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ABSTRACT

RIEMANNIAN ORBIFOLDS WITH NON-NEGATIVE CURVATURE

Dmytro Yeroshkin

Wolfgang Ziller

Recent years have seen an increase in the study of orbifolds in connection to

Riemannian geometry. We connect this field to one of the fundamental questions in

Riemannian geometry, namely, which spaces admit a metric of positive curvature?

We give a partial classification of 4 dimensional orbifolds with positive curvature on

which a circle acts by isometries. We further study the connection between orbifolds

and biquotients - which in the past was one of the main techniques used to construct

compact manifolds with positive curvature. In particular, we classify all orbifold

biquotients of SU(3). Among those, we show that a certain 5 dimensional orbifold

admits a metric of almost positive curvature. Furthermore, we provide some new

results on the orbifolds SU(3)//T 2 studied by Florit and Ziller.
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Chapter 1

Introduction

First introduced by Satake [Sat56] as V-manifolds, orbifolds have come to be used

in many different parts of mathematics. However, they did not come to prominence

until Thurston rediscovered them (see [Thu80]) in trying to understand his famous

Geometrization Conjecture, later proven using a different approach by Perelman

[Per03].

Theorem (Geometrization Conjecture [Thu82], [Per03]). The interior of every

compact 3-manifold has a canonical decomposition into pieces which have geometric

structures.

Recall that orbifolds are locally modeled on Rn/Γ where Γ is a finite subgroup

of GL(n,R). Furthermore, if one desires a Riemannian metric on the orbifold, one

may assume that Γ ⊂ O(n). Since their introduction, orbifolds have found use in

algebraic geometry (see for example [Dol82]), differential geometry of manifolds (see
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[GWZ08]), understanding of tilings, and even mathematical modeling of music.

One important question in Riemannian geometry is what spaces admit metrics

of positive curvature. In particular, the results that distinguish between manifolds

admitting non-negative curvature and those admitting positive curvature are the

theorems of Bonnet-Myers and Synge in the compact case and Perelman’s proof

of the soul conjecture in the non-compact case. If we add assumptions on the

size of the isometry group, then we have the result of Hsiang and Kleiner [HK89],

that a positively curved 4-dimensional Riemannian manifold with an isometric S1

action is homeomorphic to either S4,RP4 or CP2 (in fact by results of Fintushel

[Fin78] this is true up to diffeomorphism). In higher dimensions, the assumption of a

larger isometry group can be used to prove similar recognition theorems, see [GS94],

[Wil03], [FR05], [Ken13] and [Wil07]. More recently, some work has been done on

this question in a more general setting, see the work of Harvey and Searle [HS12]

and Galaz-Garcia and Guijarro [GGG13] for results on positively curved Alexandrov

spaces. In this thesis we will focus on the results dealing with orbifolds admitting

metrics of positive, almost positive, i.e. positive on an open dense set, quasi-positive,

i.e. non-negative and positive somewhere, and non-negative sectional curvature. A

major open questions in this direction for manifolds is the Hopf Conjecture.

Conjecture (Hopf Conjecture). The manifold S2 × S2 does not admit a metric of

positive sectional curvature.

The best result in this direction comes from the work of Hsiang and Kleiner
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Theorem (Hsiang-Kleiner [HK89]). Let M be a 4-dimensional manifold with pos-

itive sectional curvature on which S1 acts by isometries, then M is homeomorphic

to either S4,CP2 or RP4.

In particular, this theorem implies that if the Hopf conjecture is false, then the

counterexample must have a finite isometry group. We provide an orbifold analog

to this result

Theorem A. If O is a 4-dimensional S1-orbifold with positive sectional curvature

and πorb1 (O) = 0, |O| has R-valued cohomology of either S4 or CP2, and if there is

a 2-dimensional component of the fixed point set, then we have an S1-equivariant

homeomorphism |O| = S4 or |O| = |CP2[λ]|, otherwise, the S1 action must have

either 2 or 3 isolated fixed points.

We also examine one of the techniques for constructing new examples of spaces of

positive curvature - biquotients. Our work on this topic is partially motivated by the

work of DeVito [DeV11] on classifying low-dimensional biquotients. While there are

only finitely many diffeormorphism classes of biquotients in low dimension, there

are infinitely many orbifold biquotients, even in dimension 2. Therefore, we will

focus on orbifold biquotients of a single group, namely SU(3). The choice of SU(3)

is motivated partially by historical reasons, since the first family of biquotients with

positive curvature was constructed as SU(3)//S1 by Eschenburg [Esc84], [Esc82],

but also by the fact that SU(3) is the lowest-dimensional Lie group whose orbifold

biquotients have not been systematically studied, SU(2) is low dimensional, and
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its biquotients are all of the form CP1[λ0, λ1], and S3 × S3 was studied by Kerin

[Ker08].

Theorem B. The following is a complete list of orbifold biquotients of the form

SU(3)//U with U connected:

1. Homogeneous spaces:

Classical manifolds S5 = SU(3)/SU(2), and CP2 = SU(3)/U(2)

Wallach spaces W 7
p,q = SU(3)/S1

p,q, W
6 = SU(3)/T 2

The Wu manifold SU(3)/SO(3)

2. Generalized Eschenburg spaces and orbifolds, of the form SU(3)//S1 and

SU(3)//T 2

3. Weighted projective spaces SU(3)//(SU(2)× S1) and SU(3)//U(2)

4. Circle quotients of the Wu manifold S1
p,q\SU(3)/SO(3)

5. One orbifold of the form SU(3)//SU(2).

Of particular interest are the new family S1
p,q\SU(3)/SO(3) and the exceptional

example SU(3)//SU(2). In section 5.2 we will study the orbifold structure of all of

these, and the curvature properties of SU(3)//SU(2). We will show that

Theorem C. The orbifold O5 = SU(3)//SU(2) admits a metric with almost posi-

tive curvature such that
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1. The set of points with 0-curvature planes forms a totally geodesic, flat 2-torus

T which is disjoint from the singular locus.

2. The only 0-curvature planes are those tangent to T .

As a corollary we get a new example of an Alexandrov space with positive

curvature:

Corollary 1.0.1. The Alexandrov space X4 = O5/S1 = SU(3)//U(2) admits a

metric of positive sectional curvature.

Also, we study the generalized Eschenburg spaces. In particular, we will focus

on the orbifold structure of both 6 and 7 dimensional families; for the 6-dimensional

family, we will provide corrections and improvements to the work of Florit and Ziller

[FZ07]. The following theorem is the corrected and improved version of Theorem

C of [FZ07].

Recall that E7
d is the family of 7-dimensional cohomogeneity one Eschenburg

spaces E7
(1,1,d),(0,0,d+2), that is SU(3)//S1 given by

z ? A = diag(z, z, zd) · A · diag(1, 1, zd+2),

see [FZ07], [GWZ08] and [Zil09].

Theorem D. Let Ed be a cohomogeneity one Eschenburg manifold, d ≥ 3, equipped

with a positively curved Eschenburg metric. Then:
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i) If S1 acts on E7
d by isometries, then there are at minimum 3 singular points,

in particular, if exactly two Cσ’s are singular, then the Lij connecting them is

also singular.

In the following particular examples the singular locus of the isometric circle action

S1
a,b on Ed consists of:

ii) A smooth totally geodesic 2-sphere with orbifold group Zd+1 if a = (0,−1, 1)

and b = (0, 0, 0);

iii) When a = (0, 1, 1)and b = (2, 0, 0), the singular locus consists of four point

with orbifold groups Z3,Zd+1,Zd+1,Z2d+1, and the following orbifold groups on

spheres:

If 3|(d+ 1), then the first 2 points are connected by a totally geodesic 2-sphere

with orbifold group Z3.

If 3|(d − 1), then the first and the fourth points are connected by a totally

geodesic 2-sphere with orbifold group Z3.

If 2|(d + 1), then the second and the third points are connected by a totally

geodesic 2-sphere with orbifold group Z2.

iv) A smooth totally geodesic 2-sphere with orbifold group Zd−1 if a = (0, 1, 1) and

b = (0, 0, 2).

v) Three isolated singular points with orbifold groups Z2d−3, Zd2−d−1, and Zd2−d−1

if a = (0, d− 1, 0) and b = (1, d− 1,−1).

6



Furthermore, we prove

Theorem E. Given an orbifold Oa,bp,q which has positive curvature induced by a

Cheeger deformation along U(2), there exists E7
u,v (either a manifold or an orb-

ifold) such that Oa,bp,q = E7
u,v//S

1 and E7
u,v has positive curvature induced by Cheeger

deformation along the same U(2).

Equivalently, there exist λ, µ ∈ Z relatively prime such that E7
λp+µa,λq+µb is pos-

itively curved.

The exposition is organized as follows:

In Chapter 2, we start with a formal definition on an orbifold. We will also

provide a number of well-known examples, and study a new family of examples.

We will finish the chapter with an overview of basic results needed for the study of

orbifolds, including new proofs of theorems of Bonnet-Myers and Synge for orbifolds.

The main tool used in this section comes from a powerful, but simple result in

Proposition 2.3.2 on the behavior of length minimizing geodesics on orbifolds.

In Chapter 3, we will provide background on biquotients, a powerful tool for

constructing new examples of manifolds and orbifolds with non-negative curvature.

We further provide an overview of a classical approach to improving the curvature

properties by using Cheeger deformations. We also discuss some question in the

theory of positive curvature, almost positive curvature and quasi-positive curvature.

Recall that a metric is said to have almost positive curvature if the set of points with

all sectional curvatures positive is dense, and quasi-positive if the sectional curvature
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is non-negative and there exists at least one point with all sectional curvatures

strictly positive. An example by Wilking [Wil02] on RP2×RP3 shows that a metric

with almost positive curvature can in general not be deformed to positive curvature.

In Chapter 4, we prove Theorem A. In proving this theorem, we examine some

general properties of 4-dimensional orbifolds, and specifically those which admit an

orbifold-smooth S1 action.

In Chapter 5, we prove Theorem B, and examine the structure of the new ex-

amples, leading to a proof of Theorem C and Corollary 1.0.1. We also examine the

structure of biquotients SU(3)//T 2 leading to the proof of Theorem D. Addition-

ally, we also prove Theorem E in this chapter.
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Chapter 2

Orbifolds

2.1 Fundamentals of Orbifolds

We begin this section by discussing the formal definition of an orbifold.

Definition 2.1.1. An n-dimensional orbifold O is a paracompact Hausdorff space

together with an open cover by sets Ui that form an atlas as defined below.

An orbifold chart is a triple (Ui,Γi, ϕi), with Γi a finite subgroup of O(n) (in

general Γi ⊂ GL(n,R) is also acceptable, but with a proper choice of a metric, the

distinction is irrelevant), and a homeomorphism ϕ : Ũi/Γi
∼−−→ Ui with Ũi ⊂ Rn.

An orbifold atlas {(Ui,Γi, ϕi)} is a collection of charts satisfying

1. If Ui ∩ Uj 6= 0, then there exists a chart (Uk,Γk, ϕk) such that Uk = Ui ∩ Uj.

2. Furthermore, the following diagram commutes, where the maps ϕ∗Ũ∗/Γ∗ →

U∗ are homeomorphisms, and the maps fk∗ : Uk → U∗, f̃k∗ : Ũk → Ũ∗ are

9



injective continuous and smooth maps respectively.

Ũi Ũk Ũj

Ũi/Γi Ũk/Γk Ũj/Γj

Ui Uk Uj

∼= ∼=∼=

Remark 2.1.1. There are some immediate consequences of this definition, namely:

1. Whenever Uk ⊂ Ui, there exists an injective group homomorphism ψki : Γk →

Γi.

2. If p ∈ Ui, Uj, then given a lifts of p to Ũi and Ũj, then stabilizers of thee lifts

under the actions of Γi,Γj respectively are conjugate subgroups of O(n).

We call the sets Ũi the local covers of Ui. Furthermore, if we require that Γi

preserve the metric on Ũi, and assume that the metric glues together, that is the

embeddings fki : Ũk ↪→ Ũi are isometric immersions. As a result, we can define a

geodesic on O to be locally the image of a geodesic in the local manifold cover.

The above construction gives us a notion of an orbifold group at a point.

Definition 2.1.2. Let x ∈ O, suppose x ∈ Ui. Then, the orbifold group at x,

which we denote as Γx is defined to be the subgroup of Γi which fixes a given lift

of x to Ũi.

Note that this definition is well behaved due to the fact that the stabilizer of a

point is independent from the choice of chart containing that point. Furthermore,
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the group is only defined up to conjugation, which corresponds to taking different

lifts.

Ocasionally, we will want to ignore the orbifold structure of O, in this case,

we will consider the underlying topological space of O, which we denote |O|. This

is the paracompact Hausdorff space used in the definition of an orbifold, with no

orbifold charts. On the other hand, we will ocasionally want to decompose O into

pieces with the same orbifold group. In this case, we will view O as a disjoint

union of strata S where each S is a connected component with a constant (up to

conjugation) orbifold group. Each stratum is a topological manifold. One stratum

deserves special mention, and that is Oreg which is the stratum consisting of regular

points, that is points where Γx = {e}. This stratum is a connected manifold which

is dense in |O|; all other strata have positive codimension.

The strata decomposition gives us a simple definition of the orbifold Euler char-

acteristic:

Definition 2.1.3. Let A be the set of strata of an orbifold O. Then, the orbifold

Euler characteristic can be defined as

χorb(O) =
∑
S∈A

χ(S)

|ΓS |
,

where ΓS is the orbifold group along the stratum S.

Note that in the degenerate case where O is itself a manifold, χorb(O) = χ(O).

Let O,U be two orbifolds, with atlases Ui, Vj respectively, we say that a map

Ψ : O → U is a smooth orbifold map if there exist refinements of the atlases,
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which we call U ′i , V
′
j such that Ψ induces maps ψij : U ′i → V ′j which lifts to a

smooth map Ũ ′i → Ṽ ′j (structurally, Vj is a quotient of Ui). We say that Ψ is an

orbifold diffeomorphism if there exists a smooth orbifold map Ψ−1 : U → O, with

Ψ−1◦Ψ = id : O → O and Ψ◦Ψ−1 = id : U → U . Since we get Vj is a quotient of Ui

and Ui a quotient of Vj, an orbifold diffeomorphism must preserve strata. Similarly,

an orbifold covering map is a smooth orbifold map that is also a branched cover.

We also recall the definition of πorb1 , the orbifold fundamental group. There

are two equivalent ways of defining it. The first using universal covers, that is if

O = U/Γ, Γ discrete and U admitting no covers, then πorb1 (O) = Γ. The second

method is via homotopy, that is, given two loops γ1, γ2 : S1 → Oreg, we say they

are orbifold homotopic if γ1 can be homotoped to γ2 via regular homotopies inside

Oreg and end-point preserving homotopies in the local manifold covers of neigh-

borhoods of singular points. Then, we define πorb1 (O) to be the group of loops in

Oreg modulo base point preserving orbifold homotopy. For computation, the way

to view this is π1(Oreg)/N , where N is the normal subgroup generated by the im-

ages of contractible loops in the local covers Ũi. For explicit construction in the

two-dimensional case, see [Sco83].

Additionally, we say that an orbifold On is orientable if Oreg is an orientable

manifold, and for each x ∈ O, Γx ⊂ SO(n). If an orbifold O is orientable, choosing

an orientation of O corresponds to choosing an orientation on Oreg. Finally, we call

an orbifold good if it is a quotient of a manifold by a discrete group, and we call it

12



bad otherwise.

2.2 Examples

We start this section with the simplest examples, namely the 2-dimensional orb-

ifolds. For two dimensional orbifolds, there are three types of singularities that can

occur:

• A cone singularity, when the orbifold group is a cyclic group of rotations.

• A mirror singularity, when the orbifold group is a reflection about some line.

This type of singularity looks like boundary on the level of the underlying

space.

• A corner singularity, when the orbifold group is a dihedral group consisting

of rotations and reflections.

In particular, we examine the classification of bad 2-dimensional orbifolds

Proposition 2.2.1 ([Sco83]). Let O2 be a complete 2-dimensional bad orbifold,

then O is one of the following:

1. A “teardrop” - an orbifold with S2 as its underlying space and one cone point

singularity, with orbifold group Zk (k > 1).

2. A “lemon” or “football” - an orbifold with S2 as its underlying space and two

cone point singularities, with orbifold groups Zp,Zq with p 6= q and p, q > 1.
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3. A disc with one corner - an orbifold with D2 as its underlying space, a mirror

singularity along the boundary, and one corner singularity, with orbifold group

Dk (k > 1).

4. A disc with two corners - an orbifold with D2 as its underlying space, a mirror

singularity along the boundary, and two corner singularities, with orbifold

groups Dp, Dq with p 6= q and p, q > 1.

