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Inference for Approximating Regression Models

Abstract
The assumptions underlying the Ordinary Least Squares (OLS) model are regularly and sometimes severely
violated. In consequence, inferential procedures presumed valid for OLS are invalidated in practice. We
describe a framework that is robust to model violations, and describe the modifications to the classical
inferential procedures necessary to preserve inferential validity. As the covariates are assumed to be
stochastically generated ("Random-X"), the sought after criterion for coverage becomes marginal rather than
conditional. We focus on slopes, mean responses, and individual future observations. For slopes and mean
responses, the targets of inference are redefined by means of least squares regression at the population level.
The partial slopes that that regression defines, rather than the slopes of an assumed linear model, become the
population quantities of interest, and they can be estimated unbiasedly. Under this framework, we estimate
the Average Treatment Effect (ATE) in Randomized Controlled Studies (RCTs), and derive an estimator
more efficient than one commonly used. We express the ATE as a slope coefficient in a population regression
and immediately prove unbiasedness that way. For the mean response, the conditional value of the best least
squares approximation to the response surface in the population - rather than the conditional value of y, is
aimed to be captured. A calibration through pairs bootstrap can markedly improve such coverage. Moving to
observations, we show that when attempting to cover future individual responses, a simple in-sample
calibration technique that widens the empirical interval to contain $(1-\alpha)*100\%$ of the sample
residuals is asymptotically valid, even in the face of gross model violations. OLS is startlingly robust to model
departures when a future y needs to be covered, but nonlinearity, combined with a skewed X-distribution, can
severely undermine coverage of the mean response. Our ATE estimator dominates the common estimator,
and the stronger the R squared of the regression of a patient's response on covariates, treatment indicator, and
interactions, the better our estimator's relative performance. By considering a regression model as a semi-
parametric approximation to a stochastic mechanism, and not as its description, we rest assured that a
coverage guarantee is a coverage guarantee.
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ABSTRACT

INFERENCE FOR APPROXIMATING

REGRESSION MODELS

Emil Pitkin

Lawrence D. Brown

The assumptions underlying the Ordinary Least Squares (OLS) model are regularly

and sometimes severely violated. In consequence, inferential procedures presumed

valid for OLS are invalidated in practice. We describe a framework that is robust

to model violations, and describe the modifications to the classical inferential pro-

cedures necessary to preserve inferential validity. As the covariates are assumed to

be stochastically generated (Random-X), the sought after criterion for coverage be-

comes marginal rather than conditional. We focus on slopes, mean responses, and

individual future observations. For slopes and mean responses, the targets of infer-

ence are redefined by means of least squares regression at the population level. The

partial slopes that that regression defines, rather than the slopes of an assumed lin-

ear model, become the population quantities of interest, and they can be estimated

unbiasedly. Under this framework, we estimate the Average Treatment Effect (ATE)

in Randomized Controlled Studies (RCTs), and derive an estimator more efficient

than one commonly used. We express the ATE as a slope coefficient in a population
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regression and immediately prove unbiasedness that way. For the mean response, the

conditional value of the best least squares approximation to the response surface in

the population rather than the conditional value of y, is aimed to be captured. A

calibration through pairs bootstrap can markedly improve such coverage. Moving to

observations, we show that when attempting to cover future individual responses, a

simple in-sample calibration technique that widens the empirical interval to contain

(1−α)∗100% of the sample residuals is asymptotically valid, even in the face of gross

model violations. OLS is startlingly robust to model departures when a future y needs

to be covered, but nonlinearity, combined with a skewed X-distribution, can severely

undermine coverage of the mean response. Our ATE estimator dominates the com-

mon estimator, and the stronger the R2 of the regression of a patient’s response on

covariates, treatment indicator, and interactions, the better our estimator’s relative

performance. By considering a regression model as a semi-parametric approximation

to a stochastic mechanism, and not as its description, we rest assured that a coverage

guarantee is a coverage guarantee.
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1
Introduction

The organizing principle of this work, which will be repeated in each chapter, is

two-fold: 1) that classical regression theory does not accommodate non-linearity or

heteroskedasticity in the presence of random predictors, and 2) that a re-examination

of the target of inference can and does give rise to valid, marginal inference. Hal-

bert White wrote a series of three papers (White, 1980b), (White, 1980a), (White,

1982) in which he addressed and solved the question of inference for misspecified

models. The sandwich estimator he introduced is asymptotically equivalent to the

non-parametric “pairs bootstrap,” which we will employ often in this work. Chapter

2, an adaptation of (Buja et al., 2013), examines this form of valid inference, which

includes a comparison of the relative performance of classical, or “conventional” stan-

dard errors, and those implied by the sandwich or the bootstrap. The key insight is

that regression slope estimates derived through OLS are asymptotically unbiased for

regression coefficients derived through population least squares. It is the randomness

of the joint distribution of the predictors and response that motivates the population

least squares procedure.

