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First Measurements of the Differential Cross Sections of Higgs Boson
Production and Decay in the Four Lepton Final State

Abstract
The discovery of a new scalar particle in the search for the Higgs boson at the Large Hadron Collider (LHC)
was a great success for the ATLAS and CMS collaborations. Additional measurements of this new particle
present opportunities to both test the Standard Model (SM) predictions for the Higgs boson and to search for
non-SM properties of this new particle. This thesis presents measurements of the mass, signal strength, and
production cross sections of the Higgs boson in the H -> ZZ* -> lll'l' (l,l'=e,μ) decay channel. The cross
section measurements are performed using 20.3 fb^-1 of pp collisions at center of mass energy sqrt(s) = 8 TeV
collected by the ATLAS detector and the mass and signal strength measurements are performed using an
additional 4.5 fb^-1 of pp collisions at sqrt(s) = 7 TeV. From the data in the H -> 4l channel, the best estimate
of the mass is 124.51 ± 0.52 (stat) ± 0.06 (syst) GeV. The signal strength (the ratio of observed signal events to
expected events from a Standard Model Higgs boson) is measured to be 1.64 ± 0.38 (stat) ± 0.18 (syst). An
inclusive cross section time branching ratio measurement is performed within a fiducial volume and found to
be 2.11+0.53- 0.47 (stat) + 0.08- 0.08(syst) fb. Differential cross section measurements are performed for six
observables which are sensitive to properties of the Higgs boson production and decay. An unfolding
procedure is used to correct for detector effects in the differential measurements and comparisons are made to
several theoretical calculations. No significant deviations from the SM predictions are observed.
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abstract

First Measurements of the Differential Cross Sections of

Higgs Boson Production and Decay in the Four Lepton Final

State

Jonathan M. Stahlman

H.H. Williams

The discovery of a new scalar particle in the search for the Higgs boson at the Large Hadron

Collider (LHC) was a great success for the ATLAS and CMS collaborations. Additional

measurements of this new particle present opportunities to both test the Standard Model

(SM) predictions for the Higgs boson and to search for non-SM properties of this new particle.

This thesis presents measurements of the mass, signal strength, and production cross sections

of the Higgs boson in the H → ZZ(∗) → ```′`′(`, `′ = e, µ) decay channel. The cross section

measurements are performed using 20.3 fb−1of pp collisions at center of mass energy
√
s = 8

TeV collected by the ATLAS detector and the mass and signal strength measurements are

performed using an additional 4.5 fb−1of pp collisions at
√
s = 7 TeV. From the data in the

H → 4` channel, the best estimate of the mass is 124.51 ± 0.52 (stat) ± 0.06 (syst) GeV.

The signal strength (the ratio of observed signal events to expected events from a Standard

Model Higgs boson) is measured to be 1.64 ± 0.38 (stat) ± 0.18 (syst). An inclusive cross

section time branching ratio measurement is performed within a fiducial volume and found

to be 2.11+0.53
−0.47 (stat)+0.08

−0.08 (syst) fb. Differential cross section measurements are performed

vii



for six observables which are sensitive to properties of the Higgs boson production and decay.

An unfolding procedure is used to correct for detector effects in the differential measurements

and comparisons are made to several theoretical calculations. No significant deviations from

the SM predictions are observed.
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Preface

The past six years has turned out to be one of the most exciting and productive times for

particle physics in recent history as the Large Hadron Collider (LHC) and its associated ex-

periments have been commissioned and proceeded to collect data which led to the discovery

of a new particle which, in all respects, looks very much like the Higgs boson of the Standard

Model. I consider myself extremely fortunate to have been able to participate in these activ-

ities, having started my graduate studies in 2008 just as the experiments were preparing to

collect first data. Of course, an accident in the LHC tunnel in the fall of 2008 delayed the

start of data-taking and caused me a bit of stress over graduation timelines, but I continued

working in the U. Penn ATLAS group and am now finishing my Ph.D. after the end of a very

fruitful first LHC run.

During the first several years, my focus was on commissioning and maintenance of the data

acquisition (DAQ) electronics for the Transition Radiation Tracker (TRT), a sub-detector of

ATLAS in which the Penn HEP group is heavily involved, having designed and built much of

the front-end electronics. One of my first contributions was the development of a graphical user

interface (GUI) known as the “Cobra Panel” which provided experts an immediate overview

of the TRT electronics status. Simultaneously, I began studies of tracking in minimum bias

events in the Inner Detector (ID) with the goal of detecting and minimizing misalignments in

the TRT, resulting in improvements to the track position resolution within the TRT.
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After moving to CERN full-time in 2010, TRT operations and maintenance occupied much

of my time as data-taking continued in earnest. In 2012, I took over as DAQ electronics

coordinator for the TRT. The push to higher luminosity by the LHC and higher trigger rates

by ATLAS lead to interesting challenges for the TRT DAQ. During the same time, the tracking

studies matured as the knowledge of the ID alignment improved, leading to studies of subtle

detector misalignment effects. The data-driven measurements of momentum biases using the

quickly growing dataset of Z → µ+µ− events was essential in improving the knowledge of

the resolution and scale systematic uncertainties in the ID tracking. This included studies

of weak modes and time-dependent alignment effects which could have significantly degraded

the momentum scale and resolution performance.

Towards the end of the 2011, I joined the ATLAS HSG2 group, which is responsible for

the search for and measurements of the Higgs boson in the four lepton final state, making

contributions based on my experience in ID tracking performance. At the time (and to a

lesser extent still today), there was some tension between the H → 4` and H → γγ mass

measurements which required much scrutiny before the results could be released. My studies

of the momentum scale in the ID tracking helped to confirm that the tension was not due to

underestimated systematic uncertainties in the mass scale.

In July of 2012, the ATLAS and CMS experiments acquired enough data to announce the

5σ observation of a new particle with a mass of approximately 125 GeV primarily based on

observations in the diphoton and four lepton final states, with smaller contributions from the

H →WW search. After the discovery, work began on measurements of this new particle using

the full Run 1 dataset from the LHC, which is the focus of this thesis. My main contribution

to this effort has been the development and implementation of the differential cross section

measurements in the H → 4` channel, which were recently published in arXiv:1408.3226. I

also made auxiliary contributions to the background estimates and mass and signal strength
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measurements.

Working on an experiment with the scale of ATLAS necessarily requires one to rely on

the work of many others. As such, this thesis presents results of both my work and others. I

have attempted to write the results in my own words in cases where the original text is not

my own. For reference, Chapters 6, 7, 9, and 10 are based on ATL-COM-PHYS-2013-1599,

Chapters 8 and 12 are based on ATL-COM-PHYS-2014-056, and Chapter 11 is based on

ATL-COM-PHYS-2014-056.

Jonathan Stahlman

Washington D.C., May 2014
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Chapter 1

Introduction

The discovery of a new scalar particle in the search for the Higgs boson at the Large Hadron

Collider (LHC) was a great success for the ATLAS and CMS collaborations. Additional mea-

surements of this new particle present opportunities to both test the Standard Model (SM)

predictions of the Higgs boson and to search for non-SM properties of this new particle. This

thesis presents updated measurements of the Higgs mass and signal strength and first measure-

ments of the differential cross sections of the Higgs boson in the H → ZZ(∗) → ```` (` = e, µ)

decay channel.

The H → 4` decay channel is often referred to as the “golden channel” for Higgs boson

discovery and measurements because of the striking signature of the four relatively high mo-

mentum leptons in the final state. This final state allows full reconstruction of the Higgs

kinematics while simultaneously having relatively small backgrounds. However, it will be seen

that the sensitivity of this channel with the current dataset is almost entirely limited by the

statistical uncertainties, which are relatively large compared to other Higgs decay channels

due to the small branching ratios of the H → 4` decay.

The cross section measurements are performed using 20.3 fb−1of pp collisions at
√
s = 8

TeV collected by the ATLAS detector and the mass and couplings measurements are per-

formed using an additional 4.5 fb−1of pp collisions at
√
s = 7 TeV. An inclusive cross section
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measurement is carried out within a fiducial volume and differential cross section measure-

ments are performed for six observables which are sensitive to properties of the Higgs boson

production and decay. An unfolding procedure is used to correct for detector effects in the

differential measurements and comparisons are made to several theoretical calculations.

This thesis is organized as follows: Chapter 2 provides theoretical motivations for the

search for and measurements of the Higgs boson. Chapter 3 gives a description of the exper-

imental apparatus, the ATLAS detector and a study of the detector alignment and tracking

performance is presented in Chapter 4. An overview of the measurements performed in the

H → 4` analysis is given in Chapter 5. Chapter 6 describes the data and simulation samples

and Chapter 7 explains the event selection and final observables used in the H → 4` channel.

Chapter 8 defines and presents studies of the fiducial detector volume used for the fiducial

cross section measurements. The background estimation methods and results are shown in

Chapter 9. Studies of the systematic uncertainties are presented in Chapter 10. Chapter 11 de-

scribes the methods and results of the mass and signal strength measurements and Chapter 12

presents the methods and results of the differential cross section measurements. Conclusions

are given in Chapter 13.
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Chapter 2

Theoretical Motivations

The Standard Model of particle physics has been extremely successful in precisely describing

many of the interactions of the fundamental particles observed in nature over a wide range of

energy scales. The discovery in 2012 at the Large Hadron Collider (LHC) of a scalar particle

with characteristics closely resembling those of the predicted Higgs boson is yet another step

in confirming the predictions of this theory. This chapter begins with a brief description of the

Standard Model and electroweak symmetry breaking, continues with a discussion of particle

physics at hadron colliders and the discovery of the Higgs boson at the LHC, and finishes with

a discussion of the shortcomings and possible extensions of the Standard Model.

2.1 The Standard Model

The Standard Model (SM) of particle physics is a theoretical framework conceived to describe

the interactions of the fundamental particles of nature. It has been developed incrementally

over the course of many years based on empirical observation and advances in quantum field

theory. It currently contains the known matter fields, the leptons and quarks, and describes

three of the four known fundamental interactions: electromagnetism, the weak interaction,

and the strong interaction. Only gravity has yet to be incorporated into the SM. A thorough
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description of the Standard Model is beyond the scope of this thesis and many texts will give

a much better treatment of the subject - see Reference [1] for example. Instead, a summary

of the main features of the SM, especially those related to electroweak symmetry breaking,

will be discussed here.

The SM is a quantum field theory in which quarks and leptons (known as fermions) are

represented by a set of spin 1/2 Dirac fields interacting via the fundamental forces. A La-

grangian specifies the dynamics of these interactions which in the SM is invariant under a

set of local space-time transformations specified by the Lie group SU(3)C×SU(2)L×U(1)Y.

This invariance is known as a “gauge symmetry” and is required in order for a theory to

be renormalizable. Gauge symmetry is required in the SM because non-renormalizable the-

ories contain uncontrolled divergences which result in non-predictive models. All terms that

preserve this gauge symmetry are present in the SM Lagrangian.

Preservation of the gauge symmetry necessitates a set of additional “gauge fields” with cor-

responding “gauge bosons”. The fundamental forces are represented by these gauge fields with

the gauge bosons acting as the force carriers. The SM has eight gauge bosons corresponding

to the generators of SU(3), three gauge bosons associated with SU(2) and one gauge boson

from U(1), all of which are spin 1 particles.

As described, this theory is perfectly self-consistent as a theory of massless fields interacting

via electroweak and strong interactions. However, experimentally both massive fermions and

massive electroweak gauge bosons have been observed so mass terms must be generated in

order for the SM to be a meaningful theory. However, the addition of standard mass terms

in the Lagrangian for the electroweak gauge fields would break the gauge invariance and thus

are forbidden. A similar issue exists for fermions because the introduction of mass terms for

the fermions would mix the left and right handed sectors of the fermions, breaking gauge

invariance.
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A method of introducing mass terms into the Lagrangian without breaking the gauge

invariance within a relativistic theory was first proposed in the 1960’s by several groups of

theorists including Robert Brout and Francois Englert [2], Peter Higgs [3, 4], and Gerald

Guralnik, Carl R. Hagen, and Tom Kibble [5] and is now commonly known as the Brout-

Englert-Higgs (BEH) mechanism. The BEH mechanism introduces an additional complex

scalar field, known as the Higgs field, for which the zero-point of the field potential is not the

ground state of the field. The Higgs field preserves the gauge invariance of the Lagrangian but

the gauge symmetry will be “spontaneously” broken when the Higgs field assumes its ground

state value.

The structure of the electroweak gauge symmetry in the SM was originally proposed by

Glashow[6], Weinberg[7] and Salam [8, 9, 10]. In this model, the Higgs field is an SU(2)

doublet field, which couples to the electroweak SU(2)L×U(1)Y gauge fields. After spontaneous

symmetry breaking, only the U(1)EM symmetry remains. The W± and Z bosons result from

the the mixing of the SU(2) fields and the photon remains as the massless propagator of the

U(1)EM group.

The fact that the Higgs field acquires a non-zero vacuum expectation value (a “vev”)

through spontaneous symmetry breaking dynamically generates mass terms for the weak gauge

bosons while the photon remains massless. The masses of the W± and Z bosons are set by

the vev of the Higgs field. Gauge invariant fermion mass terms must still be added using so

called “Yukawa” coupling terms, which couple the Higgs field to the fermions with arbitrary

coupling parameters. This means that the fermion masses are not predicted by the SM but

are instead inputs to the theory. On the other hand, the coupling of the fermions to the Higgs

field is proportional to their mass, which can be tested experimentally.

Finally, an additional gauge boson, known as the Higgs boson, is also generated in the

course of the spontaneous symmetry breaking. The Higgs boson is a scalar particle whose mass
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is proportional to its self coupling parameter λ which, like the fermionic Yukawa couplings,

is not specified by the theory. There are no strict limits from the theory on the Higgs mass

other than it must be non-zero in order to undergo spontaneous symmetry breaking and it

was generally thought to be below the TeV scale in order for the theory to be perturbative.

However, once the mass is fixed, all other observable quantities associated with the Higgs field

are specified.

It should also be noted that the Higgs mechanism provides a solution to another issue in

addition to the generation of mass terms. In the SM, the longitudinally polarizedWW →WW

scattering amplitudes are proportional to the center of mass energy s, causing the cross section

to diverge and violate unitarity at approximately the TeV scale. Introduction of the Higgs

into the theory introduces diagrams which cancel the divergent terms, rendering the WW

scattering probability finite.

2.2 Physics at Hadron Colliders

Particle scattering experiments have provided extensive testing grounds for the Standard

Model. The parton model of the proton was developed in the 1960’s by Feynman and Bjorken

to explain the results of deep inelastic scattering experiments [11, 12]. The parton model treats

the proton as a collection of point-like particles. For a high momentum transfer (Q2) process

such as a proton-proton collision, the individual components of the proton are predicted to

interact independently due to a process known as Bjorken scaling. This greatly simplifies the

calculation as one can consider the collision as a one-on-one parton scattering rather than

a collection of particles colliding. This was observed to correctly predict the high energy

interactions of the deep inelastic scattering experiments, but was also known to be insufficient

to describe the low energy behavior of the proton.
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The theory of quantum chromodynamics (QCD) was developed in the 1970s in order to

describe the interactions of the quarks and gluons over a wider range of energies. QCD

introduces the concepts of confinement and asymptotic freedom. Asymptotic freedom, first

derived by Gross, Wilczek, and Politzer [13], is the ability of a renormalizable non-Abelian

gauge theory to include interactions which decrease in strength as the energy increases. In the

SM, the strong coupling constant, αs, decreases with increasing energy, allowing perturbative

calculations of QCD processes in orders of αs for large Q2 processes. At low energy, αs

becomes large and the perturbative calculations no longer are sufficient. The phenomenon

of confinement, though as of yet not mathematically proven, is the observation that αs is

sufficiently large at low energies such that quarks can not be observed independently but

always exist in colorless bound states of at least two quarks.

In perturbative QCD, the lowest order contributions in αs correspond directly with the

predictions of the parton model. Higher order terms in αs are then considered as corrections

to the lower order contributions. As in QED, the perturbative calculations include divergences

which must be re-normalized in order to make meaningful predictions. The divergences are

absorbed into a term known as the renormalization scale, µR, whose value is generally set by

the Q2 of the process. The actual value of this scale has no physical meaning, so variations of

this parameter are considered when evaluating systematic uncertainties for QCD predictions

(see Section 10.3.3).

In order to calculate cross sections for QCD processes, the contributions from both low

and high energy processes must be considered. While the hard (high energy) processes are

calculable using perturbative calculations, the low energy processes, also referred to as the

long distance processes, are not and must be taken into account in other ways. The solution to

this issue is the factorization theorem, which separates the high and low energy contributions

to the cross section by absorbing the low energy processes into universal structure functions
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known as parton distribution functions (PDFs). Specifically, the process A + B → C where

A and B are hadrons consisting of partons ai, bj is written as:

dσA+B→C
dQ2dy

=
∑
ai

∑
bj

∫ 1

xA

dξA

∫ 1

xB

dξB fa/A(ξA, µF ) fb/B(ξB , µF ) σai+bj→C(Q2, y) (2.1)

where the fA/B are the PDFs which are parameterized in terms of the ξA/B (which roughly

correspond to the fraction of the hadron momentum carried by the parton), the hard scattering

cross section σ, and the factorization scale µF . The PDFs are not predicted by theory but mea-

sured in previous experiments at lower energies. Extrapolation of the PDFs to higher energies

is done using the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

[14, 15, 16]. A number of proton PDF sets are available at the LHC energies from different

collaborations, most notably the CTEQ[17], MSTW[18], and NNPDF[19] PDF sets. The unphysical

scale parameter µF is needed in order to separate the low and high energy regimes and is

usually chosen at a relevant scale in the question at hand, such as mZ , and then varied in

order to estimate a systematic uncertainty (see Section 10.3.3).

As already noted, the SM has had great success in making precise predictions for scattering

experiments at particle colliders. For example, Figure 2.1 shows the predicted and measured

production cross sections for a large number of SM processes using ATLAS data collected

during LHC Run 1. The SM theory correctly predicts these phenomena over many orders of

magnitude.

2.3 Search for the Higgs Boson

The experimental detection of a Higgs-like boson would provide strong evidence for the exis-

tence of the Higgs field and electroweak symmetry breaking. As of 2011, the Higgs boson had

not yet been experimentally observed but limits had been placed on mH (assuming the SM
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Figure 2.1: A summary of Standard Model total and fiducial production cross section mea-
surements, corrected for leptonic branching fractions, compared to the correspond-
ing SM theoretical predictions. The W and Z vector-boson inclusive cross sections
were measured with 35 pb−1of integrated luminosity from the 2010 dataset and all
other measurements were performed using the 2011 dataset or the 2012 dataset.

couplings). A strong lower limit of mH > 114.4 GeV had been produced using the LEP-II data

[20]. The Tevatron experiments, CDF and D0, also performed searches over a wide range of

Higgs masses and had excluded the region 158 < mH < 175 at 95% confidence level[21, 22, 23].

Indirect constraints on mH were also possible through the precision measurements of elec-

troweak observables. The Higgs, if it exists, makes corrections to a number of electroweak

observables, most notably the W and top masses, through virtual loop diagrams. Results

from a number of experiments, including LEP and the Tevatron, were combined in a global

fit of electroweak parameters from which the preferred value of mH could be determined [24].

The result of this fit is shown in Figure 2.2 and the best fit value of mH is 87+35
−26 GeV, with
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an upper limit of mH < 157 GeVat 95% confidence level.

Figure 2.2: The black line with blue uncertainty band is the ∆χ2 vs. mH curve based on the
results of a global fit of electroweak observables. The vertical yellow bands shows
the 95% CL exclusion limit on mH from the direct searches at LEP-II (up to 114
GeV) and the Tevatron (160 GeV to 170 GeV). [24]

Discovery of the Higgs boson was one of the major goals at the LHC. The dominant

Feynman diagrams contributing to Higgs production at the LHC are shown in Figure 2.3

and the cross sections at
√
s = 8 TeV of the various production modes as a function of

mH are shown in Figure 2.4. The dominant production mode is gluon-gluon fusion (ggF),

accounting for 87% of the total production cross section. The next largest production mode

is vector boson fusion (VBF), which is notable because there is no color flow between the

incoming quarks. This results in a final state with two forward jets and a central Higgs decay.
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Associated production with a vector boson (V H) contributes ∼ 5% to the total production

cross section and associated production with a top pair (tt̄H) is the smallest production mode

considered with a cross section roughly 100x smaller than ggF.
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Figure 2.3: Leading order Feynman diagrams for the dominant Higgs production modes at
the LHC, which from left to right are ggF, VBF(qqH), V H, and tt̄H.
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Figure 2.4: (left) Cross sections at
√
s = 8 TeV for the dominant Higgs production modes

as a function of mH, including ggF, VBF, WH, ZH, and tt̄H. (right) Branching
ratios for the Higgs decays to various final states as a function of mH[25].

The branching ratios to various final states are also shown in Figure 2.4 as a function of mH.
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The LHC experiments have performed searches in all of these final states with varying search

strategies depending on the final state. For mH < 135 GeV, the bb̄ final state has the largest

branching ratio, but the ggF production would be extremely challenging to separate from the

SM di-jet backgrounds. Instead, searches are performed for H → bb̄ in association with

a vector boson (V H production). The H → WW decay has one of the largest branching

ratios over much of the mH range and searches generally focus on the `+`−νν final state.

However, because of the energy lost to the neutrinos, this channel has reduced sensitivity to

mH. The γγ and ZZ final states both provide full reconstruction of the Higgs kinematics but

are more statistically limited than the other final due to their smaller branching ratios. At

mH = 125 GeV, the branching ratio of H → 4` (` = e, µ) is 1.25× 10−4.

In July of 2012, the ATLAS and CMS collaborations simultaneously reported more than

5σ evidence of a new scalar particle with an approximate mass of 125 GeV, consistent with the

SM predictions of the Higgs boson, using ∼ 5 fb−1each of
√
s = 7 TeV and

√
s = 8 TeV data

[26, 27]. The observation was based primarily on the γγ and 4` final states where a clear peak

can be seen in the invariant mass distributions as shown in Figure 2.5, each with a significance

greater than 3σ. The WW final state search also contributed with an observed 2.5σ excess.

The local p0 as a function of mH from the combined search and the signal strength µ (the

ratio of observed events to expected events from a SM Higgs boson) measured in the various

final states is shown in Figure 2.6.

Since the discovery, numerous measurements have been performed in order to test whether

the observed particle is consistent with the Higgs boson of the SM using the full Run 1 LHC

dataset. First measurements of the bosonic and fermionic couplings have been performed by

separating the candidate events into categories enriched in specific Higgs production modes

[28, 29]. Measurements of the signal strength from the various production modes have been

performed using a combination of the data from different final states and are shown in Fig-
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for the Higgs boson at ATLAS using 4.8 fb−1of

√
s = 7 TeV data and 5.9 fb−1of√

s = 8 TeV data [26].

ure 2.7. Spin/parity tests have also been performed to determine whether the particle is

compatible with the SM prediction of JP = 0+. The J = 1 hypothesis can be ruled out im-

mediately because a spin 1 particle cannot decay to two photons according to the Yang-Landau
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theorem [30, 31], inconsistent with the observation of H → γγ. Analysis of the spin angles

in the ZZ and WW final states favors the JP = 0+ hypothesis over alternative spin/parity

hypotheses of 0−, 1±, and 2+ [32]. Finally, measurements of differential cross sections have

been performed in the γγ final state which are complementary to the results presented in

this thesis [33]. No significant deviations from the SM have been observed in any of these

measurements.

Signal strength
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Figure 2.7: (left) Measured signal strength for the various Higgs production modes from a
combination of the data in the H → γγ, H → 4`, and H → WW final states
using the full LHC Run 1 dataset [28]. (right) Measurement of the signal strength
of the tt̄H production mode using the H → γγ and H → bb̄ final states using the
full LHC Run 1 dataset [34].

Searches continue for Higgs decays to other final state topologies. Preliminary results

from ATLAS indicate a 4σ excess of events in the ττ final state consistent with the SM

Higgs predictions, indicating that the observed particle couples to fermions [35]. A search

has also been performed for H → bb̄ produced in association with a vector boson in which no

excess over background is observed; a 95% confidence level limit on the cross section is set at

1.2× the SM cross section [36]. The corresponding search from CMS finds a 2.1σ excess over

background, consistent with the SM predictions [37]. Searches have also been conducted in

final states for which the LHC experiments do not have sufficient statistics to observe a SM

Higgs boson, such as tt̄H production, H → µµ, and di-Higgs production, and no significant
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excesses have been observed [38, 39, 40, 41, 34].

2.3.1 Higgs Differential Cross Section Predictions

The differential cross section measurements in this thesis provide another test of the compat-

ibility with the SM for this newly discovered scalar boson. The observed differential cross

sections are compared to the results of several of the most recent theoretical calculations for

Higgs production at the LHC. This section describes the tools used to make these theoretical

predictions.

As shown in Figure 2.4, ggF accounts for the majority of SM Higgs production at the LHC.

Therefore, the results of three different ggF calculations are combined with the results of a

single set of calculations for the non-ggF modes in order to produce three sets of differential

cross section predictions. All of the theoretical predictions are computed for a SM Higgs boson

with mH = 125.4 GeV in
√
s = 8 TeV pp collisions and are normalized to the most precise

SM inclusive cross section predictions currently available (See Section 6.2.1) and corrected

for the fiducial acceptance derived from the Powheg simulation (see Chapter 8 for fiducial

corrections).

Differential predictions for the ggF mode are provided by three calculations: Powheg [42],

Powheg interfaced to Minlo [43], and HRes2 [44, 45] . Powheg provides event generation

up to next-to-leading-order (NLO), with decay and showering performed by Pythia 8 [46].

FastJet [47] is used for jet reconstruction. Powheg with Minlo provides predictions for

jet-related variables at NLO for Higgs boson production in association with one jet.

The HRes2 program computes fixed-order cross sections for ggF SM Higgs boson produc-

tion up to next-to-next-to-leading-order (NNLO). All-order resummation of soft-gluon effects

at small transverse momenta is consistently included up to next-to-next-to-leading-logarithm

(NNLL), using dynamic factorization and resummation scales. The program implements top-
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and bottom-quark mass dependence up to NLL+NLO. At NNLL+NNLO level only the top-

quark contribution is considered. HRes2 does not perform showering and QED final-state

radiation effects are not included.

The VBF differential cross sections are predicted up to NLO using Powheg [48]. The

V H and tt̄H contributions are calculated using Pythia 8 [46].

2.4 Open Questions in the Standard Model

While the SM has proven very successful in describing a wide range of phenomena, there are

questions which it has not yet answered. The following is an incomplete list of phenomena

and theoretical issues which are not addressed by the SM in its current form. The following

section on extensions of the SM will describe some possible solutions to these phenomena and

other open issues.

2.4.1 Neutrino Masses

The neutrinos of the SM are massless because, unlike the charged leptons, there are no right

handed neutrinos with which to generate Yukawa coupling terms with the Higgs field. It is

generally accepted now that neutrinos do have mass based on observations of neutrino flavor

oscillations [49]. For flavor oscillation to occur, the flavor eigenstates must be a mixture

of unique mass eigenstates. Thus, the observation of neutrino oscillations provides strong

evidence for non-zero (but small) neutrino masses.

The first indirect evidence for neutrino oscillation was discovered by the Homestake ex-

periment, which found the solar neutrino flux to be roughly one third of the expected flux

[50]. Kamiokande-II found similar evidence using atmospheric neutrinos [51]. Direct evidence

of neutrino flavor oscillation was then established with atmospheric neutrinos at the Super
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Kamiokande experiment [52] and later confirmed using solar neutrinos with the Sudbury

Neutrino Observatory [53, 54]. Several mechanisms have been proposed to generate massive

neutrinos in the SM, including the addition of sterile right handed neutrinos or Majorana

neutrinos, but none have been confirmed experimentally.

2.4.2 Baryon Asymmetry

An open question in cosmology is based on the observation that only matter is observed in

the universe and not anti-matter, while the observed laws of physics appear to be symmetric

between both forms of matter [49]. Under the assumption that the universe began with

equal parts matter and anti-matter, there must be a mechanism by which matter dominates

over anti-matter in the beginnings of the Universe during a period known as baryogenesis.

Sakharov proposed a set of conditions which must be satisfied in order for baryogenesis to

occur, which include baryon number violation, CP violation, and C violation all occurring in a

state which is not in thermal equilibrium[55]. CP violation has been observed experimentally

and is included in the SM, but at rates which are too small in order to account for the observed

baryon asymmetry in the universe.

2.4.3 Dark Matter/Energy

Based on observations of galactic rotational curves and gravitational lensing, there is now

strong evidence for an additional form of non-luminous matter which is commonly referred

to as dark matter. Furthermore, measurements of the rate of expansion of the universe also

indicate an as of yet unaccounted for excess of energy, commonly referred to as dark energy.

Current estimates indicate that the known matter of the SM only accounts for roughly 5%

of the energy content of the universe - the rest consists of dark matter and dark energy [56].

Dark matter and energy are unaccounted for in the SM.
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2.4.4 Hierarchy Problem

Unlike the other open questions of this section, the “hierarchy problem” is not based upon

observation but instead is a theoretical contention. The hierarchy problem arises from the fact

that there are extremely different scales needed in a theory to describe the strong, electroweak,

and gravitational interactions. This gives rise to bare parameters of the theory whose values

may differ from their renormalized counterparts or other parameters in the theory by many

orders of magnitude. While mathematically consistent, the “fine-tuning” of these parameters

may be considered unnatural and therefore undesirable in the theory.

There is not a single hierarchy problem; rather, there are several instances of it in the SM.

Specifically, there is a hierarchy problem associated with the Higgs mass [49]. Because the

Higgs boson is a scalar particle, its mass contains virtual corrections which generally push it

many orders of magnitude higher than the electroweak scale, much higher than the observed

resonance at 125 GeV. Therefore, a fine-tuned cancellation of terms is needed in order for the

renormalized Higgs mass to remain below the TeV scale.

2.5 Beyond the Standard Model

While there have not been any significant deviations from the SM Higgs boson predictions for

the newly discovered scalar particle at the LHC, there are still extensions of the SM which

both contain a SM-like Higgs boson and solve some of the questions in Section 2.4. The

following sections describe two possible extensions of the SM.

2.5.1 Supersymmetry

A large class of theories propose an additional symmetry which links fermions and bosons

and is generally known as Supersymmetry (SUSY) [57]. Each particle of the SM would then
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be associated with a “superpartner” whose spin differs by 1/2. Clearly, the supersymmetry

must be broken as the superpartners are not observed at the same energy scales as the regular

matter already observed. The symmetry breaking mechanism defines the specific models of

SUSY, but in many models, after symmetry breaking, the superpartner masses are at or above

the TeV scale in order to be consistent with observation.