The main idea of this classification is to show that “teardrop” orbifolds and

“lemon” orbifolds with (p, q) = 1 are the only 2-orbifolds with πorb1 = 0, that are

not manifolds. The remaining cases are obtained as quotients of these two.

Example 2.2.1. An example of a good 2-orbifold is O = S2(2, 3, 4) = S2/S4. This

example is obtained by taking the quotient of S2 by the symmetry group of a

cube (or octahedron). The resulting orbifold has S2 as its underlying space, and

3 singular points of order 2, 3 and 4. These correspond to the centers of edges,

vertices and centers of faces of the cube respectively.

Similarly, by considering other finite subgroups of SO(3), one can obtain the orb-

ifolds S2(n, n) = S2/Zn, S2(2, 2, n) = S2/Dn, S2(2, 3, 3) = S2/A4, and S2(2, 3, 5) =

S2/A5. Where Zn is the symmetry group of a regular n-sided pyramid, Dn is the

symmetry group of a regular n-sided prism, A4 is the symmetry group of a tetra-

hedron, and A5 is the symmetry group of a dodecahedron (or icosahedron).

Example 2.2.2. A very useful and common family of examples are known as the

weighted projective spaces. These are bad orbifolds given by quotients of the form
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S2n+1/S1 similar to the standard complex projective spaces. The properties of this

family of spaces make it of interest to both differential and algebraic geometers, see

for example [Dol82].

To obtain a weighted projective space CPn[λ0, λ1, . . . , λn], where λi are all pos-

itive integers with gcd(λ0, λ1, . . . , λn) = 1, one modifies the standard action of S1

on C2n+2. Namely, z ? (w0, w1, . . . , wn) = (zλ0w0, z
λ1w1, . . . , z

λnwn). In particular,

if λ0 = λ1 = · · · = λn = 1, then one obtains the standard CPn.

For brevity, we will often denote a weighted projective space as CPn[λ] when

the exact values of λi’s are not necessary.

In Chapters 4 and 5 we will focus mostly on CP2[λ0, λ1, λ2], so in this section,

we will focus on the general properties.

The singular locus of CPn[λ] consists of up to
(
n
k

)
copies of CPk[λ′] for 0 ≤

k < n. These correspond to the coordinate (k + 1)-dimensional subspaces of Cn+1.

In particular, the suborbifold CPk[λ′] corresponding to the subspace spanned by

zi0 , . . . , zik is singular iff l = gcd(λi0 , . . . , λik) > 1, and then the general orbifold

group along this suborbifold is cyclic of order l.

For example, CP1[p, q] is the 2-dimensional p, q “lemon”-shaped orbifold if p, q >

1 and the p or q “teardrop” if q = 1 or p = 1 respectively.
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2.2.1 Weighted HPn

After seeing the weighted projective spaces above, one might inquire whether a simi-

lar construction can be achieved for quaternionic projective spaces. If one interprets

the choice of λi’s above as a choice of a representation of S1, then one must ask

what representations of S3 = SU(2) = Sp(1) have nice behavior on a sphere. The

answer comes from the observation that any odd-dimensional complex representa-

tion of SU(2) has isotropy groups of rank 1. Namely, the only representations that

induce foliations of Sk by leaves of constant dimension come from direct sums of

the irreducible quaternionic represesntations of Sp(1). Alternatively, one can think

of these as direct products of irreducible even-dimensional complex representations

of SU(2).

Definition 2.2.1. A weighted quaternionic projective space HPn[d1, . . . , dk], with

di > 0 and
∑
di = n+ 1, is the quotient of S4n+3 ⊂ Hn+1 = Hd1 ⊕ · · · ⊕Hdk by the

left-action of S3 = Sp(1) given by ρ = ρd1 ⊕ · · · ⊕ ρdk , where ρd is the irreducible

d-dimensional quaternionic representation (4d-dimensional real representation) of

Sp(1).

The simplest example of a non-trivial weighted quaternionic projective space

is HP1[2]. One way to view this orbifold is as Sp(1)\Sp(2)/Sp(1)pr, where the

group on the right corresponds to the irreducible 2-dimensional quaternionic repre-

sentation, and the group on the left corresponds to the embedding {diag(q, 1)|q ∈

Sp(1)} ⊂ Sp(2). In particular, the quotient Sp(2)/Sp(1)pr is diffeomorphic to
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B7 = SO(5)/SO(3) (the 7-dimensional Berger space [Ber61]), and the Sp(1) act-

ing on the left corresponds to an S3 ⊂ SO(4), where the action of SO(4) gives a

cohomogeneity one structure on B7 (see [GWZ08]). Looking at the isotropy groups

of the SO(4) action, we can observe that HP1[2] is a cohomogeneity one orbifold

with an SO(3) action, and the underlying space is S4 with a Z3 singularity along a

Veronese RP2. In particular, as we will see in Chapter 4, this is the Hitchin orbifold

H3.

One interesting property of the orbifold HP1[2] is that it admits positive cur-

vature since it is the base of a Riemannian submersion of a positively curved total

space. Furthermore, Hitchin [Hit96] showed that it admits a self-dual Einstein met-

ric. Finally, two recent papers ([GVZ11] and [Dea11]) have shown that there is a

7-dimensional manifold P2 obtained as S3 → P2 → HP1[2] (see [GWZ08] for the

construction), which admits a metric of positive curvature compatible with this fi-

bration. In particular, there are 3 different orbi-fiber bundles with fiber S3, and

base space HP1[2], where the total space is a positively curved manifold (S7, P2, B
7).

One might inquire whether there are other 7-dimensional manifolds with positive

curvature which fiber over this orbifold. Unfortunately, the study of bundles over

orbifolds is not well-developed at present.
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2.3 Basic Results

In this section we prove several known orbifold results. In particular, using Propo-

sition 2.3.2, we are able to greatly simplify the work of Borzellino on the orbifold

Bonnet-Myers theorem.

The following is a simple yet very useful proposition for dealing with orbifolds.

A more general version is proven by Armstrong in [Arm68].

Proposition 2.3.1. Let X be a simply-connected topological space. Let Γ be a finite

group acting continuously on X. Then, π1(X/Γ) = Γ/Γf where Γf is generated by

the elements of Γ that have fixed points.

For our purposes, the proposition above will use X = Sn−1 with n > 2, since it

in particular allows us to compute π1(∂(Bn/Γx)) = π1(S
n−1/Γx) the fundamental

group of the boundary of a neighborhood of a singular point. In particular, when

n = 4, and Γx ⊂ SO(4) we get Sn−1/Γx is a topological manifold (this comes from

the fact that every orientable orbifold quotient of S2 is homeomorphic to S2, and

therefore, if π1(S
3/Γx) = 0, then it must be S3 by the Poincaré Conjecture.

The following is a generalization of a well-known Lemma due to Kleiner [Kle90]

in the manifold case. It can be proven as a corollary of Kleiner’s work, since

an orbifold is the quotient of the orthonormal frame bundle, which is a smooth

manifold, by the action of SO(n). However, we provide a direct proof.

Proposition 2.3.2. Let On be a complete Riemannian orbifold, p, q ∈ O, γ :
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[0, t]→ O a minimizing geodesic with γ(0) = p, γ(t) = q. Let k = codim S(p), l =

codim S(q), then γ maps (0, t) to a single stratum, S0, where codim S0 ≤ min{k, l}.

Proof. Suppose γ(s) lies in a higher codimension startum than γ(s − ε) for small

ε > 0. Let m = codim S(γ(s)).

Take a neighborhood of γ(s) that has the form N = Bn−m(δ)×Bm(η)/Γ, where

Γ ⊂ O(m) ⊂ O(n) is the orbifold group along S(γ(s)). We can choose δ, η > 0

small such that γ(s− τ) ∈ Bn−m(δ)× Sm−1(η)/Γ is the point where γ enters N .

Consider a lift γ̃ : (s − τ, s + λ) → Ñ where Ñ is the local manifold cover of

N . Since γ is length minimizing, as such, we can take γ̃ to be length minimizing as

well.

Define γ̂g : (−τ, λ)→ Ñ where g ∈ Γ, g 6= I fixes γ̃(s) as follows:

γ̂g(x) =


g ◦ γ̃(s+ x) x < 0,

γ̃(s+ x) x ≥ 0

γ̂g is continuous since g ◦ γ̃(s) = γ̃(s), it has the same image in N as γ̃; however,

it is not a geodesic of Ñ . Therefore, we can shorten it while keeping the same

endpoints. This implies that γ can be shortened inside N . Which contradicts our

assumption that γ is a minimizing geodesic.

Corollary 2.3.3. If p, q ∈ Oreg, then the shortest distance between p and q can

only be achieved by a geodesic segment contained entirely in Oreg.
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We can use this corollary to obtain a simple proof of the following result (see

[Bor93] where this was obtained via volume comparison):

Corollary 2.3.4 (Bonnet-Myers for Orbifolds). Let On be a complete Riemannian

orbifold. Suppose that the Ricci curvature of O satisfies Ricp(v) ≥ 1
r2
> 0 for all

p ∈ O and for all v ∈ TpO. Then O is compact and the diameter diam O ≤ πr.

Proof. Suppose diam O > πr. Since the set of regular points is dense, there exist

p, q ∈ Oreg such that d(p, q) > πr. Let γ be a length minimizing geodesic segment

connecting p and q. By the previous corollary, we know that γ lies inOreg. Moreover,

since Oreg is open, a neighborhood of γ lies in Oreg, which means we can use the

standard proof of Bennet-Myers using the second variation formula.

Theorem 2.3.5 (Synge-Weinstein for Orbifolds). Let f be an isometry of a compact

oriented Riemannian orbifold On. Suppose that O has positive sectional curvature

and that if n is even f preserves orientation and if n is odd, f reverses orientation.

Then, f has a fixed point.

Proof. Let df : O → R be defined by df (p) = d(p, f(p)).

Let p ∈ O be a point that minimizes df . We assume that df (p) > 0.

Let γ be a minimizing geodesic connecting p to f(p). By the same argument as

the standard Synge-Weinstein theorem, f acts on γ by translation by df (p). We

assume that γ(0) = p, γ(T ) = f(p).

We now show that γ : (−∞,∞) must lie in a single stratum.
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Let q = γ(T/3) and r = γ(2T/3). By Proposition 2.3.2 we know that since γ is

length minimizing on [0, T ], q, r are in the same stratum. Furthermore, γ must be

length minimizing on [T/3, 4T/3]. Therefore, r and f(p) are in the same stratum.

From this we conclude that the entire image of γ is in a single stratum.

Let N be a δ-tubular neighborhood of γ([−ε, T + ε]). Then, for δ, ε > 0 small

enough, we can take a local manifold cover of N , which we will call Ñ . By taking

the unique lift of γ([0, T ]) to Ñ , we can apply the same steps as the proof of the

standard Synge-Weinstein theorem to conclude that there exists a point q close to

p such that df (q) < df (p).

An interesting question is how to adapt Synge’s theorem to the orbifold case.

The straight forward adaptation fails. For example O2 = S2/Z2, where Z2 acts by

rotation by 180◦ is orientable, but πorb1 (O) = Z2, and O3 = S3/Z2 where Z2 acts by

reflections in some 3-plane in R4 is not orientable in the orbifold sense.

The corollary below demonstrates the analog of Synge’s Theorem for Orbifolds,

a version for Alexandrov spaces can be found in [HS12], and with some additional

assumptions in [Pet98]

Corollary 2.3.6 (Synge’s Theorem for Orbifolds). Let O be a compact positively

curved orbifold, then

1. if n is even, and O orientable, then |O| is simply connected.

2. if n is odd, and for every p ∈ O, Γp ⊂ SO(n), then O is orientable.
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Proof. For the even dimensional case, we suppose that |O| is not simply connected,

let U be a finite cover of O such that |U| is a cover of |O|. Let f be a deck

transformation, then f is an isometry of U that preserves orientation. By Synge-

Weinstein, f must have a fixed point; therefore, |U| can not be a cover of |O|.

For the odd dimensional case, we suppose O is non-orientable, then there is a

double cover U → O with U orientable and positively curved. By Synge-Weinstein,

the orientation reversing isometry of U has a fixed point. Furthermore, it is clear

that the action on the tangent space at that point is orientation reversing, so the

orbifold group at the image of this fixed point will not lie in SO(n).

Finally, we add in this section a few warnings about scenarios in which the

behavior of orbifolds differs significantly from that of manifolds.

If a finite group fixes two complementary subspaces of TpO, then it need not fix

the entire tangent space (see Example 4.1.3, and more detailed description of what

occurs in this scenario in 4).

Additionally, there is a challenge in defining when two vectors is TpO are or-

thogonal. The first possible definition is to say that v, w are orthogonal if there are

lifts ṽ, w̃ which are orthogonal in the local cover. However, with this definition, it

is possible to have v orthogonal to itself, for example O = S2/rotπ/2 then at the

north pole, every vector is orthogonal to itself. The second possible definition is to

say that v, w are orthogonal if all lifts ṽ, w̃ are orthogonal in the local cover. Under

this definition, it is possible that v has no non-zero vectors orthogonal to it (same
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O as before); nevertheless, this is the definition we prefer.

We now show that the slice theorem holds for orbifolds and respects the orbifold

structure. Note that it is known to hold for Alexandrov spaces [HS12], although

the proof does not describe the orbifold structure. In fact, in the orbifold case, the

proof is a straightforward generalization of that for manifolds.

Proposition 2.3.7 (Slice Theorem for Orbifolds). Let G be a connected Lie group,

On a Riemannian orbifold, with an isometric G-action. Then, given any p ∈ O,

and sufficiently small r > 0, we have

Br(G(p)) ∼= G×Gp Cone(νp)

where Gp = {g ∈ G|g(p) = p}, G(p) is the orbit of p, and νp = {v ∈ TpO|v ⊥

G(p), |v| = 1} is the space of directions orthogonal to the orbit.

Remark 2.3.1. In the course of the proof we will also show that it does not matter

which definition of orthogonality we use.

Proof. We begin with the observation that G(p) ⊂ S(p), since g(p) must lie in a

stratum with the same orbifold group, and G(p) is connected. In particular, this

tells us that G(p) lifts uniquely to the local manifold cover at p, as S(p) must lie

in Fix(Γp). Furthermore, with respect to this lift, Γp ⊂ O(k) ⊂ O(n), where k

is the codimension of S(p). Let l be the codimension of G(p) inside S(p), then

νp = Sk+l−1/Γp is well-defined.
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These observations allow us to approach the proof for the orbifold case in the

same fashion as the manifold case. We define ϕ : G× Cone(νp)→ O as

ϕ(g, v) = g(expp(v)),

this map has kernel Gp, and so induces a map G ×Gp Cone(νp) → O. To get an

inverse map, for q close to G(p), we take q0 to be the point on G(p) closest to q,

and g0 ∈ G be such that g0(p) = q0, this choice is unique up to Gp. We then

consider v0 ∈ Cone(νp) ⊂ TpO such that expp(v0) = g−10 (q). This gives us our

diffeomorphism.

We end the section with a result which appeared in the original paper of Satake:

Proposition 2.3.8 (Orbifold Poincaré Duality [Sat56]). Let O be a compact ori-

entable n-dimensional orbifold without boundary, then O is a R-homology manifold,

and in particular, Hk(|O|;R) = Hn−k(|O|;R).

A direct proof of this result is not difficult, and relies on understanding the rela-

tion between H∗(Bn, Sn−1) and H∗(Bn/Γ, Sn−1/Γ) when Γ is a finite group acting

effectively, and preserving orientation (see [Gro57] and [Mac62]). In particular, the

only difference between the two cohomology rings is in the torsion, which is killed

off when passing to real coefficients.
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Chapter 3

Group Actions and Metrics

3.1 Biquotients

Recall that a biquotient X is of the form X = G//U where G is a Lie group and

U ⊂ G×G acts as (ul, ur) ·g = ulgu
−1
r where g ∈ G and (ul, ur) ∈ U . If U = K×H

with K,H ⊂ G, then we can instead write X = K\G/H. In his Habilitation,

Eschenburg [Esc84] showed that if G//U is a manifold, then rkU ≤ rkG. Since the

argument is done on the Lie algebra level, we will see that it also holds when we

allow G//U to be an orbifold.

Lemma 3.1.1. Let tu ⊂ u be a maximal abelian subalgebra. Then, G//U is an

orbifold if and only if for all non-zero (X1, X2) ∈ tu ⊂ u ⊂ g⊕ g and for all g ∈ G,

X1 − Ad(g)X2 6= 0.

If π : G→ G//U is the projection, and g ∈ G, then the orbifold group Γπ(g) ⊂ U
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is given by

Γπ(g) =
{

(h, k) ∈ U | hgk−1g−1 = e
}
.

In particular, G//U is a manifold iff (h, k) ∈ U, g ∈ G with h = gkg−1 implies

h = k = e.