Chapter 3 changes orientation but preserves the statistical framework. We turn to

Randomized Controlled Trials (RCTs) and the attendant estimation of the Average

Treatment Effect (ATE). We briefly trace the evolution of its estimators, from the
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progenitor in Neyman’s thesis (Splawa-Neyman et al., 1990) to contemporary ones

that consider, as we do, semi-parametric settings (Zhang et al., 2008), (Rosenblum and

van der Laan, 2010), and then we explicitly define an estimator that is asymptotically

efficient relative to the difference in means estimator. Our estimator can be expressed

as a slope coefficient in a regression model of the sort defined in chapter 2, and

it is therefore asymptotically unbiased. This work sets a principled foundation to

the study of efficient ATE estimators, and admits many natural extensions to more

complex study designs.

The problem of predicting future observations in a regression setting without in-

voking normal-theory parametric intervals is not new. (Stine, 1985), for example,

examines the coverage of bootstrap prediction intervals. In his scheme the operating

assumption is that the model is correctly specified, and hence that the distribution of

the errors is known. (Schmoyer, 1992), who conscientiously avoids resampling meth-

ods, creates an estimator derived from a convolution of the empirical distribution of

the regression residuals. More resonant with our work, which assumes only a joint

distribution P between the ~X and y, and more recently, (Politis, 2013) states as a

common sense principle that in the absence of a model (the “model - free” case),

prediction intervals should be based on quantiles of the observed predictive distri-

bution. We adapt this principle to generate prediction intervals based on quantiles

of the empirical distribution of the residuals. In chapter 4 we show how a simple

in-sample calibration technique, which places minimal assumptions on the data gen-

erating process, gives desired, asymptotically valid coverage. Chapter 4 continues

with an exploration of valid coverage for the mean response. Again, our target of

inference is based on the population least squares approximation to the conditional

mean. We in simulations show examples where ~Xβ is covered with probability lower

than 20% for nominally 95% confidence intervals, when intervals based on classical

2



theory are applied to misspecified models with random predictors. Again relying on

the bootstrap, we illustrate a technique that improves asymptotic marginal coverage.

3



2
Random Predictors and Model Violations∗

Excerpted and adapted from Buja, A., Berk, Richard A., Brown, Lawrence D.,

George, Edward I., Pitkin, E., Traskin, M. Zhao, L., Zhang, K.: A Conspiracy of

Random X and Model Violation Against Classical Inference in Linear Regression.

2.1 Abstract

This chapter reviews the insights of Halbert White’s asymptotically correct inference

in the presence of “model misspecification.” This form of inference, which is pervasive

in econometrics, relies on the “sandwich estimator” of standard error. White permits

models to be “misspecified” and predictors to be random. Careful reading of his

theory shows that it is a synergistic effect — a “conspiracy” — of nonlinearity and

randomness of the predictors that has the deepest consequences for statistical infer-

ence. A valid alternative to the sandwich estimator is given by the “pairs bootstrap.”

We continue with an asymptotic comparison of the sandwich estimator and the stan-

dard error estimator from classical linear models theory. The comparison shows that

when standard errors from linear models theory deviate from their sandwich analogs,

they are usually too liberal, but occasionally they can be too conservative as well. The

∗Joint work with Dana Chandler
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chapter concludes by answering why we might be interested in inference for models

that are not correct.

2.2 Introduction

The classical Gaussian linear model reads as follows:

y = Xβ+ ε , ε ∼ N (0N , σ
2IN×N) (y, ε ∈ IRN , X ∈ IRN×(p+1), β ∈ IRp+1).