The Higgs sector will be modified as at least one additional SU(2) doublet is needed in

order for a SUSY theory to be consistent. For instance, in the Minimal Supersymmetric

Standard Model, the Higgs sector contains a set of five Higgs particles, with the lightest one

corresponding to the new observed resonance at the LHC. Additionally, SUSY solves the Higgs

mass hierarchy problem because the superpartners will introduce additional loop corrections

which exactly cancel the divergent terms. SUSY theories also often naturally provide a dark

matter candidate in the form of the lightest superpartner, a stable neutral particle which

cannot decay to SM particles. Many searches for signatures of SUSY have been performed at

the LHC but no evidence of SUSY has been found.

2.5.2 Extra Dimensions

Another set of theories propose the existence of extra dimensions beyond the 3+1 space-

time dimensions we directly observe in order to incorporate gravity into the SM [49]. The

fields of the SM only couple weakly to the extra dimensions while gravity (via the graviton)

couples strongly, reducing the strength of the gravitational force relative to the electroweak

and strong forces and solving the hierarchy problem. In order for the extra dimensions to be

hidden, they are proposed to be small and compact. The phenomenology of the various models

with extra dimensions depends on the number and geometry of the additional dimensions but

most models result in so called Kaluza-Klein particles. These additional resonances could

potentially provide a dark matter candidate [58] or modify Higgs production at the LHC [59].
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Chapter 3

The ATLAS Detector

The ATLAS experiment [60] is one of four large experiments located at the LHC. The ATLAS

detector is a multi-purpose particle detector with roughly 4π coverage and consists of four

main detector components: the Inner Detector (ID), the calorimeter system consisting of

liquid Argon (LAr) and Tile calorimeters, the Muon Spectrometer (MS), and the magnet

system consisting of both solenoidal and toroidal magnets. Furthermore, a triggering system,

which is essential due to the high luminosity of the LHC, is integrated into the calorimeter

and MS systems. A cut-away view of the ATLAS detector is shown in Figure 3.1. The full

detector is roughly 44 m in length and 25 m in diameter, weighing nearly 7000 metric tons

[60].

The ATLAS coordinate system is defined as follows: the nominal interaction point is

defined as the origin of the coordinate system, while the anti-clockwise beam direction defines

the z-axis and the x-y plane is transverse to the beam direction. The positive x-axis is defined

as pointing from the interaction point to the center of the LHC ring and the positive y-axis

is defined as pointing upwards. The azimuthal angle φ is measured around the beam axis

and the polar angle θ is the angle from the beam axis. The pseudorapidity is defined as

η = −ln(tan(θ/2)). The positive z side of the detector is designated the A-side, while the

negative z side of the detector is designated the C-side. The transverse momentum pT and
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Figure 3.1: Cut-away view of the ATLAS detector [60].

transverse momentum ET are the components of the momentum or energy in the x-y plane.

The separation of two objects in angular space is defined as ∆R =
√

∆η2 + ∆φ2.

The ID and its subdetectors are described in detail in Section 3.1 as the geometry is

relevant in Chapter 4. A brief description of the calorimeters is given in Section 3.2 and the

Muon Spectrometer is described in Section 3.3. The triggering scheme is described in Section

3.4.

3.1 Inner Detector

The ATLAS Inner detector (ID) is designed to measure the trajectories of charged particles

with pT> 500 MeV within |η| < 2.5. The ID consists of three separate sub-detectors with an

outer radius of 1.15 m, all contained within a 2 Tesla solenoid magnet. Each sub-detector is

divided into barrel and end-cap elements and a cut-away view is shown in Figure 3.2. The
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layout of the sensitive detector elements in both the barrel and end-caps of the ID with a

pT = 10 GeV track passing through them can be seen in Figure 3.3 .

At the innermost radius is the Pixel detector, a silicon pixel tracker which provides high

resolution position and vertexing measurements very close to the interaction point. The Semi-

Conductor Tracker (SCT) is a silicon strip tracker located outside the Pixel detector which

provides more precision position measurements of the track trajectory. Generally speaking,

silicon sensors are composed of thin, high-purity doped silicon wafers. As a charged particle

traverses the wafer, energy is deposited into the silicon and electron-hole pairs are created. A

bias voltage is applied to the silicon and these electron-hole pairs are collected as currents read

out by the front-end electronics on the surface of the silicon. Due to detector material and

budgetary concerns, silicon trackers generally rely on a small number of very high precision

measurements (usually at the micron level) to measure track trajectories.

At the outermost radius of the ID is the Transition Radiation Tracker (TRT), a straw-tube

tracker which provides additional position measurements and particle identification capabili-

ties. Each straw in the TRT is strung with a wire which is held at a positive electric potential

with respect to the straw wall (see the diagram in Figure 4.1). As a charged particle traverses

the straw, gas molecules within the straw are ionized. The ionization electrons accelerate

towards the wire due to the electric field in the straw. As they gain energy, the electrons

ionize additional gas molecules and an avalanche of electrons is created, which is read out as

a current on the wire in the front-end electronics. Gas-based detectors generally provide a

much less precise hit position measurement as compared to silicon trackers, but in the TRT

this is compensated by the large number of recorded hits.
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Figure 3.2: Cut-away view of the Inner Detector [60].

Figure 3.3: Schematic view of the Inner Detector active elements in the barrel on the left and
the end-cap on the right [60].
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3.1.1 Pixel Detector

The Pixel Detector consists of 1744 silicon sensors with dimension 19× 63 mm2, arranged in

3 barrel layers and in 3 end-cap rings on either side of the barrel (see Figure 3.3). The first

layer in the barrel is referred to as the “B”-layer and is directly attached to the beam-pipe.

The pixels have a nominal size of 50 × 400 µm2 based on the readout pitch of the front end

electronics. Roughly 10% of the pixels which are located near front-end chips are larger at

50× 600 µm2. Every sensor is identical and contains ∼46k readout channels, giving a total of

∼80 M readout channels [60].

The high-radiation environment near the collision point provides strict constraints on

the design and operation of the silicon detectors. The pixel sensors are constructed using

oxygenated n-type silicon wafers with a thickness of 250 µm and the readout pixels are located

on the n+-implanted side of the sensor. The sensors are designed to be operated with an initial

bias voltage of ∼ 150 V, which will increase up to ∼ 600 V over the lifetime of the detector as

the radiation dose accumulates. The pixels must be operated in the temperature range -5◦C

to -10◦C in order to control noise levels after radiation damage [60].

The Pixel detector provides an average of 3 hits per track, covering |η| < 2.5. The intrinsic

hit resolution is 10 (115) µm in the R-φ (z) plane for the barrel and 10 (115) µm in the z-φ

(R) plane for the end-cap rings [60].

3.1.2 Semi-Conductor Tracker

The SCT consists of 15912 modules, arranged in 4 barrel layers and arranged in 9 end-cap

rings on either side of the barrel (see Figure 3.3). Each module contains two back-to-back

silicon sensors, each with a thickness of 285 µm and with 768 active silicon microstrips of

length 12 cm. The strips in the rectangular barrel sensors are arranged parallel to z with a
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pitch of 80 µm and the strips in the trapezoidal end-cap sensors are arranged radially with

a mean pitch of ∼80 µm. The strips within each module are arranged with a stereo angle of

∼40 mrad in order to provide measurements in the coordinate parallel to the strips. The total

number of readout channels is approximately 6.3 million [60].

A track has an average of 8 SCT hits giving 4 space points (2 hits per module) within the

range |η| < 2.5. The intrinsic hit resolution is 17 (580) µm in the R-φ (z) plane in the barrel

and 17 (580) µm in the z-φ (R) plane in the end-caps. The z (R) measurement in the barrel

(end-caps) is much less precise as it is derived from the stereo angle between back to back

sensors on each SCT module [60].

3.1.3 Transition Radiation Tracker

The TRT was designed to provide both charged particle tracking and particle identification

capabilities. The TRT consists of a barrel and 2 end-cap segments composed of thin-walled

straws made of polyimide and carbon fiber (diameter of 4 mm) filled with an active gas, a

mixture of Xe (70%), CO2 (27%), and O2 (3%). Each straw is strung with a gold plated

tungsten anode wire (diameter of 31 µm) and the straw wall is held at ∼ -1500 V with

respect to the wire, creating a strong electric field within the gas. Charged particles ionize

the gas, creating a detectable current on the wire. The TRT position measurement is much

less precise than that of the silicon trackers, but this is compensated by the large number

of measurements of the track trajectory which are made. The TRT additionally provides

electron/hadron discrimination through the production and detection of transition radiation.

3.1.3.1 TRT Geometry

The 52,544 straws in the TRT barrel are 144 cm in length and are arranged parallel to the LHC

beam in 96 modules ranging from r = 554 mm to r = 1082 mm. The modules are arranged
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into 3 rings with 32 modules each. The modules are arranged such that no cracks are available

for charged particles to pass through undetected (see Figure 3.3). The inter-straw space is

filled with 19 µm-diameter polypropylene fibers for production of transition radiation.

The wire in each barrel straw is split electrically using a glass joint in the center such

that both ends of the wire can be read out independently, giving a total of 105,088 readout

channels. The nine straw layers closest to the beam line are split twice in order to reduce

the occupancy expected at the nominal LHC luminosity. These straws have a shorter active

region of ∼32 cm and are therefore referred to as ”short straws”.

The TRT has two end-caps (one on either side of the barrel), each consisting of 122,880

straws with length of 37 cm. The end-cap straws are arranged radially with uniform azimuthal

spacing in end-cap wheels. Each wheel consists of 8 layers of straws (768 straws per layer)

interleaved with layers of 15 µm thick polypropylene radiator foils. Each end-cap consists of

12 type-A wheels in which the straw layers are separated by 8 mm and 8 type-B wheels in

which the straw layers are separated by 15 mm. The A-type wheels are located at smaller |z|

and have smaller straw spacing in order to maintain the roughly constant number of straws

that a particle will traverse.

The TRT was originally designed to cover the range |η| < 2.5 but, due to constraints

from detector powering and cooling services, the end-caps were shortened to cover the range

|η| < 2.0. A track will traverse at least 36 TRT straws, with the exception of the barrel-to-

end-cap transition region 0.8 < |η| < 1.0 where this decreases to 22 straws. The expected hit

position resolution is 130 µm.

3.1.3.2 Calibration of the Drift Time Measurement

As described previously, an avalanche of ionized electrons is created in the active gas of

the straw whenever a charged particle crosses a straw. The primary ionizations drift to to
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the anode wire with a drift velocity of approximately 50 µm/s and create a current with a

typical gain of 2.5×104. This current travels down the wire and is read out by the front-end

electronics. A charged particle creates 5-6 primary ionizations per mm on average and the

primary ionization closest to the wire will arrive first at the front end electronics. Therefore,

the measurement of the arrival time of the signal current is used to determine the distance

of closest approach of the track trajectory and is known as the drift time measurement. The

maximum drift time for a TRT straw is ∼ 50 ns.

The drift time measurement is performed by the front-end electronics located at the end

of each straw, consisting of two custom ASIC components: the Amplifier, Shaper, Discrim-

inator, and Baseline Restoration (ASDBLR) and the Drift Time Measuring ReadOut Chip

(DTMROC). The ASDBLR is responsible for amplifying and shaping the signal from the wire

and quickly restoring the wire current to its baseline. Additionally, it has two discriminators

which for data-taking are set at a low threshold (∼ 250 eV) for tracking of minimally ionizing

particles and at a high threshold (∼ 6 keV) for detection of transition radiation. The DTM-

ROC performs the drift time measurement by digitizing the discriminator outputs into 3.12

ns bins for the low threshold and 25 ns bins for the high threshold. Each ASDBLR receives

input from up to 8 straws and each DTMROC digitizes the output of 2 ASDBLRs.

The DTMROC stores the digitized output into a buffer and upon receiving a trigger

sends three bunch crossings (75 ns) of digitized output to the TRT ReadOut Driver (ROD),

corresponding to 24 (3) bits of low (high) threshold data. The ROD collects, compresses,

and packages the output of up to 120 DTMROCs and sends the data fragment to the central

ATLAS DAQ system.

Calibration of the drift time measurement is necessary in order to provide the best estimate

of the track-to-wire distance, rtrack. The first 0→1 transition in the digitized output of the

DTMROC is defined as the leading edge of the signal, tLE. Initial coarse timing adjustments
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Figure 3.4: Measured leading edge time bin as a function of the track-to-wire distance in√
s = 7 TeV collision data in the TRT barrel on the left. The calibrated r-t

relation is shown on the right.

with 25 ns granularity (1 bunch crossing) were performed using cosmic data, synchronizing

the 75 ns readout window throughout the detector. Figure 3.4 shows the leading edge time

bin versus rtrack for hits used in the reconstructed track fit using collision data in the TRT

barrel, showing that the signals throughout the detector are synchronized.

The primary goal of the calibration is to characterize the the r-t relation, the relation

between the drift time t and rtrack, which is shown in Figure 3.4. The leading edge tLE of

the signal depends on a time offset T0 and the drift time t. T0 accounts for the timing of the

particle collision, the time of flight of the particle to the straw, and the signal propagation

time along the wire and in the front-end electronics. At the granularity of the DTMROC,

these three time offsets have been shown to not vary significantly so they are absorbed into a

single calibration constant T0 [61].

The r-t relation has been characterized using a third order polynomial as shown in Equa-

tion 3.1, which was chosen because it is a simple function that describes the r-t dependence

reasonably well. The four coefficients of the polynomial function are fit to the data separately

for the barrel and end-caps because the r-t relation is expected to be slightly different due to

the differing orientation of the straws with respect to the magnetic field. Furthermore, the

A-side and C-side of the detector are calibrated separately even though they are not expected
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to differ as a cross check.

f(t) = a0 + a1t+ a2t
2 + a3t

3

r(t) =


0 : f(t) < 0

f(t) : 0 < f(t) < R0 (R0 = 2mm)

R0 : f(t) > R0

(3.1)

Therefore, the calibration procedure must determine the T0 constants (one per DTMROC)

and the 16 parameters of the r-t relations (4 per detector region). As the T0 and r-t parameters

are correlated, the parameters are determined in an iterative procedure in which the r-t

parameters are derived using fixed T0 parameters in each iteration and vice versa. This

procedure is iterated until the parameters have converged.

To determine the r-t parameters, the hits from reconstructed tracks are divided into 1

ns wide bins of measured t. In each bin, the distribution of rtrack for these hits is fit using

a Gaussian function G(µ, σ) in order to determine the peak position µ of the distribution

(shown as the black points in Figure 3.4). The measured µ as a function of t is then fit using

the function in Equation 3.1. There is an ambiguity in that the a0 term of the polynomial

is degenerate with a constant shift in T0. Therefore, one point of the r-t relation is fixed by

definition to be r(t = 18ns) = 1 mm, which is in the middle of straw and produces r(t = 0) ≈ 0

mm.

An example of the derived r-t relation is shown in Figure 3.4 for
√
s = 7 TeV collision

data in the TRT barrel region. The fitted function describes the r-t relation well, with the

exception of the points near t ≈ 0, where the track-to-wire distance is strictly positive. The

calibration procedure is performed for every ATLAS run and the calibration constants are

updated only when significant changes in the calibration constants occur. The constants were

observed to be stable but were updated several times over the course of data-taking during
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2010-2012, most frequently due to changes in the arrival time of the LHC clock signal. The

calibration directly affects the hit position resolution and thus the tracking performance, which

is described in more detail in Section 4.3.

3.1.3.3 Transition Radiation

The production and detection of transition radiation (TR) is one of the unique features of the

TRT detector. Transition radiation may be produced whenever a highly relativistic charged

particle crosses a boundary between materials with differing dielectric constants. The TR

photons are generally soft X-rays (energy of 1-30 keV for the TRT) and are emitted with

a rate proportional to γ and an angle 1/γ with respect to the particle trajectory. Because

electrons have a mass which is roughly 250 times smaller than pions, electrons will have a

much higher rate of TR emission than pions of the same energy. Therefore, the detection of

these TR photons allows for electron/pion discrimination.

However, the probability of emitting a TR photon at each boundary is small, so many

transitions are needed in order to produce a detectable signal. Therefore, the space between

the TRT straws is filled with radiator materials which have been optimized for production

of transition radiation. In the straw, xenon was chosen as the primary active gas due to its

large absorption cross section for TR photons (the carbon dioxide and oxygen are added for

stability). Absorption of these TR photon results in a large number of primary electrons and

consequently produces a much larger signal than that of a minimally ionizing particle, passing

the high threshold of the ASDBLR. Therefore, the presence of high threshold hits on a track

are evidence of transition radiation.

The fraction of high threshold (HT) hits on track is the primary TRT observable used for

electron/pion discrimination.1 The HT hit probability, measured as the ratio of HT hits to

all hits in a given track sample, has been studied using both electron and pion candidates
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in order to validate the modeling of transition radiation production and detection. This is

important as mismodeling of the HT probability would lead to mismodeling of the electron

selection efficiency because the HT fraction is used in the electron selection criteria later in

this analysis.

A high purity sample of electron candidates ( > 95% in simulation) is selected from Z → ee

decays and photon conversions, covering the range γ ∼ 103 − 105, using a tag and probe

technique. In the tag and probe technique, a tag electron is selected using strict selection

criteria and the probe, which is selected using looser criteria, is used to measure HT probability

such that the measurement is unbiased by the candidate selection. If both electrons in an event

pass the tag criteria, then both are used as probe candidates. For this measurement, the both

tag and probe electrons are required to to pass the calorimeter based “medium” [62].

Pion candidates are selected from a minimum bias selection of tracks. A veto is applied to

tracks coming from photon conversion candidates to suppress electrons and a requirement of

dE/dx > 1.6 MeVg−1cm−2 as measured in the Pixel detector is applied in order to suppress

protons (and to a lesser extent kaons). The main background sources in the pion sample are

protons and kaons and the purity of the pion sample varies from 95% at γ ∼ 100 down to 60%

at γ ∼ 103 as estimated in the simulation [62].

The high threshold probability as a function of γ in the TRT barrel region is shown in

Figure 3.5 for both the data and simulation using these selected samples of electron and pion

candidates. For the pion candidates at low γ, the average HT hit probability is roughly 0.05,

which arises due to large energy deposits from the tails of the Landau dE/dx distribution

which produce HT hits. A small increase in HT probability with γ is also observed for the

pions, which is due to the increasing average dE/dx with γ. A clear turn-on is observed in

1 One may also use the Time over Threshold (ToT) for particle identification purposes, particularly at low
momentum, but this is beyond the scope of this thesis.
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Figure 3.5: The plot on the left shows the probability to observe a high threshold hit as a
function of the particle’s Lorentz factor γ for electron and pion candidates in the
TRT barrel region using

√
s = 7 TeV collision data and simulation. The plot on

the right shows the distribution of the fraction of high threshold hits on track for
the same candidates, showing good separation between electrons and pions [62].

the range γ ∼ 103 − 104, where the HT probability rapidly increases from 0.05 to 0.2. Above

γ ∼ 104, the HT probability plateaus due to detector saturation effects. Figure 3.5 also shows

the HT fraction for the electron and pion candidates, showing good separation [62].

3.2 Calorimetery

The primary purpose of the calorimetery system in ATLAS is to contain and measure particles

which interact electromagnetically (photons and light charged particles such as electrons) and

strongly (protons, kaons, pions, etc.). In an electromagnetic calorimeter, photons interact with

the strong electric field of the heavy atomic nuclei and consequently decay via pair-production

into electron-positron pairs. The electrons and positrons then proceed to lose energy primarily

via bremsstrahlung photons (which in turn decay into e± pairs and so forth), creating a

“shower” of electromagnetic energy which is sampled by the calorimeter. The typical distance

in a material for which an electron will lose 1/e of its energy is defined as the radiation

length X0. Similarly, strongly interacting particles lose energy in the hadronic calorimeters
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via strong interactions with the atomic nuclei, creating showers of hadronic particles whose

energy is sampled by the calorimeter. The typical length over which 1/e of the hadronic

energy is absorbed is defined as the absorption length λ.

The ATLAS calorimetery system uses two technologies: (1) high granularity liquid-argon

(LAr) sampling calorimeters and (2) steel/scintillating tile sampling calorimeters. The LAr

detectors are placed outside of the ID solenoid and consist of a barrel segment, two end-cap

segments (each containing an electromagnetic and a hadronic sampling calorimeter) and two

forward calorimeters (FCal). The tile calorimeter is consists of a barrel segment and two

extended barrel segments. The entire calorimeter system provides φ-symmetric coverage up

to |η| < 4.9 [60].

The precision electromagnetic (EM) calorimeters are LAr calorimeters using accordion-

shaped lead and steel plate absorbers, with three readout layers in the barrel (|η| < 2.5)

and two layers in the outer η regions. The precision position measurement in the barrel

is achieved using a fine η segmentation of the first layer of the calorimeter. A pre-sampler

is located in front of the barrel calorimeter (|η| < 1.8) which provides a complementary

energy measurement before a portion of the detector services. Additionally, a copper/LAr

calorimeter is placed in the forward region (3.1 < |η| < 4.9) to provide full η coverage. The

EM calorimeters consist of between 23 and 39 radiation lengths X0 of material depending on

η [60].

The hadronic calorimeters are located outside of the EM calorimeters. In the barrel region

(|η| < 1.7), tile hadronic calorimeters, composed of steel absorber plates with scintillating

tiles, are sufficiently deep with 9.7 absorption lengths (λ) of active detector material to both

provide good jet energy resolution and reduce calorimeter punch-through due to jets to levels

well below the irreducible level of prompt or decay muons. The end-cap hadronic calorimeter

is a copper/LAr sampling calorimeter covering the range 1.5 < |η| < 3.2 and the forward
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region (3.1 < |η| < 4.9) is covered by the forward hadronic calorimeter, using a combination

of copper and tungsten absorbers with LAr. The full hadronic calorimeter system provides at

least 10 absorption lengths of material over the entire η range [60].

3.3 Muon Spectrometer

Muons, though charged, interact minimally with the calorimeters because the probability of

emission of bremmstrahlung, the primary energy loss mechanism for electrons in the calorime-

ter, is proportional to 1/m2. Therefore, the muon spectrometer (MS) is designed to track the

trajectories of charged particles which are not stopped in the calorimeters, which are almost

exclusively muons. The MS uses a combination of monitored drift tube (MDT) and cathode

strip chamber (CSC) technologies for the precision tracking measurements and a combination

of resistive plate chambers (RPC) and thin gap chambers (TGC) for triggering capabilities.

Additionally, a system of three large air-core toroids provides a magnetic field for bending of

the muon trajectories, allowing measurement of the muon momenta.

A schematic of the muon spectrometer geometry is shown in Figure 3.6. The precision

tracking measurement is performed primarily using MDTs mounted in chambers, each consist-

ing of 3 to 8 layers of MDTs. The MDT consists of a pressurized drift tube (diameter = 29.97

mm) of variable length depending on detector placement operating at 3 bar with Ar/CO2 as

the active gas. The barrel MDT chambers are arranged in three concentric cylindrical layers

around the beam line, covering the range |η| < 1.05. The end-cap MDT chambers are arranged

in four wheels aligned in the |z| plane at distances from 7 m up to 20 m from the interaction

point, allowing measurements up to |η| < 2.7 . In the wheel closest to the interaction point,

the innermost chambers covering the range 2.0 < |η| < 2.7 have been designed with CSCs in

order to handle the large particle fluxes expected in this forward region [60].
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Figure 3.6: Schematic of the muon system layout [60].

The muon triggering system is composed of RPCs and TGCs and allows triggering of

muons with full φ coverage up to |η| < 2.4. The barrel region is outfitted with three layers

of RPCs arranged in concentric cylindrical layers attached to the MDT chambers, allowing

a rough measurement of the muon momentum at the trigger level. The end-cap regions are

instrumented with TGCs in four layers mounted on the end-cap wheels. The additional layer

is needed in the end-caps in order to reduce the backgrounds due to combinatorics in the more

forward regions [60].

3.4 Trigger

A trigger system is required in order cope with the expected design instantaneous luminosity

of 1 · 1034cm−2s−1 delivered by the LHC, reducing the event rate from the maximum rate

of ∼40 MHz (the LHC bunch crossing rate) to 400 Hz for offline processing and storage2.

A triggering system consisting of three levels, known as L1, L2, and event filter (EF), has

been implemented in ATLAS to trigger on a wide range of final states including muons,
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electrons, photons, jets, hadronically decaying τs and large missing transverse energy. Each

level receives events as input from the previous level and refines the trigger decision using

progressively larger sections of the detector readout.

The L1 trigger uses a small subset of detector information to make a trigger decision

within 2.5 µs, reducing the trigger rate to a design maximum of 100 kHz. The L1 trigger

is implemented using various detector technologies throughout ATLAS in order to trigger on

the various physics objects of interest. High transverse momentum muons are triggered using

the RPC and TGC chambers in the Muon Spectrometer and reduced granularity information

from the calorimeters is used to trigger on electrons, photons, and other particles stopped in

the calorimeter.

The L1 information from the various detectors is gathered by the Central Trigger Processor

(CTP) which is responsible for maintaining a “menu” of trigger items and controlling the

trigger rate such that detector dead-time is not introduced during data-taking. The CTP

does so by applying pre-scales to the various trigger menu items as necessary in order to

stay within the detector bandwidth limits. Additionally, the L1 trigger system produces

one or more Regions-of-Interest (RoI’s) for the regions of the detector in η and φ where

interesting features have been identified based on the L1 trigger information. The RoI contains

information on both the feature type and and the criteria it passed, such as energy thresholds

within the calorimeter for example.

Events passing the L1 trigger selection are passed to the L2 trigger system, including the

RoI’s. The L2 trigger uses full detector readout information within the RoI’s (accounting for

roughly 2% of the total event data) in order to make a trigger decision with an average event

processing time of 40 ms. The L2 system maintains a its own menu of trigger items and is

2The maximum limit on the event recording rate is primarily limited by data processing and storage (and
thus financial) reasons.
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designed to reduce the trigger rate to 3.5 kHz. Events passing the L2 trigger are sent to the

event filter, where the full event information is used to make a final trigger decision using

reconstruction procedures similar to the offline reconstruction, reducing the trigger rate to

400 Hz.
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Chapter 4

ID Alignment and Tracking
Performance

The ATLAS physics program requires unbiased, high resolution measurements of all charged

particle kinematic parameters in order to produce accurate invariant mass reconstruction,

efficient track vertex finding, and other high quality track-related measurements. These mea-

surements depend critically on the proper alignment of the detector elements within the track-

ing system. It is also essential that alignment related systematic effects be well understood

in order to reduce systematic uncertainties which will be propagated to all analyses using

tracking measurements. In particular, the H → 4` measurements depend critically on the

muon ID momentum measurement because the muons from the Higgs decay are typically in a

momentum regime where the ID tracking resolution is better than the MS tracking resolution.

This chapter describes studies performed in order to measure and improve the tracking

performance of the ID through detector alignment. Section 4.1 begins with a basic descrip-

tion of the tracking algorithms used in ATLAS followed by a description of the baseline χ2

alignment algorithm used to align the the detector elements in Section 4.2. Section 4.3 details

the results of studies of the TRT tracking performance before and after the alignment was

performed. Section 4.4 concludes this chapter with a description of alignment weak modes

and the algorithms developed to detect and remove them.
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4.1 Inner Detector Tracking

As a charged particle traverses the ID, it leaves deposits of energy in the various detector

elements which are known as detector hits. These hits are combined together to form a

track from which the particle’s momentum can be inferred. The combination of hits and

measurement of track parameters is called a tracking algorithm.

The goal of the ID tracking algorithm is to produce measurements of charged particle

tracks within the ID acceptance with high efficiency while simultaneously suppressing fake

tracks due to hit combinatorics. The track measurements are parameterized as follows:

τ = (z0, d0, φ0, θ, q/p) (4.1)

where z0 and d0 are the longitudinal and transverse impact parameters measured with

respect to the nominal interaction point, respectively. φ0 is the azimuthal angle of the track

and θ is the polar angle. Finally, q/p is the charge of the track divided by its momentum.

The ID tracking algorithm begins by seeding tracks from the collection of silicon detector

hits in an event. A track seed is defined as a collection of three 3-dimensional space-time

points which are derived from hits within single detector modules[63]. These track seeds are

used to define a loose search window from which hits are collected and a track candidate is

built using a combinatorial Kalman filter[64]. An ambiguity resolver algorithm then scores and

ranks the track candidates in order to remove fake tracks which come from hit combinatorics.

The surviving track candidates are then extrapolated into the TRT in order to add hits to

the track which improve the track parameter resolution. Back-tracking is also used to find

additional tracks, in which tracks are seeded in the TRT and extrapolated back in to the

silicon detectors. Validation of the tracking algorithm performance was performed on the

early LHC data with low pile-up and good agreement was observed between the data and the
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simulation[63].

For tracking and alignment studies, several quality criteria are applied to ID tracks in

order to suppress the fake track backgrounds. Requirements on the number of hits on track

are made: at least 1 Pixel hit, at least 6 SCT hits and at least 15 TRT hits. Tracks coming

from the nominal interaction point are selected by requiring |d0| < 10 mm and |z0| < 300

mm. Finally, a transverse momentum requirement of pT > 2 GeV is applied to remove low

pT tracks which are subject to large multiple-scattering effects.

4.2 Inner Detector Alignment

After assembly and installation of the ID, the relative positions of the various detector elements

were known with much less precision than the intrinsic resolution of those elements. To fully

utilize the tracking potential of the ID, the position and orientation of the detector elements

must be determined in-situ. Alignment procedures were developed during the course of the

LHC Run 1 with the goal of determining these positions so as not to significantly degrade

the hit position resolution by more than 20% with respect to the intrinsic detector resolution.

For the silicon trackers, this corresponds to determining the location of detector elements to

within 10 µm of their true positions. The following sections describe the alignment framework

and the validation of the alignment results.

4.2.1 Alignment Algorithm

The track based alignment algorithm used in ATLAS is based upon the minimization of the

track to hit residual vectors (henceforth referred to as hit residuals). The residual vector

points from a measured detector hit to the nearest extrapolated track position within that

detector element. For example, the TRT hit residual is depicted in Figure 4.1. To minimize
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Figure 4.1: Idealized view of a track hit residual vector within a TRT straw.

the residuals, one constructs a χ2 as in Equation 4.2, where r(τ ,a) is the vector of hit residuals

associated to a given track.

