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Grasping and Assembling with Modular Robots

Abstract
A wide variety of problems, from manufacturing to disaster response and space exploration, can benefit from
robotic systems that can firmly grasp objects or assemble various structures, particularly in difficult, dangerous
environments. In this thesis, we study the two problems, robotic grasping and assembly, with a modular
robotic approach that can facilitate the problems with versatility and robustness.

First, this thesis develops a theoretical framework for grasping objects with customized effectors that have
curved contact surfaces, with applications to modular robots. We present a collection of grasps and cages that
can effectively restrain the mobility of a wide range of objects including polyhedra. Each of the grasps or cages
is formed by at most three effectors. A stable grasp is obtained by simple motion planning and control. Based
on the theory, we create a robotic system comprised of a modular manipulator equipped with customized
end-effectors and a software suite for planning and control of the manipulator.

Second, this thesis presents efficient assembly planning algorithms for constructing planar target structures
collectively with a collection of homogeneous mobile modular robots. The algorithms are provably correct
and address arbitrary target structures that may include internal holes. The resultant assembly plan supports
parallel assembly and guarantees easy accessibility in the sense that a robot does not have to pass through a
narrow gap while approaching its target position. Finally, we extend the algorithms to address various
symmetric patterns formed by a collection of congruent rectangles on the plane.

The basic ideas in this thesis have broad applications to manufacturing (restraint), humanitarian missions
(forming airfields on the high seas), and service robotics (grasping and manipulation).
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ABSTRACT

GRASPING AND ASSEMBLING WITH MODULAR ROBOTS

Jungwon Seo

Vijay Kumar

Mark Yim

A wide variety of problems, from manufacturing to disaster response and space

exploration, can benefit from robotic systems that can firmly grasp objects or as-

semble various structures, particularly in difficult, dangerous environments. In this

thesis, we study the two problems, robotic grasping and assembly, with a modular

robotic approach that can facilitate the problems with versatility and robustness.

First, this thesis develops a theoretical framework for grasping objects with

customized effectors that have curved contact surfaces, with applications to modular

robots. We present a collection of grasps and cages that can effectively restrain the

mobility of a wide range of objects including polyhedra. Each of the grasps or cages

is formed by at most three effectors. A stable grasp is obtained by simple motion

planning and control. Based on the theory, we create a robotic system comprised

of a modular manipulator equipped with customized end-effectors and a software

suite for planning and control of the manipulator.

Second, this thesis presents efficient assembly planning algorithms for construct-

ing planar target structures collectively with a collection of homogeneous mobile

modular robots. The algorithms are provably correct and address arbitrary target

v



structures that may include internal holes. The resultant assembly plan supports

parallel assembly and guarantees easy accessibility in the sense that a robot does

not have to pass through a narrow gap while approaching its target position. Fi-

nally, we extend the algorithms to address various symmetric patterns formed by a

collection of congruent rectangles on the plane.

The basic ideas in this thesis have broad applications to manufacturing (re-

straint), humanitarian missions (forming airfields on the high seas), and service

robotics (grasping and manipulation).
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Chapter 1

Introduction

The early 1960s saw Unimate, the first industrial robot created by George Devol,

working on an automobile assembly line. Since this installation of Unimate, a wide

variety of robot technologies have been developed to perform various manipulation

tasks that can help or completely replace humans in environments ranging from

a manufacturing plant to outer space or the bottom of the sea. For example, a

robot played an important role in capturing the Boston Marathon bombing suspect

in 2013 by helping law enforcement authorities remove the tarpaulin of the boat.

The DARPA Robotics Challenge1 reflects growing interest in developing robots that

can physically assist humans with challenging manipulation tasks, particularly for

responding disasters.

The work presented in this thesis contributes to two of the most fundamental

1http://www.theroboticschallenge.org/
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problems in robotic manipulation: robotic grasping and assembly. The capability

to grasp or assemble objects can provide a sufficient functional basis for a wide

variety of tasks which robots can contribute to, for example, manufacturing, disaster

response, space exploration, assisted living, and medical operation.

The two problems are closely related to each other. According to Mason (2001),

grasping an object is a kind of assembly if we consider assembly as a fundamental

process employed in manipulation tasks; assembly is an application task that builds

on a wide range of subtasks including grasping. In the literature, the problems

are indeed sharing many common issues; for example, contact analysis has been

important in both problems.

Our approach to robotic grasping and assembly takes account of modular robot

systems. For grasping, we consider a modular manipulator whose arms are recon-

figurable by attaching or detaching modular links and end-effectors as needed. For

assembly, we consider modular units with identical geometry that can collectively

be assembled into various target structures. The theories and algorithms we present

here are suitable for the modular frameworks. In fact, the tasks of grasping and

assembly can benefit from such modular systems. For example, the modular manip-

ulator can easily adapt to the sizes and shapes of various objects; the parallelism

of the multiple modular building blocks makes the system robust to failures. In

addition, mass production of standardized modules can make individual modules

less expensive and robotic systems built from such modules more affordable.
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Section 1.1 formally defines our research problems. Section 1.2 enumerates the

contributions of the thesis. Section 1.3 describes our research vision based on the

thesis. Section 1.4 gives an outline of the thesis.

1.1 Problem Statement

This thesis addresses two central problems in robotic manipulation.

First, we are concerned with developing a theoretical framework for robotic

grasping using effectors (or “fingers”) with curved contact surfaces; we also present

one application of the idea to a scenario of grasping objects with a modular robot

system. Effectors with appropriate curvature properties can be effective for re-

straining the mobility of an object. For example, consider the two grasps shown in

Figures 1.1a and 1.1b, each of which has one point and one planar contact; the grasp

of Figure 1.1b is more restrictive in that the object cannot actually escape from the

effectors due to the concavity of the effector contacting the vertex. Figure 1.1c

illustrates a grasp by a modular manipulator equipped with two end-effectors with

curved contact surfaces.

Most practical solutions in robotic grasping involve specially-designed hardware

and control algorithms that are tailored only to a couple of objects to be handled

or grasped. A robot system that can grasp a wide variety of object shapes without

many different types of effectors or complex multi-fingered hands can save time

and cost in a wide range of scenarios from handling material in a warehouse to
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(a) (b) (c)

Figure 1.1: The tetrahedron is grasped by (a) the two planar effectors, (b) the
planar and concave effectors, and (c) the modular manipulator.

clearing rubble in an unstructured environment. In addition, it is imperative to

develop planning algorithms that can guarantee the stability of the process of grasp

acquisition and robustness to sensing/positioning errors.

Second, we address the development of planning algorithms for assembling ar-

bitrary planar target structures with congruent, rectangular building blocks, which

can be applied to constructing floating structures on water with modular, robotic

boats. Figure 1.2 illustrates the scenario we are concerned with: in Figure 1.2a,

the rectangular mobile units are being assembled into the growing structure, which

locally looks like the common brick wall (Figure 1.2b), in a parallel manner. Fig-

ure 1.2c shows an example target structure assembled with physical robots.

We seek to create efficient algorithms guaranteeing complete, correct assembly

and supporting parallel execution, mimicking the process seen in human workers

collaboratively constructing a brick wall. Prior works on assembly planning (see Sec-

tion 2.2) discussed automated geometric reasoning based only on local information.

However, such a local-scale analysis is not sufficient to guarantee accessibility; for

5



(a) (b) (c)

Figure 1.2: (a) Robots, depicted as solid, black rectangles, are being assembled into
the planar structure, which locally looks like the common brick wall shown in (b).
(c) A landing platform autonomously assembled with robotic boats.

example, parts may have to pass through narrow corridors on the way to their tar-

get positions, which may necessitate difficult maneuvers. Decentralized approaches

to robotic self-assembly (see Section 2.3) presented planning algorithms that scale

well; however, it can be hard to guarantee completeness with such algorithms.

1.2 Thesis Contributions

The main contributions of this thesis fall into two distinct areas.

First, we present a novel theory of three types of immobilizing grasps and cages

that can effectively restrain the mobility of any object modeled as a polyhedron. The

grasps and cages are formed by at most three effectors with appropriate geometry,

which can simply be a planar, cylindrical, or spherical surface. We apply the theory

to implement hardware and software for stable object grasping with a modular

robot system, which can adapt to the sizes and shapes of a wide variety of objects.

Our work is based on a conservative assumption that two bodies in contact can only

push each other (unilateral contact) and there is neither friction nor compliance in
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contact. The conservativeness can be seen clearly if we consider how the octopus

firmly grasps a prey by virtue of the frictional, soft, bilateral contacts made by the

tentacles. The conservativeness will allow us to apply our approach to a wide range

of scenarios without such capable hardware like the tentacles of the octopus.

Second, we present two novel planning algorithms that can be applied to con-

structing planar structures with congruent, rectangular mobile robots, which col-

lectively form the brick wall pattern. The algorithms can address arbitrary target

structures2; moreover, target structures without internal holes can be assembled

in a parallel manner. It takes O(m) time to run the algorithms where m is the

number of the modular units constituting the structure. Following the resultant

assembly plan guarantees easy accessibility: each robot is guaranteed a path with

a finite clearance between itself and the growing structure. We also show that the

algorithms can be extended to assemble structures of other symmetric patterns that

can be formed with congruent rectangles.

1.3 Vision

In order to illustrate the applications of the ideas in this thesis, we present two

vignettes.

2See Section 9.2.
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Vignette 1: Modular robot system for disaster response A team of au-

tonomous boats sails for an island that has just been struck by an earthquake and

the resultant tsunami. After anchoring off the coast of the island, some of the boats

unload a swarm of small modular robots. While the boats form an emergency land-

ing strip on the water, the robots assemble themselves into a team of spider-like

robots, which can move around the island cluttered with rubble. The multi-limbed

robots remove obstacles, search for survivors, and build temporary ground shelter

with bricks scattered over the ground.

Vignette 2: Modular robot system for space exploration Another group

of the same modular robots deployed from a lunar lander forms a three-armed

torso that is to be mounted on a rover. The three-armed rover performs sample

acquisition and coring with two of the arms immobilizing a rock sample and the

remaining one operating a tool.

The vignettes may sound far-fetched, but this thesis can be the first step toward

the vision; in Chapter 14, we propose possible 5-, 10-, and 15-year milestones that

can be reached by extending the ideas described in this thesis.

In addition, we also envision industrial applications. For example, material han-

dling is defined as the movement, storage, control and protection of materials, goods

and products throughout the process of manufacturing, distribution, consumption
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and disposal3. According to the U.S. Roadmap for Material Handling & Logistics4

published in January, 2014, all that movement and handling accounts for 8.5 per-

cent of gross domestic product (at least $1.33 trillion) in the United States and

the total continues to grow at roughly 4 percent annually. Robotic grasping and

assembly, the topic of the thesis, provide a sufficient functional basis for automating

many tasks involved with material handling.

1.4 Organization of This Work

The thesis is organized as follows. In the following chapter, we review relevant

literature in the areas of robotic grasping, robotic assembly, and modular robotics.

Part II presents our work on robotic grasping with modular robots. This part

builds on our previous work presented in Seo et al. (2012), Seo and Kumar (2012),

Seo et al. (2013b). Chapter 3 introduces concepts and terminology necessary to

develop our theory and algorithms. Chapter 4 discusses three types of immobilizing

grasps using curved effectors that can be applied to a wide range of objects including

polyhedra. Chapter 5 discusses three types of cages derived from the immobilizing

grasps and explains how to establish sufficient conditions for caging. Chapter 6

presents an algorithm for synthesizing the immobilizing grasps and cages. Chapter 7

extends our theory by adding more types of grasps and cages. Chapter 8 discusses

3http://www.mhi.org

4http://www.mhlroadmap.org
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the implementation of our approach on a modular robot system, with experiments.

Part III is concerned with developing assembly planning algorithms for con-

structing modular structures. This part builds on our previous work presented in

Seo et al. (2013a), O’Hara et al. (2014). Chapter 9 describes our approach to design-

ing the algorithms. Chapter 10 presents our first algorithm that supports parallel

assembly and discusses its correctness. Chapter 11 presents our second algorithm,

which can address target structures with internal holes, and discusses its correct-

ness. Chapter 12 discusses the implementation of the algorithms, with experiments.

Chapter 13 addresses how to extend the algorithms to more general patterns.

We conclude in Chapter 14, with suggestions for future work.
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Chapter 2

Literature Review

This chapter outlines literature on robotic grasping, robotic assembly, and modular

robotics that is relevant to this thesis.

2.1 Robotic Grasping

Robotic grasping has been an active research area over the past few decades. We

here divide the prior work into two categories: one focusing on immobilizing objects

by making contacts (prehensile approach) and the other based on caging (non-

prehensile approach). For each approach, we introduce theoretical aspects and

examples of robotic systems. See Bicchi and Kumar (2000) for a more general

survey.
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2.1.1 Prehensile Approach

We begin with discussing the closure properties of grasps. A grasp is defined as

force closed (Nguyen 1988) if and only if it can resist any external wrench. If a

grasp is force closed with frictionless contacts, it is said to be form closed (Lak-

shminarayana 1978) or immobilized (Rimon and Burdick 1998a). Trinkle (1992)

proposed a quantitative test formulated as a linear program for detecting form

closure. Markenscoff et al. (1990) showed that it is possible to immobilize a three-

dimensional object with seven frictionless point contacts, using first-order theories

based on contact normals. Algorithms for synthesizing force or form closed grasps

were presented by Ponce et al. (1997), Borst et al. (1999), Van der Stappen et al.

(1999). Rimon and Burdick (1998a,b) developed a second-order mobility theory

for rigid bodies in contact where the curvature properties at the contacts are taken

into account. Czyzowicz et al. (1991) showed that n+ 1 frictionless point contacts

suffice to immobilize a general n-dimensional polytope by using the effects of rela-

tive curvature; thus, for a three-dimensional object, four frictionless point contacts

suffice for immobilization.

It has been discovered that the stability of a grasp depends on the geometry

of the grasp, contact forces, and material properties. Mason and Salisbury (1985)

established a framework for testing the stability of a grasp: a grasp is stable if its

stiffness matrix is positive definite. Cutkosky and Kao (1989) showed that grasp

stability is a function of local geometry, fingertip models, and the compliance of
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the fingers. Nguyen (1989) proved that all force closed grasps can be made stable.

Howard and Kumar (1996) established a framework for analyzing grasp stability

that takes compliance, contact forces, and the local curvature properties of the

bodies in contact into account. It was shown that immobilization implies dynamic

stability with elastic contacts (Rimon and Burdick 1998a,b).

In practice, having a large number of contacts can be beneficial to grasp stabil-

ity; however, synthesizing such a grasp can be computationally intractable. Pollard

(2004) presented an efficient algorithm for synthesizing many-contact grasps based

on user-provided examples. Similar approaches can also be seen in the literature on

whole-body grasping (Hsiao and Lozano-Perez 2006) and enveloping grasping (Trin-

kle et al. 1988). Napier (1956) showed that there are two approaches to achieving

stability in human grasping: power grip and precision grip. Whole-body grasps and

enveloping grasps are in the same vein of the human power grip, where an object

is held by a large number of contacts between the flexed fingers and the palm.

Since Hanafusa et al. (1977) presented one of the earliest examples of robotic

hands, various robotic hands have been developed. Our work is relevant with the

approach to building simple yet versatile end-effectors that can be seen in Jacobsen

et al. (1986), Ulrich et al. (1988), Dollar and Howe (2010), Kragten et al. (2011),

Mason et al. (2012). Another relevant approach can also be seen in the literature

on modular fixturing (Brost and Goldberg 1996, Ponce 1996). Recently, there has

been growing interest in developing robotic systems that can grasp/manipulate ob-
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jects with some autonomy. Saxena et al. (2008) presented a vision-based approach

to robotic grasping and demonstrated real systems that can grasp previously un-

known objects using two-dimensional images; similar approaches can be seen in

Morales et al. (2002), Bowers and Lumia (2003). Hudson et al. (2012) developed

an autonomy system that can perform dexterous, high-precision tasks such as key

insertion.

2.1.2 Non-Prehensile Approach

In contrast to the prehensile approach, the literature on caging investigates how

to arrange “obstacles” (that is, robotic fingers or effectors) around an object so

as to bound its mobility without necessarily making contact. Caging allows us

to sidestep some difficult issues such as modeling contacts or optimizing contact

forces although the caged object may have some freedom to move. Rimon and

Blake (1999) formulated a technique for computing cages of two-fingered hands;

Davidson and Blake (1998a) extended the result to three-fingered hands. Vahedi

and van der Stappen (2008a,b,c, 2009) provided an algorithm for synthesizing cages

of two and three fingers around polygonal objects and formalized the concepts of

squeezing and stretching cages for polygonal objects, which were generalized by

Rodriguez and Mason (2009) to address objects in Euclidean spaces of arbitrary

dimension. Allen et al. (2012) presented a simpler algorithm for computing two-

fingered cages for polygons based on contact space analysis. Wan et al. (2012)
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proposed a solution to synthesizing three-finger cages on the plane where two of the

fingers are fixed. Other interesting approaches include Zamfirescu (1995), Maehara

(2011), Fruchard (2012) where they investigated how to cage objects with just a

single circle. Rodriguez et al. (2012) discussed the relationship between caging and

grasping: they investigated when a cage can be a useful waypoint to an equilibrium

grasp.

