

3

7

7

7

7

7

7

7

5

. (4.23)

The matrix (4.23) has n⇥ n blocks where each of the blocks is a square matrix with dimension K
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equal to the number of commodity types. The elements of the (i, j)th block are explicitly given by

h

Hij(�)
i

kl
:=

@2h(�)

@�k
i @�

l
j

=

@2L(R(�),�)

@�k
i @�

l
j

, (4.24)

where we expressed the dual function h(�) = L(R(�),�) in terms of the Lagrangian maximizers

R(�) in (4.8) to write the second equality. As per (4.24), the (i, j)th block Hij is associated with

second derivatives with respect to dual variables of nodes i and j. The (k, s)th element of each

block is associated with second derivatives with respect to commodities k and s.

Implicit in (4.24) is the differentiation of R(�) with respect to �. It can be seen from (4.16)

that Rk
ij(�) is not differentiable at the points where µij(�) = �k

i � �k
j . These points arise precisely

when the capacity constraint on edge (i, j) becomes active.

We show that Dg is a dense set by considering differentiability of Rk
ij(�) in two cases. First,

consider the case with � such that
P

k R
k
ij(�) = Cij , then according to Proposition 4, Rk

ij(�) is

may not be differentiable when �k
i � �k

j = µij(�), due to the [·]+ function. According to (4.15),

when �k
i � �k

j = µij(�), we have Rk
ij(�) = F k

ij(0) = maxx fk
ij(x). By monotonicity (decreas-

ing) of fk
ij(x) on R+, the optimal routing is the function Rk

ij(�) = 0 which is differentiable with

rRk
ij(�) = 0 for any � such that �k

i � �k
j < µij(�). Therefore, given �k

i � �k
j = µij(�) when can

choose ¯� with ¯�k
i = �k

i � ✏ for sufficiently small ✏ > 0 and ¯�k
j = �k

j for all j 6= i ensuring Rk
ij(

¯�)

is differentiable.

Second, assume we have � such that
P

k R
k
ij(�) < Cij . Then according to Proposition 4,

µij = 0 and Rk
ij(�) is differentiable as long as �k

i 6= �k
j . If �i = �j , there is a ¯� with ¯�k

i = �k
i + ✏

and ¯�j = �j for all i 6= j which is differentiable for ✏ small enough to ensure
P

k R
k
ij(

¯�) < Cij ;

by continuity of F k
ij(x) a sufficiently small ✏ exists. Furthermore, when µij = 0 and �k

i < �k
j , we

have �k
i � �k

j < µij(�) and Rk
ij(�) = 0 which yields the property that the discontinuities all occur

between non-trivial functions of � and the zero function.

From Proposition 4, if the capacity constraint is not active, the gradient r�Rk
ij(�) is a non-trivial

function of �, but when the capacity constraints becomes active r�Rk
ij(�) is zero. Since the points

of discontinuity are transitions between the nonzero gradients and zero gradients r�Rk
ij(�) = 0 the
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definition of the set of Generalized Hessians in (4.22) allows us to select the null derivative at these

points to generate a specific Generalized Hessian.

We proceed to compute this specific Generalized Hessian. The set of commodities that are

active across a particular edge are important. Thus, for given � and edge (i, j) 2 E define

Kij(�) = {k 2 K : Rk
ij(�) > 0}, (4.25)

as the set of commodities that are being transported across given edge (i, j) for multipliers �. Fur-

ther define the capacity sharing coefficients

sij(�) =

8

>

<

>

:

1/|Kij(�)| if µij(�) > 0,

0 if µij(�) = 0,
(4.26)

which take the value zero when the capacity constraint on edge (i, j) is inactive, i.e., when
P

k r
k
ij(�) <

Cij , and equals the inverse cardinality 1/|Kij(�)| of the set Kij(�) when the link capacity is sat-

urated. Using these definitions computing the generalized Hessian H(�) is a straightforward but

cumbersome derivation that we relegate to Appendix A. The results are stated in the following two

propositions that concern the off-diagonal blocks Hii(�) and diagonal blocks Hii(�), respectively.

Proposition 5. Let Hij(�) denote an off diagonal block of the generalized Hessian H(�) in (4.23)

associated with the dual function h(�) defined in (4.7) and denote the derivative of the inverse

derivative function F k
ij(�) of (4.15) as F 0

ij,k = @F k
ij(�)/@�. The kth diagonal element of the

Hessian block Hij(�) is given by

h

Hij(�)
i

kk
= F 0

ij,k

h

Rk
ij(�)

i

1
h

k 2 Kij(�)
ih

1� sij(�)
i

+F 0
ji,k

h

Rk
ji(�)

i

1
h

k 2 Kji(�)
ih

1� sji(�)
i

. (4.27)

where Kij(�) is the set of active commodities in the link i ! j defined in (4.25) and sij(�) is the
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capacity sharing coefficient in (4.26). The (k, l)th off diagonal element of Hij(�) can be written as

h

Hij(�)
i

kl
= �F 0

ij,k

h

Rk
ij(�)

i

1
h

k, l 2 Kij(�)
i

sij(�)

�F 0
ji,k

h

Rk
ji(�)

i

1
h

k, l 2 Kji(�)
i

sji(�). (4.28)

Proposition 6. The diagonal blocks Hii(�) of the generalized Hessian H(�) in (4.23) associated

with the dual function h(�) defined in (4.7) are given by the sums of the off diagonal blocks Hij(�),

i.e.,

Hii(�) =

X

j

Hij(�) =

X

j2n
i

Hij(�). (4.29)

4.2.2 Derivation of the Generalized Dual Hessian

Proof : We begin by computing the optimal flow rates Rk
ij(�) from the optimal queue priorities as

defined in (4.16). Substituting into

@L(R(�),�)

@�k
i

=

X

j2n
i

Rk
ji(�)�Rk

ij(�)� aki (4.30)

and differentiating with respect to � we construct the Hessian. Since aki is a constant the key is

differentiating Rk
ij(�) with respect to �. We can differentiate (4.16) using the chain rule yielding

@Rk
ij(�)

@y
=

@F k
ij(x)

@x

@

@y

✓

�
h

�k
i � �k

j � µij

i+
◆

(4.31)

where y = �k0
i0 for any k0, i0 6= ok0 . The existence of @F k

ij(x)/@x is guaranteed by our assumptions

on the edge costs fk
ij . Differentiating �

h

�k
i � �k

j � µij(�)
i+

is done by considering two cases.

First, when the capacity constraint on edge (i, j) is inactive we have µij(�) = 0 from (4.21). In this

case we have

@

@�k
i

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

=

8

>

<

>

:

�1 for �k
i > �k

j

0 for �k
i  �k

j

(4.32)
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and differentiating with respect to �k
j , we have

@

@�k
j

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

=

8

>

<

>

:

1 for �k
i > �k

j

0 for �k
i  �k

j

. (4.33)

There is no cross dependence between commodities k and l because µij = 0. Recall that a com-

modity is active on edge (i, j) if �k
i > �k

j , allowing us to substitute the condition �k
i > �k

j for

k 2 Kij in (4.32) and (4.33).

In the second case, the capacity constraint on edge (i, j) is active and µij(�) > 0. By our design

in Proposition 4, µij(�) produces the reverse water filling effect, producing

@

@�k
i

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

=

1

|Kij(�)|
� 1 (4.34)

and differentiating with respect to �k
j , we have

@

@�k
i

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

= 1� 1

|Kij(�)|
(4.35)

where Kij is the set of active commodities on the edge (i, j). Unlike in the previous case, there are

cross terms:
@

@�l
i

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

=

�1

|Kij(�)|
, (4.36)

differentiating with respect to �l
j , we have

@

@�l
i

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

=

1

|Kij(�)|
. (4.37)

Discontinuities arise precisely when we transition from case one to case two which corresponds

to the capacity constraint becoming active, i.e. an edge becoming saturated. In accordance with

the generalized Hessian definition in (4.22), we can select any value in the convex hull of the limit

points of our discontinuity. We proceed by selecting values produced by case 1, because many of

the terms are null, greatly simplifying the computation. In fact case 1, also contains discontinuities
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when a commodity becomes active on an edge. In (4.32), our generalized Hessian definition allows

us to choose
@

@�k
i

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

= 0 (4.38)

when �k
i = �k

j and the same holds for (4.33). To complete the proof we must place all the partial

derivatives in their appropriate blocks. Observe that the blocks of H(�) correspond to node pairs

(i, j). For pairs (i, j) 62 E the Hij = 0 because there are no terms Rk
ij(�) for these pairs. Consider

Hij for (i, j) 2 E , generated by

[Hij ]kl =
@

�k
i

glj(�) =
@

�k
i

⇣

Rl
ij(�)�Rl

ji(�)
⌘

(4.39)

which also holds in the case where l = k. For the diagonal blocks more of our partial derivative

terms appear,

[Hii]kl =
@

�k
i

gli(�) =
X

j2n
i

@

�k
i

⇣

Rl
ij(�)�Rl

ji(�)
⌘

(4.40)

which also holds in the case where l = k. Applying the definitions of Kij(�) from (4.25), sij(�)

from (4.26) and the partial derivatives from (4.32)-(4.37), completes the construction of the gener-

alized Hessian. ⌅

4.2.3 Interpretation of the Generalized Dual Hessian

The expression in (4.29) reduces computation of the diagonal blocks of H(�) to the computation of

the off diagonal blocks. Their validity endows the Hessian of the dual function with an interpretation

as a weighted block Laplacian. The expressions in (4.27) and (4.28) look complicated but are

actually simple. The terms of the form F 0
ij,k(R

k
ij(�)) are just the derivatives of the inverse derivative

function in (4.15). If, e.g., we use quadratic functions fk
ij(R

k
ij(�)) = �(Rk

ij(�))
2/2 we just have

F 0
ij,k(R

k
ij(�)) = �1.

The indicator function 1(k 2 Kij(�)) in (4.27) simply distinguishes between the values of
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� for which commodity k is transported from i to j from those for which it is not. The term

F 0
ij,k(R

k
ij(�))(1� sij(�)) is added to the Hessian component [Hij ]kk if and only if the commodity

k is active in the link i ! j. Likewise the term F 0
ji,k(R

k
ji(�))(1 � sji(�)) is added to Hessian

component [Hij ]kk if and only if the commodity k is active in the link j ! i. The variables sij

simply distinguish the case when µij(�) is null from when it is not, or, equivalently, the case when

some of the link capacity is left unused from the case when all of the link capacity is allocated to

some node. If some capacity is unused in the link i ! j we have µij(�) = 0 and the derivative

F 0
ij,k(R

k
ij) is not scaled. If all of the capacity in the link i ! j is used, the derivative F 0

ij,k(R
k
ij) is

scaled by (1� 1/|Kij(�)|).