χ2 =
∑
tracks

[rT (τ ,a)V−1r(τ ,a)] (4.2)

where τ are the track parameters (as in Eqn. 4.1 and a are the alignment parameters of

the detector elements. V is the covariance matrix of the hit residuals as measured in the

tracking algorithm. One then minimizes the χ2 with respect to the alignment parameters:

dχ2

da
= 0⇒

∑
tracks

[(
dr

da

)T
V−1r

]
= 0 (4.3)

This gives a unique solution for the alignment parameters a but would be computationally

prohibitive to calculate. Instead, a Taylor expansion of r to first order around an initial

residual r0 is performed, where δa are the first order corrections to the alignment parameters:
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r = r0 +
dr

da
δa (4.4)

Substituting Equation 4.4 into Equation 4.3:

∑
tracks

[(
dr

da

)T
V−1

(
dr

da

)]
δa +

∑
tracks

(
dr

da

)T
V−1r0 = 0 (4.5)

Equation 4.5 shows that δa may be determined by solving a set of linear equations and thus

requires an inversion of a square matrix with size equal to the number of degrees of freedom.

Because this only accounts for first order effects in the Taylor expansion, this procedure is

then iterated to correct any higher order misalignments[65].

This procedure is known as the Global χ2 method because it aligns all detector elements

with respect to each other simultaneously. When the number of degrees of freedom increases,

as it will when aligning the large number of detector elements in the ID, this matrix inversion

becomes computationally prohibitive and another solution is necessary A Local χ2 method

is used in which the correlations between alignable structures are discarded and the tracks

are not refitted. Thus, the alignment matrix and vector become block diagonal, significantly

reducing the computation time needed. Because the correlations are neglected when deriv-

ing the alignment corrections, the Local χ2 procedure must be iterated until the alignment

corrections converge.

4.2.2 Alignment Granularity

Alignment of the many detector elements in the three sub-detectors of the ID is very chal-

lenging due to the very large number of detector elements. To reduce the complexity of

the problem, alignment of the detector has been broken into three levels of varying detec-

tor granularity which correspond to the various mechanical structures of each sub-detector.
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Misalignments may have been introduced at all levels during assembly so it is necessary to

perform the alignment at all levels.

The Level 1 alignment is responsible for aligning the largest detector structures, the bar-

rel and end-cap segments, with respect to each other. This level has the largest expected

alignment corrections, but it also has the fewest degrees of freedom to align, thus requiring

the least statistics. The Level 2 alignment aligns the individual barrel layers and end-cap

disks or wheels. This level has more structures to align than Level 1 and thus requires more

track statistics for the alignment algorithm to converge. Finally, the Level 3 alignment aligns

individual modules within the SCT and Pixels and individual wires within the TRT. This

alignment requires the largest amount of track statistics due to the extremely large number

of degrees of freedom involved. Table 4.1 gives an overview of the detector granularity of each

level and the associated number of degrees of freedom. In total, the ID alignment contains

over 700k degrees of freedom.

Constraints on the size of the misalignments come from mechanical surveys of the detector

elements during manufacture and installation of the various detector elements. In-situ surveys

suggest that the misalignments on the order of 1 mm can be expected between barrel and

end-cap segments (Level 1) while misalignments of at the Levels 2 and 3 are expected to be

much smaller.

4.3 TRT Tracking Performance

During ATLAS data-taking in 2010-2012, there was an ongoing campaign to refine the ID

alignment. Initial alignment constants had been produced using cosmic data in 2010. These

cosmic tracks were primarily triggered using the TRT FastOr Trigger [] which, due to the

geometry of the TRT, triggers primarily on cosmic tracks which pass through the barrel
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Table 4.1: Summary of the main alignment levels and the number of structures for each AT-
LAS ID subdetector, as well as the detail of the degrees of freedom being aligned
and the total number of degrees of freedom aligned. All degrees of freedom are
given in the local reference frame [65].

Alignment Detector Structures degrees of freedom
level used number
Level 1 Pixel: whole detector 1 All 6

SCT: barrel and 2 end-caps 3 All 18
TRT: barrel 1 All (except Tz) 5
TRT: 2 end-caps 2 All 12
Total 7 41

Level 2 Pixel barrel: half shells 6 All 36
Pixel end-caps: disks 6 Tx, Ty, Rz 18
SCT barrel: layers 4 All 24
SCT end-caps: disks 18 Tx, Ty, Rz 54
TRT barrel: modules 96 All (except Tz) 480
TRT end-caps: wheels 80 Tx, Ty, Rz 240
Total 210 852

Level 3 Pixel: barrel modules 1456 All (except Tz) 7280
Pixel: end-cap modules 288 Tx, Ty, Rz 864
SCT: barrel modules 2112 Tx, Ty, Rz 6336
SCT: end-cap modules 1976 Tx, Ty, Rz 5928
TRT: barrel wires 105088 Tφ, Rr 210176
TRT: end-cap wires 245760 Tφ, Rz 491520
Total 356680 722104

region of the detector. This dataset allowed an initial Level 1 alignment of the barrel, but it

was not possible to perform the end-cap alignment due to the lack of statistics. However, the

first collision data in 2010 very quickly provided the statistics needed to align the end-caps

at Level 1. As collision data became available in greater volumes, further refinements were

performed at the various alignment levels. Concurrently, the first calibrations of the detector

with collision data were ongoing.

Validation of both the TRT calibration and alignment was performed through an extensive

study of the position residuals throughout the detector. The following paragraphs describe a

sample of the studies performed on the TRT position residuals in order to validate both the

alignment and calibration of the TRT.
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As explained previously, the hit residual is the vector pointing from the reconstructed

detector hit to the point of nearest approach of the reconstructed track. Because the hit

contributes to the track, the track will be biased towards the hit locally which is undesirable

for understanding the tracking performance. To make an unbiased measurement, the track

is refit after removing the hit in question and the unbiased residual is defined using this refit

track.

Because the TRT only measures the hit information in one dimension (the radius of the

hit with respect to the wire), the residual vector is simplified to a 1-dimensional position

residual defined as rtrack − rhit (see Figure 4.1). Example residual distributions are shown in

Figure 4.2, which shows the unbiased position residual distribution for TRT hits in the barrel

and end-caps. The hit residual distribution is influenced by the calibration, the alignment,

and the tracking. The mean of the distribution should be centered at zero and shifts from

zero would indicate the presence of coherent misalignments. The width of the distribution

defines the resolution of the hit position measurement, which receives contributions from both

the TRT drift time resolution and the tracking resolution, though the former is expected to

be the dominant contribution.

To characterize the mean and width of the position residual distribution over a large

detector area, a fitting procedure was developed. First, a Gaussian function G(µ, σ) is fit to

the distribution. This initial fit is generally poor because the position residual distribution has

significant non-Gaussian tails. To mediate this, the same fitting function is fit again but only

over a restricted range from -2.5σ to +2.5σ, where σ is taken from the initial fit. This removes

the contributions from the Gaussian tails and gives an estimate of the width of the core of the

distribution. Because the fit range now depends on the fit parameters (and vice-versa), the

fit is iterated several times in order for σ to converge to within 0.1%. This generally takes 2

to 5 iterations.
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Figure 4.2: Distribution of the TRT position residuals for a sample of
√

(s) = 7 TeV data
with a comparison to the simulation, which is normalized to the data, for hits in
the barrel (end-caps) on the left (right). The core of the distribution is fit with
a Gaussian function to estimate the position resolution, which is measured to be
120 (135) µm in the barrel (end-caps) in the data.

The results of this fitting procedure are included in Figure 4.2. The position resolution

is estimated to be 120 (135) µm in the barrel (end-caps). There are discrepancies in the

measured resolutions between the data and the simulation, most notably that the measured

width of the residual distribution in the barrel is 12% larger in the simulation than in the

data. There are many possible sources of mismodeling which could lead to this discrepancy,

such as mismodeling of the TRT drift time resolution. However, this particular discrepancy

cannot be attributed to detector misalignments because misalignments should decrease the

resolution in data relative to the simulation (which uses a perfectly aligned geometry).

Measurements of σ and µ throughout the detector are performed by binning the data in

the relevant variables (radius, φ, etc.) in order to check for anomalous behavior indicative

of misalignments or calibration issues. Figures 4.3 and 4.4 shows example results of this

procedure from the 2010 data-taking period after the Level 1 and 2 alignments had been

performed. Figure 4.3 shows µ plotted as a function of the TRT end-cap 4-plane wheel (a

collection of 4 straw layers in the end-cap) and radius both before and after the TRT level 3

alignment. Alternating large scale structure in the mean position residual both in φ and radius
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Figure 4.3: Mean of a Gaussian fit to position residuals vs detector radius and wheel before
(left) and after (right) the Level 3 alignment in TRT end-cap A. The white bins
are due to acceptance effects.

between consecutive 4-plane wheels is observed indicating the presence of misalignments.

These specific patterns could be produced by coherent shifts in the 4-plane wheels with respect

to each other. This is also supported by the observation that the 4-plane wheels were assembled

independently and then stacked together, with every other wheel being flipped over to cancel

any gravity induced deformations introduced during assembly. These misalignments would

not be corrected by the Level 1 or 2 alignment because those levels do not have access to the

degrees of freedom needed to correct these biases. After the Level 3 wire-by-wire alignment is

performed for the TRT, these structures disappear, as shown in Figures 4.3 and 4.4, indicating

that the misalignments have been removed.

Figure 4.5 shows the observed position resolution in the 2011 data as a function of radius

and z with high granularity. The resolution varies from ∼100 µm in the short straws of the

barrel up to ∼180 µm at the edges of the outer wheels of the end-caps. To understand the

structure in Figure 4.5, recall that the position residual distribution is affected by both the

intrinsic TRT hit resolution (which should not vary significantly from straw to straw) and

the resolution in the track extrapolation. Figure 4.6 shows the average track position error

as estimated by the ID tracking algorithm as function of radius and z throughout the TRT,
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Figure 4.5: Hit position resolution as measured using a Gaussian fit to the core of the position
residual distribution as a function of radius and z for

√
s = 7 TeV data taken

during 2011. White regions are outside of the detector acceptance.

which varies from ∼30 µm in the middle of the barrel up to ∼80 µm at the edge of the

detector. This clearly shows that the rapid increase in position residual width near the outer

edges of the detector can be attributed to uncertainties in the track extrapolation rather than

the intrinsic resolution.
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4.4 ID Weak Modes

The χ2 alignment algorithms are not completely robust to all possible misalignments[66].

There exist classes of coherent misalignments, henceforth referred to as weak modes, which

preserve the helical trajectory of the measured track while simultaneously leaving the χ2

invariant. In other words, the solution to the matrix inversion is under-constrained and

degenerate because coherent changes in the alignment parameters, a, can be compensated

by changes to the measured track parameters, τ , while preserving the χ2. Several examples

of weak modes are shown in Figure 4.7. For example, the “curl” weak mode results from

a coherent shift in ∆φ of the detector elements as a function of radius. This particular

weak mode would result in charge dependent transverse momentum biases because the track

curvature measurement would be biased asymmetrically depending on the charge of particle.

Weak modes are undesirable as they result in systematic biases in the measured track

parameters and thus are one of the main sources of systematic effects in the ID tracking.

Systematic biases in the track momentum will affect invariant mass reconstruction and charge
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Figure 4.7: Examples of alignment weak modes, coherent misalignments for which the χ2

alignment algorithms are not sensitive.

asymmetry measurements while biases on the impact parameter measurements can affect

beam-spot reconstruction, track vertexing, and b-tagging performance. Therefore, it is im-

portant to both remove these biases in the alignment procedure and constrain the size of any

remaining systematic effects.

To quantify the systematic momentum biases, consider a class of detector deformations

known as sagitta distortions, consisting of detector movements which are orthogonal to the

track trajectory, for which the “curl” seen in Figure 4.7 is the archetype example. These de-

formations will affect the reconstructed track curvature oppositely for positive and negatively

charged particles and it can be shown that such a deformation introduces a shift into the

reconstructed transverse momentum:

q/pT → q/pT + δsagitta or pT → pT(1 + q · pT · δsagitta)−1 (4.6)

In the case of a completely global detector deformation, the parameter δsagitta quantifies

the bias for all measured momenta. This approximation will only hold for small detector

deformations but serves as a good approximation in many cases in the alignment. Note that

the absolute bias is proportional to the square of the transverse momentum, meaning that

high pT tracks will be more sensitive to these effects. Because the polar angle measurement
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is unaffected, the momentum scales with the transverse component:

p→ p(1 + q · pT · δsagitta)−1 (4.7)

Another class of detector deformation, known as radial distortions, affects the measured

momentum in a charge symmetric way due to the expansion or contraction of the measured

trajectory with the coherent radial shifts in the detector elements. These deformations can

be parameterized as a direction dependent scaling of the radius:

r → r(1 +
1

2
f(η, φ)δr) (4.8)

The simplest case is a homogeneous expansion or contraction of all detector layers ( f(η, φ) =

constant) but does not usually occur due to physical constraints on the detector. However, for

the sake of the example, this leads to scaling of both components of the transverse momentum,

giving:

pT → pT(1 +
1

2
δr)

2 u pT → pT(1 + δr) for small δr (4.9)

Charge-symmetric alignment biases are difficult to disentangle from other detector effects,

such as absolute B-field scale and detector material mapping, so these will be estimated later

but no action will be taken to remove these modes.

To demonstrate that weak modes will not be removed by the χ2 alignment, simulated

Z → µ+µ− events are reconstructed with three detector geometries: the nominal “perfect”

alignment, a distorted alignment in which a “twist” had been introduced, and the alignment

produced by the χ2 algorithm when applied to the “twist” alignment. The results in Figure 4.8

show that the “twist” geometry introduces large biases into the transverse momentum relative

to the nominal geometry while the impact parameter d0 remains unchanged. Furthermore, the

χ2-aligned “twist” geometry shows that significant momentum biases in the end-caps remain

after the alignment procedure.
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One should note that the presence of weak mode misalignments can be a result of detector

deformations but can also be introduced as an artifact of the χ2 alignment itself. Therefore,

the χ2 alignment procedure must be modified to minimize the effects of weak modes. The

next section will describe strategies to accomplish this.

4.4.1 Constraining Weak Modes

This section describes two general strategies which have been used to remove weak modes

from the alignment: 1) the addition of different track topologies into the data sample and 2)

the addition of constraints on the collision track parameters from independent measurements.

Two independent constraints on the track parameters have been studied: a constraint on the

momentum using the calorimeter energy measurement for electrons and using decays of known

resonances (typically from Z → µ+µ−, J/ψ → µ+µ−, and K0
S→π+π−) to add constraints on

the track momentum. All of these strategies will be described in more detail in the following

sections.
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4.4.2 Cosmic Tracks

As argued in the Section 4.4, weak modes are present due to degeneracies in the solutions of

the χ2 alignment procedure. For some modes, this is the direct result of the topology of the

collision tracks used in the alignment. For example, the “curl” weak mode is only possible

because collision tracks all originate at the interaction point, introducing a degeneracy between

the φ position of the detector elements and the track momentum to which the χ2 algorithm

is insensitive. One can introduce other track topologies to break this degeneracy.

Cosmic-ray tracks provide one sample of tracks with significantly different topology than

collision tracks. Cosmic-ray tracks do not originate at the beam interaction point and traverse

the entire ID, correlating the alignment of the detector elements on opposite sides of the

interaction point. Additionally, the track parameters (such as momentum) are constrained

by the fact that they should be consistent on both sides of the detector. Cosmic-ray events

are triggered and recorded during normal data-taking using non-collision BCIDs. Therefore,

these tracks are subject to exactly the same conditions as the collision track data. Because of

geometrical concerns, cosmic-ray tracks mostly constrain weak modes in the barrel segments

of the detector. Cosmic-ray tracks are added to all data samples used in the alignment

procedure (cite?). Indeed, the momentum biases were already well constrained in the barrel

region (|η| <1.0) before any further constraints were added to the alignment procedure - see

Figure 4.9.

4.4.3 E/p Method

The calorimeter energy measurement (E) is a completely independent measure of the electron

energy which can be used as a probe for systematic biases in the track momentum (p). There

are also uncertainties in the calorimeter energy scale which factor into the distribution of the
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electron E/p. However, assuming that the calorimeter response is charge independent, one

may assume that charge dependent effects may be attributed to biases in the track momentum

measurement. As a result, this method is not sensitive to weak modes which produce charge

symmetric biases, such as a radial expansion of the detector elements.

Using the formulation of Eqn. 4.7 for charge-dependent systematic biases, the measured

〈E/p〉 will scale as:

〈E/p〉± → 〈E/p〉± ± 〈ET〉 · δsagitta (4.10)

Assuming that 〈E/p〉+true = 〈E/p〉−true for a given sample of electrons, it can be shown that

one may extract the bias δsagitta using:

δsagitta =
〈E/p〉+rec − 〈E/p〉

−
rec

2 〈ET〉
(4.11)

It is important to select a sample of electrons and positrons for which the assumption

〈E/p〉+true = 〈E/p〉−true holds such that the numerator of Eqn. 4.11 does not receive con-

tributions from the calorimeter energy scale systematic uncertainties. In order to select a

high-purity collection of electrons, W → eν and Z → ee decays are selected. The denomina-

tor of Eqn. 4.11, which is solely a scaling factor, is affected by the calorimeter energy scale

which is known to <= 1% [67].

To select W boson decays, events with exactly one electron with pT > 20 GeV passing

the tight electron identification criteria are selected. Events with more than one electron

with pT > 20 GeV passing the medium electron identification are also excluded. Kinematic

requirements on the missing transverse energy, Emiss
T > 25 GeV, and the missing transverse

mass of the electron-neutrino system, mT > 40 GeV, are imposed in order to further suppress
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backgrounds. The transverse mass is defined as:

mT =
√

2p`Tp
ν
T(1− cos(φ` − φν)) (4.12)

This selection is chosen in order to suppress the electron fake backgrounds, where a jet is

misidentified as an electron. The most significant of these backgrounds, generically termed

QCD background, is from multijet production. The QCD contribution is estimated to be 2.6%

and 4.3% for the W+ and W− channels respectively [68]. As these backgrounds are small,

they are considered to be negligible and no correction is made.

To select Z decays, events are required to have two opposite sign electrons passing the

medium electron identification cuts with pT > 20 GeV. Within the the dielectron invariant

mass window from 66 GeV to 116 GeV, the backgrounds are estimated to be 1.8% and are

again considered negligible for this measurement[68].

An unbinned maximum likelihood fit with a Crystal-Ball function is used in order to ex-

tract the 〈E/p〉, or mean/most probable value, from the distribution of electron E/p. This

function reduces the effects of background contamination (which may be different for elec-

trons and positrons) and allows an accurate fit of the non-Gaussian bremsstrahlung tail of the

distribution. The initial parameter values and range of the fit is determined using a series of

Gaussian fits to the E/p distribution, giving rough measurements of the mean µ and width σ

of the distribution. The final Crystal-Ball fit is performed over the range µ− σ < E/p < 2.5.

The strict lower limit removes the lower tail of the distribution where the background con-

tamination is more significant while the upper limit includes the non-Gaussian tail which is

modeled by the Crystal-Ball function. The electron and positron distributions are fitted simul-

taneously such that the resolution and tail parameters, which rely on material and detector

resolution effects and should not be affected by the particle charge, are shared between the
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Figure 4.9: Momentum biases (δsagitta) as measured using the E/p method using ∼1 fb−1of√
s = 7 TeV data collected during 2011. The plot on the left shows the 2D map of

the measured δsagitta and the plot on the right shows the 1D projection of these
values.

two distributions while the mean parameters are fitted separately for each distribution.

Because the systematic biases are expected to vary across the detector, the sample of elec-

trons and positrons is binned into 16 × 16 bins in η/φ and each bin is fit separately. This

procedure was performed upon ∼1 fb−1of
√
s = 7 TeV data collected during 2011 (corre-

sponding to ∼3.5 M electrons) before any attempt to remove weak modes in the alignment

procedure and the results are shown in Figure 4.9. Negligible biases are observed in the central

η region but significant biases are measured in the forward regions of the detector, up to 2

TeV−1, corresponding to a momentum bias of ∼8% for a track with pT = 40 GeV.

4.4.4 Z → µ+µ− Method

Standard Model resonances such as Z → µ+µ−, J/ψ → µ+µ−, and K0
S→π+π−can also be

used to measure systematic momentum biases with high precision due to their relatively large

cross sections at the LHC and their precisely known masses. In this study, Z → µ+µ−

decays have been studied to provide a precise measurement of both charge symmetric (δr) and
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charge anti-symmetric (δsagitta) momentum biases. Z → µ+µ− decays are studied because

they provide a large sample of high momentum muons with relatively small backgrounds.

Additionally, high pT muons are less sensitive to detector material effects.

The invariant mass m of two low mass and highly relativistic particles is given approxi-

mately by:

m2 = 2p1p2(1− cos θ) (4.13)

where p1 and p2 are the magnitude of the momenta of the two particles and θ is the angle

between them. Assuming a charge anti-symmetric type momentum bias as in Eqn. 4.7, then

the reconstructed mass at leading order in δsagitta reduces to:

m2 → m2
rec ≈ m2(1 + q1 · pT,1 · δsagitta,1 + q2 · pT,2 · δsagitta,2) (4.14)

One can see that the bias in the squared mass is linear in δsagitta. Note that for neutral

resonances with q1 = −1 ∗ q2 and pT,1 ≈ pT,2, the two terms cancel and the invariant mass is

unbiased on average. Therefore, the method is not sensitive to global charge anti-symmetric

biases. However, if the momentum biases vary across the detector (δsagitta → δsagitta(η, φ)),

then the two terms do not cancel and the mass will be sensitive to the relative momentum

biases. In order to extract the function δsagitta(η, φ) from the data, the average value of the

difference between the reconstructed mass and the known resonance mass is used to extract

the momentum bias:

∆(m2) =
m2
rec −m2

Z

m2
Z

≈ q1 · pT,1 · δsagitta(η1, φ1) + q2 · pT,2 · δsagitta(η2, φ2) (4.15)

However, it is not known a priori what fraction of the mass bias comes from particle 1

and particle 2. Thus, an iterative procedure is used to determine δsagitta(η, φ). In the first

iteration, half of the mass bias is assigned to each muon from the Z boson decay:

δsagitta =
1

2

∆(m2)

q · pT
(4.16)
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The distribution of δsagitta is a convolution of the mass line-shape of the particle resonance

with detector resolution effects. For Z → µ+µ− decays, the intrinsic width of the Z boson

is comparable to the ID momentum resolution and the line-shape is expected to follow a

Breit-Wigner function, which is approximately Gaussian in the peak of the distribution. The

muons are binned using η and φ and a central value is extracted from the δsagitta distribution

in each bin using an iterative fitting procedure. The distribution is initially fit with a Gaussian

function G(µ, σ) over the entire range. This fit is then repeated in the range -1.5σ to +1.5σ in

order to remove contributions from the tails, which will have larger background contamination.

The fitted µ is assigned as δsagitta for that η/φ bin.

Because of the ambiguity in assigning the momentum bias to either muon, the entire pro-

cedure is then iterated in order to estimate the momentum biases correctly. At the beginning

of each iteration, the measured biases from the previous iteration are used to correct the

muon momenta before calculating the reconstructed mass. This procedure is iterated until

the δsagitta parameters have converged.

Z → µ+µ−events are selected by requiring pairs of oppositely charged muons with high

quality ID tracks. Events are triggered using a single-muon trigger (pT > 18 GeV threshold)

and are required to have a primary vertex with at least 5 tracks with pT > 0.4 GeV. Muon

candidates are reconstructed using the Muon Spectrometer as described in Section 7.1.2 and

a number of requirements are imposed in order to select candidates with high quality tracks:

- Hit requirements:

– B-layer hit in Pixel detector except when muon passes through inactive module

– Number of Pixel (SCT) hits + number of dead sensors crossed >1 (>5)

– Number of Pixel + SCT holes <3

– Successful TRT track extension within acceptance

58



4. ID Alignment and Tracking Performance

η

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2 2.5

]
­1

 [
T
e
V

s
a
g
it
ta

δ

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

δDerived 

δTruth 

ATLAS Preliminary
µµ→Pythia MC Z

Nominal Alignment

η

­2.5 ­2 ­1.5 ­1 ­0.5 0 0.5 1 1.5 2 2.5

]
­1

 [
T
e
V

s
a
g
it
ta

δ

­15

­10

­5

0

5

10

15

δDerived 

δTruth 

ATLAS Preliminary
µµ→Pythia MC Z

Twist Alignment

Figure 4.10: Validation of the Z → µ+µ− method on simulated Z → µ+µ− events. The left
plot shows the measured null biases using the nominal geometry which shows
that the lower limit on the method sensitivity is 0.04 TeV−1. The plot on the
right shows the measured biases after a “twist” deformation has been introduced
into the simulation. The measured biases reproduce the true biases to within
5% with a small systematic under-estimation due to the iterative nature of the
method.

- pT > 20 GeV

- isolation3: Σpiso
T /pT < 0.2

- |d0| < 0.2 mm

- |z0| < 1.0 mm

This procedure was performed on simulated Z → µ+µ− events reconstructed both with

the nominal “perfect” geometry and also with the “twist” geometry in order to validate the

algorithm. The results, shown in Figure 4.10, show that the procedure reproduces the null

biases to within 0.04 TeV−1 and also reproduces the “twist” geometry biases to within 5%.

There is a small systematic under-estimation of the momentum biases in the “twist” geometry

which is due to the iterative nature of the algorithm.

Unlike the E/p method, the same procedure can also be used for charge symmetric mo-

mentum biases, as parameterized in Eqn. 4.8. It is trivial to show that the mass difference

3See Section 7.2 for definition of lepton isolation.
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Figure 4.11: Momentum biases as measured using the Z → µ+µ− method using ∼1 fb−1of√
s = 7 TeV data collected during 2011. The plot on the left shows the 2D map

of the charge anti-symmetric momentum biases (δsagitta) and the plot on the
right shows the 2D map of the charge symmetric momentum biases (δsagitta).

due to charge symmetric momentum biases is:

∆(m2) =
m2
rec −m2

Z

m2
Z

≈ δr(η1, φ1) + δr(η2, φ2) (4.17)

The rest of the method proceeds identically to the charge anti-symmetric case.

The Z → µ+µ− method was used to estimate both δsagitta and δr in collision data.

Figure 4.11 show the results for both measurements using ∼1 fb−1of
√
s = 7 TeV data

collected during 2011 (the same data-taking period as used for the E/p results in Section

4.4.3). The charge anti-symmetric results confirm the E/p results: negligible biases in the

central η region with larger biases up to 2 TeV−1 in the forward regions. Furthermore, the

observed η/φ dependence is very well reproduced between the E/p and Z → µ+µ− methods.

The charge symmetric biases are measured to be <0.005 in the central η region and up to

0.03 at the edges of the detector.
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4. ID Alignment and Tracking Performance

4.4.5 After Alignment

Clearly the momentum biases measured in the previous section are undesirable due to their

negative impact on physics analyses. As argued previously, the χ2 alignment procedure may

produce biases in the track parameters because of the degeneracy between the track parameters

and the alignment parameters. The degeneracy is broken by imposing tight constraints on

the input track momenta. This was achieved by adding a term to the χ2 in Eqn. 4.2 which

constrains the the track momentum to its corrected momentum:

q/pCorrected = q/pReconstructed(1− q · pTδsagitta) (4.18)

where δsagitta is taken from the E/p method for estimating momentum biases. This allows the

Z → µ+µ− results to act as an independent cross-check on the final alignment results. The

alignment procedure including the track momentum constraint was iterated many times at

the various alignment levels. The momentum biases were evaluated after each iteration using

the E/p method and fed back in as a constraint in order to remove the weak mode detector

deformations.

The results of the both the E/p method and the Z → µ+µ− method for the final ID

alignment can be seen in Figure 4.12. The largest biases in the forward regions have clearly

been removed by the alignment procedure using the constrained momentum. Because there is

no significant φ dependence observed in the remaining momentum biases, the final estimate

of the momentum biases is measured as a function of η only and the results are shown in

Figure 4.13. Some residual structure is observed as a function of η but the observed biases

are constrained to |δsagitta| < 0.04 TeV−1 with the exception of a few bins in the forward

regions, a significant improvement with respect to the previous alignment. A conservative

upper limit of |δsagitta| < 0.03 TeV−1 is inferred from the observed biases, corresponding to

a momentum bias of less than 0.12% for tracks with pT = 40 GeV.
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Figure 4.12: Observed charge anti-symmetric momentum biases using ∼1 fb−1of
√
s = 7 TeV

data collected during 2011 after the alignment was performed using constraints
on the track momentum. The plots shows the 2D map of the measured δsagitta
using the Z → µ+µ− method on the left and using using the E/p method on the
right.
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Figure 4.13: Observed charge anti-symmetric momentum biases using ∼1 fb−1of
√
s = 7 TeV

data collected during 2011 after the alignment was performed using constraints
on the track momentum. The plots shows the measured δsagitta as a function of
η using the Z → µ+µ− method on the left and using the E/p method on the
right. Errors are statistical only.
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Chapter 5

Analysis Overview

This thesis presents measurements of the Higgs boson in the H → 4` decay channel using

the full LHC Run 1 dataset. These measurements provide initial tests of the SM Higgs boson

predictions for the newly discovered scalar particle. Specifically, measurements of the mass,

signal strength, and differential cross sections in a number of variables of interest are presented.

Measurements of the spin/CP nature of the particle and the fermionic and bosonic couplings

in the H → 4` decay channel have also been performed but are beyond the scope of this thesis;

see References [28] and [32] for details and results of those analyses.

A common event selection is used for all of the H → 4` measurements and is described

in Chapter 7. This chapter also includes the description of the final discriminating variables

used in the mass and signal strength measurements (m4` and BDTZZ) as well as the variables

chosen for the differential cross section measurements.

The backgrounds in this analysis are broadly categorized into reducible and irreducible

backgrounds. The irreducible backgrounds consist of processes which produce four isolated

leptons in the final state making them nearly indistinguishable from the signal. The reducible

backgrounds are comprised of processes in which leptons originate from semi-leptonic decays

of heavy flavor hadrons or from misidentification of jets as leptons. The presence of these

“fake” leptons allows reduction of these backgrounds by imposing strict selection criteria. The
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5. Analysis Overview

background estimation methods and results for both categories of backgrounds are described

in Chapter 9.

The sources and estimates of systematic uncertainties for all measurements are described in

Chapter 10. Systematic uncertainties associated with lepton selection efficiency most strongly

affect the signal strength and cross section measurements while uncertainties in the lepton

momentum resolution and scale affect the mass measurement. Jet-related uncertainties are

also described as they affect the jet-related differential cross sections.