Recently, there have been efforts to take advantage of caging to robustify robotic

tasks. Davidson and Blake (1998b) presented error-tolerant, vision-based planar

grasping by closing fingers that form a cage. Gopalakrishnan and Goldberg (2002)

presented a simple gripper with two vertical, parallel cylindrical jaws that can sta-

bly grasp objects by forming a cage on concavities. Diankov et al. (2008) proposed

a motion planning algorithm for performing manipulation tasks with cages, relax-

ing task constraints. Yokoi et al. (2009) presented an approach to transporting

objects using cages formed by not only robots but also the environment such as

walls. Cappelleri et al. (2011a,b) employed cages formed by micro-manipulators

for transporting and manipulating micro-scale polygonal parts. Dogar and Srini-

vasa (2011) showed that simple manipulation such as quasi-static pushing can help

robots stably cage and grasp objects even in clutter. There is a body of literature

featuring decentralized approaches to caging; we refer the reader to Section 2.3.3.
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2.2 Assembly Planning

Robotic assembly is a broad topic that is involved with a wide variety of issues

in manipulating objects, which include grasping, caging, fixturing, pushing, and

part orienting. See Mason (2001) for a general introduction. We here focus on

the literature on assembly planning. According to Halperin et al. (2000), assembly

planning is defined as the problem of finding and sequencing the motions that

put the initially separated parts of an assembly together to form the assembled

product. Lozano-Perez (1976) is one of the earliest works that focus on specific

issues in planning mechanical assembly. The problem is generally approached by

considering how to establish a disassembly plan from a final product.

2.2.1 Assembly Sequencing

Assembly sequencing is a variant of assembly planning that received early atten-

tion. In assembly sequencing, the parts of an assembly are often assumed to be

free-flying, sidestepping issues such as how to physically perform assembly oper-

ations and focusing on the geometric constraints imposed by the product itself.

However, Assembly sequencing is a hard problem; Natarajan (1988), Kavraki and

Kolountzakis (1995) discuss the PSPACE-hardness or NP-completeness of instances

of assembly sequencing. De Fazio and Whitney (1987) presented a method for

generating all valid assembly sequences based on a user input on the geometric

relationships of the parts. Homem de Mello and Sanderson (1990) presented the
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hypergraph representation of assembly plans that combines all feasible assembly

sequences for a given product; the representation enables the selection of the best

assembly plan and parallel execution of assembly operations. Ko and Lee (1987),

Arkin et al. (1989), Wilson and Rit (1990) also presented similar approaches. Wil-

son and Latombe (1994) presented the notion of a non-directional blocking graph,

representing the geometric interferences among the parts in an assembly, which

allows assembly sequences to be computed in polynomial time.

2.2.2 Beyond Traditional Assembly Sequencing

The traditional approach to assembly sequencing has been generalized in many

directions. Latombe et al. (1997), Thomas et al. (2003), Ostrovsky-Berman and

Joskowicz (2006) investigated assembly planning for toleranced parts. Halperin

et al. (2000) presented a general framework for assembly planning that can address

additional constraints such as toleranced parts, stability, and tool use. Romney

(1997) presented a method to concurrently generate an assembly sequence and de-

sign a fixture to hold intermediate subassemblies. Mosemann et al. (1998), Rakshit

and Akella (2014) presented assembly/disassembly sequencing that takes part sta-

bility into account in the presence of external forces such as gravity and friction.

Assembly planning can also be understood as a variant of robot motion planning

where the goal is to assemble robotic parts into one coherent structure (LaValle

2006). Sundaram et al. (2001) presented an approach for disassembly sequencing
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based on sampling-based robot motion planning. Similar approaches can also be

seen in Ferre and Laumond (2004), Le et al. (2009).

2.3 Modular Approach to Robotic Tasks

According to Yim et al. (2009), modular (self-reconfigurable) robots are robots

composed of a large number of repeated modules that can rearrange their connect-

edness to form a large variety of structures. Modular robots promise to be versatile,

robust, and cost-efficient (Yim et al. 2009), but the advantages may compromise

performance as observed by Yim et al. (2007b). We here review the applications of

modular robotics to self-assembly, locomotion, and manipulation tasks.

2.3.1 Self-Assembly

There is extensive literature on modular self-assembly; here the focus is on generat-

ing a wide range of structures with possibly congruent modules arranged in a two-

or three-dimensional grid structure. Murata et al. (1994) presented a mechanical

system composed of repeated modular units and a decentralized software system

for self-assembly. Kotay et al. (1998) proposed Molecule, a robotic module that

can self-reconfigure, along with an efficient motion planning algorithm. Yim et al.

(2001) defined a class of metamorphic robotic system capable of approximating any

three-dimensional shapes and presented distributed control algorithms for recon-

figuration. Butler et al. (2004) presented dynamic reconfiguration algorithms for a
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general model of self-reconfigurable robots, with applications to real systems. There

is a body of literature addressing cube style modular systems with a wide variety

of modes of locomotion between voxels (pixels); examples include Hosokawa et al.

(1998), Kurokawa et al. (1998), Rus and Vona (2001), Vassilvitskii et al. (2002),

Gilpin et al. (2008), Romanishin et al. (2013).

Difficulties in fabricating small modules with onboard sensing, computation, and

actuation often result in outsourcing some functions. White et al. (2004) proposed

a self-reconfigurable robotic system where simple modules, without moving parts,

exploit Brownian motion in their environment for locomotion. Bishop et al. (2005)

introduced a self-organizing modular robotic system where each module floats pas-

sively on an air table and docks to others upon random collisions. Werfel and Nagpal

(2008) presented a decentralized algorithm for constructing three-dimensional tar-

get structures with a bipartite system comprising passive, cubic blocks and mobile

robots that move the blocks. White et al. (2009) presented a chain of tetrahedron-

shaped modules that can be folded into three-dimensional target shapes by an ex-

ternal actuator. Petersen et al. (2011) presented a bipartite system for constructing

walls, composed of mobile robots and passive building blocks that can be manipu-

lated by the robots.
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2.3.2 Locomotion

Modular robots have showed their versatility in locomotion. Yim (1994) presented

statically stable locomotion gaits with his modular robot system, Polypod. Yim

et al. (2000) presented PolyBot, a modular robot system that can locomote over a

variety of terrain and switch between two locomotion modes by self-reconfiguration.

Yim et al. (2007a) implemented a simple robotic system that can recover after

disassembly from high-energy events. Sastra et al. (2009) implemented dynamic

rolling, which was proven to be a fast and energy-efficient way of locomotion, with

a modular robot system, CKbot. Burdick et al. (1994), Sfakiotakis and Tsakiris

(2007), Lipkin et al. (2007), Hatton and Choset (2010) investigated gait generation

for modular hyper-redundant (snake-like) robots.

2.3.3 Manipulation

The literature on multi-robot manipulation provides techniques for handling objects

in a cooperative manner. When multiple robots manipulate a common object, it is

necessary to control both the motion of the object and the internal forces exerted

on the object (Murray et al. 1994). In addition, the dynamics of such systems is

typically subject to unilateral constraints: the robots can only push or pull (for

example, by cable tension) the object. Murray (1996), Sugar and Kumar (1999),

Cheng et al. (2009), Fink et al. (2011), Bernard et al. (2011), Sreenath and Kumar

(2013) provided solutions to the problem with applications to ground or aerial trans-
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port. A group of literature shows that robotic object handling can be facilitated by

caging with a team of multiple robots: Kosuge et al. (1999), Pereira et al. (2004),

Montemayor and Wen (2005), Fink et al. (2008) presented approaches to develop-

ing decentralized control algorithms. Some literature on cooperative transport took

inspiration from the behaviors of social insect colonies (Kube and Bonabeau 2000,

Berman et al. 2011).
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Part II

Grasping with Modular Robots
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Chapter 3

Preliminaries: Caging and

Grasping

This chapter introduces concepts and terminology relating caging and grasping that

we use in developing our theory and algorithms.

3.1 Caging

A cage around an object bounds its mobility (Figure 3.1a): the caged object cannot

be moved arbitrarily far from its original position without penetrating the surround-

ing effectors forming the cage. Equivalently, a cage can also be defined in terms

of the mobility of the surrounding effectors by regarding the object as an obstacle:

according to Rodriguez et al. (2012), a cage is a configuration of effectors that lies

in a compact, connected component of the free space (LaValle 2006) of the system
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of the effectors (note that the system is assumed to move as a single rigid body).

Rodriguez et al. (2012) formalized the concept of an F-cage, which is generally

stricter than that of a cage. Let F be a scalar function defined on effector config-

urations. Then an F -cage is a configuration of the effectors that cages an object

even if they have freedom to move while maintaining the value of F . An F -cage is

an F -squeezing (stretching) cage if it still cages the object even if the effectors have

freedom to move while decreasing (increasing) the value of F .

(a) (b) (c)

Figure 3.1: (a) Caging the triangle with the three point effectors. (b) Immobilizing
the regular triangle with the three point effectors located at the center of each edge.
(c) Clamping the tetrahedron with the two planar effectors contacting the vertex-
face pair. The red arrows are involved unit contact wrenches under the assumption
of frictionless, rigid, unilateral contact in (b), (c), and all upcoming figures.

3.2 Contact

We are mainly concerned with an object modeled as a polyhedron in contact with

effector surfaces. There can then be three types of contact geometry: point, line, and

planar contact (Mason and Salisbury 1985, Mason 2001). For example, Figure 3.1c

shows one point and one planar contact between the two planar effectors and the

object. A contact can apply a contact wrench (Murray et al. 1994, Mason 2001),
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contact force/moment pair, given by the positive linear combinations of unit contact

wrenches that are normalized, linearly independent vectors that span the vector

space of the contact wrenches (see Figures 3.1b and 3.1c). Our work is based on an

assumption that all contacts are frictionless, rigid, unilateral (unilateral contacts

can only push an object); then, the unit contact wrenches are the vectors of the

normalized screw coordinates only of the inward-pointing contact normals (Mason

2001). If we assume frictional, soft, bilateral contacts, more types of unit contact

wrenches should be considered (Murray et al. 1994); this shows the conservativeness

of the assumption.

P Q

R

Figure 3.2: The plane is contacting the virtual edge PQ between the two “real”
vertices P and Q.

A line contact can be made on a virtual edge (Peshkin and Sanderson 1986) that

is composed only of the vertices delimiting the edge without the interior (Figure 3.2).

It can be seen that a “real” edge and a virtual edge are indistinguishable in terms

of their ability to produce contact wrenches, under the assumption of frictionless,

rigid, unilateral contact, if we are given a sufficiently large effector surface that can

contact all the delimiting vertices: in Figure 3.2, even if the virtual edge were real

(like edge QR), the number of unit contact wrenches would still be the same, that
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is, two. Similarly, a planar contact can also be made on a virtual face.

3.3 Grasping

To grasp an object is to restrain its mobility by making contacts with effectors.

A grasp can be in equilibrium if the net contact wrench, the sum of all contact

wrenches, can be made zero in such a way that not all contact wrenches are equal

to zero (Rimon and Burdick 1998a). If there is no object twist, linear/angular

velocity pair (Murray et al. 1994), consistent with the contacts of an equilibrium

grasp, the object is said to be immobilized to the first order (Rimon and Burdick

1998a) (or form-closed (Mason 2001)), that is, the configuration of the object is an

isolated point in the free space. Even if such a twist exists, any finite motion may

be restricted by considering surface curvature effects. For example, in Figure 3.1b,

the object may instantaneously rotate about its centroid (so a first-order kinematic

analysis does not predict immobility), but any finite rotation results in penetrating

the effectors. This idea is formalized using the concept of second-order immobility

(Rimon and Burdick 1998a,b). Seven (four) point effectors are required to immobi-

lize a polyhedral object to the first (second) order with frictionless, rigid, unilateral

contacts (Markenscoff et al. 1990, Czyzowicz et al. 1991). Such immobility con-

ditions are purely geometric; information on contact geometry is thus sufficient to

investigate first- or second-order immobility. An equilibrium grasp is called a grasp-

ing cage (Rodriguez et al. 2012) if it can also cage the object; a grasping cage is not
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necessarily an immobilizing grasp.

3.4 Clamping

Clamping (Bose et al. 1996), also known as parallel-jaw grasping, is one way to realize

equilibrium grasps by holding an object between two parallel planar “jaws.” An

object that is clamped can only move on the plane of the jaws, without penetrating

them. If the jaws can exert frictional forces, the grasp can be force closed: an

arbitrary contact wrench can be applied. Consider the antipodal pair of a convex

polyhedral object, which is the intersection of the object with a pair of parallel

support planes; an antipodal pair can thus be a vertex-vertex, vertex-edge, vertex-

face, edge-edge, edge-face, or face-face pair. According to Bose et al. (1996), all

convex polyhedra can be clamped with parallel-jaw grippers. The grippers are then

on one of the last four types of antipodal pairs, that is, vertex-face, edge-edge, edge-

face, or face-face; such an element pair can determine the width of a polyhedron,

the minimum distance between two parallel supporting planes. Figure 3.1c shows

a clamp on a vertex-face pair.
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Chapter 4

Immobilizing Objects with Curved

Effectors

In this chapter, we discuss how to immobilize a three-dimensional object using at

most three contacts, each of which can be a point, line, or planar contact made

with a curved effector that can be represented as a two-dimensional manifold with

boundary. In Sections 4.1, 4.2, and 4.3, we present three types of immobilizing

grasps that can be applied to objects modeled as polyhedra; we also discuss the

geometry of effectors that can realize the grasps. In Section 4.4, we show that any

polyhedron can be immobilized by the grasps and discuss how the assumption of

polyhedral objects can be relaxed.
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4.1 Immobilizing with Three Point Contacts

In this section, we show that it is possible to immobilize a polyhedron with three

point contacts. We begin with choosing three vertices where the contacts can be

made. See Figure 4.1a. Let P and Q be two vertices of the given polyhedron where

two point contacts can be made with a pair of parallel planes perpendicular to PQ;

the inward-pointing (toward the interior of the polyhedron) contact normals at P

and Q point toward each other. Let R be a vertex, not on ξ (the line of PQ), where

a point contact can be made with a plane such that the ray of the inward-pointing

contact normal intersects ξ.

(a)

P

Q

R

ξ

(b)

P

Q

R

ξ

(c)

P

Q

R

ξ

(d)

P

Q

R

ξ

Figure 4.1: (a) (P,Q,R) is a vertex-vertex-vertex triple where three point contacts
immobilizing the octahedron can be made. (b) The front view of the octahedron
with the two curved effectors contacting P and Q. The effectors can locally be
embedded inside the ball whose diameter has endpoins P and Q, except for the
points contacting P and Q. (c) An immobilizing grasp by the effectors with a
spherical surface. (d) An immobilizing grasp by the cone-shaped effectors.

Three point contacts on P , Q, and R made by curved effectors can immobilize

the polyhedron if (1) a neighborhood of the effector surface around the point con-

tacting P (Q), except for the point itself, can be embedded inside the ball whose

diameter has endpoints P and Q (Figure 4.1b) and (2) a neighborhood of the effector

29



surface around the point contacting R, except for the point itself, can be embedded

inside the cylinder of radius d(R, ξ) with axis ξ, where d(R, ξ) denotes the shortest

distance between R and ξ. If condition (1) is satisfied, as can be seen in Figure 4.1b,

the polyhedron cannot move at all except for rotating about ξ because PQ is at a

configuration that is isolated in the free space: any finite displacement of PQ results

in penetrating the effectors at P or Q. Furthermore, if condition (2) is satisfied, the

polyhedron cannot rotate about ξ because the rotation results in penetrating the

effector at R. Two example grasps are shown in Figures 4.1c and 4.1d: effectors

with a spherical surface of a sufficiently small radius (Figure 4.1c) or effectors with

a cusp (Figure 4.1d) can satisfy the two conditions.

4.2 Immobilizing with a Point, a Line, and a Pla-

nar contact

We here show that it is possible to immobilize a polyhedron with one point, one

line, and one planar contact. We begin with choosing a vertex, an edge, and a face

where the contacts can be made. See Figure 4.2a. At P and �QRST , a point

and a planar contact can be made with a pair of parallel planes. The ray of the

inward-pointing contact normal at the vertex intersects the interior of the face; the

inward-pointing contact normals at the face point toward the vertex. Among the

edges incident to P , choose the one with the least slope with respect to the face,
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that is, PS.

(a)

P

Q

R
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T

ξ

(b)

P

P ′

ξ

(c)
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ξ

(d)

P
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R
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T

ξ

Figure 4.2: (a) (P, PS,�QRST ) is a vertex-edge-face triple where a point, a line,
and a planar contact immobilizing the pyramid can be made. (b) The front view
of the object with the two effectors contacting the vertex and the face. The curved
effector contacting the vertex, P , can locally be embedded inside the space between
the two supporting planes, except for the point contacting P . (c) An immobilizing
grasp by the effectors with a spherical, a cylindrical, and a planar surface. (d)
An immobilizing grasp where the point (line) contact is made by the cone-shaped
(V-shaped) effector.

Three (one point, one line, and one planar) contacts on the vertex (P ), edge

(PS), and face (�QRST ) by curved effectors can immobilize the polyhedron if (1)

the contact area of the planar contact contains a neighborhood of P ′, the foot of

perpendicular from P to the face (Figure 4.2b), (2) a neighborhood of the effector

surface around the point contacting P , except for the point itself, can be embedded

inside the half-space below (toward the interior of the polyhedron) the plane con-

tacting P (Figure 4.2b), and (3) a neighborhood of the effector surface around the

line segment contacting PS, except for the line segment itself, can be embedded

inside the cone formed by rotating PS about ξ (the line of PP ′). If conditions (1)

and (2) are satisfied, as can be seen in Figure 4.2b, the polyhedron cannot move at

all except for rotating about ξ because the two effectors at the vertex and face are

not only clamping it but also restricting any translation. Furthermore, if condition
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(3) is satisfied, the polyhedron cannot rotate about ξ because the rotation results

in penetrating the effector at PS. Two example grasps are shown in Figures 4.2c

and 4.2d.