Likewise, the indicator functions 1(k, l 2 Kij(�)) and 1(k, l 2 Kji(�)) in (4.28) imply that the

corresponding terms are added to the Hessian component [Hij ]kl only if both commodities, k and

l are active in the link i ! j or the link j ! i. If some capacity is left unused in the link i ! j

we have sij(�) = 0 and nothing is added to the Hessian component [Hij ]kl. If all of the capacity is

used we scale the derivative F 0
ij,k(R

k
ij(�)) by the inverse of the number of active commodities on

the link, 1/|Kij(�)|. Likewise, we add nothing to [Hij ]kl if some capacity is left unused in the link

j ! i and scale F 0
ji,k(R

k
ji(�)) by the inverse of the number of active commodities on the link j ! i

otherwise.

Propositions 5 and 6 define a generalized Hessian for the dual function h(�) defined in (4.7).

The components of the Hessian depend on the primal Lagrangian maximizers Rk
ij(�) as well as the

auxiliary variable µij(�). As it follows from Proposition 4, both of these quantities depend on the

dual variable � but are independent of the arrival rates aki . This is because the gradient dependence

on the arrival rates is an additive constant [cf. (4.9)]. This simple fact is of fundamental impor-

tance here because it allows exact computation of the generalized Hessian H(�) and the consequent

implementation of a stochastic Newton algorithm in which generalized Hessian inverses H�1
(�)

premultiply stochastic gradients gki (�) instead of (regular) gradients ḡki (�). Indeed, consider time

index t and current iterate �(t) and recall that g(t) stands for the stochastic subgradient with com-

ponents given by (4.11). The stochastic Newton method replaces the dual update in (4.12) by the
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recursion

�(t+ 1) =

h

�(t)� ↵tH
�1

(t)g(t)
i+

, (4.41)

where we have used H�1
(t) = H�1

(�(t)) to denote the inverse of the generalized Hessian evalu-

ated at �(t). The deterministic nature of the generalized Hessian H�1
(t) when �(t) is given permits

the definition of the dual stochastic Newton algorithm in (4.41). This possibility notwithstanding,

implementation of the stochastic Newton method in (4.41) requires centralized computation of the

generalized Hessian inverses H�1
(t). The remaining challenge addressed by ABP is to approximate

the inversion of H(�) through local operations. We discuss this in the following section.

4.2.4 Distributed Approximation of the Stochastic Newton Step

We begin by pointing out that the generalized Hessian in (4.23) with blocks as explicitly given in

propositions 5 and 6 is block sparse with a sparsity pattern that matches the adjacency matrix of the

network. We state this in the following lemma along with the fact that the diagonal blocks Hii(�)

are positive semidefinite.

Lemma 8. The Dual Hessian, H(�) in (4.23) associated with the dual function h(�) defined in

(4.7) is block sparse with respect to the graph G, i.e.,

Hij(�) = 0 for all i 6= j, s.t. (i, j) 62 E . (4.42)

Furthermore, the diagonal blocks of Hii(�) are positive semidefinite.

Proof : From (4.26),
P

k 1(k 2 Kij)sij = 1, combined with (4.29), we have [Hii]kk �
P

l[Hii]kl.

Recall, F 0
ij,k(r

k
ij)  0 from (4.15) and the assumption that fk

ij(·) is monotone decreasing. Therefore

the diagonal elements are positive and according to Section 6.2 of [Berman and Plemmons, 1979],

Hii is positive semidefinite by diagonal dominance. Block sparsity arises trivially from the fact that

@/@�k0
i0

✓

�
h

�k
i � �k

j � µij

i+
◆

= 0 for any k0 when i0 is not i or j. ⌅

Lemma 8 guarantees that all elements of the Hessian can be computed using local information.

Elements of the Hessian require knowledge of the local action sets Kij(�) from (4.25), which are
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computed using the local flow values {rkij(�)}k. Furthermore, Lemma 8 states that the diagonal

blocks Hii(�) are positive semidefinite, which in turn indicates that the nodes depend positively on

their own queues. This fits our intuition because we expect penalties on a specific queue to become

larger when those queues grow.

In order to accelerate Backpressure and retain its distributed nature we compute a dual update

direction based on the ADD family of algorithms defined in [Zargham et al., 2011]. ADD relies on

splitting the dual Hessian and leverages its block sparsity pattern to approximate its inverse. To be

explicit, consider the dual iterate �(t) at time t and denote as H(t) = H(�(t)) the corresponding

Hessian. Let I denote an identity matrix of proper dimension and define the block diagonal matrix

D(t) with diagonal blocks Dii(t) defined in terms of the Hessian diagonal blocks Hii(t) as

Dii(t) = 2Hii(t) + I. (4.43)

The Hessian splitting separates the block diagonal matrix D(t) for which we define a matrix B(t) :=

D(t)�H(t) so that we can write

H(t) = D(t)�B(t) (4.44)

= D(t)
⇥

I �D�1
(t)B(t)

⇤

.

For future reference observe that B(t) has the same sparsity pattern of H(t). Denote the diagonal

blocs of B(t) as Bii(t) = Dii(t) � Hii(t) = I + Hii(t) and the off diagonal blocks of B(t) as

Bij(t) = �Hij(t)

The ADD-N algorithm approximates the Hessian inverse H�1
(t) by truncating the Taylor’s

expansion of the term
h

I �D� 1

2

(t)B(t)D� 1

2

(t)
i�1

at its N th term. Using ¯H(N) to denote such

approximation we have

¯H(N)
(t) =

N
X

m=0

⇥

D�1
(t)B(t)

⇤m
D�1

(t). (4.45)

Relying on the Hessian inverse approximation in (4.45) to substitute H�1
(t) in the stochastic New-
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ton method in (4.41) yields the ABP-N algorithm. Specifically, define the ABP-N direction as

d(N)
(t) := � ¯H(N)

(t)g(t) (4.46)

= �
N
X

m=0

⇥

D�1
(t)B(t)

⇤m
D�1

(t)g(t),

and the ABP-N algorithm by recursive application of the iteration

�(t+ 1) =

h

�(t)� ↵t
¯H(N)

(t)g(t)
i+
=

h

�(t) + ↵td
(N)

(t)
i+
. (4.47)

Equivalently, we can define the local components d(N)
i (t) of the ABP direction d(N)

i (t) = {d(N)
i (t)}ni=1

so that it is possible to rewrite (4.47) for each of the multiplier components,

�i(t+ 1) =

h

�i(t) + ↵td
(N)
i (t)

i+
. (4.48)

The important observation here is that the ABP-N direction d(N)
i (t) in (4.48) can be computed by

node i by aggregating information from, at most, N hops away. Indeed, observe that B(t) has a

sparsity pattern that matches the sparsity pattern of the network, because this is true of H(t). Thus,

when we consider the second summand
⇥

D�1
(t)B(t)

⇤1 in (4.46) we end up with a matrix whose

sparsity pattern is that of the underlying network. When we consider the third term
⇥

D�1
(t)B(t)

⇤2

the resulting sparsity pattern is that of the network of two-hop neighbors. Since determination of the

ABP direction d(N)
(t) necessitates communication with the nodes that match this sparsity pattern,

no information from nodes farther than N hops away is necessary.

More to the point, observe that the ABP-0 direction can be written as d(0) = �D�1gi and that

for all N other than 0 we can write the recursion

d(N)
(t) = �D�1

(t)g(t) +D�1
(t)B(t)d(N�1)

(t). (4.49)

Exploiting the fact that the sparsity pattern of B(t) is that of the network and using the definitions

of the local pieces d(N)
i of the ABP direction and gi(t) of the gradient as well as the definition of
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the blocks Dii and Bij the recursion in (4.49) is equivalent to the componentwise recursions

d(N)
i (t) = D�1

ii (t)gi(t) +
X

j2n
i

,j=i

D�1
ii (t)Bij(t)d

(N�1)
j (t), (4.50)

where the ABP-0 direction can also be computed locally as d(0)i (t) = �D�1
ii (t)gi(t). The expres-

Algorithm 4: Local computation of ABP direction

1 function dNi = ABP-N dir
⇣

{rkij , rkji}jk, {aki }k, {µij}j
⌘

2 Active sets Kij as per (4.25). Sharing coefficients sij as per (4.26)
3 Hessian blocks Hij as per (4.27) and (4.28). Blocks Hii as per (4.29)
4 Set Dii = 2Hii + I , Bii = I +Hii and Bij = �Hij

5 Stochastic gradients: gki =

X

j2n
i

rkji � rkij � aki � ⇠

6 Initialize ABP direction: d(0)i = �D�1
ii gi,

7 for m=1,. . . , N do
8 Send d(m�1)

i to j 2 ni. Receive directions d(m�1)
j from j 2 ni

9 Update ABP direction: d(m)
i = �D�1

ii gi(t) +
X

j2n
i

D�1
ii Bijd

(m�1)
j

10 end
11 return d(N)

i = d(m)
i

sion in (4.50) results in a local function for the computation of the local ABP direction di(t) that we

shown in Algorithm 4. The inputs to this function are routing rates rkij = rkij(t) and rkji = rkji(t) for

all neighbors j 2 ni and flows k; arrival rates aki = aki (t) for all flows k; and water levels µij for all

neighbors j 2 ni. All of these variables are available locally except for the incoming rates rkji that

are communicated from neighbors. These inputs are used to determine the active sets Kij in (4.25)

and the capacity sharing coefficients sij in (4.26) as stated in Step 2. Observe that in (4.25) and

(4.26) these sets and coefficients are defined as functions of �, which they are, but that is suffices

to know rkij , r
k
ji, and µij to compute them. These preliminary computations are then used in Step

3 to determine the local Hessian blocks Hij using the expressions (4.27) and (4.28) of Proposition

5 and the Hessian blocks Hii using (4.29) in Proposition 6. The values of the Hessian block are

then used to determine the corresponding blocks of the splitting matrices in (4.44). These blocks

are Dii = 2Hii+ I , Bii = I+Hii and Bij = �Hij , which are computed in Step 4. The local com-
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ponents of the stochastic gradient gki are then computed as dictated by (4.11). These preliminary

computations lead to the core of the algorithm in steps 6-10 that implement the recursion in (4.50).