Proof. Let M be a manifold, Γ a Lie group, π : M → O = M/Γ the projection

map. Then, for any x ∈ M , Γπ(x) = Stab(x). As a corollary we get the description

of Γπ(g) as desired. Observe that G//U is an orbifold iff the stabilizer of every g ∈ G

is finite. The Lie algebra of Γπ(g) is X1−Ad(g)X2 where (X1, X2) ∈ u. Since we can

conjugate (X1, X2) ∈ u into an element of tu ⊂ u, and since the stabilizer groups

occur in conjugacy classes, the first claim follows as well.

Lemma 3.1.2. If G//U is an orbifold, then rk u ≤ rk g.

Proof. Suppose rk u > rk g, let tu ⊂ u ⊂ g ⊕ g be a maximal torus. Let ϕ1, ϕ2 be

projections of u onto the first and second copy of g respectively. Pick a maximal

torus tg ⊂ g such that ϕ1(tu) ⊂ tg.

Next, pick g ∈ G such that Ad(g)ϕ2(tu) ⊂ tg. This induces a linear map

Φ : tu → tg given by

Φ(X) = ϕ1(X)− Ad(g)ϕ2(X).

In particular, if rk u > rk g, we conclude that ker Φ 6= {0}. This implies that there

exists X = (ϕ1(X), ϕ2(X)) ∈ u such that ϕ1(X) − Ad(g)ϕ2(X) = 0, which by the

previous lemma implies that G//U is not an orbifold.
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Remark 3.1.1. A special situation occurs when one deals with biquotients of the form

SU(n)//U . In particular, one does not usually require that U ⊂ SU(n) × SU(n),

but rather that U ⊂ U(n) × U(n), such that if (g, h) ∈ U , then det(g) = det(h),

which ensures that SU(n) is a subset of U(n) that is preserved under the action of

U .

3.1.1 Classical Examples

Example 3.1.1 (Eschenburg Spaces). One of the first examples of biquotients comes

from the work of Eschenburg [Esc84], [Esc82] and forms a family of spaces called

the Eschenburg spaces. An Eschenburg space is a biquotient of the form E7
p,q =

SU(3)//S1
p,q, with p, q ∈ Z3, where the action of S1

p,q on SU(3) is given by

z ? A = diag(zp1 , zp2 , zp3)−1 · A · diag(zq1 , zq2 , zq3).

In order for the quotient to be a manifold, we must impose the condition that

gcd(p1 − qσ(1), p2 − qσ(2)) = 1 for all σ ∈ S3. Alternatievly, if we wish to allow

orbifolds, the condition is gcd(p1 − qσ(1), p2 − qσ(2)) 6= 0.

Eschenburg showed that if qi 6∈ [pmin, pmax], then the Eschenburg space admits

a metric with positive curvature, since the argument is done on the Lie algebra

level, the same condition holds for orbifolds. Kerin [Ker08] further showed that

all Eschenburg spaces admit metrics of quasi-positive curvature, and some admit

metrics of almost-positive curvature.

Example 3.1.2 (Gromoll-Meyer Sphere). While systematic study of biquotients be-
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gan with Eschenburg, an even earlier example of a biquotient is found in [GM74] and

is known as the Gromoll-Meyer sphere. The Gromoll-Meyer sphere is the (2,−1)

Milnor 7-sphere [Mil56], and is obtained as a biquotient of the form Sp(2)//Sp(1).

The embedding of Sp(1) into Sp(2)× Sp(2) used here is diagonal in the first Sp(2)

and the upper-left embedding into the second Sp(2).

Eschenburg and Kerin [EK08] have shown that the Gromoll-Meyer sphere admits

a metric with almost positive curvature. More recently, Petersen and Wilhelm

[PW08] have proposed a method to show that the Gromoll-Meyer sphere admits a

metric with positive curvature.

3.1.2 Orbifold Examples

In addition to the manifold examples presented in the previous section, several

example of orbifold biquotients can be found in the literature.

Example 3.1.3. In [FZ07], Florit and Ziller generalized the notion of Eschenburg

spaces to a family of 6-dimensional orbifolds of the form SU(3)//T 2, where T 2 =

S1
p,q × S1

a,b, with both S1
p,q and S1

a,b being of the form required for the Eschenburg

space. We study this family in more detail in section 5.3.

Example 3.1.4. In his thesis [Ker08], Kerin studied the family S3 × S3//T 2. Kerin

showed that there are two families and one exceptional examples of such biquotients.

These are described by considering the embedding of T 2 into T 2 × T 2 ⊂ G × G,

where G = S3 × S3.
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UL =

{((
z

w

)
,

(
1

1

))∣∣∣∣ z, w ∈ S1

}
Uc =

{((
z

zc

)
,

(
w

w

))∣∣∣∣ z, w ∈ S1

}
c ∈ Z

Ua,b =

{((
z

w

)
,

(
zawb

zawb

))∣∣∣∣ z, w ∈ S1

}
a, b ∈ Z

G//UL = S2 × S2 and G//U0 = CP2# − CP2 are the only manifolds in this

family of biquotients. Moreover, when applying a certain deformation, Kerin shows

that G//T 2 inherits a metric of almost positive curvature iff it is a singular orbifold.

3.2 Submersions and Deformations

The main reason biquotients have well-behaved curvature properties is that they are

formed as base spaces of Riemannian submersions. Recall that O’Neils’s formula

states that if Mn → Nn−k is a Riemannian submersion, then

secN(X, Y ) = secM(X̃, Ỹ ) +
3

4

∣∣∣[X̃, Ỹ ]
∣∣∣2 ≥ secM(X̃, Ỹ ),

where secN , secM are the sectional curvatures in N and M respectively, and X̃, Ỹ

are horizontal lifts of tangent vectors X, Y . In particular, note that Riemannian

submersions do not decrease sectional curvature. And so from the submersion

G → G//U , we conclude that G//U has non-negative curvature whenever G is a

compact Lie group equipped with a bi-invariant metric.

On the other hand, sometimes having non-negative curvature is not the best we

can achieve. One way to increase the amount of positive curvature is to perform a
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Cheeger deformation [Che73], which is used to improve the curvature on manifolds

and orbifolds obtained as quotients of Lie groups.

To perform a Cheeger deformation along a subgroup K ⊂ G, choose λ > 0, and

define (G, gλ) = G×K λK, where G is equipped with a bi-invariant metric and λK

is equipped with the induced metric scaled by λ. gλ is still left-invariant, but is no

longer bi-invariant; however, it is right K-invariant. In particular, we have

Lemma 3.2.1 (Eschenburg). If (G,K) is a compact symmetric pair, that is there

exists an involution ϕ : g→ g with Fix(ϕ) = k, equip G with the metric induced by

the submersion G×λK → G, given by (g, k) 7→ gk−1. The metric has non-negative

sectional curvature, and sec(X, Y ) = 0 iff [X, Y ] = [X k, Y k] = 0.

In [Wil02], Wilking used Cheeger deformation to construct a metric of almost

positive curvature on RP2 ×RP3 (among other spaces), which disproved the defor-

mation conjecture. Furthermore, a metric of almost positive curvature on RP2×RP3

induces a metric of almost positive curvature on S2 × S3.

The metric of S2 × S3 is achieved by considering the biquotient S2 × S3 =

∆(S3×S3)\(S3×S3)× (S3×S3)/(1×∆S1), with the metric coming from S3×S3

Cheeger deformed along ∆S3.

Additionally, Wilking proved a very useful result for studying the points with

zero-curvature planes.

Proposition 3.2.2. (Wilking [Wil02]) Let M = G//U be a normal biquotient,

that is a biquotient equipped with a metric induced by the bi-invariant metric on
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G. Suppose σ ⊂ TpM is a plane satisfying sec(σ) = 0. Then the map exp : σ →

M, v 7→ exp(v) is a totally geodesic isometric immersion.

While his original result if for normal biquotients, it holds for biquotients with

metrics induced by Cheeger deformations as well. In particular, if we have G//U ,

and the metric is deformed along K ⊂ G, then G//U = (G × K)//U ′, where

U ′ = {((ul, u−1r ), (k, k))|(ul, ur) ∈ U, k ∈ K} ⊂ (G×K)× (G×K).
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Chapter 4

4-Dimensional S1-Orbifolds

4.1 Examples

In this section we provide some examples of 4-dimensional orbifolds with isometric

S1 actions. We also see that there can be many such orbifolds with the same

underlying space, but different singular structures.

Example 4.1.1 (Weighted Projective Spaces). Let λ0, λ1, λ2 be positive integers such

that

gcd(λ0, λ1, λ2) = 1.

We define an S1 action on S5 ⊂ C3 by

z ? (w0, w1, w2) = (zλ0w0, z
λ1w1, z

λ2w2).

The quotient space S5/S1 is a 4-dimensional orbifold, known as a weighted projec-

tive space, denoted CP2[λ0, λ1, λ2], or CP2[λ] for short.
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As with smooth projective spaces, we use homogeneous coordinates, i.e [w0 :

w1 : w2] denotes the orbit of (w0, w1, w2).

A typical question when studying orbifolds is: what is the orbifold structure

of this space? i.e. what are the singular points, and what are the corresponding

orbifold groups?

For CP2[λ], the following are all the possible non-trivial orbifold groups:

Γ[1:0:0] = Zλ0 Γ[0:1:0] = Zλ1 Γ[0:0:1] = Zλ2

Γ[w0:w1:0] = Z(λ0,λ1) Γ[w0:0:w2] = Z(λ0,λ2) Γ[0:w1:w2] = Z(λ1,λ2).

As we can see, CP2[λ] has a singular set consisting of up to three points correspond-

ing to [1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] and of up to three (possibly singular) S2’s

connecting pairs of such points, which correspond to [w0 : w1 : 0], [w0 : 0 : w2], [0 :

w1 : w2].

The metric on CP2[λ] induced by the round metric on S5 has positive sectional

curvature. Furthermore, the natural action by T 3

(z0, z1, z2) ? [w0 : w1 : w2] = [z0w0 : z1w1 : z2w2]

has ineffective kernel S1 = {(zλ0 , zλ1 , zλ2)}, and hence induces an isometric T 2

action on CP2[λ].

One can now ask what the stratification of CP2[λ] is that is induced by an

S1 action, where S1 ⊂ T 2. The fixed point set of an S1 action on CP2[λ] can

be either three isolated points, or an isolated point and a (possibly singular) S2.
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The former corresponds to a generic S1 action, and the fixed points are precisely

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]. The latter case has [1 : 0 : 0], [0 : w1 : w2] (or similar

pairs) as its fixed point set, and corresponds to S1 actions that can be written as

(z, 1, 1) ∈ T 3.

We finish this example by observing that since CP2[λ] = S5/S1, the exact ho-

motopy sequence for orbifolds fibrations (πorb1 (E) → πorb1 (B) → π0(F ) → π0(E) →

π0(B)→ 0, which one obtains by pulling back the bundle F → E → B to a bundle

with base B) implies that πorb1 (CP2[λ]) = 0. Also, using Mayer-Vietoris in 3 ways

along [0.5 : u : v], [u : 0.5 : v] and [u : v : 0.5], one can show that H∗(|CP2[λ]|;Z) =

H∗(CP2;Z). Furthermore, |CP2[λ]| = CP2 iff λ0 = ab, λ1 = ac, λ2 = bc. This follows

from Proposition 2.3.1, by considering the orbifold structure at [1 : 0 : 0], [0 : 1 : 0],

and [0 : 0 : 1], since the orbifold group at these points can be generated by elements

with non-trivial fixed point sets, implying that ∂Bε = S3.

Example 4.1.2. Consider O = CP2[1, 2, 4]. and let S1 act on it by

z ? [w0 : w1 : w2] = [zw0 : w1 : w2] = [w0 : z2w1 : z4w2],

which has ineffective kernel z = ±1.

The fixed point set consists of an isolated point: [1 : 0 : 0], and a singular

S2: {[0 : w1 : w2]}. To clearly see the representation of S1 on a neighborhood of

[1 : 0 : 0], we re-write this action in an effective way as

u ? [w0 : w1 : w2] = [w0 : uw1 : u2w2],
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where one can think of u as z2. Since the tangent space at [1 : 0 : 0] is spanned

by (0, z, w), we observe that the action of S1 on this space has the isotropy rep-

resentation equivalent to ϕ1,2, where ϕk,l is the action of S1 on C2 = R4 given by

S1 = {(zk, zl)} ⊂ T 2.

This example demonstrates something that can not happen in the manifold case,

since Hsiang and Kleiner (Lemma 5 in [HK89]) showed that if the fixed point set

contains an isolated point and a 2-dimensional component, then if sec > 0, the

isotropy representation of S1 on a neighborhood of the isolated point has to be ϕ1,1.

In particular, in this case the proof of [HK89] can not immediately be generalized

to orbifolds.

Example 4.1.3. Let O = S4/Z2, where we view S4 ⊂ C2 ⊕ R, and Z2 acts as

(−1,−1; 1) on C2 ⊕ R. Thus O is the suspension of RP3. Given a point p ∈ O, we

write it as (±(z, w); r), where (z, w; r) ∈ S4 maps to p.

We now introduce an action of Z2 on O. Let x be the generator of Z2, then x ?

(±(z, w); r) = (±(−z, w); r). In particular, x fixes the suspension points (±(0, 0); 1)

and (±(0, 0);−1).

If p = (±(0, 0); 1), we split the tangent cone TpO into two subspacesV,W as

follows: V the projection of the 2-plane {(z, 0; 0)} ⊂ T(0,0;1)S
4, and W the projection

of {(0, w; 0)} ⊂ T(0,0;1)S
4.

Observe that we have x ? dϕ(z, 0; 0) = dϕ(−z, 0; 0) = dϕ(z, 0; 0), and x ?

dϕ(0, w; 0) = dϕ(0, w; 0) where dϕ : T(0,0;1)S
4 → TpO. In particular, the action
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of x fixes both V and W . However, x does not fix all of TpO.

The idea behind this construction is that G acts on Tp̃Ũ (the tangent space in the

local cover) by ϕV , ϕW on lifts of V and W respectively, where ϕV (g), ϕW (g) ∈ Γp

for all g ∈ G, but the two are distinct, which implies that (ϕV +ϕW )(g) 6∈ Γp as an

action on Tp̃Ũ .

Example 4.1.4. Another interesting family of examples are the Hitchin family of

orbifolds introduced in [Hit96]. Recall that a Hitchin orbifold, which we will de-

note Hk, has S4 as its underlying space, and its singular locus consists of a smooth

Veronese RP2 with a Zk orbifold group. In particular, we view S4 as the set of trace-

less symmetric 3x3 matrices with unit norm, on which SO(3) acts by conjugation.

We can view each orbit as the space of matrices with fixed eigenvalues.

The singular orbits of the SO(3) action are precisely two copies of RP2, corre-

sponding to the matrices with repeated positive or negative eigenvalues. To con-

struct the Hitchin k-orbifold Hk, we introduce a Zk singularity along one of the RP2

orbits. One way of interpreting this is to replace the existing D2 bundle over RP2

by a D2/Zk cone-bundle over RP2.

Next, consider the action of SO(3) on CP2 induced by the canonical embedding

SO(3) ⊂ SU(3). Recall that there exists a branched cover CP2 → S4 where we

identify [w0 : w1 : w2] with [w0 : w1, w2], and this cover is an SO(3)-equivariant

continuous map. If we impose a Zk singularity along RP2, we obtain the universal

cover of H2k (H2k).
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The Hitchin metric on Hk is self-dual Einstein, but has some negative curvature

unless k = 1, 2, see [Zil09], where H1 is the standard S4, and H2 = CP2/Z2, where

Z2 acts by conjugation. Furthemore, one can view H3 = S7/SU(2), where SU(2)

acts by the irreducible representation on C4 ⊃ S7 (see Section 2.2.1).

We note that a Hitchin orbifold has πorb1 (Hk) = 0 iff k is odd; consider a loop

γ corresponding to winding once around the singularity, then [γ] ∈ πorb1 (Hk) must

have odd order, but if we push it to a non-singular orbit, it has order 1, 2 or 4.

Therefore, we must have [γ] = e, but such loops are the only loops which may be

non-trivial. Thus, πorb1 (Hk) = 0 for k odd. When k is even,Hk is double covered by

CP2 with a singular RP2 where the orbifold group is Zk/2, with the cover given by

the map CP2 → S4 given by identifying [z] with [z], where the branching locus is

RP2.

In our context, Hitchin orbifolds are of interest in particular because the two

infinite families of 7-dimensional candidates for cohomogeneity one manifolds with

positive curvature (Pk, Qk) can be described as bundles over the Hitchin orbifolds

up to covers; namely, S3 → Pk → H2k−1 and S3 → Qk → H2k (see [GWZ08]

for the general construction, [GVZ11], [Dea11] for positive curvature on P2, and

[Zil09] for an overview). It is conjectured that all manifolds Pk, Qk admit positive

curvature (see [Zil07]). Also, it is known that all Pk, Qk admit non-negative sectional

curvature, hence so do all Hk.