(2.1)

Important for the present focus are two aspects of how the model is commonly in-

terpreted: (1) the model is assumed correct, that is, the conditional response means

are a linear function of the predictors and the errors are independent, homoskedas-

tic and Gaussian; (2) the predictors are treated as known constants even when they

arise as random observations just like the response. Starting with Halbert White’s

(White, 1980a), ((White, 1980b), (White, 1982)) seminal articles, econometricians

have used multiple linear regression without making the many assumptions of clas-

sical linear models theory. While statisticians use assumption-laden exact finite

sample inference, econometricians use assumption-lean asymptotic inference

based on the so-called “sandwich estimator” of standard error. The approach in this

chapter is to interpret linear regression in a semi-parametric fashion: the generally

nonlinear response surface is decomposed into a linear and a “residualized” nonlin-

ear component. The modeling assumptions can then be reduced to i.i.d. sampling

from largely arbitrary joint ( ~X, Y ) distributions that satisfy a few moment condi-

tions. It is in this assumption-lean framework that the sandwich estimator produces

asymptotically correct standard errors.

We also connect the assumption-lean econometric framework to the “pairs boot-

5



strap.” As the name indicates, the pairs bootstrap consists of resampling pairs (~xi, yi),

which contrasts with the “residual bootstrap” which resamples residuals ri. Asymp-

totic theory exists to justify both types of bootstrap under different assumptions

(Freedman, 1981), (Mammen, 1993). It is intuitively clear that the pairs bootstrap

can be asymptotically justified in the assumption-lean framework mentioned above.

In what follows we will use the general term “assumption-lean estimators of

standard error” to refer to either the sandwich estimators or the pairs bootstrap

estimators of standard error.

The chapter concludes by comparing the standard error estimates from assumption-

lean theory and from classical linear models theory. The ratio of asymptotic variances

— “RAV ” for short — describes the discrepancies between the two types of standard

error estimates in the asymptotic limit. If RAV 6= 1, then there exist deviations

from the linear model in the form of nonlinearities and/or heteroskedasticities. If

RAV = 1, then either the model is correct, or there has been a false negative.

2.3 Discrepancies between Standard Errors Illus-

trated

The table below shows regression results for a dataset in a sample of 505 census tracts

in Los Angeles that has been used to examine homelessness in relation to covariates

for demographics and building usage (Berk et al., 2008). We show the raw results

of linear regression to illustrate the degree to which discrepancies can arise among

three types of standard errors: SElin from linear models theory, SEboot from the pairs

bootstrap (Nboot = 100, 000) and SEsand from the sandwich estimator (according to

(MacKinnon and White, 1985)). Ratios of standard errors are shown in bold font

when they indicate a discrepancy exceeding 10%.
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Table 1: Regression coefficients along with their standard errors estimated by

different means.

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

Intercept 0.760 22.767 16.505 16.209 0.726 0.712 0.981 0.033 0.046 0.047

MedianInc ($K) -0.183 0.187 0.114 0.108 0.610 0.576 0.944 -0.977 -1.601 -1.696

PercVacant 4.629 0.901 1.385 1.363 1.531 1.513 0.988 5.140 3.341 3.396

PercMinority 0.123 0.176 0.165 0.164 0.937 0.932 0.995 0.701 0.748 0.752

PercResidential -0.050 0.171 0.112 0.111 0.653 0.646 0.988 -0.292 -0.446 -0.453

PercCommercial 0.737 0.273 0.390 0.397 1.438 1.454 1.011 2.700 1.892 1.857

PercIndustrial 0.905 0.321 0.577 0.592 1.801 1.843 1.023 2.818 1.570 1.529

The ratios SEsand/SEboot show that the standard errors from the pairs bootstrap

and the sandwich estimator are in rather good agreement. Not so for the standard

errors based on linear models theory: we have SEboot, SEsand > SElin for the predictors

PercVacant, PercCommercial and PercIndustrial, and SEboot, SEsand < SElin for

Intercept, MedianInc ($1000), PercResidential. Only for PercMinority is SElin

off by less than 10% from SEboot and SEsand. The discrepancies affect outcomes

of some of the t-tests: under linear models theory the predictors PercCommercial

and PercIndustrial have commanding t-values of 2.700 and 2.818, respectively,

which are reduced to unconvincing values below 1.9 and 1.6, respectively, if the pairs

bootstrap or the sandwich estimator are used. On the other hand, for MedianInc

($K) the t-value −0.977 from linear models theory becomes borderline significant

with the bootstrap or sandwich estimator if the plausible one-sided alternative with

negative sign is used.

The second illustration of discrepancies between types of standard errors, shown in

the table below, is with the Boston Housing data (Harrison Jr and Rubinfeld, 1978).