Step 6 initializes the recursion by determining the value of the ABP-0 direction d(0)i = �D�1
ii gi.

The update in Step 9 utilizes local and neighboring components of the ABP-(m � 1) direction to

compute the local component of the ABP-m direction. To have the neighboring components avail-

able for this computation the local components of the ABP-(m � 1) direction have to be shared

between neighbors as stated in Step 8. The outcome of N iterations of this loop is the ABP-N

which is returned in Step 11. Observe that to implement this loop we require a total of N commu-

nication exchanges with neighboring nodes. ABP is summarized in Algorithm 5. The algorithm

Algorithm 5: Accelerated Backpressure for node i

1 Observe qki (0). Initialize �k
i (0) = qki (0) for all k and i 6= ok

2 for t = 0, 1, 2, · · · do
3 for all neighbors j 2 n(i) do
4 Send duals {�k

i (t)}k – Receive duals {�k
j (t)}k

5 Compute µij such that

X

k

F k
ij

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

= Cij

6 Transmit packets at rate

rkij(t) = F k
ij

⇣

�[�k
i (t)� �k

j (t)� µij ]
+
⌘

7 end
8 Send variables {rkij(t)}kj – Receive variables {rkji(t)}kj
9 d(N)

i (t) = ABP-N dir
⇣

{rkij(t), rkji(t)}jk, {aki (t)}k, {µij}j
⌘

10 Update dual variables: �i(t+ 1) =

h

�i(t) + ↵td
(N)
i (t)

i+

11 end

is identical to Soft Backpressure up until Step 8 and is repeated for clarity. The difference is that

instead of updating the dual variables by descending on the local stochastic gradient we descend

along the local ABP-N direction d(N)
i (t) (Step 10). The ABP-N direction is computed with a call to

Algorithm 4 to which the routing rates rkij(t) and rkji(t), the arrival rates aki = aki (t), and the water

levels µij are passed as parameters (Step 8).
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Table 4.1: Maximum communication cost per node and iteration, relative to the maximum
degree � and ABP parameter N .

Communication Computation

Backpressure O(�) O(�)

Soft Backpressure O(2�) O(3�)

Accelerated Backpressure O((N + 2)�) O(N�

2
+ 3�)

4.2.5 Communication and Computationation Costs

Implementation of each ABP-N iteration requires N+2 communications with each neighbor. These

include the exchange of duals and primals in steps 4 and 8 of Algorithm 5 and the N exchanges of

ABP directions in Step 9 of Algorithm 4. This is an extra N communications per neighbor relative

to the cost of Soft Backpressure – which requires only exchanges of primals and duals – and an

extra N + 1 communications relative to Backpressure – which requires exchange of primals only.

Denoting the maximum node degree as � this gives communication costs of order O((N + 2)�),

O(2�), and O(�) as summarized in Table 4.1. The computational cost of each Backpressure

iteration grows proportional to number of neighbors as we need to perform primal computations

for each link. For Soft Backpressure we have primal and dual computations in steps 6 and 9 of

Algorithm 3 each of which grows with the number of neighbors. We also need to compute the

water level µij as per Step 5 of Algorithm 3, the complexity of which also scales linearly with the

number of neighbors. This yields a total complexity that scales in the order of 3�. For ABP-N

we also have to implement N matrix products at a cost of not more than �

2 operations each. The

resulting computational costs are also summarized in Table 4.1. We emphasize that all these costs

grows with the maximum degree � rather than with the size of the network n. The communications

and computation costs of ABP grow with the parameter N . Larger N generates a more accurate

approximation of the Newton Step at the cost of additional communication and computation. In

practice, implementations with N = 1 perform best in practice; see Section 4.4.
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4.3 Stability Analysis

In order to claim the ABP algorithm is an alternative to the Backpressure and Soft Backpressure

algorithms, a guarantee that it achieves queue stability is provided. We do so by combining a

Lyapunov drift analysis [Georgiadis et al., 2006] with duality theory and supermartingale analysis,

in particular as applied to stochastic subgradient descent, [Nedić and Ozdaglar, 2009b].

4.3.1 Preliminary Analysis

For compactness we make use of matrix vector notation and annotate time as subindices instead of

arguments. The queue update equation in (4.1) becomes

qt+1 = qt � g(�t) (4.51)

where qt = {qki (t)}, and g(�t) = {gki (�t)} both of which are organized as (n � 1) stacks of

|K|-dimensional vectors. For the dual update in (4.47) we also remove the projection operator and

write

�t+1 = �t + ↵tdt (4.52)

where �t = �(t) and dt = d(N)
(t). We can remove the projection in (4.47) because in problem

(4.5) the capacity constraint is binding at the optimal point, making the problem equivalent to the

equality constrained case. We proceed with our analysis using (4.52) and start by proving important

properties of stochastic gradients and Hessians.

Lemma 9. The stochastic gradient is bounded

kgt(�)k  �, 8t, 8�, (4.53)

every Generalized Hessian satisfies

kH(�)k  �, 8� (4.54)
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and the approximate inverse Hessian is bounded

0 < �  k ¯H(�)k  N + 1, 8� (4.55)

where N is the communication parameter introduced in (4.45).

Proof : For gt(�), consider (4.11) and recall our assumption that the random portion of the arrivals

has finite support. Then observing from (4.8) that R(�) lies in a compact polyhedral set

R(�) 2 C = {r � 0 :

X

k

rkij  Cij , 8(i, j) 2 E}, (4.56)

implies that gt(�) has a finite upper bound � that holds for all � and all t.

In the case of H(�), we follow the same logic as for gt(�). Consider any Generalized Hessian

definition satisfying (4.22) and the element-wise definition in (4.24). H(�) is a function of R(�)

because rh(�) = ḡ(�) defined in (4.9). From (4.25) and (4.26), Kij(�) and sij(�) are computed

from R(�), so we can express

kH(�)k = k ˜H(R(�))k (4.57)

using Propositions 5 and 6. From the derivation of these propositions in Appendix A, ˜H(r) is finite,

for finite r for any Generalized Hessian. Since R(�) lies in the compact polyhedral set from (4.56),

we have

kH(�)k  max

r2C
k ˜H(r)k = �. (4.58)

In the case of ¯Ht(�), we consider its construction for an arbitrary Generalized Hessian H = H(�).

Observing equation (4.45) and considering the splitting H = D � B, each term in the sum (4.45)

is positive definite with largest eigenvalue upper bounded by maxi eig
�

(Dii)
�1
�

. Since

Dii = Hii + I ⌫ I

where Dii ⌫ 0 for any �, we have k ¯H(N)
(�)k  N + 1.
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Since each term in the sum from (4.45) is positive, we consider the first term for which a lower

bound � is given by mini eig(D�1
ii ) = 1/(1 + maxi eig(Hii)) where maxi eig(Hii) is precisely the

maximum achievable eigenvalue of a diagonal block of H(�). Since each H(�) can be expressed as

˜H(R(�)) the maximum achievable value is finite for R(�) 2 C, guaranteeing that our lower bound

� is strictly positive. ⌅

Lemma 10. The dual function h(·) satisfies,

h(ˆ�)� h(�)  ḡ(�)0(�� ˆ�) +
�

2

k�� ˆ�k2 (4.59)

where � is the upper bound for all generalized Hessians defined in Lemma 9.

Proof : We begin with the statement of the generalized second order Taylor expansion taken

directly from item (iv) of section 2 in [Guerraggio et al., 2001]. Given a once continuously differ-

entiable function h(�) with gradient ḡ(�) and set of generalized Hessians H(�),

h(�)� h(ˆ�)� ḡ(�)0(ˆ�� �) 2 S(�, ˆ�) (4.60)

where the set S(�, ˆ�) is defined

S(�, ˆ�) =
⇢

1

2

(�� ˆ�)0H(�� ˆ�) : H 2 [z2[�,�̂]H(z)

�

. (4.61)

Consider the maximal element in s̄(�, ˆ�) = maxS(�, ˆ�),

s̄(�, ˆ�) = max

H2[
z2[�,

ˆ

�]

H(z)

1

2

(�� ˆ�)0H(�� ˆ�). (4.62)

From the uniform upper bound on all generalized Hessians, ||H||  �, we have

s̄(�, ˆ�)  �

2

(�� ˆ�)0(�� ˆ�). (4.63)

Since h(ˆ�)� h(�)� ḡ(�)0(ˆ�� �) belongs to the set S(�, ˆ�), it can be no larger than the maximal
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element in that set,

h(ˆ�)� h(�)� ḡ(�)0(ˆ�� �)  s̄(�, ˆ�). (4.64)

Applying (4.63) to (4.64), completes the proof. ⌅

4.3.2 Supermartingale Analysis

Proposition 7. Consider the ABP algorithm implemented with the dual step (4.52), decaying step

size ↵t satisfying
P

t ↵t = 1,
P

t ↵
2
t < 1 and the ADD-N update direction d(N)

t as defined in

(4.46), then

lim

t!1
kḡ(�t)k = 0 (4.65)

almost surely.

Proof : Applying Lemma 10, for � = �t and ˆ� = �t+1, we have

h(�t+1)  h(�t) + ḡ(�t)
0
(�t+1 � �t) +

�

2

k�t+1 � �tk2. (4.66)

Define the dual optimality gap

Lt = h(�t)� h(�⇤
). (4.67)

Subtracting h(�⇤
) from both sides of (4.66), using the definition in (4.67), and observing that ac-

cording to the dual ABP update in (4.52) we have �t+1 � �t = �↵t
¯H(�t)gt(�t) we can write

Lt+1  Lt � ↵tḡ(�t)
0
¯H(�t)gt(�t) +

�

2

k↵t
¯H(�t)gt(�t)k2. (4.68)

Further recall the upper bound k ¯H(�)k  2 on the norm of the approximate Hessian inverse as well

as the upper bound kgt(�)k  � on the norm of the stochastic gradient, both derived in Lemma 9.