Measurements of the mass and signal strength are performed using an unbinned maximum

likelihood fit of the invariant mass (m4`) and multivariate discriminant (BDTZZ) distributions.

The derivation of m4` and BDTZZ templates are described in Chapter 11. The results of the

mass and signal strength measurements are presented in Chapter 11

Differential cross section measurements are performed using an event counting method

after isolating the signal peak from the backgrounds using invariant mass cuts (a “mass win-

dow”). Optimization of the mass window is described in Chapter 7. The cross sections are

extrapolated to a fiducial region based on the detector acceptance and analysis selection cri-

teria using a simple unfolding method as described in Chapter 8. The observed cross sections

are compared to several SM calculations and their compatibility is quantified in Chapter 12.

The results of these measurements have been documented in Ref. [69].
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Chapter 6

Data and Simulation

The measurements in the H → 4` decay channel presented in the following chapters are

performed using collision data collected by the ATLAS detector during Run 1 at the LHC

during 2011 and 2012. This chapter describes the data and simulation samples used in this

analysis.

6.1 Data

Data were collected using the ATLAS detector (see Section 3) over the course of the LHC Run

1 in 2011 and 2012, corresponding to 4.5 fb−1of
√
s = 7 TeV data and 20.3 fb−1of

√
s = 8 TeV

data respectively. The rate of data collection is shown in Figure 6.1, which shows both the

integrated luminosity and the peak instantaneous luminosity as a function of time during Run

1 at the LHC. The instantaneous luminosity increased over the course of Run 1 and at its peak

reached 0.75× 1034cm−2s−1, very nearly the LHC design goal of 1× 1034cm−2s−1. A Good-

Runs-List (GRL) is used to record when the detector is fully operational at the granularity

of individual luminosity blocks (which correspond to roughly 5 minutes of data-taking). For

this analysis, the standard ATLAS “All Good” GRL is required for all events.

One side effect of the large instantaneous luminosity is the “pile-up” of many overlapping
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Figure 6.1: (left) The total integrated luminosity delivered by the LHC (green), recorded by
ATLAS (yellow), and passing quality requirements (blue) is shown as a function
of time during 2011 and 2012. (right) The peak instantaneous luminosity as a
function of time during 2011 and 2012.

pp interactions in the detector, which is of major concern for the LHC experiments for sev-

eral reasons. Increasing pile-up results in more hits in the detector per event, requiring a

larger detector readout bandwidth. Pile-up can significantly increase computational costs if

algorithms are not optimized to handle high occupancy events. For instance, the complexity

of the pattern recognition in the tracking algorithm scales quadratically with the number of

hits in the detector. Finally, pile-up introduces additional energy into the detector which

distorts measurements of of the objects of interest, thus degrading the detector performance.

Figure 6.2 shows the mean number of pp interactions per bunch crossing, which is determined

by the LHC beam parameters.

Pile-up may be categorized into two types: “in-time” and “out-of-time”. In-time pile-up

results from additional pp interactions in the same LHC bunch as the interaction of interest.

The main impact of in-time pile-up is degradation of the detector performance, particularly

for jet energy and missing energy measurements. Out-of-time pile-up results from interactions

which occur in nearby LHC bunches whose signals are still present in the detector. Out-of-

time pile-up primarily affects the calorimeter measurements as their electronics response time
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Mean Number of Interactions per Crossing

0 5 10 15 20 25 30 35 40 45
/0

.1
]

­1
R

e
c
o

rd
e

d
 L

u
m

in
o

s
it
y
 [

p
b

0

20

40

60

80

100

120

140

160

180 Online LuminosityATLAS

> = 20.7µ, <­1Ldt = 21.7 fb∫ = 8 TeV, s

> =  9.1µ, <­1Ldt = 5.2 fb∫ = 7 TeV, s

Figure 6.2: The mean number of interactions per LHC bunch crossing shown separately for
the 7 and 8 TeV data sets.

is typically longer than the LHC bunch spacing of 50 ns used during Run 1.

In the 7 TeV data, candidate events are triggered using a selection of single lepton and

dilepton triggers. The single electron (muon) triggers have a lower pT threshold of 20 (18) GeV.

During the latter portion of the 2011 data-taking, the pT threshold for the electron trigger

was raised to 22 GeV and a veto on hadronic energy near the electron cluster was applied

due to the ramp-up of the instantaneous luminosity. Two dilepton triggers are used with

a symmetric pT threshold of 12 (10) GeV for electrons (muons). Finally, a mixed dilepton

trigger requires an electron with pT > 10 GeV and a muon with pT > 6 GeV.

For the 8 TeV data, the trigger selection was modified in order to maintain reasonable

trigger rates as the instantaneous luminosity further increased. The single lepton triggers have

a lower pT threshold of 24 GeV and isolation requirements4 in order to reduce the trigger rate

from fake lepton backgrounds. The single electron trigger has an additional veto on hadronic

energy near the trigger electron. For single electrons (muons) with pT > 60 (36) GeV, the

isolation and hadronic energy criteria are removed. One dielectron trigger is used with a

symmetric pT threshold of 12 GeV. Two dimuon triggers are used, one with a symmetric pT

threshold of 13 GeV and one with an asymmetric threshold of 18 GeV and 8 GeV. Finally, the
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6. Data and Simulation

mixed dilepton trigger requires an electron with pT > 12 GeV and a muon with pT > 8 GeV.

6.2 Simulation

Simulation of signal and background processes is used in many key places of this analysis.

The irreducible background estimation is performed entirely using the simulation. Reducible

background processes, such as Z+jets and tt̄, are also simulated in order to determine efficiency

factors for extrapolation from control regions to the signal region and to provide shapes of

variables for the mass, couplings, and differential measurements (see Chapter 9). The signal

simulation is used for optimization of the analysis selection criteria (see Chapter 7) and the

reconstructed signal yield predictions are used in the signal strength measurement. For the

differential measurements, the signal unfolding factors (see Section 8.5) are taken from the

simulated detector response.

This following sections describe the various generators used in the analysis, all of which

use Monte Carlo (MC) methods for event generation. The detector response for all generated

events is determined using the ATLAS detector simulation [70] within the GEANT4 framework

[71]. Addition of pile-up is done in a separate step by overlaying simulated minimum bias

events over the signal and background events. A number of data-based corrections are applied

to the simulation which are described in Section 6.2.3.

6.2.1 Signal samples and cross sections

Event generation for the H → ZZ(∗) → ```` process is performed using Powheg [42, 48],

which calculates separately the ggF and the VBF production mechanisms with matrix el-

ements up to NLO. The CTEQ CT10 Parton Distribution Functions (PDF)[17] are used.

Powheg is interfaced with Pythia 8.1 [46] for showering, hadronization and modeling of

4See Section 7.2 for definition of lepton isolation.
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the underlying event and PHOTOS [72] for quantum electrodynamics (QED) radiative correc-

tions in the final state. Additionally, the ggF events have been reweighted in order to match

the Higgs pT predictions of Ref.[73], which includes QCD corrections up to NLO and takes

into account soft gluon resummations at NNLL. Pythia is used to generate events for the

V H and tt̄H production modes. Signal samples are produced for a selection of Higgs masses

ranging from 110 GeV up to 400 GeV.

The Higgs boson production cross-sections, decay branching ratios, and their uncertainties

have all been taken from Refs. [25, 74, 75]. The largest contribution to the total production

cross section at the LHC comes from the ggF production mode, for which the production cross

section has been calculated to NLO [76, 77, 78] and NNLO in QCD [79, 80, 81]. Corrections

based on QCD soft-gluon resummations calculated in the NNLL approximation are applied for

the gluon-fusion process. Electroweak radiative corrections at NLO are also applied [82, 83].

The production cross section for the VBF process has been calculated with full NLO QCD

and EW corrections [84, 85, 86]. The cross sections for V H production have been calculated

at NLO[87] and NNLO[88] in QCD and NLO EW corrections have been applied [89]. The

cross section for associated production with top quark pairs via gg/qq̄ → tt̄H is calculated up

to NLO in QCD [90, 91, 92, 93, 94].

The partial width for the Higgs decay into four leptons has been calculated using PROPHECY4F[95,

96, 97] which takes into account NLO QCD and EW corrections plus the dominant two-loop

contributions in the heavy Higgs mass limit [98, 99]. PROPHECY4F also includes interference

effects among the diagrams containing identical final-state leptons. The partial widths of the

other Higgs decay channels is calculated using HDECAY[100, 101] and the branching ratios are

derived by combining these results as in Ref. [25].

The production cross sections, branching ratios, and their uncertainties for several Higgs

masses are summarized in Table 6.1. Mass-dependent uncertainties are provided by Ref. [25]
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accounting for systematic uncertainties associated with QCD scales and choice of PDF. Near

mH = 125 GeV, QCD scale uncertainties are estimated to be +7%
−8% for the gluon fusion process

and ±0.2 − 1% for the VBF, WH and ZH processes. Uncertainties in the production cross

section due to uncertainties in PDFs and αs are evaluated using the procedure in [102] using

the CTEQ[17], MSTW[18], and NNPDF[19] PDF sets and found to be ±7− 8% for gluon-initiated

processes and ±2− 4% for quark-initiated processes.

Table 6.1: Higgs boson production cross sections for ggF, VBF, V H, and tt̄H production
modes for selected mH in pp collisions at

√
s of 7 TeV and 8 TeV. The quoted

uncertainties correspond to the total theoretical systematic uncertainties using a
quadratic sum of QCD scale and PDF+αs uncertainties. The decay branching
ratio for H → 4`, with ` = e or µ, is reported in the last column [25].

mH σ (gg → H) σ
(
qq′ → Hqq′

)
σ (qq̄ → WH) σ (qq̄ → ZH) σ

(
gg → Htt′

)
BR

(
H → ZZ(∗) → 4`

)
[GeV ] [pb] [pb] [pb] [pb] [pb] [10−3]

√
s = 7 TeV

123 15.6± 1.6 1.25± 0.03 0.61± 0.02 0.35± 0.01 0.09± 0.01 0.103± 0.005

125 15.1± 1.6 1.22± 0.03 0.58± 0.02 0.34± 0.01 0.09± 0.01 0.125± 0.005

127 14.7± 1.5 1.20± 0.03 0.55± 0.02 0.32± 0.01 0.08± 0.01 0.148± 0.006
√
s = 8 TeV

123 19.9± 2.1 1.61+0.04
−0.05 0.74± 0.02 0.44± 0.02 0.14+0.01

−0.02 0.103± 0.005

125 19.3± 2.0 1.58± 0.04 0.70± 0.02 0.42± 0.02 0.13+0.01
−0.02 0.125± 0.005

127 18.7± 1.9 1.55± 0.04 0.67± 0.02 0.40± 0.02 0.13+0.01
−0.02 0.148± 0.006

6.2.2 Background samples

The Standard Model ZZ(∗) background processes are simulated using POWHEG[103] for quark-

antiquark annihilation and GG2ZZ [104] for gluon fusion processes. The uncertainties due to

choice of PDF and αS are evaluated using the mass-dependent parameterization used in Ref.

[74], which is evaluated to be ±3.4 (7.0)% for qq̄ (gg) processes at m4` ∼ 125 GeV. Likewise,

the mass-dependent QCD scale uncertainties are also taken from Ref. [74] and amount to ±

2.8 (24.3)% for qq̄ (gg) processes at m4` ∼ 125 GeV. The interference between the gg → ZZ∗

and the ggF signal is expected to be below 1% in the signal mass window [105] and is neglected
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in this analysis.

The Z+jets background processes are generated using ALPGEN[106] which is then interfaced

to PYTHIAfor showering and hadronization. The events are split into two samples: Z+light

jets, which includes Zcc̄ in the massless c-quark approximation and Zbb̄ coming from parton

showers, and Zbb̄ as determined using matrix element calculations which include b-quark mass

effects. The MLM [107] matching algorithm is used to remove double counting of identical

light jets due to the overlap in phase space between the matrix element and parton showering

models. However, this matching technique is not implemented for b-quarks so an alternative

method is applied in which bb̄ pairs with ∆R > 0.4 are taken from the matrix element calcu-

lations and bb̄ pairs with ∆R < 0.4 are taken from the parton shower. The cross sections are

calculated at NNLO in QCD using FEWZ [108, 109] for inclusive Z production and at NLO

using MCFM [110] for Zbb̄ production.

The tt̄ background is modeled using POWHEG interfaced to PYTHIA for showering and

hadronization, to PHOTOS for QED radiative corrections, and to TAUOLA[111, 112] for the sim-

ulation of the τ lepton decays. Simulation of Standard Model WZ production is performed

using SHERPA[113].

6.2.3 Data-based Corrections

Several corrections are applied to the simulated events in order to better reproduce the running

conditions under which the data were recorded. Simulated events are re-weighted to repro-

duce the distribution of the mean number of interactions observed in the data (Figure 6.2).

Similarly, the LHC beam spot width is different in data and simulation, so another weight is

applied to reproduce the beam spot size observed in the data.

Further corrections are made to the simulation in order to compensate for mismodeling of

observables which are used in the event selection. Generally speaking, mismodeling of such
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observables can result in biased measurements as the efficiencies in data and simulation will be

different. Specifically, corrections for the lepton reconstruction and identification efficiencies

have been applied based on studies of Z → `` and other SM processes [114, 115]. Furthermore,

corrections to the lepton four-momentum are also made to reproduce the energy scale and

resolution observed in the data [67, 116].

6.2.4 Differential Cross Section Predictions

The observed differential cross section measurements are compared to several theory predic-

tions in order to quantify the compatibility of the data with the SM. Three different cal-

culations of the ggF cross sections are used: Powheg Powheg+Minlo, and HRes2. As

noted above, Powheg calculates the cross section at NLO. Minlo is accurate to NLO for

Higgs+1 jet events. Finally, HRes2 provides NNLO calculations of ggF with a soft-gluon

resummation at small transverse momenta up to NNLL. Additional contributions from VBF

(simulated with Powheg+Pythia), V H and tt̄H (Pythia) processes are added to the es-

timate. Because the differential cross section measurement intends to test the shapes of the

observables, all predictions are normalized to the best estimate of the cross sections for a SM

Higgs boson with mH = 125.4 GeV [25]. Uncertainties associated with these predictions are

described in Section 10.3.3 and the results of these calculations are shown in Section 12.4.
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Chapter 7

Event Selection

The event selection in the H → 4` decay channel has been optimized for discovery significance

over a wide range of Higgs masses in Run 1 at the LHC. The event selection criteria can be

roughly broken into two steps: 1) the selection of the H → 4` final state in Section 7.1 and

2) additional cuts to further reduce backgrounds in Section 7.2. An optimization study of

an invariant mass window has been performed for the differential cross section measurements

in Section 7.3. Finally, the observables needed for the mass, signal strength, and differential

cross section measurements are described in Section 7.4.

This chapter describes the details of the event selection for the
√
s = 8 TeV data. The

√
s = 7 TeV event selection closely follows the selection of the 8 TeV analysis and as such is

omitted for brevity. Interested readers can find the details of the
√
s = 7 TeV event selection

in Reference [28].

7.1 Four Lepton Final State

The presence of four isolated, relatively high pT leptons in the final state provides a distinctive

signature which is used to reject the large majority of SM backgrounds at the LHC. Conversely,

the sensitivity of the search for, and measurements of, the H → 4` decay crucially depends
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on the lepton selection. In order to maintain high signal efficiency, good reconstruction and

identification efficiency is essential, especially in the low pT regime. The following sections

describe the reconstruction and identification criteria for electrons and muons.

7.1.1 Electron Selection

Construction of electron candidates in ATLAS is performed in two steps. First, electron

candidates are reconstructed with very loose criteria in order to maintain high efficiency for real

electrons. Second, further selection criteria are applied to the candidates to reduce the non-

electron backgrounds using a number of high-level observables, referred to as identification.

Electron reconstruction begins with the selection of well-measured ID tracks which point

to electromagnetic clusters in the calorimeter. A cluster will be identified as an electron

candidate if at least one track falls within ∆η < 0.05 and ∆φ < 0.05(0.1) of the centroid of

the reconstructed cluster for tracks bending towards (away from) the centroid of the cluster.

The cluster must also satisfy a set of identification criteria that require the longitudinal and

transverse shower profiles to be consistent with those expected for electromagnetic showers.

Tracks associated with electromagnetic clusters are re-fitted using a Gaussian-Sum Filter

tracking algorithm [117], which allows for energy losses along the track due to bremsstrahlung.

Figure 7.1 shows the electron reconstruction efficiency as a function of ET and η. Because

of the loose criteria applied at this stage, the reconstructed electron candidates contain large

contamination from hadronic decays and electrons from photon conversions.

The electron identification in ATLAS is based on variables that provide good separation

between isolated electrons and hadronic jets faking electrons. Variables describing the longitu-

dinal and transverse shapes of the electromagnetic showers in the calorimeters, the properties

of the tracks in the Inner Detector (e.g. number of b-layer and silicon hits, high threshold

ratio in TRT, or change in the momentum from the beginning to the end of the track from
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Figure 7.1: Measured electron reconstruction efficiencies as a function of ET integrated over
the full pseudorapidity range (left) and as a function of η for 15 GeV< ET <50
GeV (right) for the 2011 (triangles) and the 2012 (circles) datasets[114].

bremsstrahlung) as well as the matching between tracks and energy clusters are used to dis-

criminate against the different background sources. Because many of these variables depend

on calorimeter measurements, electron candidates are required to be within |η| < 2.47 in order

to have a high quality calorimeter measurement. Furthermore, electrons are required to have

pT > 7 GeV in order to control the backgrounds from jets.

A multivariate analysis (MVA) technique is employed to define the electron identification

because it can provide better discrimination than a strictly cuts-based identification algorithm.

Furthermore, variables can be used whose overlap between signal and background is too large

for explicit cuts, but nonetheless have significant discriminating power.

A Likelihood ratio (LH) approach has been chosen for electron identification because of its

simple construction. The electron LH makes use of signal and background probability density
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functions (pdf) of the discriminating variables. Based on these pdfs, an overall probability is

calculated for the object to be signal or background. The signal and background probabilities

for a given electron are combined into a discriminant dL on which a cut is applied:

dL =
LS

LS + LB
, LS/B(~x) =

n∏
i=1

Ps/b,i(xi) (7.1)

where ~x is the vector of variable values and Ps/b,i(xi) is the value of the signal/background

probability density function of the ith variable evaluated at xi. The choice of the cut value on

the discriminant determines the signal efficiency and background rejection of the LH working

point.

Signal and background pdfs used in the electron LH particle identification (PID) are ob-

tained from data as described in Ref. [114], using Z → ee decays for the signal pdfs and

background enriched samples for the background pdfs. The variables counting the hits on the

track are not used as pdfs in the LH, but are left as simple cuts, as every electron should

have a high quality track to allow for a robust 4-vector measurement. The measured electron

identification efficiency is shown as a function of ET and η in Figure 7.2 for different operating

points. The LooseLH operating point has been chosen for this analysis in order to maintain

a high signal efficiency.

An additional calibration procedure is employed which improves the electron energy mea-

surement by performing a combination of the electron track momentum and cluster en-

ergy. This results in significant improvement for electrons which pass through regions of

the calorimeter where the energy resolution is poor, such as the calorimeter crack region

(1.37 < |η| < 1.52). For electrons with pT < 30 GeV and |η| < 1.52, a maximum likelihood

fit of the track and cluster momentum measurements is performed. For all other electrons,

the calorimeter cluster energy is used for the electron energy measurement. This procedure

improves the mass resolution by roughly 4 (3.5)% in the 4e (2µ2e) channels compared to using
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Figure 7.2: Measured electron identification efficiency for various cut-based and LH selections
as a function of ET and η. The uncertainties are statistical (inner error bars) and
statistical+systematic (outer error bars). The last bin in ET includes the overflow.
The dashed lines indicate the bins in which the efficiencies are calculated [114].

the cluster energy alone.

7.1.2 Muon Selection

Four kinds of muon candidates are distinguished depending on the way they are recon-

structed: combined muons, stand-alone muons, segment tagged muons, and calorimeter

tagged muons [115]:

- Combined muons (CB): Identified using a combination of well-reconstructed tracks in

both the MS and ID. A statistical combination of the momentum measurements is

performed using the covariance matrices from the individual MS and ID track measure-

ments.

- Stand-alone muons (SA): Tracks found only in the MS which are extrapolated to the

interaction point, taking into account the effects from multiple scattering and energy
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loss in the traversed material. The SA reconstructed muon candidates are used only in

the 2.5 < |η| < 2.7 region, outside the ID acceptance.

- Segment tagged muons (ST): An ID track which can be associated with track segments

in the MS precision muon chambers. The ID track parameters are used for the muon

momentum measurement.

- Calorimeter tagged muons: An ID track which points to energy depositions in the

calorimeters which are compatible with the hypothesis of a minimum ionizing particle.

These candidates are used to recover acceptance in the region |η| < 0.1 which is not

equipped with muon chambers.

A number of additional selection criteria are applied to the muon candidates in order

to ensure a good measurement of the muon trajectory. The list of track requirements for

combined muons is given in Table 7.1. The muon reconstruction efficiency as measured in

Z → µ+µ− events is shown in Figure 7.3 as a function of pT and η. Finally, muons are

required to have pT > 6 GeV and |η| < 2.7.

Table 7.1: List of Inner Detector hit requirements for the muons for 2011 and 2012 data.

ID Hit requirements 2011
Silicon hit requirement NB−layer ≥ 1 if expect B-layer hit

Npixel +N inactive
pixel > 1

NSCT +N inactive
SCT > 5

Nholes
pixel +Nholes

SCT < 3

TRT hit requirements: |η| < 1.9 NTRT +Noutliers
TRT > 5 &

Noutliers
TRT

NTRT+Noutliers
TRT

< 0.9

TRT hit requirements: |η| ≥ 1.9 if (NTRT +Noutliers
TRT > 5):

Noutliers
TRT

NTRT+Noutliers
TRT

< 0.9

ID Hit requirements 2012
ID Si hit requirement Npixel +N inactive

pixel > 0

NSCT +N inactive
SCT > 4

Nholes
pixel +Nholes

SCT < 3

TRT hit requirements: |η| < 1.9 NTRT +Noutliers
TRT > 5 &

Noutliers
TRT

NTRT+Noutliers
TRT

< 0.9
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Figure 7.3: Reconstruction efficiency for combined and segment tagged muons as a function
of the pT (left) and η (right) of the muon. The panel at the bottom shows the
ratio between the measured and predicted efficiencies[115].

7.1.3 Quadruplet Formation

All possible quadruplets consisting of two pairs of same flavor, opposite sign leptons are formed

from the leptons passing the criteria above. Additional requirements are imposed on these

quadruplets:

- Maximum of one stand-alone or calorimeter tagged muon

- pT thresholds on the three leading leptons of 20, 15, and 10 GeV

- Match between the reconstructed leptons and triggered lepton objects

For each quadruplet, the pair of leptons with invariant mass closest to the Z boson PDG

mass is denoted as the leading pair with invariant mass m12; the remaining lepton pair is

denoted the sub-leading pair with invariant mass m34. The invariant mass of the four lepton

system is denoted as m4`. The quadruplets are then divided into four channels depending on

the flavors of the leading and sub-leading pairs: 4µ, 2µ2e, 2e2µ, and 4e. If a channel contains

more than one quadruplet passing the above requirements, the quadruplet with m12 closest

to the Z boson PDG mass and the largest m34 is kept and the others are discarded.
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7.2 Analysis Cuts

Additional kinematic cuts are imposed on the quadruplets in each channel separately. Each

quadruplet is required to have 50 < m12 < 106 GeV and mthresh < m34 < 115 GeV. The

value of mthresh varies as a function of m4`, starting at 12 GeV for m4` ≤ 140 GeV and rising

linearly to 50 GeV at m4` ≥ 190 GeV. The leptons within the quadruplet are required to be

well separated from each other by requiring ∆R(`, `′) > 0.1 for all same flavor lepton pairs

and ∆R(`, `′) > 0.2 for opposite flavor lepton pairs. A requirement of m`` > 5 GeV is applied

for all same flavor lepton pairs in order to reject events containing J/Ψ.

To further reduce backgrounds containing leptons within jets or jets faking leptons, iso-

lation and impact parameter requirements are imposed on all leptons within the quadruplet.

Requirements are made on two different isolation variables, one based on track information,

Σpiso
T , and one based on calorimeter information, ΣEiso

T .

The track isolation variable Σpiso
T is defined as the sum of the transverse momenta of all

tracks which fall within a cone of ∆R < 0.2 around the lepton, excluding tracks from any

lepton within the quadruplet. The tracks entering this calculation are required to be of good

quality by requiring at least four hits in the silicon detectors and pT > 1 GeV for muons; and

at least nine TRT hits, one B-layer hit, and pT > 0.4 GeV for electrons. All leptons in a

quadruplet are required to satisfy Σpiso
T /pT < 0.15.

The calorimetric isolation variable ΣEiso
T is defined as the sum of transverse energy, ΣET,

in the calorimeter cells within a cone of ∆R < 0.2 around the lepton trajectory. For muons,

a correction for the muon’s energy deposition within the calorimeter is applied by subtract-

ing the calorimeter energy found within a much smaller cone around the muon trajectory.

For electrons, the electron cluster energy is subtracted from the ΣET. For all leptons, the

contributions from other electrons in the quadruplet within a ∆R cone of 0.18 is also sub-
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tracted. Muons are required to have ΣEiso
T /pT < 0.3 and electrons are required to have

ΣEiso
T /ET < 0.2.

The impact parameter significance is defined by dividing the impact parameter d0 by

its estimated uncertainty σd0. Requirements on the impact parameter significance reduce

contributions from backgrounds with long decay lifetimes, such as heavy flavor decays. Muons

are required to satisfy d0/σd0 < 3.5 and electrons are required to satisfy d0/σd0 < 6.5.

Finally, if more than one channel contains a quadruplet passing all of the above cuts, the

quadruplet from the channel with the best expected mass resolution is chosen and the others

are discarded. This gives preference to the decay channels in this order: 4µ, 2e2µ, 2µ2e, and

4e.

7.3 Mass Window Optimization

This section describes the optimization of the mass window chosen for the differential cross

section measurements in light of the knowledge of the observed resonance around 125 GeV.

An additional selection is required in order isolate the signal peak from the backgrounds: a

mass window cut in m4`, the four-lepton invariant mass after FSR correction and Z mass

constraint (see Section 7.4).

An optimization procedure has been implemented using the inclusive signal (S) and back-

ground (B) yields. Three figures of merit have been studied: (1) S/
√
S +B a measure of the

statistical significance, (2) S/
√
B, a measure of significance vs the null hypothesis and (3) Z0,

a more general formula for S/
√
B which is applicable in a low stats regime [118]:

Z0 =
√

2((S +B) · ln(1 + S/B)− S) (7.2)

Each is studied by simultaneously varying the lower and upper m4` cuts over the range [110,

140] GeV. The final mass window will be chosen using S/
√
S +B because this will minimize
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the cross-section uncertainty, which will be dominated by the statistical uncertainty.

The results of this procedure can be seen in Figure 7.4 for the signal sample with MH = 125

GeV. The window of [121.4, 127.1] GeV maximizes S/
√
B while the window [118.6, 128.2] GeV

maximizes S/
√
S +B. Similarly, the window [120.7, 127.5] GeV maximizes Z0. One should

notice that the significance changes more rapidly with the lower cut than the upper cut. This

is due to the longer tail on the low mass side of the signal peak.
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Figure 7.4: (a) S/
√
B and (b) S/

√
S +B as a function of lower and upper m4` cuts for the

mass window optimization.

The optimal window was derived for Higgs masses from 123 GeV to 127 GeV in order to

understand the impact of the Higgs mass on choice of mass window. The results are seen

in Table 7.2 and show that the optimal mass window shifts directly with the Higgs mass.

Figure 7.5 shows the best fit point and 97.5% contours of S/
√
S +B and S/

√
B for each of

the Higgs mass samples. This shows that a single mass window can be chosen such that the

expected error on the measurement is not severely affected by the uncertainty on the Higgs

mass measurement (expected to be of the order of 500 MeV).
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Table 7.2: Optimal mass window cuts for mH from 123 GeV to 127 GeV based on three figures
of merit: S/

√
B, S/

√
S +B, and Z0.

mH [GeV] S/
√
B Z0 S/

√
S +B

123 [119.7, 124.9] [118.9, 125.2] [116.9, 126.0]
124 [120.5, 126.0] [119.9, 126.5] [117.8, 127.3]
125 [121.4, 127.1] [120.7, 127.5] [118.6, 128.2]
126 [122.5, 128.1] [121.5, 128.4] [119.7, 129.2]
127 [123.5, 128.8] [122.5, 129.4] [120.4, 130.4]
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7.4 Observables

This section describes the final observables used for the measurements contained in this thesis.

The mass and signal strength measurements rely on the two variables, m4` and BDTZZ ,

which are described in Sections 7.4.1 and 7.4.2. Furthermore, the differential cross section

measurements are performed for the six observables described in Section 7.4.3.

7.4.1 Invariant Mass

The invariant mass of the four-lepton system, which forms a peak near mH, is the most

discriminating variable in this analysis. Two further corrections are implemented in order to

improve the mass resolution and thus the sensitivity of the measurements.
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7.4.1.1 Final State Radiation Recovery

A Final State Radiation (FSR) correction is performed in order to recover energy lost to low

energy photons which are radiated from the leptons. Two strategies are employed to recover

both collinear and non-collinear FSR photon candidates, from which one candidate will be

chosen whose four-vector is added to the four-vector of the 4-lepton system.

A search for photons collinear to the selected muons is performed following the methods

detailed in Ref. [119]. FSR photon candidates may be reconstructed from calorimeter clusters

or the standard ATLAS reconstructed photons depending on the candidate energy. In the

range 1.5 GeV < ET < 3.5 GeV, FSR candidates are selected from calorimeter clusters which

pass shower shape requirements and fall within ∆R < 0.08 of a reconstructed muon. For

ET > 3.5 GeV, FSR photon candidates are required to pass shower shape requirements and

fall within ∆R < 0.15 of the reconstructed muon. If more than one candidate is found, the

candidate with the highest ET is chosen as the final candidate.

Non-collinear FSR candidates may be selected from the ATLAS standard photon recon-

struction for events with muons or electrons. A photon is considered to be a candidate if

it passes the ATLAS tight photon identification requirements, has ET > 10 GeV, and does

not fall within ∆R ≤ 0.15 of any lepton within the quadruplet. Furthermore, an isolation

requirement of ΣEiso
T < 4 GeV is applied in order to remove jets which may fake photons. If

more than one candidate is found, the candidate with the highest ET is chosen as the final

candidate.

