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Abstract
Hypoxia-inducible factors (HIFs) mediate adaptation to low O2, or hypoxia, are important at every stage of
tumor initiation, and impact the progression of a variety of diseases, including colorectal cancer. This body of
work investigates the role of hypoxia and HIF-mediated signaling in both tumor cells and macrophages across
the natural history of inflammation-induced cancers. First, the effect of HIF inhibition in tumor parenchyma
and stroma in extant colitis-associated colon carcinomas (CAC) is investigated using acriflavine (ACF), a
naturally occurring compound known to repress HIF transcriptional activity. Pharmacologic HIF inhibition
represents a novel therapeutic strategy for cancer treatment and data indicates ACF treatment halts the
progression of an autochthonous model of established CAC in immunocompetent mice and does so largely
through HIF-dependent means. These results suggest pharmacologic HIF inhibition in multiple cell types,
including epithelial and innate immune cells, significantly limits tumor growth and progression.

Second, myeloid specific deletion (LysMCre) of the HIF constitutive binding partner ARNT is studied in the
setting of acute and chronic inflammatory responses that eventually result in inflammation-associated cancer
development. Data indicates loss of ARNT results in severe macrophage defects including decreased edema
and inflammatory infiltrate in an acute model of skin inflammation and lower stage disease and decreased
tumor inflammation in a model of CAC. Collectively, these data suggest the hypoxic response is necessary for
sustained inflammation and tumor progression and may provide a link between chronic inflammatory
conditions and cancer development.
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ABSTRACT 

HYPOXIA INDUCIBLE FACTORS IN CANCER AND INFLAMMATION 

Jessica Elizabeth Stewart Shay 
M. Celeste Simon 

 
Hypoxia-inducible factors (HIFs) mediate adaptation to low O2, or hypoxia, are 

important at every stage of tumor initiation, and impact the progression of a variety of 

diseases, including colorectal cancer. This body of work investigates the role of hypoxia 

and HIF-mediated signaling in both tumor cells and macrophages across the natural 

history of inflammation-induced cancers. First, the effect of HIF inhibition in tumor 

parenchyma and stroma in extant colitis-associated colon carcinomas (CAC) is 

investigated using acriflavine (ACF), a naturally occurring compound known to repress 

HIF transcriptional activity. Pharmacologic HIF inhibition represents a novel therapeutic 

strategy for cancer treatment and data indicates ACF treatment halts the progression of 

an autochthonous model of established CAC in immunocompetent mice and does so 

largely through HIF-dependent means. These results suggest pharmacologic HIF 

inhibition in multiple cell types, including epithelial and innate immune cells, significantly 

limits tumor growth and progression.  

Second, myeloid specific deletion (LysMCre) of the HIF constitutive binding 

partner ARNT is studied in the setting of acute and chronic inflammatory responses that 

eventually result in inflammation-associated cancer development.  Data indicates loss of 

ARNT results in severe macrophage defects including decreased edema and 

inflammatory infiltrate in an acute model of skin inflammation and lower stage disease 

and decreased tumor inflammation in a model of CAC. Collectively, these data suggest 

the hypoxic response is necessary for sustained inflammation and tumor progression 

and may provide a link between chronic inflammatory conditions and cancer 

development.  
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Chapter One 

Hypoxia-inducible factors and the myeloid response to oxygen deprivation 

in settings of inflammation 

 

SUMMARY 

Cellular access to oxygen is a critical component of many physiologic and 

pathologic processes. The hypoxia-inducible factors (HIFs) are oxygen-sensitive 

transcription factors that are responsible, in large part, for the transcriptional regulation 

of cells experiencing hypoxia. Although the HIF response continues to be characterized 

within the tumor parenchyma, it is clear that HIF-1α and HIF-2α exhibit both overlapping 

and non-redundant roles and contribute to distinct aspects of cancer stem cell behavior, 

cell survival and proliferation, tumor metabolism, angiogenesis, invasion and metastasis. 

Similarly, although the tumor parenchyma is of obvious importance in tumor 

progression, the influence and importance of recruited and resident stromal cells is being 

elucidated. As the complexity of the tumor microenvironment continues to be 

appreciated, hypoxic and HIF-mediated responses in the tumor stroma are proving to be 

important. In large part, HIFs mediate the response to hypoxia in inflammatory 

conditions, the innate immune system at large, and recruited macrophages within the 

tumor microenvironment as well as physiologic roles of HIF activity in inflammation and 

wound healing. 
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INTRODUCTION 

All multicellular, eukaryotic organisms require oxygen (O2) (Semenza 2007). 

Decreased O2 availability (hypoxia) necessitates cellular and organismal adaptation to 

maintain energetic and biosynthetic homeostasis. Cells adapt to hypoxia in many 

different ways including the secretion of pro-angiogenic factors, decreasing bioenergetic 

requirements, and increasing anaerobic metabolic flux. These responses occur as a 

result of many different cellular pathways. The hypoxia-inducible factors (HIFs) are 

oxygen-sensitive transcription factors that are responsible, in large part, for the 

transcriptional regulation of cells experiencing hypoxia (Semenza et al. 1992; Semenza 

2012). HIFs are important regulators of the physiologic and pathologic consequences of 

hypoxia. In this section, I shall discuss the role of HIFs in cancer, inflammation, the 

innate immune system, and crosstalk between these components.    

 

HYPOXIA INDUCIBLE FACTORS 

HIFs are responsible for metabolic reprogramming and changes in gene 

expression that are necessary for adaptation to decreased O2 availability (Ema et al. 

1997; Tian et al. 1997). These transcription factors are widely appreciated as key 

regulators of cellular adaptation to hypoxic stress (Majmundar et al. 2010). HIFs are 

heterodimeric proteins within the basic helix-loop-helix/PER-ARNT-SIM (bHLH/PAS) 

family of transcription factors and are primarily regulated through post-translational 

modification and stabilization (Figure 1). They are comprised of an O2-labile α subunit 

and constitutively expressed β subunit (Qing et al. 2009). There are currently three 

identified α subunits: HIF-1α, HIF-2α, and HIF-3α. As very little is known about the role 

of HIF-3α, the following will focus exclusively on the overlapping and differential roles of 

HIF-1α and HIF-2α. Hydroxylation of two conserved proline residues (P402/P405 and 
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P564/P531 for HIF-1α/HIF-2α respectively) within the O2-dependent degradation domain 

(ODD) of the α subunit occurs by prolyl hydroxylase domain proteins (PHDs) under 

normal O2 tensions (Figure 1). Following hydroxylation, polyubiquitination by the von 

Hippel-Lindau (VHL) tumor suppressor E3 ubiquitin ligase complex occurs and is 

eventually followed by degradation via the 26S proteasome (Maxwell et al. 1999; 

Cockman et al. 2000; Jaakkola et al. 2001).  

Regulation by O2 availability. PHDs are members of the Fe(II) 2-oxoglutarate-

dioxygenase  family and require oxygen as a substrate for activity (Kaelin et al. 2008). 

One atom of O2 is used as a substrate for the decarboxylation of 2-oxo-glutarate to 

succinate and CO2 while the other atom is directly incorporated into the oxidized residue 

(in this case a prolyl residue) of the HIFα subunit (Kaelin 2005). As such, under hypoxia, 

PHDs cannot hydroxylate either of the proline residues on the HIFα subunit, as access 

to the substrate (O2) is limited. When stabilized under low O2, HIFs are no longer 

modified by PHDs and targeted for proteasomal degradation, but instead translocate to 

the nucleus, dimerize with their obligate partner ARNT/HIF-1β through interaction of 

bHLH and PAS domains, and recruit coactivators such as CBP and p300 (Bertout et al. 

2008; Patel et al. 2008; Majmundar et al. 2010; Keith et al. 2011). HIF heterodimers 

drive gene transcription involved in adaptation to hypoxic stress through binding and 

recognition of hypoxia-response elements (HREs), with the consensus sequence 

G/ACGTG, within the promoter regions of target genes (Talks et al. 2000; White et al. 

2004; Semenza 2007; Imtiyaz et al. 2010).  

More recently, other HIF-regulating oxygen-dependent enzymes have been 

identified. Factor-inhibiting HIF (FIH1) is an Fe(II) 2-oxoglutarate-dioxygenase that can 

hydroxylate an asparaginyl residue in the c-terminal transactivation (CTAD) domain of 

the HIFα subunit (N803/N847 for HIF-1α/HIF-2α respectively) in a mechanism very 
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similar to PHDs (Lando et al. 2002; Kaelin et al. 2008). Unlike prolyl hydroxylation, FIH1 

activity does not directly lead to VHL recruitment, but instead prevents recruitment and 

interaction of coactivators CBP and p300 when asparaginyl hydroxylation is present 

(Lando et al. 2002; Kaelin et al. 2008). Interestingly, recent work has suggested HIF-1α 

is more sensitive to FIH-1 activity than is HIF-2α (Kaelin et al. 2008).  

HIF regulation apart from O2 levels. HIF hydroxylases can be inhibited by TCA 

intermediates such as citrate, isocitrate, succinate, fumarate, and pyruvate (Kaelin et al. 

2008). Whereas PHDs are more sensitive than fumarate and succinate levels, FIH1 

activity can be inhibited by citrate and oxaloacetate. Cells that lack intermediate 

enzymes may experience a buildup of succinate or fumarate leading to PHD inhibition 

and HIF stabilization. Indeed heterozygous mutants are predisposed to tumors following 

loss of heterozygosity (LOH) of succinate dehydrogenase or fumarate hydratase (Kaelin 

et al. 2008). Similarly, iron chelators and ascorbate levels can also influence rates of HIF 

hydroxylation. Lastly, accumulation of nitric oxide (NO) can also lead to HIF 

accumulation, even under normoxic conditions (Kaelin 2005).  

Regulation of HIF accumulation and hydroxylation is an ongoing area of study as 

O2 levels and metabolic intermediates become increasingly important. Importantly, 

intracellular and extracellular changes that characterize the tumor microenvironment are 

responsible for increasing HIF activity. The role of HIF and cancer development and 

progression will be discussed further in the following section.  

 

HIF AND CANCER 

Rapid proliferation of tumor cells can outpace existing or new vascular networks 

and thus results in decreased oxygen supply. Regions within the tumor 

microenvironment may be characterized by hypoxia, secondary to necrosis or aberrant 

neovascularization. Cancer cells may also proliferate faster than their blood supply and 
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thus result in regions that lack perfusion (Majmundar et al. 2010). Similarly, recruited or 

resident stromal cells may also impact regional O2 availability. HIF-mediated 

transcriptional and metabolic changes accompany many distinct parts of tumor initiation 

and progression (Keith et al. 2007; Bertout et al. 2008; Keith et al. 2011).  

HIFs and cancer stem cells. Recent studies have demonstrated the importance 

of Oct4 and c-Myc in allowing differentiated fibroblasts to regain stem cell like behavior. 

Both Oct4 and c-Myc have been identified as HIF-2α targets (Keith et al. 2007) and have 

been independently implicated in multiple cancer types. Similarly, HIF activity may 

regulate the Notch pathway with specific roles in tumor initiating cells. Human 

telomerase has also been demonstrated as hypoxia inducible in a HIF-dependent 

manner (reviewed in (Keith et al. 2007). Although the cancer stem cell hypothesis 

remains somewhat controversial, it is clear there are key genetic alterations that occur 

very early in tumorigenesis. Hypoxia and HIF mediated changes may influence the self-

renewal and ‘stem cell-like’ nature of cells undergoing the earliest genetic modifications 

that accompany tumor initiation. Together these findings provide evidence of HIF-

mediated transcriptional changes that may control the earliest stages of tumorigenesis.   

Metabolic reprogramming. As previously referenced, tricarboxylic acid cycle 

(TCA) intermediates such as fumarate, succinate, citrate, and oxaloacetate can inhibit 

PHDs and FIH1, leading to HIFα stabilization (Kaelin et al. 2008). In the absence of O2, 

aerobic glycolysis is severely limited. Likewise, highly proliferative cells, including tumor 

cells, exhibit large increases in anaerobic glycolysis (Vander Heiden et al. 2009). The 

Warburg effect, so named for Otto Warburg, the scientist who first described the 

paradoxical increase in anaerobic glycolysis observed in tumor cells even under settings 

of adequate oxygen access, can result in stabilization of HIFα, in part through 

accumulation of lactate and pyruvate (Hirschhaeuser et al. 2011).  
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 Recently, TCA enzymes have been directly implicated in tumorigenesis and 

hypoxia-driven tumor cell metabolism. Mutations in isocitrate dehydrogenase 1/2 

(IDH1/2) can indirectly upregulate HIF-1α by decreasing α-ketoglutarate availability, a 

known PHD substrate (Zhao et al. 2009). IDH mutations have been identified in many 

different tumors including gliomas, leukemias, and most recently, sarcomas (Zhao et al. 

2009; Figueroa et al. 2010; Ward et al. 2010; Lu et al. 2013; Ward et al. 2013). 

Interestingly, IDH1/2 mutants can function in reductive carboxylation whereby α-

ketoglutarate is converted to 2-hydroxyglutarate (2HG), a metabolite associated with 

glioblastomas but otherwise uncharacterized (Dang et al. 2010) until quite recently. Lu et 

al. identified the byproduct of mutant IDH1/2, 2HG, as functionally able to impair histone 

demethylation and thereby acts to block cell differentiation (Lu et al. 2012). Similarly, 

normal IDH1 can function in reverse however 2HG is not produced as a byproduct. 

Rather, reductive carboxylation of α-ketoglutarate to citrate can occur under hypoxia 

when IDH1 functions in the reverse. Under hypoxia, when decreased forward TCA flux 

occurs, reductive glutamine metabolism allows for lipogenesis and is at least partly 

dependent on HIF activity (Metallo et al. 2011; Wise et al. 2011). 

Differential interactions of HIF-1α  and HIF-2 with oncogenes and tumor 

supressors. While the HIF-1α subunit is expressed ubiquitously, HIF-2α is selectively 

expressed in a much more tissue-restricted manner but can be found at high levels in 

vascular endothelial cells and myeloid-derived cells (Patel et al. 2008). Both α subunits 

however, can exhibit potent effects on various oncogenes and tumor suppressors 

implicated in tumor progression. The different effects of the HIFα subunits have been 

most closely studied in the setting of VHL-deficient clear cell renal cell carcinomas 

(ccRCC) (Gordan et al. 2007; Gordan et al. 2008). Patient samples clustered into two 

main groups, those that express both HIF-1α and HIF-2α, and those that express HIF-
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2α alone. Previous work has demonstrated the difference may reside in the differential 

interactions with MYC. Myc is a proto-oncogene that can direct metabolic and 

biosynthetic changes that enhance cell proliferation (Gordan et al. 2007). Furthermore, 

HIF-1α may be deactivated by the stress-sensor Sirtuin 1 (Sirt1) in tumor cells whereas 

HIF-2α is activated by Sirt1 and appears to play a larger role in c-Myc driven tumor cell 

proliferation. Whereas HIF-2α appears to promote MYC activity, HIF-1α inhibits MYC 

function (Gordan et al. 2007; Gordan et al. 2008). The evidence of opposing roles for the 

HIFα subunits is further supported by the fact that tumor samples expressing both α 

subunits proliferate slower than those expressing HIF-2α alone.  

 Likewise, HIF-1α and HIF-2α exhibit opposing roles in interactions with p53 

(Keith et al. 2011).  Trp53 (p53) is a tumor suppressor that is often lost or mutated in 

human cancers and is responsible for coordinating cellular responses to DNA damage 

and repair, cell cycle arrest and more. The tumor suppressor p53 can be stabilized 

through interaction with HIF-1α, which may or may not be through a direct interaction 

with MDM2. Similarly, ionizing radiation can increase HIF-1α accumulation and leads to 

increased phosphorylation and activity of p53 (Bertout et al. 2009; Keith et al. 2011). 

Unlike HIF-1α, HIF-2α does not interact with MDM2 and has been implicated in inhibiting 

p53 activity, perhaps by inhibiting reactive oxygen species (ROS) accumulation. Loss of 

HIF-2α results in increased p53 activity suggesting HIF-1α and HIF-2α exhibit opposing 

roles in p53 regulation (Bertout et al. 2009). These findings have far reaching 

consequences, as MYC and p53 are some of the most important oncogenes and tumor 

suppressors in human cancers.  

Angiogenic activity secondary to HIF signaling. There is a finite distance 

across which O2 can diffuse to metabolically active cells. To compensate, regions of 

hypoxia may stimulate the development of new blood vessels, also known as 
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angiogenesis (Pugh et al. 2003). HIFs function as key transcriptional regulators of 

developmental and tumor angiogenesis (Pugh et al. 2003). Multiple pro-angiogenic 

factors including vascular endothelial growth factor (VEGF), nitric oxide synthases 

(iNOS, eNOS), platelet-derived growth factor (PDGF), and various angiopoietins, have 

been previously demonstrated as direct or indirect HIF targets (reviewed in Pugh et al. 

2003). Pro-angiogenic signaling can come from many sources, including tumor cells, 

endothelial cells, infiltrating leukocytes, and more. Importantly, HIFs have been 

implicated in stimulating angiogenesis or secreting angiogenic factors in all of these cell 

types.  

In particular, HIF-1α and HIF-2α are co-expressed in endothelial cells (ECs) with 

largely non-overlapping roles (Skuli et al. 2009; Skuli et al. 2012). Interestingly, in 

models of tumor angiogenesis, endothelial expression of both HIF-1α and HIF-2α 

correlate with vessel density. However, whereas HIF-1α has been implicated in the 

proliferation, survival and metabolism of hypoxic ECs, HIF-2α expression has been 

associated with EC migration and vessel integrity (Skuli et al. 2009). Once again, HIF-1α 

and HIF-2α exhibit overlapping but not entirely redundant roles in tumor progression – in 

particular in the setting of tumor angiogenesis through intrinsic effects on ECs.  

Direct regulation of tumor cell metastasis and extracellular remodeling by 

HIF activity. Invasion of surrounding tissue and colonization/seeding of distant sites 

characterize metastatic disease. In head and neck cancers, HIF-1α was shown to 

directly regulate TWIST expression by binding to an HRE site in the proximal promoter. 