Using these bounds in the third summand on the right hand side we simplify (4.68) to

Lt+1  Lt � ↵tḡ(�t)
0
¯H(�t)gt(�t) +

�

2

↵2
t (N + 1)

2�2. (4.69)
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Let �0:t stand in for the history of the dual variables process up until time t and consider the expec-

tation E
⇥

Lt+1

�

��0:t
⇤

of the duality gap at time t + 1 given this past history. With �0:t given, �t in

particular is given in (4.69). Since the duality gap Lt and the Hessian estimate H(�t) depend on

�t only, H(�t) and Lt are also given in (4.69) and the only random variable left in the right hand

side is gt(�t). Thus, it follows from (4.69) that the conditional expectation E
⇥

Lt+1

�

��0:t
⇤

can be

bounded as

E
⇥

Lt+1

�

��0:t
⇤

 Lt � ↵tḡ(�t)
0
¯H(�t)E

⇥

gt(�t)
�

��0:t
⇤

+

�

2

↵2
t (N + 1)

2�2. (4.70)

By definition, the stochastic gradient gt(�t) is such that E
⇥

gt(�t)
�

��0:t
⇤

= E
⇥

gt(�t)
�

��t

⇤

= ḡ(�t).

Substituting this equality in (4.70) yields

E
⇥

Lt+1

�

��0:t
⇤

 Lt � ↵tḡ(�t)
0
¯H(�t)ḡ(�t) +

�

2

↵2
t (N + 1)

2�2. (4.71)

Observe that the quadratic form ḡ(�t)
0
¯H(�t)ḡ(�t) is positive definite since the smallest eigenvalue

of ¯H(�) is bounded by a nonnegative constant � as shown in Lemma 9. Using this eigenvalue lower

bound further reduces (4.71) to

E
⇥

Lt+1

�

�Ft

⇤

 Lt � ↵t�kḡ(�t)k+
�

2

↵2
t (N + 1)

2�2. (4.72)

The sequences Lt, ↵t�kḡ(�t)k, and �
2↵

2
t (N+1)

2�2 are nonnegative. The sequence �
2↵

2
t (N+1)

2�2

is also summable because square summability is a condition on the step size sequence ↵t. These

properties allow application of the supermartingale convergence theorem, see e.g., Theorem E.7.4

of [Solo and Kong, 1995]. Given nonnegative stochastic processes Vt � 0, Xt � 0 and Yt � 0 and

a sigma algebra Ft measuring the processes up until time t. If the processes are such that

E
⇥

Vt+1

�

�Ft

⇤

 Vt �Xt + Yt, (4.73)

and the process Yt is summable with probability 1 then Xt is almost surely summable and that the
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limit of Vt exists almost surely, i.e.,

lim

t!1
Vt = V1,

1
X

t=1

Xt < 1, a.s. (4.74)

Identifying Ft with �0:t, Vt with Lt, Xt with ↵t�kḡ(�t)k and Yt with �/2↵2
t (N + 1)

2�2 it follows

from (4.74) that

lim

t!1
Lt = L1,

1
X

t=0

↵t�kḡ(�t)k2 < 1, a.s. (4.75)

We prove that L1 not only exists but is zero for almost all realizations. To do so, consider a

realization for which L1 6= 0. Then, the limit must be strictly positive because the sequence Lt is

nonnegative. In turn, this implies that there exists a time ⌧ such that for all t � ⌧ we have Lt � 1

for some positive constant 1 > 0. Since Lt = h(�t)� h(�⇤
) this means that h(�t) � h(�⇤

) + 1

for all times t � ⌧ . Recall now that for a differentiable convex function we can have rh(�) = 0

only when � = �⇤; this is true even if h(�) is not differentiable, as long as we reinterpret rh(�) as

a subgradient. Using this fact it follows that if h(�t) � h(�⇤
) + 1 for all t � ⌧ there must be a

constant 2 > 0 such that

krh(�t)k � 2 > 0, for all t � ⌧. (4.76)

Observe now that by definition ḡ(�t) = rh(�t). Thus, we can use (4.76) to lower bound the series

in (4.75) as
1
X

t=0

↵t�kḡ(�t)k2 �
1
X

t=⌧

↵t�kḡ(�t)k2 � 22�
1
X

t=⌧

↵t. (4.77)

Since the step size sequence is nonsummable by assumption, we have that
P1

t=⌧ ↵t = 1 which,

upon substitution in (4.77) yields

1
X

t=0

↵t�kḡ(�t)k2 = 1 (4.78)

Since we know that (4.78) is true in, at most, a set of zero measure, and also true whenever L1 6= 0,

it must be that L1 6= 0 in a set of zero probability. Thus, we must have L1 = 0 a.s. Further using
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the definition of Lt = h(�t)� h(�⇤
) we conclude

lim

t!1
h(�t) = h(�⇤

), a.s. (4.79)

As we already pointed out the dual function is differentiable according to Proposition 4. It then must

satisfy the first order optimality condition ḡ(�⇤
) = rh(�⇤

) = 0. Thus, the almost sure convergence

of h(�t) to h(�⇤
) stated in (4.79) implies almost sure convergence of ḡ(�⇤

) = rh(�⇤
) to 0 as stated

in (4.65). ⌅

Proposition 7 is the first step in our theoretic convergence guarantee. By implementing a decay-

ing step size when updating the dual variables, convergence to the optimal dual variables is achieved.

Since the sequence of dual variables converges to the optimal dual variables almost surely, our rout-

ing Rk
ij(�t) becomes a feasible routing. We proceed to leverage this fact to ensure the queues remain

stable.

Proposition 8. Consider a dual variables process �t such that the dual gradient ḡ(�t) satisfies

lim

t!1
||ḡ(�t)|| = 0, a.s. (4.80)

Then, all queues empty infinitely often with probability one, i.e.,

lim inf

t!1
qki (t) = 0, a.s., for all k, i 6= ok (4.81)

Proof : The result in (4.81) is true if for arbitrary time ⌧ � 0 and arbitrary constant ✏ the queue

length qki (t) is almost surely smaller than ✏ at some point the future. To write this statement formally

define the stopped process

q̃ki (t) =

8

>

<

>

:

qki (t) if qki (u) > 0 for all ⌧  u  t,

0 else .
(4.82)

The stopped process q̃ki (t) follows the queue length process qki (t) until the queue length becomes
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null for the first time after time ⌧ . If and when the queue empties after time ⌧ the process is stopped

and all subsequent values are set to q̃ki (t) = 0. With this definition (4.81) is equivalent to

lim

t!1
q̃ki (t) = 0, a.s., for all k, i 6= ok (4.83)

I.e., the definition of the stopped process allows replacement of the limit infimum in (4.80) by a

regular limit in (4.83).Without loss of generality we consider ⌧ = 0 in (4.82) to simplify notation.

Consider the queue update defined in equation (4.1) rewritten in terms of the routing function

in equation (4.8),

qki (t+ 1) = qki (t)�
X

j2n
i

�

Rk
ij(�t)�Rk

ji(�t)� aki (t)
�

. (4.84)

Define a �-algebra encoding the histories for the queues and dual variables up to time t,

�t = {�⌧ , q⌧ | 8⌧  t}. (4.85)

Taking expectation with respect to the arrival process and conditioned on the past history as encoded

by �t,

E
h

qki (t+ 1)

�

��t
i

= qki (t)�
X

j2n
i

�

Rk
ij(�t)�Rk

ji(�t)� aki
�

(4.86)

where we recall E
⇥

aki (t)
⇤

= aki . Observe from definition (4.9)

ḡki (�t) + ⇠ =

X

j2n
i

�

Rk
ij(�t)�Rk

ji(�t)� aki
�

. (4.87)

Substituting into (4.86) we have

E
h

qki (t+ 1)

�

��t
i

 qki (t)� ḡki (�t)� ⇠. (4.88)

From proposition 7 we know that kḡ(�t)k converges to zero almost surely, therefore there exists a

T such that kḡ(�t)k  ⇠ � ✏ for all t � T for any ✏ 2 (0, ⇠). For any particular (i, k), we have
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|ḡki (�t)|  kḡ(�t)k, allowing us to conclude that

E
h

qki (t+ 1)

�

��t
i

 qki (t)� ✏, 8t � T (4.89)

for all qki (t) � ✏ because qki (t) � 0 for all t.

Recalling the definition of the stopped process in (4.82) it follows from (4.89) that there exists

a time T such that

E
h

q̃ki (t+ 1)

�

��t
i

< q̃ki (t) (4.90)

for all q̃ki (t) > 0, therefore q̃ki (t) converges to zero almost surely. While qki (t) may move away

from zero after q̃ki (t) converges, we reinitialize the stopped martingale process to show that qki (t)

must eventually return to zero. ⌅

Corollary 1. Consider the Accelerated Backpressure algorithm, defined by (4.52) with d(N)
t as

defined in (4.46) and primal Lagrangian maximizers defined in (4.10). If the step size sequence

is chosen to satisfy
P

t ↵t = 1 and
P

t ↵
2
t < 1, all queues become empty infinitely often with

probability one,

lim inf

t!1
qki (t) = 0, a.s., for all k, i 6= ok. (4.91)

Proof : From Proposition 7, we know that ||ḡ(�t)|| converges to zero which allows application

of Proposition 8. From Proposition 8 it is guaranteed that each queue has a limit infimum equal to

zero, which is equivalent to having each queue become empty infinitely often. ⌅

Corollary 1 is a sufficient condition for queue stability. In fact it is a much stronger result

because the queues are always eventually cleared. This occurs because our dual variables converge

to the optimal priorities which yield a routing Rk
ij(�k) which forces the queue lengths to decrease

in Expectation whenever they are non-zero.
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Figure 4.3: Several numerical experiments for the ABP algorithm presented in this section
are performed on this 10 node network with 5 data types. The destinations are unique for
each data type and are chosen randomly.

4.4 Numerical Experiments

Numerical experiments are performed to compare the ABP algorithm summarized in algorithms 4

and 5 with the Backpressure and Soft Backpressure algorithms summarized in algorithms 2 and 3.

In all algorithms we use a fixed step size ↵t = 1. Observe that constant stepsizes are not covered by

the guarantees of Section 4.3. We use constant stepsizes here to understand this different scenario.