Finally, only one FSR photon candidate per event is chosen for the correction but several

kinematic requirements are first applied. The collinear photon candidate is accepted only if

66 < mµµ < 89 GeV and mµµγ < 100 GeV for the leading Z only. If the collinear candidate

search fails, the correction is applied using the non-collinear candidate provided it passes
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certain kinematic criteria. The non-collinear FSR photon candidate may only be used to

correct the leading Z for events with m4` < 190 GeV but may be added to either the leading or

sub-leading Z for m4` ≥ 190 GeV. The non-collinear photon will be accepted if m`` < 81 GeV

and m``γ < 100 GeV. If both Z’s satisfy these requirements, then the correction is applied to

the Z with m``γ closest to the Z PDG mass.

7.4.1.2 Z-Mass Constraint

The second correction to m4` is the application of a Z-mass constraint. Because many of the

lepton pairs are coming from the decay of an on-shell Z boson and the Z natural width is

comparable to the detector mass resolution, one may use the knowledge of the Z mass line-

shape to improve the 4-lepton mass resolution. The probability of observing a Z decaying to

leptons with true mass mtrue can be parameterized as:

L(ptrue
1 ,ptrue

2 ,prec
1 ,prec

2 ) = B(ptrue
1 ,ptrue

2 ) ·R1(ptrue
1 ,prec

1 ) ·R2(ptrue
2 ,prec

2 ) (7.3)

where ptrue
1,2 are the true lepton momenta and prec

1,2 are the reconstructed lepton momenta. The

functions R1,2 are response functions which model the detector resolution effects. Because the

angular resolution (η/φ) is extremely good, the response functions can be simplified to only

depend on the energy resolution:

R1,2(ptrue
1,2 ,p

rec
1,2) = R1,2(Etrue

1,2 |prec
2 ) (7.4)

where Etrue
1,2 are the true energies of the leptons.

The true mass line-shape of the Z boson is described the function B, which only depends

on the invariant mass of the two leptons and can be written in terms of their energies in the

relativistic limit:

m2
true = 2 · Etrue

1 Etrue
2 (1− cos(θ)) (7.5)
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where θ is the opening angle between the leptons. Therefore, all the terms in Eqn. 7.3 depend

exclusively on the energies of the leptons. The Z-mass constraint is performed by maximizing

this function with respect to the Etrue
1,2 parameters, giving the most likely values of the true

lepton energies.

The Z mass line-shape function B is modeled using a relativistic Breit-Wigner function

with mean and width parameters set to the Z boson mass and Z natural width. This function

was checked against the Z line-shape as determined using simulation and found to have negli-

gible differences in performance. The response functions R1,2 are approximated by Gaussian

distributions with the mean set to the measured lepton energies Erec
1,2 and variance set to the

lepton energy resolution as obtained from the simulation. The actual lepton response func-

tions receive enhanced tail contributions from reconstruction and photon radiation effects,

but modeling of these effects is found to have a negligible effect on the performance of the

method.

Finally, because the Z-mass constraint assumes on-shell Z production, the procedure is

only applied to the leading lepton pair for events with m4` ≤ 190 GeV (the subleading lepton

pair has a significantly different mass shape). For events with m4` > 190 GeV, the Z-mass

constraint is applied to both the leading and subleading lepton pairs. The results of this

procedure are shown in Figure 7.6, where a clear improvement in the mass resolution is

observed after applying the Z-mass constraint both in m12 and m4` using the mH = 125 GeV

signal samples.

7.4.2 Multivariate Discriminant

In order to improve the sensitivity of the mass and signal strength measurements, a multivari-

ate discriminant against the irreducible background, BDTZZ , is created using the Boosted

Decision Tree (BDT) technique. The discriminant is based upon three input variables: the pT
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Figure 7.6: Distributions of the mass response, m−mtrue

mtrue
, of the leading di-electron pair (a)

and the 4-electron final state (b) in inclusive H → ZZ∗ → 4e events generated
with mH = 125 GeV. The mass response is shown without Z mass constraint
(black), with the standard Z mass constraint using a Gaussian approximation of
the electron energy response (blue), with a Z mass constraint using Gaussian sums
for the response function (red) and with a Z mass constraint using the Gaussian-
sum response functions and the actual generator mZ1

distribution (green). The
distributions are shown for events with |m12 −mZ | < 3 GeV.

and η of the four-lepton system and a matrix-element based kinematic discriminant (DZZ).

The distributions of these three variables for both the signal and the irreducible background

are shown in Figure 7.7, showing separation between the signal and background.
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The DZZ is based upon matrix element (ME) calculations which take as input the four-

vectors of the four leptons in the final state. The square of the matrix element gives the

probability of observing a particular kinematic configuration given a signal/background pro-

cess hypothesis. The DZZ is the logarithm of the ratio of the Higgs signal probability over

the ZZ background probability:

DZZ = ln

(
|Msig|2

|MZZ |2

)
(7.6)

The ME are computed at LO using MadGraph [120] with the process pp→ H → ZZ → 4`

for the signal hypothesis (Msig) and pp→ 4` for the ZZ background hypothesis (MZZ). For

the Msig calculation, mH is set to the reconstructed m4` for each event.

The BDT is trained separately for 4e/4µ events and 2e2µ events. The output of the BDT

(BDTZZ) for the combined 7 and 8 TeV datasets is shown in Figure 7.8. Good separation is

achieved between the signal and background processes.
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7.4.3 Differential Variables

Differential cross section measurements are performed for a number of variables which describe

event kinematics and properties of Higgs boson production. The following sections explain

the choice of variables and their reconstruction. An overview is given in Table 7.3.

7.4.3.1 Higgs Kinematics

The kinematics of Higgs boson production and decay are of particular interest as deviations

from the SM predictions could indicate non-SM properties of the Higgs itself or the presence

of other particles being produced in association with the Higgs boson. The H → 4` decay

channel is particularly interesting because the full Higgs kinematic information is accessible

through the reconstruction of all of the Higgs decay products.

The kinematics of the Higgs particle in a pp collision can be described by the transverse

momentum pT,H , azimuthal direction ΦH , and rapidity yH . The decay to four leptons is

described by the invariant mass of the leading lepton pair m12, the invariant mass of the

sub-leading lepton pair m34, and five decay angles (ΦH , Φ1, θ∗, θ1, θ2) between the leptons

as shown in Fig. 7.9. The dilepton masses and decay angles are sensitive to the spin and CP

properties of the Higgs boson.

The Higgs boson differential transverse momentum cross section is of particular interest

as the theoretical predictions have been studied extensively (see e.g. [73, 121, 122, 44, 45] and

the References in [74]). In particular, the treatment of the top and bottom quark masses in

the calculation of the ggF production mode cross section can lead to order 10% differences in

the differential transverse momentum cross section [45].

This analysis makes the first differential cross section measurements of pT,H, |yH |, m34,

and | cos θ∗| in the H → 4` decay channel. The corresponding reconstructed variables are
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Figure 7.9: Diagram of decay angles for the H → 4` decay.

measured using the kinematics of the four reconstructed leptons are defined as preco
T,H , |yreco

H |,

mreco
34 , and | cos θ∗reco|.

7.4.3.2 Jet variables

The measurement of the jet multiplicity and other jet properties probes both QCD radiation

effects and contributions from the various production modes of the Higgs boson. The fraction

of events coming from non-ggF production modes increases with jet multiplicity due to the

presence of hadronic decays of the particles produced in association with the Higgs boson (see

Fig. 12.7). This allows measurement of the relative strength between the ggH, V V H, and

tt̄H couplings [28].

Jets are reconstructed from topological clusters in the calorimeters using an anti-kT al-

gorithm [123] with a distance parameter of R = 0.4. Jets are required to fall within the

acceptance of the calorimeters (|y| < 4.4) with a pT threshold of 30 GeV. Cleaning is applied

to the jets using ATLAS standard procedures and a requirement on the jet vertex fraction

(JVF) is applied in order reduce contributions from jets resulting from pile-up. The JVF
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Table 7.3: Definition of variables used in the differential cross section measurement both at
truth and reconstruction levels. For the definition of the truth particles see Sec. 8.2.

Variable Truth Level Observable Reconstruction Level Observable
pT,H pT of the intermediate Higgs particle pT of the reconstructed four-lepton

system (no FSR correction)
|yH | rapidity of the intermediate Higgs particle rapidity of the reconstructed four-lepton

system (no FSR correction)
m34 Invariant mass of the sub-leading Invariant mass of the sub-leading

lepton pair (includes mispairing) lepton pair (includes mispairing)
| cos θ∗| θ∗ is the production angle of Z1, θ∗ is the production angle of Z1,

defined in the four lepton rest frame defined in the four lepton rest frame
(includes mispairing) (includes mispairing)

njets Number of truth jets Number of reconstructed jets
pT,jet pT of the leading truth jet pT of the leading reconstructed jet

is defined as the fraction of track momentum associated with a jet that can be matched to

the primary vertex. As it depends on ID tracking, it is only contributes within the ID ac-

ceptance. For jets with |η| < 2.4 and pT > 50 GeV, the jet must satisfy |JVF| > 0.25.

Furthermore, because electrons will also be reconstructed as jets, jets which overlap with an

electron (∆R < 0.2) are removed in order to not double count these objects.

This analysis measures differential cross sections in jet multiplicity, njets, and the transverse

momentum of the leading jet, pT,jet. As can be seen in Fig. 12.7, the 0-jet bin is dominated by

ggF production while V H and VBF production modes contribute increasingly larger fractions

in the 1-jet and 2-jet bins. The majority of tt̄H events have high jet multiplicity (≥ 3 jets). The

leading jet transverse momentum directly probes quark and gluon radiation events inclusively

and allows tests of fixed order QCD calculations of gluon-gluon fusion processes.

7.4.3.3 Differential Variable Binning

Binning is chosen for each variable of interest based on several criteria before looking into the

data signal region (118 < m4` < 129 GeV) in order to remain unbiased. First, the range of

each variable is chosen. For fixed range variables, such as | cos θ∗|, this is trivial, while for

variables with unbound ranges (such as pT,H), the range is chosen to cover approximately
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95% of the events from the expected SM signal. Next, the number of bins is chosen in

order to achieve an expected significance of roughly 1.5 σ in each bin. Within the signal

region, S/
√
S +B is expected to be approximately 3 in the SM with the current dataset, and,

assuming that significances add in quadrature, a rough approximation gives 32/1.52 = 4 bins

for each variable. Finally, the bin edges are chosen based on individual considerations for

each variable (see below) while also trying to maintain similar S/
√
S +B in the various bins.

Table 7.4 lists the chosen binning for all of the variables.

- pT,H: Bin edges are suggested by theoretical concerns. For pT,H > 100 GeV, the cal-

culation of the ggF cross-section can be accomplished using a fixed order calculation,

but below 100 GeV, the calculation requires resummation of leading order logarithms.

Furthermore, the treatment of the finite top and bottom quark mass creates additional

scales, one at twice the bottom quark mass.

- |yH |: The rapidity distribution is fairly flat and thus allows for five bins.

- m34: The lower edge of the distribution is bounded by the m34 > 12 GeV cut which is

applied in the event selection. The bin edges are then placed at multiples of 10 GeV

from 20 GeV to 60 GeV. The last two bins (40-50,50-60 GeV) are combined in order to

improve the statistical significance.

- | cos θ∗|: This distribution is flat in the SM; therefore, a fixed width binning is chosen

with a width of 0.2.

- njets: Trivial binning, except for the highest bin which is inclusive in order to decrease

the effects of bin-to-bin migrations at high njets where there are large theoretical uncer-

tainties in the modeling due to the use of perturbative calculations.

- pT,jet: Three bins are possible above the jet pT threshold of 30 GeV.
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Table 7.4: Binning chosen for the variables of interest. Overflow events are reported but do
not contribute to the measurement.

Variable Bin Edges Nbins

pT,H 0, 20, 50, 100, 200 GeV 4
|yH | 0, 0.3, 0.65, 1.0, 1.4, 2.4 5
| cos θ∗| 0, 0.2, 0.4, 0.6, 0.8, 1.0 5
m34 12.5, 20, 30, 40, 60 GeV 4
njets 0, 1, 2, ≥3 4
pT,jet 0, 30, 50, 70, 140 GeV 4
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Chapter 8

Analysis Fiducial Region

This chapter describes the fiducial region and unfolding methods used for the cross section

measurements.

8.1 Definitions

The total production cross-section of a process σtotal is canonically expressed as:

σtotal ·BR =
nsignal

total

Lint
=

nsignal
reco

εtotal · Lint
(8.1)

where BR is the branching ratio of a particular final state, nsignal
total is the total number of signal

events produced, nsignal
reco is the number of reconstructed signal events in that final state, Lint is

the integrated luminosity, and εtotal is the efficiency for detecting the signal process accounting

for trigger, reconstruction and identification efficiencies (defined as nsignal
reco /nsignal

total ).

The efficiency εtotal is typically model-dependent because it contains contributions from

events which are outside of the detector acceptance. As a result, applying this efficiency to

the observed signal yields extrapolates the measurement to regions of phase space to which

the detector has no sensitivity. In order to remove this model-dependence, the efficiency is

split into two terms:

εtotal = Afid · εfid (8.2)
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Afid is the fiducial acceptance, the fraction of events that fall within the fiducial volume of

the detector and εfid is the fiducial efficiency, the signal efficiency within the fiducial volume

of the detector. These are defined as:

Afid =
nsignal

fiducial

nsignal
total

εfid =
nsignal

fiducial

nsignal
reco

(8.3)

where nsignal
fiducial is the number of events within the fiducial volume. Calculation of this number

requires a fiducial volume definition - see Section 8.3.

By removing the acceptance term, one may measure a more model independent quantity,

the fiducial cross section, σfid, defined as:

σfid ·BR =
nsignal

reco

εfid · Lint
(8.4)

8.2 Truth Object Definitions

Truth-level physics objects must be defined in order to choose a detector fiducial region and

to provide truth-level “observables” to which to unfold. Truth-level electrons and muons are

needed for the H → 4` fiducial selection and truth-level jets are defined for the jet-related

differential cross section measurements.

When selecting truth leptons, one has a choice whether to include effects of initial and final

state radiation in the truth lepton kinematics. The standard choices, commonly referred to as

Born, bare, and dressed, are shown in Figure 8.2. Born level kinematics are specified by the

matrix element before any QED corrections are applied. Bare kinematics take into account

all radiative effects. Dressed kinematics are the same as bare except that nearby (collinear)

photons are added back into the lepton four-vector.

The optimal choice of kinematics depends on the physics object in question. For exam-

ple, the electron reconstructed kinematics are better approximated by the dressed electron
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kinematics because the electron energy measurement is based on a localized cluster of energy

in the calorimeter. However, for muons the bare kinematics provides a better description

because the momentum measurement is based upon track curvature measurements. For this

analysis, the Born kinematics are used for the leptons and the jets are formed using the bare

particles. More detailed studies on the choice of the truth lepton kinematics can be found in

Appendix A. The following additional criteria are applied to specific truth physics objects:

- Electrons: pT > 7 GeV, |η| < 2.47.

- Muons: pT > 6 GeV, |η| < 2.7

- Jets: Particle-level jets are reconstructed from all stable particles except muons and

neutrinos using the anti-kt algorithm [123] with distance parameter R = 0.4. Each jet

is required to have pT > 30 GeV and |y| < 4.4 and must not be within ∆R < 0.2 of any

truth electron as selected above.

8.3 Fiducial Region Definition

Fiducial region cuts are chosen to replicate the reconstruction level cuts in order to minimize

model-dependent acceptance effects on the measured fiducial cross section. At the same

time it is important to make the fiducial region cuts easily reproducible with different event

generators/matrix element calculators. The fiducial region for the H → 4` analysis is defined

as follows:

- Higgs candidate:

The Higgs candidate is composed of two pairs of same flavor, opposite charge truth

leptons. The pairing is carried out the following way: The leading pair is defined as the
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lepton pair with invariant mass closest to mZ and the subleading pair is defined as the

remaining lepton pair with invariant mass closest to mZ .

- Lepton kinematics:

pT > 20, 15, 10 GeV for leading leptons within the quadruplet

- Mass-pair cuts:

50 < m12 < 106 GeV; 12 < m34 < 115 GeV

- Lepton separation:

∆R(`i, `j) > 0.1(0.2) for same (opposite) flavor leptons

- J/ψ veto:

m(`i, `j) > 5 GeV for same flavor opposite sign lepton pairs

- Mass Window:

118 < m4` < 129 GeV

Note that all leptons in an event are considered when pairing truth leptons into the Higgs

candidate quadruplet. This allows leptons which are not direct decay products of the truth

Higgs object to be chosen and is necessary in order to replicate the behavior of the reconstruc-

tion selection. This is particularly important when considering the V H production modes as

the fraction of reconstructed events in which the pairing algorithm chooses a lepton coming

from the associated vector boson can be as large as 20%.

In contrast to the reconstruction selection, there is no isolation cut applied in the fiducial

selection. This allows the possibility to choose truth leptons coming from hadronic decays,

which will introduce significant differences between the reconstruction and fiducial selections.

Defining an isolation cut at truth-level is technically possible, but is considered to overly
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complicate the fiducial region for this analysis. Instead, an alternative approach is to only

select leptons coming form the decays of W and Z bosons.

Finally, the signal samples used to derive the correction factors include H → 2τ2` and

H → 4τ decays, which contribute ∼ 0.5% of the reconstructed signal yield due to leptonic

τ decays. The fiducial acceptance for the H → 2τ2` and H → 4τ decays (given the above

fiducial region definition) is similarly small. However, many theory predictions only consider

direct H → 4` decays. Therefore, events containing Z → ττ events are explicitly removed

from the fiducial region in order to facilitate easier comparisons with theory predictions.

8.4 Fiducial Region Studies

In this section, several fiducial quantities are studied to validate the fiducial region definition

defined in Sec. 8.3 and to understand the model-dependence of the measurement. These

quantities have been studied as a function of the Higgs mass, production mode, and decay

channel (4µ, 4e, etc.). Comparisons are also made between the fiducial quantities with and

without the mass window cut. Additionally, several models with non-SM spin/CP properties

have been studied to demonstrate the model independence of the fiducial efficiency.

8.4.1 Fiducial Acceptance

Given an appropriate fiducial region definition, the fiducial acceptance (defined in Eqn. 8.3)

describes the fraction of events which could possibly be reconstructed in the detector. Fig-

ure 8.1 shows the fiducial acceptance as a function of mH for all Higgs production modes in

the range from mH = 120 to mH = 130 GeV both with and without the mass window selection

applied5.

5 Note that this measure of the acceptance contains the H → 2τ2` and H → 4τ events for which the
fiducial acceptance is zero because these events are excluded explicitly from the fiducial region.
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Figure 8.1: Fiducial acceptance as a function of the Higgs mass for all production modes (a)
without a mass window cut and (b) with the mass window cut of 118 < m4` < 129
GeV.

The fiducial acceptance is within 10% for all Higgs production modes with the exception

of tt̄H when no mass window cut is applied, as illustrated in Figure 8.4.1. The larger lepton

multiplicity in the tt̄H production mode results in a combinatorially increasing number of

possible pairings. This leads to a higher efficiency for the m12 and m34 requirements, resulting

in a larger fiducial acceptance. The effects of this are also seen in the mispairing fraction.

After applying the mass window cut, the mispairing fraction decreases in tt̄H and the fiducial

acceptance is comparable to the other production modes.

The fiducial acceptance for each final state is shown in Figure 8.2 as a function of mH. Note

that here, because the acceptance is calculated in each channel, events containing Z → ττ

decays are not included. In the ggF mode, the 4µ channel has the largest fiducial acceptance

and the 4e/2µ2e channels have a smaller acceptance due to the more strict kinematic require-

ments on electrons as compared to muons. In the tt̄H mode, one can again see the effect of

the mispairing as the 4e channel has larger acceptance than the mixed channels.
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Figure 8.2: Fiducial acceptance as a function of the Higgs mass from mH = 120 to mH =
130 GeV, separately for each final state and production mode. Uncertainties are
statistical only.
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8.4.2 Fiducial Efficiency

The fiducial efficiency quantifies the signal efficiency within the fiducial volume of the detector

and is defined in Eqn. 8.3 . In an ideal case, the fiducial efficiency will be independent of the

underlying model and thus the fiducial cross-section measurement will be model-independent.

Note that the fiducial efficiency is not an efficiency in the strictest sense as the reconstructed

events are not a strict subset of the fiducial events (see Section 8.4.4).

The fiducial efficiency is presented in Figure 8.3 as a function of mH for all Higgs produc-

tion modes. The fiducial efficiency is similar for all production modes within 2-3% with the

exception of the tt̄H mode, which has a reduced efficiency with respect to the other modes.

The reduced fiducial efficiency in tt̄H is the result of a decreased reconstruction efficiency

due to the lepton isolation requirements. The reconstructed leptons are less isolated because

of the presence of the additional top decays within the event. The tt̄H fiducial efficiency is

affected by this due to the lepton isolation cut being applied in the reconstructed selection

but not in the fiducial selection.

Without the mass window requirement, the fiducial efficiency changes by < 1% over the

range 120 < mH < 130 GeV, as shown in Figure 8.3. This indicates that the choice of mH

used to derive the fiducial efficiency will introduce a small systematic uncertainty. The mass

window requirement introduces a stronger dependence on mH as shown in Figure 8.3 because

the mass resolution is different between the truth-level and reconstruction-level observables.

However, given that the uncertainties on the mH are roughly 0.4 GeV, the relevant points to

consider are from mH = 124 to mH = 126 GeV. Over this range, the fiducial efficiency within

the mass window changes by < 3%. A systematic uncertainty is applied to the correction

factors to account for this dependence which is described in Section 8.5.3.

The combined fiducial efficiency for the signal is derived assuming the SM cross section
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Figure 8.3: Fiducial efficiency as a function of the Higgs mass from mH = 120 to mH = 130
GeV for all production modes (a) without a mass window cut and (b) with the
mass window cut of 118 < m4` < 129 GeV.

Table 8.1: Signal fiducial efficiency per production mode for signals from mH = 124 GeV to
126 GeV with the mass window [118,129] GeV applied. Errors are due to simulation
statistics only.

Fiducial Efficiency
mH[GeV] ggF VBF WH ZH tt̄H Combined

124 0.556 ± 0.003 0.575 ± 0.003 0.542 ± 0.004 0.557 ± 0.004 0.412 ± 0.004 0.557 ± 0.002
125 0.557 ± 0.003 0.576 ± 0.003 0.541 ± 0.004 0.555 ± 0.005 0.395 ± 0.004 0.557 ± 0.002
126 0.548 ± 0.003 0.566 ± 0.003 0.528 ± 0.004 0.545 ± 0.004 0.411 ± 0.004 0.548 ± 0.002

predictions for the various production modes. Table 8.1 gives the fiducial efficiencies for all

production modes and the combined fiducial efficiency for several signal mass points near

mH = 125 GeV. This combination of fiducial efficiencies from different production modes

introduces model dependence into the measurement because the cross sections of the individual

Higgs production modes are not precisely measured experimentally. Therefore, a systematic

uncertainty is introduced to account for a possible bias in this procedure which is evaluated

by varying the contributions from the various SM production modes - see Section 8.5.3.

The final fiducial efficiency is evaluated at mH = 125.4 GeV, the best current estimate of

mH as reported by ATLAS [124]. This is done by performing a linear interpolation between

the two nearest mass signal points (125 and 126 GeV). Tables 8.2 gives the final inclusive

correction factor (which is equal to 1/εfid) both with and without the mass window and for

each mode separately.
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Figure 8.4: Fiducial efficiency as a function of mH for all production modes and channels.
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Table 8.2: Inclusive correction factors with and without the mass window cut evaluated at
mH = 125.4 GeV. Uncertainties on the individual production modes are due to
simulation statistics only.

Inclusive Correction Factor
Mode Full m4` range 118 < m4` < 129 GeV
ggF 1.643 ± 0.005 1.808 ± 0.007
VBF 1.589 ± 0.005 1.748 ± 0.006
WH 1.65 ± 0.007 1.868 ± 0.01
ZH 1.53 ± 0.007 1.814 ± 0.011
tt̄H 2.018 ± 0.01 2.396 ± 0.016
Combined 1.639 ± 0.005 (stat) ± 0.044 (syst) 1.808 ± 0.006 (stat) ± 0.049 (syst)

8.4.3 Mispair Fraction

An event is considered to be mispaired if the truth leptons in the leading and/or sub-leading

pair do not share the same mother truth particle. This can occur for two reasons: (1) incorrect

lepton assignment to Z1 and Z2 in the same flavor channels (internal mispairing) and (2)

selection of leptons which are not direct decay products of the Higgs but instead are present

due to the decay of particles produced in association with the Higgs (external mispairing).

Internal mispairing strongly affects variables related to the Higgs decay to four leptons (m34

and cos(θ∗), which depend on the definition of Z1) and weakly affects m4` in the reconstruction

due to the use of the Z mass constraint (which also relies on the definition of Z1). External

mispairing strongly affects m4`, which causes events to move in and/or out of the m4` window.

Figure 8.5 shows the truth lepton multiplicity in the fiducial region for all production

modes. The ggF and VBF modes have the lowest average multiplicity and similar distribu-

tions, while the V H modes have slightly higher average multiplicity due to the possibility

of producing leptons from the decay of the associated vector boson. The tt̄H mode has the

highest average multiplicity, which will lead to a higher mispairing fraction as compared to

the other production modes.

Figure 8.6 shows the mispairing fraction for the fiducial events for each production mode

both with and without the mass window cut. One immediately observes that the mispairing
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Figure 8.5: Truth lepton multiplicity distributions for fiducial events normalized to unity for
all production modes assuming mH = 125 GeV.
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Figure 8.6: Fiducial mispair fraction as a function of mH for all production modes (a) without
a mass window cut and (b) with the mass window cut of 118 < m4` < 129 GeV.

fraction without the mass window cut is significantly higher in the V H and tt̄H production

modes as compared to the ggF and VBF modes, as expected from the lepton multiplicity

comparisons. Within the mass window, the mispairing fraction is greatly reduced for the V H

and tt̄H production modes. This is expected as external mispairing will result in an m4`

which is not correlated with mH and thus will have a higher probability of falling outside of

the mass window.

Figure 8.7 shows the mispairing fraction as a function of mH for all production modes

and channels separately. In the ggF and VBF modes, it is clear that the predominant effect
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Figure 8.7: Fraction of fiducial events which are mispaired as a function of the Higgs mass
for all production modes.

is internal mispairing as the mispairing fraction is nearly zero for the mixed flavor channels.

However, in the V H and tt̄H modes, there is evidence of external mispairing as the mixed

channels do have a non-zero mispairing fraction.

One can also compare the mispairing fraction between the fiducial selection and and the
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reconstruction selection. Large differences would indicate differences in the pairing between

the fiducial and reconstruction selection. To identify mispaired events in the reconstruction

selection, the reconstructed leptons are truth matched by selecting the highest energy truth

lepton of the same flavor within ∆ R < 0.1. The truth-matched leptons are then used to

classify the event as mispaired following the same criterion as for the fiducial cutflow. A

comparison of the reconstruction and fiducial mispairing fractions is shown in Table 8.3. The

fiducial and reconstructed mispairing fractions are the same to within a few percent for all

samples considered.

Table 8.3: Lepton mispairing fraction in the fiducial and reconstructed selections for the
signal samples assuming mH = 125 GeV.

Mispair Fraction - Full Mass Range

ggF VBF WH ZH tt̄H

Fiducial 0.051 ± 0.001 0.051 ± 0.001 0.164 ± 0.003 0.090 ± 0.002 0.343 ± 0.003
Reconstructed 0.058 ± 0.001 0.054 ± 0.001 0.192 ± 0.003 0.086 ± 0.003 0.339 ± 0.005

Mispair Fraction - 118-129 GeV

ggF VBF WH ZH tt̄H

Fiducial 0.049 ± 0.001 0.049 ± 0.001 0.056 ± 0.002 0.054 ± 0.002 0.087 ± 0.003
Reconstructed 0.052 ± 0.001 0.048 ± 0.001 0.061 ± 0.003 0.051 ± 0.003 0.080 ± 0.003

8.4.4 Fiducial Leakage

The fiducial leakage, defined as the fraction of reconstructed signal events which do not pass

the fiducial selection, is used to determine whether the fiducial region criteria are well defined.

Large values of the fiducial leakage would indicate that the fiducial selection is not selecting

the proper region of phase space. However, the fiducial leakage is expected to be non-zero

due to detector and reconstruction effects, causing event migration at the edge of the fiducial

region. Note that leakage events are being produced by signal processes but have the same

effect on the measurement as background events because they are outside the fiducial region.
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Figure 8.8: Fiducial leakage as a function of mH for all production modes without a mass
window cut on the left and with the mass window cut of 118 < m4` < 129 GeV
on the right.

Therefore, reductions in the fiducial leakage are highly desirable as these events will be treated

as signal rather than background.

The fiducial leakage for all production modes with and without the mass window cut is

shown in Figure 8.8. Without the mass window cut, the leakage is found to be <10% for all

samples, <5% for the ggF production mode, and is considered to be acceptable. Note that

the ZH and tt̄H modes have roughly twice the fiducial leakage of the other modes. The ZH

mode has higher leakage due to ZH → 4`2τ decays, in which the τs are decay products of

the Higgs boson. These events are reconstructed due to the presence of the four leptons but

fail the fiducial selection because H → 2`2τ events are removed explicitly from the fiducial

region. Within the mass window, the effect is reduced because the m4` of these events does

not correspond to mH. Similarly, the increased lepton multiplicity in the tt̄H mode results

in larger fiducial leakage as compared to the fiducial leakage in the ggF mode. No significant

difference in fiducial leakage is observed among the 4e/2e2µ/4µ final states. With the mass

window cut, the leakage is <5% for all production modes at mH = 125 GeV and is considered

acceptable.
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8.5 Unfolding Methods

This section describes the unfolding method used in the differential cross section measure-

ments. The general idea of unfolding is to transform a “measured” distribution fmeas(x) back

to a “truth-level” distribution ftrue(y). Formally, the relation between these two distributions

can be written:

fmeas(x) =

∫
R(x|y)ftrue(y)dy (8.5)

where R(x|y) is known as the response function. The response function in particle physics is

responsible for transforming truth-level observables to reconstructed variables, accounting for

detector efficiency and resolution.

The ATLAS detector simulation acts as the response function, taking truth-level observ-

ables, the matrix element level truth particles, and producing reconstructed level observables,

such as reconstructed leptons and jets. This transform is necessarily complex and information

is lost in the transform, so inverting it is non-trivial and in some cases impossible. Thus, a

number of unfolding methods have been developed to approximate this inversion.