Upregulation of TWIST secondary to HIF-1α stabilization resulted in increased epithelial-

mesenchymal transition (EMT), an early feature of invasive and metastatic cells, and 

metastasis (Yang et al. 2008). HIF activity within the hypoxic tumor microenvironment 

can therefore drive cell intrinsic changes that result in EMT and metastatic disease.  
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Recently, HIFs have been implicated in direct modulation of the extracellular 

matrix to allow for invasion and metastatic dispersal. In particular, enzymes responsible 

for collagen modification and remodeling the extracellular matrix, procollagen-lysine 2-

oxoglutarate 5-dioxygenase 2 (PLOD2) and lysyl oxidase (LOX), have come to light as 

direct HIF targets as well as major players in metastatic disease in both sarcoma and 

breast carcinoma (Wong et al. 2011; Eisinger-Mathason et al. 2013; Gilkes et al. 2013; 

Gilkes et al. 2013; Gilkes et al. 2013). In a particularly elegant model, Eisinger-Mathason 

et al. demonstrated PLOD2 activity is hypoxia and HIF-dependent and is responsible for 

modifying the collagen network that is surrounds and encompasses tumor cells in an 

autochthonous model of sarcoma. A direct consequence of these collagen modifications 

is maturation of collagen and changes in tissue/tumor stiffness. These changes 

ultimately support or inhibit (based on the specific modifications) cell invasion and 

metastasis. In particular, it appears these collagen modifications may allow vascular 

intravasation. Similarly, Wong et al. have demonstrated LOX as a HIF-1α target that can 

also remodel the extracellular matrix and support breast cancer metastasis. 

Cellular access to oxygen is a critical component of many physiologic and 

pathologic processes. HIF stabilization may occur secondary to hypoxia in development 

or within the tumor microenvironment. Although the HIF response continues to be 

characterized within the tumor parenchyma, it is clear that HIF-1α and HIF-2α exhibit 

both overlapping and non-redundant roles and contribute to distinct aspects of cancer 

stem cell behavior, cell survival and proliferation, tumor metabolism, angiogenesis, 

invasion and metastasis. The hypoxic tumor microenvironment is an exciting area of new 

development as HIF-mediated effects on cell extrinsic features come to light. In 

particular, modification of the extracellular matrix secondary to hypoxia and HIF-

stabilization, is now accepted as a driving force in metastasis and is uncovering new 
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therapeutic targets. HIF activity within ECs and other recruited cell types are also 

proving to impact tumor progression. 

Although the tumor parenchyma is of obvious importance in tumor progression, 

the influence and importance of recruited and resident stromal cells is being elucidated. 

As the complexity of the tumor microenvironment continues to be appreciated, hypoxic 

and HIF-mediated responses in the tumor stroma are proving to be important. In the 

following section I will discuss in further detail the role of hypoxia and HIFs in 

inflammatory conditions, the innate immune system at large, and recruited macrophages 

within the tumor microenvironment as well as physiologic roles of HIF activity in 

inflammation and wound healing. Hypoxia is a key feature of development and tumor 

biology however, low O2 tensions are also often observed in regions of intense 

inflammation such as sites of infection, within arthritic joints, and atherosclerotic plaques 

(Murdoch et al. 2005). Similarly, the hypoxic response is a physiologic adaptation of 

macrophages that may ultimately be co-opted by tumor-infiltrating cells to drive tumor 

progression.  

 

INFLAMMATION 

 Inflammation is a biologic response to harmful stimuli, either infection or tissue 

injury, in an effort to restore tissue homeostasis (Barton 2008; Medzhitov 2008). In the 

case of infection, the innate immune system mediates the initial immune response by 

stimulating the release of chemokines, cytokines, and multiple vasoactive compounds in 

addition to a number of other secreted factors (Medzhitov 2008). This signaling cascade 

quickly results in an inflammatory exudate. Extravascular tissue at the site of injury or 

infection becomes edematous as a result of selective extravasation of leukocytes 

occuring across activated endothelium along with plasma proteins (Kumar et al. 2005). 
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Once the infection or tissue damage has been successfully contained, recruited and 

resident macrophages mediate resolution, wound repair, and return to homeostasis.   

Inflammation is often marked by hypoxia (Eltzschig et al. 2011). Hypoxia may 

result from decreased O2 availability secondary to decreased perfusion as a result of 

thrombosis, trauma, and edema. Similarly, increased metabolic activity of both foreign 

pathogens and recruited leukocytes can also contribute to hypoxic conditions observed 

within the inflammatory microenvironment (Karhausen et al. 2005; Nizet et al. 2009). As 

such, the hypoxic response under inflammatory conditions is a necessary step to restore 

tissue homeostasis. HIF activity regulates the inflammatory response in multiple cell 

types in the setting of infection or tissue damage. The following section will focus 

primarily on the myeloid and macrophage components of the innate immune system, 

their role in inflammation and, eventually, their tumor-promoting properties.  

 

MYELOID ROLES IN INFLAMMATION 

 The innate immune system is the first line of defense against infection and tissue 

damage and can be found in all multicellular eukaryotes (Barton 2008). Identification of 

pathogens occurs via invariant pattern recognition receptors on the cell surface of the 

innate immune system. Following activation of innate immunity an inflammatory cascade 

is initialized that can help resolve the infection and/or any associated tissue damage. 

Furthermore, the innate immune system also functions to prime and activate the 

adaptive immune system, however the hallmarks of inflammation are almost invariably 

initiated by the innate immune system. 

 Components of the innate immune system. As described in Robbins 

Pathologic Basis of Disease, the innate immune system is comprised largely of 

phagocytic cells (including neutrophils and macrophages), dendritic cells, and natural 

killer cells (Kumar et al. 2005). Although neutrophil recruitment occurs quite rapidly after 
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the onset of edema and inflammation, it is tissue-resident macrophages that mediate 

initial recognition of infection or tissue damage (Medzhitov 2008). Monocyte-derived 

macrophages also play a large role in containing infection and can quickly comprise the 

majority of infiltrating leukocytes (Davies et al. 2013). Macrophages may phagocytose 

pathogens and then present pathogen-specific antigens on the cell surface to activate 

adaptive immunity. Macrophages thus comprise initial host defense and act as antigen-

presenting cells (APCs).  

 Differentiation and maturation. Macrophages are derived from a common 

myeloid progenitor (CMP). CMPs give rise to all myeloid lineages including either the 

megakaryocyte/erythrocyte branch or granulocyte/macrophage progenitors (Akashi et al. 

2000). Tissue-resident macrophages are highly diverse cell types depending on the 

specific microenvironment: skin (Langerhans cells), liver (Kuppfer cells), and brain 

(microglia) all contain exceptionally specialized macrophages (Davies et al. 2013).  

Interestingly, resident macrophages exhibit self-renewal capacity to maintain populations 

within the microenvironment. Alternatively, other resident macrophages, such as those 

within the gastrointestinal tract, are continually repopulated by peripheral circulating 

monocytes.  

 Macrophage polarization. Environmental cues influence macrophage 

polarization (Sica et al. 2012). In response to classical pro-inflammatory signals, such as 

LPS and IFNγ, macrophages undergo M1 activation akin to Th1 skewing of T cells 

(Figure 2). Other signals, such as IL-4 and IL-13, result in alternative or M2 macrophage 

polarization, similar to Th2 T cells. M1 polarized macrophages are responsible for 

initiating an inflammatory response: they secrete high levels of proinflammatory 

cytokines, reactive oxygen species (ROS), and nitric oxide (NO) and stimulate a Th1 

response from the adaptive immune system. In contrast, M2 polarized macrophages 

influence tissue remodeling and wound repair, are immunosuppressive, and can 
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promote tumor progression. Interestingly, over the course of infection or tissue damage, 

macrophages may switch from an M1 phenotype to an M2 phenotype as tissue 

requirements change from controlling infection to tissue repair (Kumar et al. 2005; Sica 

et al. 2012). Because of the complexity of signaling cues within the microenvironment, it 

is likely macrophages exhibit intermediate phenotypes that contain attributes of M1 and 

M2 polarization.  

 Role in chronic inflammation. Macrophages play a large role in chronic 

inflammation. When inflammation is not contained, macrophages persist – either through 

local proliferation or continual recruitment from the circulation (Barton 2008). Tissue 

injury characterizes chronic inflammation and is due, in part, to continuous macrophage 

activation. Activated macrophages control and contain infection by releasing ROS, NO, 

stimulating fibroblast proliferation and angiogenesis. However, these responses can also 

damage surrounding, healthy tissue. In addition, release of certain cytokines will recruit 

other classes of leukocytes for a continued inflammatory response (Kumar et al. 2005). 

Continued, inappropriate macrophage activation and tissue destruction are hallmarks of 

chronic inflammatory conditions and the resulting regeneration can, over time, result in 

increased risk of cancer development (Vakkila et al. 2004). Similarly, infiltrating 

macrophages are a key feature of most solid tumors (Balkwill et al. 2001; Pollard 2009). 

Inflammation-associated cancers are likely a consequence of chronic inflammation and 

will be examined more closely in the following section.  

   

INFLAMMATION ASSOCIATED CANCER 

In 1863 Rudolf Virchow first described the presence of infiltrating leukocytes 

within a solid tumor. He hypothesized that the presence of immune cells amongst cancer 

cells, as well as the fact that tumors often arise at sites of infection or tissue damage, 

indicated that cancer itself was a form of chronic inflammation (Virchow 1863). Ever 
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since this initial observation and hypothesis, researchers have attempted to explain the 

relationship between chronic inflammation and tumorigenesis (Virchow 1863; Balkwill et 

al. 2001; Vakkila et al. 2004). A complex association between chronic inflammatory 

states and cancer clearly exists. Although chronic inflammation may be due to a number 

of inciting agents (infectious, chemical, etc.), all appear to play a role in tumorigenesis. 

Today there is an obvious relationship between chronic inflammatory states and cancer 

(Table 1). Chronic exposure to asbestos fibers results in an inflammatory condition 

known as asbestosis and can lead to mesothelioma. Similarly, infectious agents such as 

Human Papillomavirus, Hepatitis B and C, and Helicobacter pylori have been linked to 

cervical cancer, hepatocellular carcinoma, and gastric cancer respectively (Balkwill et al. 

2001; Vakkila et al. 2004). 

Inflammatory bowel disease. In particular, inflammatory bowel disease (IBD) 

has been linked to an increased risk of colorectal cancer (CRC). Ulcerative Colitis (UC) 

and Crohn’s Disease (CD) are states of chronic colitis and are subsets of IBD; while 

lesions associated with CD can be found throughout the gastrointestinal tract, UC starts 

in the rectum and progresses in a proximal fashion (Rhodes et al. 2002). Similarly, 

whereas histopathologic analysis of UC demonstrates large numbers of infiltrating 

neutrophils within the lamina propria and crypts, CD lesions exhibit macrophage 

aggregates in the form of non-caseating granulomas (Xavier et al. 2007).  

According to the Center for Disease Control (CDC), peak age of IBD onset and 

diagnosis is between 18 and 30 years of age. Whereas UC exhibits a slight male 

predominance, CD is somewhat more frequent in females. It is currently thought that 1.4 

million people in the United States and 2.2 million people in Europe currently suffer from 

IBD. Although smoking and other lifestyle factors are known risk factors, genetic factors 

are most important as history of first-degree relatives with IBD remains the largest single 

risk factor (Loftus 2004; Hanauer 2006).   
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The innate immune system is thought to play a role in IBD pathogenesis (Figure 

3). Recently, the importance of commensal gut bacteria in IBD has come to light. As the 

microbiome continues to be investigated, further insights into the relationship between 

commensal bacteria and physiologic and pathologic interactions with host immune 

defenses will be discovered (Xavier et al. 2007). Mutations that result in dysfunctional 

macrophage pathogen recognition have recently been revealed as a genetic inducer of 

CD (Karin et al. 2006). As a result of this defect, intestinal resident macrophages secrete 

elevated levels of the pro-inflammatory cytokine IL-1β leading to increased local and 

systemic inflammation. Interestingly, IL-1 secretion is also elevated at tumor sites and 

can promote tumor growth and invasion (Lin et al. 2007). Similarly, defects in epithelial 

barrier function can result in overactive macrophage responses in inflamed colonic 

tissue (Mahida 2000). Inflammatory cytokine release by myeloid-derived cells mediates 

wound-healing responses in intestinal epithelial cells (Elinav et al. 2013). Importantly, 

patients with Crohn’s or UC have an elevated incidence of developing CRC when 

compared to the general population (Danese et al. 2010). In particular, after 30 years of 

UC, a patient’s cumulative probability of developing CRC is 18% (Eaden et al. 2001). 

Current understanding suggests the microbiome, host defects in innate immune 

recognition of commensal and pathogenic gut bacteria, and flaws in epithelial barrier 

function together result in chronic inflammation that leads to tissue damage and 

continued repair and regeneration that can, over time, ultimately lead to acquired cellular 

mutations and tumorigenesis. 

Sustained immune activation in the setting of chronic inflammatory states can 

promote malignancy through angiogenic signaling, inhibition of apoptosis, proliferative 

cues, and dysfunctional immune surveillance (O'Byrne et al. 2001). Similar to Virchow’s 

initial findings 150 years ago, colitis-associated cancer (CAC) is correlated with the 

infiltration of macrophages and other leukocytes into the tumor stroma. Because of their 
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highly plastic and heterogeneous nature, macrophages provide an intriguing link 

between chronic inflammation and cancer (Tanner et al. 1984). The following section will 

focus primarily on the multifaceted roles of infiltrating macrophages, both in the setting of 

inflammation-associated cancers and cancer-associated inflammation.  

 

MYELOID ROLES IN CANCER 

As previously mentioned, tumor-associated macrophages (TAMs) have been 

implicated in connecting the innate immune system, chronic inflammation and 

tumorigenesis (Solinas et al. 2009; O'Connor et al. 2010; Saleh et al. 2011), as the 

appearance of macrophages in tumors is positively correlated with poor patient 

prognosis, increased lymph node involvement, and distant metastases (Leek et al. 1996; 

Bingle et al. 2002; Fang et al. 2009; Kang et al. 2010). TAMs are a heterogeneous 

myeloid population that infiltrates predominantly hypoxic regions within solid tumors, 

where they secrete growth factors and cytokines that stimulate angiogenesis and 

facilitate invasion and/or metastasis (Leek et al. 2002; Pollard 2004; Condeelis et al. 

2006; Jedinak et al. 2010; Qian et al. 2010).  

Prognostic implications. Clinical studies show a strong association between 

TAM number in the primary tumor, lymph node involvement, and metastasis (Fang et al. 

2009; Kang et al. 2010). The presence of TAMs in the tumor microenvironment 

correlates with poor prognosis (Bingle et al. 2002). Tumor cells and stromal cells within 

the tumor microenvironment are thought to secrete inflammatory cytokines that act to 

recruit circulating monocytes and polarize TAMs. High expression of specific tumor-

secreted cytokines is also associated with poor prognosis in colon cancer (Qian et al. 

2010). Interestingly, culturing human colon cancer cells in activated macrophage-

conditioned media (AMCM), which contains increased levels of IL-6 and other cytokines, 

results in increased proliferation and migration of tumor cells (Jedinak et al. 2010). This 
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finding is clinically relevant as increased mucosal and serum IL-6 levels are seen in UC 

and colon cancer patients, and correspond with more advanced disease (Knupfer et al. 

2010; O'Connor et al. 2010). Similarly, IL-1β has been implicated in promoting tumor cell 

migration (Naldini et al. 2010).  

In particular, CSF-1, considered the main macrophage growth factor, promotes 

recruitment, survival and proliferation of macrophages. Inhibition of CSF-1 in a mouse 

model of breast cancer resulted in decreased macrophage infiltration into the tumor 

microenvironment as well as decreased tumor burden and slowed progression and 

invasion. Conversely, increased expression of CSF-1 in tumors correlates with 

augmented macrophage infiltration and accelerated tumor progression (Lin et al. 2001). 

Importantly, CSF-1 knockout in a murine colon cancer model prevented macrophage 

recruitment and significantly inhibited tumor formation (Oguma et al. 2008). Additionally, 

immunocompromised mice with xenografted human colon cancer treated with an 

antisense oligonucleotide against Csf-1 exhibited decreased macrophage recruitment 

and 50% decrease in tumor growth (Pollard 2004).  

Macrophage depletion in mice shows a similar correlation (Lin et al. 2001; Pollard 

2004; Oguma et al. 2008). Use of clodronate liposomes to deplete mice of circulating 

monocytes resulted in decreased TAM infiltration in murine models of teratocarcinoma 

and rhabdomyosarcoma and resulted in significantly decreased tumor growth and 

angiogenesis (Zeisberger et al. 2006). In short, the presence of TAMs within the tumor 

microenvironment is strongly associated with tumor growth in human cancer samples as 

well as multiple murine cancer models. TAMs are thus an intriguing area of exploration 

as a possible link between chronic inflammation and cancer induction. Ongoing research 

suggests TAMs may assist tumor progression by promoting angiogenesis and invasion 

and metastasis.  
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Effects on tumor angiogenesis. TAMs are thought to promote tumor 

progression, in part, through their positive effects on angiogenesis. In particular, TAMs 

are recruited to and accumulate in avascular hypoxic regions within tumors. Hypoxia in 

turn triggers increased expression of genes that promote angiogenesis. In vitro analysis 

of macrophages under hypoxia has shown that pro-angiogenic factors such as VEGF, 

bFGF, and COX2 are upregulated (Murdoch et al. 2008). Similarly, TAMs are known to 

release pro-angiogenic factors and cytokines such as VEGF, bFGF, TNF-α, thymidine 

phosphorylase, and insulin-like growth factor I (Leek et al. 1996; Lin et al. 2006; Coffelt 

et al. 2009). TAM secretion of VEGF is likely secondary to hypoxic adaptation, may 

trigger the angiogenic switch, and is likely involved in the transition to malignancy (Lin et 

al. 2006). Other factors such as IL-1β, IL-8, and MMP-9 have also been implicated in 

TAM-supported angiogenesis (Dirkx et al. 2006). These pro-angiogenic macrophages 

may be the reason current anti-angiogenic therapy fails as investigators have noted a 

correlation between specific myeloid cells and tumor refractoriness to anti-VEGF 

treatment (Shojaei et al. 2007; Coffelt et al. 2010).  

Recent evidence indicates the presence of a subset of TAMs that express Tie2, 

an angiopoietin 2 (Ang2) receptor initially thought to only be expressed on the surface of 

endothelial cells (ECs) and hematopoietic stem cells (HSCs) (De Palma et al. 2003). 

These Tie2-expressing monocytes (TEMs) are recruited to tumor sites and have been 

shown to be necessary for angiogenesis as TEM-knockout prevented neovascularization 

in a murine glioma model (De Palma et al. 2005). Furthermore, gene expression 

comparisons indicates TEMs are highly related to TAMs but retain a specific gene 

signature of enhanced pro-angiogenic activity (Pucci et al. 2009). Upregulation of Tie2 

increases TEMs response to Ang2, promoting angiogenesis. Indeed, Ang2 blockade 

limits angiogenesis and prevents progression and metastasis in multiple murine cancer 

models (Mazzieri et al. 2011).  
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Interestingly, Tie2 expression is upregulated in TEMs under hypoxic conditions 

such as highly angiogenic regions of the tumor microenvironment (Lewis et al. 2007). 