The objective function used for Soft Backpressure and ABP is of the form

fk
ij(r

k
ij) = �1

2

⇣

rkij

⌘2
+ �k

ijr
k
ij . (4.92)

The quadratic terms increase the cost of routing a large number of packets across a single link and

help to eliminate myopic routing choices that lead to sending packets in cycles. The linear terma �k
ij

are introduced to reward the transmission of packets to their final destinations. In our experiments

we set �k
ij = 10 for all edges routing to their respective data type destinations, i.e., when j = ok,

and set �k
ij = 0 for all other i, j, k. With this choice for fk

ij the derivative inverse function in (4.15)

is simply F k
ij(y) = �k

ij � y. This simple derivative inverse function simplifies implementation of

steps 5 and 6 of algorithms 5 and 3. In all algorithms we make ⇠ = 0 and for ABP we further set

the approximation parameter to N = 1 so that ABP-1 is implemented. Of all the ABP algorithms,

ABP-1 is the one with smallest communication overhead. Higher order members of the ABP family

perform better than ABP-1.
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Figure 4.4: Without access to arrival statistic, the ABP algorithm learns a routing strategy
that stabilizes the queues faster than the Soft Backpressure or Backpressure algorithms,
leading to fewer queued packets at steady state.

We begin by considering the 10 node network shown in Figure 4.3 with individual link capaci-

ties Cij chosen uniformly at random from the interval [10, 100]. We consider the problem of routing

5 data types having destinations that are chosen at random and average arrival rates of 5 packets per

unit of time for each data type and node. This results in an average total load of 45 packets per

flow and 225 packets per unit of time for the network as a whole. Recall that these arrival rates are

unknown to nodes which respond to the number of packets that are received in each time slot. The

number of packets that arrive in each time slot is selected from the discrete uniform distribution

over the set {0, 1, . . . , 10}.

Figure 4.4 shows the total number of packets queued in the system as a function of elapsed time

for a sample run. ABP-1 stabilizes the queues after about 50 iterations while Soft Backpressure

requires in excess of 100 iterations. The number of iterations that Backpressure needs to stabilize

queues is difficult to judge due to its volatility but it seems that it takes in the order of 300 to 400

iterations for the queues to stop growing. Easier to judge is the fact that ABP-1 stabilizes queues at

a much shorter length. The total number of packets queued never exceeds 1,110. Soft Backpressure
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Figure 4.5: The Accelerated Backpressure algorithm converges to the optimal dual vari-
ables yielding a consistent routing strategy rather than the oscillatory solutions generated
by Backpressure and Soft Backpressure.

stabilizes with around 4,000 packets in the system, while Backpressure grows to more than 7,000

queued packets before reducing the number of packets to about 5,000. Further observe that in

addition to having shorter queues, ABP-1 has smaller variations in queue lengths.

The reason why ABP-1 is able to achieve less volatility in queue lengths is because the dual

variables approach their optimal values, which in turn leads to less variation in the routing variables

computed from them. This is not true of Backpressure and Soft Backpressure whose dual variables

have large oscillations around their optimal values. This is illustrated in Figure 4.5. The dominant

feature of dual variables for Backpressure and Soft Backpressure is their oscillatory behavior. For

ABP-1 the dual variables converge to their optimal values in about 50 iterations, which explains

why queues stabilize after this much time elapses.
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Figure 4.6: A successful routing strategy is characterized by routing as many packets out
of the network as are arriving exogenously. While Soft Backpressure and soft Backpressure
can achieve this state on average, Accelerated Backpressure achieves this balance on a per
iteration basis.

The resulting stability in routing variables is illustrated in Figure 4.6-top. Shown in this figure

is the instantaneous value of the queue imbalances
P

j2n
i

rkij(t) � rkji(t) � aki (t) summed over

the whole network. Observe how ABP-1 succeeds in satisfying these constraints for all times –

this is not strictly true, there are still random variations around
P

j2n
i

rkij(t) � rkji(t) � aki (t) =

0 but they are small. For Backpressure and Soft Backpressure this is not true instantaneously.

It is true on average, as we show in Figure 4.6-bottom, and this is sufficient to stabilize queues.

However, the instantaneous variations in this constraints make the behavior of Backpressure and

Soft Backpressure more erratic than the behavior of ABP-1. The cost of achieving this more stable

behavior is the added communication overhead as summarized in Table 4.1.

The results in figures 4.4-4.6 are illustrative of a sample run. A more comprehensive analysis

involves studying statistics across a number of realizations. We do so for the average queue balance

constraints in Figure 4.7, which we can interpret as a statistical version of Figure 4.6-bottom. The

averages in Figure 4.7 are across 1,000 trials. ABP-1 achieves queue balance after fewer than 50

iterations, while Soft Backpressure requires over 250 and Backpressure fails to achieve balance
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Figure 4.7: The rate of convergence for each algorithm is effectively how quickly it can
achieve a network balance. Performance can be difficult to judge in a single realization so
we compare the average across 1000 trials on barely feasible networks.

even after 500 iterations have passed. While there are small quantitative differences between figures

4.6-bottom and 4.7, their qualitative properties are the same.

Since network balance is equivalent to achieving a feasible solution to the primal optimization

problem, it is interesting to consider what happens when the edge capacities are reduced, shrinking

the set of feasible routing strategies. To evaluate the effect of edge capacities, we consider the queue

stabilization problem with capacities C = ⇢C0 where [C0]ij are the capacities for edge (i, j) and

the capacity fraction ⇢ is halved until the problem becomes infeasible, i.e., ⇢ = 1, 1/2, 1/4, etc.

Since the arrival rates are stochastic, the experiment is repeated 100 times for each ⇢ and the mean

and standard deviation are shown in Figure 4.8. The results show that ABP has robust performance

as the boundary of feasibility is approached. Error bars which show ±1 standard deviation, indicate

that the ABP and Soft Backpressure solutions are not significantly affected by the realization of

packet arrivals until the problem is nearly infeasible. Backpressure solutions had standard deviation

in excess of 50% of the mean, implying a significant dependence on the packet arrival realization.
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Figure 4.8: The total packets queued are averaged over 100 realizations of packet arrive se-
quences for each data point. The capacities of the edges are reduced by 50% and repeat the
experiment until the problem becomes infeasible. Error bars show ±1 standard deviation.
Reduction in network capacity doesn’t significantly effect performance until the problem
is nearly infeasible.

The analysis that we made for the specific network topology in Figure 4.3 still hold for more

general networks. To demonstrate this statement we consider randomly generated networks. The

nodes are placed uniformly at random on [0, 1]⇥[0, 1] and are connected if they fall within a connec-

tivity radius of 0.4 of each other. The arrival statistics, edge capacities and objective function remain

as before. From Figure 4.9, it is observed that the ABP algorithm outperforms Soft Backpressure

and Backpressure in trials on 100 randomly generated proximity networks with 20 nodes. ABP has

fewer steady state queued packets than Soft Backpressure and Backpressure in every trial. The total

number of packets queued at steady state using ABP is on average about 40% less than the number

of packets queued by Backpressure. The Soft Backpressure algorithm occasionally performs as well

as ABP, but on average ABP reduces the total queued packets by 25%.
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Figure 4.9: (top) Over 100 trials on random proximity networks, the total number of pack-
ets queued at steady state under the ABP algorithm is on average about 40% the number
left in queue by the Backpressure algorithm. (bottom) The Soft Backpressure algorithm
occasionally performs as well as Accelerated Backpressure but on average Accelerated
Backpressure reduces the steady state queued packets by about 25%.
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Chapter 5

Discounted Integral Priority Routing

Chapter 5 also considers the problem of joint routing and scheduling in packet networks. As in

Chapter 4, packets are accepted from upper layers as they are generated and marked for delivery

to intended destinations. To accomplish delivery of information nodes need to determine routes

and schedules capable of accommodating the generated traffic. From a node-centric point of view,

individual nodes handle packets that are generated locally as well as packets received from neigh-

boring nodes. The goal of each node is to determine suitable next hops for each flow conducive to

successful packet delivery.

The study of the joint scheduling and routing problem, has been built up from the Backpres-

sure (BP) algorithm, [Tassiulas and Ephremides, 1992] and the soft backpressure algorithm (SBP),

[Ribeiro, 2009b]. In [Ribeiro, 2009b], Soft Backpressure (SBP) includes an objective function in

the feasibility problem. For appropriate choice of objective the subgradient becomes a unique gradi-

ent, improving convergence. In, [Zargham et al., 2013a]. Accelerated Backpressure (ABP) extends

this idea of SBP further by choosing a strongly convex objective and implementing Accelerated

Dual Descent (ADD), a distributed approximation to Newton’s Method in place of gradient descent,

[Zargham et al., 2014c]. SBP and ABP solve these stabilization problems much faster than BP but

these algorithms but are unable to effectively clear backlogged queues even if the capacity to do so

is available in the network.
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In this chapter, we shift into more control oriented thinking and observe that in order to eliminate

large queues in steady state an integral control term is necessary. In developing Discounted Integral

Priority (DIP) routing, we work within the Soft Backpressure framework but rather than using the

queues themselves as routing priorities, we use a time discounted sum of the queue history. These

priorities can be computed locally using a simple linear update combining the existing priorities and

the newly observed queue lengths. Our method can be connected to a class of heavy ball methods

like those introduced in [Nesterov, 1983]. By recasting the Discounted Integral Priority routing as

a stochastic heavy ball update for the dual variables, we are able to implement a decaying step size

which is a standard requirement for convergence in stochastic optimization. Our stability proofs

leverage the decaying step size to prove queue stability under the stochastic heavy ball variant of

the DIP algorithm. One of the main challenges in reducing the queues rather than just stabilizing

them is the stochastic nature of the packet arrivals. Some related work includes noise cancellation

in [Beck and Teboulle, 2009b] and adaptive gradient methods in [Duchi et al., 2011].