We focus only on the comparison of standard errors. Here, too, SEboot and SEsand are

mostly in agreement as they fall within less than 2% of each other, an exception being

CRIM with a deviation of about 10%. By contrast, SEboot and SEsand are larger than

their linear models cousin SElin by a factor of about 2 for RM and LSTAT, and about

1.5 for the intercept and the dummy variable CHAS. On the opposite side, SEboot and

7



SEsand are only a fraction of about 0.73 of SElin for TAX. Also worth stating is that for

several predictors there is no substantial discrepancy among all three standard errors,

namely ZN, NOX, B, and even for CRIM, SElin falls between the somewhat discrepant

values of SEboot and SEsand.

Table 2: Regression coefficients along with their standard errors estimated by

different means.

β̂j SElin SEboot SEsand
SEboot
SElin

SEsand
SElin

SEsand
SEboot

tlin tboot tsand

(Intercept) 36.459 5.103 8.038 8.145 1.575 1.596 1.013 7.144 4.536 4.477

CRIM -0.108 0.033 0.035 0.031 1.055 0.945 0.896 -3.287 -3.115 -3.478

ZN 0.046 0.014 0.014 0.014 1.005 1.011 1.006 3.382 3.364 3.345

INDUS 0.021 0.061 0.051 0.051 0.832 0.823 0.990 0.334 0.402 0.406

CHAS 2.687 0.862 1.307 1.310 1.517 1.521 1.003 3.118 2.056 2.051

NOX -17.767 3.820 3.834 3.827 1.004 1.002 0.998 -4.651 -4.634 -4.643

RM 3.810 0.418 0.848 0.861 2.030 2.060 1.015 9.116 4.490 4.426

AGE 0.001 0.013 0.016 0.017 1.238 1.263 1.020 0.052 0.042 0.042

DIS -1.476 0.199 0.214 0.217 1.075 1.086 1.010 -7.398 -6.882 -6.812

RAD 0.306 0.066 0.063 0.062 0.949 0.940 0.990 4.613 4.858 4.908

TAX -0.012 0.004 0.003 0.003 0.736 0.723 0.981 -3.280 -4.454 -4.540

PTRATIO -0.953 0.131 0.118 0.118 0.899 0.904 1.005 -7.283 -8.104 -8.060

B 0.009 0.003 0.003 0.003 1.026 1.009 0.984 3.467 3.379 3.435

LSTAT -0.525 0.051 0.100 0.101 1.980 1.999 1.010 -10.347 -5.227 -5.176

Important messages are the following: (1) SEboot and SEsand are in substantial

agreement; (2) SElin on the one hand and {SEboot, SEsand} on the other hand can show

substantial discrepancies; (3) these discrepancies are specific to predictors. In what

follows we describe how the discrepancies arise from nonlinearities in the conditional

mean and/or heteroskedasticities in the conditional variance of the response given the

predictors. Furthermore, it will turn out that SEboot and SEsand are asymptotically

correct while SElin is not.

2.4 Populations and Targets of Estimation

Before we compare standard errors it is necessary to define targets of estimation in

a semi-parametric framework. Targets of estimation will no longer be parameters

in a generative model but statistical functionals that are well-defined for a large

8



nonparametric class of data distributions. A seminal work that inaugurated this

approach is P.J. Huber’s 1967 article whose title is worth citing in full: “The behavior

of maximum likelihood estimation under nonstandard conditions.” The “nonstandard

conditions” are essentially arbitrary distributions for which certain moments exist.

A population view of regression with random predictors has as its ingredients

random variables X1, ..., Xp and Y , where Y is singled out as the response. At this

point the only assumption is that these variables have a joint distribution

P = P (dy, dx1, ..., dxp)

whose second moments exist and whose predictors have a full rank covariance matrix.

We write

~X = (1, X1, ..., Xp)
T .

for the column random vector consisting of the predictor variables with a constant 1

prepended to accommodate an intercept term. Values of the random vector ~X will

be denoted by lower case ~x = (1, x1, ..., xp)
T . We write any function f(X1, ..., Xp) of

the predictors equivalently as f( ~X) because the prepended constant 1 is irrelevant.

Correspondingly we also use the notations

P = P (dy, d~x), P (d~x), P (dy | ~x) or P = P Y, ~X , P ~X , P Y | ~X (2.2)

for the joint distribution of (Y, ~X), the marginal distribution of ~X, and the condi-

tional distribution of Y given ~X, respectively. Nonsingularity of the predictor covari-

ance matrix is equivalent to nonsingularity of the cross-moment matrix E[ ~X ~X
T

].