Thymidine phosphorylase, a pro-angiogenic factor known to be upregulated in TAMs in 

hypoxic regions of tumor samples, is also upregulated by Ang2 in TEMs (Leek et al. 

2002; Coffelt et al. 2010). This further suggests a possible role for Tie2/Ang2 expression 

in pro-angiogenic tumor-associated macrophages under hypoxic conditions. In 

summary, TAMs express and secrete a variety of pro-angiogenic factors that are in part 

hypoxia-induced and have been shown to be important in tumor angiogenesis and 

progression. Furthermore, TAMs may be a promising target for future anti-angiogenic 

therapies as their presence strongly associates with failure of anti-VEGF treatment.  

Effects on invasion and metastasis. TAMs are also thought to promote tumor 

progression, in part, through their positive effects on invasion and metastasis. Studies 

have shown a strong association between TAM number in the primary tumor and lymph 

node and distant metastases (Coffelt et al. 2009; Kang et al. 2010). Furthermore, 

overexpression of CSF-1 in tumors resulted in increased macrophage infiltration, 

accelerated tumor progression and increased metastasis while inhibition of CSF-1 

resulted in the exact opposite (Lin et al. 2001; Pollard 2004; Oguma et al. 2008).  

Local growth, invasion, and metastasis require proteolytic degradation of the 

extracellular matrix (ECM). TAMs secrete pro-metastatic factors such as TNF-α, MMP-2, 

MMP-9, IL-1β, and IL-6 amongst others. These molecules are thought to increase 

proliferation and aid in the disintegration of surrounding tumor stroma and connective 

tissue (Allavena et al. 2008). In fact, TAMs can be found at the invasive leading edge of 

advanced tumors and amongst regions of basement membrane breakdown in early 

stages of malignancy (Condeelis et al. 2006). Furthermore, TAMs are thought to 

promote tumor cell intravasation as part of the progression from primary tumor to 

metastatic spread (Wyckoff et al. 2004; Condeelis et al. 2006). Additionally, culturing 
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human colon cancer cells in macrophage-conditioned media results in increased 

proliferation and migration of tumor cells (Jedinak et al. 2010). TAMs may also promote 

dispersal and seeding by conditioning the pre-metastatic niche (Mantovani et al. 2010). 

These results support the idea that TAMs may play a direct role in promoting tumor 

proliferation and metastasis.  

Hypoxic recruitment. TAMs are recruited to regions of solid tumors through 

various chemokines and other secreted factors. Sphingosine-1-phosphate and 

transforming growth factor-β (TGF-β) are derived from apoptotic cells and recruit 

macrophages. This process also upregulates HIF-1α, indicating a mechanism through 

which TAMs may infiltrate the tumor microenvironment in a HIF and hypoxia-dependent 

manner (Herr et al. 2009). VEGF has been shown to increase TAM recruitment and is a 

well-documented HIF-dependent hypoxia-induced target. Hypoxia appears to both 

regulate the expression of and play a role in modifying chemoattractant receptors on the 

surface of tumor-associated macrophages (Murdoch et al. 2004). For example, CXCL12 

expression in tumor-associated fibroblasts appears to be induced under hypoxia and act 

to recruit tumor-associated macrophages. It is therefore possible that various elements 

within the tumor microenvironment may act to recruit macrophages in a hypoxia-

dependent manner. Additionally, hypoxic down-regulation of a number of receptors and 

chemokine production in TAMs and tumor cells respectively, may, in fact, act to entrap 

infiltrating macrophages at sites of hypoxia and necrosis (Murdoch et al. 2005). These 

findings support the notion that release of hypoxia-promoted inflammatory signals within 

the tumor microenvironment recruit TAMs. TAMs are recruited by hypoxia-dependent 

factors and once localized in hypoxic domains, undergo adaptive gene expression 

changes that in turn promote tumorigenesis and tumor progression. 

 

ROLE OF HIF IN MACROPHAGES 
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The association of TAMs with hypoxic tumor domains suggests that hypoxic 

responses in these cells are critical to their function. Several studies have implicated 

HIFs in controlling TAM gene transcription in hypoxic tumors (Wiesener et al. 1998; 

Talks et al. 2000; White et al. 2004; Imtiyaz et al. 2010), with different adaptive functions 

regulated by the closely related subunits HIF-1α and HIF-2α (Majmundar et al. 2010). 

Multiple strategies for macrophage recruitment to and retention in hypoxic regions of the 

tumor microenvironment have been proposed and previously described (Murdoch et al. 

2004). Importantly, macrophages accumulate in hypoxic, avascular regions within 

tumors and upregulate both HIF-1α and HIF-2α transcription factors. 

 HIF and NF-κB interaction. Although various proteins within the nuclear factor 

κB (NF-κB) pathway (a key transcriptional regulator of inflammatory responses) are 

phosphorylated under hypoxia, the NF-κB pathway on its own is not implicated in the 

transcriptional regulation of macrophages experiencing/adapting to hypoxia (Fang et al. 

2009). However, there appears to be a complex feedback loop between HIF-1α 

stabilization and expression, and the NF-κB pathway (Figure 4). Importantly, NF-κB is 

closely intertwined with hypoxic and HIF-mediated responses (Eltzschig et al. 2011). 

Under hypoxia, the NF-κB activator IKK-β is stimulated and the NF-κB component RelA 

translocates to the nucleus. HIF-1α is able to activate NF-κB and, conversely, NF-κB 

can influence HIF-1α transcription. In fact, basal NF-κB activity in macrophages is 

suggested to be required for HIF-1α stabilization and protein accumulation under low O2 

conditions such as that seen in settings of inflammation (Rius et al. 2008).   

Inflammatory hypoxic crosstalk through HIFs. Just as redox balance affects 

HIF activation, so too do certain inflammatory signals. HIF-1α and HIF-2α are both 

upregulated in macrophages cultured under hypoxia. As previously described, the 

different HIFα subunits can exhibit overlapping and distinct roles that are important in 
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tumor cells and recruited stromal cells. The same is true of macrophages. In the 

following section, the distinct and occasionally redundant roles of the HIFα subunits will 

be discussed in greater detail (Figure 5).  

HIF-1α . Perhaps more important than the recruitment of TAMs to low O2 

environments however, is the fact that macrophages undergo specific adaptive changes 

in gene expression as a response to hypoxia. Under prolonged hypoxic conditions (0.2% 

O2), macrophages exhibit HIF-1α RNA upregulation and an extreme increase in Vegf 

expression (Staples et al. 2011). Hypoxic adaptation requires changes in metabolism 

and results in a very rapid switch from aerobic to anaerobic glycolysis in macrophages 

(Kawaguchi et al. 2001). This is partly due to HIF-1α dependent expression of glucose 

transporter 1 (GLUT-1) and phosphoglycerate kinase (PGK) as well as a switch to the 

more active isoenzyme of phosphofructokinase that results in an increase in fructose-

2,6-bisphosphate concentration and overall glycolytic flux under hypoxic conditions 

(Rodriguez-Prados et al. 2010). Indeed, macrophages that lack HIF-1α expression have 

decreased cellular ATP. Loss of HIF-1α changes the metabolic status of myeloid-derived 

cells and results in decreased recruitment, as well as decreased migration and invasion 

(Cramer et al. 2003).  

Recently the importance of HIF-1α signaling in controlling metabolic flux of 

macrophages has come to light. Lipopolysaccharide (LPS), a characteristic feature of 

gram-negative bacteria, strongly polarizes macrophages towards an M1 phenotype. A 

consequence of this reaction is an increase in glycolysis, an accumulation of the TCA 

intermediate succinate, and stabilization of HIF-1α leading to increased secretion of IL-

1β (Tannahill et al. 2013). HIF-1α expression is therefore an important mediator of the 

metabolic changes the innate immune system undergoes in response to infection.  

27



28



	  

HIF-1α in particular has been previously implicated in instigating release of 

known inflammatory cytokines in stimulated macrophages (Barnes et al. 1997; 

Peyssonnaux et al. 2007). Interestingly, HIF-1α expression influences macrophage toll-

like receptor (TLR) expression. In particular, TLR4 is upregulated in ischemic inflamed 

tissues and is expressed in macrophages under hypoxic stress secondary to HIF 

stabilization (Kim et al. 2010). Furthermore, macrophage HIF-1α expression has been 

implicated in suppressing T cell activation in the tumor microenvironment in part through 

inducible nitric oxide synthase (iNOS) expression (Doedens et al. 2010).  

NO metabolism. Nitric oxide (NO) metabolism and homeostasis is of great 

functional importance for macrophages experiencing hypoxia (Takeda et al. 2010). 

Similar to previous findings, HIF-1α and HIF-2α have distinct and somewhat opposing 

roles in NO regulation. Nitric oxide production is controlled differently depending on 

macrophage polarization. While HIF-1α is upregulated in classically activated, pro-

inflammatory macrophages, HIF-2α activation corresponds with an alternatively 

activated macrophage phenotype (Takeda et al. 2010). HIF-1α promotes iNOS 

expression while HIF-2α promotes Arginase 1 (Arg1) expression. Thus each HIF subunit 

is an antagonist for the other and may play a role in NO homeostasis. When HIF-2α is 

present, Arg1 is expressed and suppresses NO production. This contrasts with HIF-1α 

which, when present, promotes iNOS expression and increases NO production. The HIF 

isoforms are primarily expressed in differently activated macrophages and have 

opposing roles in NO production. Thus NO production and HIF isoform expression is 

closely aligned with macrophage polarization (Takeda et al. 2010).  

HIF-2α . Whereas HIF-1α expression appears to be upregulated in macrophages 

stimulated by classic inflammatory signals, HIF-2α may play a larger role in the 

immunosuppressive effects of TAMs (Takeda et al. 2010). Although both HIF-1α and 
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HIF-2α are expressed in macrophages, elevated expression of HIF-2α in TAMs 

corresponds directly with clinical severity of many different human cancers (Talks et al. 

2000; Hu et al. 2003; Hu et al. 2007; Qing et al. 2009). TAM presence within the 

microenvironment is strongly associated with tumor growth in human cancer samples as 

well as multiple murine cancer models (Lin et al. 2001; Pollard 2004; Zeisberger et al. 

2006; Oguma et al. 2008). Similarly, overexpression of HIF-2α in normoxic macrophages 

results in upregulation of a variety of pro-angiogenic factors (White et al. 2004). 

In many instances, HIF-2α expression has been noted to be upregulated in 

tumor-infiltrating stromal cells as opposed to tumor cells themselves. In particular, early 

studies demonstrated stromal cells with appreciably higher levels of HIF-2α expression 

co-stained for macrophage specific markers. These tumor-associated macrophages are 

therefore specific regions within the tumor microenvironment with increased levels of 

HIF-2α expression. Interestingly, HIF-2α was not detected in normal human 

macrophages (Talks et al. 2000). Although both HIF-α proteins are expressed in 

macrophages, elevated expression of HIF-2α in TAMs corresponds with poor prognosis 

and high-grade tumors in a variety of human cancers (Talks et al. 2000). HIF-2α 

expression could therefore be specific to TAMs and may play a role in tumor 

progression. Hypoxia upregulates HIF-2α expression in macrophages and in turn 

promotes the release of Vegf (Pollard 2004). Importantly, HIF-2α expression is 

prolonged when compared to HIF-1α and can persist under re-oxygenation (Elbarghati 

et al. 2008).  

Previous work from the Simon lab has demonstrated the importance of HIF-2α 

expression in macrophages in multiple murine models of systemic inflammation, 

hepatocellular carcinoma, and colitis-associated cancer (Imtiyaz et al. 2010). Deletion of 

HIF-2α in macrophages results in decreased IL-6, IL-1β, VEGF, and adrenomedullin 
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production, indicating the importance of HIFs in regulating macrophage adaptation to 

hypoxia (Imtiyaz et al. 2010). Importantly, Pgk1 levels and ATP production were 

unchanged in the loss of HIF-2α. These results support the idea that TAM-specific HIF 

expression may play a direct role in promoting tumor proliferation and metastasis. 

Surprisingly, studies have indicated stabilization of HIF-2α in TAMs treated with GM-

CSF can result in increased secretion of the soluble form of the VEGF receptor 

(sVEGFR-1) resulting in decreased angiogenesis and tumor growth in a murine 

melanoma model (Roda et al. 2012). The outcome of HIF signaling is thus dependent on 

the environmental cues influencing and polarizing tumor-associated and inflammatory 

macrophages. 

Effect of hypoxia and HIFs on chronic inflammation. HIFs have recently 

come to light as important mediators in myeloid-driven inflammation and tumor 

progression (Cramer et al. 2003; Imtiyaz et al. 2010). Like most solid tumors, colorectal 

tumors exhibit regions of hypoxia. HIF-2α is present at increased levels in subsets of 

patients with colorectal cancer as measured by immunohistochemistry (IHC). These 

patients have significantly decreased survival compared with patients whose tumor 

samples have undetectable levels of HIF-2α (Jubb et al. 2009). Interestingly, HIF-2α 

expression appears to be upregulated in the surrounding stroma as opposed to the 

tumor cells in some studies (Talks et al. 2000). Macrophages within the tumor stroma 

exhibited appreciably higher levels of HIF-2α expression than the surrounding tissue. In 

particular, tissue samples from patients with UC exhibited macrophage infiltrates that co-

stained positively for HIF-2α, thymidine phosphorylase (TP), and VEGF albeit at low 

levels. Interestingly, the intestinal tissue from affected regions did not stain for HIF-2α. 

Additionally, normal tissue samples were unreactive for any of the previously mentioned 

markers (Giatromanolaki et al. 2003). Surprisingly, HIF-2α expression was undetectable 
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in normal human macrophages, indicating that the presence of HIF-2α in tumor 

infiltrating macrophages may be a response to tumor signals (Talks et al. 2000). 

Macrophages are recruited to sites of infection and tissue damage, which are 

often marked by regional hypoxia. HIF-1α and HIF-2α are both upregulated in 

macrophages in response to hypoxia and mediate a number of different functions. 

Similar to what was observed in ccRCC and in interactions with c-Myc, p53, and Sirt1, 

HIF-1α and HIF-2α exhibit surprisingly distinct roles in macrophage adaptation to 

hypoxia. What is clear based on genetic studies however, is that each HIFα subunit is 

important for cellular responses to hypoxia and interactions with surrounding 

environment. What remains to be studied however, is the complete hypoxic response of 

macrophages in the setting of acute, chronic, and tumor-associated inflammation. 

Understanding the result of complete loss of HIF activity will be vital to studying HIF 

pharmacologic inhibition.   

 

PHARMACOLOGIC HIF MANIPULATION 

Because HIF activity influences physiologic functions of various tissues and 

impacts multiple facets of tumor initiation and progression their manipulation is of 

continued therapeutic interest (Semenza 2003; Semenza 2007). Inhibitors may affect 

HIF expression, synthesis, stability, ability to dimerize with ARNT, or DNA binding 

(Figure 6) (Semenza 2012). Alternatively, inhibiting PHDs will result in stabilized HIF 

activity and increases in angiogenesis, erythropoiesis, hypoxic metabolic adaptation, and 

more. In particular, PHD inhibition has proven effective at minimizing tissue ischemia 

through HIF effects on angiogenesis and erythropoiesis production (Nangaku et al. 

2007; Adamcio et al. 2010).  

32



33



	  

To date, no specific HIF-inhibitors have been identified and the lack of specificity 

has made validating potential inhibitors difficult (Onnis et al. 2009). HIF inhibitors, 

although non-specific, generally result in decreased tumor growth and angiogenesis in 

multiple xenograft models. Aminoflavone, a constituent of AFP-464, partially inhibits HIF-

1α transcription and completely inhibits translation (Semenza 2012). Similarly, the 

antisense oligonucleotide EZN-2698 inhibits HIF-1α transcription (Onnis et al. 2009). 

Multiple drugs, including rapamycin, temsirolimus, digoxin, and everolimus, inhibit HIF-

1α translation (Onnis et al. 2009). The HIFα subunit can be targeted for degradation 

through multiple pathways such as HSP90 inhibitors, histone deacetylase inhibitors 

which stimulate ubiquitination of HIF-1α, and natural compounds such as berberine 

(Semenza 2012). Similarly, the HIF-α/β (HIF/ARNT) heterodimer can be destabilized 

through molecules that bind the PAS domain of the HIFα subunit. Acriflavine is a 

naturally occurring compound that inhibits HIF dimerization and can minimize tumor 

growth and angiogenesis in multiple tumor models (Lee et al. 2009; Semenza 2012; 

Wong et al. 2012). Lastly, anthracycline compounds like doxorubicin can bind to DNA 

and inhibit HIFα binding and transcriptional effects in cultured cells (Lee et al. 2009).  

HIF-1α and HIF-2α exhibit overlapping and distinct roles. Additionally, depending 

on tissue type and the influencing tumor microenvironment, HIF activity may be 

beneficial for the host or detrimental. Targeting HIF activity for therapeutic treatment of 

cancers requires careful understanding of possible outcomes. Depending on individual 

host factors or specificities of cancer type, HIF inhibition may negatively impact disease 

progression. Use of HIF inhibitors, while encouraging, must proceed with caution. The 

area of pharmacologic HIF inhibition also brings to light the importance of continued 

investigation into the multifaceted roles of HIF activity.   
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CONCLUSION 

The physiologic and pathologic adaptation to hypoxia can be appreciated in 

settings of acute, chronic, and tumor-associated inflammation. HIFs are O2 sensitive 

transcription factors that allow transcriptional adaptation to hypoxic environments. It is 

becoming increasingly apparent however, that HIFs are regulated (both at the level of 

transcription and post-translationally) by other stress-sensors. HIF regulation 

incorporates oxygen availability, redox status, nutrient availability, and certain 

inflammatory signals. Recent work indicates differential effects of HIF-α subunit 

expression in endothelial cell nitrogen metabolism and resulting metastatic success. 

Similarly, HIF activity is being identified as driving factors in modifying the ECM that also 

influence resulting tumor cell invasion, intravasation and distant seeding. As previously 

described, inflammation often coincides with tissue hypoxia and the innate immune 

system has evolved to function in a highly specialized manner under low O2 conditions 

(Nizet et al. 2009). Hypoxic responses of the innate immune system are a critical 

element in inflammation. The relationship and crosstalk between HIFs, hypoxia, the 

innate immune system, and cancer is epitomized in the setting of inflammation-

associated cancers. 