5.1 Packet Routing Problem Revisited

5.1.1 Problem Formulation

Consider a given network G = {V, E} where V is the set of nodes and E ✓ V ⇥ V is the set of links

between nodes. Denote as Cij the capacity of link (i, j) 2 E and define the neighborhood of i as

the set ni = {j 2 V|(i, j) 2 E} of nodes j that can communicate directly with i. There is also a set

of information flows K with the destination of flow k 2 K being the node ok 2 V . Let n = |V| be

the number of nodes and K = |K| be the number of information flows in the network and E = |E|

be the number of edges in the network. Define the n ⇥ E matrix A to be the incidence matrix of

the graph G and the reduced incidence matrix Ak as the (n� 1)⇥E matrix with the row associated

with destination node ok removed. The block diagonal matrix ¯A =diag[Ak] is an (n�1)K⇥E ·K

incidence matrix encoding the interrelation of all information flows and nodes in the network.
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At time index t terminal i 6= ok generates a random number

aki (t) = aki + ⌫ki (t) (5.1)

of units of information to be delivered to ok. The random variables aki (t) � 0 are generated by

⌫ki (t) which are independent and identically distributed across time with E
⇥

⌫ki (t)
⇤

= 0 and finite

support. Thus the expected value E
⇥

aki (t)
⇤

= aki and aki (t) has finite support. In time slot [t, t +

1), node i routes rkij(t) � 0 units of information through neighboring node j 2 ni and receives

rkji(t) � 0 packets from neighbor j. The difference between the total number of received packets

aki (t) +
P

j2n
i

rkji(t) and the sum of transmitted packets
P

j2n
i

rkij(t) is added to the local queue –

or subtracted if this quantity is negative. Therefore, the number qki (t) of k-flow packets queued at

node i evolves according to

qki (t+ 1) =



qki (t) + aki (t) +
X

j2n
i

rkji(t)� rkij(t)

�+

, (5.2)

where the projection [·]+ into the nonnegative reals is necessary because the number of packets in

queue cannot become negative. We remark that (5.2) is stated for all nodes i 6= ok because packets

routed to their destinations are removed from the system.

To ensure packet delivery it is sufficient to guarantee that all queues qki (t + 1) remain stable.

In turn, this can be guaranteed if the average rate at which packets exit queues does not exceed the

rate at which packets are loaded into them. To state this formally observe that the time average

limit of arrivals satisfies limt!1 aki (t) = E
⇥

aki (t)
⇤

:= aki and define the ergodic limit rkij :=

limt!1 rkij(t). If the processes rkij(t) controlling the movement of information through the network

are asymptotically stationary, queue stability follows if

X

j2n
i

rkij � rkji � aki + ⇠ 8 k, i 6= ok (5.3)

for some constant ⇠ > 0 which is introduced because stability is guaranteed if the inequalities
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P

j2n
i

rkij � rkji > aki hold in a strict sense. For future reference define the vector r := {rkij}k,(i,j)

grouping variables rkij for all information flows and links. Since at most Cij packets can be transmit-

ted in link (i, j) the routing variables rkij(t) always satisfy the capacity constraints on the network,

X

k

rkij(t)  Cij (5.4)

which defines the the set of possible routings

C = {r 2 RK·E
+ : rkij(t)  Cij8(i, j) 2 E}. (5.5)

The joint routing and scheduling problem can be now formally stated as the determination of non-

negative variables r(t) 2 C that satisfy (5.4) for all times t and whose time average limits rkij satisfy

(5.3). The BP algorithm solves this problem by assigning all the capacity of the link (i, j) to the

flow with the largest queue differential qki (t) � qkj (t). Specifically, for each link we determine the

flow pressure

k⇤ij = argmax

k

h

qki (t)� qkj (t)
i+

. (5.6)

If the maximum pressure maxk

h

qki (t)� qkj (t)
i+

> 0 is strictly positive we set rkij(t) = Cij for

k = k⇤ij . Otherwise the link remains idle during the time frame. The backpressure algorithm works

by observing the queue differentials on each link and then assigning the capacity for each link to

the data type with the largest positive queue differential, thus driving the time average of the queue

differentials to zero– stabilizing the queues. To generalize, we reinterpret BP as a dual stochastic

subgradient descent.

5.1.2 Dual Stochastic Subgradient Descent

Since the parameters that are important for queue stability are the time averages of the routing

variables rkij(t) an alternative view of the joint routing and scheduling problem is the determination

of variables rkij satisfying (5.3) and
P

k r
k
ij  Cij . This can be formulated as the solution of an
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optimization problem. Let fk
ij(r

k
ij) be any concave function on R+ and consider the optimization

problem

r⇤ := argmax

X

k,i 6=o
i

,j

fk
ij(r

k
ij) (5.7)

s.t.
X

j2n
i

rkij � rkji � aki + ⇠, 8 k, i 6= ok,

X

k2K
rkij  Cij , 8 (i, j) 2 E .

where the domain is a the convex polyhedron defined in (5.5). Since only feasibility is important

for queue stability, solutions to (5.7) ensure stable queues irrespectively of the objective functions

fk
ij(r

k
ij). For notational compactness, define f(r) =

P

k,(i,j) f
k
ij(r

k
ij).

Since the problem in (5.7) is concave it can be solved by descending on the dual domain. Start

by associating multipliers �k
i with the constraint

P

j2n
i

rkij�rkji � aki and keep the constraint r 2 C

implicit. The corresponding Lagrangian associated with the optimization problem in (5.7) is

L(r,�) =
X

k,i 6=o
k

,j

fk
ij(r

k
ij) +

X

k,i 6=o
k

�k
i

✓

X

j2n
i

rkij � rkji � aki + ⇠

◆

(5.8)

where we introduced the vector � := {�k
i }k,i 6=o

k

grouping variables �k
i for all flows and nodes. The

corresponding dual function is defined as

h(�) := max

r2C
L(r,�). (5.9)

To compute a descent direction for h(�), compute the primal Lagrangian maximizers for given

� according to the vector function R : R(n�1)K
+ ! C defined

R(�) := argmax

r2C
L(r,�). (5.10)

The individual elements Rk
ij(�) are ordered by stacking the E dimensional subvectors for each in-

formation flow k. A descent direction for the dual function is available in the form of the dual
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subgradient1 are obtained by evaluating the constraint slack associated with the Lagrangian maxi-

mizers

[rh(�)]ki :=

X

j2n
i

Rk
ij(�)�Rk

ji(�)� aki � ⇠. (5.11)

Since the Lagrangian L(r,�) in (5.8) is linear in the dual variables �k
i the determination of the

maximizers Rk
ij(�) := argmaxr2C L(r,�) can be decomposed into the maximization of separate

summands. Considering the coupling constraints
P

k r
k
ij  Cij imposed by the domain C it suffices

to consider variables {rkij}k for all flows across a given link. After reordering terms it follows that

we can compute routes link wise

Rk
ij(�) = argmax

{rk
ij

�0}
k

X

k

fk
ij(r

k
ij) + rkij

�

�k
i � �k

j

�

(5.12)

s.t.
X

k2K
rkij  Cij

for each link (i, j) 2 E . Introducing a time index t, subgradients rhki (�t) could be computed using

(5.11) with Lagrangian maximizers Rk
ij(�t) given by (5.12). For notational convenience, the dual

subgradient may also be specified in vector form

rh(�) = ¯AR(�)� a� ⇠1 (5.13)

where 1 is the vector of all ones. A subgradient descent iteration could then be defined to find the

variables r⇤ that solve (5.7) via a dual method which generates a sequence �t; see e.g., [Ribeiro and

Giannakis, 2007].

The problem in computing rhki (�) is that we don’t know the average arrival rates aki . We do

1For an appropriately chosen cost function f(r), the subgradient is unique which motives the use of
gradient notation rh(�), (see Proposition 9).
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observe, however, the instantaneous rates aki (t) that are known to satisfy E
⇥

aki (t)
⇤

= aki . Therefore,

[gt(�)]
k
i :=

X

j2n
i

Rk
ij(�)�Rk

ji(�)� aki (t)� ⇠, (5.14)

is a stochastic subgradient of the dual function in the sense that its expected value E
⇥

gki (�)
⇤

=

rhki (�) is the subgradient defined in (5.11). Stated in vector form

gt(�) = ¯AR(�)� a� ⌫t � ⇠1, (5.15)

where at = a+⌫t and E [⌫t] = 0 for all t. We can then minimize the dual function using a stochastic

subgradient descent algorithm. At time t we have multipliers �t and determine Lagrangian maxi-

mizers rkij(t) := Rk
ij(�t) as per (5.12). We then proceed to update multipliers along the stochastic

subgradient direction according to

�k
i (t+ 1) =



�k
i (t)� ✏

✓

X

j2n
i

rkij(t)� rkji(t)� aki (t)� ⇠

◆�+

, (5.16)

where ✏ is a constant stepsize chosen small enough so as to ensure convergence; see e.g., [Ribeiro,

2009b].

Properties of the descent algorithm in (5.16) vary with the selection of the functions fk
ij(r

k
ij).

Two cases of interest are when fk
ij(r

k
ij) = 0 and when fk

ij(r
k
ij) are continuously differentiable,

strongly convex, and monotone decreasing on R+ but otherwise arbitrary. The former allows recov-

ers the Backpressure Algorithm while the latter leads to the Soft Backpressure algorithm.

5.1.3 Soft Backpressure

Assume now that the functions fk
ij(r

k
ij) are continuously differentiable, strongly convex, and mono-

tone decreasing on R+ but otherwise arbitrary. In this case the derivatives @fk
ij(x)/@x of the func-
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tions fk
ij(x) are monotonically increasing and thus have inverse functions that we denote as

F k
ij(x) :=

h

@fk
ij(x)/@x

i�1
(x). (5.17)

The Lagrangian maximizers in (5.12) can be explicitly written in terms of the derivative inverses

F k
ij(x). Furthermore, the maximizers are unique for all � implying that the dual function is differ-

entiable. The details are outlined in Proposition 9 originally published in [Zargham et al., 2013a].

Proposition 9. If the functions fk
ij(r

k
ij) in (5.7) are continuously differentiable, strongly concave,

and monotone decreasing on R+, the dual function h(�) := maxr2C L(r,�) is differentiable for

all �. Furthermore, the gradient component along the �k
i direction is [rh(�)]ki as defined in (5.11)

with

Rk
ij(�) = F k

ij

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

, (5.18)

where µij(�) is either 0 if
P

k F
k
ij

�

�
⇥

�k
i � �k

j

⇤+�  Cij or chosen as the solution to the equation

X

k

F k
ij

✓

�
h

�k
i � �k

j � µij(�)
i+
◆

= Cij . (5.19)

Proof : This proposition is equivalent to Proposition 4. See the Proof in Chapter 4. ⌅

While (5.19) does not have a closed for solution it can be computed quickly numerically using

a binary search because it is a simple single variable root finding problem. Computation time cost

remains small compared to communication time cost.