We will now show that one can easily construct a metric of positive curvature on
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Hk for all k, as has been observed in [GVZ11] using the work of Müter [Müt87]. Let

γ be a geodesic orthogonal to all the SO(3) orbits. The metric on Hk can be defined

by considering vi(t) = |X∗i |2 at γ(t). We begin with a C∞ function v : [0, π]→ R≥0

satisfying the following conditions:

v(0) = 0 v′(0) = 4 v′′(0) = 0 v′(π/3) = 0

v(π) = 0 v′(π) = −4/k v′′(π) = 0 v′′(t) < 0 t ∈ (0, π),

where k is the order of singularity along RP2. We now split v into three func-

tions v1, v2, v3 : [0, π/3] → R≥0, where v1(t) = v(t), v2(t) = v(2π/3 + t), v3(t) =

v(2π/3 − t). These functions define a metric on Hk, where we take X1, X2, X3 as

basis for so(3) and vi define the norm of the action field corresponding to Xi at

γ(t) ∈ Hk, along a geodesic orthogonal to the orbits. These functions satisfy the

requirements in Theorem 2.4 in [GVZ11] with L = π/3 as in [Zil09], and hence

the metric is C2 (and can be made C∞ as well.) We now observe that given a

vector tangent to an orbit, and a vector normal to the orbit, the curvature is given

by 〈R(Xk, T )Xk, T ) = −v
′′
k

vk
(see [GZ02]), and is hence positive. Without further

constraints on the functions vk, we might have some negative curvature planes. We

can now use a Cheeger deformation (see [Che73], [Zil07]) along the action of SO(3)

to avoid this problem.

Recall that a Cheeger deformation of a manifold M along the action of a group G

is achieved by viewing M = M×G 1
t
G, where t is a scaling parameter (see [Müt87]).

Given a point p ∈ M , we can write every vector X as XN + XG, where XG is
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tangent to the orbit G(p) and XN is orthogonal to it. Also, every vector X lifts

horizontally to M × 1
t
G as

(XN + P−1(P−1 + tI)−1XG,−t(P−1 + tI)−1X̃G),

where X̃G is an element of g whose image under the action is XG. Furthermore,

P is a symmetric 3x3 matrix such that the metric on M is of the form Q(PX, Y )

where Q is a bi-invariant metric on G (see [Zil07]).

If we can write σ = span{XN , Y G}, then we have positive curvature. So, we

have to consider the case where XG, Y G are linearly independent, and without

loss of generality, we may assume Y N = 0. We adopt the notation R(X, Y ) =

〈R(X, Y )X, Y 〉 for brevity. By O’Neil’s formula we have that

R(X, Y ) ≥ RM(XN + P−1(P−1 + tI)−1XG, P−1(P−1 + tI)−1Y G)

+R(1/t)G(t(P−1 + tI)−1X̃G, t(P−1 + tI)−1Ỹ G)

= RM(XN , P−1(P−1 + tI)−1Y G)

+RM(P−1(P−1 + tI)−1XG, P−1(P−1 + tI)−1Y G)

+R(1/t)G(t(P−1 + tI)−1X̃G, t(P−1 + tI)−1Ỹ G)

= RM(XN , P−1(P−1 + tI)−1Y G)

+RM(P−1(P−1 + tI)−1XG, P−1(P−1 + tI)−1Y G)

+ tRG((P−1 + tI)−1X̃G, (P−1 + tI)−1Ỹ G).

We now use the fact that the first summand is always positive, the second

summand behaves as C1/t
4 as t→∞, and the third summand behaves as C2/t

3 as
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t→∞ with C2 > 0, this can be demonstrated by considering the eigenvalues of P

and the eigenvalues of (P−1 + tI)−1. As such, for t sufficiently large, we get that

R(X, Y ) > 0 everywhere.

The action by G = SO(3) on M × G by right multiplication is isometric and

induces isometries on Hk. Thus, a circle S1 ⊂ SO(3) still acts by isometries.

Specifically let

S1 =




cos t − sin t 0

sin t cos t 0

0 0 1

 : t ∈ [0, 2π)


⊂ SO(3).

Since the SO(3) action on each singular orbit is the standard SO(3) action on RP2,

the S1 fixes two points, one in each of the singular orbits of the SO(3) action. In

particular, it fixes 
1√
6

1√
6

−2√
6

 and


−1√
6

−1√
6

2√
6

 .

We can view the S1 action as a suspension of an S1 action on S3. Indeed, if we

view traceless 3x3 symmetric matrices in S4 asA v

vT h

 with A =

−h/2 + t b

b −h/2− t

 , trA+ h = 0.
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Here v =

c
d

 is a vector in R2, and h is the suspension parameter. Observe that

t2 + b2 + c2 + d2 =
2− 3h2

4
and hence h ∈ [−2/

√
6, 2/
√

6].

Thus, we have a 3-sphere when h ∈ (−2/
√

6, 2/
√

6), and t2 + b2 + c2 + d2 = 0 when

h = ±2/
√

6, so the sphere collapses to a point.

Suppose that the singular locus is the RP2 correpsonding to the matrices with

eigenvalues 1/
√

6, 1/
√

6 and −2/
√

6. Then, conjugating diag(1/
√

6, 1/
√

6,−2/
√

6)

we can see that this RP2 intersects only the spheres with h ∈ [−2/
√

6, 1/
√

6]. This

intersection is precisely one orbit of the S1 action (which acts as ϕ1,2 on the S3’s,

which can be seen from the S1 action on A, v), and as we approach the last S3

where the intersection is non-empty, this S1 turns into the singular orbit.

Example 4.1.5. Another example with sec > 0 follows immediately from the Hitchin

orbifolds. In particular, consider the canonical RP2 ⊂ CP2, and impose a Zk singu-

larity along it. That is, a neighborhood of RP2 is a 2-disk bundle over RP2, replace

this bundle by a D2/Zk cone bundle over RP2. The gluing along the boundary is

well defined since D2 \ {0}/Zk is diffeomorphic to D2 \ {0}.

By the discussion in the previous example, this orbifold is the double cover of

H2k, and so admits a metric of positive curvature.

Example 4.1.6. Another family of cohomogeneity one orbifolds is Vk, where |Vk| =

CP2, and the singular locus is an S2 with a Zk singularity. As in the previous
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example consider the cohomogeneity one action of SO(3) on CP2, the two singular

orbits of this action are RP2 and S2. Now consider the orbifolds one gets if the

singularity is imposed along the S2 orbit. (We do this as before, by replacing a disk

bundle by a cone bundle.)

Computation shows that πorb1 (Vk) = 0 when k is odd and πorb1 (Vk) = Z2 when

k is even. In particular, this implies that there exists a family of 4-dimensional

orbifolds V2k which double cover V2k. In fact, this double cover must be a branched

double cover, with branching locus the singular S2. So, V2 is a manifold, and the

others have V2 as their underlying space. Since the orbifold singular S2 is precisely

one of the singular orbits of a cohomogeneity one SO(3) action, there must be a

cohomogeneity one S3 action on V2. We claim that V2 = S2 × S2.

Consider a cohomogeneity one SO(3) action on S2 × S2 given by A · (u, v) =

(Au,Av), in the language of [GWZ08], this action has H = {e}, K± = SO(2)

with singular orbits G/K+ = ∆S2 and G/K− = {(u,−u)|u ∈ S2}. Additionally,

consider a Z2 action on S2 × S2 given by x · (u, v) = (v, u). Taking the quotient of

S2×S2 by this Z2 action, we get an orbifold with singular locus S2 (corresponding

to ∆S2 ⊂ S2 × S2) with a Z2 singularity. Furthermore, S2 × S2/Z2 must also have

a cohomogeneity one action by SO(3), with H = S(O(1)O(1)) ∼= Z2, K
+ = SO(2)

and K− = S(O(2)O(1)) ∼= O(2). We observe that this is precisely the structure of

the cohomogeneity one action of SO(3) on CP2. Therefore, the quotient S2×S2/Z2

has CP2 as its underlying space, with a Z2 singularity along S2 corresponding to a
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singular orbit of the cohomogeneity one SO(3) action. Thus, S2×S2/Z2 is precisely

V2.

In particular, χ(|V2k|) = 4, and so by Theorem A, there can be no metric of

positive curvature on V2k.

Remark 4.1.1. Note that O = CP2[1, k, k] also has |O| = CP2 and an S2 singular

locus with a Zk singularity. However, the two orbifolds are distinct, since the

resulting loci lie in different π2 classes. Namely, CP2[1, k, k]sing ∼ ±1 ∈ π2(CP2)

and Vsingk ∼ ±2 ∈ π2(CP2).

Consider the cohomogeneity one SO(3) action on CP2, this induces a decomposi-

tion of CP2 into neighborhoods of the two singular orbits (RP2, S2), with intersection

SO(3)/Z2 × I. This gives us a Mayer-Vietoris sequence

H2(SO(3)/Z2)→ H2(RP2)⊕H2(S
2)→ H2(CP2)→

H1(SO(3)/Z2)→ H1(RP2)⊕H1(S
2)→ H1(CP2),

plugging in all the groups we have

0→ Z→ Z→

Z4 → Z2 → 0.

This implies that the map Z → Z (H2(S
2) → H2(CP2)) is multiplication by ±2.

Passing to homotopy by Hurewicz, we conclude that [Vsingk ] = ±2 ∈ π2(CP2) (the

sign is dictated by the orientation we choose on the singular S2).
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Similarly, the singular locus of CP2[1, k, k] is the S2 singular orbit of the coho-

mogeneity one SU(2) action on CP2. Here H = {e}, K+ = U(1), K− = SU(2).

The relevant portion of Mayer-Vietoris is given by

H2(SU(2))→ H2(pt)⊕H2(S
2)→ H2(CP2)→

H1(SU(2))→ H1(pt)⊕H1(S
2)→ H1(CP2),

plugging in the groups we have

0→ Z→ Z→

0→ 0→ 0.

This implies that the map Z→ Z (H2(S
2)→ H2(CP2)) is an isomorphism. Passing

to homotopy by Hurewicz, we conclude that [CP2[1, k, k]sing] = ±1 ∈ π2(CP2).

Therefore, there is no homeomorphism ϕ : CP2[1, k, k] → Vk that maps one

singular locus to the other, so the two orbifolds are not diffeomorphic, despite

having the same underlying space, homeomorphic singular loci and equal orbifold

groups.

4.2 General Structure

In this section, we focus specifically on the structure of 4-dimensional orbifolds with

isometric S1 action. We generally make no assumptions about the curvature.

Lemma 4.2.1. Let On be a compact Riemannian orbifold with an isometric S1

action. Let F be the suborbifold of fixed points of this action. Then,
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1. Each connected component of F is a totally geodesic suborbifold of even codi-

mension.

2. χ(|F|) = χ(|O|).

Proof. Part 1 is proved completely analogously to the proof for manifold case. (See

pp 59-61 of [Kob72].)

For part 2, we note that Kobayashi’s original proof in [Kob58] only requires

compactness to guarantee that the fixed point set can not be ”dense” i.e. there

exists ε > 0 such that ε neighborhoods of connected components of the fixed point

set are disjoint. This condition is satisfied when we consider S1 action on strata

of a compact orbifold, since such strata are bounded. As such, what we have is

χ(|F ∩ S|) = χ(|S|) for each stratum S ⊂ O. Gluing the F ∩ S pieces together we

get part 2.

Lemma 4.2.2. Let O be a compact positively curved 4-dimensional Riemannian

orbifold with a non-trivial isometric S1-action, and F be the set of fixed points of

the action. Then, F is non-empty and either consists of 2 or more isolated points,

or has at least one 2-dimensional component.

The proof is identical to that for manifolds, the only challenge is to verify that

if F consists of only isolated points, then |F| ≥ 2. To do this we utilize Orbifold

Poincaré Duality 2.3.8, and Synge’s theorem 2.3.6

We also have additional structural restrictions on 4-dimensional orbifolds with

an isometric S1 action.
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Proposition 4.2.3. Let O be a 4-dimensional Riemannian S1-orbifold, and let

x ∈ O be a singular point. Then, we have either

Γx ⊂ U(2) ⊂ SO(4), if x is a fixed point, or

Γx ⊂ SO(3) ⊂ SO(4), otherwise.

Proof. Suppose x is a fixed point. Consider the action of S1 on R4/Γx = TxO. Let

V denote the vector field associated to the S1 action on TxO, and Ṽ its lift to R4.

Ṽ is a vector field associated to an action of R on R4, furthermore, t0 = 2π acts

as an element of Γx. Therefore, T = 2πn acts trivially for some n ∈ Z+, so the

action is an S1 action.

Up to conjugation, this S1 action must be equal to (elti, emti) ∈ T 2 ⊂ S3×S3 =

Spin(4) (here we consider Spin(4) instead of SO(4) for convenience). Also, this

S1 must normalize Γx, and so must commute with Γx. This leaves us two cases,

either m 6= 0 6= l or one is zero. If neither m nor l is zero, then Γx lifts to T 2, so

Γx ⊂ T 2. Otherwise, the lift of Γx is either S3 × S1 or S1 × S3, in both cases, we

get Γx ⊂ U(2) ⊂ SO(4).

Suppose x is not a fixed point, then Γx must fix at least one direction (along

the orbit S1(x)), so Γx ⊂ SO(3) ⊂ SO(4).

Since the orbifold group along a stratum must be constant (up to conjugacy),

we conclude that
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Corollary 4.2.4. Let S ⊂ O be a stratum that intersects F but is not contained in

it, then Γx = Zq ⊂ S1 = SO(3) ∩ T 2 = SU(2) ∩ T 2 for every x ∈ S.

4.3 Proof of Theorem A

We consider separately the case where F is a collection of isolated points, and the

case where F has a 2-dimensional component.

If y is an isolated fixed point, then the lift of the slice representation is equivalent

to

ϕk,l : S1 × C2 → C2; eiθ ? (z1, z2) = (eikθ/mz1, e
ilθ/nz2),

where k, l ∈ Z are relatively prime and (e2πi/m, e2πi/n) ∈ Γy. Furthermore, Γy =

〈(e2πi/m, e2πi/n)〉⊕Γ̃y. Let S3(1) ⊂ C2 be the unit sphere and let d : S3(1)×S3(1)→

R be given by d(v, w) = ∠(v, w). Let (Xkl, dkl) be the orbit space of S3(1)/S̃1
kl where

S̃1
kl is a circle that acts by (eikθ, eilθ). Furthermore, let (X̃kl, d̃kl) be the quotient of

Xkl by Γ̃y.

Lemma 4.3.1. If x1, x2, x3 ∈ X̃kl, then

d̃kl(x1, x2) + d̃kl(x2, x3) + d̃kl(x3, x1) ≤ π

Proof. By Lemma 4 of [HK89], this holds for (Xkl, dkl), take lifts of xi’s, apply

lemma 4, and then observe that Xkl → X̃kl is distance non-increasing. Which gives

the desired result.
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We now show that if F consists of only isolated points, then it has at most 3

points.

Suppose that F contains at least four points, call them pi, 1 ≤ i ≤ 4. Let

lij = dist(pi, pj) and let

Cij = {γ : [0, lij]→ O|γ length minimizing pi to pj}.

For each triple 1 ≤ i, j, k ≤ 4 set

αijk = min{∠(γ′j(0), γ′k(0))|γj ∈ Cij, γk ∈ Cik}.

Since O is compact, the minimum exists.

By Toponogov theorem for orbifolds (see [Sta05]), we get that for i, j, k distinct,

αijk + αkij + αjki > π. Summing over i, j, k, we get

4∑
i=1

∑
1≤j<k≤4
j,k 6=i

αijk > 4π.

On the other hand, by 4.3.1, we know that

∑
1≤j<k≤4
j,k 6=i

αijk ≤ π.

Therefore, we can not have more than three isolated fixed points

By Poincaré Duality (Proposition 2.3.8, we conclude that H∗(|O|;R) is equal to

that of either S4 or CP2.

For the case when dimF = 2, we utilize recent work of Harvey and Searle [HS12]

on isometries of Alexandrov spaces. In particular, we need the following:
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Theorem 4.3.2 ([HS12] Theorem C part (ii)). Let a compact Lie group G act iso-

metrically and fixed-point homogeneously on Xn, a compact n-dimensional Alexan-

drov space of positive curvature and assume that XG 6= ∅ and has a codimension 2

component, then:

The space X is G-equivariantly homeomorphic to (ν ∗ G)/Gp, where ν is the

space of normal directions to G(p) where G(p) is the unique orbit furthest from F .