4.3 Immobilizing with Two Line Contacts

We here show that it is possible to immobilize a polyhedron with two line contacts.

We begin with choosing two edges where the contacts can be made. See Figure 4.3a.

PQ and RS are two skew edges of the given polyhedron where two line contacts

can be made with a pair of parallel planes that are perpendicular to ξ, the common

perpendicular of the edges. ξ and the two edges intersect in the interior of the edges.

The inward-pointing contact normals at one edge point toward the other edge.

(a)
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Q
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ξ

(b)
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R S

ξ

(c)
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(d)

P

Q

R

S
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Figure 4.3: (a) (PQ,RS) is an edge-edge pair where two line contacts immobilizing
the tetrahedron can be made. (b) The front view of the object with the two curved
effectors contacting the edges. The curved effectors can locally be embedded inside
the space between the two supporting planes (except for the line segments contacting
the object). (c) An immobilizing grasp by the effectors with a cylindrical surface.
(d) An immobilizing grasp by the two V-shaped effectors.

Two line contacts on the edges by curved effectors can immobilize the polyhedron

if a neighborhood of the effector surface around the line segment contacting PQ
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(RS), except for the line segment itself, can be embedded in the half-space below

(above) the plane contacting it (Figure 4.3b). Note that the two contact areas (the

line segments) and ξ should intersect. If the condition is satisfied, as can be seen in

Figure 4.3b, the effectors are not only clamping the polyhedron but also restricting

any planar motion: one of the effectors only allows the object to translate along

the line of its contact, but such motion is not allowed by the other effector. Two

example grasps are shown in Figures 4.3c and 4.3d.

4.4 Analysis

This section presents an analysis showing that the three types of grasps discussed

in Sections 4.1, 4.2, and 4.3 are complete: every polyhedron can be immobilized by

applying at least one of the grasps. We break the analysis into two theorems.

First, we show that the grasp of three point contacts discussed in Section 4.1

suffices to immobilize all polyhedra.

Theorem 1. Every polyhedron can be immobilized by three frictionless, rigid, uni-

lateral point contacts made by appropriately concave effectors.

Proof. Every polyhedron has a vertex-vertex pair (P,Q) that admits two parallel

supporting planes perpendicular to PQ and contacting only P and Q, respectively,

in such a way that the interior of the polyhedron is between the planes. Consider

the collection of the vertices of the polyhedron. Let (P,Q) be a pair of vertices
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determining the maximum distance between two vertices of the collection. Con-

sider two planes ΠP and ΠQ perpendicular to PQ and contacting the polyhedron

respectively at P and Q. No other vertex of the polyhedron can be located on ΠP

and ΠQ because (P,Q) determines the maximum distance: ΠP (ΠQ) is supporting

the polyhedron only at P (Q). Therefore, (P,Q) is a desired vertex pair.

Next, we can find an additional vertex, not on ξ (the line of PQ), which admits

a supporting plane whose inward-pointing normal at the vertex directly points to

ξ. Consider one vertex that is the most distant from ξ and denote the vertex as

R; let ξ′ be a line parallel to ξ and passing through R. If R is the only vertex of

the polyhedron on ξ′, R must be a pointed vertex that admits a supporting plane

whose inward-pointing normal at R directly points toward ξ. R is then the desired

vertex. In case there are multiple vertices lying on ξ′, first choose a point on ξ′ as

its origin, then pick the vertex that is the most distant from the origin, and denote

the vertex as R. It can be seen that R is the desired vertex.

We finally get immobility with three appropriately concave effectors respectively

contacting P , Q, and R as explained in Section 4.1. Note that P , Q, and R are

on the convex hull of the polyhedron; otherwise, P and Q do not determine the

maximum distance and R is not the most distant from ξ, either.

We now show that other two types of grasps discussed in Sections 4.2 and 4.3

are also complete in the sense that every polyhedron whose vertices are in general

position, not admitting any pair of either two planes or a line and a plane that are
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parallel, can be immobilized by at least one of those grasps.

Theorem 2. Every polyhedron whose vertices are in general position such that there

is no pair of either two planes or a line and a plane that are parallel, where each

line (plane) is determined by a distinct collection of two (three) vertices, can be

immobilized by either (1) one point, one line, and one planar contact or (2) two

line contacts made by appropriately concave effectors; the contacts are frictionless,

rigid, unilateral.

Proof. Consider the convex hull of the given polyhedron. Because the convex hull

does not have any pair of either two faces or an edge and a face that are parallel, it

can be clamped at one of its antipodal vertex-face or edge-edge pairs. The convex

hull (and thus the original polyhedron) can then be immobilized using the pair by

applying the grasp discussed in Section 4.2 or 4.3.

Note that the grasps employed in Theorem 2 might have contacts on virtual edges

or faces that are on the convex hull, but not belonging to the original polyhedron.

Remark : The three types of grasps can actually be applied to immobilizing a

wider range of objects in addition to polyhedra. Essentially, if there is a set of the

right contacts made with effectors having the right curvature properties, as discussed

in Sections 4.1, 4.2, and 4.3, then the object is immobilized. First, the place where

a point contact is made does not have to be actually pointed like a polyhedron

vertex. For example, see the point contacts at P , Q, and R in Figure 4.1c; for the
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effectors to immobilize the object, it is only required that the actual geometry of

the object around P , Q, or R does not intersect the effector surface, whether the

actual geometry is smooth or pointed. Similarly, the place where a line (planar)

contact is made does not have to be a perfect polyhedron edge (face).
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Chapter 5

Caging Objects with Curved

Effectors

Based on the three types of immobilizing grasps discussed in Chapter 4, it can be

seen that every polyhedron can be caged by two curved effectors.

Corollary 1. Every polyhedron can be caged by two appropriately concave effectors,

each of which is accommodating a single vertex, edge, or face.

Proof. According to Section 4.1, 4.2, or 4.3, it is possible to cage a polyhedron

with two curved effectors making contacts at a vertex-vertex, vertex-face, or edge-

edge pair. For example, Figure 5.1 shows three types of cages obtained by the

two effectors at the antipodal pairs in Figures 4.1c, 4.2c, and 4.3c, respectively.

According to Theorems 1 and 2, every polyhedron can be caged by at least one of

the three types of cages.
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Figure 5.1: Cages of two curved effectors. The inscribed shapes colored red (the
line segment in (a), the right circular cone in (b), and the tetrahedron in (c)) are
used to establish sufficient conditions for caging in Section 5.1.

Although the effectors are contacting the objects in Figure 5.1, a cage does not

necessarily have to make contacts with the object. In order to see if an object is

caged, it is necessary to take overall effector geometry into account because it is

required to verify the compactness of the component of the free space to which the

configuration of the object belongs, which is a nonlocal property. For example, the

“depth” of a curved effector is critical in our discussion on caging here. In contrast,

recall that we need only local curvature properties in establishing the immobilizing

grasps in Chapter 4.

In this chapter, we address how to establish sufficient conditions for caging three-

dimensional objects in analytical (Section 5.1) and empirical (Section 5.2) manners.

In Section 5.3, we present a theoretical analysis on how to acquire stable grasps from

the cages and discuss how our assumption of polyhedral objects can be relaxed.
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5.1 Analytical Method

In this section, we present three types of cages that are derived from the three types

of immobilizing grasps. Considering simpler object geometry that can be inscribed

in the original shape, we discuss how to establish sufficient conditions for caging in

an analytical manner.

5.1.1 Caging on a Vertex-Vertex Pair

Consider a vertex-vertex pair of a given polyhedron such as (P,Q) in Figure 5.1a,

allowing us to establish the immobilizing grasp discussed in Section 4.1. We here

investigate how to cage the two vertices assumed to be rigidly connected (see the

red line segment PQ in Figure 5.1a).

(a)

P

Q

(b)

P

Q

cmax δ

η

Figure 5.2: (a) The planar view shows P and Q contained in the curved effectors.
(b) A cage of two hemispherical effectors.

Consider two curved effectors that can contain the vertices, as shown in Fig-

ure 5.2a. If the maximum clearance between the effectors is less than d(P,Q), the

distance between P and Q, they can cage the line segment PQ. For example, con-
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sider a pair of effectors of the same hemisphere that are facing each other and only

allowed to relatively translate on their common axis, η (Figure 5.2b). The max-

imum clearance between the two effectors is then the distance between one point

on the boundary of one effector and the foot of perpendicular from the point to

the other effector, denoted as cmax in the figure. If δ, the distance between the two

planes on which the boundaries of the effectors lie (Figure 5.2b), is small enough to

guarantee cmax < d(P,Q), PQ (and thus the original object) is caged.

5.1.2 Caging on a Vertex-Face Pair

Consider a vertex-face pair of a given polyhedron such as (P,�QRST ) in Fig-

ure 5.1b, allowing us to establish the immobilizing grasp discussed in Section 4.2.

We here investigate how to cage a right circular cone that can be inscribed in the

convex hull of the vertex and face (see the red cone with apex P in Figure 5.1b).

(a)

P

a
h

δ

(b) (c)

a δ

re

h

η

r

re

r + re

Figure 5.3: (a) The planar view shows the red cone in Figure 5.1b is containted
between the two parallel planar effectors. (b) The curved and planar effectors
are caging the cone. (c) A cage of the hemispherical and planar effectors. The
hemispherical effector is only allowed to translate along its axis η.
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First, suppose that two infinitely large planar effectors are clamping the right

circular cone at the apex and base. We now allow the effectors to move in such a way

that they remain parallel to each other (Figure 5.3a). If their distance δ is less than

a, the side length of the cone, the cone can stably be clamped again by decreasing

δ; moreover, the distance between the apex and the effector at the base is always

larger than h, the height of the cone. It can then be seen that any curved effector

containing the vertex in such a way that its maximum height is less than a and

the boundary lies below h cages the cone along with the planar effector at the base

(Figure 5.3b). For example, consider a hemispherical effector configured such that

its boundary is parallel to the planar effector and only allowed to relatively translate

along its axis, η (Figure 5.3c). Then the cone (and thus the original object) is caged

with the effectors if δ, the distance between the planar effector and the plane of the

boundary of the hemispherical effector, is small enough to guarantee (1) the apex

is contained in the hemispherical effector, (2) δ+ re < a, and (3) δ < h: (2) and (3)

guarantee that the apex cannot escape from the hemispherical effector containing

it by the analysis above. If the base belongs to a real face of the original object,

the planar effector at the base only has to be as large as a disk of radius r + re,

in order to support the base (Figure 5.3c). Otherwise (if the face is virtual), the

planar effector should be at least as large as the face itself.
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5.1.3 Caging on an Edge-Edge Pair

Consider an edge-edge pair of a given a polyhedron such as (PQ,RS) in Figure 5.1c,

allowing us to immobilize the polyhedron as discussed in Section 4.3. We here

investigate how to cage a tetrahedron that can be inscribed in the convex hull of

the two edges (see the red tetrahedron P ′Q′R′S ′ in Figure 5.1c).

(a)

P ′

R′ S′

δ

(b)

a
a′

(c)

P ′ Q′

R′
S′

δ

r1

r2

η

Figure 5.4: (a) The planar view shows the red tetrahedron in Figure 5.1c is contained
between the two parallel planar effectors. (b) The planar effector at the bottom and
the curved effector are caging the tetrahedron. (c) A cage of the two half-cylindrical
effectors. They are only allowed to translate along their common perpendicular, η.

First, suppose that two infinitely large planar effectors are clamping the tetrahe-

dron P ′Q′R′S ′. We now allow the effectors to move in such a way that they remain

parallel to each other (Figure 5.4a). If their distance δ is less than a, the smallest

value among d(P ′Q′, R′), d(P ′Q′, S ′), d(R′S ′, P ′), and d(R′S ′, Q′) (each term de-

notes the shortest distance between the edge and the vertex), the tetrahedron can

stably be clamped again by decreasing δ. Because of the stability, the heights of P ′

and Q′ from the planar effector at the bottom has a lower bound, a′, which can be

found by rotating the tetrahedron about R′S ′ lying on the planar effector. It can
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then be seen that any curved effector containing edge P ′Q′ in such a way that its

maximum height is less than a and the boundary lies below a′ (Figure 5.4b), cages

the tetrahedron along with the planar effector at the bottom. Similarly, the heights

of R′ and S ′ are upper bounded; then, the planar effector at the bottom can also

be replaced by a curved effector. For example, consider half-cylindrical effectors

configured such that their boundaries are parallel to each other and only allowed

to relatively translate along η (Figure 5.4c). Then the tetrahedron (and thus the

original object) is caged with the effectors if δ, the distance between the two planes

on which the boundaries of the effectors lie, is small enough to guarantee (1) the

edges are contained in the effectors, (2) δ + r1 + r2 < a, and (3) r1 (r2) is large

enough to contain the lowest (highest) positions of P ′ and Q′ (R′ and S ′): (2) and

(3) guarantee that the edges cannot escape from the effectors containing them by

the analysis above. The half-cylindrical effectors should be at least as long as the

edges of the original object that they are containing.

5.2 Empirical Method

Sufficient conditions for caging can also be established in an empirical manner by

making use of off-the-shelf motion planning algorithms, particularly in case effector

geometry is analytically challenging.

First, we consider a scenario where two torus-shaped effectors are caging an

object on a vertex-vertex pair. Figure 5.5a shows how we set up experiments with
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Figure 5.5: Establishing cages in an empirical manner. (a), (b) Caging on a vertex-
vertex pair. (c), (d) Caging on a vertex-face pair. (e), (f) Caging on an edge-edge
pair.

the cone-like object. The effectors are only allowed to translate along η, their

common axis of rotation. Let δ denote the distance between the two planes of the

two circles, each of which represents the center of each torus tube. Changing the

value of δ, we see if a motion planning algorithm can find a path for the object to

reach a target configuration sufficiently far from the grip of the effectors. When

δ = 0.86m (Figure 5.5b), the motion planner (an RRT-based algorithm) failed to

find such a path in 10 trials (each trial took 0.01 ∼ 0.06 seconds on a 2.53GHz/4GB

machine). Therefore, we can empirically conclude that the object is caged if δ ≤

0.86m.

Second, we consider a scenario where a torus-shaped and a planar effector are

caging an object on a vertex-face pair. Figure 5.5c shows our experimental setup

with the cone object: the square-shaped planar effector is contacting the base of the

cone; the torus-shaped effector is allowed to translate along η, its axis of rotation

collinear to the axis of the cone. When δ = 0.5m (Figure 5.5d), where δ is the

distance between the planar effector and the plane on which the circle representing
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the center of the torus tube lies, the motion planner failed to find an escaping path

for the object in 10 trials (each trial took 0.01 ∼ 0.04 seconds on a 2.53GHz/4GB

machine). Therefore, we can empirically conclude that the object is caged if δ ≤

0.5m.

Third, we consider a scenario where two open-ended, half-cylindrical effectors

are caging an object on an edge-edge pair. In the experimental setup shown in

Figure 5.5e, the effectors are only allowed to translate along η, their common per-

pendicular. The motion planner could not find an escaping path for the object

when δ = 0.35m (Figure 5.4d), where δ is the distance between the two planes on

which the boundaries of the effectors lie, in 10 trials (each trial took 0.02 ∼ 0.04

seconds on a 2.53GHz/4GB machine). Therefore, we can empirically conclude that

the object is caged if δ ≤ 0.35m.

5.3 Analysis

This section presents an analysis showing how to get a grasping cage (recall Sec-

tion 3.3) from any of the cages discussed so far. We also discuss how to relax the

assumption of polyhedral objects.

Theorem 3. For the cages discussed in Sections 5.1 and 5.2, a grasping cage is

obtained if the two effectors are controlled such that the relative velocity is along η

and δ monotonically decreases until contact is established, which is assumed to be

frictionless, rigid, unilateral (see Figures 5.2b, 5.3c, 5.4c, and 5.5 for η and δ).
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Proof. We first show that δ is a grasping function (Rodriguez et al. 2012) for the

cages. In each cage, the configuration space of the two effectors can be represented

as M = SE(3)× SE(3); δ is a semi-algebraic scalar function δ :M→ R invariant

with respect to the rigid transformations of the effectors as a whole in that it is the

distance between the effectors. Furthermore, the preimages of δ do not cage the

object below (above) a certain value m (M) such that m < M , for example, m = 0

and M = h in Figure 5.3c. Then δ is a grasping function according to Rodriguez

et al. (2012).

In addition, the cages are δ-squeezing cages (Section 3.1) in that the object

remains caged even if δ decreases. Then, there exists a path in M that leads the

effectors into a configuration that can realize a grasping cage. Furthermore, in terms

of the one-dimensional set representing the relative configuration space of the two

effectors, δ can be considered as a convex, that is, linear, function. Then, by the

result of Rodriguez et al. (2012), we get to a grasping cage only by moving the

effectors such that δ monotonically decreases.

Rodriguez et al. (2012) discovered that the role of grasping functions in grasping

is analogous to that of Lyapunov functions in stability analysis. Specifically, Theo-

rem 3 shows that an object caged by any of our cages can be stabilized by simply

moving the effectors closer to each other by relative translation. A translation that

monotonically decreases δ in the cages will be referred to as a squeezing motion in

the remaining discussion. During a squeezing motion, we may add more contacts
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to further secure the grasp.