TAMs are recruited to hypoxic regions within the tumor microenvironment where 

they play a critical role in driving tumorigenesis. Within TAMs, HIF-1α again plays a large 

role in glycolytic changes that occur under hypoxia as well as promoting NO production. 

Interestingly, while HIF-1α may be induced by Th1 cytokines within the inflammatory 

component, HIF-2α is stimulated by Th2 cytokine-signaling and inhibits NO production – 

highlighting the occasionally opposing roles of each HIF subunit. Additionally, TAM HIF-

2α expression has a minimal metabolic effect but an impressive effect on TAM infiltration 

within the tumor microenvironment. Prior work from this lab has demonstrated the 
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importance of TAM-specific HIF-2α expression in primary tumor burden. These findings 

indicate a broader role for HIF-regulated hypoxic metabolic adaptation. Lastly, 

pharmacologic inhibition of HIF activity is an ongoing area of research with many 

profound consequences as it is becoming increasingly apparent that HIFs are one 

common link between hypoxia, chronic inflammation, and tumor progression through 

roles in reprogramming tumor cells, macrophages and other cells within the 

microenvironment during cancer development.  
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Chapter Two 

Inhibition of Hypoxia-Inducible Factors Limits Tumor Progression in a 

Mouse Model of Colorectal Cancer 

 

SUMMARY 

 

Hypoxia-inducible factors (HIFs) accumulate in both neoplastic and inflammatory 

cells within the tumor microenvironment, and impact the progression of a variety of 

diseases, including colorectal cancer. Pharmacological HIF inhibition represents a novel 

therapeutic strategy for cancer treatment. We show here that acriflavine (ACF), a 

naturally occurring compound known to repress HIF transcriptional activity, halts the 

progression of an autochthonous model of established colitis-associated colon cancer 

(CAC) in immunocompetent mice. ACF treatment resulted in decreased tumor number, 

size, and advancement (based on histopathological scoring) of CAC. Moreover, ACF 

treatment corresponded with decreased macrophage infiltration and vascularity in 

colorectal tumors. Importantly, ACF treatment inhibited the hypoxic induction of M-

CSFR, as well as the expression of the angiogenic factor VEGF, a canonical HIF target, 

with little to no impact on the NF-κB pathway in bone marrow-derived macrophages 

(BMDMs). These effects likely explain the observed in vivo phenotypes. Finally, an 

allograft tumor model further confirmed that ACF treatment inhibits tumor growth through 

HIF-dependent mechanisms. These results suggest pharmacological HIF inhibition in 

multiple cell types, including epithelial and innate immune cells, significantly limits tumor 

growth and progression. 
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INTRODUCTION 

 

Chronic inflammation increases an individual’s risk of cancer, as exemplified by 

the well-established relationship between ulcerative colitis and the development of 

colorectal cancer (Virchow 1863; Balkwill et al. 2001; Eaden et al. 2001; Rhodes et al. 

2002; Vakkila et al. 2004; Danese et al. 2010; O'Connor et al. 2010). Inflammatory 

lesions and solid tumors are similar in that both contain regions of varying oxygen (O2) 

levels and are comprised of complex, highly heterogeneous cell populations (Bertout et 

al. 2008; Ruan et al. 2009). Hypoxic domains within tumors are characterized by the 

infiltration of certain bone marrow-derived cells that act to promote disease progression 

(Murdoch et al. 2004). In particular, tumor-associated macrophages (TAMs) have been 

implicated in promoting tumorigenesis, often as a result of chronic inflammation (Solinas 

et al. 2009; O'Connor et al. 2010; Saleh et al. 2011). Hypoxia-driven inflammatory 

intracellular and cytokine signaling and macrophage infiltration clearly enhance tumor 

progression (Tanner et al. 1984; O'Connor et al. 2010). Because both tumor cells and 

infiltrating TAMs must adapt to the unique stress of survival and proliferation under low 

O2 concentrations, hypoxic responses in these cell types directly impact tumor growth, 

local invasion, and metastasis (Crowther et al. 2001; Bertout et al. 2008; Fang et al. 

2009). As such, targeting the hypoxic response in either or both population(s) could have 

a beneficial effect on cancer therapy (Bingle et al. 2002; Waldner et al. 2010). 

The transcriptional response to O2 deprivation is mediated, in large part, by 

hypoxia-inducible factors (HIFs) (Semenza 2007; Majmundar et al. 2010). HIFs are 

composed of an O2-sensitive α subunit, and a constitutively expressed β (HIF-1β/ARNT) 

subunit (Majmundar et al. 2010). The α subunit is regulated by the von Hippel-Lindau 

(VHL) E3 ligase complex and degraded by the 26S proteasome under elevated O2 

tensions (Cockman et al. 2000). Low O2 levels stabilize HIF-α subunits by inhibiting 
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prolyl hydroxylases (PHDs) that modify HIF-α proteins and promote their degradation 

(Jaakkola et al. 2001).  Once stabilized, HIF-α subunits translocate to the nucleus, form 

heterodimers with ARNT, and bind hypoxia-response elements (HREs) to promote gene 

expression devoted to adaptation to hypoxic stress (Talks et al. 2000; White et al. 2004; 

Semenza 2007; Semenza 2007; Imtiyaz et al. 2010). Three α subunits (HIF-1α, HIF-2α, 

and HIF-3α) have been identified; however, HIF-1α and HIF-2α appear to account for 

the majority of HIF-mediated transcriptional responses (Keith et al. 2007; Keith et al. 

2011). Whereas the HIF-1α subunit is expressed in virtually all cells, HIF-2α has a more 

restricted expression profile, including components of the liver, kidney, lung, intestine, 

and brain (Wiesener et al. 2003). HIF-1α and HIF-2α possess distinct and occasionally 

overlapping roles; however, both have been suggested to actively promote the 

progression of a variety of cancers, including clear cell renal carcinoma, neuroblastoma, 

hepatocellular carcinoma, and colorectal cancer (Keith et al. 2011; Mucaj et al. 2012). 

HIFs play an important role in neoplastic and inflammatory cells within the tumor 

microenvironment, and crosstalk between these populations has clear effects on tumor 

growth (Lewis et al. 1999; Burke et al. 2002; Burke et al. 2003; Murdoch et al. 2004; 

Murdoch et al. 2005; Imtiyaz et al. 2010). Both HIF-α isoforms are expressed in TAMs, 

but have different downstream functions. For example, in the setting of nitric oxide (NO) 

metabolism, HIF-1α and HIF-2α elicit differential effects on arginase and inducible nitric 

oxide synthase (iNOS) activity respectively (Takeda et al. 2010; Keith et al. 2011). Both 

isoforms have been implicated in bone marrow-derived macrophages (BMDMs), mature 

macrophages, and the pro-tumorigenic and pro-angiogenic signaling observed in TAMs 

(Cramer et al. 2003; Fang et al. 2009). Importantly, whereas HIF-1α expression in 

macrophages has been implicated in modulating the switch from aerobic to anaerobic 

metabolism, as well as classical activation via Th1 cytokines, HIF-2α expression in 
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TAMs has been associated with an alternative activation via Th2 cytokines (Fang et al. 

2009; Imtiyaz et al. 2010; Takeda et al. 2010; Shay et al. 2012). It is becoming 

increasingly apparent that HIFs are a common link between hypoxia, chronic 

inflammation, and tumorigenesis through their activity in macrophages during cancer 

development.  

 Pharmacological HIF inhibition as a novel therapeutic strategy is an active area 

of ongoing research (Semenza 2006; Semenza 2012; Semenza 2012). In particular, 

targeting HIF is well suited to colorectal cancer, as the HIF pathway has been repeatedly 

implicated in colorectal cancer pathogenesis (Waldner et al. 2010). Acriflavine (ACF), a 

mixture of trypaflavin and proflavine, inhibits HIF-α:ARNT dimerization, has shown 

promise in xenograft models of human cancers, and may be a viable source for future 

therapeutic interventions aimed at targeting HIF-1α and HIF-2α (Lee et al. 2009). 

Recently, ACF has also been shown to inhibit the recruitment of CD11b+ bone marrow-

derived cells to the tumor microenvironment in an orthotopic model of breast cancer 

(Wong et al. 2012). Importantly, ACF does not appear to elicit any adverse side effects 

when administered to patients for extended periods of time (Wainwright 2001). Whereas 

ACF has proven effective in subcutaneous and orthotopic models, it has yet to be 

evaluated in an autochthonous tumor model in immunocompetent mice, which more 

accurately mimics the cellular complexity observed in clinical disease. Here we 

demonstrate that ACF limits tumor progression in murine models of colitis-associated 

colon cancer (CAC), and use in vitro cellular assays to assess underlying mechanisms in 

both macrophages and malignant colonic epithelial cells.  

 

MATERIALS AND METHODS 

Autochthonous and subcutaneous colorectal cancer models  
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8-week-old female Balb/C mice were purchased from Jackson Laboratory. 

Briefly, mice received a single intraperitoneal (i.p.) injection of 12.5mg/kg azoxymethane 

(AOM) at 8 weeks of age followed by 4 cycles of 2% dextran sulfate sodium (DSS) in 

their drinking water (cycle 1: 5 days, cycle 2: 4 days, cycle 3: 4 days, cycle 4: 4 days) 

with two weeks of regular water between each cycle for autochthonous induction of 

colitis-associated colon cancer. For subcutaneous experiments, 1x106 CT26 cells 

containing either shSCR or shARNT were injected subcutaneously into the left or right 

flank of 8-week-old female Balb/C mice respectively. For all in vivo experiments mice 

received acriflavine (Sigma M.W. 259.7) via daily i.p. injections at 2 mg/kg dissolved in 

PBS or an equivalent volume of PBS alone for the control cohort. The laboratory animal 

program is accredited by the American Association for Accreditation of Laboratory 

Animal Care. Animal health, well-being, and comfort were monitored constantly by 

certified veterinary staff. Every effort to minimize discomfort, stress, pain, and injury to 

the mice and the mice was maintained in accordance with the Animal Welfare Act and 

the DHHS Guide for the care and use of laboratory animals. These procedures were 

performed according to the protocols reviewed by the Institutional Animal Care and Use 

Committee (IACUC).  

 

Cell lines and cell culture 

CMT93 (ATCC CCL-223) and CT26 (ATCC CRL-2638) cell lines were purchased 

from ATCC and cultured according to instructions. Cells were cultured under normoxia 

(21% O2) or hypoxia (0.5% O2) using a Ruskinn InvivO2 400 workstation. Acriflavine 

(Sigma M.W. 259.7) was administered at 5µM in DMSO.  

 

Bone marrow-derived macrophages  
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Generation of VavCre and Arntfl/fl mice has been previously discussed (Tomita et 

al. 2000; Stadtfeld et al. 2005). VavCre;Arnt mice were created by crossing VavCre mice 

(obtained as a gift from Speck lab) to Arntfl/fl mice on a mostly C57BL/6 background. 

Macrophages were isolated from C57BL/6, VavCre;Arnt fl/+ or VavCre;Arntfl/fl (littermates) 

mice by removing the long bones and flushing the marrow followed by red blood cell 

lysis. BMDMs were cultured in DMEM containing 20% Hyclone serum, 30% LCM, 1% L-

glutamine, 1% Anti-Anti, and 0.1% beta-mercaptoethanol and stimulated with 5 ng/ml 

LPS (Sigma L3024) and 20 ng/ml IFN-γ(R&D 485-MI). For hypoxia induction, BMDMs 

were cultured under normoxia (21% O2) or hypoxia (0.5% O2 or 3% O2). Acriflavine 

(Sigma M.W. 259.7) was administered at 1µM in DMSO. 

 

Luciferase assay 

CMT93 and CT26 cells were transfected according to Fugene protocols (Roche) 

with PGL3 plasmids containing firefly luciferase under control of either a wild type HRE 

promoter from the human PGK gene or a mutant HRE promoter along with renilla 

control, or an pGL4.32[luc2p/NF-κB-RE/Hygro] vector (Promega E849A) also with renilla 

control. 24 hours after transfection, media was changed to either DMSO or ACF and 

then cells were placed under normoxia or hypoxia.  Luciferase activity was read on a 

luminometer 16 hours after addition of DMSO or ACF (Promega E1960). Firefly activity 

from the wildtype HRE plasmid was normalized to renilla and mutant HRE activity. 

 

RT-qPCR  

RNA was isolated from tumor tissue or cells using the RNAeasy minikit (Qiagen 

#74106). RNA concentration was quantified using the Nanodrop with equal amounts of 

mRNA used for reverse transcription to cDNA using the High-Capacity RNA-to-cDNA kit 
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(ABI #4387406). Expression was determined by quantitative PCR of synthesized cDNA 

using the Applied Biosystems 7900HT system and ΔΔCT program settings. Target cDNA 

amplification was measured using the following TaqMan primers: VEGF 

(Mm00437304_m1), IL-1β (Mm00434228_m1), IL-6 (Mm00446190_m1), CXCR4 

(Mm01292123_m1), COX-2 (Mm00478377_g1), SDF-1 (Mm0044552_m1), ARNT 

(Mm00507836_m1), PGK (Mm00435617_m1), HPRT (Mm01318743_m1), HIF-1α 

(Mm01283758_g1), HIF-2α (EPAS Mm00438717_m1), iNOS (Mm00440502_m1 ), 

ANG4 (Mm03647554_g1), RETNLB (Mm00445845_m1). Results were analyzed with 

HPRT as an endogenous control.  

 

Production of shRNA containing lentiviruses and transduction  

HEK-293T cells were used for lentiviral production using the following constructs: 

pLKO.1 scrambled shRNA (Addgene 1864), pLKO.1 ARNT shRNA (ThermoScientific 

TRCN0000079931), pLKO.1 HIF1α shRNA (ThermoScientific TRCN0000054448), and 

pLKO.1 HIF-2α shRNA (ThermoScientific TRCN0000082307), G protein of the vesicular 

stomatitis virus (VSV-G), pMDLG, and pRSV-rev. 293T cells were transfected according 

to the Fugene (Roche) protocol. 24 and 48 hours after transfection, supernatant was 

collected and concentrated using Amicon centrifugal filter units (Millipore). As the 

pLKO.1 shRNA constructs contain a puromycin resistance gene, transduction was 

followed by puromycin selection. CT26 cells were transduced with lentiviral particles 

containing copGFP in the form of the pCDH-CMV-EF1-copGFP vector (System 

Biosciences).  

 

Immunostaining and Imaging 
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Immunohistochemistry was performed using enzymatic Avidin-Biotin Complex 

(ABC)-diaminobenzidine (DAB) staining (Vector Labs) with hematoxylin used for 

counterstaining of nuclei. Stained sections were visualized using an Olympus IX81 

microscope. CD68 1:100 (Abcam ab955) used according to instructions (Vector PK-

2200), CD31 1:50 (Abcam ab28364), Ki67 (Novocastra NCL-Ki67-MM1) used according 

to instructions (Vector PK-2200), TUNEL staining done according to instructions 

(Millipore ApopTag S7111), and copGFP staining performed using anti-TurboGFP 

antibody (Evrogen AB514). Staining was quantified using ImageJ software.  

 

Immunoblot assays 

Whole cell extracts were isolated in SDS/Tris pH 7.6 lysis buffer. Subcellular 

fractionation was performed as previously described (Pan et al. 2004). Protein was 

quantified using BCA and equal protein amounts were run on an 8% or 10% SDS-PAGE 

gel, transferred to nitrocellulose, and probed with the following antibodies: HIF-1α 

1:1000 (Cayman 10006421), ARNT 1:1000 (Cell Signaling #5537), GAPDH 1:1000 (Cell 

Signaling #2118), NF-κB (Cell Signaling #3034), p-NF-κB (Cell Signaling #3039), IκBα 

(Cell Signaling #4814) p-IκBα (Cell Signaling #2859), M-CSFR (Cell Signaling #3152), 

DNMT1 (Cell Signaling #5032), AKT (Cell Signaling #9272), HDAC1 (Cell Signaling 

#5356). Representative western blots from multiple independent experiments are 

presented.  

 

Flow Cytometry and Sorting 

Subcutaneous tumors were grossly dissected, minced, collagenase-treated, and 

run through a 70µm cell-strainer to generate a single cell suspension. Live cells were run 

on a FACSVantage SE and sorted based on GFP staining. GFP negative parent cells 
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were run to set up GFP+ and GFP- gates. Acquired data was analyzed using FlowJo 

software. 

 

Statistical Analysis 

Unless otherwise indicated, data is shown as mean ± SEM. GraphPad Prism 

software was used to conduct statistical analyses and graph data. Unless otherwise 

indicated, unpaired 2-tailed Student’s t test was performed to evaluate statistical 

differences between control and experimental groups. In situations where more than two 

groups were compared, a one-way Anova was used followed by post-test Tukey 

analysis. Significance is demonstrated by “#” indicating p > 0.05, “*” representing p < 

0.05, “**” representing 0.001 < p < 0.01, and “***” representing p < 0.001.  

 

RESULTS 

 

Acriflavine limits tumor burden in an autochthonous murine model of 

colitis-associated colon cancer. To analyze the effect of ACF treatment in the setting 

of colitis-associated cancer (CAC), eight week-old female Balb/C mice were subjected to 

a single intraperitoneal (i.p.) injection of the pro-carcinogen azoxymethane (AOM), 

followed by repeated treatments of 2% dextran sulfate sodium (DSS) to induce 

autochthonous CAC (Okayasu et al. 1990; Okayasu et al. 1996; Okayasu et al. 2002) 

(Figure 7A). Prior to initiating ACF treatment, we confirmed that mice exhibited gross 

intestinal polyp formation, with hyperplastic lesions making up approximately 60% of 

tumor burden and adenomas making up the remaining 40%, based on histologic 

examination of mice sacrificed at baseline (Figure 9A-C). The AOM/DSS treated mice 

were then separated into two cohorts: an experimental group that received daily i.p. 

injection of 2 mg/kg ACF for four weeks, and a control group that received daily 
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injections of PBS. Over the course of treatment, no significant difference in mouse 

weight was observed between experimental and control groups (Figure 7B); however, 

the control cohort exhibited increased incidence of prolapsed rectum, indicative of 

underlying pathology (Figure 7C).  