Remark 4.3.1. The proof of this theorem comes from the work of Perelman on the

soul conjecture and Sharafutdinov retraction for Alexandrov spaces. As well as the

slice theorem.

Work of Perelman implies that the slice theorem extends to the codimension 2

fixed point set (which we will refer to as N). In the neighborhood of the soul orbit

we have G ×Gp Cone(ν) and in the neighborhood of N we have Cone(G) ×Gp ν.

Gluing the two components together we obtain a G-equivariant homeomorphism

|O| ∼= (G ∗ ν)/Gp.

Suppose we have Gp = S1 at the soul point, and hence ν = S3/Γ. This implies

that |O| = (S3/Γ ∗ S1)/S1 = (S5/Γ)/S1 = CP2[λ]/Γ̃.

Taking into account how S1 must act on O, we conclude that |O| = CP2[λ]/Zq

where Zq ⊂ T 2 ⊂ Isom(CP2[λ]), Zq fixes [1 : 0 : 0], S1-action lifts to an action on

CP2[λ] with S1 ⊂ T 2 fixing [1 : 0 : 0] and {[0 : z : w]}.

Next suppose that we have Gp = Zq at the soul point, and hence ν = S2. This

implies that |O| = (S2 ∗ S1)/Zq = S4/Zq.
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Once again, we use our partial knowledge of the S1 action to conclude that

|O| = S4/Zq where we view S4 ⊂ C2⊕R, and a generator of Zq acts like x·(z, w; r) =

(e2πi/qz, e2πik/qw; r) where (k, q) = 1. The S1-action lifts to an action on S4 given

by θ · (z, w; r) = (eiθz, w; r).

In particular, the two cases above put together imply Theorem A.
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Chapter 5

Orbifold Biquotients of SU(3)

5.1 Classification

The first class (the homogeneous spaces) are well known. One simply classifies

connected subgroups of SU(3), which up to conjugation are U(2), T 2, SU(2), SO(3)

and S1
p,q, where S1

p,q = diag(zp, zq, zp+q) with p, q ∈ Z. We may assume without loss

of generality that p ≥ q ≥ 0. Throughout the rest of this section, we assume that

G//U is not given by a homogeneous action, in particular, U must act on both

sides.

Recall that the subgroups of SU(3) other than S1 are unique up to conjugation.

For SU(2) and U(2) we will use the standard upper-left block embeddings diag(A, 1)

for SU(2) and diag(A, det(A)) for U(2). For SO(3) we utilize a convenient, although
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non-standard embedding of SO(3) into SU(3). On the Lie algebra level, we have

so(3) =




ai 0 z

0 −ai −z

−z z 0



∣∣∣∣∣∣∣∣∣∣∣∣
a ∈ R, z ∈ C


(5.1)

this embedding of so(3) is given by conjugating the standard embedding of SO(3) ⊂

SU(3) and so(3) ⊂ su(3) by

g0 =


1√
2

−i√
2

0

1√
2

i√
2

0

0 0 −i

 . (5.2)

The advantage of this embedding is that it has a convenient maximal torus, sim-

plifying some computations. We also note that throughout this paper in the

examples which involve SO(3), should the reader desire to utilize the standard

SO(3) ⊂ SU(3), the results stated for X ∈ SU(3), should now be interpreted as

being about X · g0.

From Lemma 3.1.2, we know that if SU(3)//U is an orbifold, then rk u ≤ 2. In

particular, we must have U = S1, T 2, SU(2), SO(3), U(2), SU(2)× S1, SO(3)× S1,

a finite quotient of SU(3), Sp(2) or SU(2)× SU(2), or the exceptional group G2.

The cases u = su(3), sp(2), g2 or su(2)⊕ su(2) can be ruled out quickly. Observe

dimSU(3)//(SU(3)/Γ) = 0, and in particular the action must be homogeneous.

Additionally, dimSU(3) < dim(Sp(2)/Γ), and dimSU(3) < dimG2, so there can

be no orbifold biquotients of the form SU(3)//(Sp(2)/Γ) or SU(3)//G2. Recall that
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the only embeddings of A1 ⊕A1 ↪→ su(3)× su(3) map an A1 factor into each su(3)

factor. However, the maximal torii of the possible A1 embedding are conjugate,

which violates the conditions of Lemma 3.1.1.

The cases when U is either S1 or T 2 yield the 7 and 6 dimensional Eschenburg

spaces respectively, and both are covered in section 5.3.

Next, suppose U = SO(3). Since U acts on both sides and there is a unique

up to conjugation embedding of SO(3) into SU(3), we must have U = ∆SO(3) ⊂

SU(3) × SU(3). However, this obviously leads to a violation of Lemma 3.1.1.

Therefore, there are no non-homogeneous orbifolds of the form SU(3)//SO(3).

Next, suppose U = SO(3) × S1. Recall that SO(3) × S1 is not a subgroup of

SU(3). Therefore the S1 and the SO(3) must act on different sides. We get the

family of orbifolds S1
p,q\SU(3)/SO(3) whose precise orbifold structure we discuss in

section 5.2.1.

Next, we let U = SU(2). By the same argument as for SO(3), we cannot have

U = ∆SU(2) ⊂ SU(3)×SU(3). The only remaining non-trivial embedding is if we

map U to SU(2) on one side and to SO(3) on the other. We study this embedding
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on the Lie algebra level. In particular, we use the following bases:

su(2) : I1 =


i 0 0

0 −i 0

0 0 0



J1 =


0 1 0

−1 0 0

0 0 0

 K1 =


0 i 0

i 0 0

0 0 0



so(3) : I2 =


2i 0 0

0 −2i 0

0 0 0



J2 =


0 0

√
2

0 0 −
√

2

−
√

2
√

2 0

 K2 =


0 0 i

√
2

0 0 i
√

2

i
√

2 i
√

2 0



(5.3)

Under these bases we have: [In, Jn] = 2Kn, [Jn, Kn] = 2In, [Kn, In] = 2Jn. We

define the embedding ϕ : su(2) ↪→ su(3)⊕ su(3) as ϕ(I) = (I1, I2), ϕ(J) = (J1, J2)

and ϕ(K) = (K1, K2). Where I, J,K is the standard quaternionic basis for su(2) =

sp(1) = ImH. To verify that the resulting biquotient is an orbifold choose {tI|t ∈

R} as a maximal torus of su(2), then ϕ1(tI) = tI1, ϕ2(tI) = tI2. The condition we

need to verify is that tI1 − Ad(g)tI2 = 0 iff t = 0, but I2 = 2I1, so we have tI1 =

2tAd(g)I1, so I1 = 2Ad(g)I1 if t 6= 0, but conjugation preserves the norm, so we must

have t = 0. Therefore the resulting biquotient is an orbifold of dimension 5, which
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we denote by O5. For the sake of convenience, we use SU(2)ϕ ⊂ SU(3) × SU(3)

to denote this embedding of SU(2), and we write SU(3)//SU(2)ϕ for the resulting

biquotient. We study the orbifold structure of SU(3)//SU(2)ϕ in section 5.2.1 and

its metric properties in section 5.2.2.

The last two cases, U = SU(2) × S1 and U = U(2) = (SU(2) × S1)/Z2, we

consider jointly. The first observation is that in both cases SU(2) ⊂ U . In par-

ticular, SU(3)//SU(2) must be an orbifold, where SU(2) ⊂ U . Therefore, SU(2)

either acts on only one side, or on both by the above ϕ : SU(2)→ SU(3)× SU(3).

Suppose it is the latter, then there is only one choice of S1 which commutes with

SU(2)ϕ, namely diag(z, z, z2) acting on the left. We will now show that this does

not result in an orbifold.

Consider diag(i, i,−2i) in the tangent space of the S1 component, and using the

bases in (5.3), (I1, I2) in the tangent space of the SU(2) component. For the sum,

we have diag(2i, 0,−2i) on the left, and diag(2i,−2i, 0) on the right. These two

elements of su(3) are clearly conjugates, therefore, SU(3)//(SU(2)ϕ×S1) is not an

orbifold by Lemma 3.1.1.

Finally, we consider the case where U = SU(2) × S1 or U = U(2) and SU(2)

acts only on one side (we choose the right for convenience). We claim that in this

case SU(3)//U is a weighted projective space. Recall that a weighted projective

space is defined as CP2[λ0, λ1, λ2] = S5/S1 where the S1-action is given by

w ? (z0, z1, z2) = (wλ0z0, w
λ1z1, w

λ2z2), (5.4)
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where λi ∈ Z \ {0}, gcd(λ0, λ1, λ2) = 1 and (z0, z1, z2) are coordinates on C3 ⊃ S5.

For SU(3)/SU(2), the possible S1 biquotient actions are parametrized by p, q, r ∈ Z,

gcd(p, q, r) = 1, none of p + q, p + r, q + r zero, and are induced by the following

action on SU(3):

z ? X = diag(zp, zq, zr)Xdiag(1, 1, zp+q+r)−1, X ∈ SU(3).

Recall that under our chosen representation of SU(2) ⊂ SU(3), we have a well-

behaved projection map π : SU(3)→ SU(3)/SU(2) = S5 ⊂ C3. Namely,

π


x11 x12 x13

x21 x22 x23

x31 x32 x33

 = (x13, x23, x33) ∈ C3.

Under this identification, the above action becomes

z ? (x13, x23, x33) = (zq+rx13, z
p+rx23, z

p+qx33)

and hence the quotient is the weighted projective space CP2[−q−r,−p−r,−p−q] ∼=

CP2[q + r, p + r, p + q]. A note of caution is that this representation need not

be in lowest terms, and for proper representation as a weighted CP2, we need to

divide all three weights by their greatest common divisor and normalize the signs

to be positive. In general, proper choices of p, q, r allow us to obtain any weighted

projective space. As a second note, it does not matter whether the action of S1 ×

SU(2) is effective, so this also covers the case of SU(3)//U(2), which corresponds

to the case when p, q, r are all odd.
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5.2 New Examples

5.2.1 Orbifold Structure

The singular locus of the generalized Eschenburg spaces will be studied in section

5.3. We will now study the singular locus for the remaining two cases, and start

with O5 = SU(3)//SU(2)ϕ.

Proposition 5.2.1. O5 = SU(3)//SU(2)ϕ as defined above has a closed geodesic

as its singular locus, and each point on the singular locus has an order 3 orbifold

group.

Proof. Let π : SU(3)→ O denote the projection map. Let ϕ1, ϕ2 be the projections

from u onto su(2) and so(3) respectively, and ψ1, ψ2 projections from U = SU(2)ϕ ⊂

SU(3) × SU(3) onto SU(2) and SO(3) respectively. Let g ∈ SU(3) and h ∈ U be

an element other than identity.

Suppose that ψ1(h) · g ·ψ2(h)−1 = g (i.e. g has non-trivial stabilizer). Since sta-

bilizer groups occur in conjugacy classes, we can assume that h lies in the maximal

torus h = etI = (etI1 , etI2) of SU(2)ϕ. Since ψi(e
X) = eϕi(X), the condition reduces

to

g−1


eti

e−ti

1

 g =


e2ti

e−2ti

1

 ,

Since a conjugation can only permute eigenvalues, we see that either eti = e2ti or

eti = e−2ti. The first case is degenerate, since it implies that eti = 1, and so h is
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identity. In the second case we get that eti is a third root of unity and

g =


u

v

w

 , uvw = −1

We now show that π(g) lies in a single circle for g as above. Re-write

g =


eλi

−e−(λ+µ)i

eµi


and act on g by eλ/3I ∈ U .

g →


e−λi/3

eλi/3

1




eλi

−e−(λ+µ)i

eµi




e2λi/3

e−2λi/3

1



=


1

−e−µi

eµi


Define

gz =


1

−z

z

 .

So far, we have shown that each singular orbit contains an element of the form

gz. Computations show that π(gz) = π(gw) iff w = ±z. Therefore, we conclude
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that the image of the singular orbits under π forms a circle. The above also shows

that each element in the stabilizer of gz has order 3, and hence |Γπ(gz)| = 3n.

Recall that every group of order pn where p is prime has a non-trivial center.

Additionally, all elements of order 3 in SU(2) are conjugate to each other. Therefore,

the stabilizer is abelian. Furthermore, given an element of order 3 inside SU(2),

it commutes only with the elements in the same maximal torus. Therefore, the

orbifold group is precisely Z3 ⊂ SU(2).

Remark 5.2.1. We recall that there is a unique smooth 3-dimensional lens space of

the form S3/Z3 = L(3; 1) = L(3; 2). Therefore, it is the space of directions normal

to the singular locus.

Next we examine the singular locus of the quotients of the Wu manifold.

Proposition 5.2.2. The quotient Op,q = S1
p,q\SU(3)/SO(3) is an orbifold iff p ≥

q > 0. Furthermore, the action is effective iff (p, q) = 1. Its singular locus consists

of a singular RP2 with orbifold group Z2, with possibly one point on it with a larger

orbifold group, and up to two other isolated singular points. The orbifold group at

the singular points are Zp,Zq, and Zp+q.

Proof. To find the singular locus we need to see when diag(zp, zq, zp+q) is conjugate

to an element of SO(3). Without loss of generality, we only need to check when

it is conjugate to something in the maximal torus T ⊂ SO(3). With our choice of

SO(3), the most convenient maximal torus has the form diag(w,w, 1)

59



The conjugacy class is determined by the eigenvalues, and hence we must have

diag(zp, zq, zp+q) ∈ S1
p,q is conjugate to diag(w,w, 1) ∈ SO(3) iff zp, zq, or zp+q is

equal to 1. In particular, each of the three choices yields an orbifold group of order

p, q, and p+ q respectively.

Let g ∈ SU(3) be a preimage of an orbifold point w.r.t. the action of S1
p,q, i.e.

g · diag(zp, zq, zp+q) · g−1 = diag(w,w, 1). We first consider the case where w2 6= 1.

In this case all three eigenvalues are distinct, and so the two diagonal matrices are

related by a permutation matrix, i.e. g = gi as defined below.

g1 =


1

1

1

 g2 =


1

1

1

 g3 =


1

1

1



g4 =


−1

−1

−1

 g5 =


−1

−1

−1

 g6 =


−1

−1

−1


We note that given gi, every element of the form diag(ρ, η, ζ)Xi lies in the same

orbit as gi. For example, for g1, let z be a (p + q)th root of ζ, and w = ρzp. Then,

diag(zp, zq, zp+q) ∈ S1, diag(w,w, 1) ∈ SO(3), and diag(zp, zq, zp+q)diag(w,w, 1) =

diag(ρ, η, ζ).

Recall that we are using a non-standard SO(3) ⊂ SU(3), and as such g1, g4 ∈

SO(3), since, g4 = g0 · diag(−1, 1,−1) · g−10 , where g0 is as in (5.2). This implies
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that g5 = g2g4 ∈ g2SO(3), g6 = g3g4 ∈ g3SO(3). Corresponding to three (possibly)

isolated singular points.

Now, suppose that w2 = 1 and w 6= 1, i.e. w = −1. This implies that 2

of zp, zq, zp+q are -1, and the third is 1. Without loss of generality, assume that

zp = zq = −1, zp+q = 1. This implies that either (p, q) > 1 or z = −1. The former

contradicts the assumption that S1 acts effectively, and hence z = −1. Next note

that exactly one of p, q, p + q is even. in what follows, we assume that p + q is the

even exponent.

We now have diag(−1,−1, 1) · h · diag(−1,−1, 1) = h, so h commutes with

diag(−1,−1, 1) and so

h ∈ U(2) =


A

det(A)


∣∣∣∣∣∣∣∣A ∈ U(2)

 ⊂ SU(3).

To determine π(U(2)), we need to find the subgroup K ⊂ S1
p,q × SO(3) which

preserves U(2). Since S1 ⊂ U(2), we must have K = S1
p,q × (SO(3) ∩ U(2)). The

intersection is

SO(3) ∩ U(2) =




w

w

1




∪




z

z

−1




.

Indeed, for g0 as in (5.2), we have g0 ∈ U(2), and hence SO(3)∩U(2) = g0(SO(3)std∩

U(2))g−10 = g0O(2)g−10 , where O(2) = {diag(A, det(A))|A ∈ O(2)} ⊂ SU(3).

Hence, K is a disjoint union of two copies of T 2. Identifying U(2) ⊂ SU(3) with

the upper 2× 2 block, we can rewrite the action of K on U(2). Restricting to the
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identity component of K, we get

(z, w) ? A =

zp
zq


a b

c d


w

w


−1

.