Remark : The three types of cages, each of which makes use of a vertex-vertex,

a vertex-face, or an edge-edge pair, can actually be applied to a wider range of

objects in addition to polyhedra. Essentially, if the polyhedron model of an object

is geometrically conservative such that the vertices, edges, and faces of the model are

inscribed in the actual object geometry, then caging the polyhedron guarantees that

the actual object is also caged. The stability of squeezing motions is also guaranteed

by the conservativeness. This observation implies that the sufficiency of our caging

conditions allows us to address errors/uncertainties in sensing and control relating

to grasp acquisition. Note, however, that if the polyhedron approximation is too

conservative, the cage might intersect the actual object geometry.
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Chapter 6

Synthesizing Grasps and Cages

In this chapter, we present an algorithm for finding element pairs/triples for the

immobilizing grasps and cages discussed in the previous chapters.

Our pseudocode is presented in Algorithm 1. Given the model of an object,

the output of the algorithm specifies where to place effectors in order to obtain

the immobilizing grasps/cages. The following paragraphs elaborate each line of the

algorithm.

Algorithm 1 Finding element pairs/triples for immobilizing/caging

Input: Object model: a polygonal mesh.
Output: Element pairs and triples labeled with instructions on placing effectors.
1: Compute the convex hull of the mesh.
2: For the convex hull, search for element triples (pairs) for the grasps of Sec-

tions 4.1 and 4.2 (Section 4.3).
3: Append instructions on placing effectors to each element pair or triple.

Line 1: We first compute the convex hull of the object model. The convex hull

is essentially our object in the algorithm by considering that the vertices, edges, and
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faces lying on the convex hull suffice to guarantee the completeness of our grasps

and cages (see Theorems 1, 2 and Corollary 1). It takes O(n log n) expected time

to compute the convex hull of a given polyhedron, where n is the number of the

vertices (de Berg et al. 2000).

Line 2: We then compute the antipodal pairs of the convex hull that are vertex-

vertex (for the grasps of Section 4.1), vertex-face (for the grasps of Section 4.2),

and edge-edge pairs (for the grasps of Section 4.3). Given a polyhedron with n

vertices, its antipodal pairs can be computed in O(n2) time by applying a technique

introduced by Brown (1979). Among them, choose the ones that admit supporting

planes as illustrated in Figures 4.1a, 4.2a, and 4.3a; it takes O(1) time to see if

each pair satisfies the condition. For each vertex-vertex pair, we search for another

vertex that is the most distant from the line of the two vertices (see the proof of

Theorem 1); as a result, the pair is augmented into a triple of the three vertices in

O(n) time. For each vertex-face pair, we search for the edge with the least slope

with respect to the face, among the ones incident to the vertex (recall Figure 4.2a);

as a result, the pair is augmented into a triple of the vertex, edge, and face in O(n)

time.

Line 3: Finally, each element pair or triple from Line 2 is labeled with instruc-

tions on how to place effectors. First, the label shows if the constituent elements are

real (lying on the original mesh) or virtual (lying only on the convex hull). Sec-

ond, the label shows the positions and orientations at which effectors should aim.
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For a vertex-vertex-vertex triple, we specify the coordinates of the vertices and

the inward-pointing normals of the three supporting planes. For a vertex-edge-face

triple, for example, P , PS, and �QRST in Figure 4.2a, we specify the coordinates

of P , the midpoint of PS, and the foot of perpendicular from P to �QRST ; the

inward-pointing normals of the two supporting planes; and the normal vector to

PS that directly points to ξ. For an edge-edge pair, for example, PQ and RS in

Figure 4.3a, we specify the coordinates of the two intersections between ξ and the

two edges, along with the inward-pointing normals of the two supporting planes.

Figure 6.1 shows such a label for an edge-edge pair. The labeling can be done in

O(1) time for each pair or triple.

P

A
nA

nB

Q

R

SB

ξ edge PQ :
is real = TRUE
position = A
orientation = nA

edge RS :
is real = TRUE
position = B
orientation = nB

Figure 6.1: The label for the edge-edge pair, (PQ,RS).

Figure 6.2a shows an example object; Figures 6.2b, 6.2c, and 6.2d show some

element pairs found by running the algorithm. The convex hull of the rock model

has 162 vertices, 480 edges, and 320 faces; it took 0.02 seconds to find 21 vertex-

vertex, 9 vertex-face, and 18 edge-edge pairs with our C++ implemention running

on a 2.53GHz/4GB machine. The vertex-vertex and vertex-face pairs (Figures 6.2b

and 6.2c) can be augmented into the element triples for immobilizing grasps as
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explained in Line 2.

(a) (b) (c) (d)

Figure 6.2: (a) A polyhedral rock model with 1,000 faces (courtesy: Malcolm Lam-
bert, Intresto Pty Ltd.). (b), (c), and (d) respectively show a vertex-vertex pair,
a vertex-face pair, and an edge-edge pair found by running our algorithm. The
reference frames are positioned and oriented such that the origin is at the contact
position and the z-axis is along the contact normal, according to the label of each
element pair.

A given object model can be immobilized by making contacts with any of the

resultant element pairs or triples: we contact target elements with curved effectors,

whose curvature is sufficiently large, positioned and oriented as the label specifies.

For caging purposes, we do not have to search for the third element in Line 2.

Furthermore, effectors do not necessarily have to be controlled to make contacts

with their target elements: the target positions for a pair of effectors caging an

object can be receded from the positions specified in the label as long as their

distance δ remains less than δ∗, the largest acceptable value of δ for the cage to be

valid, along the line of the inward-pointing normals. Note, in fact, that the target

positions can be receded even farther because the caging conditions are sufficient.

Remark : Input meshes to Algorithm 1 do not have to be closed, that is, home-

omorphic to a closed manifold (compact manifold without boundary), because the

computations do not depend on the closedness. This implies that the algorithm
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can be applied to object models that are imperfectly perceived due to, for example,

visual occlusion.

Because all the elements found by Algorithm 1 (possibly except for the edge of

a vertex-edge-face triple) are on the convex hull, that is, the outer frontier of the

object, some of them can be virtual. An effector for a virtual edge or face should

be large enough to contact all the vertices delimiting the virtual element. If it were

not for an effector with a sufficiently large surface for a given virtual element, we

would instead need to make contact with a smaller real element in the interior of

the convex hull. Then, we may forgo computing the convex hull and proceed with

the original mesh although it can take more time and the returned elements may

be less easier to access in case they are in the interior of the convex hull.
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Chapter 7

Extending Our Theory

This chapter discusses how to extend the collection of grasps/cages discussed in

Chapters 4 and 5: more types of grasps/cages can be added by employing other

types of antipodal pairs. We also discuss grasping and caging two-dimensional

objects with curved effectors on the plane.

(a)

x

y

z

ξ

O

A

Ba
b

(b)

A

ξ1

ξ2

ξ3

B

Q

R

S

T

O

(c)

O

ξ1

ξ2

ξ3

Figure 7.1: (a) An immobilizing grasp at an antipodal vertex-edge pair with the
cone- and V-shaped effectors. The vertex, O, is the origin of the reference frame
whose x-axis is parallel to the edge AB and y-axis is collinear to ξ. (b) An im-
mobilizing grasp at an antipodal edge-face pair. (c) An immobilizing grasp at an
antipodal face-face pair.

We first show that it is possible to immobilize a polyhedron with one point and
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one line contact made by curved effectors, which are frictionless, rigid, unilateral.

See Figure 7.1a. O and AB are a vertex-edge pair of the given polyhedron where

a point and a line contact can be made with a pair of parallel planes that are

perpendicular to ξ, the line connecting the vertex and its foot of perpendicular to

the edge (the foot of perpendicular is in the interior of the edge). The inward-

pointing contact normal at the vertex points toward the edge and vice versa. With

respect to the reference frame whose origin is O, the three unit contact wrenches

(the red arrows) are:

(s1, s01) = (0,−1, 0, 0, 0, 0)

(s2, s02) = (0, 1, 0, 0, 0, b)

(s3, s03) = (0, 1, 0, 0, 0,−a)

For a differential twist (t, t0) = (t1, t2, t3, t4, t5, t6) to be consistent with the unit

contact wrenches, each of the reciprocal products of the twist and the unit contact

wrenches must be zero:

−t5 = 0

t5 + bt3 = 0

t5 − at3 = 0

Then, the solutions are of the form:

(t, t0) = (t1, t2, 0, t4, 0, t6)
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because t3 and t5 must be zero. If O is being contacted by the apex of a cone-shaped

effector, as can be seen in Figure 7.1a, the velocity of O cannot have nonzero x-

and z-components with respect to the reference frame; otherwise, O will penetrate

the effector. In other words, t4 and t6 can also be made zero; then, the solutions

must actually be of the form:

(t, t0) = (t1, t2, 0, 0, 0, 0)

This is a zero-pitch screw (pure rotation) where the first three components give

the direction of the rotation axis, which should pass through O. Such rotation

instantaneously moves AB in a direction perpendicular to the plane of O, A, and

B, but can completely be restricted by contacting AB with a V-shaped effector, as

can be seen in Figure 7.1a. The polyhedron is then immobilized with the point and

line contacts on the vertex-edge pair; at the same time, the two effectors are also

forming a cage, with their distance along ξ as a grasping function similarly to the

previous two-effector cages.

We additionally show that it is possible to immobilize a polyhedron with one

planar and two point contacts made by curved effectors, which are frictionless,

rigid, unilateral. See Figure 7.1b. Consider an edge-face pair that determines the

width of the convex hull of the given polyhedron, denoted as AB and �QRST . At

each vertex of the edge, consider a set of unit contact wrenches, each of which is

perpendicular to one of the faces containing the vertex and points toward the interior

of the polyhedron; then each of A and B has three such unit contact wrenches
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because there are three faces meeting at each vertex. Also consider a set of unit

contact wrenches at the face, each of which is perpendicular to the face toward the

interior at one vertex delimiting the face; then �QRST has four such unit contact

wrenches at Q, R, S, and T . The grasp of one planar and two point contacts shown

in Figure 7.1b can always be made in equilibrium, by considering that the edge-

face pair even admits a clamp. To be more specific, consider the following linear

feasibility program

Find {ci} such that
∑

ciŵi = 0, ci > 0, and
∑

ci = 1 (7.0.1)

where {ŵi} is the collection of all the unit contact wrenches. The grasp can be

made in equilibrium by configuring the effectors according to a solution to the

program: the terms of
∑
ciŵi can be divided into three groups affiliated with the

two vertices and face; each effector should be configured to exert the sum of one

group of the wrenches, which is the positive linear combination of the unit contact

wrenches at the element the effector is contacting. For example, in Figure 7.1b, the

two hemispherical effectors are configured such that their axes of symmetry, ξ1 and

ξ2, pass through A and B, the points of contact, and intersect at O, whose foot of

perpendicular to the plane of �QRST lies on the area of the planar contact. Under

the equilibrium, the object can only move on the plane of the planar contact. If

the two curved effectors on the two vertices are sufficiently concave, the object can

in fact be immobilized because any finite motion of AB results in penetrating the

effectors. This idea can also be applied to immobilizing a polyhedral object on a
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face-face antipodal pair (Figure 7.1c).

The objects in Figures 7.1b and 7.1c are also caged by the three effectors. One

approach to establishing a grasping function here is to assume a control strategy

that moves the three effectors as a three-fingered gripper system with one parameter

that controls the opening of the gripper, as also discussed by Davidson and Blake

(1998a) for three point fingers. Let δ denote the opening parameter of the gripper:

as δ increases, the three effectors shown in Figures 7.1b and 7.1c monotonically

move away from O by translation along the axes (ξ1, ξ2, and ξ3). In each of the

grasps shown in Figures 7.1b and 7.1c, all the instantaneous motions of the object

penetrate the effectors, which in turn guarantees that the configuration of the object

is completely isolated from its free space (Rimon and Burdick 1998a). Then it can

be seen that the opening parameter δ is a grasping function similarly to Theorem 3.

Constructing caging conditions for three effectors may be harder than two-effector

cages; for point effectors, refer to Davidson and Blake (1998a).

(a) (b) (c)

Figure 7.2: The polygon is immobilized by (a) two point contacts at the vertex-
vertex pair determining the diameter (b) a point and a line contact at the vertex-
edge pair determining the width. (c) The polygon is caged by two point effectors.
If the effectors were contacting the concave vertices, the polygon would be immo-
bilized.
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Two-dimensional grasping : Our approach can also be applied to grasping

two-dimensional objects with effectors on the plane, which can be represented as

one-dimensional manifolds with boundary. Every polygonal object can be immobi-

lized on the plane by two curved effectors of appropriately chosen dimensions. In

Figure 7.2a, the two curved effectors are immobilizing the object by two point con-

tacts; in Figure 7.2b, the object is immobilized by a point and a line contact. The

two types of grasps are complete: every polygon can be immobilized by two point

contacts made by appropriately concave effectors on a pair of vertices determin-

ing the diameter (the maximum distance between two vertices); every polyhedron

whose vertices are in general position such that there is no pair of two parallel

lines, where each line is determined by a distinct collection of two vertices, can be

immobilized by a point and a line contact made by appropriately concave effectors

on a vertex-edge pair determining the width.

As a corollary, every polygon can be caged by two curved effectors: the effectors

in Figures 7.2a and 7.2b are also caging the polygon. Sufficient conditions for caging

can be derived by applying the results of Sections 5.1 and 5.2 (see the similarity

between Figure 5.2 and Figure 7.2a (or Figure 5.3 and Figure 7.2b)).

We can also add more types of grasps and cages; for example, as shown in

Figure 7.2c, two point effectors suffice to immobilize/cage some concave polygons

as discussed by Vahedi and van der Stappen (2008a).
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Chapter 8

A Modular Approach to

Whole-Arm Grasping

In this chapter, we address how our theory can be applied to a scenario where

two collaborating manipulator arms, which can be the arm-torso chain of a hu-

manoid robot or two collaborating industrial robot arms, are grasping objects with

the curved effectors as their end-effectors. The stability of the two-effector cages

discussed in Chapter 5 allows us to add more contacts not necessarily from the

end-effectors; the scenario may then be called whole-arm grasping as can be seen

in Figure 8.1. Whole-arm grasping can particularly be effective for grasping large,

bulky objects such as rocks, with relatively small end-effectors. Without fabricat-

ing dedicated end-effectors, the curved shapes may be emulated in some ways, for

example, cupping the fingers of a multi-fingered end-effector.
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Figure 8.1: Two whole-arm grasps by the PR2.

Section 8.1 presents our algorithm for whole-arm grasping. Section 8.2 discusses

the implementation of whole-arm grasping on a modular robot system. Section 8.3

presents a set of experiments.

8.1 Approach and Algorithm

Our approach to whole-arm grasping is composed of two phases: preshaping and

squeezing. In the preshaping phase, a robot cages an object with its two curved

end-effectors as discussed in Chapter 5. In the squeezing phase, the robot performs

a squeezing motion for the end-effectors. During the squeezing motion, not only the

end-effectors but also other links can be made contact the object without adversely

affecting the stability of the object if we assume that the robot is position controlled

without compliance, in addition to the assumption of frictionless, rigid, unilateral

contact:

Corollary 2. Suppose that the end-effectors of a robot, which is position controlled

without compliance, are caging an object, as discussed in Chapter 5. A grasping

cage is obtained if the robot is controlled such that the end-effectors are performing a
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squeezing motion until contact, which is assumed to be frictionless, rigid, unilateral,

is established.

Proof. The same argument as the proof of Theorem 3 can also be applied here by

regarding (1)M as the configuration space of the robot itself and (2) δ, the distance

between the two end-effectors, as the grasping function again.

The corollary shows that as long as the end-effectors are squeezing, the final state is

guaranteed to be a stable equilibrium grasp that can be composed of contacts from

the whole body of the robot. Our approach can facilitate planning and control for

grasping: in the preshaping phase, the robot can aim at any of the cages, whose

collection is not a set of measure zero in the configuration space; the squeezing

phase can be performed in a blind manner, only by position control, without direct

feedback of the object pose. In fact, the two-phase approach has some similarities

with multi-fingered grasping (Miller et al. 2003): approaching an object followed by

“closing” the hand.

Our pseudocode is presented in Algorithm 2. The algorithm takes as input an

initial configuration of the robot ci ∈MR, whereMR is the configuration space of

the robot; it returns a reference trajectory for the robot to follow, γ(s) : [0, 1] →

MR, where s is a non-dimensional parameter increasing with time. The following

paragraphs elaborate each line of the algorithm.

Line 1: We first construct cp, cs ∈ MR that are supposed to describe config-

urations at which preshaping and squeezing should aim, respectively (Figure 8.2).
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Algorithm 2 Motion planning for whole-arm grasping

Input: Robot’s initial configuration, ci ∈MR

Output: Reference trajectory for the robot, γ(s) : [0, 1]→MR

1: Construct two configurations: cp ∈MR for preshaping, cs ∈MR for squeezing.
2: Plan a trajectory γip from ci to cp for the preshaping.
3: Plan a trajectory γps from cp to cs for the squeezing (possibly in parallel with

Line 2).
4: Concatenate γip and γps into γ, the resultant trajectory from ci to cs via cp.

cp

cs

Figure 8.2: At the configuration cp (in grey), the curved end-effectors of the arm-
chain are caging the object. The wireframe shows the configurations of the end-
effectors at cs, after the squeezing motion.

They can thus be interpreted as desirable waypoints for whole-arm grasping. cp

is constructed such that the two end-effectors cage the object in a kinematically

feasible manner. cs is constructed such that the robot deliberately intersects the

object. These tasks are essentially inverse kinematics problems.

Line 2: We plan for a trajectory from ci to cp. During the motion, we do not

want the robot to interact with the object; thus any collisions should be avoided.