Among functions of the predictors, a special one is the best L2(P ) approximation

9



to the response Y , which is the conditional expectation of Y given ~X:

µ( ~X) := argminf( ~X)∈L2(P )E[(Y − f( ~X))2] = E[Y | ~X ] . (2.3)

This is sometimes called the “conditional mean function” or the “response surface”.

Importantly we do not assume that µ( ~X) is a linear function of ~X.

Among linear functions l( ~X) = βT ~X of the predictors, one stands out as the best

linear L2(P ) or population LS linear approximation to Y :

β(P ) := argminβ∈IRp+1E[(Y − βT ~X)2] = E[ ~X ~X
T

]−1E[ ~XY ] . (2.4)

The right hand expression follows from the normal equations E[ ~X ~X
T

]β−E[ ~XY ] =

0 that are the stationarity conditions for minimizing the population LS criterion

E[(Y − βT ~X)2] = −2βTE[ ~XY ] + βTE[ ~X ~X
T

]β + const.

By abuse of terminology, we use the expressions “population coefficients” for β(P )

and “population approximation” for β(P )T ~XWe will often write β, omitting the

argument P when it is clear from the context that β = β(P ).

The population coefficients β = β(P ) form a statistical functional that is de-

fined for a large class of data distributions P . The question of how β(P ) relates to

coefficients in the classical linear model (2.1) will be answered in Section 2.6.

The population coefficients β(P ) provide also the best linear L2(P ) approximation

to µ( ~X):

β(P ) = argminβ∈IRp+1E[(µ( ~X)− βT ~X)2] = E[ ~X ~X
T

]−1E[ ~Xµ( ~X) ] . (2.5)

This fact shows that β(P ) depends on P only in a limited way, as will be spelled out

below.
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The response Y has the following natural decompositions:

Y = βT ~X + (µ( ~X)− βT ~X)︸ ︷︷ ︸+ (Y − µ( ~X)︸ ︷︷ ︸
= βT ~X + η( ~X) + ε︸ ︷︷ ︸
= βT ~X + δ

(2.6)

These equalities define the random variable η = η( ~X), called “nonlinearity”, and ε,

called “error” or “noise”, as well δ = ε + η, for which there is no standard term so

that “linearity deviation” may suffice. Unlike η = η( ~X), the error ε and the linearity

deviation δ are not functions of ~X alone; if there is a need to refer to the conditional

distribution of either given ~X, we may write them as ε| ~X and δ| ~X, respectively.

The error ε is not assumed homoskedastic, and indeed its conditional distributions

P (dε| ~X) can be quite arbitrary except for being centered and having second moments

almost surely:

E[ ε | ~X]
P
= 0, σ2( ~X) := V [ ε | ~X] = E[ ε2 | ~X]

P
< ∞. (2.7)

We will also need a quantity that describes the total conditional variation of the

response around the LS linear function:

m2( ~X) := E[ δ2 | ~X] = σ2( ~X) + η2( ~X). (2.8)

We refer to it as the “conditional mean squared error” of the population LS function.

Equations (2.6) above can be given the following semi-parametric interpretation:

µ( ~X)︸ ︷︷ ︸ = βT ~X︸ ︷︷ ︸ + η( ~X)︸ ︷︷ ︸
semi-parametric part parametric part nonparametric part

(2.9)
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The purpose of linear regression is to extract the parametric part of the response

surface and provide statistical inference for the parameters even in the presence of a

nonparametric part.

To make the decomposition (2.9) identifiable one needs an orthogonality con-

straint:

E[ (βT ~X) η( ~X) ] = 0.

For η( ~X) as defined above, this equality follows from the more general fact that the

nonlinearity η( ~X) is uncorrelated with all predictors. Because we will need similar

facts for ε and δ as well, we state them all at once:

E[ ~X η ] = 0, E[ ~X ε ] = 0, E[ ~X δ ] = 0. (2.10)

Proofs: The nonlinearity η is uncorrelated with the predictors because it is the pop-

ulation residual of the regression of µ( ~X) on ~X according to (2.5). The error ε is

uncorrelated with ~X because E[ ~Xε] = E[ ~XE[ε| ~X]] = 0. Finally, δ is uncorrelated

with ~X because δ = η + ε.