Using an appropriate element z ∈ S1
p,q, we can assume that det(A) = 1, and hence

zp+q = 1. Thus the quotient of this action is the same as SU(2)//(Zp+q×S1), given

by

(z, w) ?

a −b
b a

 =

zp
zq


a −b
b a


w

w


−1

where zp+q = 1 and |a|2+|b|2 = 1. Identifying SU(2) with S3 ⊂ C2 via

a −b
b −a

 7→
(a, b) the S1 action by w becomes w ·(a, b)→ (aw, bw). This is the Hopf action, and

hence S3/S1 = S2 with projection S3 ⊂ C2 → S2 = C∪{∞} given by (a, b) 7→ ab−1.

The action by z then becomes z · (a, b) = (zpa, zqb) = (zpa, zpb), since zp+q = 1.

This induces an action on S2 given by ab−1 7→ z2p(ab−1). Notice that z = −1 acts

trivially corresponding to the fact that Z2 fixed U(2). Thus we have rotation by

2πp/(p+ q), since z runs over the (p+ q)th roots of unity.

Finally, we must consider the second component of K, which can be considered

as the action on U(2) by

 1

−1

 on the right. On S3, this action corresponds

to (a, b) 7→ (b,−a), and on S2 = C ∪ {∞} we get x 7→ −1/x, which is precisely the

antipodal map. Thus, π(U(2)) is a (possibly singular) RP2, and the image of 0 and

∞ is the only orbifold point with orbifold group Z|p+q|.
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Remark 5.2.2. We note that the singular RP2 above has a distinguished point, which

has a larger orbifold group unless the even integer among p, q, p+ q is equal to ±2.

5.2.2 Curvature of SU(3)//SU(2)

In this section we study the curvature of the orbifold SU(3)//SU(2)ϕ, and prove

Theorem C.

The most natural metric on O = SU(3)//SU(2)ϕ is induced by the bi-invariant

metric on SU(3). Using this metric, we get

Proposition 5.2.3. The orbifold O5 = SU(3)//SU(2)ϕ, equipped with the metric

induced by the bi-invariant metric on SU(3), has quasi-positive curvature.

Proof. Let π : SU(3)→ O be the projection. We verify thatO has positive sectional

curvature at π(ISU(3)).

The vertical tangent space T vI SU(3) = span{I2 − I1, J2 − J1, K2 − K1}. The

horizontal tangent space T hI SU(3) is spanned by

X1 =


i

i

−2i

 X2 =


1

1

−1 −1

 X3 =


i

−i

i −i



X4 =


2
√

2 1

−2
√

2 −1

−1 1

 X5 =


i2
√

2 i

i2
√

2 i

i i
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We consider two horizontal vectors, A =
∑
aiXi, B =

∑
biXi. We want o

prove that [A,B] = 0 iff A,B are linearly dependent. For convenience, we use [i, j]

to denote the quantity aibj − ajbi. We assume C = [A,B] = 0, then we get the

following set of identities, where Ci,j denotes the (i, j) entry in C.

0 = Im(C1,1) = 2[2, 3] + 2[2, 5]− 2[3, 4] + 18[4, 5]

0 = Re(C1,2) = 2[2, 4]− 2[3, 5]

0 = Im(C1,2) = 2[2, 5] + 2[3, 4]

0 = Re(C1,3) = −2
√

2[2, 4]− 3[1, 3]− 3[1, 5]− 2
√

2[3, 5]

0 = Im(C1,3) = 3[1, 2] + 3[1, 4] + 2
√

2[3, 4]− 2
√

2[2, 5] + 4
√

2[4, 5]

0 = Re(C2,3) = 3[1, 3]− 3[1, 5] + 2
√

2[2, 4] + 2
√

2[3, 5]

0 = Im(C2,3) = 3[1, 2]− 3[1, 4] + 2
√

2[3, 4]− 2
√

2[2, 5]− 4
√

2[4, 5]

0 = Im(C3,3) = 4[3, 4]− 4[2, 5].

Im(C1,2) = 0 = Im(C3,3) implies [3, 4] = [2, 5] = 0. Next, Im(C1,3) = 0 =

Im(C2,3) implies [1, 2] = 0 and 3[1, 4] + 4
√

2[4, 5] = 0. Additionally, Re(C1,3) =

0 = Re(C2,3) implies [1, 5] = 0, and 3[1, 3] + 2
√

2[2, 4] + 2
√

2[3, 5] = 0. Further-

more, we get the following relations [1, 3] = −4
√
2

3
[3, 5], [1, 4] = −4

√
2

3
[4, 5], [2, 3] =

−9[4, 5], [2, 4] = [3, 5].

Suppose that [4, 5] 6= 0, then by scaling we can assume that [4, 5] = 1. Next, by
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taking linear combination A′ =
∑
a′iXi = b5A−a5B and B′ =

∑
b′iXi = a4B−b4A.

Observe that span{A,B} = span{A′, B′} and [A′, B′] = [4, 5] · [A,B] = 0. So,

a′i, b
′
i satisfy the same equations as ai, bi. From the construction of a′i, b

′
i we get

a′2 = a2b5 − a5b2 = [2, 5] = 0. We also get b′2 = a4b2 − b4a2 = −[2, 4] = −[3, 5] and

a′3 = b5a3 − a5b3 = [3, 5]. By a similar construction a′4 = b′5 = 1 and a′5 = b′4 = 0.

This implies that a′2b
′
3 − a′3b′2 = [3, 5]2, on the other hand, we know a′2b

′
3 − a′3b′2 =

−9(a′4b
′
5 − a′5b′4) = −9, so [3, 5]2 = −9 which is impossible. Therefore, we conclude

that [4, 5] = 0, which implies that [1, 4] = [2, 3] = 0.

The remaining possibility is that [3, 5] 6= 0. As before, assume [3, 5] = 1, and

A′ = b5A − a5B, B′ = a3B − b3A. The same argument as before yields a′i = [i, 5]

and b′i = [3, i] = −[i, 3]. Which in particular yields a′2 = a′4 = a′5 = b′2 = b′3 = b′4 = 0,

a′3 = b′5 = 0. We conclude that a′2b
′
4−a′4b′2 = 0, but also a′2b

′
4−a′4b′2 = a′3b

′
5−a′5b′3 = 1,

so we conclude that [3, 5] = 0, and therefore, [i, j] = 0 for all i, j. Which is precisely

the condition for A and B to be colinear.

Therefore, for A,B ∈ T hI SU(3) linearly independent, |[A,B]| > 0, and therefore,

sec(dπ(A), dπ(B)) > 0. So, O5 has positive curvature at π(I).

Further computations show that the obtained metric on O5
ϕ has zero curvature

planes along the singular locus. To remedy this, we will now show how to improve

this metric using a Cheeger deformation. Recall that in the construction of O5 we

use a non-standard SO(3), see (5.1), and we utilize the bases as of so(3) and su(2)
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as in (5.3). We now let

k = so(3) and h = su(2).

We apply a Cheeger deformation along SO(3) ⊂ SU(3), which results in a left-

invariant, right SO(3)-invariant metric. As such, the SU(2)ϕ acts by isometries, so

the deformation induces a new metric on SU(3)//SU(2)ϕ.

Theorem 5.2.4. O5 with the metric induced by a Cheeger deformation along the

subgroup SO(3) ⊂ SU(3) has the following properties:

1. O has almost positive curvature.

2. The set of points with 0-curvature planes forms a totally geodesic flat 2-torus

T that is disjoint from the singular locus.

3. Each point in T has exactly one 0-curvature plane, and those planes are tan-

gent to T .

Proof. As in Chapter 3, we denote the bi-invariant metric on SU(3) by 〈·, ·〉 and

the Cheeger deformed metric by 〈·, ·〉λ. Left translations are isometric in 〈·, ·〉λ, and

hence we can identify tangent vectors at g ∈ SU(3) with vectors in su(3). Under

this identification, the vertical space become {ψ(C) − Ad(g−1)C | C ∈ h}, where

ψ : h→ k is defined by I1 7→ I2, J1 7→ J2 and K1 7→ K2. Then a vector X ∈ su(3) is

horizontal at g iff 〈X,ψ(C)−Ad(g−1)C〉λ = 0 for all C ∈ h. Also recall that in 〈·, ·〉λ,

a plane spanned by A,B ∈ su(3) is flat iff [A,B] = [Ak, Bk] = 0. Additionally, for
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some computations in this proof, we recall that 〈X, Y 〉λ = 〈X k⊥ , Y k⊥〉+ λ
1+λ
〈X k, Y k〉.

We will use ν = λ
1+λ
∈ (0, 1) for brevity.

Suppose that at the image of some point g ∈ SU(3), we have 0-curvature. Let

A,B be two elements of T hg (left translated to the identity), which span a 0-curvature

plane.

We begin by making a series of claims:

1. We may assume Ak = 0.

Indeed, if Ak 6= 0 and Bk 6= 0, then [Ak, Bk] = 0 iff Ak = c ·Bk since k has rank

one.

2. 〈Ad(g)A, h〉 = 0.

Observe that since 〈A, k〉 = 0, we have 〈Ad(g)A, h〉 = 〈A,Ad(g−1)h〉 =

〈A,Ad(g−1)h〉λ. If 〈A,Ad(g−1)(C)〉λ 6= 0, then, since A ∈ k⊥, we have

〈A,ψ(C)− Ad(g−1)C〉λ 6= 0, so A is not horizontal.

3. Bk 6= 0.

Suppose that Bk = 0, then by the same argument as we used with A, we must

have 〈Ad(g)B, h〉 = 0. In particular, both Ad(g)A and Ad(g)B are horizontal

with respect to the submersion SU(3)→ S5 = SU(3)/SU(2). Since, endowed

with the metric induced by 〈·, ·〉, S5 has positive sectional curvature, it follows

that 0 6= [Ad(g)A,Ad(g)B] = Ad(g)[A,B], in particular, [A,B] 6= 0.
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4. Up to scaling A = Ad(u)X for some u ∈ SO(3), where we take X =

diag(i, i,−2i).

Observe that Bk = t · Ad(u)I2 for some non-zero t ∈ R and u ∈ SO(3).

Notice that since A ∈ k⊥, it follows that [A,Bk] ∈ k⊥ and since (g, k) is a

symmetric pair, [A,Bk⊥ ] ∈ k, and hence we must have [A,Bk] = [A,B]k
⊥

= 0.

Therefore, 0 = [A,Bk] = t · Ad(u)[Ad(u−1)A, I2]. A matrix that commutes

with I2 must be diagonal. Since A ∈ k⊥, and u ∈ SO(3), Ad(u−1)A ∈ k⊥

as well. In particular, Ad(u−1)A is also orthogonal to I2, which implies our

claim. Furthermore, since scaling A does not change the plane spanned by

A,B we will assume that A = Ad(u)X.

5. By changing the point in the orbit, we may assume that g ∈ U(2).

First, we observe that 〈Ad(gu)X, h〉 = 〈Ad(g)A, h〉 = 0, since A = Ad(u)X.

Let

gu =


a1 a2 a3

b1 b2 b3

c1 c2 c3

 and Ad(gu)X =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 .

Since this has to be orthogonal to h with respect to the bi-invariant metric, we

conclude that m13 = 0,m23 = 0,m11 = m22 and m33 = −2m11. We compute

that m13 = (a1c1 + a2c2 − 2a3c3)i = (−3a3c3)i. This is zero iff a3 = 0 or

b3 = 0. Similarly, m23 = 0 implies b3 = 0 or c3 = 0. We also compute that

m11 = (|a1|2+|a2|2−2|a3|2)i = (1−3|a3|2)i and m22 = (|b1|2+|b2|2−2|b3|2)i =
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(1 − 3|b3|2)i. Since m11 = m22, we must have |b3| = |a3|. Finally, we see

that m33 + 2m11 = (1− |c3|2) + 2(1− 3|a3|2) = 0. Suppose that c3 = 0, then

|a3|2+|b3|2 = 1, so |a3|2 = 1/2, but this implies that 1+(2−3·1/2) = 3/2 6= 0,

so m33 6= −2m11. Therefore, c3 6= 0, which implies that both a3 and b3 are

zero, which also implies c1 = c2 = 0. Therefore, gu ∈ U(2) ⊂ SU(3), and

so g ∈ SU(2)diag(w,w,w2)SO(3). Thus, g = u · diag(w,w,w2) · v with u ∈

SU(2), v ∈ SO(3). Since there exists x ∈ SU(2) such that (x, v) ∈ SU(2)ϕ,

we can change the point in the orbit and assume that g ∈ U(2).

6. We may assume that A = X = diag(i, i,−2i).

Since 〈A,Ad(g−1)h〉 = 0 and g ∈ U(2), it follows that A ∈ h⊥, and as we saw,

A ∈ k⊥ as well. Thus,

A ∈ k⊥ ∩ h⊥ =




ti 0 z

0 ti z

−z −z −2ti



∣∣∣∣∣∣∣∣∣∣∣∣
t ∈ R, z ∈ C


.

We furthermore know that A is conjugate to diag(i, i,−2i) and so has eigen-

values i, i,−2i. In particular, there is a repeated pair. The eigenvalues of A

as above are:

ti,−ti/2± 1/2
√
−9t2 − 8|z|2

The last two are equal iff t = z = 0, which means we have A = 0. Therefore,

the repeated eigenvalue is ti. So, the determinant must be (ti)2(−2ti) = 2t3i.
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Computing the determinant of A, we have det(A) = 2t3i+ 2t|z|2i. Therefore

z = 0, and hence A = X.

We now examine the possible values of B. Since [A,B] = 0, this implies that

B =


ri z

−z −(r + s)i

si

, where r, s ∈ R, z ∈ C. We can also assume that s = 0

by replacing B with B + (s/2)A.

The question now becomes when a B of this form is a horizontal vector at

g =


a b

−b a

1




w

w

w2

 .

We begin by noting that we have

I2 − Ad(g−1)I1 =


(2 + |b|2 − |a|2)i −2iab

−2iba (−2 + |a|2 − |b|2)i

0



J2 − Ad(g−1)J2 =


−ab+ ab −b2 − a2

√
2

a2 + b
2

ab− ab −
√

2

−
√

2
√

2 0



K2 − Ad(g−1)K2 =


(ab+ ab)i (b2 − a2)i

√
2i

(b
2 − a2)i −(ab+ ab)i

√
2i

√
2i

√
2i 0
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as a basis for the vertical tangent space.

From 〈B, I2 − Ad(g−1)I1〉λ = 0, we get:

0 = 〈B, I2 − Ad(g−1)I1〉λ

= νr(2 + |b|2 − |a|2) + (−azbi+ azbi)

= νr(3|b|2 + |a|2) + 2Im(azb).

So, r =
−2Im(azb)

ν(|a|2 + 3|b|2)
.

If we plug in a = 0 or b = 0, we get r = 0, so Bk = 0, which contradicts one

of our earlier observations. So we may assume that a 6= 0, b 6= 0. Under these

assumptions, plugging in what we obtained for r, we get:

0 = 〈B, J2 − Ad(g−1)J1〉λ

=
−1

2(|a|2 + 3|b|2)

(
3|a|2b2z + a2|b|2z + a2|b|2z + 3|a|2b2z + 3|b|2b2z

+ |a|2a2z + |a|2a2z + 3|b|2b2z
)

=
−1

2(|a|2 + 3|b|2)
(|a|2 + |b|2)(a2z + 3b2z + a2z + 3b

2
z)

=
−1

|a|2 + 3|b|2
Re(a2z + 3b2z).

So, Re(a2z + 3b2z) = 0.

Similarly,
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0 = 〈B,K2 − Ad(g−1)K1〉λ

=
−i

2(|a|2 + 3|b|2)

(
− 3|a|2b2z − a2|b|2z + a2|b|2z + 3|a|2b2z − 3|b|2b2z

+ |a|2a2z − |a|2a2z + 3|b|2b2z
)

=
−i(|a|2 + |b|2)
2(|a|2 + 3|b|2)

(−3b2z − a2z + a2z + 3b
2
z)

=
1

|a|2 + 3|b|2
Im(3b2z + a2z).

So, Im(a2z + 3b2z) = 0.

Together, these observations imply that a2z + 3b2z = 0, so |a|2 = 3|b|2, hence

|b|2 = 1/4 and |a|2 = 3/4. Furthermore, given a and b, z is unique up to scaling

(which also scales r). Therefore B, if it exists, is unique up to scaling. This proves

that each point at which there exists a plane of zero-curvature has a unique such

plane.

Furthermore, we have

g =



√
3
2
eti 1

2
esi

−1
2
e−si

√
3
2
e−ti

1




w

w

w2

 .

By applying (diag(eti, e−ti, 1), diag(e2ti, e−2ti, 1)) ∈ SU(2)ϕ to g, we see that by
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changing the point in the orbit, we can assume that

g =



√
3
2

1
2
es

′i

−1
2
e−s

′i
√
3
2

1




w

w

w2

 .

It is easy to verify that the choice of such representative element is unique up to

replacing w by −w. Therefore, the set of points with 0-curvature planes is in a

one-to-one correspondence to a 2-torus.