After one month, mice were euthanized, colons dissected, and tumor burden 

analyzed. Whereas the control cohort exhibited significant disease progression 

compared to the baseline group, the ACF-treated cohort did not (Figure 7D-E). Mice in 

the control group, on average, developed increased numbers of colorectal tumors 

(Figure 7D). Similarly, there was an overall greater tumor burden, with a greater 

proportion of large tumors, in the control cohort when compared to ACF treated or 

baseline groups (Figure 8A-D). The control cohort also displayed a larger fraction of 

high-grade lesions, based on nuclear pleiomorphism and atypia, than the corresponding 

ACF-treated group (Figure 8C). In particular, the most highly pleiomorphic lesions in this 

model (atypical adenomas), were observed at nearly three-fold higher frequency in the 

control group than in the ACF-treated cohort (Figure 8B). Although increased nuclear 

atypia were detected, no significant decreases in number of mitotic figures were noted in 

the control group compared to the ACF-treated group (Figure 8D). Lastly, we observed a 

trend towards decreased expression of multiple HIF-associated inflammatory molecules 

(Figure 9D) in RNA isolated from unstaged and unmatched individual polyps from ACF 

and PBS treated mice respectively. Resistin like beta (Retnlβ) and Angiogenin 4 (Ang4) 

expression corresponds with colonic inflammation and bacterial influx (Hooper et al. 

2003; Hogan et al. 2006). Importantly expression of both Ang4 and Retnlβ was 

unchanged, suggesting ACF does not alter bacterial influx into the colonic epithelial cells 

(Figure 8E). As such, any observations in ACF-treated mice are unlikely to be due to the 

antimicrobial effects of acriflavine. Although previous studies have shown that intestinal 

microflora may contribute to the pathogenesis of colitis, and antibiotics are effective at 
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minimizing disease in acute models of DSS-induced colitis, antibiotic treatment appears 

to be ineffective in models of chronic DSS-induced colitis (Hans et al. 2000; Hooper et 

al. 2003; Hogan et al. 2006). We concluded that ACF limits tumor progression in an 

autochthonous model of CAC, and may be doing so through HIF-dependent 

mechanisms. 

 

Effects on tumor vascularity and proliferation corresponding to acriflavine 

treatment. Previous work has demonstrated an effect on tumor growth along with 

decreased vascularity and infiltrating CD11b+ cells in mice treated with ACF (Lee et al. 

2009; Wong et al. 2012). Similarly, while a trend towards decreased mitotic figures was 

detected upon H&E analysis, further investigation revealed that tumors from ACF-treated 

mice exhibited approximately 30% fewer proliferating (Ki67-positive) cells in stage-

matched sections (Figure 11A-B). In contrast, no difference in apoptotic cell numbers 

was noted between the two cohorts, based on TUNEL staining (Figure 11A-B). 

Moreover, ACF-treated tumors exhibited significantly reduced vessel density and 

size, with vessel area nearly three times greater in PBS-treated mice, as assessed by 

CD31 staining (Figure 12A-B).  In the setting of an inflammation-driven cancer, such as 

the AOM/DSS model of colitis-induced colorectal cancer, ACF appears to limit tumor 

burden through effects on tumor growth and progression, correlated with lower rates of 

tumor cell proliferation and decreased angiogenesis. ACF may also have an effect on 

the inflammatory component of this model.  

 

Acriflavine-treated tumors exhibit decreased macrophage infiltration. We 

hypothesized that the effects of ACF on the growth and progression of AOM/DSS-

induced colorectal tumors were caused by altered HIF activity in TAMs, transformed 

colonic epithelial cells, or both.  To investigate ACF-mediated effects on macrophage 
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recruitment, CD68+ cells were counted in stage-matched tumor sections from PBS- and 

ACF-treated mice, respectively. Adenomas and atypical adenomas in control animals 

exhibited significantly greater numbers of infiltrating macrophages than corresponding 

tumors from the ACF-treated cohort (Figure 13A-B, 17A). These results confirm previous 

work in different non-inflammation-driven tumor models, and are unlikely to be a 

consequence of general myelosuppressive effects of ACF treatment, as experimental 

animals displayed no discernible changes in the number of B220+, F4/80+, and Gr1+ 

cells in bone marrow or spleen, following one month of treatment (Figure 10 A-B) (Wong 

et al. 2012).  

Because regulatory T cells possess anti-inflammatory functions and have been 

implicated in CAC, we stained for CD3 and Foxp3 in sections from ACF-treated and 

control mice (Ullman et al. 2011). However, no differences were observed in Foxp3+ or 

CD3+ T lymphocyte numbers among control and ACF-treated cohorts, indicating that 

ACF treatment primarily affects innate immune cells associating with colonic tumors in 

this setting (Figure 14A-B). Collectively, these findings, along with previously published 

data, underscore the importance of infiltrating macrophages in inflammation-driven 

cancers, and provide a possible mechanism to explain the less aggressive CAC 

observed in ACF-treated mice. 

 

Acriflavine inhibits HIF signaling in macrophages. To evaluate the general 

impact of ACF treatment on macrophages, we investigated HIF-dependent responses in 

bone marrow-derived macrophages (BMDMs) obtained from wild type C57BL/6, 

VavCre;Arntfl/+, or VavCre;Arntfl/fl mice (also on a C57BL/6 background). To confirm 

efficacy of Arnt deletion, BMDMs were purified and whole cell lysates analyzed for ARNT 

protein levels. As shown in Figure 15B, no detectable ARNT protein was observed in 

macrophages isolated from VavCre;Arnt fl/fl mice (Figure 15B) (Krock et al. 2013). Arnt∆/∆ 
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macrophages are therefore deficient in the obligate HIF-α dimerization partner, and 

consequently fail to engage either HIF-1α and HIF-2α responses. We propose that this 

genetic model is similar to pharmacological HIF inhibition by ACF. To mimic the hypoxic 

microenvironment, macrophages were cultured in complete media at 3% O2 and growth 

compared to that at 21% O2. Macrophage proliferation was unaffected by ACF treatment 

under normoxia or hypoxia in complete media (21% or 3% O2, respectively, Figure 17C), 

suggesting that the observed decrease in CAC infiltrating macrophages is secondary to 

decreased recruitment rather than an effect on resident macrophage numbers.  

In contrast, ACF treatment significantly inhibited the expression of genes 

encoding interleukin 1β (IL-1β) and VEGF, both HIF targets, in Arnt∆/+ macrophages 

(Figure 15C). Interestingly, Il1β and Vegf transcript levels in ACF-treated Arnt∆/+ 

macrophages are similar to those observed in HIF-deficient Arnt∆/∆ macrophages.  

Furthermore, ACF treatment failed to substantially further reduce the expression of 

either gene in Arnt∆/∆ macrophages, confirming that ACF is acting via a predominantly 

HIF-dependent pathway.  We also observed that hypoxic stimulation of M-CSFR, a 

principal receptor for the macrophage growth factor and chemoattractant M-CSF, was 

ablated upon ACF treatment (Figure 16A).  This is consistent with our previous 

observation that macrophage M-CSFR expression is regulated by HIF-2α, and suggests 

a mechanism by which ACF treatment limits macrophage recruitment to, and infiltration 

of, inflammation-associated tumors (Imtiyaz et al. 2010). Interestingly, when 

macrophages are cultured without M-CSF under 21%, 1.5%, or 0.5% O2 and treated with 

DMSO or ACF, there appeared to be a specific proliferative effect on macrophages 

treated with ACF under hypoxic conditions. This may be secondary to decreased M-

CSFR expression, as the proliferative defect is recapitulated with macrophages cultured 

in the absence of M-CSF (Figure 16B). We concluded that ACF treatment limits hypoxic 
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induction of M-CSFR expression, minimizing macrophage stimulation by M-CSF under 

low O2. This effect was also detected during macrophage motility, as demonstrated by 

M-CSF-mediated migration of seeded macrophages in a modified Boyden chamber 

migration assay (Figure 16C). Although no difference between either WT, Arnt∆/+, or 

Arnt∆/∆ cells was noted under normoxia, migration under 0.5% O2 was limited in ACF-

treated WT and Arnt∆/+ cells and in both DMSO-treated and ACF-treated Arnt∆/∆ 

macrophages. These results indicated ACF treatment acts upon macrophages in a 

hypoxia and HIF-dependent manner, in large part through the expression of M-CSFR. 

 NF-κB (Nuclear factor kappa-light-chain-enhancer of activated B cells) is a 

central regulator of the inflammatory response and has an established role in 

inflammation-associated cancers (Barnes et al. 1997). Moreover, ACF has been 

suggested to have possible effects on this pathway (Barnes et al. 1997; Lee et al. 2009). 

NF-κB transcription complexes are generally maintained in an inactive state in the 

cytoplasm and only translocate to the nucleus when dissociated from inhibitors such as 

IκBα (nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha) 

(Pahl 1999). As such, NF-κB nuclear localization is a strong indicator of transcriptional 

activity. We investigated whether ACF treatment alters NF-κB nuclear transit in BMDMs 

cultured under normoxia or hypoxia. Of note, ACF treatment had no appreciable effect 

on NF-κB subcellular localization or IκBα phosphorylation (Figure 15A), a necessary 

step to release NF-κB and allow nuclear entry. However, the same lysates clearly 

demonstrate decreased hypoxia-induced nuclear localization of HIF-1α (Figure 15A). 

AKT and HDAC-1 immunoblotting indicate the purity of cytosolic and nuclear fractions, 

respectively. Similarly, ACF treatment had no detectable effect on the expression of 

transcripts encoding COX-2, an inflammatory protein regulated by multiple stimuli, 

including NF-κB (Figure 17B). Taken together, these findings indicate ACF inhibits 
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macrophage recruitment and signaling through HIF-α specific mechanisms, with little to 

no impact on the NF-κB pathway.  

 

HIF signaling is inhibited by acriflavine treatment in murine colorectal cells. 

In addition to its effects on macrophages, ACF treatment likely inhibits CAC progression 

by inhibiting HIF responses in transformed colonic epithelial cells. To address this 

hypothesis, we analyzed ACF effects on murine CT26 cells (derived from Balb/C colon 

carcinoma) and CMT93 cells (derived from C57BL/6 polypoid carcinoma of the rectum). 

As expected, ACF administration did not impact HIF-1α stabilization under 0.5% O2 in 

either CT26 or CMT93 cells (Figure 22A), consistent with its proposed role in blocking 

HIF-α/ARNT dimerization rather than α subunit accumulation (Lee et al. 2009). 

Furthermore, ACF treatment had no effect on Hif1α or Arnt transcript levels. Importantly, 

ACF treatment instead limits nuclear localization of HIF-1α in both CT26 and CMT93 

cells under 0.5% O2 (Figure 18A-B) with AKT and HDAC-1 immunoblotting 

demonstrating cytosolic and nuclear fractions, respectively. In contrast, ACF 

administration had no effect on the cellular localization of NF-κB (Figure 18A-B), or 

expression of Cox-2 (Figure 22C), indicating that ACF is unlikely to be affecting the NF-

κB pathway. As noted for macrophages, Cox-2 transcription is likely regulated by 

multiple hypoxia-dependent, HIF-independent factors and does not appear to be 

impacted by ACF treatment. Instead, HIF targets Vegf and phosphoglycerate kinase 1 

(Pgk1) were markedly reduced in both CT26 and CMT93 cells upon ACF exposure 

(Figure 20A-B). Additionally, ACF administration resulted in decreased HRE-driven 

luciferase reporter gene expression in both CT26 and CMT93 cells under hypoxia 

(Figure 20A), demonstrating decreased HIF transcriptional activity. Unlike that observed 

with HRE-driven luciferase assays, ACF had no effect (hypoxic or otherwise) on an NF-
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κB response element (NRE) luciferase reporter assay in either cell line (Figure 20B). 

Importantly, in the absence of HIF-1α or HIF-2α in CT26 cells, ACF treatment resulted in 

a modest decrease in Vegf or Pgk1 expression, while in the absence of ARNT, no 

further reduction in HIF target gene expression was observed (Figure 21A-B, Figure 

22B). These findings reinforce the notion that ACF is acting through the HIF 

transcriptional pathway.  

 

Acriflavine slows allograft tumor growth, dependent on HIF-α /ARNT 

activity. To further investigate the HIF specificity of ACF treatment, we employed a 

lentiviral shRNA construct to inhibit ARNT expression, and thus HIF-1α− and HIF-

2α−mediated responses, in CT26 cells (Figure 23A). GFP-expressing CT26 cells 

transduced with either control (shSCR) or ARNT-specific (shARNT) lentiviruses were 

injected into the left and right flank, respectively, of syngeneic Balb/C mice (Figure 25B). 

Mice then received daily i.p. injection of PBS or ACF for three weeks. Over the course of 

treatment, shSCR tumors in mice receiving PBS grew significantly larger than shSCR 

tumors in mice administered ACF (Figure 23B). Interestingly, there was minimal effect 

on growth rate in shARNT tumors as a result of ACF treatment, and shSCR tumors in 

mice treated with ACF grew at a similar rate as the shARNT tumors. The fact that 

shARNT tumors in mice receiving ACF were nearly identical in size to shARNT tumors in 

PBS-treated mice, strongly suggests that ACF is primarily targeting the HIF pathway. 

Moreover, an appreciable decrease in tumor weight was observed in ACF-treated 

shSCR tumors; however, there was no difference in the weight of shARNT tumors 

(Figure 23C). These observations indicate that a majority of the anti-tumorigenic effects 

of ACF are directly related to HIF inhibition. RNA analysis of FACS-sorted tumor cells 

(based on GFP+ staining) confirmed that suppression of ARNT expression was 
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maintained in shARNT cells throughout the experiment (Figure 23D). Similarly, the 

expression of canonical HIF targets Vegf and Pgk was reduced in shSCR tumors from 

ACF-treated mice compared to controls (although they do not achieve statistical 

significance), and no additional decrease was observed in shARNT tumors treated with 

ACF (Figure 23E). Immunohistochemical staining of subcutaneous tumors revealed little 

inflammatory infiltration as evidenced by a lack of CD68 staining (data not shown), 

demonstrating that the bulk of each tumor was composed of CT26 cells, as suggested 

by relatively prolific GFP staining (Figure 25B). Of note, reduced CD31+ positive cells 

were detected in sections from ACF-treated shSCR tumors, similar to values in PBS- 

and ACF-treated shARNT tumors (Figure 24A-B). The decrease in vascularity was not 

as pronounced as in the autochthonous CAC model, which exhibited dramatically higher 

numbers of infiltrating macrophages. TAMs are known to influence tumor angiogenesis 

(Crowther et al. 2001; Dirkx et al. 2006; Murdoch et al. 2008). As such, although ACF 

treatment has clear HIF-dependent effects in transformed colorectal cell lines, its anti-

tumorigenic properties may be magnified by the changes in TAM activity in the setting of 

an inflammation-driven tumor model.  

 

DISCUSSION 

 

HIFs are important transcription factors involved in cellular adaptation to low O2, 

a common feature of solid tumors, and thus represent attractive potential therapeutic 

targets (Semenza 2007; Onnis et al. 2009). Additionally, many tumors exhibit extensive 

leukocytic infiltration – especially those occurring as a result of chronic inflammation 

(Balkwill et al. 2001). Therefore, therapies designed to target specific features of the 

tumor microenvironment may be impacted by naturally occurring O2 gradients, as well as 

hypoxic adaptations in both tumor parenchyma and stroma, including recruited 
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inflammatory cells. The HIFs function in hypoxic responses of both tumor compartments, 

making HIF inhibition in tumor cells, TAMs, or both likely to mitigate tumor progression. 

One known HIF inhibitor, digoxin, is currently in phase II clinical trials for breast cancer 

(http://clinicaltrials.gov/). Importantly, acriflavine (ACF) is an example of a HIF inhibitor 

that has already been proven safe in patients for up to 5 months, with very few side 

effects (Wainwright 2001). Although previous reports demonstrated HIF inhibition by 

ACF in xenograft and orthotopic models (Lee et al. 2009; Wong et al. 2012), both used 

severe combined immunodeficiency (SCID) mice. This study represents the first time the 

effects of ACF-mediated HIF inhibition have been explored in fully immunocompetent 

mice, mimicking the complexity of HIF activity in tumor microenvironments within an 

autochthonous setting. Despite the utility of xenograft (or allograft) tumor models, they 

typically cannot recapitulate the cellular complexity and natural history of autochthonous 

tumors in immunocompetent hosts, and treatments that eradicate xenograft tumors have 

often proved ineffective in patients.  Similarly, the use of tissue- or cell type-specific 

genetic deletion can provide important insights into the role of specific genes in tumor 

initiation and progression, but may be formally distinct from using pharmacological 

compounds to target a particular molecular target that is expressed in extant tumors.  

The work described here investigates ACF treatment of autochthonous tumors, 

and suggests that pharmacological HIF inhibition in multiple cell types, including 

epithelial and innate immune cells, reduces tumor growth and progression. Mice treated 

with ACF consistently developed fewer and smaller colonic lesions with a marked 

decrease in vascularity and number of recruited macrophages. We demonstrated that 

ACF acts largely on HIF-dependent responses in macrophages, without effect on the 

NF-κB pathway. Because HIFs have been shown to be important in multiple 

components of the tumor microenvironment, inhibiting HIF activity in any single cell 

population may effect tumor progression with increased efficacy observed when multiple 
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compartments are targeted simultaneously (Keith et al. 2011). Previous studies have 

demonstrated the importance of HIFs in TAMs. We have now shown that ACF limits 

macrophage infiltration and signaling in the tumor microenvironment in a HIF-dependent 

manner. A likely mechanism for the reduced macrophage infiltration detected in ACF-

treated mice is decreased hypoxic induction of M-CSFR expression – a finding similar to 

loss of HIF-2α in these cells (Imtiyaz et al. 2010). There may also be HIF-dependent 

effects on resident macrophages of the colon as a result of ACF-treatment, contributing 

to reduced tumor progression. ACF exhibits clear effects on multiple colorectal cancer 

cell lines in vitro and in vivo in HIF-dependent mechanisms, and is very likely acting on 

the tumor parenchyma. In future work, it will be important to employ Cre-mediated 

recombination to delete ARNT, and thereby both HIF-1α and HIF-2α activity, in both 

colonic epithelial cells and macrophages, to assess the effects of pan-HIF ablation 

during tumor initiation and progression. 

These observations are clinically relevant, as increasingly specific HIF inhibitors 

will likely have a more significant effect on tumor progression. Whereas our work has 

focused extensively on the HIF-dependent effects of ACF treatment on the tumor 

microenvironment, it is possible that ACF has effects that are partially independent of 

HIF transcriptional activity (Wainwright 2001; Hassan et al. 2011; Lim et al. 2012). 