While the nonlinearity η = η( ~X) is uncorrelated with the predictors, it is not

independent from them as it still is a function of them. By comparison, the error ε

as defined above is not independent of the predictors either, but it enjoys a stronger

orthogonality property than η: E[ g( ~X) ε ] = 0 for all g( ~X) ∈ L2(P ).

It is important to note that β(P ) does not depend on the predictor distribution if

and only if µ( ~X) is linear. More precisely, for a fixed measurable function µ0(~x) con-

sider the class of data distributions P for which µ0(.) is a version of their conditional

mean function: E[Y | ~X] = µ( ~X)
P
= µo( ~X). In this class we have:

µ0(.) is nonlinear =⇒ ∃P 1,P 2 : β(P 1) 6= β(P 2),

µ0(.) is linear =⇒ ∀P 1,P 2 : β(P 1) = β(P 2).

12



(For proof details, see Appendix 2.12.1.) Two population LS lines for two different

predictor distributions may differ when the conditional response is nonlinear, while

they will be identical when it is linear in the covariates.

In the presence of nonlinearity the LS functional β(P ) depends on the predictor

distribution, hence the predictors are not ancillary for β(P ).

2.5 Observational Datasets and Estimation

The term “observational data” means in this context “cross-sectional data” con-

sisting of i.i.d. cases (Yi, Xi,1, ..., Xi,p) drawn from a joint multivariate distribution

P (dy, dx1, ..., dxp) (i = 1, 2, ..., N). We collect the predictors of case i in a column

(p + 1)-vector ~X i = (1, Xi,1, ..., Xi,p)
T , prepended with 1 for an intercept. We stack

the N samples to form random column N -vectors and a random predictor N×(p+1)-

matrix:

Y =



Y1

..

..

YN


, Xj =



X1,j

..

..

XN,j


, X = [1,X1, ...,Xp] =



~X
T

1

...

...

~X
T

N


.

Similarly we stack the values µ( ~X i), η( ~X i), εi = Yi − µ( ~X i), δi, and σ( ~X i) to form

random column N -vectors:

µ =



µ( ~X1)

..

..

µ( ~XN)


, η =



η( ~X1)

..

..

η( ~XN)


, ε =



ε1

..

..

εN


, δ =



δ1

..

..

δN


, σ =



σ( ~X1)

..

..

σ( ~XN)


. (2.11)
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The definitions of η( ~X), ε and δ in (2.6) translate to vectorized forms:

η = µ−Xβ, ε = Y − µ, δ = Y −Xβ. (2.12)

It is important to keep in mind the distinction between population and sample prop-

erties. In particular, the N -vectors δ, ε and η are not orthogonal to the predictor

columns Xj in the sample. Writing 〈·, ·〉 for the usual Euclidean inner product on

IRN , we have in general 〈δ,Xj〉 6= 0, 〈ε,Xj〉 6= 0, 〈η,Xj〉 6= 0, even though the asso-

ciated random variables are orthogonal to Xj in the population: E[ δXj] = E[ εXj]

= E[ η( ~X)Xj] = 0.

The sample linear LS estimate of β is the random column (p+ 1)-vector

β̂ = (β̂0, β̂1, ..., β̂p)
T = argminβ̃ ‖Y −Xβ̃‖

2 = (XTX)−1XTY . (2.13)

Randomness stems from both the random response Y and the random predictors

in X. Associated with β̂ are the following:

the hat or projection matrix: H = X(XTX)−1XT ,

the vector of LS fits: Ŷ = Xβ̂ = HY ,

the vector of residuals: r = Y −Xβ̂ = (I −H)Y .

The vector r of residuals is of course distinct from the vector δ = Y −Xβ as the

latter arises from β = β(P ).
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2.6 Decomposition of the LS Estimate According

to Two Sources of Variation

When the predictors are random and linear regression is interpreted semi-parametrically

as the extraction of the linear part of a nonlinear response surface, the sampling vari-

ation of the LS estimate β̂ can be additively decomposed into two components: one

component due to error ε and another component due to nonlinearity interacting with

randomness of the predictors. This decomposition is a direct reflection of the decom-

position δ = ε + η, according to (2.6) and (2.12). We give elementary asymptotic

normality statements for each part of the decomposition. The relevance of the decom-

position is that it explains what the pairs bootstrap estimates, while the associated

asymptotic normalities are necessary to justify the pairs bootstrap.