This can be considered as an ordinary path planning problem where off-the-shelf al-

gorithms are available. Ultimately, some manipulations such as quasi-static pushing

(Mason 2001) may be needed to reach cp.

Line 3: We now plan for a trajectory from cp to cs realizing a squeezing motion.

The geometry of the object can be ignored; however, the robot should be treated
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as a closed kinematic chain in the sense that the two end-effectors are only allowed

to approach to each other by relative translation. This is generally a hard problem

due to the kinematic closure, but can be solved efficiently for planar chains as will

be discussed in Section 8.2.

It is sufficient to control the robot to follow the resultant trajectory in a quasi-

static manner, by considering that only does the relative configuration of the object

and robot matter in caging and squeezing. In fact, the motion of the robot is

necessarily interrupted on the way because it is planned to “collide” with the object.

Under the assumption of frictionless, rigid, unilateral contact, the configuration

where the robot, which is position controlled without compliance, stops moving is

an acceptable grasp that can realize a caged, equilibrium grasp by Corollary 2.

Remark : Algorithm 2 can also be applied to grasping with frictional, compliant

contact as explained in the following paragraphs.

First, with friction, we can actually have more candidates for an acceptable

grasp. When friction is present, the robot might get stuck on the way during a

squeezing motion because nonzero friction can cause jamming and wedging (Ma-

son 2001). However, both phenomena imply force-closure, which in turn implies

involved wrenches are in equilibrium. Thus a jammed or wedged configuration can

also be an acceptable grasp. In conclusion, friction helps improve the stability of a

grasp, as also discussed by Rimon and Burdick (1998a).

Second, nonrigid objects can also be grasped stably with a squeezing motion. If
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we assume a rigid robot moving with a stiff position control servo loop, a nonrigid

object will be deformed during a squeezing motion by contact forces exerted by the

robot. As long as the caging conditions are satisfied with the deformed geometry,

the object will not be lost during the squeezing motion. Howard and Kumar (1996)

presented criteria to determine the stability of grasps based on local curvature

properties and applied forces. Our grasps have an additional advantage that they

are also cages; therefore, information on the relative configuration between the robot

and object is sufficient to investigate the stability of a squeezing motion. Previous

works address the stability of grasped objects in some special cases. For example,

if an object is immobilized, the object remains locally dynamically stable under

Gesley and Hertzian stiffness models (Rimon and Burdick 1998b). A jammed or

wedged state implies force-closure, which can also be made stable (Nguyen 1989).

The stability of a nonrigid object under a squeezing motion can be verified

by online or offline computation. For online computation, we need to keep track

of points of interest (for example, the vertices P and Q in Figure 5.1a) by, for

example, visual deformation servoing (Navarro-Alarcon et al. 2014), and verify the

corresponding caging conditions. For offline catalog work, we need to consider

how to map the deformation of a wide variety of nonrigid objects by, for example,

measuring contact forces or joint efforts. A squeezing motion should terminate as

soon as the stability of the object is jeopardized.
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8.2 Implementing Whole-Arm Grasping

We here present hardware/software that implements our modular approach to

whole-arm grasping.

8.2.1 Hardware

Our robot is assembled with CKbot modules5, our chain style modular robot system.

Each CKbot module can be used as an one degree of freedom swivel or elbow joint

(Figure 8.3a). Figure 8.3b shows three subassemblies: one spine and two (left and

right) arms. The spine, composed of two swivel joints and one elbow joint, provides

all the three rotational degrees of freedom by realizing z-y-z Euler angles. The arms

are planar manipulators composed only of elbow joints assembled such that their

axes of rotation are parallel. Although Figure 8.3b shows arms composed of three

modules, the modular architecture allows us to assemble more links easily.

(a) (b) (c) (d)

Figure 8.3: (a) Two types of CKbot modules providing one rotational degree of
freedom. The left one (swivel joint) provides continuous rotation; the right one
(elbow joint) is limited to 180 degrees rotation. (b) Two 3-d.o.f. planar arms and
a 3-d.o.f. spine between them. (c) A finished two-armed robot. (d) 3D printed
end-effectors that can be docked to the robot.

5http://www.modlabupenn.org/ckbot
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The two arms are attached to the top of the spine such that the whole armchain

is again a planar open kinematic chain. The planar architecture suffices to realize

our immobilizing grasps, discussed in Chapter 4, for the following reason. For each

point, line, or planar contact, consider the net wrench that is the combination of all

contact wrenches exerted at the contact. The three (or two) net wrenches in any

of our immobilizing grasps should be coplanar (from a planar pencil); otherwise,

it is impossible to even guarantee equilibrium, which is necessary for immobility.

Our cages and squeezing motions discussed in Chapter 5 can also be realized by the

planar architecture because the aligned effectors are only required to approach to

each other. In Figure 8.3c, the finished two-armed robot is shown. Figure 8.3d shows

3D printed curved end-effectors compatible with CKbot. The modular architecture

allows us to quickly adapt to the sizes and shapes of a wide variety of objects by

attaching more arm links or exchanging end-effectors.

8.2.2 Software

CKbot

Controllers

robot state

trajectory
command

move group

for CKbot

GUI feedback

highlevel
command

User Interface
and Methods:
synthesizeGrasp()

preshape()

squeeze()

Figure 8.4: Software architecture.

Our software implementing whole-arm grasping for the hardware platform is

organized as ROS6 packages written in C++ and Python. Figure 8.4 shows the
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architecture of our software. The move group node in the center, organized as

MoveIt!7 packages, works as an integrator between the hardware and a human

user. The software provides a user with high-level methods for grasp synthesis

(Algorithm 1) and motion planning for preshaping and squeezing (Algorithm 2);

the robot is then position controlled to follow the resultant reference trajectory. In

the following paragraphs, we further explain how Algorithm 2 is implemented for

our robot with the planar armchain.

First, the inverse kinematics solver for Line 1 of Algorithm 2 is based on the

well-studied closed-form solutions of the inverse kinematics of a planar 3R manip-

ulator (planar manipulator with three revolute joints); see Figure 8.5a. For an arm

with three CKbot modules (exactly a planar 3R manipulator), there can be two

solutions commonly known as the “elbow-up” and “elbow-down” configurations.

The method can also be applied to solving the inverse kinematics of an arm with n

CKbot modules, where n > 3, by converting the complete problem into appropriate

subproblems that the solver can address.

Second, the squeezing in Line 3 of Algorithm 2 is based on energy-based motion

planning. An algorithm presented by Iben et al. (2009) generates an interpolation

sequence without any self-intersections between two simple polygons. The algorithm

also allows us to monotonically change link lengths; this allows us to implement

squeezing motions. The resultant motion basically reconfigures the two polygons

6http://www.ros.org

7http://moveit.ros.org
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(a)

cp

cs

p1

p2
p3 p4

p5

p6

(b)

pj−1 pj

pj+1

Figure 8.5: (a) The planar armchain is composed of two planar 3R manipulators
connected to the base (the longest link). At the configuration cp (in grey), the end-
effectors are caging the object. cs shows a target configuration which a squeezing
motion can aim at. (b) Around each link pxpy of the planar 2R manipulator, two
level sets of d(x,pxpy) are shown. Such a level set allows us to model the actual
collision hull of a link that may not be a line segment.

“towards each other” according to a metric defined between a pair of polygons, for

example, the `2-norm on the vector of vertex coordinates. Whenever the direct

reconfiguration increases the value of an energy function such as

E =
∑ 1

d(pi,pjpj+1)2
(8.2.1)

where the denominator can be the squared shortest distance between joint pi and

link pjpj+1 connecting the joints pj and pj+1 (i 6= j, j + 1) (see Figure 8.5a for the

notation), we follow the downward gradient of E to avoid collisions. This energy-

based planning can be performed efficiently even for a hyper-redundant arm.

Remark : The energy-based motion planning algorithm explained in the previous

paragraph is applicable to line segment links without joint limits, that is, θi ∈

[−π, π] where θi is the angle of joint pi (θi = 0 when the two incident links are

collinear). We further discuss how to adapt the algorithm so as to address joint

limits and link shapes that are not line segments.

First, given narrower joint ranges (θi ∈ [−`i, ui] where 0 < `i, ui < π for each θi),
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suppose that at a certain instant there are one or more joint angles close to their

limit, that is, θj ∈ [−`j,−`j + ε1] or θj ∈ [uj − ε2, uj] for some ε1, ε2 > 0, and j. If

the armchain is described as a concave polygon at that instant, we propose to apply

an expansive motion (Connelly et al. 2003) to unfolding all joints such that each θj

can return to the “safe” range, that is, θj ∈ [−`j + ε1, 0] or θj ∈ [0, uj − ε2]. During

an expansive motion for a closed chain, every joint is monotonically unfolded (|θi|

is decreasing for all i) until the chain is convexified. Such a motion always exists

as long as the chain is described as a simple, concave polygon and is computed by

convex optimization (Connelly et al. 2003). In case the armchain is described as a

convex polygon at the instant, there also exists such an angle-monotone motion to

bring the joint angles back to the safe range (Aichholzer et al. 2001).

Second, in order to address nonzero link volume, we use (d(pi,pjpj+1) − δj)
2

as the denominator of each term of E where δj is determined for each link pjpj+1

such that the collection of x’s on the level set d(x,pjpj+1)− δj = 0 can address the

collision hull of the link (Figure 8.5b). Note that two adjacent links overlap each

other around the joint connecting them; in practice, this issue can be addressed by

using, for example, offset links.

8.3 Experiments

A set of experiments were run to evaluate our hardware/software implementation

and its performance on the task of grasping objects. We first see how accurately
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our robot can position its end-effectors; we then proceed into grasping objects.

8.3.1 End-Effector Positioning

Positioning end-effectors is critical to successful grasping; thus, we first evaluated

the positioning accuracy of our hardware/software implementation. We assembled

a robot with two arms; each arm is composed of three link modules as already

shown in Figure 8.3c. We set up three target configurations for the robot such that

(1) the tips of the right and left arms are level at the same height (Experiment 1),

(2) the tip of the right arm is higher than that of the left arm (Experiment 2), and

(3) the tip of the right arm is lower than that of the left arm (Experiment 3). For

each target configuration, a total of 25 trials were conducted and we measured the

actual, final positions of the tip of the right arm using the Vicon motion capture

system8. Figure 8.6 illustrates the results; Table 8.1 enumerates the data points

measured. The average positioning error of the 75 trials was 3.73 centimeters.

In computer simulations, there were no errors in positioning end-effectors; thus,

the errors in the real experiments are mostly due to hardware such as tolerance,

mechanical play, motor backlash, or compliance. Obviously, the positioning errors

are not negligible by considering that each arm is appriximately 30 centimeters

long. The arm length of the robot can be compared with the arm length of infants

(the mean of the upper arm length of infants aged 3-5 months is 12.8 centimeters

8http://www.vicon.com
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(a)

x
y

z

(b) (c)

Figure 8.6: The figure illustrates the results of Experiments 1, 2, and 3. In (a), (b),
and (c), the simulated robot in the upper panel shows the target configuration for
Experiments 3, 1, and 2, respectively; the real robot was controlled to the targets
as shown in the lower panels. The ‘4’, ‘©’, and ‘�’ marks represent data points
showing the actual, final positions of the tip of the right arm in Experiments 3, 1,
and 2, respectively, with respect to the reference frame attached at the tip of the
right arm of the simulated robots (the red, green, and blue axes are the x-, y-, and
z-axis of the frame). In principle, the data points were expected to coincide with
the origin of the frame (see the ‘∗’ mark at the top of the graph).

(McDowell et al. 2008)); for comparison, it has been known that neonate infants

can position their hands within 1.5 centimeters from objects, which they touch and

occasionally grasp (Bower 1970).

8.3.2 Whole-Arm Grasping

The positioning experiments suggest the appropriate sizes of end-effectors for suc-

cessful grasping. Figure 8.7 shows the CAD models of our end-effectors fabricated
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x-, y-, z-error (mm) frequency x-, y-, z-error (mm) frequency x-, y-, z-error (mm) frequency

(-17, -16, -24) 6 (-19, -32, -20) 19 (-19, -3, -31) 19

(-17, -15, -24) 3 (-19, -32, -21) 2 (-19, -4, -30) 3

(-18, -17, -23) 3 (-19, -31, -19) 1 (-19, -4, -31) 2

(-17, -16, -23) 3 (-19, -32, -19) 1 (-19, -3, -30) 1

(-17, -15, -23) 2 (-19, -31, -20) 1

(-17, -16, -25) 2 (-20, -32, -21) 1

(-18, -16, -23) 2

(-17, -17, -22) 1

(-18, -18, -23) 1

(-17, -17, -23) 1

(-18, -17, -24) 1

Table 8.1: The results of Experiments 1, 2, and 3 are summarized in the first,
second, and third column, respectively. Each entry of the column shows a triple of
numbers that represent x-, y-, and z-directional positioning errors, with respect to
the reference frame shown in Figure 8.6, measured in millimeters with the number
of times it appeared.

for grasping experiments. The dimensions of the effectors were determined to ad-

dress the x- and z-directional positioning errors (recall Figure 8.6 for the axes and

Table 8.1 for the error data). For example, for the torus-shaped effector in Fig-

ure 8.7a, the inner radius of the torus was determined to be 46 millimeters, larger

than the maximum positioning error on the xz-plane from Experiments 1, 2, and 3;

for the cylindrical effector in Figure 8.7b, the inner radius of the cylinder was also

determined to be 46 millimeters for the same reason. The end-effectors are supposed

to be squeezed along the y-axis; thus, the y-directional errors can be addressed by

our approach that takes advantage of squeezing.

We ran three sets of experiments to evaluate the capability of our system: grasp-

ing an object using its vertex-vertex pair (Experiment 4), vertex-face pair (Experi-

ment 5), and edge-edge pair (Experiment 6). In each set of experiment, a total of 25
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(a) (b)

Figure 8.7: (a) A torus-shaped end-effector. (b) A cylindrical end-effector; in the
model, material usage was minimized to reduce weight and cost. The units are in
millimeters.

trials were conducted and we verified if the robot could grasp an object, perceived

by the Vicon system, via preshaping and squeezing without any position calibra-

tion. The results are summarized in Table 8.2. The snapshots in Figure 8.8 show

grasp type successes/trials
Experiment 4: vertex-vertex grasping 22/25
Experiment 5: vertex-face grasping 23/25
Experiment 6: edge-edge grasping 25/25

Table 8.2: The results of Experiments 4, 5, and 6.

the robot grasping objects via preshaping and squeezing. The robot was controlled

until joint torque saturation occurred during the squeezing. In the failed trials, the

two arms were moving in an asynchronized manner (possibly due to an unexpected

communication error) or the end-effectors were dynamically interacting with the

object (or the support under the object).

Finally, Table 8.3 shows the time frame to perform preshaping and squeezing,
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(a)

(b)

(c)

Figure 8.8: (a) The robot is grasping the box with the two torus-shaped end-
effectors that can cage and grasp the vertex-vertex pair. (b) The robot is grasping
the tetrahedral object also with the two torus-shaped end-effectors that can cage
and grasp the vertex-face pair; one of the torus-shaped effectors was used to contact
the face. (c) The robot is grasping the tetrahedral object with the two cylindrical
end-effectors that can cage and grasp the edge-edge pair.

for 25 trials. In the table, the planning times show how long it takes to run the

respective software components (preshape() or squeeze(), recall Figure 8.4) on a

2.53GHz/4GB machine. The executing times show how long it takes for the robot

to execute the computed plans. It can be seen that if preshaping and squeezing are

planned in a parallel manner, as mentioned in Algorithm 2, they may be executed

in a seamless manner without interruption because the time to preshape can be

compared with the time to plan for squeezing. The methods preshape() and

squeeze() were implemented in Python; they can be made run faster by using

low-level programming languages.
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Preshaping Squeezing
planning time executing time planning time

min max min max min max
0.21s 0.41s 4.7s 6.4s 1.72s 6.41s

Table 8.3: The time frame to perform the two phases of whole-arm grasping.
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Part III

Assembling with Modular Robots
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Chapter 9

Approach to Assembling Planar

Structures with Rectangular

Modules

Part III of this thesis is concerned with assembly planning: in which order parts,

that is, robots, can be assembled into a target structure without getting stuck.

In this chapter, we discuss our approach to assembly planning for constructing

planar target structures with rectangular modular units. Section 9.1 introduces

our hardware framework. Section 9.2 formally defines target structures we will aim

at. Section 9.3 describes our approach to assembling a given target structure. The

following two chapters, Chapters 10 and 11, present two algorithms elaborating the

approach.
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9.1 Hardware Framework

In this section, we briefly introduce our hardware framework that motivated the

development of the algorithms to be presented. For full details on the hardware

design, refer to O’Hara et al. (2014).

(a)

(b)

(c)

Figure 9.1: (a) The left panel shows two robots floating on water in a swimming
pool. The right panel shows the bottom of the robot having four waterjet nozzles
at the four corners. (b) Robot “He” is docking to another robot (from left to right).
(c) Lego bricks can only dock on top of (or under) other bricks, in the same way
that our robots dock.
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9.1.1 Shape and Locomotion

Our robots are mobile robotic boats having the same rectangular footprint on water.

The left panel of Figure 9.1a shows two robots floating on water. The rectangular

shape can fill the plane without gaps; considering the shape also comes from the idea

of using 20ft-long ISO shipping containers, whose footprint on water is rectangular,

to build large floating platforms9 that can be used for the formation of offshore

bases for disaster response, ad hoc landing strips, or refueling depots.