However, as transcription factors are effectively targeted for cancer therapeutics in the 

future, HIF inhibition in the tumor microenvironment by a safe, naturally occurring 

compound, in the setting of inflammation-driven cancer, represents an important finding. 

Targeting HIFs may be a viable therapeutic strategy in a myriad of cancers, as the data 

collectively indicate HIF inhibition can slow advancement of established tumors. Finally, 

the observations of HIF inhibition in both colorectal cancer cells and recruited 

macrophages provide insight into the usefulness of future genetic models for studying 

effects of HIF activity in the setting of inflammation-driven. 
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Chapter Three 

Complete loss of hypoxic response in macrophages alters in vivo response 

to acute, chronic, and tumor-associated inflammation 

 

SUMMARY 

 

Inflammatory lesions and solid tumors contain regions of varying oxygen (O2) 

levels and are comprised of complex, highly heterogeneous cell populations. Infiltrating 

leukocytes can be identified within hypoxic regions of both solid tumors and sites of 

inflammation and are known to influence disease progression. In particular, tumor-

associated macrophages (TAMs) have been implicated in promoting tumorigenesis, 

often as a result of chronic inflammation. Hypoxia-driven inflammatory signaling and 

macrophage infiltration clearly enhance tumor progression. Several studies have 

implicated the oxygen-sensitive Hypoxia Inducible Factor (HIF) transcriptional regulators 

in controlling TAM gene transcription in hypoxic tumors, with different adaptive functions 

regulated by the closely related subunits HIF-1α and HIF-2α. We show, for the first time, 

complete loss of HIF activity, through a myeloid specific deletion (LysMCre) of the HIF 

constitutive binding partner ARNT, results in severe macrophage defects.  

Efficient ARNT deletion results in significant down-regulation of multiple 

canonical HIF targets, with no impact on the aryl-hydrocarbon receptor (AhR) signaling 

pathway. Interestingly, ARNT-deficient macrophages were less responsive to M1 and 

M2 polarizing stimuli, particularly when cultured under hypoxic conditions. In an acute 

model of skin inflammation, LysMCre;Arntfl/fl mice exhibited decreased edema and 

inflammatory infiltrate compared to littermate controls. Similarly, in a model of colitis-

associated colon cancer, LysMCre;Arntfl/fl mice exhibited lower stage disease and 
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decreased tumor inflammation. These results suggest that loss of all HIF activity 

significantly alters macrophage phenotypes and activity under hypoxia in the setting of 

acute, chronic, and tumor-associated inflammation. Lastly, as pharmacologic HIF 

inhibitors progress, targeting the hypoxic response in macrophages may prove beneficial 

in a variety of inflammation-associated diseases. 
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INTRODUCTION 

 

Inflammation is a biologic response to harmful stimuli, either infection or tissue 

injury, in an effort to restore tissue homeostasis (Barton 2008; Medzhitov 2008). 

Macrophages are members of host innate immunity and are characterized by immense 

plasticity and diversity in phenotype and function (Lewis et al. 2006). Of note, 

macrophages found within regions of intense inflammation as well as the tumor 

microenvironment are subjected to levels of low oxygen (O2) known as hypoxia (Lewis et 

al. 1999; Eltzschig et al. 2011). Hypoxia may result from decreased O2 availability 

secondary to decreased perfusion as a result of thrombosis, trauma, and edema. 

Similarly, increased metabolic activity of both foreign pathogens and recruited 

leukocytes can also contribute to hypoxic conditions observed within the inflammatory 

microenvironment (Karhausen et al. 2005; Nizet et al. 2009). As such, the hypoxic 

response under inflammatory conditions is a necessary step to restore tissue 

homeostasis. Inappropriate activation of resident and recruited macrophages will 

influence inflammation resolution and may eventually result in tumor-promoting 

properties.  

Macrophages are known to exhibit adaptive changes in gene expression under 

low O2 and do so, in large part, through the Hypoxia Inducible Factors (HIFs) (Cramer et 

al. 2003; Murdoch et al. 2005; Fang et al. 2009; Imtiyaz et al. 2010). The HIFs are 

comprised of an oxygen-sensitive alpha subunit and a constitutively expressed beta 

subunit. Under normal oxygen tensions the alpha subunit is hydroxylated by prolyl 

hydroxylases (PHDs) and targeted for proteasomal degradation by the E3 ubiquitin 

ligase von Hippel Lindau factor (VHL) (Keith et al. 2007; Keith et al. 2011). Although 

there are currently three identified HIF-α subunits (HIF-1α, HIF-2α, and HIF-3α), HIF-1α 

and HIF-2α are the most well characterized (Majmundar et al. 2010). Whereas HIF-1α is 
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expressed ubiquitously, HIF-2α has a far more restricted tissue expression profile (Mucaj 

et al. 2012; Shay et al. 2012). However, both are expressed – with partially overlapping 

and partially distinct roles – in macrophages (Burke et al. 2002; Burke et al. 2003; 

Cramer et al. 2003; Murdoch et al. 2005; Fang et al. 2009; Mastrogiannaki et al. 2009; 

Doedens et al. 2010; Imtiyaz et al. 2010; Takeda et al. 2010). Investigating the 

macrophage response to hypoxia is therefore a complex but necessary undertaking to 

better understand physiologic and pathologic consequences of macrophage HIF activity.  

Although they exhibit any number of intermediate phenotypes in vivo, in vitro 

extremes in macrophage polarization can be characterized by M1 (classical) activation 

or M2 (alternative) activation. Whereas M1 activation corresponds with inflammation and 

infection, M2 activation is more closely linked with wound healing and tissue repair. As 

such, these two extremes in macrophage polarization have been adopted to study 

macrophage responses in vitro. HIF-1α has been previously identified as particularly 

important in macrophage roles in acute inflammation, glycolytic adaptations to hypoxia 

and M1 stimuli, and suppressing T cell activation (Cramer et al. 2003; Peyssonnaux et 

al. 2007; Fang et al. 2009; Doedens et al. 2010; Takeda et al. 2010). Indeed, 

macrophages that lack HIF-1α expression have decreased cellular ATP. Recently the 

importance of HIF-1α signaling in controlling metabolic flux of macrophages has come to 

light. Lipopolysaccharide (LPS), a characteristic feature of gram-negative bacteria, 

strongly polarizes macrophages towards an M1 phenotype. A consequence of this 

reaction is an increase in glycolysis, an accumulation of the TCA intermediate succinate, 

and stabilization of HIF-1α leading to increased secretion of IL-1β (Tannahill et al. 2013).  

HIF-2α has also been implicated in acute inflammation, however there is no 

known role in hypoxia-mediated metabolic changes (Imtiyaz et al. 2010). Whereas HIF-

1α expression appears to be upregulated in macrophages stimulated by classic 
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inflammatory signals, HIF-2α may play a larger role in the immunosuppressive effects of 

TAMs (Takeda et al. 2010). Although both HIF-1α and HIF-2α are expressed in 

macrophages, elevated expression of HIF-2α in TAMs corresponds directly with clinical 

severity of many different human cancers (Talks et al. 2000; Hu et al. 2003; Hu et al. 

2007; Qing et al. 2009). HIF-2α has also been shown to be instrumental in M-CSF-

mediated macrophage recruitment and appears to be a major player in expression 

changes that occur in tumor-associated macrophages – especially those found in 

inflammation driven cancers.   

Until now, both HIF-1α and HIF-2α have been studied in isolation in the setting of 

myeloid responses to hypoxia. Although of obvious importance, studying the effects of 

the loss of a single HIF-α subunit will not, on its own, elucidate the major role of hypoxia 

and HIF-mediated signaling in macrophages. We have employed Cre-lox technology 

and have taken advantage of their common binding partner HIF-1β/ARNT to limit HIF 

transcriptional effects in macrophages. Here we efficiently inhibit ARNT expression in 

macrophages and severely limit HIF transcriptional roles in macrophages to better 

understand the complex role of the response to hypoxia in settings of acute, chronic, and 

tumor-associated inflammation.  

 

MATERIALS AND METHODS 

Autochthonous colorectal cancer model 

Generation of LysMCre and Arntfl/fl mice has been previously discussed (Tomita 

et al. 2000; Stadtfeld et al. 2005). LysMCre;Arnt mice were created by crossing LysMCre 

mice (obtained from Jackson Laboratories) to Arntfl/fl mice on a mostly C57BL/6 

background. For induction of autochthonous colorectal tumors, mice received a single 

intraperitoneal (i.p.) injection of 12.5mg/kg azoxymethane (AOM) at 8 weeks of age 
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followed by 3 cycles of 1.8-2% dextran sulfate sodium (DSS) in their drinking water 

(cycle 1: 1.8% DSS for 5 days, cycle 2: 2% DSS for 7 days, cycle 3: 2% DSS 5 days) 

with two weeks of regular water between each cycle for autochthonous induction of 

colitis-associated colon cancer. The laboratory animal program is accredited by the 

American Association for Accreditation of Laboratory Animal Care. Animal health, well-

being, and comfort were monitored constantly by certified veterinary staff. Every effort to 

minimize discomfort, stress, pain, and injury to the mice and the mice was maintained in 

accordance with the Animal Welfare Act and the DHHS Guide for the care and use of 

laboratory animals. These procedures were performed according to the protocols 

reviewed by the Institutional Animal Care and Use Committee (IACUC). 

 

TPA Model of Acute Inflammation  

8-10 week-old male mice were anesthetized with isoflurane according to protocol 

and received 10µl of acetone on either side of left ear (20µl total) and 10µl of 0.125 µg/µl 

phorbol 12-myristate 13-acetate (TPA) on either side of right ear (20µl total). 24 hours 

later, mice were euthanized. Ear thickness was measured using calipers, punch biopsy 

performed, and equivalent areas/sizes of tissue weighed. Ear tissue was then fixed in 

4% paraformaldehyde and paraffin embedded for H&E and immunohistochemistry.  

 

Bone marrow-derived macrophages  

Macrophages were isolated from littermate LysMCre;Arnt fl/+ or LysMCre;Arntfl/fl 

mice by removing the long bones and flushing the marrow followed by red blood cell 

lysis. BMDMs were cultured in DMEM containing 20% Hyclone serum, 30% LCM, 1% L-

glutamine, 1% Anti-Anti, and 0.1% beta-mercaptoethanol and stimulated with 5 ng/ml 

LPS (Sigma L3024) and 20 ng/ml IFN-γ (R&D 485-MI) for M1 polarization or for M2 

polarization IL-4 (R&D Systems 404-ML-010) and IL-13 (R&D Systems 413-ML-005). 
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For hypoxia induction, BMDMs were cultured under normoxia (21% O2) or hypoxia (0.5% 

O2, 1.5% O2, or 3% O2).  

 

RT-qPCR  

RNA was isolated from tumor tissue or cells using the RNAeasy minikit (Qiagen 

#74106). RNA concentration was quantified using the Nanodrop with equal amounts of 

mRNA used for reverse transcription to cDNA using the High-Capacity RNA-to-cDNA kit 

(ABI #4387406). Expression was determined by quantitative PCR of synthesized cDNA 

using the Applied Biosystems 7900HT system and ΔΔCT program settings. Target cDNA 

amplification was measured using the following TaqMan primers: Vegf 

(Mm00437304_m1), Il1β (Mm00434228_m1), Il6 (Mm00446190_m1), iNos 

(Mm00440502_m1), Glut1 (Mm00441480_m1), Tnfα (Mm00443258_m1), Il12 

(Mm00434165_m1), Tgfβ (Mm00441724_m1), Il10 (Mm00439616_m1), Adm 

(Mm00437438_g1), Arg1 (Mm00475988_m1), Fizz1 (Mm00445109_m1), Ym1 

(Mm00657889_mH), Fn1 (Mm01256734_m1), Cxcl1 (Mm04207460_m1), Pgk1 

(Mm00435617_m1), Arnt (Mm00507836_m1) and Hprt (Mm01318743_m1). Results 

were analyzed with HPRT as an endogenous control.  

 

Immunostaining and Imaging 

Immunohistochemistry was performed using enzymatic Avidin-Biotin Complex 

(ABC)-diaminobenzidine (DAB) staining (Vector Labs) with hematoxylin used for 

counterstaining of nuclei. Stained sections were visualized using an Olympus IX81 

microscope. CD68 1:100 (Abcam ab955) used according to instructions (Vector PK-

2200), CD31 1:50 (Abcam ab28364), Ki67 (Novocastra NCL-Ki67-MM1) used according 

to instructions (Vector PK-2200), TUNEL staining done according to instructions 
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(Millipore ApopTag S7111), and copGFP staining performed using anti-TurboGFP 

antibody (Evrogen AB514). Staining was quantified using ImageJ software.  

 

Immunoblot assays 

Whole cell extracts were isolated in SDS/Tris pH 7.6 lysis buffer. Subcellular 

fractionation was performed as previously described (Pan et al. 2004). Protein was 

quantified using BCA and equal protein amounts were run on an 8% or 10% SDS-PAGE 

gel, transferred to nitrocellulose, and probed with the following antibodies: HIF-1α 

1:1000 (Cayman 10006421), ARNT 1:1000 (Cell Signaling #5537), GAPDH 1:1000 (Cell 

Signaling #2118), NF-κB (Cell Signaling #3034), p-NF-κB (Cell Signaling #3039), IκBα 

(Cell Signaling #4814) p-IκBα (Cell Signaling #2859), M-CSFR (Cell Signaling #3152). 

Representative western blots from multiple independent experiments are presented.  

 

Cytokine Array 

Cytokine Array analysis was performed on pooled supernatants from 10 separate 

mice for each group (5 female, 5 male). 1x106 cells/ml were plated in 100µl in a 96 well 

plate and cultured for 24 hours at 21% or 0.5% O2 in the presence or absence of stimuli. 

Pooled supernatants were then incubated with nitrocellulose membranes spotted with 

individual antibodies specific for a variety of cytokines according to manufacturer 

instructions (R&D Systems ARY006).  

 

ELISAs 

1x106 cells/ml were plated in 100µl in a 96 well plate and cultured for 24 hours at 

21% or 0.5% O2 in the presence or absence of stimuli. Supernatant was collected and 

used to measure nitrite levels according to manufacturer instructions (R&D Quanitkine) 
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VEGF (MMV00), IL-1β (MLB00C), IL-1α (MLA00), CXCL1 (MKC00B), IL-6 (M6000B), IL-

10 (M1000), IL-12 (M1270), IFNg (MIF00). 

 

Griess Assay 

1x106 cells/ml were plated in 100µl in a 96 well plate and cultured for 24 hours at 

21% or 0.5% O2 in the presence or absence of stimuli. Supernatant was collected and 

used to measure nitrite levels according to manufacturer instructions (Promega G2930). 

Excess lysate was used in BCA assay to adjust nitrite levels to total protein per sample.  

 

Arginase Activity Assay 

3.5x106 cells were plated on 10cm dishes and cultured for 24 hours at 21% or 

0.5% O2 in the presence or absence of stimuli. Cell lysates were collected and incubated 

with a known amount of arginine according to manufacturer instructions (Abnova 

KA1609). Excess lysate was used in BCA assay to adjust arginase activity units to total 

protein per sample.  

 

ATP Production 

1x106 cells/ml were plated in 100µl in a 96 well plate and cultured for 24 hours at 

21% or 0.5% O2 in the presence or absence of stimuli. ATP levels were then measured 

according to manufacturer protocol (Perkin Elmer ATPliteTM Luminescence Assay Kit 

#6016941). Luminescence was measured on a plate reader. Cells were either counted 

in parallel or excess lysate was used in BCA assay to adjust ATP levels to total protein 

per sample.  

 

Flow Cytometry and Sorting 
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Hip and long bones were isolated from mice. Bones were grossly dissected, 

crushed using a mortar and pestle, and run through a 70µm cell-strainer to generate a 

single cell suspension. Live cells were run on a BD LSR II. For progenitor studies, cells 

were stained with DAPI, FITC-CD3, FITC-CD4, FITC-CD8, FITC-B220, FITC-Ter-119, 

FITC-CD19, FITC-IgM, FITC-IL7Rα, FITC-Gr1, FITC-Sca-1 (Ly6A/E), PE-Cy7-c-kit, PE-

CD34, APC-Cy7-FcγII/III (CD16/32). For cell surface markers, cells were stained with 

FITC-MHCII and APC-CD86 and run on a BD FACSCalibur. Acquired data was 

analyzed using FlowJo software.  

 

Statistical Analysis 

Unless otherwise indicated, data is shown as mean ± SEM. GraphPad Prism 

software was used to conduct statistical analyses and graph data. Unless otherwise 

indicated, unpaired 2-tailed Student’s t test was performed to evaluate statistical 

differences between control and experimental groups. In situations where more than two 

groups were compared, a one-way Anova was used followed by post-test Tukey 

analysis. Significance is demonstrated by “#” indicating p > 0.05, “*” representing p < 

0.05, “**” representing 0.001 < p < 0.01, and “***” representing p < 0.001.  

 

RESULTS 

Generation of myeloid-specific ARNT-null mice. To facilitate characterization 

of complete loss of HIF activity through loss of the constitutive binding partner ARNT, we 

crossed mice carrying the floxed Arnt allele to LysM-Cre mice (Tomita et al. 2000; 

Stadtfeld et al. 2005). Myeloid-derived cells isolated from mice bearing the mutant 

genotype (LysMCre;Arntfl/fl) were designated Arnt∆/∆, whereas myeloid-derived cells 

isolated from mice bearing the control genotype (LysMCre;Arntfl/+) were designated 
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Arnt∆/+. Littermates were used for all experiments. Immunoblotting of lysates obtained 

from bone marrow-derived macrophages (BMDMs) confirms efficient loss of ARNT 

(Figure 26A). When Arnt∆/+ and Arnt∆/∆ macrophages are directly compared to Arnt+/+ 

macrophages, there is an apparent intermediate phenotype observed in Arnt∆/+ 

macrophages (Figure 26B). As such, Arnt∆/+ macrophages appear to express less of the 

ARNT protein than do wild-type counterparts and likely exhibit an intermediate 

phenotype between Arnt+/+ and Arnt∆/∆ macrophages. This intermediate phenotype likely 

minimizes differences between control and experimental groups however we decided 

the most appropriate controls were heterozygous littermate mice. Furthermore, 

genotyping of both tail and macrophage DNA reveals formation of a 1-lox band in 

macrophages indicating successful cre-driven recombination (Figure 26C). 

Loss of ARNT does not impact myeloid development. Because ARNT is a 

ubiquitously and constitutively expressed protein, loss of expression could impact 

maturation or differentiation, especially in hematopoietic cells (Krock et al. 2013). 