8.5.1 Detector Response

For the differential cross section measurement, the observable distributions are measured using

event counting in bins, so one first generalizes equation 8.5 to the discrete case:

νi =

M∑
j=1

Rijµj (8.6)

where νi is the expected number of measured events in bin i, Rij is now a response matrix,

µj is the true number of events in bin j, and M is the number of bins. The entries of Rij are

then the probability of an event which started in truth bin j to end up in measured bin i.

The response matrix is determined using the signal simulation and can be seen for all

variables in Fig. 8.9. For the kinematic variables, the response matrix is nearly diagonal
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because the detector resolution is much smaller than the bin width. Bin-to-bin migrations are

of order 10% or less for these variables. For the jet variables, the bin-to-bin migrations are

larger, up to 40% in some bins.
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Figure 8.9: Response matrices for all observables of interest in the differential cross section
measurement using the Higgs signal samples with mH = 125 GeV.
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8.5.2 Correction Factors Method

The unfolding method employed in the differential measurements is the MC correction factors

method. The correction factor in the i-th bin is calculated as:

Ci =
NFid
i (xtruth)

NReco
i (xreco)

(8.7)

where NFid
i (xtruth) is the number of fiducial events in the i-th bin of the truth distribution

and NReco
i (xreco) is the number of events in the i-th bin of the reconstructed distribution.

Generally speaking, the correction factor method is known to introduce a bias into the mea-

surement because the correction factors are derived from a signal model, which may not or

may not reproduce the true underlying distributions. This bias can be quantified as [125]:

〈δµi〉 = νi ×
[(

µi
νi

)
Model

−
(
µi
νi

)
Truth

]
(8.8)

where 〈δµi〉 is the average bias in the i-th bin. This bias can be difficult to estimate as it

depends on the difference between the truth and the model, which is not known a priori.

However, it can also be shown that the bias is proportional to the off-diagonal terms of the

response matrix:

〈δµi〉 = νi ×
∑
i 6=j

R−1
ij

[(
νj
νi

)
Model

−
(
νj
νi

)
Truth

]
. (8.9)

The size of this bias goes to zero as the off-diagonal elements approach zero. Therefore, the

use of this method is better justified for the unfolding of distributions in which the bin-to-bin

migrations are small. This is true in the case of the kinematic variables for the differential

cross section measurements as seen in Figure 8.9 in contrast to the jet related variables, which

do have larger bin-to-bin migrations.

The correction factors account for both detector efficiencies and bin-to-bin migrations and

are derived from the signal simulation using the SM prediction for the cross sections of the
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various Higgs production modes. They are evaluated at mH = 125.4 GeV using a linear

interpolation between the two nearest mass point (125 and 126 GeV). The correction factors

for all of the differential variables of interest are shown in Figure 8.10 separately for every

production mode and the combined correction factors are shown in Figure 8.11. Systematic

uncertainties are assigned to the correction factors to account for the assumptions about the

Higgs mass and the signal model composition, as detailed in Sec. 8.5.3.

8.5.3 Correction Factor Systematic Uncertainties

As previously explained, the correction factors method can introduce biases depending on

the model used to derive the correction factors. This section describes studies of systematic

uncertainties associated with the model dependence of the correction factors, demonstrating

that the uncertainties introduced by the choice of model are relatively small. Additional

systematic uncertainties in the correction factors can be found in Section 10.3.

8.5.3.1 Signal Model Composition

As already seen in Figure 8.10, there is a non-trivial dependence on the signal production

mode for the correction factors. Therefore, a systematic uncertainty is assigned in order to

account for the lack of precise knowledge of the relative rates of the various production modes.

To evaluate this uncertainty, the correction factors have been calculated for a number of signal

models in which the signal production mode composition has been altered.

The current ATLAS constraints on the signal strengths in the various production modes

are shown in Figure 2.7. Therefore, the following variations are chosen to estimate the signal

composition systematic uncertainty:

- Vary the VBF and V H contributions by a factor of 0.5× and 2× the SM prediction.
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Figure 8.10: Correction factors for all Higgs production modes separately evaluated at mH =
125.4 GeV. Errors are statistical only, as the systematic uncertainties are only
derived for the combined correction factor.
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Figure 8.11: Combined correction factors evaluated at MH = 125.4 GeV. All systematic
uncertainties are included.
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- Vary the tt̄H contribution by a factor of 0× and 5× the SM prediction.

For each bin, the largest variation in the correction factor from these variations is taken as the

systematic uncertainty. The relative systematic uncertainty in the inclusive correction factor

is 0.6% and the results of this procedure for all bins of the differential variables are seen in

Table 8.4.

Table 8.4: Systematic uncertainties on the correction factors derived by varying the signal
model composition by scaling the the VBF and V H contributions by factors of
0.5-2× and the tt̄H contribution by factors of 0-5× their SM prediction.

Systematic Uncertainty (%)
Variable Bin 1 Bin 2 Bin 3 Bin 4 Bin 5
Inclusive 0.6 - - - -
pT 0.06 0.2 1.0 2.2 -
|yH | 0.7 0.7 0.6 0.6 0.4
m34 0.6 0.6 0.5 0.5 -
| cos θ∗| 0.6 0.5 0.6 0.6 0.6
njets 0.2 1.1 1.2 13.0 -
pT,jet 0.2 1.2 1.1 2.8 -

8.5.3.2 Higgs Mass Uncertainty

The experimental uncertainty inmH, currently at the level of 0.5 GeV, results in an uncertainty

on the correction factors because the correction factors are derived using a fixed value of

mH = 125.4 GeV. As already seen in Sec. 8.4.2, the inclusive fiducial efficiency does not

strongly depend on the Higgs mass in the range [123,127] GeV. Applying the mass window

cut slightly increases this dependence, as seen in Figure 8.3.

To evaluate this uncertainty, the correction factors are derived using the signal samples

with mH = 125 and 126 GeV and for each bin the largest variations are taken as the systematic

uncertainty. The derived correction factors for the pT cross sections are shown in Table 8.5

for the three relevant mass points. The results of this procedure for all variables are shown in
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Table 8.6 and the relative systematic uncertainty on the inclusive correction factor is found

to be 1.7%.

Table 8.5: Correction factors for the pT distribution for signal models with mH = 125, 125.4
and 126 GeV. Uncertainties are from MC statistics only.

mH [GeV] Correction Factor
0 < pT < 20 20 < pT < 50 50 < pT < 100 100 < pT < 200

125 1.781 ± 0.015 1.801 ± 0.013 1.821 ± 0.015 1.782 ± 0.02
125.4 1.787 ± 0.015 1.817 ± 0.014 1.830 ± 0.015 1.797 ± 0.019
126 1.8 ± 0.015 1.842 ± 0.014 1.842 ± 0.016 1.824 ± 0.021

Table 8.6: Systematic uncertainties on the correction factors derived by varying mH from 125
GeV to 126 GeV.

Systematic Uncertainty (%)
Variable Bin 0 Bin 1 Bin 2 Bin 3 Bin 4
Inclusive 1.0 - - - -
pT 0.6 1.4 0.8 1.5 -
|yH | 0.8 1.4 2.0 1.1 1.4
m34 0.5 0.4 1.4 1.4 -
| cos θ∗| 0.4 1.8 0.5 0.6 1.7
njets 0.7 0.6 2.7 1.8 -
pT,jet 0.7 1.5 1.2 1.0 -

8.5.4 Non-SM Signal Models

Several alternative spin/CP hypotheses have been used to check the model dependency of the

correction factors. These variations on the signal model do not contribute to the systematic

uncertainty on the correction factors but are intended to demonstrate the model independence

of the method. The JHU generator [126, 127] is used to produce signal samples with JP = 0+,

0−, and 2+ configurations. Two different generators have been used for comparison for the

JP = 0+ hypotheses: Powheg, which is a NLO generator and JHU which is at LO. The ratio

of the correction factor (CF) given from each model with respect to the JHU-0+ hypothesis

is shown in Figure 8.12 for the six differential variables of interest. No significant differences
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are observed considering the statistical uncertainties of the different samples.
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Figure 8.12: Ratio of Correction factors for different spin-parity hypotheses with respect to
the JHU-0+ sample for all of the differential variables.
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Chapter 9

Background Estimation

This chapter describes the background estimation methods given the H → 4` event selec-

tion described in Chapter 6. The backgrounds are broadly categorized into irreducible and

reducible backgrounds. Irreducible backgrounds consist of SM processes whose final states

include four isolated leptons and are indistinguishable from that of the H → 4` process. Re-

ducible backgrounds are present due to SM processes in which lepton candidates originate

from semi-leptonic decays of heavy flavor hadrons or from misidentification of jets as leptons.

The following sections describe the background estimation methods for both categories of

backgrounds and show checks on the background predictions in suitable control regions.

9.1 Irreducible Background

The largest background in this analysis comes from the irreducible backgrounds. The primary

contributions to the irreducible background come from SM ZZ(∗) production. The leading

order diagrams for the three dominant processes are shown in Figure 9.1 consisting of qq̄ → ZZ

production, single resonant Z → 4`, and gg → ZZ. The interference between the gg → ZZ

and the ggF signal is expected to be below 1% the near the signal peak [105] and is neglected

in this analysis6. The background predictions for each of these processes are taken from the
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simulation, as detailed in Section 6.2.2.
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Figure 9.1: Leading-order Feynman diagrams for the SM processes giving contributions to
the irreducible background, which from left to right are qq̄ → ZZ, single resonant
Z → 4`, and gg → ZZ.

A breakdown of the irreducible background estimates is shown in Table 9.1. The irreducible

background is roughly 10× larger than the signal over the entire mass range but has a well-

predicted shape in m4`, shown in Figure 11.7. In the low mass region, the peak near 90 GeV

comes from the single resonant production diagram. From 100 GeV up to 180 GeV, one of

the Z’s must be off-shell and is therefore suppressed. Above 180 GeV, both Z’s are on-shell

and the cross section falls off predictably.

Table 9.1: Irreducible background estimates for 20.3 fb−1 of
√
s = 8 TeV data over the

full m4` range and within the mass window used in the differential measurements.
Uncertainties are from simulation statistics only.

ZZ∗ event yield estimates for 20.3 fb−1at
√
s = 8 TeV

Channel Full m4` range 118 < m4` < 129 GeV
4µ 122.6± 0.4 2.53± 0.01
2µ2e 84.8± 0.4 1.23± 0.01
2e2µ 83.9± 0.4 1.79± 0.02
4e 67.6± 0.3 1.10± 0.01
Total 358.9± 0.7 6.65± 0.03

6Interference between gg → ZZ and gg → H → ZZ does become significant for the off-peak cross sections
and can be used to indirectly set a limit on the width of the Higgs boson.
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9.2 Reducible Background

The reducible backgrounds consist of several SM processes with the dominant contributions

coming from Z+jets and tt̄ production and smaller contributions from WZ production. Ex-

ample Feynman diagrams are shown for these processes in Figure 9.2. Because the selection

efficiency for these backgrounds is not expected to be well-modeled, the reducible background

yields are estimated using data-driven methods.
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Figure 9.2: Leading-order Feynman diagrams for the SM processes giving contributions to
the reducible background, which from left to right are Z+jets (both Zbb and
Z+light), tt̄ pair production, and WZ production.

The general strategy is as follows: the background composition and shapes are studied

in special data control regions (CR) constructed by relaxing or inverting selection and/or

lepton identification requirements. The larger statistics in the control regions permit several

distributions to be compared between data and simulation. The expected background in the

signal region (SR) is estimated by extrapolating from the control region using the so-called

transfer factors. These factors are normally determined based on the efficiency of the relaxed

or inverted selection criteria in the given control regions, but they can also be calculated by

the ratio of the expected yields between the control and signal regions.

Because the composition of the reducible backgrounds depends strongly on the flavor of

the low pT leptons, separate extrapolations are done for events with subleading muons and

subleading electrons. The following sections summarize the methods for both sets of final
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states. For each background, three predictions are produced, from which one is used as the

central value and the others are used to evaluate the systematic uncertainties. The methods

to determine the central values for the background estimates are described here; the methods

used for systematic variations are described in Ref. [28].

9.2.1 Reducible ``+ µµ Background

There are three significant backgrounds which result in `` + µµ final states. The dominant

contribution is from Z production in association with leptons from heavy quark meson semi-

leptonic decays (heavy flavor), denoted as Zbb. A smaller contribution arises from Z pro-

duction accompanied by π/K in-flight decays to muons from within light flavor jets, denoted

as Z+light. The sum of the Zbb and Z+light contribution is denoted as Z+jets. Finally, tt̄

production provides a small contribution when the top quarks decay semi-leptonically.

To estimate the ``+ µµ backgrounds, four CRs are constructed and the background con-

tributions in each are fit simultaneously. An unbinned maximum likelihood fit is performed

on the m12 distribution, which allows discrimination between the Z+jets component, which

peaks at the Z mass, from the tt̄ component, which is relatively flat in m12. Each CR is

constructed to enhance certain backgrounds while remaining orthogonal to all other CRs as

well as to the SR in order to gain sensitivity to each background separately and minimize

signal contamination in the CR. The four CR are defined as follows:

(1) Inverted d0 CR:

The standard four-lepton analysis selection is applied on the leading dilepton pair. At

least one lepton in the subleading dilepton pair must fail the impact parameter significance

requirement and the isolation requirements are not applied to either lepton. This CR is

enhanced in Zbb̄ and tt̄ because leptons from b-quark meson decays are characterized by
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large d0 significance.

(2) Inverted isolation CR:

The standard four-lepton analysis selection is applied on the leading dilepton pair. The

subleading dilepton pair has the standard impact parameter significance selection applied

and at least one lepton must fail the isolation requirements. This control region enhances

the Z+light jet component over the Zbb̄ component by requiring the impact parameter

significance selection. These two background processes are described by the same model

and would be consequently highly correlated if the first two control regions were not

separated.

(3) eµ+ µµ CR:

An opposite-charge different-flavor leading dilepton pair satisfying the standard four-

lepton analysis selection is required. The subleading dilepton pair has neither the impact

parameter significance nor the isolation selection applied and both same and opposite

charge lepton pairs are accepted. This control region consists almost entirely of tt̄ events.

(4) Same Sign CR:

The standard four-lepton analysis selection is applied on the leading dilepton pair. The

subleading dilepton pair is required to have the same charge and neither the impact

parameter significance nor the isolation requirements are applied. This same sign control

region is not dominated by a specific background; all the reducible backgrounds have

significant contributions.

A fifth CR, referred to as the relaxed OS CR, is more relaxed than the other four CRs,

contains all background components as well as the signal region (and therefore is not used in

the fit). Events in the relaxed OS CR are are required to pass the standard selection with the

exception that the isolation and impact parameters significance cuts are not applied on the
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subleading dilepton pair. The fit results are expressed in terms of number of events from the

various background sources in the relaxed OS CR. The number of background events in the

relaxed OS CR are then extrapolated to the SR using transfer factors from the simulation.

The shapes of the m12 distribution for the different backgrounds are parameterized based

on the shapes from the simulation. The Zbb̄ and Z+light shapes are approximated by a

convolution of a Crystal Ball with a Breit-Wigner, which models well the peak and lower

tail of the distribution. The Zbb̄ and Z+light components are both modeled using the same

function because both contain a real Z and thus share the same shape parameters. The tt̄

background shape is modeled by a 2nd order Chebychev polynomial. All shapes parameters

are derived by fitting the functions to the simulation. A closure test in the simulation using

these shapes was performed and no significant biases were found.

Despite the inverted selection, there are remaining contributions fromWZ and ZZ(∗) in the

control regions. Because the contributions from these processes are small, their normalizations

are fixed to their predicted values from the simulation in the simultaneous fit and their m12

shapes are modeled using the same functions as used for Z+jets.

The results of the simultaneous fit in the four control regions are shown in Figure 9.3. From

the fit, the number of events in the relaxed OS CR is estimated and compared to the simulation

prediction in Table 9.2. The simulation underestimates the Zbb and tt̄ backgrounds by 32%

and 17% respectively, while the Z+light prediction agrees with the estimated contribution

in data. The transfer factors are also listed in Table 9.2 as estimated from simulation. The

uncertainties in the transfer factors contain contributions from MC statistics as well as a 1.6%

systematic uncertainty due to differences in the efficiency of the isolation/impact parameter

selection criteria between the simulation and data as measured in a suitable control region.

The final signal region estimates are shown in Table 9.3. The WZ prediction is taken from the

simulation because its contribution is small relative to the other backgrounds and, unlike the
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other reducible backgrounds, only one of the subleading leptons is expected to be background-

like.
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Figure 9.3: The data m12 distributions are shown after the unbinned simultaneous fit in the
inverted d0, inverted isolation, eµ+ µµ, and same sign control regions. The WZ
and ZZ∗ contributions are estimated from the simulation and the remaining back-
ground normalizations are taken from the fit.

9.2.2 Reducible ``+ ee Background

The reducible `` + ee background is primarily composed of events in which jets have been

misidentified as electrons. Two control regions with relaxed identification electrons (“X”) are

constructed in order to enrich the fake electron background components:
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Table 9.2: Estimation of the reducible ``+µµ background event yields in the relaxed OS CR
as predicted from the simulation and estimated from the fit to the data control
regions. The transfer factors to extrapolate from the relaxed OS CR to the SR are
also listed.

Background Simulation Fit Estimation Transfer Factor (%)
Zbb̄ 93.5± 0.7 139± 16 3.10 ± 0.19
Z+light 43± 5 46± 9 3.0 ± 1.8
tt̄ 150.6± 1.5 181± 11 0.55 ± 0.09

Table 9.3: Final predictions of the reducible `` + µµ background event yields in the signal
region. The statistical uncertainties are derived from the fit to the data control
regions and the systematic uncertainties are estimated from the transfer factor
uncertainties.

Background 4µ 2e2µ
Zbb̄ 2.30± 0.26 (stat)± 0.14 (syst) 2.01± 0.23 (stat)± 0.13 (syst)
Z+light 0.81± 0.38 (stat)± 0.41 (syst) 0.57± 0.31 (stat)± 0.41 (syst)
tt̄ 0.511± 0.031(stat)± 0.089(syst) 0.485± 0.029(stat)± 0.084(syst)
WZ 0.42± 0.07 0.44± 0.06

(1) 3`+X Control Region:

Standard selection for the leading dilepton pair as well as the leading lepton in the sub-

leading dilepton pair. Relaxed identification only for the low pT electron in the subleading

dielectron pair.

(2) Z +XX Control Region:

Standard selection on leading dilepton pair. Relaxed identification for both electrons in

the subleading pair.

The relaxed criteria on X are defined separately for each control region and method. Addition-

ally, Z+X control regions are defined in order to perform data-driven efficiency measurements

for the relaxed electron selections.

For all methods, the composition of the control region must be well-understood because

the efficiencies of the full identification criteria depend strongly on the origin of the fake

electron (heavy flavor, light flavor, photon conversions, etc.). For the purpose of these studies,
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electron candidates in the simulation have been categorized according to the truth information:

isolated electrons (e), light jets faking an electron (f), photon conversions and the FSR (γ),

and electrons from heavy quark semi-leptonic decays (q). Likewise, electron candidates may

also be categorized as to whether they are more Electron-like (E) or Fake-like (F) based on

discriminating reconstruction variables.

9.2.2.1 3`+X Method

The 3` + X CR event selection is defined following the standard quadruplet selection with

the exception that the lowest ET electron has only the standard silicon hit requirements

(nsilicon > 6 and npixel > 1) and the electron identification, isolation, and impact parameter

significance requirements are not applied. Furthermore, same sign (SS) subleading dileptons

are required in order to suppress the ZZ∗ contribution and exclude the signal region. With

this same-sign selection, 6% of the remaining events come from ZZ∗ events with fake electron

candidates and are subtracted from the final estimate. Finally, in the case that more than

one quadruplet per event is built, all the quadruplets with the same m12 are considered.

A two dimensional fit of discriminating variables is used to obtain the yields of the different

electron fake components in the data control region. The number of hits on track in the first

layer of the pixel detector (nB−layer
hits ) is used to discriminate between photon conversions and

light jets/electrons and the ratio of TRT high threshold hits to all hits on track (rTRT)

discriminates between light jets and electrons. Templates for these discriminating variables

are derived from simulation of the Z+X control region and are shown in Figure 9.4. Likewise,

the expected yields in the 3` + X control region from the simulation for each background is

also shown, with the dominant background coming from light jets faking electrons.

The fit is performed using the sPlot method [128], which assigns a weight w to each

fitted event corresponding to the covariance-weighted probability of that event coming from a
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Figure 9.4: Templates of nB−layer
hits (a) and rTRT (b) for the different sources of reducible

backgrounds (γ,f ,q) derived from simulation of the Z + X control region. The
templates for the ZZ∗ background are obtained from the X in the simulated 3`+X
control region selection. The predicted yields for each background contribution in
the 3`+X control region are also shown.

specific background. The sum of the weights gives the total background yield estimation. The

2µ2e and 4e channels are fit separately and the combined results of the fit are shown in Figure

9.5, including the fit yields in the control region. Because the heavy flavor background is

small, its contribution in the fit is fixed to the prediction from the simulation with an allowed

20% variation using a Gaussian constraint.

The yields of the various background components are then extrapolated to the signal

region by applying transfer factors derived from the efficiencies of the selection criteria which

were relaxed (electron identification, isolation, and impact parameter significance). These

efficiencies are measured in data using several different Z + X control regions which have

been enhanced in the different background components. The final efficiencies used for the

extrapolation are measured in eight pT bins for the different sources of the background.

For the efficiency measurements, Z + X candidate events are selected by requiring an

opposite-sign same-flavor lepton pair in which both leptons pass the standard analysis lepton
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Figure 9.5: The results of a simultaneous fit to (left) nB−layer
hits and (right) rTRT for the esti-

mation of the `` + ee background components. The 2µ2e and 4e channels are fit
separately and the sum of both channels is shown here.

selection criteria with pT > 20 GeV. An additional requirement on the transverse missing

energy, Emiss
T < 50 GeV, is applied in order to suppress contributions from WZ events. The

additional X leptons are required to be well separated from the leptons from the Z boson,

satisfying ∆R > 0.2(0.1) for different (same) flavor leptons. The X is required to satisfy the

standard silicon hit requirements as a baseline and then the various control regions are defined

by imposing additional requirements on the X in order to enhance the different background

components.

A control region enhanced in photon conversions is formed by requiring that X have no

B-layer hits and rTRT > 0.15. The truth composition in both the E and F categories is shown

in Table 9.4 for this selection. The purity of photon conversions in this region is estimated to

be about 86% integrated over the entire pT spectrum, with 10% contamination coming from

light jets and 3% from heavy flavor.

A fake-enriched Z + X control region is constructed by requiring the X to have at least

one B-layer hit, which reduces the contamination of the γ background. In this CR, the purity

128



9. Background Estimation

Table 9.4: Truth composition of the X object for the combined sample and the E and F
categories in the γ-enriched control regions for the ``+ ee reducible backgrounds.

4e e q γ f
E 0.01± 0.002 0.159± 0.007 0.469± 0.018 0.362± 0.015
F 0 0.07± 0.001 0.924± 0.012 0.068± 0.003

Combined 0.002± 0.001 0.027± 0.001 0.862± 0.011 0.108± 0.003

2µ2e e q γ f
E 0.01± 0.001 0.149± 0.006 0.464± 0.017 0.380± 0.014
F 0 0.07± 0.001 0.929± 0.011 0.064± 0.002

Combined 0.001± 0.001 0.025± 0.001 0.869± 0.010 0.105± 0.003

for the fake component is > 90% in the F-like category and approximately 70% in the E-like

category as shown in Table 9.5.

Table 9.5: Truth composition of the X object for the combined sample and the E and F
categories in the f -enhanced control regions for the ``+ ee reducible backgrounds.

4e e q γ f
E 0.01± 0.001 0.138± 0.010 0.193± 0.002 0.660± 0.005
F 0 0.013± 0.001 0.052± 0.001 0.934± 0.005

2µ2e e q γ f
E 0.01± 0.001 0.133± 0.010 0.200± 0.002 0.660± 0.005
F 0 0.013± 0.001 0.053± 0.001 0.934± 0.004

For both of these control regions, a scale factor (SF) is determined using:

SFi =
εidata

εiMC

(9.1)

where the εidata/MC are the measured efficiencies in the data or simulation of the electron

identification requirements in the ith pT bin with respect to the Z + X control region. The

SFs are used to correct the simulation efficiencies before extrapolating the control region yields

into the signal region. The SFs measured in the Z + X CR are shown in Table 9.6 for both

the γ and f components. The γ SFs are consistent with one for most pT bins while the f SFs

are as large as 2.3. A relative systematic uncertainty of 10 (30)% is assigned to account the

residual mismodeling of the γ (f) background components. The e component SFs are taken
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from the standard ATLAS evaluation and the heavy flavor SF is assumed to be consistent

with one with an assigned uncertainty of 40%.

Table 9.6: Scale factors (SF) for the various background components. The values are averaged
between the Z → ee + X and Z → µµ + X. The SF for the f component above
20 GeV is extrapolated from the values obtained in the lower pT bins .

Scale Factors
pT bin [GeV] f γ

< 8 1.40± 0.04 1.08 ± 0.04
8− 9 1.41 ± 0.04 0.99± 0.04
9− 10 1.36 ± 0.05 1.02 ± 0.04
10− 11 1.81 ± 0.08 1.01± 0.05
11− 12 2.32± 0.11 0.89 ± 0.05
12− 15 1.88± 0.07 0.93 ± 0.03
15− 20 2.20± 0.10 1.02 ± 0.04
> 20 − 1.05 ± 0.03

The background estimate in the signal region is calculated using the transfer function for

the γ and f components:

SRi = εiMC(pT) · SF i(pT) · wi (9.2)

where SRi is the extrapolated background yield in the signal region for control region event

i with weight wi from the fit. Because multiple quadruplets are allowed in a single control

region event (accounting for ∼10% of the CR events), the transfer function must be modified

in order not to double count these contributions. Assuming multiple quadruplets within an

event are uncorrelated, the transfer function for events with multiple quadruplets is:

SRi = 1−
Nquad∏
j=1

(1− εjMC(pT) · SF j(pT) · wj) (9.3)

Because the heavy flavor component is small and the individual event weights are subject to

large statistical uncertainties from the fit of the control region, an inclusive transfer factor

is used to extrapolate this component to the signal region, given simply by nSR/nCR. An

additional correction to the heavy flavor component is added to account for the expected

difference in yield between the OS and SS control regions, which is found to be SSq/OSq ≈ 0.6.
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The final results for the 3`+X method, including control region yields, average efficiencies,

and signal region estimates, are shown in Table 9.7. For the final estimate, two main sources

of systematic uncertainty are taken into account: the quality of the templates of the fit and

the precision on the transfer factors. The latter component contains the statistical uncertainty

on the MC efficiency (∼ 4%) and the systematic uncertainties on the SF described earlier.

After the subtraction of the remaining ZZ contribution, the signal region estimate is 2.88 ±

0.28(stat)±0.54(syst) events for the 4e channel and 2.91±0.33(stat)±0.60(syst) for the 2µ2e

channel in the full mass range.

Table 9.7: Table containing fit results for the event yields of each background component esti-
mated from the fit of the data in the Z+X control regions, the average efficiencies
of the additional selection criteria for each component, and the extrapolated yield
of each component in the signal region. Estimates are done separately for the 4e
and 2µ2e channels.

4e
Background Data CR fit yield <efficiency> Estimated SR yield

f 420.0 +21.50
−21.20 0.0034 ± 0.0004 1.45 +0.07

−0.07
+0.47
−0.47

q 7.60 +1.51
−1.52 0.11 ± 0.02 0.83 +0.18

−0.18
+0.14
−0.14

γ 29.36 +8.28
−7.75 0.024 ± 0.004 0.68 +0.20

−0.20
+0.20
−0.20

Signal Region Estimate
Extrapolation to SR 2.96±0.61
ZZ contribution 0.08±0.01
Final 4e estimate 2.88±0.61

2µ2e
Background Data CR fit yield <efficiency> Estimated SR yield

f 473.7 +22.8
−22.4 0.0034 ± 0.0004 1.65 +0.08

−0.08
+0.53
−0.53

q 10.66 +2.13
−2.13 0.09 ± 0.02 0.96 +0.26

−0.26
+0.16
−0.16

γ 18.2 +7.80
−7.19 0.024 ± 0.004 0.43 +0.19

−0.19
+0.21
−0.21

Signal Region Estimate
Extrapolation to SR 3.04±0.69
ZZ contribution 0.13±0.01

Final 2µ2e estimate 2.91±0.69
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9. Background Estimation

9.3 Additional Background Control Regions

Validation of both the irreducible and reducible background predictions is performed in a

control region dominated by background contributions. The control region is constructed

by following the standard analysis selection except that the isolation and impact parameter

significance criteria are removed for the subleading lepton pair. The m12 and m34 distributions

for all candidates passing the selection criteria are shown in Figure 9.6 to validate both the

normalization and shapes of these predictions. The mass shapes are derived using the methods

described in Section 11.2. Good agreement is observed between the predictions and the data.
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Figure 9.6: Invariant mass distributions of the lepton pairs in the control sample defined
by a Z boson candidate and an additional same-flavor lepton pair over the full
m4` distribution, for the

√
s = 7 and 8 TeV datasets . The kinematic selection

of the analysis is applied and the isolation and impact parameter significance
requirements are applied to the first lepton pair only. The sample is divided
according to the flavor of the subleading lepton pair with the `` + µµ events
shown in the top row and `` + ee events in the bottom row. The simulation is
normalized to the data driven background estimations.
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Chapter 10

Systematic Uncertainties

This chapter describes the derivation of systematic uncertainties associated with the measure-

ments in the H → 4` decay channel. The chapter begins with a general overview of the sources

of systematic uncertainty in all of the measurements and the methods used to estimate their

impact on the measurement in Section 10.1. Then, results from the specific studies for the

mass and signal strength measurements are presented in Section 10.2 and the results specific

to the differential cross section measurements are shown in Section 10.3.

10.1 Sources of Systematic Uncertainties

This section describes the sources of systematic uncertainty considered in the H → 4` mea-

surements. These sources have been divided into two categories based on their impact on

the analysis: those that primarily affect the predicted yields in Section 10.1.1 and those that

primarily affect the shapes of the observables of interest in the signal region in Section 10.1.2.