The right panel of Figure 9.1a shows the bottom face of a robot that is outfitted

with a set of four waterjet nozzles that enable holonomic locomotion on the water

surface. In other words, the rectangle representing the footprint of a robot is capable

of holonomic motion on the plane: the three (two translational and one rotational)

degrees of freedom on the plane can individually be controlled.

9.1.2 Docking Capability

Each robot is outfitted with a docking mechanism; it imposes a constraint that

robots are assembled in a regular pattern that locally looks like a common brick

wall as shown in Figure 1.2b. The pattern lends itself to docking mechanisms that

require modules to approach “broad side,” which in turn allows for more robust

docking. A full-scale prototype with ISO shipping containers developed by QinetiQ

North America, Inc. has established that this arrangement maximizes capture

9DARPA Tactically Expandable Maritime Platform
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probability.10 In addition, the pattern is structurally sound (National Concrete

Masonry Association 2004).

(a) (b)

i

j k

`

d1 d2

a

Figure 9.2: (a) The plane is tessellated with congruent rectangles to form the com-
mon brick wall pattern, where d1 = d2. Each of the red rhombi represents the
lattice unit of the pattern. In the assembled structure of robots, each robot has the
potential of having six adjacent robots in its one-hop neighborhood (imagine a robot
occupying the site a and its potential six neighbors inside the orange polygon). (b)
Each of the lattice units involves four rectangular areas, denoted as i, j, k, and `
here, each of which can accommodate a robot.

Specifically, two robots dock using a male to female connection mechanism: a

hook coming from one robot engages with a cable loop from the other robot. Two

robots can actually dock to each other only along their long sides (Figure 9.1b);

they cannot dock along their short sides. In fact, a robot does not need to be

mechanically connected to all of the neighboring robots in order to form the brick

wall pattern. Consider a plane tessellated with congruent rectangles forming the

pattern as shown in Figure 9.2a. According to Schattschneider (1978), we can find

the lattice unit, the smallest area of the pattern repeated in translation as also

shown in Figure 9.2a. Each of the lattice units involves four rectangular areas

10Communication with QinetiQ North America, Inc.
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(Figure 9.2b). In order for the four robots occupying the areas to form a rigid

structure, it is sufficient to mechanically connect them only along their long sides.

In other words, even if robots in areas j and k in Figure 9.2b are not mechanically

connected to each other, the four robots can form a rigid structure as long as robot

pairs occupying i and j, i and k, ` and j, and ` and k are mechanically connected

to each other. Because the lattice unit is repeated and two adjacent lattice units

share two rectangles, it is possible for robots to even rigidly fill the plane with such

a docking mechanism. Lego11 bricks also dock in the same manner (Figure 9.1c).

Remark : Note that we cannot exactly construct some structures such as a sin-

gle row of robots connected end-to-end along their short sides, with the docking

mechanism. But the arrangement can simplify mechanical design guaranteeing a

space-filling capability.

9.2 Target Structure

For planning purposes, our robotic boats are just regarded as congruent rectangles

moving on the plane. The size and aspect ratio of the rectangle do not matter: our

approach does not need to be parametrized by them. A target structure that we

want to assemble can be visualized as the collection of rectangular sites that locally

looks like the common brick wall pattern without a gap between two adjacent sites

11http://www.lego.com
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(Figure 9.3a); each site is the footprint of a single robot in the finally assembled

structure. Target structures are assumed to be connected and free from narrow

corridors; the following paragraphs elaborate the two terms.

Given a target structure, we can construct an undirected graph C = (V,E)

that represents the mechanical connectivity among robots occupying the member

sites (Figure 9.3b). V is the collection of the sites of the target structure and E

consists of unordered pairs of two sites in contact that accommodate two robots

mechanically docked. C is a plane graph, which is drawn in such a way that no two

edges meet in a point other than a common end; the maximum degree of C is 4. If

C is connected, we say that the target structure is connected. If there are multiple

connected components, they can be assembled individually.

We also make use of C to define a narrow corridor; see Figure 9.3c. Here, C

is assumed to be embedded on the corresponding target structure such that the

vertices are the centroids of the sites and the edges are line segments. Consider a

rhombus that can contain nine lattice units (recall Figure 9.2): the side length of the

rhombus is three times as large as the edge of the lattice unit. For each face of C,

let the rhombus translate along the frontier of the face without losing contact with

the frontier and intersecting the exterior of the frontier. If the rhombus can reach

every point on the frontier, we say that the face is free from narrow corridors. Note

that the smallest faces (such as the one colored blue in Figure 9.3c) are exempt

from the test because the face is in fact not an empty space. The structure of
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(a)

(b)

(c)

C

a

b

δ

f1

f2

Figure 9.3: (a) A target structure. Each rectangle represents a site, to be occupied
by a robot. (b) Graph C represents the mechanical connectivity of the finally
assembled structure. (c) The faces of C, f1 and f2 (except for the smallest faces),
are free from narrow corridors.
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Figure 9.3a is thus free from narrow corridors; a robot (see a in Figure 9.3c) can

navigate the corridors at least by omnidirectional translation, which is enabled by

the holonomic locomotion. We may need to consider a larger rhombus if wider

corridors are needed, for example, in case a robot moves in a nonholonomic manner

like robot b in Figure 9.3c, with a large turning radius. One way to admit corridors

that are narrower than the ones discussed here is to make robots smaller.

9.3 Approach

In order to assemble a target structure, one may consider incorporating multiple

subassemblies after preparing them independently; however, we are interested in

growing the structure as one connected component by adding one or multiple robots

individually to the structure. This allows us to sidestep possible hardware and

software complications in controlling and docking large subassemblies.

During assembly, we are particularly interested in guaranteeing easy accessibil-

ity. We want to avoid the scenarios shown in Figures 9.4a and 9.4b where the sites

to be occupied can only be accessed by passing through a gap only as large as a side

of a robot between two physical robots already assembled in the structure, where

an incoming robot can in practice get stuck due to wedging or jamming (Mason

2001). Thus, such scenarios may considerably slow down assembly possibly with

safety problems, if not impossible. The issues illustrated in Figures 9.4a and 9.4b

are obviously local scale problems; in addition, the issues can also occur at nonlocal
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scales spatially and temporally. For example, in Figure 9.4c, the robot has to pass

through the gap with insufficient clearance between a and b in order to occupy a site

not adjacent to a and b (spatial nonlocality); in Figure 9.4d, if we want to fill the

seven unoccupied sites, at least the last robot to fill the row has to pass through a

gap as large as its side (temporal nonlocality). Figures 9.4c and 9.4d thus illustrate

some examples of intermediate configurations that should also be avoided during

assembly.

(a)

a

b

(b)

a b

(c)

a
b

(d)

Figure 9.4: (a), (b) The gap between robots a and b can essentially block the
incoming robot. (c) The gap between a and b can affect assembly that happens at
a distance spatially. (d) If we want robots to occupy the seven open sites, at least
the last robot has to pass through a gap just as large as its side.

Our first algorithm to be presented in Chapter 10 is applied to target structures

without internal holes; for example, see the shape shown in Figure 10.1. The output

of the algorithm is a directed graph representing an assembly plan allowing us to

assemble a given target structure by stacking a row of robots on top of another

row already assembled, in a parallel manner. This idea can be compared to raster

scanning, a technique for generating an image by line-by-line construction.

Our second algorithm to be presented in Chapter 11 can be applied to target
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structures with internal holes; for example, see the shape shown in Figure 9.3. We

here apply “disassembly planning”: given a target structure that is assumed to be

occupied with robots, (1) we search for a robot that can be disassembled without

suffering from the accessibility issues illustrated in Figure 9.4; (2) then remove the

robot and update the structure; (3) and repeat. We get an assembly sequence

by inverting the disassembly sequence; we add one robot at a time and grow the

structure as one connected component.
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Chapter 10

Algorithm for Parallel Assembly

The algorithm we present in this chapter can be applied to assembling target struc-

tures without internal holes. The resultant plan can be executed in a parallel

manner. The algorithm enables correct assembly without the accessibility issues

illustrated in Figure 9.4. Sections 10.1 and 10.2 present the algorithm and in-

structions on applying the algorithm. Section 10.3 discusses the correctness of the

algorithm.

10.1 Algorithm

Our pseudocode is presented in Algorithm 3. We take advantage of many concepts

from graph theory (Cormen et al. 2001, Diestel 2000). The algorithm takes as input

an array containing a sequence of the sites of a target structure, denoted as T ; see

Figure 10.1 for the example target structure we use to explain the progress of the
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algorithm. The order of the sequence does not matter; each site is represented by

the coordinate of its centroid, which is simply referred to as the coordinate of the

site. The algorithm returns a graph GA, a directed acyclic graph constructed on

the member sites. A directed acyclic graph is widely used for modeling precedences

among tasks. Algorithm 3 can be made run in O(m) time, where m is the number

of the member sites, as will be explained in the following paragraphs elaborating

each line of the algorithm.
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Figure 10.1: A target structure T , which can be represented as a sequence of the
coordinates of the centroids (shown as the black dots) of the member sites, with
respect to the xy-frame that is oriented as the grid of the lattice units (Figure 9.2).
Although the order of the sequence does not matter, the site numbers are labeled
to help explain the progress of the algorithm.

Line 1: We begin with declaring a graph GA constructed on the sites of T ,

without any edges at this moment.

Line 2: We decompose T into the collections of consecutive sites, parallel to

the x-axis of the reference frame shown in Figure 10.1; each collection is referred to

as a cell. We then construct an undirected graph C ′ that represents the mechanical
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Algorithm 3 Assembly-Planning(T )

Input: Target structure T : a sequence of sites to be occupied, T = 〈s1, s2, · · · , sm〉.
Output: GA: a directed acyclic graph on the sites of T
1: Let GA = (T, ∅).
2: Decompose T into cells and construct C ′.
3: Designate one seed for each cell; turn C ′ into a rooted tree.
4: for each vertex of GA, si, do
5: Construct directed edges that leave si and enter its neighbors that belong to

the parent cell or are more proximal to the seed in the same cell.
6: end for
7: Return GA.
8: (option) Perform a topological sort of GA.

connectivity among the cells: two cells in contact are connected in C ′ if they are

mechanically connected in the finally assembled structure. Figure 10.2a illustrates

the procedure. All the sites of a cell have the same y-coordinate that is referred

to as the y-coordinate of the cell. C ′ is a minor of C, representing the mechanical

connectivity of the finally assembled structure (recall Figure 9.3). The cell decom-

position can be performed in O(m) time. C ′ can also be constructed in O(m) time:

for each site of a cell, there can be at most two other cells mechanically connected

to the cell by the site. Since T does not have any internal holes, C ′ is a tree; thus,

the number of the edges of C ′ is O(m).

Line 3: For each cell, we designate one site as the seed from which the cell

starts to grow. First, we arbitrarily pick any site and denote it as s; s is then the

seed of the cell it belongs to. Now C ′ can be turned into a rooted tree by letting

the cell be the root. For the remaining cells that are the non-root vertices of C ′, we

enforce the following rule to designate their seed:
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Figure 10.2: (a) The target structure shown in Figure 10.1 has been decomposed
into the cells in the left panel. The right panel shows C ′, representing the mechanical
connectivity among the cells. (b) The seeds of the cells are colored red, green, or
blue. C ′ can be turned into a tree rooted at the red vertex, representing the cell to
which site 11 belongs.

Given a cell that is a non-root vertex of C ′, if its y-coordinate is larger

(less) than that of its parent with respect to C ′, then the site with

the largest (least) x-coordinate to accommodate a robot that is to be

mechanically docked to a robot in the parent is designated as its seed.

See Figure 10.2b for illustration: (1) site 11 (colored red) was initially picked as

s; (2) the blue (green) sites represent the seeds for those cells whose y-coordinate

is larger (less) than that of their parent with respect to C ′ (according to the rule,

for example, site 15 (7) has the largest (least) x-coordinate among the sites to

accommodate a robot docked to the parent). A breadth-first search can be used to

identify the parent-child relationships of the cells in O(m) time since C ′ has O(m)

edges. Designating the seed following the rule can be done in O(1) time for each
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cell. This step can thus be made run in O(m) time.

Lines 4 – 6: We are now in the main loop where the edge set of GA is populated

by applying the following rule:

For each site of the target structure, denoted as si, consider the collection

of other member sites belonging to si’s one-hop neighborhood (recall

Figure 9.2a). For each site of the collection, denoted as sj, construct

a directed edge (si, sj) on GA (1) if si and sj belong to the same cell

and si is more proximal to the seed than sj; or (2) if si belongs to the

parent, with respect to C ′, of the cell to which sj belongs.

Figure 10.3a shows the resultant graph on the example shape. The directed edges

constructed above are considered as precedences in assembly: a site is occupied only

after all of its parents, with respect to GA, are occupied. This step can be made

run in O(m) time: each site has at most six neighboring sites.

Line 7: The algorithm finally returns GA, which is the assembly plan for the

target structure.

Line 8: We can optionally perform topological sorting (Cormen et al. 2001)

on GA such that we can find a linear ordering of sites satisfying the precedences

(Figure 10.3b). Topological sorting can be performed in O(m) time here using

depth-first search since GA has O(m) edges. Note that the original source vertex of

the depth-first search should be s, from which the assembly starts.
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Figure 10.3: (a) GA returned by Algorithm 3. (b) The same graph as (a), but
topologically sorted. The sites grouped in each dotted boundary can be occupied
simultaneously once the preceding groups are occupied.

10.2 Instructions on Applying Algorithm 3

We can think of a central commander that coordinates assembly according to GA:

an actual assembly process following GA begins with occupying s (for example, site

11 in Figure 10.3a) and proceeds with the partial order established by the directed

edges of GA. The structure grows as a single connected component and multiple

robots can dock to the structure in a parallel manner. For example, as can be seen

in Figure 10.3b, if sites 11, 10, 12, 15, and 7 are occupied, sites 6, 8, 16, and 14

can be occupied in parallel without any coordination among them because the four
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docking events do not depend on one another. The number of cells can be O(m),

and each cell can have two growing fronts. It is then possible to get a growth rate

of O(m), that is, O(m) robots may be assembled simultaneously. In the worst case

where there is only one cell, however, we only get an O(1) growth rate all the time.

Instead of the centralized execution, each assembly event can be done by local-

scale decision-making that can take only O(1) time. In GA, every edge is established

between two geometrically adjacent sites and a site has at most three parents.

Thus, if each robot (1) has a copy of GA and (2) is capable of local sensing and

communication, it can only take O(1) time for the robot to decide whether to occupy

an empty site or not.

Remark : Because GA does not prescribe a total order, that is, a particular,

deterministic assembly sequence, it is possible to adaptively make the maximum

progress on the rest of the structure in case a docking event is unexpectedly delayed.

For example, in Figure 10.3a, even in case the docking event at site 6 is delayed, we

can still get a structure composed of robots occupying all the other sites except for

sites 0, 1, 2, 5, and 6.

10.3 Analysis

We begin with showing that GA correctly represents the precedences among the

events of occupying sites without cyclic dependency.
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Lemma 1. GA is a directed acyclic graph.

Proof. According to Cormen et al. (2001), a directed graph is acyclic if and only

if a depth-first search of the graph yields no “back edges,” which are those edges

connecting a vertex to one of its ancestors in the depth-first tree.

At any vertex s of GA which has been discovered but is yet to be finished during

a depth-first search, the next vertex to visit belongs to 1) the same cell as s or 2)

one of the adjacent cells with respect to C ′, according to Line 5 of Algorithm 3:

1. In a single cell, all edges are directed away from the seed; there cannot exist

any back edge connecting two sites in the same cell.

2. Between two adjacent cells, only do edges directed from the parent to the

child exist. Once we leave a cell, we cannot return to the cell because C ′ is

a tree. Thus there cannot exist any back edge connecting two sites in two

adjacent cells, respectively.

In conclusion, no back edges are yielded in a depth-first search; GA is thus a

directed acyclic graph.

Since GA is a directed acyclic graph, it represents well-defined ancestor-descendant

relationships among its vertices; in addition, topological sorting can indeed be per-

formed on GA in Line 8 of Algorithm 3.

Next, we show that following the assembly rules specified in GA guarantees that

the structure grows as a single connected component and the assembly terminates:
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there are no sites remaining unoccupied forever.

Lemma 2. Given a target structure T , the assembly rules specified in GA lead to

every site of T being eventually occupied, while maintaining a connected topology.

Proof. According to Line 5 of Algorithm 3, (1) a non-seed site of a cell is the

descendant of the seed of the cell and (2) the seed of a cell, except for s, is the

descendant of one site of its parent cell. Therefore, every member site of T is the

descendant of s in terms of GA; in other words, there does not exist any member site

that remains unoccupied forever, by assembling according to GA. Moreover, every

site is physically adjacent to its parents in terms of GA. Therefore, the structure

grows as a single connected structure.

While Lemma 2 provides important guarantees about the completeness of the

resultant assembly plan and the connectedness of the structure being assembled, it

does not address the accessibility of a site to be occupied that might be blocked by a

physical wall or flanked between two physical robots already docked in the structure

(recall Figure 9.4). The following lemma shows that if we follow the assembly rules

specified in GA, there are no such accessibility problems.

Lemma 3. Following the assembly rules specified in GA ensures a path for a robot

to access any site open for occupancy without passing through a gap that is as large

as a side of a robot, formed between two robots docked in the structure.

Proof. Consider a cell of a given target structure; it can be (1) the root of C ′, (2)
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a cell whose y-coordinate is larger than that of its parent, or (3) a cell whose y-

coordinate is less than that of its parent in terms of C ′. We show that there are no

accessibility problems when assembling cells in each category. Let s denote the site

to be occupied and S denote the cell to which s belongs.