Although loss of ARNT has been previously implicated in stem cell differentiation, the 

Lysozyme M promoter controlling cre recombinase expression is most highly expressed 

in mature macrophages (Cross et al. 1988; Clausen et al. 1999). To investigate the 

effect of ARNT deficiency on myeloid differentiation, bone marrow from LysMCre;Arntfl/fl 

and LysMCre;Arntfl/+ mice (littermate controls) was isolated and subjected to FACS 

analysis of known progenitor and lineage markers (Figure 26D). We investigated 

multiple populations including the common myeloid progenitor (CMP) and 

granulocyte/macrophage progenitor (GMP) based on known cell surface markers 

(Akashi et al. 2000). Loss of ARNT had no impact on percent progenitors of either CMP 

(0.237% ± 0.007% for LysMCre;Arntfl/+ and 0.216% ± 0.023% for LysMCre;Arntfl/fl mice) 

or GMP (0.559% ± 0.039% for LysMCre;Arntfl/+ and 0.451% ± 0.063% for 
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LysMCre;Arntfl/fl mice) groups based on FACS analysis (Figure 26D). The effects of 

ARNT on myeloid function are thus largely confined to mature cell types.  

Little change in ARNT expression observed in neutrophils or dendritic cells 

isolated from LysMCre;Arntfl/fl mice. Lysozyme M Cre has been previously shown to 

have high recombination efficiency in granulocytes and limited recombination in dendritic 

cells (Cross et al. 1988; Clausen et al. 1999). Because of this fact, it was imperative to 

determine the effect of ARNT loss on other members of the myeloid lineage – namely 

granulocytes and dendritic cells. Importantly, HIF-1α and HIF-2α have been implicated 

in physiologic responses of neutrophils and dendritic cells experiencing hypoxia (Kohler 

et al. 2012; Thompson et al. 2013).  

To investigate ARNT loss in granulocytes, Cd11b+Gr1+ cells were purified from 

bone marrow from LysMCre;Arntfl/fl and LysMCre;Arntfl/+ mice. Based on FACS analysis, 

the Gr1+ population was relatively pure for both cohorts (90.4% ± 1.64% for 

LysMCre;Arntfl/+ mice and 91.6% ± 0.79% for LysMCre;Arntfl/fl mice) (Figure 27A). After 

Gr1+ and dendritic cells were isolated from the bone marrow and spleen respectively, 

RNA was isolated and expression of various transcripts analyzed. Interestingly, although 

both neutrophils (Gr1+) and dendritic cells express Arnt at greater levels than 

macrophages from the same mouse, there is no statistically significant loss of 

expression in LysMCre;Arntfl/fl  mice (Figure 27B). Additionally, downstream targets Vegf 

and Pgk1 were expressed at similar levels in neutrophils and dendritic cells isolated from 

LysMCre;Arntfl/fl and LysMCre;Arntfl/+ mice (Figure 27C). These findings indicate that 

neither neutrophils nor dendritic cells derived from LysMCre;Arntfl/fl  mice exhibit 

significant defects in the HIF signaling pathway. Arnt may be expressed at high enough 

levels in neutrophils and dendritic cells that even partial cre recombination may have 

only minimal effects on total Arnt levels and downstream HIF targets.   
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Loss of ARNT corresponds with decreased proliferative capacity in bone 

marrow-derived macrophages. Loss of HIF-1α has previously been implicated as a 

major influencing factor in macrophage ATP production (Cramer et al. 2003). As such, 

loss of ARNT is expected to have a similar impact on ATP generation and macrophage 

proliferation. Arnt∆/+ and Arnt∆/∆ macrophages were seeded and cultured under 21%, 3% 

or 1.5% O2 levels for 8 days (Figure 28A-C). No difference was noted at 21% or 3% O2 

(Figure 28A-B) however by day 8, under 1.5% O2, Arnt∆/∆ macrophages had plateaued 

whereas Arnt∆/+ macrophages had not, indicating an oxygen-dependent proliferative 

defect when complete loss of ARNT occurs (Figure 28C). Furthermore, when cultured 

under 0.5% O2 for 24 hours, Arnt∆/∆ macrophages exhibit a 57% decrease in ATP 

production when compared to littermate Arnt∆/+ macrophages (Figure 28D). Based on 

our observations, it appears that under various levels of oxygen deprivation, 

macrophages with complete loss of ARNT expression exhibit moderate to severe 

defects in proliferative and ATP-producing capacity. These results are not surprising as 

loss of ARNT mitigates the adaptive changes in metabolism and proliferation that are a 

direct result of HIF-1α signaling in macrophages.  

Canonical HIF targets are expressed at greatly diminished levels in ARNT 

deficient macrophages. To determine transcriptional effects of ARNT loss in BMDMs, 

macrophages were cultured for 18 hours under normoxia (21% O2) or hypoxia (0.5% O2) 

in the presence or absence of M1 or M2 polarizing stimuli. Canonical HIF targets Vegf 

(vascular endothelial growth factor), Pgk1 (phosphoglycerate kinase 1), and Glut1 

(glucose transporter 1) were expressed at greatly diminished levels in Arnt∆/∆ 

macrophages when compared to littermate Arnt∆/+ macrophages (Figure 29A-C). This 

effect was observed under M1 and M2 polarizing conditions implying HIF transcriptional 

effects are a large mediator of these phenotypes. Furthermore, VEGF secretion was 

also diminished in ARNT deficient macrophages (Figure 29D). Interestingly, with loss of 
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HIF-2α alone, no effect was observed on transcripts encoding glycolytic enzymes 

(Imtiyaz et al. 2010). These observations are not surprising as ARNT is the binding 

partner for both HIF-1α and HIF-2α and loss of ARNT should impact both alpha subunits 

equally.  

Loss of ARNT corresponds with varying effects on classical M1 targets. 

Further analysis of classical M1 transcripts revealed multiple genes such as iNos (nitric 

oxide synthase), Il1β (interleukin 1β), Il10 (interleukin 10), Adm (adrenomedullin), and 

Tgfβ (transforming growth factor β) to exhibit decreased transcription with the loss of 

ARNT (Figure 30A-D). Additionally, decreased iNos expression corresponds with 

decreased nitrite in BMDM-conditioned media as determined by Griess assay (Figure 

30E). Interestingly, certain M1 targets increase in the loss of HIF transcriptional 

regulation. - namely Il6, Tnfα, and ll12 (Figure 31A-C). Although counterintuitive, these 

results may be explained by the opposing roles HIF-1α and HIF-2α appear to have on 

Th1 and Th2 driven T cell maturation and NO regulation (Doedens et al. 2010; Takeda 

et al. 2010).  

Loss of ARNT results in decreased M2 polarization in vitro. Similar to results 

seen with M1 targets, ARNT deficient macrophages appear to express decreased levels 

of multiple M2 transcripts including Arg1 (arginase 1), Fizz1 (resistin-like molecule 

alpha), and Ym1 (chitinase-3 like-3) (Figure 32A-C). Fibronectin 1, a previously identified 

HIF-2α target, is also decreased in ARNT deficient macrophages under hypoxia alone 

and in the presence of M2 stimuli (IL-4 and IL-13) (Figure 32D). To test arginase activity 

in BMDMs, Arnt∆/+ and Arnt∆/∆ macrophages were cultured under 21% or 0.5% O2 in the 

presence or absence of M2 stimuli. Lysates were then collected and incubated with a 

known amount of arginine. Arginase conversion of arginine to urea and ornithine was 

measured and quanitified using a colorimetric assay. Arnt∆/∆ macrophages exhibited 
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decreased arginase activity when compared to littermate Arnt∆/+ macrophages (Figure 

32D).  

Further identification of HIF/ARNT regulated cytokines. In order to identify 

additional ARNT/HIF-regulated cytokines, we performed a cytokine array. Supernatants 

from 10 different macrophages (half male half female) were pooled for either Arnt∆/∆ or 

Arnt∆/+ macrophages and incubated with nitrocellulose membrane spotted with 

antibodies for a variety of secreted cytokines (Figure 33A). Under hypoxia, Arnt∆/∆ 

macrophages secreted/expressed decreased levels of a number of different cytokines 

and other signaling factors. Of those, some, like VEGF and IL-1β, had been previously 

identified through Q-PCR and ELISA analysis of macrophage samples. As such, the 

cytokine array agrees with previously identified targets. Interestingly, IL-1α and CXCL1 

were both identified. While both factors have been previously identified by microarray 

analysis (Fang et al. 2009), we have confirmed both to be regulated at the RNA and 

protein level by ARNT/HIF transcriptional activity. Further quantitative analysis of IL-1α, 

IL-1β, and CXCL1 was performed (Figure 33B-C). 

Loss of ARNT does not impact Aryl-hydrocarbon receptor (AhR) 

transcripts. ARNT was first identified as the nuclear transporter for AhR. Loss of ARNT 

would thus be expected to have some impact on AhR signaling. This is particularly 

relevant as AhR has recently been identified as a main regulator of intraepithelial 

lymphocytes in the intestine and mediates interaction with exogenous stimuli (Li et al. 

2011). To investigate this, we analyzed macrophage expression of AhR specific targets 

Cyp1a1 and Ugt1a1 (Beischlag et al. 2008). Whereas Cyp1a1 was not expressed to any 

degree in BMDMs, Ugt1a1 was expressed to a modest a degree and exhibited some 

hypoxic upregulation (Figure 34A-B). Importantly, neither AhR target gene was 
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differentially expressed in Arnt∆/∆ or Arnt∆/+ macrophages implying that the major role for 

ARNT in these cells is through the HIF signaling pathway and not through AhR signaling.  

Decreased invasion of ARNT deficient macrophages towards M-CSF. 

Previous work has demonstrated the effect of HIF-2α activity on the hypoxic induction of 

M-CSFR expression in BMDMs (Imtiyaz et al. 2010). Similarly, loss of ARNT results in 

modest decrease in macrophage recruitment towards M-CSF under low O2 as 

demonstrated by M-CSF-mediated invasion of seeded macrophages in a modified 

Boyden chamber (Figure 35A-B). Because proliferative defects were not observed until 

day 8 under 1.5% O2, it is unlikely that ARNT dependent invasion under 0.5% O2 is 

secondary to any defects in ATP production or proliferation. Furthermore, this 

observation lends credence to the notion that HIF-2α signaling is being impacted to a 

similar degree as HIF-1α.  

Increased expression of cell surface markers corresponding to antigen 

presentation in ARNT deficient macrophages. Complete loss of HIF signaling 

(through loss of ARNT) in macrophages in the presence of M1 stimuli and hypoxic 

conditions resulted in a counterintuitive change in macrophage expression (based on Q-

PCR analysis) of a number of pro-inflammatory cytokines. In order to further investigate 

any changes in M1 polarization in either Arnt∆/∆ or Arnt∆/+ macrophages, cell surface 

expression of markers CD86 and MHC II were analyzed by flow cytometry. Briefly, 

macrophages were cultured in 21% or 0.5% O2 in the presence of LPS and IFNγ or left 

unstimulated. FACS analysis revealed a strong increase in CD86 expression in Arnt∆/∆ 

macrophages that was not observed in Arnt∆/+ macrophages (Figure 36A-B). Indeed, 

Arnt∆/∆ macrophages exhibit a 3-fold increase in CD86 positive cells when compared to 

littermate controls. Interestingly, the increase does not appear to be altered under 

hypoxia and no such difference was observed for MHC II expression. These results are 
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consistent however, with the previously identified upregulation of certain pro-

inflammatory cytokines that may act to stimulate T cells. 

Decreased inflammatory infiltrate in TPA ear model of acute inflammation 

observed in LysMCre;Arntfl/fl mice. Previous works have implicated both HIF-1α and 

HIF-2α in acute inflammation (Cramer et al. 2003; Imtiyaz et al. 2010). To model acute 

inflammation, we employed the well-known TPA model of ear inflammation. 

Administration of 2-O-tetradecanoylphorbol-13-acetate (TPA) in acetone to the ear of the 

mice results in an acute inflammatory infiltrate and edema in 24 hours. After 24 hours, 

mice were euthanized and ear skin was analyzed for edema and leukocytic infiltration. 

Ear skin that did not receive TPA was used as a control for each mouse. LysMCre;Arntfl/fl 

mice exhibited far less edema in TPA-treated ears (based on ear thickness 

measurements from calipers and weighing tissue sections) than did littermate controls. 

Similarly, based on H&E staining, there was far less leukocytic infiltration in TPA treated 

sections obtained from LysMCre;Arntfl/fl mice than did LysMCre;Arntfl/+ littermate controls 

(Figure 37A-B). Immunohistochemistry staining with a neutrophil-specific antibody 

revealed that most of the inflammatory infiltrate in control mice are neutrophils however, 

there are far fewer infiltrating neutrophils in TPA-treated ears from LysMCre;Arntfl/fl mice 

(Figure 38A-B).  

 Although LysMCre has previously demonstrated extremely high recombination 

efficiency in granulocytes, we have not observed a noticeable decrease in ARNT or HIF-

target expression in granulocytes isolated from LysMCre;Arntfl/fl mice. As such the 

decreased neutrophil recruitment seen in the TPA-treated ears of LysMCre;Arntfl/fl mice 

may be secondary to changes in resident macrophages such as decreased CXCL1 

secretion. Resident mast cells and macrophages have been previously shown to be 

responsible for secreting CXCL1 and recruiting neutrophils in settings of acute 

inflammation (De Filippo et al. 2013).  
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Chronic colitis-induced colon cancer model. To evaluate the importance of 

macrophage ARNT expression in the setting of chronic inflammation, eight-to-ten week-

old LysMCre;Arntfl/+ or LysMCre;Arntfl/fl mice were subjected to a single intraperitoneal 

(i.p.) injection of the pro-carcinogen azoxymethane (AOM), followed by repeated 

treatments of 1.8-2% dextran sulfate sodium (DSS) to induce autochthonous colitis-

associated colon cancer (CAC) (Okayasu et al. 1990; Okayasu et al. 1996; Okayasu et 

al. 2002) (Figure 39). Surprisingly, at the culmination of the experiment, no difference in 

gross tumor number was observed between the cohorts (Figure 40A-B). However, after 

tumor staging was performed on H&E sections, it became apparent that LysMCre;Arntfl/fl 

mice had a lower percentage of high-grade lesions compared to littermate controls and a 

trend towards fewer mitotic figures (Figure 41A-B). Similarly, tumor and colon 

inflammation was also less severe in LysMCre;Arntfl/fl mice than in their LysMCre;Arntfl/+ 

counterparts (Figure 41C). Although these results are surprising, it may be that loss of 

HIF-1α and HIF-2α signaling pathways results in altered phenotypes of resident 

macrophages that may, in turn, have unexpected interactions with other arms of the 

immune system. This could be explained, in part, by the unexpected observations of M1 

polarized ARNT-deficient macrophages cultured under 0.5% O2 in vitro.  

 

DISCUSSION 

Myeloid cells adapt to low O2 in a multitude of ways. This study extends 

findings from works looking at the individual and differential effects of HIF-1α and HIF-2α 

on macrophage function in settings of hypoxia, inflammation, and tumorigenesis (Cramer 

et al. 2003; Fang et al. 2009; Imtiyaz et al. 2010; Takeda et al. 2010). Hypoxia alone, or 

in conjunction with various stimuli, can elicit striking changes in macrophage biology. 

With loss of the obligate HIF-α binding partner, HIF-1β/ARNT, we observe defects in 
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both traditional HIF-1α and HIF-2α pathways – glycolytic genes that are known HIF-1α 

targets, such as Pgk1 and Glut1, were severely downregulated in ARNT-deficient 

macrophages as were more HIF-2α dependent genes such as Adrenomedullin (Figure 

3A-E). These early findings demonstrate that our novel model of a myeloid-specific 

ARNT null mouse results in an efficient loss of both HIF-1α and HIF-2α signaling 

pathways. Additionally, these findings also bring to light the interesting metabolic 

changes that macrophages likely undergo in the setting of low O2 and classic 

inflammatory stimulation. Glycolytic genes such as Pgk1 and Glut1 increase drastically 

under hypoxia alone or under normal oxygen tensions in the presence of LPS and IFNγ. 

In the setting of combined hypoxia and M1 stimuli – such as that likely encountered in 

areas of intense inflammation – Pgk1, Glut1, and Vegf transcript levels increase to even 

greater levels. In certain instances the increase appears almost synergistic as in the 

case of Glut1 whereby hypoxia alone results in a 30 fold increase, M1 stimuli results in a 

27 fold increase, however the two combined lead to a striking 110 fold increase in 

transcript levels. These findings also provide evidence that HIFs provide transcriptional 

regulation under normoxic conditions, especially apparent in the setting of M1 

polarization as ARNT deficient macrophages exhibit significant defects in Pgk1 and 

Glut1 transcription under normoxia when stimulated with LPS and IFNγ.  

Similar to changes seen in glycolytic enzyme transcription, there are also 

numerous defects in the transcription of other classic M1 genes in ARNT deficient 

macrophages (Figure 29). Arginine metabolism is a highly regulated process (Lewis et 

al. 1999). Under low O2, arginine can be metabolized with NO produced as a byproduct, 

through activation of iNOS, a downstream target of HIF-1α activation. Alternatively, 

Arg1, a gene regulated by both HIF isoforms, may metabolize arginine to urea and 

ornithine. Upregulation of either iNos or Arg1 can have important effects on the 
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inflammatory microenvironment as both deplete L-Arginine from the extracellular space 

and may therefore limit proliferation of other recruited cells types, including T cells 

(Bronte et al. 2005). Both enzymes exhibit hypoxic induction that appears to be HIF 

dependent as under low O2 alone, iNos undergoes a 100 fold increase (Figure 4A) and 

Arg1 exhibits a nearly 300 fold increase compared to levels under normoxia (Figure 6A). 

Under M1 polarizing conditions, iNos transcript levels also correspond to a net increase 

in NO production as quantified by Griess assay (Figure 4E). Again, HIF activity appears 

to not be limited to hypoxia alone as even under 21% O2, there is a significant decrease 

in NO production in supernatant isolated from ARNT deficient macrophages. Similarly, 

under M2 polarizing conditions, Arg1 transcript levels correspond with Arginase activity 

as confirmed by a colorimetric assay whereby arginine conversion to urea is quantified 

(Figure 6E). Again, HIF activity is of obvious importance in arginine metabolism in 

multiple inflammatory settings.  