The Soft backpressure can be implemented using node level protocols. At each time instance

nodes send their multipliers �k
i (t) to their neighbors. After receiving multiplier information from its

neighbors, each node can compute the multiplier differentials �k
i (t)��k

j (t) for each edge. The nodes

then solve for µij on each of its outgoing edges by using a rootfinder to solve the local constraint

in (5.19), The capacity of each edge is then allocated to the unique information flows via reverse

waterfilling as defined in (5.18). Once the transmission rates are set each node can observe its net

packet gain which is equivalent to the stochastic gradient as defined in (5.14). Finally, each node
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updates its multipliers by subtracting ✏ times the stochastic subgradient from its current multipliers.

As with BP, choosing the stepsize ✏ = 1 causes the multipliers to coincide with the queue lengths

for all time.

5.1.4 A General Priority-Based Routing Strategy

The Backpressure and and Soft Backpressure algorithms, as detailed in the preceding sections, are

fundamentally priority based routing strategies. When viewed in the optimization framework these

priorities are dual variables but the priority-based routing strategy R(�) defined in (5.10) can be

implemented for any priority vector �. We define a general priority-based routing strategy

rt = R(�t) for any sequence �t, 8t. (5.20)

A priority based routing strategy based on (5.20) generates a sequence of queue lengths

qt+1 = qt � gt(�t)� ⇠1 (5.21)

where the stochastic gradient function, gt(�) is defined in (5.14). The ⇠1 offset guarantees that

priorities �t satisfying gt(�t) � 0 result in a strict reduction. Substituting the definition of the

stochastic gradient

qt+1 = qt � ¯AR(�t) + a+ ⌫t. (5.22)

We define the queue update

�qt(�t) =
¯AR(�t)� a� ⌫t. (5.23)

The routing strategy R(�t) for any sequence {�t}1t=0 generalizes the notion of Soft Backpres-

sure, [Ribeiro, 2009b] to a case where the priorities can be generated by any desirable scheme. An-

other example of a priority based routing algorithm is Accelerated Backpressure, [Zargham et al.,

2013a]. Priority sequences {�t}1t=0 are not all equally effective. Determination of sufficient condi-
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Algorithm 6: Priority-Based Routing at node i

1 for t = 0, 1, 2, · · · do
2 Observe or Compute Priorities {�k

i (t)}k
3 for all neighbors j 2 ni do
4 Send priorities {�k

i (t)}k – Receive priorities {�k
j (t)}k

5 Compute µij such that
X

k

[�k
i (t)� �k

j (t)� µij ]
+

Transmit packets at rate

rkij(t) = F (�[�k
i (t)� �k

j (t)� µij ]
+
)

6 end
7 end

tions for a priority sequence {�t}1t=0 to yield stable queue lengths is an open problem.

5.2 Discounted Integral Priority Based Routing

Observing that existing protocols for packet forwarding which use optimization motivated priorities

tend to stabilize but not reduce the queues, we propose a set of priorities motivated by integral

control. In particular, since the queues are state variables which we would like to make small at

steady state, we set the priorities to a discounted integral of the queues. Consider the set of routing

priorities

�t =

t
X

⌧=0

↵t�⌧qt (5.24)

where ↵ 2 [0, 1) is a discounting factor. Observe that for if ↵ = 0, the soft backpressure algorithm

�t = qt is trivially recovered. Backpressure type algorithms are implemented by observing the

stochastic gradients gt(�t) in order to update the routing variables. In our method, qt is observed

and the priorities are updated

�t = ↵�t�1 + qt, (5.25)

which can be computed without information from neighboring nodes: �k
i (t) = ↵�k

i (t� 1) + qki (t)

for all nodes i, information flows k and times t. Under this scheme we do not force any information
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Algorithm 7: Discounted Integral Priority Based Routing
1 for t = 0, 1, 2, · · · do
2 Observe {qki (t)}k,
3 Compute �i

k(t) = ↵�k
i (t� 1) + qki (t)

4 for all neighbors j 2 ni do
5 Send priorities {�k

i (t)}k – Receive priorities {�k
j (t)}k

6 Compute µij such that

X

k

F
⇣

�[�k
i (t)� �k

j (t)� µij ]
+
⌘

= Cij

Transmit packets at rate

rkij(t) = F (�[�k
i (t)� �k

j (t)� µij ]
+
)

7 end
8 end

exchange, rather we allow information to spread through the effect of the changes in the realized

routing. See Algorithm 7 for the distributed implementation of the priority based routing rt = R(�t)

using the discounted integral priorities {�t}1t=0 chosen according to equation (5.24).

5.2.1 Connection to Heavy Ball Methods

The discounted integral priority update can be expressed as a variant on the heavy ball method. A

variety of closely related momentum based algorithms are considered heavy Ball Methods, the pri-

mary examples are Nesterov’s accelerated method, [Nesterov, 1983] and Polyak’s Method, [Polyak,

1964].

Lemma 11. The discounted Integral Priority update in (5.25) can be rewritten as

�t+1 = �t +�qt(�t) + ↵(�t � �t�1) (5.26)

where �qt(�t) is the change in queues induced by routing according to the priorities �t and the

discounting parameter ↵ is weighting coefficient on the momentum term.
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Proof : Stating equation (5.25) at time t+ 1 yields

�t+1 = ↵�t + qt+1. (5.27)

Subtracting (5.25) from (5.27) yields

�t+1 = �t + (qt+1 � qt) + ↵(�t � �t�1). (5.28)

From the definitions in (5.22) and (5.23), the change in the queues �qt(�) = qt+1 � qt completing

the proof. ⌅

From Lemma 11, we see that the discounted integral priority method is equivalent to applying

the heavy ball method to a basic soft backpressure algorithm. Soft back pressure in our notation is

qt+1 = qt� ¯AR(qt)+a+⌫t, because the priorities and the queues are equivalent for all t, [Ribeiro,

2009b]. Unlike the basic soft backpressure algorithm the queues and the priorities do not remain

equivalent. Heavy ball type methods are known to significantly improve convergence rates.

5.2.2 Stochastic Heavy Ball Routing

The heavy ball method is analyzed for stochastic optimization in [Flam, 2004]. In order to guarantee

convergence in stochastic optimization, it is necessary to introduce a decaying step size ✏t satisfying
P1

t=1 ✏t = 1 and
P1

t=1 ✏
2
t < 1. Motivated by Lemma 11, we introduce Stochastic Heavy Ball

routing

�t+1 = �t � ✏tgt(�t) + ↵(�t � �t�1) (5.29)

which is a variant of the Discounted Integral Priority routing algorithm, which allows implemen-

tation of a decaying step size ✏t. This minor variation allows the direct application of Theorem 2

from [Flam, 2004] from which we conclude that �t converges with probability one, to a solution of

the dual problem in (5.9). In the following section, it is shown that convergence of the priorities is

sufficient to stabilize the queues.
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5.3 Stability Analysis

The heavy ball variant of the discounted integral priority method with update as defined in (5.29)

allows in the inclusion of a decaying step size which is standard in the analysis of stochastic opti-

mization algorithms. Another key property is the boundedness of the stochastic gradient.

Lemma 12. The stochastic gradient is bounded

kgt(�)k  �, 8t, 8�. (5.30)

Proof : Consider (5.14) and recall our assumption that the random portion of the arrival process,

⌫t has finite support. Then observing from (5.10) that R(�) lies in a compact polyhedral set

R(�) 2 C = {r � 0 :

X

k

rkij  Cij , 8(i, j) 2 E}, (5.31)

implies that gt(�) has a finite upper bound � that holds for all � and all t. ⌅

The analysis that follows is related to the stochastic convergence analysis for the Accelerated Back-

pressure (ABP) algorithm as detailed in [Zargham et al., 2014b]. As in ABP, the results are built on

a specialized version of the supermartingale convergence theorem found in Theorem E.7.4 of [Solo

and Kong, 1995]. The proofs are noticeably simpler than there ABP counterparts because there is

no need to characterize the second derivatives of the dual objective.

Proposition 10. Consider the Stochastic Heavy Ball Routing implemented with the dual step (5.29),

decaying step size ✏t satisfying
P

t ✏t = 1,
P

t ✏
2
t < 1 and the stochastic gradient gt(�t) as

defined in (5.14), then

lim

t!1
||rh(�t)k = 0 (5.32)

almost surely.
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Proof : Define the unconstrained dual optimization problem

min

�
h(�) (5.33)

where h(�) is the dual objective defined in (5.9). Theorem 2 of [Flam, 2004] defines the following

convergence property for the stochastic heavy ball update defined in (5.29) with the decaying step

size ✏t: �t converges almost surely to some ˆ� satisfying

ˆ� = P
h

ˆ�� ✏rh(ˆ�)
i

8✏ > 0 (5.34)

where P [·] is a projection onto the feasible set of (5.33). In this application, (5.33) is unconstrained,

making P [·] the identity map. Therefore, (5.34) simplifies to

✏rh(ˆ�) = 0 8✏ > 0. (5.35)

guaranteeing that rh(ˆ�) = 0. Using the convergence of �t to ˆ�, we have

lim

t!1
||rh(�t)k = ||rh(ˆ�)|| (5.36)

completing the proof. ⌅

Proposition 10 is the first step in our theoretic convergence guarantee. By implementing a

decaying step size when updating the dual variables, convergence to the optimal dual variables is

achieved. From Theorem 2 of [Flam, 2004], priority vectors �t converge with probability one and

our routing Rk
ij(�t) becomes a feasible routing in the primal problem, (5.7). We proceed to leverage

this fact to ensure the queues remain stable.

Proposition 11. Consider a dual variables process �t such that the dual gradient rh(�t) satisfies

lim

t!1
||rh(�t)|| = 0, a.s. (5.37)
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Then, all queues empty infinitely often with probability one, i.e.,

lim inf

t!1
qki (t) = 0, a.s., for all k, i 6= ok (5.38)

Proof : The result in (5.38) is true if for arbitrary time ⌧ � 0 and arbitrary constant  the queue

length qki (t) is almost surely smaller than  at some point the future. To write this statement formally

define the stopped process

q̃ki (t) =

8

>

<

>

:

qki (t) if qki (u) > 0 for all ⌧  u  t,

0 else .
(5.39)

The stopped process q̃ki (t) follows the queue length process qki (t) until the queue length becomes

null for the first time after time ⌧ . If and when the queue empties after time ⌧ the process is stopped

and all subsequent values are set to q̃ki (t) = 0. With this definition (5.38) is equivalent to

lim

t!1
q̃ki (t) = 0, a.s., for all k, i 6= ok (5.40)

I.e., the definition of the stopped process allows replacement of the limit infimum in (5.37) by a

regular limit in (5.40).Without loss of generality we consider ⌧ = 0 in (5.39) to simplify notation.