10.1.1 Yield Systematics

Uncertainty in the signal and background event yield estimation can arise from a number

of sources. For predictions from the simulation, mismodeling of reconstruction level observ-
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10. Systematic Uncertainties

ables used in the event selection generally leads to differing selection efficiencies between the

simulation and the data, resulting in possible biases in the measurements. For data-driven

predictions such as the reducible background estimation, uncertainties can arise from limited

statistics and/or uncertainty in the composition of a data control region. This section describes

the sources of systematic uncertainty affecting the signal and background yield estimation.

10.1.1.1 Luminosity

The overall uncertainty in the integrated luminosity is 1.8% and 2.8% for the 7 TeV and 8 TeV

data, respectively, using the methods of Reference [129]. This uncertainty enters several places

in the measurements. It is used to normalize both the irreducible background and the signal

yield predictions because both are taken from the simulation. It also factors directly into the

calculation of the observed cross sections.

10.1.1.2 Trigger Efficiency

Differences in the trigger efficiency between the data and simulation can arise due to mismod-

eling of the trigger-level observables. For this analysis, a trigger selection efficiency for the

signal of over 99% is possible due to the presence of multiple high-pT leptons in the final state.

A conservative estimate of the systematic uncertainties associated with the trigger selection

efficiency is evaluated by calculating the signal yield with and without the trigger requirements

in the event selection. This results in a systematic uncertainty of 0.4% from muon triggers

and 0.1% from electron triggers on the inclusive signal yield.

10.1.1.3 Electron Selection

Systematic uncertainties due to differences in the electron reconstruction and identification

efficiencies between the data and the simulation are evaluated using the results of Refer-
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ence [114]. The uncertainties in the electron reconstruction and identification efficiency range

from less than 1% at high ET up to a few percent at low ET as shown in the data/MC ratio in

Figure 10.1. The systematic uncertainties are divided into seven nuisance parameters accord-

ing to the electron ET and whether or not the systematic uncertainty is correlated between

ET bins, as shown in Table 10.2.
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Figure 10.1: (left) Reconstruction and identification efficiency for electrons in the 8 TeV data
and simulation as a function of ET for several different operating points using
the likelihood-based electron identification. The ratio between the data and the
simulation (MC) is used to correct the efficiency in the simulation. (right) The
ratio of the efficiencies in data and simulation for the additional impact parameter
and isolation criteria required by the electron selection as a function of ET for
the 8 TeV data and simulation.

An additional systematic uncertainty is assigned to account for uncertainties in the model-

ing of the isolation and impact parameter significance as the requirements on these observables

are not included in Reference [114]. The efficiencies of these additional cuts has been esti-

mated using a dedicated tag and probe study of Z → ee events, the results of which are shown

in Figure 10.1. The selection efficiency for electrons in the barrel (|η| < 1.37) is assigned a

systematic uncertainty of 1.4% (0.7%) for ET < 11 GeV (11 < ET < 15 GeV) and the selec-
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10. Systematic Uncertainties

tion efficiency for electrons in the end-caps (|η| > 1.37) is assigned a systematic uncertainty

of 2.5% (1.2%) for ET < 11 GeV (11 < ET < 15 GeV) per electron.

10.1.1.4 Muon Selection

Systematic uncertainties due to differences in the muon reconstruction efficiency between the

data and the simulation are evaluated using the results of Reference [116]. The efficiency as

a function of η for the different reconstructed muon types with pT > 10 GeV is shown in

Figure 10.2. The ratio of the efficiency measured in data to the efficiency in the simulation

shows that the uncertainties in the muon reconstruction efficiency are at the per-mille level.
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Figure 10.2: (left) Reconstruction efficiency for muons in the 8 TeV data and simulation
as a function of η for the various muon reconstruction strategies. The ratio
between the data and the simulation (MC) is used to correct the efficiency in the
simulation. (right) The ratio of the efficiencies in data and simulation for the
additional impact parameter and isolation criteria required by the muon selection
as a function of pT for the 8 TeV data and simulation.

The isolation and impact parameter significance selection efficiencies are also studied in

Z → µ+µ− events and the results are shown in Figure 10.2. No significant differences between

the data and simulation are observed so no systematic uncertainty is assigned.
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10.1.1.5 Reducible Background Yield

The data-driven estimates for the reducible background are subject to uncertainties due to

limited statistics in the various control regions as well as uncertainties in the composition of

those control regions. The systematic uncertainties for the data-driven reducible background

prediction are described in Section 9.2.

10.1.2 Shape Systematics

This section describes the sources of systematic uncertainty that primarily affect the shapes

of the final observables in the signal region.

10.1.2.1 Lepton Energy/Momentum Scale and Resolution

Systematic uncertainties affecting the reconstructed energy/momentum scale or resolution for

leptons have been evaluated. These are calculated by first modifying the energy/momentum

of the reconstructed leptons by a scale factor prior to the event selection, allowing for changes

in the event selection due to threshold effects. This can change the event yield due to events

containing leptons near the pT thresholds but this is a negligible effect. More importantly,

the shape of the m4` distribution is modified, which directly affects the mH measurement.

Systematic uncertainties associated with the electron/photon energy scales and resolu-

tion are evaluated following the results of Reference [67]. Sources of systematic uncertainty

include the LAr calorimeter calibration procedure, detector high-voltage non-uniformity, ID

and calorimeter material description, and uncertainties due to modeling of pile-up. The pho-

ton energy scale and resolution uncertainties are considered simultaneously with the electron

systematic uncertainties because m4` can contain contributions from FSR photons and the

uncertainties are highly correlated between electrons and photons due to the calorimeter EM
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10. Systematic Uncertainties

calibration procedures.

Detailed studies of the muon momentum scale and resolution in both the simulation and

data have been performed using Z → µ+µ−, J/ψ → µ+µ− and Υ → µ+µ− events in Refer-

ence [116]. Because the MS and ID make independent measurements of the muon momenta,

different sources of systematic uncertainty will affect these measurements, including but not

limited to detector alignment (see Chapter 4), magnetic field description and hit reconstruc-

tion and calibration. These results show that the muon momentum scale is known with a

precision of 0.05% to 0.2% depending on η.

10.1.2.2 Jet Systematic Uncertainties

Studies of systematic uncertainties in the jet energy scale and resolution have been performed

in Reference [130, 131] for the 7 TeV data and preliminary results using the same methods

are produced for the 8 TeV data. Sources of systematic uncertainty in the jet energy scale

and resolution include detector material description, jet flavor/composition uncertainties and

pile-up modeling. Figure 10.3 shows the jet energy scale uncertainties as a function of η and

pjet
T for the 8 TeV data. Uncertainties in jet-related observables will not lead to uncertainties

in the signal and background yield estimates because the event selection does not depend on

the jets, but does result in uncertainties in the correction factors for the jet-related differential

cross section measurements.

10.1.2.3 Theory Systematic Uncertainties

As explained in Section 2.2, there are inherent uncertainties in theoretical cross section cal-

culations due to choice of factorization scale, renormalization scale, and PDFs. Uncertainties

in the normalization of the background and signal predictions due to these choices are taken

from Refs. [25, 74, 75] as described in Section 6.2. Additional shape uncertainties due to these
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Figure 10.3: Jet energy scale uncertainties as a function of (left) jet pT and (right) jet η in
the 8 TeV data [130, 131].

choices for the irreducible background are also considered in the differential cross section mea-

surements and are described in Section 10.3.1. Finally, uncertainties in the differential cross

section theoretical predictions are evaluated as described in Section 10.3.3.

10.2 Mass and Signal Strength Systematic Uncertainties

The results of the systematic uncertainty studies for the mass and signal strength measure-

ments are presented in this section. The methods and results of the individual studies are

described and then a ranking of the nuisance parameters in the likelihood fit is shown in

order to determine the dominant sources of uncertainty in the mass and signal strength mea-

surements. A summary of the systematic uncertainties affecting the predicted signal yields is

shown in Table 10.1.

10.2.1 Lepton Efficiency Uncertainties

Systematic uncertainties affecting the signal and background yields are evaluated by com-

puting the difference between the nominal event yield and the event yield after applying a

systematic variation to the simulated events. If Σnom is the nominal yield and Σsyst is the
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10. Systematic Uncertainties

Table 10.1: The expected impact of the systematic uncertainties on the signal yield, derived
from simulation, for mH = 125 GeV, are summarized for each of the four final
states for the combined 4.5 fb−1 at

√
s = 7 TeV and 20.3 fb−1 at

√
s = 8 TeV.

The symbol “–” signifies that the systematic uncertainty does not contribute to
a particular final state. The last three systematic uncertainties apply equally to
all final states. All uncertainties have been symmetrized.

Source of uncertainty 4µ 2e2µ 2µ2e 4e combined

Electron reconstruction and identification efficiencies – 1.7% 3.3% 4.4% 1.6%
Electron isolation and impact parameter selection – 0.07% 1.1% 1.2% 0.5%
Electron trigger efficiency – 0.21% 0.05% 0.21% <0.2%
``+ ee backgrounds – – 3.4% 3.4% 1.3%

Muon reconstruction and identification efficiencies 1.9% 1.1% 0.8% – 1.5%
Muon trigger efficiency 0.6% 0.03% 0.6% – 0.2%
``+ µµ backgrounds 1.6% 1.6% – – 1.2%

QCD scale uncertainty 6.5%
PDF, αs uncertainty 6.0%
H → ZZ∗ branching ratio uncertainty 4.0%

modified yield, then the relative systematic uncertainty is evaluated as |Σnom − Σsyst|/Σnom.

For systematic variations which affect individual leptons in an event, the uncertainties be-

tween leptons are treated as correlated in order to produce more conservative systematic

uncertainties.

The yield uncertainties have been derived for all signal samples over a large range of mH

and representative results are shown here for a SM Higgs boson with mH = 125 GeV. The

evaluated systematic uncertainties in the signal yields of channels containing electrons are

shown in Table 10.2. The total uncertainties in the electron reconstruction and identification

efficiency of the signal yield at mH = 125 GeV are 4.4%, 1.7% and 3.3% for 4e, 2e2µ and

2µ2e final states, respectively. The muon selection related systematic uncertainties for the

signal yield for channels containing muons are estimated to be 1.86%, 0.77% and 1.09% in the

4µ, 2µ2e and 2e2µ final states respectively. The electron trigger systematic uncertainties are

evaluated to be 0.2%, 0.2%, and 0.05% in the 4e, 2e2µ and 2µ2e final states respectively and

the muon trigger systematic uncertainties are evaluated to be 0.7%, 0.6%, and 0.03% in the
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4µ, 2µ2e and 2e2µ final states respectively.

Table 10.2: Relative systematic uncertainties in the 4e/2e2µ/2µ2e channel yields for a SM
Higgs signal with mH = 125 GeV resulting from uncertainties in the single elec-
tron reconstruction, identification, isolation, and impact parameter significance
selection efficiencies. The reconstruction and identification uncertainties are di-
vided into seven nuisance parameters based on electron ET and the correlated
nature of the systematic sources.

Relative uncertainty in 4e/2e2µ/2µ2e signal yield
Systematic Source 7 < ET < 10 10 < ET < 15 15 < ET < 20 ET > 20

ID+Reco, Uncorrelated 0.7/0.02/0.6% 0.9/0.1/0.9% 0.8/0.1/0.7%
2.6/1.6/1.0%

ID, Correlated 1.5/0.2/1.3%

Reco, Correlated 2.6/0.2/2.5% 0.9/0.3/0.7%

Isolation+IP 1.2/0.1/1.1%

10.2.2 Mass Scale Uncertainties

Mass scales uncertainties arise due to uncertainties in the lepton energy/momentum scale as

described in Section 10.1.2.1. The difference in the mean of the m4` distribution between the

nominal and modified event selections (∆m4` =
〈
mmodified

4`

〉
−
〈
mnominal

4`

〉
) is taken as the mass

scale systematic uncertainty. The mass scale uncertainties are then implemented using nui-

sance parameters which allow the m4` distribution of the signal model to shift proportionally

to the derived systematic uncertainty as described in Section 11.1.

The mass scale uncertainty model for electron-related uncertainties is parameterized using

25 nuisance parameters which are correlated between electrons and photons, five nuisance

parameters which affect only the photon energy scale, and one nuisance parameter for track

momentum scale uncertainties for electrons only. Four nuisance parameters account for both

the electron and photon energy resolution uncertainties.

The largest ∆m4` for a SM Higgs with mH = 125 GeV after modification of the elec-

tron/photon energy scale and resolution are found to be 53, 34, and 20 MeV for the 4e, 2e2µ

and 2µ2e final states using the scale uncertainties as evaluated from Z → ee events. The
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total combined mass scale uncertainties due to electron/photon energy scale and resolution

uncertainties are estimated to be 0.06%, 0.03% and 0.04% for 4e, 2e2µ and 2µ2e final states,

respectively.

The muon momentum scale uncertainties are evaluated for the ID and MS components

separately but ultimately combined into a single nuisance parameter which accounts for both

components. The total mass scale systematic uncertainties for the mH = 125 GeV signal

are 0.04%, 0.02% and 0.03% for the 4µ, 2e2µ and 2µ2e final states, respectively. The mass

resolution systematic uncertainties are studied individually but found to have a negligible

effect, primarily because the simulated momenta are smeared such that there are negligible

differences in the individual muon momentum resolution between the simulation and data.

10.2.3 Systematic Ranking

Systematic uncertainties are implemented in the signal and background models for the mH and

µ measurements using nuisance parameters as described in Section 11.1, which allow study

of the impact of the individual systematic uncertainties on the final fit. All of the nuisance

parameters are ranked according to their impact on mH and µ in fits of the Asimov data. The

results of this ranking is shown in Figure 10.4 for the nuisance parameters having the largest

post-fit impact on the uncertainties of the parameter of interest. The dominant uncertainties

in the signal strength measurement are the QCD scale and PDF uncertainties in the ggF

theoretical prediction. For the mH measurement, the dominant systematic uncertainties are

the experimental uncertainties in the lepton energy/momentum scales. Many of the nuisance

parameters were found to have a negligible effect on the final fit result and therefore these

uncertainties are removed from the final signal and background models.
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Figure 10.4: Ranking of the nuisance parameters in the 2D conditional fit according to their
impact on the parameters of interest (left) µ and (right) mH using the Asimov
dataset for a Higgs boson with mH = 125 GeV. The black points indicate the
post-fit pull of the nuisance parameters (with magnitude according to the lower
axis) and the yellow boxes indicate the 1-σ variation of those nuisance parameters.
The blue and red hatched areas indicate the impact of the nuisance parameter
on the final parameter of interest according to the upper axis.

10.3 Uncertainties for the Differential Measurements

In this section, the results of studies of the systematic uncertainties for the differential cross-

section analysis are presented. Systematic uncertainties can be categorized according to where

they enter the cross section calculation:

1. Uncertainties in the observed number of signal events after background subtraction,

nsig
reco, which is directly related to uncertainties in the background predictions.

2. Uncertainties on the correction factors, consisting of experimental and model dependence

uncertainties.

3. Uncertainties on the integrated luminosity Lint.

4. Uncertainties on the theoretical differential cross section predictions (dσ/dx)theory (which

do not affect the measured cross sections) .
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Table 10.3 shows an overview of the systematic uncertainties considered in the differential

cross section measurement, and Table 10.4 shows the resulting relative uncertainties. The

ranges indicate the maximum and minimum relative uncertainty over all variables and bins.

Table 10.3: Overview of the systematic uncertainties considered in the fiducial cross section
measurements.

Systematic source nsig
reco CF Lint (dσ/dx)theory

Luminosity X X
Experim. uncert. leptons/jet X X
Irreducible background X
estimate (normalization)
Reducible background X
estimate (normalization/shape)
PDF/Scale+αS X X X
Unfolding model dependence X

Table 10.4: Summary of the systematic uncertainties. The ranges indicate the dependence
on variables and bins.

Systematic Uncertainties (%)
Background Estimate

Luminosity 1.4 – 2.3
Reducible background 1.6 – 34
Experimental, leptons 1.3 – 2.3
PDF/scale 3.0 – 24

Correction factors
Experimental, leptons 2.1 – 2.6
Experimental, jets 2.7 – 13
Production process 0.1 – 15
Higgs boson mass 0.4 – 2.7

Luminosity 2.8

The uncertainties on nsig
reco arise from several sources which affect the normalizations and

shapes of the backgrounds. The systematic uncertainties associated with lepton reconstruc-

tion, identification, and trigger efficiencies for the irreducible background are evaluated using

the same methods as in Section 10.2 but are done within the m4` window and for each

differential bin separately, simultaneously accounting for both shape and normalization un-

certainties. Additional shape uncertainties associated with theoretical uncertainties in the
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irreducible background are described in Section 10.3.1. Normalization uncertainties in the

reducible background have been described in Section 9.2 but additional shape uncertainties

for the differential observables are presented here in Section 10.3.2.

Several sources of uncertainty are also considered for the correction factors. The ex-

perimental uncertainties are evaluated using the same method as done for the irreducible

background. Uncertainties due to choice of QCD scale and PDF have also been evaluated but

found to be negligible due to cancellation of the effect between the numerator and denominator

of the correction factors. The model-dependence systematic uncertainties for the correction

factors are described in Section 8.5.3. Finally, the systematic uncertainties for (dσ/dx)theory

are described in Section 10.3.3.

10.3.1 Irreducible Background Shape Uncertainties

Because the irreducible background is estimated using simulation, it is subject to system-

atic uncertainties due to the choice of PDF and µF /µR scales, as described in Section 2.2.

Uncertainties on the normalization for this background are described in Section 6.2.2 but

there may be additional uncertainties in the shape predictions of the differential distributions,

particularly the pT. Furthermore, different treatment is required for the jet-related variables

as the use of a fixed order calculation in the simulation will lead to poor modeling of high

jet-multiplicity events.

For the kinematic variables only, shape uncertainties have been evaluated by repeating

the background estimates with different choices of PDF and µF /µR scales using an event

re-weighting procedure. For each kinematic variable, truth-level event weights are derived by

taking the ratio between the nominal and a systematically varied differential distribution. The

background yield is estimated after applying these weights to the reconstructed events using

the truth level information and the systematic uncertainty for each bin is evaluated as the
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10. Systematic Uncertainties

maximum variation up/down with respect to the nominal value. The pT is the most sensitive

to these variations with relative uncertainties ranging from 3-8% for the choice of µF /µR and

2-4% for the choice of PDF. The uncertainties on the other kinematic variables are ≤ 1% in

all bins from both choice of PDF and µF /µR.

For the jet-related variables, a data-driven means of evaluating the shape systematic uncer-

tainty has been implemented. The high mass control region (m4` > 190 GeV, see Figure 12.3)

provides a very pure sample of irreducible background events for evaluating the mismodeling

of the jet distributions. The systematic uncertainty is evaluated as the larger of: (1) the

data-MC difference and (2) the statistical uncertainty on the data in the control region after

normalizing the MC estimate to the observed data yield. This systematic uncertainty accounts

for both theory and experimental uncertainties in the mismodeling of the jet distributions.

Table 10.5 shows the derived shape uncertainties for the jet variables.

Table 10.5: Systematic uncertainties on the irreducible background shape derived using the
data-simulation comparison in the high mass control region (m4` > 190 GeV).

Shape Systematic Uncertainty
Bin

Variable 1 2 3 4
njets 8% 13% 25% 49%
pT,jet 8% 19% 22% 22%

10.3.2 Reducible Background Shape Uncertainties

Systematic uncertainties are assigned for both normalization and shape uncertainties in the

reducible background. As done for the estimation of the reducible background yields, the

associated shapes are obtained separately for channels with sub-leading muons and electrons.

For the `` + µµ reducible background, nominal shapes are taken from Z+jets and tt̄

simulation in the signal region. Two systematic variations are assigned to these shapes,
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10. Systematic Uncertainties

obtained by modifying the track isolation and impact parameter significance requirements

used in the selection of the sub-leading leptons. One variation is created by relaxing the

selection to Σpiso
T /pT < 0.3 and d0/σd0 < 4.5 and another variation is created by tightening

the requirements to Σpiso
T /pT < 0.1 and d0/σd0 < 3. All three predictions are normalized

to the background estimate in Section 9.2.1 and are shown in Figure 10.5. The differences

between the nominal and the variations are taken as the shape systematic uncertainty.
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Figure 10.5: Reducible background shapes for the `` + µµ channels in the m4` window
[118,129] GeV. All variables used in the differential cross section measurement
are shown.

For the `` + ee channels, the shapes are instead taken from control regions in the data

and extrapolated to the signal regions by applying transfer factors. For the nominal shapes,

the 3` + X method described in Section 9.2.2 is used. Two systematic variations are again

assigned to these shapes, obtained by using different estimation methods. The lower variation

is evaluated using the “truth-reco” method, while for the upper variation the “transfer factor
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10. Systematic Uncertainties

with b-enriched CR” method is used. All three shapes, shown in Figure 10.6, are normalized

to the nominal background estimate from Section 12.2.2 and shape uncertainties are evaluated

using the differences in the individual bins.
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Figure 10.6: Reducible background shapes for the ``+ ee channels in the m4` range [118,129]
GeV. All variables of interest used in the differential cross section measurement
are shown.

10.3.3 Theoretical Prediction Uncertainties

The theoretical differential cross section predictions are subject to systematic uncertainties due

to the choice of PDF and QCD renormalization and factorization scales. These uncertainties

are evaluated by generating events with systematic variations in the PDF and scales.

Renormalization and factorization scale uncertainties are evaluated by varying µR and µF

up (×2) and down (×0.5) from their nominal values, excluding µR/µF = 4 and 0.25. For

the HRes2 calculation only, there are two additional resummation scales, Q1 = mH/2 and
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10. Systematic Uncertainties

Q2 = mb for the bottom quark contribution. These are varied up and down by factors of

2 while keeping µR/µFfixed at their nominal values (and vice versa). The envelope of all

variations is taken as the systematic uncertainty. The variations for the HRes2 prediction of

the pT and |y| distributions are shown in Figure 10.7.

 [
fb

/G
e

V
]

T
/d

p
fi
d

σ
d

0

0.005

0.01

0.015

0.02

0.025

0.03

dn
, FdnR

nom
, FdnR

dn
, FnomR

nom
, FnomR

up
, FnomR

nom
, FupR

up
, FupR

dn
, B

dn
Q

nom
, B

dn
Q

up
, B

dn
Q

dn
, BnomQ

up
, BnomQ

dn
, BupQ

nom
, BupQ

up
, BupQ

 [GeV]
T

p
0 20 40 60 80 100 120 140 160 180 200

R
a

ti
o

0.6

0.8

1

1.2

1.4
/d

|y
| 
[f

b
]

fi
d

σ
d

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

dn
, FdnR

nom
, FdnR

dn
, FnomR

nom
, FnomR

up
, FnomR

nom
, FupR

up
, FupR

dn
, B

dn
Q

nom
, B

dn
Q

up
, B

dn
Q

dn
, BnomQ

up
, BnomQ

dn
, BupQ

nom
, BupQ

up
, BupQ

|y|
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

R
a

ti
o

0.6

0.8

1

1.2

1.4

Figure 10.7: Comparisons of the 15 scale variations for a 125.4 GeV Higgs sample generated
using HRes2. The ratio plots underneath are with respect to the nominal (Rnom,
Fnom).

Two sets of variations are performed for the choice of the PDF (the nominal is the CT10

PDF set). First, the eigenvector sets included with the CT10 PDF set are used to derive

one set of variations. The second set of variations is created by using the MSTW2008 PDF

set and the NNPD 2.3 PDF set. The variations in the Powheg prediction after changing

PDF sets for the pT and |y| is shown in Figure 10.8. For each set of variations, the systematic

uncertainties are evaluated by taking the envelope of the difference between the variations and

the nominal predictions. Finally, the uncertainties from the eigenvector and PDF set choice

are added in quadrature.

To evaluate the QCD scale uncertainty in the njets distribution for Powheg and Minlo

samples, the Stewart-Tackmann procedure is used to account for the additional perturbative
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Figure 10.8: Comparisons of the cross section predictions for a 125.4 GeV Higgs sample gen-
erated using Powheg with the CT10, MSTW2008, and NNPDF PDF sets. The
ratio plots underneath are with respect to the nominal (CT10).

uncertainty associated with a jet pT cut [132]. The Stewart-Tackmann scale uncertainty is used

in place of the QCD scale uncertainty, and added in quadrature with the other uncertainties.
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Chapter 11

Mass and Signal Strength

The mass and signal strength µ measurements in the H → 4` channel are performed using a

simultaneous unbinned fit of the m4` and BDT discriminant distributions in the signal region

110 < m4` < 140 GeV using both the
√
s = 7 and

√
s = 8 TeV data. This chapter describes

the methods and results of these measurements.

11.1 Method

A simultaneous maximum likelihood fit is performed on the observed distributions of m4` and

BDTZZ in eight data categories, including the four final states in the
√
s = 7 and

√
s = 8

TeV data. The fit model must necessarily describe both the shapes and normalization of

the backgrounds and signal pdf continuously as a function of the parameters of interest mH

and signal strength µ while also including systematic uncertainties. The probability density

function (pdf ) of the model is parameterized as:

P (m4`,BDTZZ |mH) = P (m4`|BDTZZ ,mH) · P (BDTZZ |mH) (11.1)

'

(
4∑

n=1

Pn(m4`|mH) · θn(BDTZZ)

)
· P (BDTZZ |mH) (11.2)

where P (m4`|BDTZZ ,mH) has been approximated by a sum of pdf s in four BDTZZ bins with

bin edges [−1,−0.5, 0, 0.5, 1]. The θn(BDTZZ) function is a step function which is equal to 1
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11. Mass and Signal Strength

when BDTZZ falls within bin n and 0 when BDTZZ is not. Using the binned conditional pdf

greatly simplifies the treatment of the shape systematic uncertainties for m4`, BDTZZ , and

mH. This approximation relies on the assumption that there is no significant variation in the

m4` shape within a given BDTZZ bin, which has been validated in the simulation. Section 11.2

describes the derivation of the individual pdf s for both the signal and backgrounds.

11.2 Mass Templates

The 2-D fit of the m4` and BDT discriminant distributions requires templates for both signals

and backgrounds. This section describes the derivation of these templates.

11.2.1 Signal Model

The simulated distributions for the two observables, m4` and BDTZZ , are directly used to

derive shape templates for the signal pdf. Separate one-dimensional (1D) template pdf s are

created for m4l and BDT distributions. In order to reduce the impact of statistical fluctu-

ations, larger statistics samples used for H → 4` for gluon-fusion ggF and VBF production

mechanisms are generated without Higgs decay to τ -leptons. The missing τ decay events do

not significantly affect the shape of the pdf s in the signal region because the reconstructed

m4` from τ -leptons is typically below 120 GeV and the τ decay events contribute less than

0.5% to the total reconstructed event yield.

To further reduce the effects of statistical fluctuations, a kernel density estimation tech-

nique is used to provide smoothed templates of the observables. The goal of the kernel esti-

mation technique is to produce a function which describes a smooth underlying parent distri-

bution and is statistically consistent with the original sample. In this analysis, a RooKeysPdf

[133] is used to perform the smoothing which uses a Gaussian kernel with an adjustable band-
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11. Mass and Signal Strength

width parameter ρ (the parameter that specifies the amount of smoothing to apply to the

distribution). Many values of ρ were studied and the value ρ = 2 was chosen after validation.

An example of the smoothing of the m4` distribution is shown in Figure 11.1 for the signal

samples with mH = 125 GeV. Good agreement is observed between the original and smoothed

distributions. Furthermore, the use of a the smoothed function allows one to continuously

shift the peak in m4`, as shown in Figure 11.1 where a +2 GeV shift has been applied. This

technique is used to include uncertainties in the energy and momentum scales in the signal

model, the effect of which will shift the m4` peak away from mH.
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Figure 11.1: Invariant mass distribution for a simulated ggF signal sample withmH = 125 GeV
in the 4µ channel on the left and the 4e channel on the right. The comparison
between the histogram (black dots) and the smoothed distribution (solid blue
line) is shown. A +2 GeV shift (dotted blue line) in mH is shown for illustration.

Next, the signal model must be able to scan over mH continuously, while the templates

above are all generated with specific values of mH. Because the m4` distribution shifts pro-

portionally to mH, templates for intermediate mH values can be approximated by shifting the

m4` distribution of the two nearest mH sample points by an amount equal to the difference

in mH and then interpolating vertically between the two distributions. This technique is for-
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mally implemented using B-splines [134], which produces a weighted combination of templates

from different “control points” (points where a function is known; in this case the simulated

mH mass points). The weights as a function of mH for each mass control point are specified

by B-spline base functions. Linear and cubic base functions have been studied and the cu-

bic interpolation was chosen in order to avoid discontinuities in the likelihood function when

mH is at or near a control point. The weighting functions and control points are shown in

Figure 11.2 for the
√
s = 8 TeV simulation.

Similarly, the signal yield must also be interpolated as a function of mH. The same strategy

involving B-splines is employed to interpolate the signal yield between mass points. For higher

order B-spline bases, the control points can be optimized to ensure that the resulting B-spline

matches the signal yields obtained from the simulation at the control point masses by slightly

scaling the signal yield at each control point. The optimization is carried out simultaneously

on each control point in an iterative procedure until the B-spline matches the simulated yields

to a given precision. The resulting function for the 4µ signal yield is shown in Figure 11.2 as

an example.

 [GeV]Hm

118 120 122 124 126 128 130 132
­0.4

­0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4    

 [GeV]Hm

120 121122123124125126127 128129130

4
m

u
 S

ig
n

a
l 
Y

ie
ld

0

2

4

6

8

10

12

14
   

before reweighting

after reweighting

control points

true points

   

Figure 11.2: B-spline basis functions for each control point for
√
s = 8 TeV simulation using

cubic interpolation on the left. The 4µ channel signal yield as a function of mH

as determined using B-splines is shown on the right.
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Combining the shape and normalization B-spline functions, a representative sample of the

resulting m4` signal distributions with mH between 120 and 130 GeV are shown in Figure 11.3

for the 4µ and 4e decay channels.
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Figure 11.3: Predicted distributions of m4` from the signal pdf in the (left) 4e and (right) 4µ
final states for selected mH points between 120 and 130 GeV derived from the√
s = 8 TeV simulation. The templates have been smoothed using kernel density

estimation and continuously parameterized in mH using B-splines.

11.2.2 Background Shapes

Full two-dimensional pdf s P (m4`,BDTZZ) are derived for both the irreducible and reducible

backgrounds for use in the conditional 2D fit. The following sections describe the derivation

of these pdf s.