(a) x

y

(b) x

y

(c) x

y

s

s

s

Figure 10.4: Some possible snapshots when we assemble the example shape accord-
ing to GA shown in Figure 10.3. Each panel shows the most populated structure
that can be obtained without having s occupied. s can be accessed by an incoming
robot through the empty space at least as wide as two rows of sites.

First, consider the case where S is the root of C ′; s can be 1) its seed, 2) a site

whose x-coordinate is less than that of the seed of S, or 3) a site whose x-coordinate

is larger than that of the seed of S.

1. s is the seed of S: s is the first site to be occupied in the entire structure;

thus, s can obviously be accessed: it is not blocked by any robots already
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assembled.

2. s is a site whose x-coordinate is less than that of the seed of S: Figure 10.4a

illustrates this case. In S, all the sites whose x-coordinate is less than that

of s must currently be unoccupied because they are more distal from the

seed of S than s. If S does not have any children in terms of C ′, s can be

accessed through the empty space. Even if S has children, all the sites whose

x-coordinate is less than (or equal to) that of s must currently be unoccupied

in the children because the sites depend on s in terms of GA. Then, s can be

accessed without passing through a gap as wide as a side of a robot because

there is an empty corridor at least as wide as three contiguous cells leading

to s (recall that a corridor as wide as two contiguous cells is navigable for a

robot as shown in Figure 9.3).

3. s is a site whose x-coordinate is larger than that of the seed of S: This case

is symmetric to 2) in the previous paragraph. The same argument can also

be applied here to verifying the accessibility of s.

Next, consider the case where S is a cell whose y-coordinate is larger than that

of its parent in terms of C ′; s can be 1) its seed, 2) a site whose x-coordinate is less

than that of the seed of S, or 3) a site whose x-coordinate is larger than that of the

seed of S.

1. s is the seed of S: Figure 10.4b illustrates this case. s is the first site to
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be occupied in S. If S does not have any children in terms of C ′, s can be

accessed through the empty space. Even if S has children, they are currently

unoccupied; s can then be accessed through an empty corridor at least as wide

as two contiguous cells.

2. s is a site whose x-coordinate is less than that of the seed of S: Figure 10.4c

illustrates this case. In S, all the sites whose x-coordinate is less than that

of s must currently be unoccupied because they are more distal from the

seed of S than s. If S does not have any children in terms of C ′, s can be

accessed through the empty space. Even if S has children, all the sites whose

x-coordinate is less than (or equal to) that of s must currently be unoccupied

in the children because the sites depend on s in terms of GA. Therefore, s

can be accessed through an empty corridor at least as wide as two contiguous

cells.

3. s is a site whose x-coordinate is larger than that of the seed of S: This case

is symmetric to 2) in the previous paragraph. The same argument can also

be applied here to verifying the accessibility of s.

The remaining case, where S is a cell whose y-coordinate is less than that of its

parent, can be addressed similarly to the previous paragraphs by symmetry.
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Chapter 11

Algorithm for Target Structures

with Holes

The assembly planning algorithm we present in this chapter can be used to as-

semble target structures with internal holes, which the algorithm discussed in the

previous chapter could not address; however, the resultant plan does not support

parallel assembly. Section 11.1 presents the algorithm and Section 11.2 discusses

the correctness of the algorithm.

11.1 Algorithm

Our pseudocode is presented in Algorithm 4; we also take advantage of many con-

cepts from graph theory. Algorithm 4 also takes as input an array containing a

sequence of the coordinates of the sites of a target structure; see Figure 11.1 for the

99



example target structure we use to explain the progress of the algorithm. The order

of the sequence does not matter and the coordinate of a site actually refers to the

coordinate of the centroid of the site, as in the previous algorithm. The algorithm

returns a feasible assembly sequence, in essence, a reordering of the input sequence.

Algorithm 4 features disassembly planning; however, in the pseudocode, we just

say that a “site” is disassembled from a structure, instead of a physical “robot.”

This is because we do not need physical robots to describe a target structure and

we are ultimately interested in establishing an assembly plan as a sequence of sites.

Algorithm 4 can be made run in O(m) time, where m is the number of the member

sites, as will be explained in the following paragraphs elaborating each line of the

algorithm.

x

y

T

Figure 11.1: A target structure T , which can be represented as a sequence of the
coordinates of the centroids (shown as the black dots) of the member sites, with
respect to the xy-frame that is oriented as the grid of the lattice units (Figure 9.2).
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Algorithm 4 Assembly-Planning(T )

Input: Target structure T : a sequence of sites to be occupied, T = 〈s1, s2, · · · , sm〉.
Output: Assembly sequence A: a reordering (permutation) of T .
1: Let A be an empty stack.
2: Construct C.
3: while C is not a null graph do
4: Construct ∂C.
5: if ∂C has a vertex of degree 1, say si, then
6: Push si to A.
7: C = C − si
8: else
9: Search for a block of ∂C that contains only one cutvertex of ∂C; establish

a sequence of sites 〈si, sj, sk〉 to be disassembled from the block.
10: Push si, sj, and sk to A.
11: C = C − {si, sj, sk}
12: end if
13: end while
14: Return A.

Lines 1 – 2: We begin with declaring an empty stack A where we store the

resultant assembly plan. We then construct a graph C = (V,E) (recall Section 9.2)

representing the mechanical connectivity of the target structure (Figure 11.2). C

can be constructed in O(m) time by considering that each site has O(1) neighboring

sites.

Lines 3 – 13: We are in the main loop where we delete one or more vertices

in C and push them to A in each iteration until there remains no vertex to delete.

Each process is elaborated in the following paragraphs.

Line 4: At the start of the iteration of the loop, we construct a graph ∂C that

is the frontier of the outer face of C (Figure 11.2). This can be done in O(m) time

as follows. First, locate any site that is on the frontier and of degree less than 3
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C ∂C

Figure 11.2: C, the graph representing the mechanical connectivity of T , and ∂C,
the subgraph of C that is the frontier of the outer face.

by, for example, picking the site with the smallest x-coordinate among the ones

with the largest y-coordinate. Turn clockwise (counterclockwise) from the site by

consistently moving along the leftmost (rightmost) edge whenever there is a vertex

of degree 3 until we return to the site. Then each vertex on the outer frontier is

visited at most twice.

Lines 6 – 7: If ∂C has a vertex of degree 1, the vertex is pushed to the stack A

and deleted from C along with any incident edges (Figure 11.3). These operations

can be done in O(m) time.

Lines 9 – 11: A block of a graph is either a maximal 2-connected subgraph, or a

bridge, or an isolated vertex. For ∂C here that does not have a vertex of degree less

than 2, we can always find a block with one or no cutvertex of the original graph;

moreover, such a block must be a cycle (see Lemma 4 for the proof). We pick such

a cycle, either B1 or B2 in Figure 11.4a, and establish a sequence of sites that can

be disassembled from the cycle as follows. Suppose that we picked B1. Consider
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∂C

updated C

s

Figure 11.3: Since ∂C has a vertex of degree 1, s, the vertex is to be disassembled.
The next iteration starts with the updated C.

the site with the smallest x-coordinate on the row of the largest y-coordinate; the

site is denoted as si in Figure 11.4b. Next, we inspect if a site si,se (se stands for

“southeast” with respect to the reference frame shown in Figure 11.4a) is a vertex

of C or not. If so, we establish a sequence 〈si〉 as the potential output of this line. If

not, as can actually be seen in Figure 11.4b, we pick two more sites, sj and sk, and

establish 〈si, sj, sk〉 as the potential output. We can repeat the process by letting

si be the site with the largest x-coordinate on the row of the smallest y-coordinate

(Figure 11.4c): we inspect if a site si,nw (nw stands for “northwest” with respect to

the reference frame) is a vertex of C or not, as illustrated in Figure 11.4c; according

to the result, we establish either 〈si〉 or 〈si, sj, sk〉 as the potential output in a

similar manner. Between the two sequences established for the potential output,

pick one without the cutvertex for the output of Line 9. In Lines 10 – 11, we push

si (or si, sj, and sk in the order enumerated) to A; we then delete si (or si, sj, and

sk) from C along with any incident edges. These lines can be done in O(m) time:
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(a)

∂C

x

y

B1

B2

(b)

B1

updated C

si
sj
sksi,se

(c)

B1

updated C

sk
sj
si

si,nw

(d)

B2

updated C

si

si,se

(e)

B2

si
sj

sk
si,nw

Figure 11.4: (a) ∂C currently has two blocks that are cycles, denoted as B1 and B2.
Each red vertex is a cutvertex of ∂C that belongs to B1 or B2. (b), (c) Suppose that
we picked B1. si, sj, and sk can potentially be disassembled from the structure; C
will then be updated as the graph shown below. In case we picked B2, (d) si can
potentially be disassembled from the structure; (e) because sk is the cutvertex, the
sequence 〈si, sj, sk〉 will not be returned.
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blocks and cutvertices can be computed in O(m) time (Tarjan 1972).

Line 14: The algorithm finally returns A.

Instructions : We get an assembly sequence by popping elements from A. Fol-

lowing the sequence, we assemble the target structure by occupying the member

sites one by one. In contrast to Algorithm 3 that outputs a partial order on the

sites of a target structure, the output of Algorithm 4 is a total order on the member

sites. Therefore, parallel assembly is not supported by Algorithm 4 although we

can address target structures with internal holes.

11.2 Analysis

We show the completeness and correctness of Algorithm 4: it terminates and returns

a feasible assembly sequence without the accessibility issues discussed in Figure 9.4.

We break the analysis into some lemmas.

Lemma 4. Line 9 of Algorithm 4 returns a nonempty sequence.

Proof. We begin with verifying that there exists a block of ∂C with one or no

cutvertex and the block is a cycle. Different blocks overlap in at most one vertex,

which is then a cutvertex of the original graph (Diestel 2000). Consider the block

graph (Diestel 2000) of ∂C: let A denote the set of ∂C’s cutvertices and B the set

of ∂C’s blocks; the block graph is a bipartite graph on A ∪ B formed by the edges

(a,B) where a ∈ B. The block graph is a tree (the block graph of a connected
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graph is a tree (Diestel 2000)). Therefore, any leaf of the tree is indeed a block of

∂C with one or no cutvertex. The block represented by the leaf cannot be a bridge

or an isolated vertex here because we have deleted all the vertices of degree 1 before

executing Line 9. Therefore, the block must be a 2-connected subgraph, which in

turn is a cycle here by applying Proposition 3.1.3. of Diestel (2000).

According to the paragraph elaborating Line 9, we can get two distinct, non-

empty sequences of sites to be disassembled from the block. Because the block

contains less than two cutvertices of ∂C, one of the sequences can always be returned

as the output of Line 9.

Lemma 4 ensures that the number of vertices of C keeps decreasing as we iterate

the process of Lines 4 – 11; thus, Algorithm 4 terminates.

Next, we show that the following property holds for Algorithm 4 as a loop

invariant.

Lemma 5. At the start of each iteration of the while loop in Algorithm 4, C

satisfies the assumptions stated in Section 9.2: C is connected and free of narrow

corridors.

Proof. We must verify the following two items to see the property holds as a loop

invariant: (1) Initialization (the property is true prior to the first iteration); (2)

Maintenance (if the property is true before an iteration, it remains true before

the next iteration).
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Initialization: Before the first loop iteration, C satisfies the property by our

assumption on target structures.

Maintenance: Next, we show that each iteration maintains the property. On

the one hand, in Lines 6 – 7, disassembling a site of degree 1 does not disconnect C

and the frontiers of the faces of the resultant ∂C remain reachable by the rhombus

(recall Figure 9.3c) as can be seen in Figure 11.5a, where deleting the site, si, just

opens up the short cut colored green. On the other hand, in Lines 9 – 11, we

disassemble either one (si) or three sites (si, sj, and sk). First, disassembling si

alone does not disconnect C because si is disassembled from a cycle, which is 2-

connected, and there is no site adjacent to si (in terms of C) inside the cycle (see

Figure 11.4d). The frontiers of the faces of the resultant ∂C remain reachable by

the rhombus as can be seen in Figure 11.5b, where removing si just opens up the

new detour colored green. Second, disassembling si, sj, and sk does not disconnect

C because they are contiguous in a cycle and there is no site adjacent to them (in

terms of C) inside the cycle (see Figures 11.4b and 11.4c). The frontiers of the

faces of the resultant ∂C remain reachable by the rhombus because disassembling

the three contiguous sites opens a gap wide enough for the rhombus to enter a new

area that used to be an inner face of C (Figure 11.5c).

When Algorithm 4 terminates, C is a null graph. Therefore, Lemma 5 guarantees

that when we assemble a structure according to the computed assembly sequence,

the structure grows from a single seed robot as a single connected component always
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(a)

si

(b)

si

(c)

si
sj
sk

Figure 11.5: Each panel is zooming in on some part of C shown in Figure 11.2
along with the rhombus, as appeared in Figure 9.3c, translating along the frontier
of ∂C; the centroid of the rhombus follows the dotted lines. The panels (a), (b),
and (c) show what happens to the path of the rhombus after sites are removed from
C according to Algorithm 4.
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satisfying the assumptions of Section 9.2.

Because assembly happens only on ∂C, a robot can reach a site open for occu-

pancy without being blocked by a physical wall or a narrow corridor. In addition,

our last lemma ensures that a site open for occupancy is not flanked between two

physical robots already docked in the structure (recall Figure 9.4).

Lemma 6. In each iteration of the while loop in Algorithm 4, each disassembly

event can be performed in such a manner that the site to be disassembled is not

located between two other sites that form a gap as large as a side of a site.

Proof. If a site to be disassembled is a vertex of degree 1 in ∂C (Lines 6 – 7), the

site has at most one neighbor. Thus, the site is not located between two other

sites. In Lines 9 – 11, if we disassemble si, sj, and sk one at a time in the order

enumerated, each of them is not flanked by two other sites that form a gap as large

as a side of a site.
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Chapter 12

Implementation and Experiment

In this chapter, we discuss the implementation of our assembly planning algorithms.

Section 12.1 introduces our software implementation. Sections 12.2 and 12.3 present

a set of simulations and experiments.

12.1 Assembly Planner

We wrote a software package12 that implements Algorithms 3 and 4, written in

C++. The software, which we call the Assembly Planner, parses a blueprint for a

target structure and returns an assembly plan that specifies a partial/total order for

filling the sites of the target structure. Given the shape of the current structure, the

software is capable of returning open site(s) that can be occupied simultaneously

around the current structure.

12Available at http://www.seas.upenn.edu/~juse
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The Assembly Planner is a part of a software suite that operates the robotic

boats introduced in Section 9.1. At the highest level, the suite is composed of

the Coordinator, the Assembly Planner, the Trajectory Planner, and the Docking

Routine. The Coordinator is a state machine that handles the operation of the

other components. We addressed the Assembly Planner in the previous paragraph.

The Trajectory Planner generates feasible paths for robots to reach sites open for

occupancy. The Docking Routine enables a robot to perform a sequence of actions

for docking with other robot. The software components were built on top of a

middleware platform, ROS13; For more details on software design, see O’Hara et al.

(2014).

12.2 Experiment 1: Assembly Planning

We first ran computer simulations of how Algorithm 3 works for target structures

without holes. Figure 12.1a shows a target structure composed of 207 member

sites that looks like the continental United States. Given an arbitrary choice of

the seed, denoted as s in Line 3 of Algorithm 3, it took 0.007 second on average

for the Assembly Planner running on a 4GB, 2.53 GHz machine to compute GA

and its topological sort. Figure 12.2a shows a target structure composed of 435

member sites that looks like a row of piers in a harbor. It took 0.015 second on

average to compute an individual assembly plan. Figures 12.1b and 12.2b show

13http://www.ros.org
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some intermediate snapshots on the way to the target structures.

(a)

(b)

Figure 12.1: (a) The right panel shows a target structure composed of 207 member
sites, which looks like the continental United States. Choosing the red site as the
seed can minimize the assembly time by maximizing parallelism. (b) Six snapshots
showing how the given seed grows into the target structure. In each panel, the gray
sites are to be occupied in the next snapshot around the current structure colored
black.

Applying Algorithm 3, we can find the best seed that results in the minimum

height of the resultant directed acyclic graph, where the height of the graph is the

height of its root, that is, the length of the longest path between the root and

a leaf. By minimizing the height, we can make the most of the parallelism of a

swarm of the robotic boats, which can result in the fastest assembly time. Given a

target structure with m member sites, it takes O(m2) time to compute the optimal

assembly plan starting from the best seed: designating each member site as the
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(a)

(b)

Figure 12.2: (a) The right panel shows a target structure composed of 435 member
sites, which looks like the harbor on the left panel. Choosing the red site as the
seed can minimize the assembly time by maximizing parallelism. (b) Six snapshots
showing how the given seed grows into the target structure. In each panel, the gray
sites are to be occupied in the next snapshot around the current structure colored
black.

seed, we repeatedly apply Algorithm 3, running in O(m) time; finding the height

of the resultant graph can be done in O(m) time using a breadth-first search.

In Figures 12.1a and 12.2a, the seeds that can derive the “shortest” assembly

plans are colored red. Note that the snapshots of Figures 12.1b and 12.2b do not

show the progress of the optimal plan. Indeed, following an assembly plan other than

the optimal one can be a better idea in some cases. For example, although the robots

are geometrically identical, they may provide different functions; then we may want
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to grow the structure from the site that accommodates “the most important” robot.