Interestingly, although many of the observed Arnt∆/∆ phenotypes can be attributed 

to the loss of HIF-1α, HIF-2α, or both, there were some marked changes in transcription 

of a number of genes that were unanticipated. The pro-inflammatory signaling cytokines 

Il6, Tnfα, and Il12 were all upregulated in ARNT deficient macrophages cultured under 

0.5% O2 in the presence of LPS and IFNγ (Figure ). Arnt∆/∆ macrophages expressed Il12 

and Tnfα at 3- and 2-fold higher levels respectively, than did Arnt∆/+ macrophages. Il6 is 

even more striking. Under hypoxia alone, Arnt∆/∆ macrophages expressed Il6 at 25-fold 

higher levels than Arnt∆/+ counterparts. When stimulated with LPS and IFNγ alone, both 

cohorts exhibit large increases in Il6 expression. When M1 polarized and cultured at 

0.5% O2, Arnt∆/∆ macrophages expressed Il6 at nearly 7-fold higher levels than Arnt∆/+ 

counterparts. The unexpected dysregulation in certain pro-inflammatory cytokines brings 
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to light possible counterbalancing and oppositional effects of the individual HIFα 

subunits.  

Acute inflammatory settings are marked first by an infiltration of neutrophils, the 

“first responders”. Neutrophils, like macrophages, are derived from a common myeloid 

progenitor, and also express the Lysozyme M gene. Certain chemotactic factors are 

known to recruit neutrophils. One such factor, CXCL1, is upregulated under hypoxia 

(Fang et al. 2009). Here we show that CXCL1 is HIF/ARNT dependent as loss of ARNT 

has severe consequences in Cxcl1 expression and secretion in BMDMs cultured under 

normoxia or hypoxia in the presence of M1 polarizing stimuli. Recent published work has 

conclusively demonstrated CXCL1 as a major player in the early stages of neutrophil 

recruitment towards sites of inflammation (De Filippo et al. 2013). We can then 

reasonably assume resident macrophages found at sites of low O2 (such as that found 

acutely in sites of inflammation and infection), upregulate CXCL1 and facilitate neutrophil 

recruitment. In this scenario, HIFs act to mediate innate immunity responses to 

exogenous stimuli, such as low oxygen, found within sites of acute inflammation.  

In the absence of HIF-mediated responses, macrophages are likely ineffective at 

recruiting neutrophils towards sites of acute inflammation. Intriguingly, this corresponds 

precisely with what we observed in an acute model of ear inflammation. In the setting of 

TPA-induced inflammation of the ear, LysMCre;Arntfl/fl  mice exhibited decreased edema 

and leukocyte infiltration than did corresponding LysMCre;Arntfl/+ littermates (Figure 13). 

The vast majority of the infiltrating leukocytes were confirmed, through 

immunohistochemistry, to be neutrophils (Figure 14). Concomitant with the decrease in 

edema and leukocyte infiltration, LysMCre;Arntfl/fl  mice exhibited decreased neutrophil 

recruitment, based on immunohistochemistry, when compared to littermate controls. 

Although the regulation of cell recruitment is quite complex, we have identified CXCL1 

as a possible chemoattractant that is hypoxia and HIF-regulated and may be responsible 
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for signaling neutrophil infiltration. In the absence of ARNT/HIF signaling in resident 

tissue macrophages there is a defective response to hypoxia and inflammation. This is 

evidenced by a loss of CXCL1 expression and secretion in ARNT deficient macrophages 

and decreased neutrophil recruitment towards sites of inflammation in LysMCre;Arntfl/fl  

mice. Although there are likely many other mechanisms involved, low O2 can result from 

intense inflammation and the physiologic response to hypoxia, mediated through the 

HIFs, is a necessary function of the innate immune system to stimulate host immune 

responses and eventual resolution.  

The unexpected changes in cytokine expression observed in M1 polarized 

Arnt∆/∆ macrophages cultured under 0.5% O2 may contribute, in part, to the less than 

striking effect on tumor number and size in the autochthonous model of CAC induction. 

Previous works have demonstrated decreased tumor number and size in a similar CAC 

model in LysMCre;Hif2αfl/fl mice when compared to littermate controls (Imtiyaz et al. 

2010). To date there is no published account of this model using LysMCre;Hif1αfl/fl mice 

however, one may assume a certain amount of redundancy between the two HIFα 

subunits. Interestingly, in a Polyoma middle T (PyMT) model of breast carcinoma, 

LysMCre;Hif1αfl/fl mice exhibit decreased tumor mass and lower overall stage. Unlike 

LysMCre;Hif2αfl/fl mice however, it was determined that myeloid expression of HIF-1α 

was tumor-promoting in the PyMT model through T-cell suppression rather than 

promoting TAM infiltration (Doedens et al. 2010). Therefore, it may be that ARNT-

deficient macrophages in the lamina propria of autochthonous CAC lesions exhibit 

different expression profiles and interact with other arms of the immune system than do 

Arnt∆/+ macrophages in littermate controls.  

ARNT deficient macrophages exhibit a variety of expected and unexpected 

changes in expression and function. Ultimately however, to fully investigate the distinct 
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differences between macrophage HIF-1α and HIF-2α expression, Hif1α∆/∆ macrophages, 

Hif2α∆/∆ macrophages, and Hif1α∆/∆Hif2α∆/∆ macrophages will need to be compared side-

by-side using in vitro and in vivo assays. These findings identify multiple HIF-mediated 

pathways in resident and recruited macrophages found within acute and tumor-

associated inflammatory states and bring to light the complexity of targeting hypoxic 

responses in the innate immune system.  
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Chapter Four 

Concluding Remarks 

 

HIFs mediate the hypoxic response in a variety of physiologic and pathologic 

conditions. As previously described, inflammation often coincides with tissue hypoxia 

and the innate immune system has evolved to function in a highly specialized manner 

under low O2 conditions (Nizet et al. 2009). Hypoxic responses of the innate immune 

system are a critical element in inflammation. The relationship and crosstalk between 

HIFs, hypoxia, the innate immune system, and cancer is epitomized in the setting of 

inflammation-associated cancers. TAMs are recruited to hypoxic regions within the 

tumor microenvironment where they play a critical role in driving tumor progression. 

Although there exists a number of redundancies between HIF-1α and HIF-2α, there are 

also distinct features of each. The overlapping and distinct roles of the HIFα subunits are 

epitomized in the inflammatory responses of macrophages. This body of work 

investigates the role of hypoxia and HIF-mediated signaling in both tumor cells and 

macrophages across the natural history of inflammation-induced cancers. Chapter Two 

starts at the end and examines the effect of HIF inhibition in tumor parenchyma and 

stromal cells in extant colitis-associated colon carcinomas. Chapter Three investigates 

the effect of genetic HIF loss through cre-lox driven ARNT deletion in myeloid derived 

cells in the earliest stages of acute and chronic inflammatory responses that eventually 

result in inflammation-associated cancer development. In both cases, it is clear the 

hypoxic response is necessary for sustained inflammation and tumor progression.  

Therapies designed to target specific features of the tumor microenvironment 

may be impacted by naturally occurring O2 gradients, as well as hypoxic adaptations in 

both tumor parenchyma and stroma, including recruited inflammatory cells. The HIFs 

function in hypoxic responses of both tumor compartments, making HIF inhibition in 
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tumor cells, TAMs, or both likely to mitigate tumor progression. Importantly, acriflavine 

(ACF) is an example of a HIF inhibitor that has already been proven safe in patients for 

up to 5 months, with very few side effects (Wainwright 2001). The work described in 

Chapter Two investigates ACF treatment of autochthonous tumors, and suggests that 

pharmacological HIF inhibition in multiple cell types, including epithelial and innate 

immune cells, reduces tumor growth and progression. We have now shown that ACF 

limits macrophage infiltration and signaling in the tumor microenvironment in a HIF-

dependent manner. As transcription factors are effectively targeted for cancer 

therapeutics in the future, HIF inhibition in the tumor microenvironment by a safe, 

naturally occurring compound, in the setting of inflammation-driven cancer, represents 

an important finding. Targeting HIFs may be a viable therapeutic strategy in a myriad of 

cancers, as the data collectively indicate HIF inhibition can slow advancement of 

established tumors. Finally, the observations of HIF inhibition in both colorectal cancer 

cells and recruited macrophages provide insight into the usefulness of future genetic 

models for studying effects of HIF activity in the setting of inflammation-driven. 

Myeloid cells adapt to low O2 in a multitude of ways. The work described in 

Chapter Three extends findings from works looking at the individual and differential 

effects of HIF-1α and HIF-2α on macrophage function in settings of hypoxia, 

inflammation, and tumorigenesis (Cramer et al. 2003; Fang et al. 2009; Imtiyaz et al. 

2010; Takeda et al. 2010). Hypoxia alone, or in conjunction with various stimuli, can elicit 

striking changes in macrophage biology. With loss of the obligate HIF-α binding partner, 

HIF-1β/ARNT, we observe defects in both traditional HIF-1α and HIF-2α signaling 

pathways. These early findings demonstrate that our novel model of a myeloid-specific 

ARNT null mouse results in an efficient loss of both HIF-1α and HIF-2α signaling 

pathways in cultured macrophages. However, although a slight decrease in ARNT 
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expression was observed in ARNT deficient neutrophils and dendritic cells, it was neither 

statistically significant nor did it result in a decrease in canonical HIF targets such as 

Vegf or Pgk1. Because of this, the following will focus primarily on the effects of ARNT 

and HIF loss in primary macrophages. Interestingly, although many of the observed 

Arnt∆/∆ phenotypes can be attributed to the loss of HIF-1α, HIF-2α, or both, there were 

some marked changes in transcription of a number of genes that were unanticipated. 

The unexpected dysregulation in certain pro-inflammatory cytokines brings to light 

possible counterbalancing and oppositional effects of the individual HIFα subunits.  

For the sake of simplicity, macrophages have heretofore been described as 

occupying one of three states: unpolarized, M1 polarized, and M2 polarized. In reality 

however, it is likely that resident and recruited macrophages exhibit intermediate 

phenotypes that comprise various features of these three states. This is particularly 

relevant when one takes into consideration the complex and varied microenvironment 

that exists within sites of inflammation and solid tumors.  

With this in mind, it is important then that the seemingly disparate roles for HIF-

1α and HIF-2α are taken into account. Although previous works neatly describe HIF-1α 

as the primary hypoxic transcription factor in M1 polarized macrophages and can be 

influenced by Th1 polarizing cytokines and HIF-2α is the overarching hypoxic regulator 

in M2 macrophages and can be upregulated in the setting of Th2 polarizing cytokines, it 

is quite clear that both are important in hypoxic and normoxic responses in macrophages 

at baseline and under settings of inflammation. Previous works have studied the loss of 

either HIFα subunit in isolation. It was for this reason we targeted the HIFα binding 

partner ARNT to study complete loss of HIFα activity in a myeloid-specific mouse model.  

Importantly, preliminary in vitro results from macrophages isolated from 

LysMCre;Hif1αfl/fl;Hif2αfl/fl mice (Hif1α∆/∆Hif2α∆/∆ macrophages - here on referred to as 
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double knockout or DKO) reinforce our findings from Arnt∆/∆ macrophages. 

Unsurprisingly, loss of both HIFα subunits results in dramatic decreases in expression of 

multiple canonical HIF target genes including Vegf, Pgk1, and Glut1 (Figure 42A-D). 

Similarly, nearly identical effects on iNos expression and NO production and Il1β 

expression and secretion are observed in DKO macrophages cultured hypoxia in the 

presence of M1 polarizing stimuli (Figure 43A-D).  

 Intriguingly, the same paradoxical increase in a variety of Th1 polarizing 

cytokines observed in ARNT deficient macrophages is also observed in DKO 

macrophages cultured under 0.5% O2 in the presence of LPS and IFNγ (Figure 44A-C). 

Importantly, these changes in gene expression are not observed with loss of either HIF-

1α or HIF-2α alone (Peyssonnaux et al. 2007; Imtiyaz et al. 2010). This data is furthered 

by the observation that CD86 surface markers increase in DKO macrophages cultured 

under hypoxia in the presence of M1 polarizing stimuli (Figure 45A-B). Together these 

findings, while counterintuitive, provide the framework for understanding the role of HIF 

signaling in macrophages in the setting of inflammation.  

Both IL-12 and CD86 are upregulated on antigen presenting cells (APCs) and 

help to prime T cells towards a Th1 phenotype. Inappropriate T cell activation may inhibit 

resolution of inflammation. As hypoxia is a major component of inflamed tissues, the 

hypoxic response of innate immune cells, via HIF stabilization, may regulate activation of 

adaptive immunity and eventual resolution. Thus, while HIF activity may stimulate initial 

immune responses, HIF-1α and HIF-2α-mediated responses may also function to limit 

excess inflammation and leukocyte recruitment. Since the process of inflammation, 

infection containment, and resolution is one whereby tissue damage is a necessary yet 

unfortunate consequence, it is not surprising then, that multiple mechanisms may be in 

place to limit unnecessary immune activation and enact a negative feedback mechanism 
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to regulate leukocyte recruitment and stimulation once inflammation is underway. HIF 

activity may result in different macrophage phenotypes based entirely on environmental 

influences, temporal influences, or a combination of the two.  

Future work will need to compare DKO macrophages to single knockout (Hif1α∆/∆ 

or Hif2α∆/∆ here on referred to as SKO) macrophages in order to clearly identify signaling 

pathways that require at least one functional HIFα subunit, both HIFα subunits, or 

instances where HIF-1α signaling opposes or competes with HIF-2α signaling. 

Exogenous stimuli and temporal influences will need to be carefully controlled so as to 

understand how the environment may impact macrophage responses. It may prove 

insightful to perform a series of co-culture experiments – either directly or with 

macrophage-conditioned supernatant – with naïve T cells to quantify and observe effects 

of macrophage HIFα activity on T cell polarization. Although multiple cytokines have 

been implicated in polarizing naïve T cells, a combination of cytokine array, Q-PCR, and 

co-culture experiments may allow identification of specific macrophage HIFα-dependent 

cytokines responsible. Once identified, rescue experiments may be performed in vitro.  

Ultimately however, in vivo inflammation models will need to be employed to 

better understand the complex interaction between resident and recruited macrophages 

and the surrounding inflammatory environment. The TPA skin inflammation model is an 

obvious choice to study the effects of resident macrophage signaling on recruiting 

neutrophils during acute inflammation. Indeed, if macrophage secretion of CXCL1 is a 

key signaling event of hypoxia and HIF-mediated neutrophil recruitment, experiments 

may entail intravenous administration of recombinant CXCL1 or a monoclonal CXCL1 

antibody to DKO and control mice respectively. Similarly, systemic LPS administration 

similar to that described by Imtiyaz et al. may, along with monoclonal IL-10 antibody 

administration, demonstrate the importance of HIF signaling in sepsis as previous work 
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and current findings show HIF is necessary for Il10 expression. These findings may 

prove therapeutically useful as IL-10 is an important protective factor in LPS 

endotoxemia (Howard et al. 1993).  

Other acute and chronic inflammatory models may also prove important in 

furthering our understanding of how different local environments influence innate 

immune responses to inflammation. Importantly, HIF-1α has been previously implicated 

in maintaining intestinal epithelial barrier function in settings of murine experimental 

colitis (Karhausen et al. 2004). Intestinal epithelial loss of HIF-1α resulted in increased 

severity of DSS-induced colitis indicating HIF-1α expression in the intestinal epithelium 

could be considered protective. Conversely, recent work has demonstrated increased 

HIF-2α expression in colon tissue from UC and CD patients compared to controls and 

mouse studies indicate HIF-2α expression in intestinal epithelial cells is actually 

destructive in the setting of DSS-induced colitis (Xue et al. 2013). Although these 

findings take place in the setting of HIF-2α over expression they suggest endogenous 

levels may contribute to the pathogenesis of IBD. Although the disparate roles for HIF-

1α and HIF-2α in the setting of intestinal epithelial function are initially surprising, these 

findings are in keeping with multiple previous instances whereby the HIFα subunits 

exhibit non-overlapping or opposing roles. Investigating HIF responses in the myeloid 

response in appropriate murine models of acute and chronic colitis may prove equally 

informative. Ultimately, to most accurately understand the contribution of total and 

individual HIFα activity in the setting of resident and recruited intestinal macrophages, 

lamina propria macrophages need to be isolated from DKO and SKO mice and 

characterized under physiologic and pathologic conditions.  

Although this body of work has focused primarily on HIF signaling in 

macrophages under inflammatory and tumor-promoting conditions within the setting of 
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inflammation-associated cancers, myeloid-derived cells contribute to multiple aspects of 

tumorigenesis. In particular, myeloid-derived suppressor cells (MDSCs), have been 

implicated in driving colitis-associated colon cancer (CAC) (Katoh et al. 2013). MDSCs 

are suppressive cells of myeloid origin that contribute to negative regulation of the 

immune system in settings of cancer and inflammation (Gabrilovich et al. 2009). 

Although multiple cues can recruit and influence MDSCs, expression of Arg1 and iNos 

are characteristic features (Gabrilovich et al. 2009; Ostrand-Rosenberg et al. 2009). L-

arginine metabolism has been shown to inhibit T cell function in the presence of TAMs or 

MDSCs. Intriguingly, both Arg1 and iNos are HIF targets. HIF transcriptional effects may 

therefore be important in mediating key features of MDSC activity within the tumor 

microenvironment. Similarly, in the setting of CAC, MDSCs were shown to be recruited, 

in part, by chemokines such as CXCL1, CXCL2, and CXCL5 (Katoh et al. 2013). Again, 

Cxcl1 and Cxcl2 are also HIF-regulated genes. Thus, HIF activity may also promote 

MDSC recruitment by controlling hypoxic release of specific chemokines from a variety 

of cell types within sites of inflammation or the tumor microenvironment. Response to 

hypoxia may function through HIF-mediated transcriptional changes that could influence 

MDSCs metabolic activity through cell intrinsic means or recruitment via extrinsic 

signaling. Regardless, this is an ongoing area of study and the role of HIF activity in 

MDSC activity and recruitment remains unclear.  

The role of HIF signaling in the setting of inflammation-driven cancers is an 

ongoing area of research. HIFs mediate changes in transcription and drive hypoxic 

adaptation in both tumor cells and resident or recruited macrophages and are important 

at every stage of tumor initiation and progression. Future studies will hopefully expand 

on the work presented here and investigate new models of inflammation-associated 

cancers and utilize current mouse models and patient data to study the role of HIF-1α 

and HIF-2α signaling in interactions between normal tissue and the innate immune 
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system and subsequently, between the tumor parenchyma and infiltrating myeloid-

derived cells. Because HIFs mediate transcriptional changes in a number of different cell 

types in response to changes in O2 levels, they may prove to be a desirable therapeutic 

target in multiple pathologic settings including inflammation and cancer.  
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