11.2.2.1 Irreducible Background

The irreducible background (qq̄ → ZZ and gg → ZZ) templates are derived directly from

the simulation. Kernel density estimation is performed for both observables with smoothing

parameters of ρ = 0.25 for the m4l smoothing and ρ = 0.15 for the BDTZZ smoothing. A 2D

histogram is derived from the kernel density estimate which is then projected onto m4` in the
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BDTZZ bins to obtain the 1D shapes used for the conditional 2D fit. The template shape is

obtained in this way to ensure consistency when comparing the various types of 2D fits that

were used for studies comparing full 2D fits and BDTZZ-binned fits. Projections of the 2D

smoothed shapes are compared with the original simulated histograms in Figure 11.4 for the

qq̄ → ZZ and gg → ZZ backgrounds in the 4µ final state.
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Figure 11.4: Comparison of the 2D smoothed gg → ZZ and qq̄ → ZZ background templates
in m4` and BDTZZ with the original simulation for 8 TeV data in the 4µ final
state.
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11.2.2.2 Reducible Background

The reducible background shapes are obtained from the Z+jets and tt̄ simulation for the ``+µµ

channels and from the 3`+X data control region for the ``+ee channels. For the ``+ee shape,

the events in the 3`+X control region are weighted with their corresponding transfer factors

to produce shape predictions in the signal region. The distributions are smoothed using kernel

density estimation and a comparison between the original and the smoothed distributions over

the entire m4` range is shown in Figure 11.5.
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Figure 11.5: Original (blue) and smoothed (red) m4` distribution for the `` + µµ (`` + ee)
reducible background on the left (right).

Two systematic variations on the shape used for the `` + µµ reducible background are

derived by modifying the selection applied to the simulation. The nominal selection is applied

with the exception that the track isolation and impact parameter significance criteria are

modified on the subleading dilepton pair only. One variation is produced by tightening the

selection criteria (Σpiso
T /pT < 0.1 and d0/σd0 < 3.0) while the other variation is produced by

relaxing these criteria (Σpiso
T /pT < 0.3 and d0/σd0 < 4.5). The same smoothing procedure

is applied to the nominal shape and systematic variations. Both the nominal shape and
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variations for the ``+ µµ reducible background are shown in Figure 11.6.

Two systematic variations on the shape used for the `` + ee reducible background are

derived from control regions which are orthogonal to the 3` + X control region. Both the

nominal shape and variations for the ``+ ee reducible background are shown in Figure 11.6.
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Figure 11.6: Shape templates for the reducible backgrounds in the signal region [110−140] GeV
for the combined

√
s = 7 and

√
s = 8 TeV data. The reducible ``+µµ background

shapes (left) are taken from the Z+jets and tt̄ simulation while the reducible
`` + ee background shapes are derived from data control regions created by
relaxing the selection criteria on the subleading di-electron pair.

11.3 Results

A total of 511 candidate events are selected from the combined 7 and 8 TeV data sets using

the selection criteria described in Chapter 6. Categorization of the events by final state

and high/low mass region are presented in Table 11.1. The m4` distribution of the observed

candidates for the combined 7 and 8 TeV data as well as the background predictions are shown

in Figure 11.7. A clear excess of events over the background expectation is observed near m4`

of 125 GeV and good agreement with the background predictions is observed elsewhere. The

BDTZZ distribution of the candidates near the observed excess (120 < m4` < 130GeV) is

shown in Figure 11.8.

Scans of −2ln Λ in the parameters of interest, mH and µ, using the 2D conditional fit of the
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Figure 11.7: Distribution of m4` for the selected candidates for the
√
s = 7 + 8 TeV dataset,

compared to the background expectation in the low mass region (left) and the
entire mass spectrum (right). The contributions of the irreducible and reducible
backgrounds are shown separately. The signal prediction for a Higgs boson with
mH = 125 GeV is shown, normalized to the best fit value of µ for that mH.
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11. Mass and Signal Strength

Table 11.1: The observed number of events and the final estimate for the expected background,
separated into “Low mass” (m4` < 160 GeV) and “High mass” (m4` ≥ 160 GeV)
regions, are presented for the

√
s = 7 TeV and

√
s = 8 TeV data. The expected

number of signal events are also shown for various Higgs boson mass hypotheses.
For signal and background estimates, the corresponding total systematic uncer-
tainty is given.

4.5fb−1@
√
s = 7 TeV

4µ 2e2µ 4e
Low mass High mass Low mass High mass Low mass High mass

ZZ(∗) 5.27±0.26 16.98±1.26 4.39±0.24 25.71±1.91 2.02±0.13 9.85±0.77

Z, Zbb̄, and tt̄ 0.43±0.19 0.17±0.07 2.32±0.57 1.16±0.28 2.16±0.45 1.13±0.24
Total Background 5.70±0.32 17.15±1.26 6.71±0.64 26.87±1.94 4.18±0.47 10.98±0.81

Data 11.00 23.00 7.00 24.00 4.00 14.00
mH = 123 GeV 0.80±0.08 0.93±0.09 0.35±0.04
mH = 125 GeV 1.00±0.10 1.16±0.11 0.46±0.05
mH = 130 GeV 1.55±0.14 1.89±0.18 0.72±0.07

20.3fb−1@
√
s = 8 TeV

4µ 2e2µ 4e
Low mass High mass Low mass High mass Low mass High mass

ZZ(∗) 27.58±1.37 95.00±7.06 23.43±1.28 145.25±10.85 11.20±0.74 56.42±4.44

Z, Zbb̄, and tt̄ 2.90±0.53 1.14±0.21 4.44±0.87 1.98±0.40 1.89±0.40 0.99±0.21
Total Background 30.49±1.47 96.13±7.07 27.86±1.55 147.23±10.85 13.10±0.84 57.41±4.44

Data 42.00 95.00 38.00 174.00 23.00 56.00
mH = 123 GeV 4.61±0.46 5.52±0.55 2.24±0.23
mH = 125 GeV 5.80±0.57 6.99±0.70 2.79±0.29
mH = 130 GeV 8.85±0.85 11.31±1.10 4.43±0.45

m4` and BDTZZ distributions are shown in Figure 11.9 for each final state and the combined

data. Consistent results are observed in all final states. Additionally, a scan which does not

take into account systematic uncertainties is also performed (the dashed lines in Figure 11.9),

showing that the measurement uncertainties are statistically dominated. A plot of the 68%

and 95% confidence intervals in the µ-mH plane is shown in Figure 11.10. The final estimates

and 68% confidence levels of the parameters of interest are:

mH = 124.51± 0.52(stat)± 0.06(syst) GeV (11.3)

µ = 1.64± 0.38(stat)± 0.18(syst) (11.4)
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Chapter 12

Cross Section Measurements

This chapter describes the inclusive and differential fiducial cross section measurements per-

formed in the H → 4` decay channel. Six differential fiducial cross section measurements are

reported for variables of interest which describe the Higgs kinematics or are sensitive to the

details of the Higgs boson production and decay.

In Chapter 11, a profile likelihood fit of the m4` distribution was developed to extract the

signal strength and mass measurements. Performing the same technique in the differential

analysis would require derivation of signal and background m4` templates in each bin of the

variables of interest. Given the limited statistical significance expected in the measurement

of the current dataset, a simpler counting method in a selected m4` window is employed for

the differential cross section measurements.

For the inclusive cross section measurements, two methods are employed. The profile likeli-

hood fit of the m4` distribution is modified to extract the number of signal events nsignal rather

than µ, which is then used to compute an inclusive fiducial cross section using Equation 8.4.

To facilitate a comparison between the inclusive and differential measurements, an inclusive

measurement is also performed using the same counting method within a mass window as the

differential measurement.
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12. Cross Section Measurements

12.1 Event Counting Method

A likelihood to describe a binned counting experiment for Poisson distributed processes in

Nbins bins with systematic uncertainties is constructed as follows:

L =

Nbins∏
i=0

Poisson(nobs
i ;nexp

i ) ·
Nsyst∏
j=0

Gaussian(θj; 0, 1) (12.1)

where nobs
i is the number of observed data events and the number of expected events, nexp

i ,

is the sum of the signal (si) and background (bi) events in the i-th bin:

nexp
i = si +

∑
bkg

bi (12.2)

The product of the Poisson pdf s from each bin is multiplied by Gaussian pdf constraints on

the Nuisance Parameters (NP) θj, which are used to incorporate systematic uncertainties into

the parameters of the likelihood. The backgrounds are constructed as:

bi = bnomi

Nsyst∏
j=0

(1 + αi,j · θj) (12.3)

where bnomi is the nominal background prediction and αi,j are the relative systematic variations

up and down in the yield in i-th bin for the j-th systematic.

The likelihood defined in Eq. 12.1 can be used to extract the differential cross-sections

using a profile likelihood ratio method. The profile likelihood ratio is defined as:

Λ(si) =
L
(
si ,

ˆ̂
~θ(si)

)
L(ŝi, ~̂θ)

. (12.4)

where the single circumflex denotes the unconditional maximum likelihood estimate of a pa-

rameter and the double circumflex (e.g.
ˆ̂
~θ(si)) denotes the conditional maximum likelihood

estimate (e.g. of ~θ) for given fixed values of si.

The number of signal events in the i-th bin, si, is formulated as a function of two Parameters

Of Interest (POI):
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12. Cross Section Measurements

- The observed differential cross section, (dσ/dx)i,obs:

si = (dσ/dx)i,obs ·
∆xi × Lint

CFi
(12.5)

- The signal strength, µi:

si = µi ·
(dσ/dx)i,theory ×∆xi × Lint

CFi
(12.6)

where CFi is the correction factor, ∆xi is the bin width, and (dσ/dx)i,theory is the theory

prediction in the i-th bin. Parameters for the correction factors and theory cross section

predictions incorporate systematic uncertainties using the same parameterization as used for

the background in Eqn. 12.3.

A RooFit[135] based work-space using HistFactory [136] is defined including all relevant

NP’s associated to the sources of systematic uncertainties of relevant parameters, namely

the backgrounds, the integrated luminosity and the correction factors. The sources of the

uncertainties are described in detail in Chapter 10. Some of the NP’s are just normalization

uncertainties, such as the uncertainty on the integrated luminosity, while others describe

shape uncertainties that are correlated between bins. This approach properly accounts for

correlations between systematic uncertainties that impact several components of the likelihood

(signal and background, correlations between bins, etc.).

The extraction of a central value for each POI is obtained through minimization of the

negative logarithm of the likelihood ratio, multiplied by a factor of 2 (−2ln Λ). For each

POI, a scan of the −2ln Λ is performed while profiling all other parameters, i.e. they are

fitted to the value that minimizes the −2ln Λ for each value of the POI under study. This

method is based on the assumption that the statistical observable −2ln Λ behaves as a χ2 in

the asymptotic limit [137]. This assumption may break down in bins with low statistics so a

calibration of the uncertainties is performed using pseudo-experiments and the observed cross

165



12. Cross Section Measurements

sections, which is described in Section 12.4. Because one is only interested in changes in the

value of the −2ln Λ, one defines −2∆ln Λ as the difference in −2ln Λ between a given point

and the global minimum of the −2ln Λ. The region for which −2∆ln Λ ≤ 1 corresponds to the

68% Confidence Level (CL) interval (assuming one degree of freedom).

Using the Asimov dataset [137], example scans of −2∆ln Λ as a function of the µi for

the pT distribution are shown in Figure 12.1. The central values are unbiased in all bins

and the 68% confidence level intervals are compatible with a simple estimate of the expected

uncertainty in each bin based on S/
√
S +B. Furthermore, the scans are performed with and

without systematic uncertainties included, showing that the measurements are expected to be

systematically dominated.
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Figure 12.1: Scans of −2∆ln Λ as a function of µi in all four bins of the pT distribution using
the Asimov data set for a Higgs boson with mH = 125 GeV. The solid line scan
includes systematic and statistical uncertainties and the dashed line includes only
statistical uncertainties.
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12. Cross Section Measurements

Toy pseudo-experiment studies have been performed as an additional cross check. For

each pseudo-experiment, the observed number of events in each bin is randomly drawn from

a Poisson distribution with mean equal to the expected number of events for that bin. The

nsig
i,reco, (dσ/dx)i,obs and µi are fit using MINUIT to minimize the profile likelihood ratio.

A total of 100k pseudo-experiments are produced for the pT distribution, injecting the SM

expectation for a Higgs boson with mH = 125 GeV. The results are shown separately for each

pT bin in Figure 12.2. A small fraction (∼ 0.6%) having fit convergence failures is not included

in the results. For all bins, the mean value of µ agrees with one within 0.6% (negligible with

respect to the expected statistical error), indicating that the method is unbiased. In bins with

a small number of total expected events, the measured values are clearly discretized due to

the Poisson nature of the observed number of events. Smearing of these discrete values is

observed due to the systematic constraints, which allow bin-to-bin correlations to modify the

minimum of the −2ln Λ.

The asymptotic assumption may not hold in all bins for the estimation of the 68% CL

interval because the statistics may not be sufficient. Therefore, a comparison between the

asymptotically derived uncertainties and uncertainties derived using pseudo-experiments is

performed and the results are shown in Table 12.1 for the dσ/dpT measurements using the

Asimov data set. The differences between the asymptotic uncertainties and the uncertainties

derived using pseudo-experiments range from 8-45% depending on the bin. Because these

differences are non-negligible, the pseudo-experiment based uncertainties are used to estimate

the final uncertainty on the measured cross-sections when significantly different from the

asymptotic result. This is done by injecting the observed cross sections from the data into

pseudo-experiments and re-calculating the 68% confidence intervals.
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Figure 12.2: Distribution of fit signal strength (µi) for 100k pseudo-experiments with the
SM signal injected assuming mH = 125 GeV. The individual peaks are due to
the small number of expected events, such that discrete nature of the observed
Poisson process is observed.

Table 12.1: Comparison of 68% confidence intervals calculated from the −2∆ln Λ scan and
from the pseudo-experiments for the extraction of dσ/dpT using the Asimov data
set.

68% CL Interval on dσ/dpT [fb/GeV]
Bin −2∆ln Λ scan pseudo-experiments
0 [0.0064, 0.0343] [0.0055, 0.0322]
1 [0.0075 ,0.0243] [0.0066, 0.0236]
2 [0.0029, 0.0099] [0.0019, 0.0092]
3 [0.00081, 0.00296] [0.00061, 0.00253]
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12. Cross Section Measurements

12.2 Background Estimates

Background estimates for the cross section measurements employ the same methods used in the

mass and signal strength analysis of Chapter 9. This section presents additional cross-checks

evaluated for the specific variables of interest in the differential cross section measurement

within the mass window [118,129] GeV.

12.2.1 Irreducible Background

The irreducible background for the differential measurements are estimated using the simula-

tion as described in Section 9.1. To verify that the simulation correctly models the variables

of interest, the simulation predictions are checked in a control region. The high mass region,

m4` > 190 GeV, provides a very pure sample of the irreducible backgrounds (less than 1%

contamination from reducible backgrounds) and is expected to have around a few hundred

events. This region therefore provides a good check of the simulation modeling of the vari-

ables of interest. Figure 12.3 shows the control region predictions and data in this control

region. Compatibility of the data with the background prediction is quantified using the

Kolmogorov-Smirnov Goodness-of-Fit test [138]. Good agreement is observed in all variables

of interest.

12.2.2 Reducible Background

The data-driven methods of the reducible background estimates in Section 9.2 are used to

estimate directly both the normalization and the shapes of the reducible background in the

differential analysis. For the differential measurements, the background estimates are mod-

ified to account for the mass window and additional checks of the variables of interest are

performed in various control regions. As in Section 9.2, the background estimates are calcu-
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Figure 12.3: MC predictions and data yields in the high mass control region ( m4` > 190
GeV).
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lated separately for the ``+ µµ and ``+ ee backgrounds.

12.2.2.1 ``+ µµ Backgrounds

The reducible `` + µµ backgrounds are estimated using the same methods as in Section 9.2.

The normalization of this background is calculated by integrating the m4` template in the

mass window [118,129] GeV and is found to be 1.39±0.16 events. The shapes of the variables of

interest within the mass window are then taken from the simulation using the same methods

to derive the m4` template. The final estimates and systematic variations are shown in

Figure 10.5.

Because the variable shapes are taken from the simulation, a validation of the modeling of

the variables of interest within a control region is performed. A comparison of the shapes in the

inverted d0 control region from Section 9.2 is shown in Figure 12.4. For this comparison, the

individual background predictions from the simulation have been renormalized according to

the scaling factors derived from the fit to the data. Then, both the data and total background

prediction are renormalized to unity in order to perform a shape comparison. Good agreement

is observed between the data and predicted shapes for all variables.

12.2.2.2 ``+ ee Backgrounds

The reducible `` + ee backgrounds are estimated using the same methods as in Section 9.2.

The normalization of this background is calculated by integrating the m4` template in the

mass window [118,129] GeV and is found to be 0.78 ± 0.12 events. The nominal shapes

of the variables of interest within the mass window are derived using the 3` + X method.

Two systematic variations on this shape are taken using alternative methods. The nominal

prediction and systematic variations are shown in Figure 10.6.

The variable shapes are completely data-driven for the ``+ ee reducible backgrounds but
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Figure 12.4: Comparison of reconstructed observable shapes in data and simulation for the
inverted impact parameter significance control region for the ``+µµ background
for all differential variables of interest. Data-driven normalization scaling factors
are applied to the simulated Z+jets and tt̄ samples. The shapes are normalized
to unity.

a cross-check between the simulation and the data is still performed. A shape comparison

is shown for the 3` + X control region in Figure 12.5. For this comparison, the sum of the

background predictions and the observed data have been renormalized to unity for a shape

comparison. Good agreement between the predictions and data are observed.
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Figure 12.5: Comparison of reconstructed observable shapes in data and simulation for the
3`+X control region for the ``+ ee backgrounds for all differential variables of
interest. The distributions are normalized to unity.

12.3 Signal Predictions

The expected reconstructed signal yields are derived using the Higgs signal samples and cross-

sections described in Sec. 6.2.1. A total of 14.07±0.09 (MC stat only) events are expected for

a SM Higgs boson with mH = 125 GeV within the mass window for 20.3 fb−1 of
√
s = 8 TeV

data and the expected contribution from each Higgs production mode is shown in Table 12.2.
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12. Cross Section Measurements

Table 12.2: Number of expected reconstructed signal events for each Higgs production mode
assuming mH = 125 GeV within the mass window [118, 129] GeV, as obtained with
the samples and cross-sections described in Sec. 6.2.1. Errors are from simulation
statistics only.

Signal Yield Prediction, mH = 125 GeV

20.3 fb−1@
√
s = 8 TeV, 118 < m4` < 129 GeV

ggF 12.26 ± 0.09
VBF 1.125 ± 0.008
WH 0.391 ± 0.004
ZH 0.245 ± 0.003
tt̄H 0.0569 ± 0.0007

Total 14.07 ± 0.09

The expected distribution of signal events for each of the differential variables is shown in

Figure 12.6. Figure 12.7 shows the composition of signal events by Higgs production mode in

each differential bin for all variables of interest.

12.4 Results

This section describes the results of the inclusive and differential cross section measurements.

12.4.1 Inclusive Cross Section

The expected number of signal and background events and the observed number of events

within the mass window are shown in Table 12.3. A significant excess with respect to

the background prediction is observed. The measured number of events in the signal re-

gion is 25.1+6.3
−5.4(stat)+0.6

−0.4(syst) events and the correction factor within the mass window is

1.796± 0.007(stat)± 0.054(syst). The scan of −2∆ln Λ as a function of inclusive cross section

is shown in Figure 12.8 using the cross-section extraction procedure described in Section 12.1.

The observed fiducial cross section is:

σfid · BR = 2.21+0.56
−0.48(stat)+0.14

−0.10(syst) fb
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Figure 12.6: Predicted number of reconstructed signal events within the mass window
[118,129] GeV in all variables of interest assuming a SM Higgs with mH = 125
GeV. The five production modes are plotted separately, with ggF as the dominant
production mode.

Table 12.3: The predicted number of signal and background events and the observed number
of events within the mass window [118, 129] GeV for 20.3 fb−1 of

√
s = 8 TeV

data.

20.3 fb−1at
√
s = 8 TeV, 118 < m4` < 129 GeV

Signal Irreducible Reducible Total Background Observed
14.1 6.7 2.4 9.0 34
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Figure 12.7: Composition of the predicted signal events by production mode within the mass
window [118,129] GeV in all variables of interest assuming a SM Higgs with
mH = 125 GeV.
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Figure 12.8: Scan of the −2∆ln Λ as a function of (left) the inclusive fiducial cross section
using the event counting method and (right) the signal strength using the m4`

fit at the global best estimate of mH, 125.4 GeV.

Similarly, the scan of −2∆ln Λ as a function of the signal strength measurement resulting

from the fit of the m4` distribution at the global best estimate of mH, 125.4 GeV, is shown in

Figure 12.8. Because the signal strength measurement includes the signal theory systematic

uncertainties, these must be explicitly excluded for the inclusive cross section measurement by

fixing the NP in the m4` fit (shown in Figure 12.8). Multiplying the measured signal strength

by the number of expected signal events at the fitted mass, the number of observed signal

events within the mass window [118, 129] GeV is 23.7
+5.9(stat)+0.6(syst)
−5.3(stat)−0.6(syst) events. The estimated

correction factor is 1.81 ± 0.01 (stat) ± 0.05 (syst). Using Equation 8.4, the measured fiducial

cross section times branching ratio is determined to be:

σfid · BR = 2.11+0.53
−0.47(stat)+0.08

−0.08(syst) fb

This value is compatible with the event counting method result and is used as the final

measurement of the inclusive fiducial cross section.
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Table 12.4: Observed differential cross sections for all observables in all bins. Both systematic
and statistical uncertainties are included.

Obs. Units Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

pT,H [fb/GeV] 0.018+0.015
−0.012 0.034+0.013

−0.010 0.0108+0.0054
−0.0043 0.0025+0.0019

−0.0010 -

|yH | [fb] 1.27+0.82
−0.61 0.98+0.76

−0.54 1.03+0.77
−0.56 1.97+0.95

−0.76 0.58+0.28
−0.23

m34 [fb/GeV] 0.059+0.037
−0.029 0.105+0.038

−0.033 0.048+0.027
−0.020 0.0116+0.0092

−0.0050 -

| cos θ∗| [fb] 2.8+1.4
−1.1 3.2+1.5

−1.2 0.98+1.03
−0.75 2.3+1.3

−1.0 1.9+1.3
−1.0

njets [fb] 0.88+0.41
−0.36 0.97+0.35

−0.28 0.29+0.19
−0.13 0.065+0.099

−0.064 -

pT,jet [fb/GeV] 0.029+0.014
−0.012 0.028+0.014

−0.010 0.0148+0.0100
−0.0069 0.0055+0.0032

−0.0023 -

12.4.2 Differential Cross Sections

The observed distributions of reconstructed events for all differential variables of interest are

shown in Figure 12.9. The observed unfolded fiducial cross sections and their 68% CL intervals

are extracted as described in Section 12.1 and are shown in Table 12.4. Figure 12.10 shows

the measured cross sections in comparison to the three theoretical predictions described in

Section 6.2.4.

The compatibility between the measured cross sections and the theoretical predictions is

evaluated by computing the difference between the value of −2∆ln Λ at the best-fit value and

the value obtained by fixing the cross sections in all bins to the ones predicted by theory.

Under the asymptotic assumption [137], this statistical observable behaves as a χ2 with the

number of degrees of freedom equal to the number of bins; it is used as a test statistic to

compute the p-values quantifying the compatibility between the observed distributions and

the predictions which are shown in Table 12.5. No significant deviations from the theoretical

predictions is observed.
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Figure 12.9: Background and signal predictions and data yields in the signal region (
118 < m4` < 129 GeV) for all differential variables of interest using 20.3 fb−1 of√
s = 8 TeV data. The hashes indicate the systematic uncertainty on the total

background prediction.
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Figure 12.10: Measured differential cross sections (dσ/dx) in the 20.3 fb−1 of
√
s = 8 TeV

dataset for all variables.
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Table 12.5: Compatibility tests of data with Powheg, Minlo and HRes2 ggF calculations of
SM Higgs boson production. The compatibility p-values are obtained, as explained
in the text, from the difference between −2ln Λ at the best-fit value and −2ln Λ
with the cross sections fixed to the theory computations.

p-values
Observable Powheg Minlo HRes2
pT,H 0.30 0.23 0.16
|yH | 0.37 0.45 0.36
m34 0.48 0.60 -
| cos θ∗| 0.35 0.45 -
njets 0.37 0.28 -
pT,jet 0.33 0.26 -
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Chapter 13

Conclusions

This thesis has described measurements of the mass and signal strength as well as the first

differential cross section measurements of the Higgs boson in the H → ZZ∗ → 4`(` = e, µ)

decay channel. The measurements were performed using data from the ATLAS detector taken

during Run 1 of the LHC, amounting to 20.3 fb−1 of
√
s = 8 TeV and 4.5 fb−1 of

√
s = 7 TeV

proton-proton collisions. The measured value ofmH is 124.51±0.52 (stat)±0.06 (syst) GeV and

the signal strength is measured to be µ = 1.64±0.38 (stat)±0.18 (syst). The inclusive fiducial

cross section is measured to be σfid · BR = 2.11+0.53
−0.47 (stat)+0.08

−0.08 (syst) fb. Differential cross

section measurements were performed in six variables of interest which are sensitive to various

aspects of Higgs boson production and decay. No significant deviations from the Standard

Model predictions were observed in any of these measurements. All of these measurements

are currently statistically limited and will benefit from the larger datasets expected during

future LHC runs.

182



Appendix A

Truth Object Selection Studies

To define the detector fiducial acceptance, one must define cuts based on MC truth information

to determine the fiducial region. Ideally, these cuts should exclusively select events which could

possibly be reconstructed in the detector, such that any difference between the fiducial yield

and the reconstruced yield could be attributed to detector efficiency and resolution effects.

Therefore, the fiducial cuts are chosen to replicate the lepton kinematic cuts at reconstruction

level in order to determine the fiducial acceptance of the detector. Ideally, one chooses cuts

based only on final state particles as the particles in the intermediate state are unobservable.

Truth lepton kinematics can be divided into two categories based on whether QED radia-

tion effects are considered or not and are commonly referred to as bare and born, respectively.

The bare kinematics are defined as the kinematics of the truth lepton after any QED correc-

tions. The born level kinematics can be defined as the kinematics of the truth lepton at the

generator level using the matrix element. One must choose at which truth level the kinematic

cuts are applied when defining the fiducial region cuts.

The best description of the detector acceptance will be achieved if the truth lepton kinemat-

ics accurately reflect the reconstructed lepton kinematics. Figure A.1 shows the distribution

of pT,truth/pT,reco for both born and bare kinematics. The born level kinematics better de-

scribe the electron’s reconstructed energy because FSR photons which are collinear with the

183



A. Truth Object Selection Studies

electron will be included in the electron’s EM calorimeter cluster during reconstruction. How-

ever, reconstruction level muon momentum is better described by the bare level kinematics

because the muon momentum measurement is based on track curvature rather than energy

deposition. Because the born level kinematics are attributed to an intermediate state particle

(which are technically unobservable), a third category of truth kinematics known as dressed

is commonly defined as the sum of the bare truth lepton four-vector and the four-vectors of

nearby final state photons. Using dressed kinematics allows one to make cuts using born-like

kinematics without relying on the MC intermediate state truth record.
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Figure A.1: Distributions of pT,truth/pT,reco using the bare (blue) and born (green) kinematics
for (a) electrons and (b) muons. Reconstructed leptons are matched to truth
leptons using ∆R matching.

For this particular analysis, one must also decide which leptons to consider when pairing the

leptons into a quadruplet. Ideally, one should consider using all final state leptons because this

best reflects the pairing as it is done in the reconstruction selection. However, this introduces

some model dependence into the measurement because there is no isolation cut applied at

the truth level, which leads to the possibility of selecting leptons which are produced during

hadronization. Another possibility considered was to select only leptons which are direct decay

products of the Higgs in order to simplify the fiducial cuts. This also will introduce model

dependence because the mismatch rate (the fraction of events with a selected lepton not from
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the Higgs) differs significantly among the various production modes due to the presence or

absence of additional prompt leptons in the event.

Three fiducial selections were considered for this analysis:

- Mixed: Kinematic cuts are applied at the bare level for muons and at the dressed level

for electrons. All final state truth leptons are considered.

- Born: Kinematic cuts are applied at the born level for both muons and electrons.

All born leptons are considered, but overlap removal is applied using ∆R matching to

remove duplicate leptons from the truth record.

- Higgs: Kinematic cuts are applied at the born level for both muons and electrons. Only

leptons which are direct decay products of the Higgs are considered.

The fiducial yields were evaluated for each of the three selections and are shown in Table

A.1. By comparing the event yields before and after the mass window cut, one finds that

the Mixed, Born, and Higgs selections have a combined mass window cut efficiency of 94.3%,

97.4%, and 99.8% respectively. This should be compared to the mass window cut efficiency

for the reconstruction selection, which is 91.0%. One expects the mass window efficiency to be

smaller in the reconstruction as compared to truth level because of detector resolution effects

(the mass distribution will be more sharply peaked using the truth kinematics).

Furthermore, one also observes that there are significant differences in the mass window cut

efficiency among the production modes for the Mixed and Born selections but not for the Higgs

selection. This is expected as the mismatching of leptons (as allowed in the Mixed and Born

selections) will move events from inside the mass window to outside the mass window. This

difference in pairing causes the fiducial efficiency to be more mode-dependent, resulting in a

larger systematic uncertainty on the correction factors from the signal composition systematic
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Selection ggF VBF WH ZH tt̄H Combined

Full Mass Range

Mixed 22.19 1.96 0.83 0.50 0.21 25.69
Born 22.35 1.97 0.83 0.50 0.20 25.85
Higgs 22.81 2.01 0.81 0.48 0.18 26.29

Reconstructed 13.76 1.25 0.51 0.33 0.09 15.94

Mass Window
[118,129] GeV

Mixed 21.17 1.85 0.68 0.41 0.11 24.22
Born 22.00 1.93 0.70 0.43 0.12 25.18
Higgs 22.79 2.00 0.81 0.48 0.17 26.25

Reconstructed 12.64 1.15 0.40 0.25 0.06 14.5

Table A.1: Fiducial event yields for 20.3 fb−1 of
√
s = 8 TeV data with and without the mass

window cut.

variations. The Born selection results in a signal composition of 0.1% to 1% and moving from

the Born to the Higgs selection increased the systematic uncertainty by a factor of 2x-10x

depending on the bin. Similar systematic uncertainties were found with the Mixed selection

as compared to the Born.

The Born selection was chosen for this analysis as it simplifies the truth lepton kinematic

definition (no need to dress electrons, same selection on electrons and muons) but still retained

mismatching effects which are clearly present in the reconstruction selection.
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