Consider now the queue update defined in equation (5.2) rewritten in terms of the routing func-

tion in equation (5.10),

qki (t+ 1) = qki (t)�
X

j2n
i

�

Rk
ij(�t)�Rk

ji(�t)� aki (t)
�

. (5.41)

Define a �-algebra encoding the histories for the queues and dual variables up to time t,

�t = {�⌧ , q⌧ | 8⌧  t}. (5.42)

Taking expectation with respect to the arrival process and conditioned on the past history as encoded
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by �t,

E
h

qki (t+ 1)

�

��t
i

 qki (t)�
X

j2n
i

�

Rk
ij(�t)�Rk

ji(�t)� aki
�

(5.43)

where we recall E
⇥

aki (t)
⇤

= aki . Observe from definition (5.11)

ḡki (�t) + ⇠ =

X

j2n
i

�

Rk
ij(�t)�Rk

ji(�t)� aki
�

. (5.44)

Substituting into (5.43) we have

E
h

qki (t+ 1)

�

��t
i

 qki (t)� ḡki (�t)� ⇠. (5.45)

From proposition 10 we know that krh(�t)k converges to zero almost surely, therefore there exists

a T such that kḡ(�t)k  ⇠ �  for all t � T for any  2 (0, ⇠). For any particular (i, k), we have
�

�

[rh(�t)]
k
i

�

�  krh(�t)k, allowing us to conclude that

E
h

qki (t+ 1)

�

��t
i

 qki (t)� , 8t � T (5.46)

for all qki (t) �  because qki (t) � 0 for all t.

Recalling the definition of the stopped process in (5.39) it follows from (5.46) that there exists

a time T such that

E
h

q̃ki (t+ 1)

�

��t
i

< q̃ki (t) (5.47)

for all q̃ki (t) > 0, therefore q̃ki (t) converges to zero almost surely. While qki (t) may move away

from zero after q̃ki (t) converges, we reinitialize the stopped martingale process to show that qki (t)

must eventually return to zero. ⌅

Corollary 2. Consider the Stochastic Heavy Ball Routing Algorithm, defined by (5.29) with gt(�t)

as defined in (5.14) and primal Lagrangian maximizers defined in (5.12). With step size sequence is

chosen to satisfy
P

t ✏t = 1 and
P

t ✏
2
t , all queues become empty infinitely often with probability
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one,

lim inf

t!1
qki (t) = 0, a.s., for all k, i 6= ok. (5.48)

Proof : From Proposition 10, we know that ||rh(�t)|| converges to zero which allows application

of Proposition 11. From Proposition 11 it is guaranteed that each queue has a limit infimum equal

to zero, which is equivalent to having each queue become empty infinitely often. ⌅

Corollary 2 is a sufficient condition for queue stability. In fact it is a much stronger result

because the queues are always eventually cleared. This occurs because our dual variables converge

to the optimal priorities which yield a routing Rk
ij(�k) which forces the queue lengths to decrease

in expectation whenever they are non-zero.

5.4 Numerical Results

The main benefit of introducing discounted integral priorities is the ability to drive large queues

out of the system. The performance of the DIP routing in its simplest form, as defined in (5.25) is

compared with the performance of the backpressure based queue stabilization methods defined in

[Ribeiro, 2009b] and [Zargham et al., 2013a].

Our experiments take place on the network in Figure 4.3, with edge capacities chosen uniformly

randomly in (0, 50], the strictness inequality parameter ⇠ = 0 and there are K = 5 data types with

unique destination nodes. Each queue starts with an expected initial backlog of 10 packets. The

arrival process has an expectation of 5 packets per queue which results in an expected 5(n�1)K =

45 packets entering the system at each time. The resulting problem (5.7) is feasible but non-trivial.

Our choice of objective function is

fk
ij(r

k
ij) = �1

2

⇣

rkij

⌘2
+ �k

ijr
k
ij . (5.49)

The quadratic term captures an increasing cost of routing larger quantities of packets across a link

and help to eliminate myopic routing choices that lead to sending packets in cycles. The linear term
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Figure 5.1: ABP and SBP stabilize the queues much more effectively than BP, but DIP
routing drives the queues down and keeps them stable there.

� is introduced to reward sending packets to their destinations. In our simulations, �k
ij = 10 for

all edges routing to their respective data type destinations j = ok and all other i, j, k, �k
ij = 0.

Figure 5.1, is a characteristic example of the relative behaviors of the algorithms being studied.

Backpressure (BP) stabilizes the queues but the total number of backlogged packets remains large.

Accelerated Backpressure (ABP) stabilizes the queues more quickly that Soft Backpressure (SBP)

but neither do any work to remove existing queue build up. Discounting Integral Priority (DIP)

routing however drives the total packets queues significantly below their starting levels.

In order to more precisely characterize the relative behavior of these algorithms, we repeat the

numerical experiment 100 times and record the average-average backlog. Two averages are used,

we take a time average over 500 iterations to account for fluctuations and we average over the

number of queues. Thus the data being presented is the average number of packets in each queue

over the whole trial. Figure 5.2 is the distribution over all 100 trials. The key observation is that

the Discounted Integral Priority (DIP) routing algorithm results in an average queue length of well
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Figure 5.2: ABP and SBP stabilize the queues relatively quickly, preventing them from
getting too far above the initial queues. ABP is faster than SBP but exhibits more variance.
DIP routing however drives the queues well below the initial queue lengths.

below the initial average queue length while the other algorithms are at best close to the starting

value. In fact the average backlog is close to the average arrival rate. Another important observation

is highlighted in Table 5.1; these results are achieved with an extremely tight variance over many

trials. Every realization of the problem has different edge capacities but the same arrival statistics.

The implication is that the Discounted Integral Priorities successfully learn information about the

arrival statistics and the remaining steady state backlogs result from the fact that the arrivals are

stochastic.

Table 5.1: Average Queue Backlog Statistics

Algorithm BP SBP ABP DIP
Mean 74.13 16.22 13.92 4.38
St. Dev. 11.52 0.92 2.37 0.02
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Chapter 6

Future Work

Having introduced a wide range of algorithms, it is important to ask where to go from here. In

this chapter, we address the ways in which these algorthms can be generalized in order to improve

performance or strengthen the analytical results. Since Accelerated Dual Descent (Chapter 3) is

the most simplified version of the problem, it is the most natural place to generalize by weakening

the assumptions and showing that our results still hold. In the cases of Accelerated Backpressure

(Chapter 4) and Discounted Integral Priority Routing (Chapter 5), we observe a gap between the an-

alytical results achieved for a decaying stepsize and the numerical experiments, which demonstrate

performance for a fixed stepsize. Additionally, the Discounted Integral Priority Routing introduces

a scheme with parallels to Nesterov type acceleration methods, implying that it may be applicable

in a much broader class of problems.

6.1 Generalizations for Accelerated Dual Descent

The Accelerated Dual Descent family exploits the underlying structure of the convex network flow

problem. In particular, computation of the Newton direction requires the inversion of a weighted

graph Laplacian. This challenge is not unique to the network flow optimization problem; in fact, a

whole branch of the consensus literature addresses problems of this form. A direction for contin-
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uing research on the Accelerated Dual Descent algorithm would be to apply it to other problems

addressed in this literature.

A different, but related way to extend Accelerated Dual Descent, is to weaken the underlying

assumptions. In the current formulation, strong assumptions are made on the primal problem in

order to ensure that the dual problem satisfies the standard assumptions for the application of the

Newton method. This set of assumptions limits the choice of primal objective to well conditioned,

separable convex functions. The inclusion of multiple commodities and capacity constraints would

actually allow for a broader class of objectives because one must only ensure the function satisfies

these assumptions on a bounded domain.

Another important extension of the Accelerated Dual Descent research is to refine the re-

sults bounding the connectivity modulus. The connectivity modulus characterizes the information

spreading rate in our problem. Thus, it fundamentally impacts the accuracy of our approximation of

the Newton direction and consequently, the convergence rate results depend explicitly on this value.

In Chapter 3, both combinatorial and spectral bounds on the connectivity modulus are presented,

but neither bound is guaranteed to be particularly tight.

6.2 Variations of Accelerated Backpressure

The Accelerated Backpressure algorithm is derived using a matrix splitting similar to the one used

in the Consensus Based Newton algorithm (Chapter 2). The Accelerated Dual Descent algorithm

introduces an alternate splitting with an internal scaling factor which allows it to converge to the

optimal point with a relatively large fixed stepsize. Further study of the Accelerate Backpressure

algorithm should include a variation which makes use of the splitting introduced in Chapter 3.

The analytical results for Accelerated Backpressure require a decaying stepsize in order to guar-

antee queue stability. In light of a more complete characterization of the internal scaling effect in

Accelerated Dual Descent, it may be possible to prove that Accelerated Backpressure ensures queue

stability for a relatively large fixed stepsize. Such a result would be consistent with the results we

observe in our numerical experiments.
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6.3 Applications for Discounted Integral Priorities

The Discounted Integral Priority Routing is the application of a more general optimization tool to

the specific case of the Priority Based Routing. The fundamental concept is the use of a discounted

integrator to smooth the effects of stochastic gradient descent. The next step for this approach is to

analyze it for a more general optimization problem. Structurally, discounted integral priorities are

closer to momentum methods like those introduced by Polyak and Nesterov. Preliminary numerical

experiments show that it can be used to accelerate more sophisticated dual descent methods such as

Accelerated Dual Descent and Alternating Direction Method of Multipliers (ADMM).

Our analytical results are defined for a decaying stepsize; as in the case for Accelerated Back-

pressure, the Discounted Integral Priority Routing requires the decaying stepsize to ensure queue

stability. In numerical experiments, Discounted Integral Priority Routing not only stabilizes the

queues, but visibly reduces the queues at steady state. It is probable that a queue stability result

that does not require a decaying stepsize exists. The best approach for finding such a proof would

be to explore the relationship between discounted integral priorities and dual Stochastic Average

Gradient (SAG) and dual Stochastic Gradient Descent (SGD). With only minor adjustments to the

algorithm, including selection of the appropriate time discounting factor, one can recover both of

these well studied stochastic optimization methods from discounted integral dual descent.
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