We now use a result by Wilking:

Proposition 5.2.5. (Wilking [Wil02]) Let M be a normal biquotient. Suppose

σ ⊂ TpM is a plane satisfying sec(σ) = 0. Then the map exp : σ →M, v 7→ exp(v)

is a totally geodesic isometric immersion.

To apply this to a biquotient G//U with a Cheeger deformed metric, observe

that G//U = (G× λK)//U ′, where U ′ = {((ul, u−1r ), (k, k))|(ul, ur) ∈ U, k ∈ K} ⊂

(G×K)× (G×K). In this context, Wilking’s result tells us that exponentiating a

flat plane results in a flat totally geodesic subspace. Let T be the set of all points

in SU(3)//SU(2)ϕ with flat planes. If p ∈ T and σ is the unique flat 2-plane at p,

it follows that near p we have T = expp σ. In particular, T is smooth and hence

diffeomorphic to a 2-torus. Furthermore, it follows that for all p ∈ T , the unique

flat plane must be tangent to T . This concludes the proof of Theorem 5.2.4.

Theorem C follows immediately from Theorem 5.2.4, and in particular, Theorem

5.2.4 tells us what metric to use for Theorem C. An interesting question is whether
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the metric in Theorem 5.2.4 can be further deformed to give a metric of positive

curvature. The author has made an attempt to achieve this by doing an additional

Cheeger deformation along SU(2) on the left; however, the curvature properties

appear to be unchanged.

Proof of Corollary 1.0.1. Observe that

S1 =




z

z

z2




acts on the left on SU(3). Furthermore, this S1 commutes with the SU(2) action

in the construction of O. Therefore, we get an Alexandrov space X4 = O/S1.

Furthermore, note that each 0-curvature plane of O5 contains a direction (the

vector A from before) tangent to the fiber of this action. Therefore, by O’Neil’s

formula, X4 has positive curvature.

Additionally, note that when z = −1, the action is trivial, and corresponds

to the action of −I ∈ SU(2)ϕ ⊂ SU(3) × SU(3). Therefore, we conclude that

X4 = SU(3)//U(2).
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5.3 Generalized Eschenburg Spaces

5.3.1 Seven Dimensional Family

First introduced in [Esc84], Eschenburg spaces are a family of 7-dimensional man-

ifolds (the construction can be generalized to orbifolds as well), that all admit

quasi-positive curvature [Ker08], and many of which admit positive curvature. Es-

chenburg spaces are defined as

E7
p,q = SU(3)//S1

p,q

where p, q ∈ Z3,
∑
pi =

∑
qi. Furthermore for the action to be free, we need

that

(p1 − qσ(1), p2 − qσ(2)) = 1 for any σ ∈ S3.

More generally, if we allow Eschenburg orbifolds, then the condition is relaxed

to p and q not being permutations of each other, in other words, for σ ∈ S3 we have

(p1 − qσ(1), p2 − qσ(2)) 6= 0.

The action of S1
p,q on SU(3) is given by

z ? X = diag(zp1 , zp2 , zp3) ·X · diag(zq1 , zq2 , zq3).

Eschenburg showed that this space admits a metric of positive curvature when

deformed along one of the three block embeddings of U(2) ⊂ SU(3), iff qi 6∈
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[min{pj},max{pj}] for each i. Kerin further showed that all Eschenburg spaces

have quasi-positive curvature, and if

q1 < q2 = p1 < p2 ≤ p3 < q3 or q1 < p1 ≤ p2 < p3 = q2 < q3,

the metric has almost positive curvature. Since all the above results are proven on

the Lie algebra level, they hold when we generalize to Eschenburg orbifolds.

Before examining the idea of orbifold fibrations of Eschenburg spaces by Florit

and Ziller [FZ07], let us first examine the orbifold structure of Eschenburg orbifolds,

since it will be similar to that of the orbifold fibrations.

It is easy to verify that the singular locus of an Eschenburg orbifold SU(3)//S1
p,q

consists of some combination of circles denoted Cσ and lens spaces (possibly includ-

ing S3 and S2 × S1) denoted Lij. Furthermore, each such component is a totally

geodesic suborbifold. In this construction we include a minor correction to the work

of Florit and Ziller to ensure that U(2)ij and T 2
σ are always subsets of SU(3).

We define Lij to be the images in E7
p,q of U(2)ij ⊂ SU(3), defined as

U(2)ij =

τi
A 0

0 detA

 τj : A ∈ U(2)

 , 1 ≤ i, j ≤ 3

where τi ∈ S3 ⊂ O(3) with τ1, τ2 interchanging the 3rd vector with the 1st and 2nd

respectively, and τ3 = −I.

Furthermore, we define Cσ for σ ∈ S3 as the projections of T 2
σ , which are defined

as

T 2
σ = sgn(σ)σ−1diag(z, w, zw)
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where we view S3 ⊂ O(3) and sgn(σ) is 1 if σ even and −1 if σ odd.

From this listing, we can observe that the singular locus has the following struc-

ture

CId

C(12)

C(132)

C(13)

C(123)

C(23)

L33

L21

L13L31

L23

L11

L22

L12

L32

Figure 5.1: Structure of the singular locus [FZ07]

where Lij connecting Cσ and Cτ means that both Cσ and Cτ lie in Lij. We

compute the orbifold groups along Cσ in Theorem 5.3.6, and the orbifold groups

along Lij are implied by Lemma 5.3.5.

5.3.2 Construction of the Six Dimensional Family

For the construction of the six dimensional family of Exchenburg spaces, Florit and

Ziller [FZ07] considered fibrations of the form E7
p,q/S

1
a,b. Given a, b ∈ Z3,

∑
ai =∑

bi we define S1
a,b acting on SU(3) as before, and furthermore, this action induces

an action of S1
a,b on E7

p,q. In this paper we consider these orbifolds more directly as

Oa,bp,q = SU(3)//T 2, where T 2 is generated by the two circles S1
p,q and S1

a,b.
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Florit and Ziller prove that

Theorem 5.3.1. The action of T 2 = S1
a,b × S1

p,q on SU(3) is almost free iff

(p− qσ) and (a− bσ) are linearly independent, for all σ ∈ S3.

The quotient Oa,bp,q is then an orbifold whose singular locus is the union of at most

nine orbifold 2-spheres and six points that are arranged according to the schematic

diagram in Figure 5.1 above.

5.3.3 Equivalence of Actions by T 2

It is clear that Oa,bp,q = Op,qa,b . A natural question is what other ways are there to

write the same biquotient?

Proposition 5.3.2. Oa,bp,q = Oa
′,b′

p′,q′ whenever a′, b′, p′, q′ ∈ Z3 are given as follows:

1. a′ = b, b′ = a, p′ = q, q′ = p

2. a′ = λa, b′ = λb, p′ = µp, q′ = µq where λ, µ ∈ Q \ {0}.

3. a′ = (a1 + c, a2 + c, a3 + c), b′ = (b1 + c, b2 + c, b3 + c), p′ = (p1 + d, p2 + d, p3 +

d), q′ = (q1 + d, q2 + d, q3 + d) where c, d ∈ Z.

4. a′ = σ(a), b′ = τ(b), p′ = σ(p), q′ = τ(q), where σ, τ ∈ S3 act by permutation.

5. a′
p′

 = A

a
p


b′
q′

 = A

b
q
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where A ∈ GL2(Z).

Proof. The first 4 are simply adaptations of the equivalence rules for Eschenburg

spaces. The fifth one is simply a reparametrization of the T 2 corresponding to a

change of basis.

Two important corollaries of this proposition will allow us to only deal with

effective actions of T 2.

Corollary 5.3.3. Given an action of T 2 on SU(3) with a finite ineffective kernel,

the above operations allow us to write the same quotient as SU(3)//T 2 with an

effective action.

Proof. Let (z0, w0) be an element of the ineffective kernel of order n. We can choose

integers k, l such that 0 ≤ k, l < n, gcd(k, l, n) = 1, and

z0 = e2πik/n, w0 = e2πil/n.

We now consider a different generator. Let s be such that (k, l)s ≡ 1 (mod n).

Consider (z1, w1) = (zs0, w
s
0), since (n, s) = 1, we must have (z1, w1) and (z0, w0)

generate the same subgroup, but furthermore, we have

z1 = e2πik
′/n, w1 = e2πil

′/n,

where k′ = k/(k, l), l′ = l/(k, l), and so (k′, l′) = 1.
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Next let α, β be integers such that αl′−βk′ = 1. Then, we apply transformation

5 above with

A =

l′ k′

β α

 .

Under this transformation, (z1, w1) gets changed to (u1, v1), where v1 = 1, and

u1 = e2πi/n. Let the action by (u, v) be denoted as

(u, v) ·X = up
′
va′Xuq

′
vb

′
.

Then, the fact that (e2πi/n, 1) is in the ineffective kernel, means that p1 ≡ p2 ≡ p3 ≡

q1 ≡ q2 ≡ q3 (mod n). Apply transformation 3 above with c = 0 and d = −p1, to

get that pi ≡ qi ≡ 0 (mod n). Next applying transformation 2, with λ = 1/n, we

kill off this generator of the ineffective kernel.

Repeating this process for all generators of the ineffective kernel guarantees that

the action is effective.

For the next corollary, we consider a special subfamily of the seven dimensional

Eschenburg spaces: E7
d = E7

(1,1,d),(0,0,d+2) for d ≥ 0 is a family of cohomogeneity one

manifolds, which means that there exists a group G which acts on E7
d by isometries

with dimE7
d/G = 1. In this case, G = SO(3)SU(2) (see [GWZ08]). For d > 0,

Eschenburg’s construction gives us a metric of positive curvature on E7
d .

In general, the approach in Corollary 5.3.3 makes no guarantees that the effective

T 2 shares a generating circle with the initial T 2 action. The following corollary

addresses this shortcoming for the particular case when SU(3)//S1
p,q = E7

d .

80



Corollary 5.3.4. If Oa,bp,q = E7
d//S

1
a,b = SU(3)//T 2 has ineffective torus action,

then we can rewrite it as E7
d//S

1
a′,b′ with an effective torus action.

Proof. Let S1
a,b act by wα,β,0 on the left and wγ,δ,ε on the right. Since ε is uniquely

determined by the other 4 indecies, we will mostly ignore it.

The innefective kernel has order given by k = gcd(γ − δ, α− β, αd− γ(d− 1)).

In particular, α ≡ β (mod k) and γ ≡ δ (mod k). Our goal now is to make k|α

and k|γ, this would mean that k divides all exponents in the action of S1
a,b, and

therefore, has ineffective kernel Zk, which we can get rid of.

Let r ≡ γ − α (mod k). Take A =

1 r

0 1

 ∈ GL2(Z).

Apply rule 5 from Proposition 5.3.2, and we get E7
d//S

1
a,b = E7

d//S
1
a′,b′ , where

a′ = (α+ r, β + r, rd), b′ = (γ, δ, ε). Applying rule 3 we get a′′ = (α+ r(1− d), β +

r(1− d), 0), b′′ = (γ − rd, δ − rd, ε).

Observe that a′′1−b′′1 = α−γ+r ≡ 0 (mod k). Since this is just a reparametriza-

tion of the torus, it still has the same ineffective kernel, so k|a′′1d − b′′1(d − 1), but

a′′1d − b′′1(d − 1) = (a′′1 − b′′1)d + b′′1 ≡ b′′1 (mod k). Therefore, k|b′′1, and so k must

also divide a′′i , b
′′
i for all i. So, we divide a′′, b′′ by k, and get rid of the ineffective

kernel.

5.3.4 Orbifold Groups at Cσ and Lij

We assume from now on that the action of T 2 on SU(3) is effective. The following

lemma is essential to understanding the orbifold group at points in Lij in terms of
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the orbifold groups on the Cσ’s it connects.

Lemma 5.3.5. Let Lij connect Cσ and Cτ , then (z, w) acts trivially on U(2)ij iff

(z, w) acts trivially on T 2
σ and T 2

τ .

Proof. One direction is trivial. If (z, w) acts trivially on U(2)ij, then it acts trivially

on every subset, in particular the two torii.

By conjugation, we may assume without loss of generality that σ = Id, τ = (12),

so Lij = L33, and U(2)ij is the standard embedding of U(2) into SU(3). Now as-

sume that (z, w) acts trivially on T 2
Id and T 2

(12). Since I ∈ T 2
Id, and (z, w) ? X =

diag(u1, u2, u3) · X · diag(v1, v2, v3)
−1, if follows that vi = ui. Now observe that

A(12) =


0 −1 0

−1 0 0

0 0 −1

 ∈ T 2
(12). Hence (z, w) ? A(12) = A(12), implies that

u1u2 = 1, so u1 = u2. Therefore, the action of (z, w) becomes (z, w) ? X =

diag(u1, u1, u3)Xdiag(u1, u1, u3)
−1. Thus, (z, w) fixes all of U(2)33 as well.

The following results all assume that the action of S1 or T 2 is effective.

Theorem 5.3.6. Let Γp,qσ denote the orbifold group of E7
p,q along Cσ. Then Γp,qσ is

a cyclic group of order gcd(p1 − qσ(1), p2 − qσ(2)).

Proof. Let z ∈ S1 be an element that fixes T 2
σ , then zpi−qσ(i) = 1 for i = 1, 2, 3. In

particular, if r = gcd(p1− qσ(1), p2− qσ(2)), then zr = 1, and in fact, any z satisfying

zr = 1 fixes T 2
σ . Therefore, Γp,qσ = Zr.
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Theorem 5.3.7. For Oa,bp,q, the orbifold group at Cσ denoted by Γσ has order

Nσ =
∣∣(p1 − qσ(1))(a2 − bσ(2))− (a1 − bσ(1))(p2 − qσ(2))

∣∣ .
Let rσ = gcd(|Γa,bσ |, |Γp,qσ |), then Γσ = Zrσ ⊕ ZNσ/rσ . In particular, Γσ is non-

cyclic iff the orders of Γa,bσ and Γp,qσ are not relatively prime.

Remark 5.3.1. In particular, it follows that if gcd(|Γa,bσ |, |Γp,qσ |) > 1, then Γσ is non-

cyclic, and so there is no Eschenburg 7-manifold E7
u,v such that Oa,bp,q = E7

u,v//S
1.

Proof. The order of Γσ follows immediately from Proposition 3.7 in [FZ07]. All that

remains to show is the assertion about its group structure.

Since Γσ ⊂ T 2, we conclude that it is either cyclic or a direct sum of two cyclic

groups. It is clearly non-cyclic iff it has a subgroup of the form Zn ⊕ Zn. We will

show that this occurs iff n divides both |Γa,bσ | and |Γp,qσ |.

If n divides both |Γa,bσ | and |Γp,qσ |, then clearly any element of the form (z, w) =

(e2kπi/n, e2lπi/n) fixes T 2
σ , and so Zn⊕Zn ⊂ Γσ. Conversely, suppose that Zn⊕Zn ⊂

Γσ, then we must have at least n2 elements (z, w) ∈ T 2 that satisfy (zn, wn) = (1, 1).

However, there are precisely n2 such elements, which implies that all of them act

trivially on T 2
σ . In particular, (e2πi/n, 1) and (1, e2πi/n) fix T 2

σ , so e2πi/n is both in

Γa,bσ and in Γp,qσ . Therefore, n divides the order of both groups. This completes the

proof.

Corollary 5.3.8. Let S1
a,b act on E7

d, then the orders of the orbifold groups are

given by
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σ Nσ

id |(α− β)− (γ − δ)|

(12) |(α− β) + (γ − δ)|

(13) |γ + d(β − δ)|

(123) |γ + d(α− δ)|

(132) |δ + d(β − γ)|

(23) |δ + d(α− γ)|

Table 5.1: Cσ singularities in E7
d/S

1
a,b

Where a = (α, β, 0) and b = (γ, δ, α + β − γ − δ).

This corollary follows from Theorem 5.3.7. Alternatively, the same results can

be obtained from Proposition 3.7 in [FZ07].

Theorem 5.3.9. Let S1
a,b act on E7

d with a = (α, β, 0) and b = (γ, δ, α+β− γ− δ).

Then, the orbifold groups Γij of Lij is cyclic with order Nij given by the following

table:
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i, j Nij

1,1 ((α− β)− (γ − δ), δ + d(α− γ))

1,2 ((α− β) + (γ − δ), γ + d(α− δ))

1,3 (δ − γ, δ + d(β − γ))

2,1 ((α− β) + (γ − δ), δ + d(β − γ))

2,2 ((α− β)− (γ − δ), γ + d(β − δ))

2,3 (δ − γ, δ + d(α− γ))

3,1 (α− β, γ + d(α− δ))

3,2 (α− β, δ + d(α− γ))

3,3 (α− β, γ − δ)

Table 5.2: Lij singularities in E7
d/S

1
a,b

Proof. This is an immediate consequence of part (c) of Proposition 3.7 of [FZ07].