For the USA example (Figure 12.1a), the minimum height of the resultant graph

was 31. Suppose that sites are occupied immediately as soon as they are discovered

by the Assembly Planner. We could then assemble maximally 11 robots at a time,

by following the optimal plan. For the harbor example (Figure 12.2a), the minimum

height and the maximum growth rate were 57 and 13, respectively. The results of

the above experiments are summarized in Table 12.1.

Computation time
Target Sites Individual (avg.) Optimal Min. height Max. growth rate
USA (Figure 12.1) 207 0.007s 1.68s 31 11 robots
harbor (Figure 12.2) 435 0.015s 10.75s 57 13 robots
100-by-100 square 10,000 0.607s 7604.26s 248 84 robots

Table 12.1: The results of assembly planning experiments. For the optimal plans,
we iterated over all member sites for the USA and harbor examples; we sampled
500 sites for the 100-by-100 square.

The minimum height can also be interpreted as the complexity of a target struc-

ture itself in terms of parallel assembly with a swarm of robots. For example, al-

though the harbor example (Figure 12.2a) has more than twice the number of sites

that the USA example (Figure 12.1a) has, the time to assemble the harbor example

can be less than twice the time it takes to assemble the USA example (compare the

minimum heights). Another example is shown in Figure 12.3. The two structures

of Figure 12.3 have the same number of member sites; however, the structure of

Figure 12.3a can be assembled faster by taking advantage of parallel assembly.

Figure 12.4 shows some snapshots that illustrate the assembly plans for the three
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(a)

(b)

Figure 12.3: The Assembly Planner computed the optimal assembly plans for the
structures, starting from the seeds colored red. The minimum heights of (a) and
(b) were 3 and 4, respectively.

target structures with holes, letters ‘R’, ‘O’, and ‘B’, returned by the Assembly

Planner running Algorithm 4. Each letter is composed of 46 sites and it took 0.03s

to compute each assembly plan.

12.3 Experiment 2: Assembling Robotic Boats

We built real structures with our hardware/software implementation; see O’Hara

et al. (2014) for details. Here we summarize the result by showing two structures

autonomously built with the robots. Figure 12.5a shows a structure of six robots

that was used as a landing platform for the quadrotor. Figure 12.5b shows a bridge

that spanned a corner of the pool. Figure 12.5c shows some snapshots that illustrate

the computed assembly plan for the bridge. The assembly begins with occupying

the site colored red. Note that the seed does not result in the optimal assembly

plan; however, it is reasonable to start constructing from one end of the bridge.
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Figure 12.4: Assembling congruent lego blocks into the four letters with holes, ‘R’,
‘O’, ‘B’, and ‘O’.
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(a) (b)

(c)

Figure 12.5: Structures autonomously constructed with our robotic boats that are
0.5m in length. (a) A landing platform for an aerial vehicle. (b) A bridge for a
ground vehicle. (c) For the bridge, we had the Assembly Planner compute a plan
starting from one end (the site colored red). The snapshots show how the bridge
grows.
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Chapter 13

Extension to Other Patterns

In this chapter, we investigate how to extend our assembly planning algorithms to

other patterns formed by congruent rectangles.

(a) cmm (b) p2 (c) pmg

(d) pgg (e) pmm (f) p4g

Figure 13.1: Six symmetric patterns that can be generated by congruent rectangles.
The red polygons are the lattice units of the patterns.

On the plane, there are 17 distinct groups that classify repetitive patterns based

on their symmetries; the groups are called plane symmetry groups, plane crystallo-
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graphic groups, or wallpaper groups. Coxeter (1961) showed how six of the 17 groups

can be produced by tessellating the plane with congruent rectangles; see Figure 13.1.

So far, we have been addressing the common brick wall pattern that is classified into

one of the groups called cmm (see Schattschneider (1978) for the nomenclature).

Among the six patterns shown in Figure 13.1, Algorithms 3 and 4 can directly be

applied to constructing structures of type not only cmm (Figure 13.1a) but also p2

(Figure 13.1b), pmg (Figure 13.1c), pgg (Figure 13.1d), and pmm (Figure 13.1e).

Consider a target structure of type p2, pmg , pgg , or pmm. The target

structure can unambiguously be transformed into a structure of type cmm, with

preserving geometric adjacency and/or mechanical connectivity (Figure 13.2). On

the one hand, types p2, pmg , and pgg are topologically identical to type cmm

in the sense that every rectangle is surrounded by six other rectangles. In the

structures of types p2, pmg , and pgg shown in Figure 13.2, it can be seen that the

rectangles with the same coordinate have the identical set of neighbors. Moreover,

by assuming again that two robots dock only along their long sides for types p2 and

pmg (only longside-shortside docking for type pgg), the graph C representing the

mechanical connectivity remains invariant under the transformation. For example,

the robot at (0, 0) is mechanically connected only to the robots at (0, 1), (−1, 0),

(0,−1), and (1, 0) in all the structures of types cmm, p2, pmg , and pgg shown

in Figure 13.2. On the other hand, type pmm is not topologically identical to type

cmm. If robots can dock along all of their sides, however, it is possible to transform
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a target structure of type pmm into one of type cmm preserving the mechanical

connectivity; see Figure 13.2.

(0, 0)

(0, 1)

(0, -1) (1, 0)

(1, 1)

(2, 1)

(3, 1)

(3, 2)

(4, 2)

(5, 2)

(2, 1) (3, 1)

(3, 2) (4, 2) (5, 2)

(1, -1)

(1, -2)

(1, 0)

(1, 1)

(1, -1)

(1, -2)

(0, 2)

(0, -2)

(0, 0)

(0, 1)

(0, -1)

(0, 2)

(0, -2)

(-1, 0)

(-1, -1)

(-2, -1)

(-3, -1)

(-3, -2)

(-4, -2)

(-5, -2)

(-2, -1)(-3, -1)

(-3, -2)(-4, -2)(-5, -2)

(-1, 1)

(-1, 2)

(-1, 0)

(-1, -1)

(-1, 1)

(-1, 2)

(0, 0)

(0, 1)

(0, -1) (1, 0)

(1, 1)

(2, 1)

(3, 1)

(3, 2)

(0
, -

1
)

(1
, 0

)

(2
, 1

)

(3
, 2

)

(4, 2)

(5, 2)

(1, -1)

(1, -2)

(5
, 2

)

(1
, -

2
)

(0, 2)

(0, -2)

(3
, 1

)

(4
, 2

)

(1
, -1

)

(0
, -2

)

(-1, 0)

(-1, -1)

(0
, 0

)

(1
, 1

)

(-1
, -1

)

(-2, -1)

(-3, -1)

(-3, -2)

(0
, 1

)

(-
1
, 0

)

(-
2
, -

1
)

(-
3
, -

2
)

(-4, -2)

(-5, -2)

(-1, 1)

(0
, 2

)

(-3
, -1

)

(-4
, -2

)

(-1
, 1

)

(-1, 2)

(-
5
, -

2
)

(-
1
, 2

)

(0, 0)

(0, 1)

(0, -1) (1, 0)

(1, 1)

(2, 1)

(3, 1)

(3, 2)

(4, 2)

(5, 2)

(1, -1)

(1, -2)

(0, 2)

(0, -2)

(-1, 0)

(-1, -1)

(-2, -1)

(-3, -1)

(-3, -2)

(-4, -2)

(-5, -2)

(-1, 1)

(-1, 2)

lo
ng
-s
ho
rt
do
ck
in
g

lo
ng
-l
on
g
do
ck
in
glong-long

docking

long-long
docking

short-short
docking pmm

pmg

cmm

p2

pgg

p4g

Figure 13.2: A target structure of type cmm with the graph C (in the center) and
the equivalent ones of other types in the sense of geometric adjacency/mechanical
connectivity. Also shown in the block arrows are modes of docking between two
robots sufficient to assemble the structures (symmetric cases are omitted); then, the
structures of types cmm, p2, pmg , pgg , and pmm have the same mechanical
connectivity represented as C. The structure of type p4g is composed of the meta
modules, each of which is composed of two rectangles.

Suppose that the transformed target structure, tessellated in type cmm, is

consistent with the constraints discussed in Section 9.2; then, the assembly plan

obtained by applying Algorithm 3 or 4 to the structure of type cmm can also be
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applied to correctly assembling the original target structure, tessellated in type p2,

pmg , pgg , or pmm, as will be shown in the following theorem.

Remark : Note that for structures of type pgg tessellated as shown in Fig-

ure 13.2, the algorithms have to be modified as follows. First, in the rule presented

in Line 3 of Algorithm 3, switch the places of the two words ‘largest’ and ‘least.’ Sec-

ond, in Lines 9 - 11 of Algorithm 4, si should be the site with the largest (smallest)

x-coordinate on the row of the largest (smallest) y-coordinate.

Theorem 4. Algorithms 3 and 4 can also be applied to constructing target structures

of types p2, pmg, pgg, and pmm formed by congruent rectangular robots in such

a manner that the robots do not have to pass through a gap that is as large as a side

of a robot formed between two robots docked in the structure.

Proof. To see that this theorem holds, it is sufficient to show that Lemmas 1 to 6,

proved for type cmm, also hold for types p2, pmg , pgg , and pmm.

Lemmas 1, 2, 4, and 5 hold for target structures of types p2, pmg , pgg , and

pmm because the lemmas depend only on the properties of the graph C, repre-

senting the mechanical connectivity, which is invariant under the transformation

between type cmm and the four types (p2, pmg , pgg , and pmm), as shown in

Figure 13.2. Note that for Lemma 5, we need to assume a particular embedding for

C, that is, the embedding shown in Figure 9.3c.

To see Lemma 3 holds, first recall Figure 10.2 that shows a corridor as wide
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as two contiguous cells in type cmm is navigable for a robot; then, it suffices to

verify that such a corridor remains navigable under the transformation between

type cmm and the others. Figure 13.3a shows a navigable corridor in type cmm;

Figures 13.3b, 13.3c, 13.3d, and 13.3e show the structures of the other types in

one-to-one correspondence with the structure of Figure 13.3a. From the figures, it

can be verified that a robot can also navigate through the corridors of the other

types at least by omnidirectional translation.

(a) (b) (c) (d) (e)

Figure 13.3: Corridors as wide as two contiguous cells are navigable for all the
patterns: (a) cmm, (b) p2, (c) pmg , (d) pgg , and (e) pmm. It can be seen
that the robot, colored black, can navigate the corridors at least by omnidirectional
translation.

(a)
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sk

si
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(d)

si
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sj
sk

(e)

si
sj
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sj

sk

Figure 13.4: Disassembling si, sj, and sk one at a time in the order enumerated
guarantees easy accessibility (a robot does not have to pass through a gap as wide
as its side) for not only (a) type cmm but also (b) types p2, (c) pmg , (d) pgg ,
and (e) pmm.

Finally, we show that Lemma 6 holds for types p2, pmg , pgg , and pmm.

First, it is straightforward to see that if a site to be disassembled is a vertex of
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degree 1 in ∂C (Lines 6 - 7 of Algorithm 4), the site is not located between two

other sites because the site has at most one neighbor. Figure 13.4a reminds us that

the disassembly involved with Lines 9 - 11 of Algorithm 4 can be done without

having a robot pass through a gap as wide as its side if we disassemble si, sj, and

sk in the order enumerated (the upper (lower) panel is involved with Figure 11.4b

(11.4c)). Figures 13.4b, 13.4c, 13.4d, and, 13.4e show the structures of the other

types in one-to-one correspondence with the structure of Figure 13.4a. It can also

be seen that disassembling si, sj, and sk in the order enumerated guarantees easy

accessibility.

Algorithms 3 and 4 can also be applied to target structures of type p4g , but in

a less direct manner. We first propose to subassemble meta modules, each of which

is composed of two rectangles. Then it is possible to transform a structure of type

p4g into one of type pmm, which can then be transformed into one of type cmm

as discussed earlier; see Figure 13.2.

Our algorithms and their generalization discussed so far have been based on

conservative assumptions in terms of robots’ docking capability; for example, we

assumed that only longside-longside docking is available for robots to form struc-

tures of types cmm, p2, or pmg (longside-shortside docking for pgg). Our al-

gorithms can also be directly applied to the cases where the robots are outfitted

with more capable docking hardware (for example, suppose that longside-shortside

docking is additionally available for robots to form type cmm) by virtue of the
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conservativeness.
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Part IV

Conclusion
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Chapter 14

Conclusion

In this chapter, we conclude the thesis with summarizing main contributions in

Section 14.1 and discussing future research directions in Sections 14.2 and 14.3.

14.1 Summary of Contributions

The contributions of the thesis are twofold.

A theoretical framework for grasping objects with curved effectors and

its application to a modular robot system: We have presented three types

of immobilizing grasps and cages and showed that they can be applied to a wide

range of objects including polyhedra. Each of the grasps or cages is formed by

at most three appropriately curved effectors. The immobilizing grasps depend on

the local curvature properties of the effectors, whereas the cages are formulated by
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global parameters, such as the distance between the effectors. A stable grasp can

be obtained from any of our cages by a squeezing motion. The collection of grasps

and cages was extended to include more types of grasps and cages for two- or three-

dimensional objects. Based on the theory, we developed hardware and software

implementing our modular approach to grasping objects using end-effectors with

curved surfaces.

Assembly planning algorithms that can be applied to the collective con-

struction of planar structures with rectangular modules: We have pre-

sented two provably correct and complete assembly planning algorithms for con-

structing arbitrary planar target structures, possibly with internal holes, with con-

gruent, rectangular mobile units. The algorithms build on graph theory and return

an assembly plan, represented as a partial or total order, in linear time. The resul-

tant assembly plan guarantees easy accessibility in the sense that a free robot does

not have to pass through a narrow gap while approaching its target position on the

boundary of the growing structure. For target structures without holes, the resul-

tant assembly plan allows parallel assembly and can be executed in a decentralized

manner. The algorithms were initially designed to address the common brick wall

pattern, but can also address other symmetric patterns that can be formed by the

collection of congruent rectangles.
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14.2 Future Work

We here describe our future work under three themes: extending theory, enhancing

autonomy, and more applications.

Extending theory: Our theoretical framework can be extended in a number of

directions. Future work for the grasping work presented in Part II includes the fol-

lowing. In order to guarantee performance under frictional, compliant contact, the

effects of friction and compliance should be treated in a more quantitative manner.

Approaches may include incorporating accurate and tractable models of finger-

object contact, contact friction, and the compliance of the robot joints and links.

For the assembly work presented in Part III, two avenues of future work include

the following. By incorporating dynamic stability analysis, our assembly planning

algorithms may direct the growth of the structure in such a way that is the most

robust to external disturbances due to, for example, waves and tides. In addition,

it may be fruitful to extend the algorithms to address three-dimensional structures;

one approach is to generalize Chapter 13 into space groups (also known as crys-

tallographic groups), the symmetry groups of a configuration in three-dimensional

space.

Enhancing autonomy: There are many great benefits to enhanced autonomy.

For example, autonomous robotic systems can eliminate human errors and work

safely in dangerous environments such as outer space or the ocean floor. Our objec-
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tives for enhancing autonomy include incorporating more sensing capabilities; for

example, visual sensing will be beneficial to not only perceiving objects to grasp but

also making the docking procedure more robust. The level of autonomy can also

be greatly increased by enabling proper interaction with the environment, which

will facilitate grasping an object in clutter or assembling an adaptive structure on

water around an island. Another interesting direction is to develop hardware and

software supporting efficient self-reconfiguration: such a system can truly perform

the best reconfiguration plan to replace a module that is not working normally in an

assembly or adapt itself to grasp an arbitrary object by autonomously exchanging

end-effector or attaching more arm links.

More applications: Effectors with curved contact surfaces can be used as not

only “hands” but also “feet” for walking or running. RHex (Saranli et al. 2001, John-

son and Koditschek 2013) showed the versatility of single-bodied legs without any

internal degrees of freedom. Leg stiffness will be an important factor as discussed

by Galloway et al. (2011). Curved effectors can also be useful in manufacturing,

eliminating the need of redesigning fixtures according to objects. By considering

static stability in the presence of external forces such as gravity, our assembly plan-

ning algorithms can be applied to constructing vertical walls and buildings. The

scenario can be made more practical by considering a bipartite system composed of

passive bricks and mobile robots manipulating the bricks, which can be a modular

manipulator discussed in Part II of the thesis. We expect that such a capability can
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facilitate challenges commonly encountered in space exploration, disaster response,

or assisted living.

14.3 Milestones for Our Vision

Considering the vignettes presented in Section 1.3, we finally propose possible 5-,

10-, and 15-year milestones toward the vision.

Autonomous grasping : We ultimately want robots to safely grasp a large class

of objects with different material properties, even in a cluttered environment. It

is necessary to combine our model-based approach presented in the thesis with

extensive visual and/or tactile perception and machine learning technologies. Our

roadmap includes the following goals:

• 5 years: Achieve the ability to safely grasp a group of objects with known

mechanical properties.

• 10 years: Achieve the ability to safely grasp objects with unknown mechanical

properties.

• 15 years: Achieve the ability to safely grasp objects with unknown mechanical

properties while properly interacting with the environment.

Adaptable self-assembly planning : The thesis presented planning algorithms

for assembling planar, horizontal structures. Extending the algorithms to assemble
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a wider range of structures (for example, vertical walls and three-dimensional struc-

tures on the ground) will require achievements including the following milestones:

• 5 years: Assembly planning algorithms incorporating static/dynamic stability

analysis for two-dimensional target structures.

• 10 years: The algorithms will be capable of addressing environmental con-

straints.

• 15 years: The algorithms will be extended to assemble three-dimensional tar-

get structures.

Other critical capabilities that will realize the vision include self-reconfigurability

and dexterous manipulation.
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