5.3.5 Corrections to Theorem C [FZ07]

In this section we examine Theorem C of [FZ07] and provide both corrections and

improvements to it. We restate Theorem D here for completeness.

Theorem 5.3.10. Let Ed be a cohomogeneity one Eschenburg manifold, d ≥ 3,

equipped with a positively curved Eschenburg metric. Then:

i) If S1 acts on E7
d by isometries, then there are at minimum 3 singular points,

in particular, if exactly two Cσ’s are singular, then the Lij connecting them is
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also singular.

In the following particular examples the singular locus of the isometric circle action

S1
a,b on Ed consists of:

ii) A smooth totally geodesic 2-sphere with orbifold group Zd+1 if a = (0,−1, 1)

and b = (0, 0, 0);

iii) When a = (0, 1, 1)and b = (2, 0, 0), the singular locus consists of four point

with orbifold groups Z3,Zd+1,Zd+1,Z2d+1, and the following orbifold groups on

spheres:

If 3|(d+ 1), then the first 2 points are connected by a totally geodesic 2-sphere

with orbifold group Z3.

If 3|(d − 1), then the first and the fourth points are connected by a totally

geodesic 2-sphere with orbifold group Z3.

If 2|(d + 1), then the second and the third points are connected by a totally

geodesic 2-sphere with orbifold group Z2.

iv) A smooth totally geodesic 2-sphere with orbifold group Zd−1 if a = (0, 1, 1) and

b = (0, 0, 2).

v) Three isolated singular points with orbifold groups Z2d−3, Zd2−d−1, and Zd2−d−1

if a = (0, d− 1, 0) and b = (1, d− 1,−1).
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Proof. Parts 2-5 are direct application of Theorem 5.3.9 and Corollary 5.3.8. Part

1 deserves a special mention:

Assume that S1
a,b acts on E7

d in such a way that at most two of Nσ’s are not 1

(i.e. at most two Cσ’s are singular). We start with a lemma:

Lemma 5.3.11. If α = β or γ = δ, then the singular locus of E7
d//S

1
a,b consists of

smooth totally geodesic 2-spheres. Where a = (α, β, 0) and b = (γ, δ, α+β− γ− δ).

Proof. Suppose α = β, and (z, w) fixes T 2
σ , then look at U(2)33T

2
σ . α = β implies

that the matrix acting on the left is of the form diag(u, u, v), which commutes with

U(2)33. Therefore, (z, w) fixes U(2)33T
2
σ .

If γ = δ, apply the same argument to T 2
σU(2)33.

If Lij is not of the form above and is singular, then so is one of the subspaces

U(2)33U(2)ij and U(2)ijU(2)33, which contradicts the orbifold structure of the sin-

gular locus.

We now split the Nσ’s into 3 pairs using Corollary 5.3.8:

• If Nid = N(12) = 1, then either α = β or γ = δ;

• If N(13) = N(123) = 1, then α = β (since d ≥ 3);

• If N(23) = N(132) = 1, then α = β (since d ≥ 3).

Since at most two Nσ’s are not 1, we see that at least one of the above cases

must occur. Therefore, by the lemma above, we see that E7
d//S

1
a,b has singular locus

consisting of smooth totally geodesic 2-spheres.

87



It remains to show that there is no free action of S1
a,b on E7

d .

Suppose that the action is free, then N(13) = N(123) = 1, so α = β. Furthermore,

N(13) = N(132) = 1, so we get (d+1)(γ−δ) is either -2, 0 or 2, but d ≥ 3, so we must

have γ = δ, which implies Nid = 0, so the quotient E7
d//S

1
a,b is not an orbifold.

As a corollary, we get

Remark 5.3.2. Parts 1 and 4 of Theorem C from [FZ07] hold, but parts 2 and 3 are

false.

5.3.6 Curvature

The goal of this section is to prove Theorem E, which we restate here:

Theorem. Given an orbifold Oa,bp,q which has positive curvature induced by a Cheeger

deformation along U(2), there exists E7
u,v (either a manifold or an orbifold) such that

Oa,bp,q = E7
u,v//S

1 and E7
u,v has positive curvature induced by Cheeger deformation

along the same U(2).

Equivalently, there exist λ, µ ∈ Z relatively prime such that E7
λp+µa,λq+µb is pos-

itively curved.

The following is an example of why this theorem is non-trivial.

Example 5.3.1. Consider the Eschenburg orbifold Oa,bp,q given by a = (−2, 0, 2), b =

(−3, 1, 2), p = (−4, 0, 2) and q = (−5, 3, 0). From the work of Eschenburg, it follows

that deforming by U(2) does not result in a metric of positive curvature on either
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E7
p,q or E7

a,b. However, we can re-write this orbifold as Op
′,q′

a′,b′ , where a′ = a, b′ = b and

p′ = 2a− p = (0, 0, 2), q′ = 2b− q = (−1,−1, 4), this is the same orbifold according

to Proposition 5.3.2. Additionally now E7
p′,q′ = E7

2 admits positive curvature.

Before proving this theorem, we state a lemma that limits the parametrizations

we need to consider:

Lemma 5.3.12. Let Oa,bp,q be a 6-dimensional Eschenburg space, then there exist a

reparametrization p′, q′, a′, b′ (not necessarily effective) satisfying one of the follow-

ing:

• p′1 = p′2 = p′3 = 0, or

• p′1 = p′3 = a′1 = 0, p′2 = a′2 = a′3 = n for some n ∈ Z+.

Proof. We begin with an intermediate reparametrization p0, q0, a0, b0 where p01 =

a01 = 0. Now consider ∆ = a02p
0
3 − a03p02.

Suppose that ∆ = 0, then we want to show that we have the first scenario.

Additionally suppose p02 6= 0 (if p02 = 0, p03 6= 0 just apply (12) ∈ S3 to both p and a

to get p02 = 0, and if both are 0, we already have case 1).

If a03 6= 0, then a02 6= 0, p03 6= 0. This implies that p02 = ta02, p
0
3 = ta03 for some

t ∈ Q \ {0}, so there exist m,n ∈ Z relatively prime so that mp0i + na0i = 0

for all i (t = m/n). Now consider m′, n′ ∈ Z such that m′m − n′n = 1, define

p′ = mp0 +na0, a′ = n′p0 +m′a0 (analogously for q′, b′), then p′i = 0 for all i and we

have case 1.
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If a03 = 0, then a02 = 0 or p03 = 0, a02 6= 0, if the former, then let p′ = a0, a′ = p0

giving us case 1. In the latter case, let m,n be such that mp02 + na02 = 0. Now

consider m′, n′ ∈ Z such that m′m−n′n = 1, define p′ = mp0+na0, a′ = n′p0+m′a0

(analogously for q′, b′), then p′i = 0 for all i and we have case 1.

Next suppose that ∆ 6= 0, our goal is to show that we have the second scenario.

Consider p̃ = −a03p+ p03a, ã = −a02p+ p02a (similarly for q, b). Then p̃1 = p̃3 = ã1 =

ã2 = 0, let n = lcm(p̃2, ã3) and k = n/p̃2, l = n/ã3. Then define p′ = kp̃, a′ = kp̃+lã.

This gives us p′ = (0, n, 0), a′ = (0, n, n).

We also prove the explicit conditions in terms of a, b, p, q for when the orbifold

Oa,bp,q has positive sectional curvature:

Proposition 5.3.13. Let Oa,bp,q be as above, and the metric being one given by

Cheeger deformation along U(2). Then, Oa,bp,q is positively curved iff for each t ∈ [0, 1]

and each triple (η1, η2, η3) satisfying ηi ≥ 0 and
∑
ηi = 1 we have both

(1− t)b1 + tb2 6=
∑

ηiai OR (1− t)q1 + tq2 6=
∑

ηipi (5.1)

and

b3 6=
∑

ηiai OR q3 6=
∑

ηipi (5.2)

Remark 5.3.3. We point out that which half of each condition is satisfied can in

general depend on the choice of η′is and t.

Proof. This is a fairly straightforward application of Eschenburg’s original results

on the curvature of Eschenburg spaces. In particular, we know that secσ = 0 iff
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one of the following vectors is in σ

Y3 =


i

i

−2i

 Ad(k)Y1 = k


−2i

i

i

 k−1 (k ∈ U(2)).

Condition 2 corresponds to verifying that Y3 is not horizontal, and condition 1

corresponds to verifying that Ad(k)Y1 is not horizontal.

Let Va,b(X), Vp,q(X) be the vectors tangent to the action of S1
a,b and S1

p,q respec-

tively at the point X ∈ SU(3). It is easy to see that Va,b(X) = X−1 · A · X − B,

where A = diag(a1i, a2i, a3i) and B = diag(b1i, b2i, b3i) (similarly for Vp,q(X)). Let

X =


x11 x12 x13

x21 x22 x23

x31 x32 x33


To verify that Y3 is not horizontal, we need only consider the diagonal entries

of Va,b(X), Vp,q(X), which are of the form(
3∑
j=1

|xj1|2aj − b1

)
i,

(
3∑
j=1

|xj2|2aj − b2

)
i,

(
3∑
j=1

|xj3|2aj − b3

)
i

Y3 is orthogonal to Va,b(X) iff b3 =
∑
|xj3|2aj. Similar condition holds for Y3

being orthogonal to Vp,q(X). Therefore, Y3 is not horizontal iff condition (2) holds.

We will approach the question of whether Ad(k)Y1 is horizontal differently. First
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observe that 〈Ad(X)−1A−B,Ad(k)Y1〉 = 〈Ad(Xk)−1A− Ad(k)−1B, Y1〉. Let

Xk =


x11 x12 x13

x21 x22 x23

x31 x32 x33

 , k =


cα cβ

−cβ cα

c2

 .

Then, the diagonal entries of Ad(Xk)−1A− Ad(k)−1B are[
3∑
j=1

|xj1|2aj −
(
b1|α|2 + b2|β|2

)]
i,

[
3∑
j=1

|xj2|2aj −
(
b1|β|2 + b2|α|2

)]
i,[

3∑
j=1

|xj3|2aj − b3

]
i

Taking the inner product with Y1, we get:

3

[
|α|2b1 + |β|2b2 −

3∑
j=1

|xj1|2aj

]
+

3∑
j=1

aj −
3∑
j=1

bj.

Letting ηj = |xj1|2, t = |β|2, we get that Ad(k)Y is orthogonal to V X
a,b iff

(1− t)b1 + tb2 =
3∑
j=1

ηjaj

Obtaining a similar formula for V X
p,q, we conclude that Ad(k)Y is not horizontal

iff condition (1) holds.

With these results established, we prove the main result:

Proof of Theorem E. This proof is organized according to the cases given in Lemma

5.3.12.

Case 1: p1, p2, p3 = 0.

First suppose that q1, q2 are both positive or both negative, then E7
p,q has positive

curvature. Therefore, we will assume, without loss of generality, that q1 ≤ 0 ≤ q2.
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Next suppose that b2−b1 = q2−q1. If b1−q1 ∈ [min ai,max ai], then consider α ∈

[0, 1], ηi ≥ 0,
∑
ηi = 1 such that b1− q1 =

∑
ηiai, and αq1 +(1−α)q2 = 0 =

∑
ηipi,

then αb1+(1−α)b2 = αq1+(1−α)q2+
∑
ηiai =

∑
ηiai, which violates the positivity

of sectional curvature for Oa,bp,q. Now suppose that b1 − q1 6∈ [min ai,max ai], then

there exists n ∈ Z+ satisfying q1 + t(b1 − q1), q2 + t(b2 − q2) both < min tai or both

> max tai. Consider u = (1− t)p+ ta and v = (1− t)q + tb, then E7
u,v has positive

sectional curvature.

Now suppose that b2 − b1 6= q2 − q1. Then there exist m,n ∈ Z such that

nq1 +m(b1− q1) = nq2 +m(b2− q2). If nq1 +m(b1− q1) 6∈ [minmai,maxmai], then

take u = (n−m)p+ma and v = (n−m)q+mb to get E7
u,v with positive curvature.

Otherwise we have nq1 +m(b1 − q1) ∈ [minmai,maxmai], then let ηi be such that

nq1 + m(b1 − q1) = m
∑
ηiai and α such that αq1 + (1 − α)q2 = 0 =

∑
ηipi. This

implies that m (αb1 + (1− α)b2) = m
∑
ηiai. So either αb1 + (1 − α)b2 =

∑
ηiai,

in which case we don’t have sec > 0 on Oa,bp,q or m = 0 and so q1 = q2 = 0, however,

this implies q3 = 0 as well, and so we have a degeneracy.

Case 2: p1 = p3 = a1 = 0, p2 = a2 = a3 = n > 0.

Subcase 2a: b1 − q1 = b2 − q2 = k.

If k < 0 or k > n, there exists t ∈ Z+ such that q1 + t(b1− q1) an q2 + t(b2− q2)

are both < 0 or > tn respectively. Then take u = (1 − t)p + ta, v = (1 − t)q + tb

and we get that E7
u,v has sec > 0.

Next, without loss of generality, assume q1 ≤ q2. If [q1, q2]∩ [0, n] = ∅, then E7
p,q
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has positive curvature, otherwise letm = min([q1, q2]∩[0, n]) = max{q1, 0}. Suppose

that b1− q1 ∈ [0, n−m] ⊂ [0, n], then pick ηi such that η2 = m/n, nη3 = b1− q1 and

pick α such that αq1+(1−α)q2 = m. This implies that
∑
ηipi = m = αq1+(1−α)q2

and
∑
ηiai = m+ (b1 − q1) = αb1 + (1− α)b2, so Oa,bp,q does not have sec > 0. Next

observe that if q1 ≤ 0 ≤ q2, then m = 0 and so every possible value of b1 − q1

has been handled. Finally, suppose that q1 ∈ (0, n], then m = q1, so we need only

consider b1− q1 ∈ (n−m,n], but this implies that n < b1 ≤ b2, so E7
a,b has positive

curvature.

Subcase 2b: Without loss of generality, b1− q1 < b2− q2. This implies that there

exist k, l ∈ Z such that kq1 + l(b1 − q1) = kq2 + l(b2 − q2), k > 0. Additionally, let

t0 = kq1 + l(b1 − q1).

Suppose that t0 6∈ [min{kpi + l(ai − pi)},max{kpi + l(ai − pi)}]. Then, let

u = (k − l)p+ la, v = (k − l)q + lb to get sec > 0 on E7
u,v.

Lemma 5.3.14. Consider all the possible values ηi such that kq1 + l(b1 − q1) =∑
ηi[kpi + l(ai − pi)], and let ηm3 , η

M
3 denote the smallest and largest values of η3

respectively.

If [b1 − q1, b2 − q2] ∩ [nηm3 , nη
M
3 ] 6= ∅, then Oa,bp,q does not have sec > 0.

Proof. Pick α such α(b1 − q1) + (1 − α)(b2 − q2) = nη′3, then αkq1 + (1 − α)kq2 =∑
kη′ipi, so αq1 + (1− α)q2 =

∑
η′ipi. We also get αb1 + (1− α)b2 =

∑
η′iai, so we

do not have sec > 0.

The table below demonstrates the possible relations between k, l, t0 and the

94



corresponding ηm3 , η
M
3 :

Relation nηm3 nηM3

0 < k < t0/n ≤ l t0−kn
l−k

t0
l

0 ≤ t0/n ≤ k, 0 < l 0 t0
l

0 ≤ t0/n ≤ k, l ≤ 0 0 t0−kn
l−k

l ≤ t0/n ≤ 0 < k, l < 0 t0
l

t0−kn
l−k

Table 5.3: Bounds on η3

If bi − qi > t0/l and l ≥ 0, then qi < 0 = min pi, and so E7
p,q has sec > 0.

If bi − qi < t0/l and l < 0, then qi < 0 = min pi, and so E7
p,q has sec > 0.

If bi− qi < 0, then if we take N > 0 sufficiently large, we get qi +N(bi− qi) < 0

for i = 1, 2, and so E7
u,v with u = (1−N)p+Na, v = (1−N)q +Nb has sec > 0.

If bi − qi < (t0 − kn)/(l − k) and l > k > 0, then bi > n = max ai, and so E7
a,b

has sec > 0.

If bi − qi > (t0 − kn)/(l − k) and l ≤ 0 < k, then bi > n = max ai, and so E7
a,b

has sec > 0.

Remark 5.3.4. We also note that if Oa,bp,q has positive sectional curvature, then there

exist a′, b′, p′, q′ such that Oa
′,b′

p′,q′ = Oa,bp,q and E7
a′,b′ , E

7
p′,q′ both have positive sectional

curvature. This is achieved by finding p′, q′ in accordance with the theorem, and

taking a circle S1
a′,b′ ⊂ T 2 sufficiently close to S1

p′,q′ .
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