In the classical linear models theory, which is conditional on X, the target of

estimation is E[β̂|X]. When X is treated as random and nonlinearity is permitted,

the target of estimation is the population LS solution β = β(P ) defined in (2.4). In

this case, E[β̂|X] is a random vector that sits between β̂ and β:

β̂ − β = (β̂ −E[β̂|X]) + (E[β̂|X]− β) (2.14)

This decomposition corresponds to the decomposition δ = ε + η as the following

lemma shows.

Definition and Lemma: The following quantities will be called “Estimation Offsets”

or “EO” for short, and they will be prefixed as follows:

Total EO : β̂ − β = (XTX)−1XTδ,

Error EO : β̂ −E[ β̂|X] = (XTX)−1XTε,

Nonlinearity EO : E[ β̂|X]− β = (XTX)−1XTη.

(2.15)
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This follows immediately from the decompositions (2.12), ε = Y − µ, η = µ−Xβ,

δ = Y −Xβ, and these facts:

β̂ = (XTX)−1XTY , E[ β̂|X] = (XTX)−1XTµ, β = (XTX)−1XT (Xβ).

The first equality is the definition of β̂, the second uses E[Y |X] = µ, and the third

is a tautology.

The variance/covariance matrix of β̂ has a canonical decomposition with regard

to conditioning on X:

V [ β̂ ] = E[V [ β̂ |X]] + V [E[ β̂ |X]]. (2.16)

This decomposition reflects the estimation decomposition (2.14) and δ = ε + η in

view of (2.15):

V [ β̂ ] = V [ (XTX)−1XTδ ] , (2.17)

E[V [ β̂ |X]] = E[V [ (XTX)−1XTε |X] ] , (2.18)

V [E[ β̂ |X]] = V [ (XTX)−1XTη ] . (2.19)

(Note that in general E[ (XTX)−1XTη ] 6= 0 even though E[XTη ] = 0 and hence

(XTX)−1XTη −→ 0 a.s.)

2.7 Assumption-Lean Central Limit Theorems

The three EOs arise from the decomposition δ = ε+η (2.6). The respective CLTs draw

on the analogous conditional second moment decomposition m2( ~X) = σ2( ~X)+η2( ~X)

(2.8). The asymptotic variance/covariance matrices have the well-known sandwich
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form:

Proposition: The three EOs follow central limit theorems under usual multivariate

CLT assumptions:

N1/2 (β̂ − β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ δ2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

(2.20)

N1/2 (β̂ −E[ β̂|X])
D−→ N

(
0, E[ ~X ~X

T
]−1E[ ε2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

(2.21)

N1/2 (E[ β̂|X]− β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ η2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

(2.22)

Proof Outline: The three cases follow the same way; we consider the first. Using

E[ δ ~X ] = 0 from (2.10) we have:

N1/2 (β̂ − β) =
(

1
N
XTX

)−1
(

1

N1/2
XTδ

)
=

(
1
N

∑
~X i
~X
T

i

)−1 (
1

N1/2

∑
~X i δi

)
D−→ E[ ~X ~X

T
]−1N

(
0,E[ δ2 ~X ~X

T
]
)

= N
(
0,E[ ~X ~X

T
]−1E[ δ2 ~X ~X

T
]E[ ~X ~X

T
]−1
)
,

(2.23)

The proposition can be specialized in a few ways to cases of partial or complete

well-specification:

� First order well-specification: When there is no nonlinearity, η( ~X)
P
= 0,

then

N1/2 (β̂ − β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ ε2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

The sandwich form of the asymptotic variance/covariance matrix is solely due

to heteroskedasticity.
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� First and second order well-specification: When additionally homoskedas-

ticity holds, σ2( ~X)
P
= σ2, then

N1/2 (β̂ − β)
D−→ N

(
0, σ2E[ ~X ~X

T
]−1
)

The familiar simplified form is asymptotically valid under first and second order

well-specification but without the assumption of Gaussian errors.

� Deterministic nonlinear response: σ2( ~X)
P
= 0, then

N1/2 (β̂ − β)
D−→ N

(
0, E[ ~X ~X

T
]−1E[ η2 ~X ~X

T
] E[ ~X ~X

T
]−1
)

The sandwich form of the asymptotic variance/covariance matrix is solely due

to nonlinearity and random predictors.

2.8 The Sandwich Estimator and the M-of-N Pairs

Bootstrap

Empirically one observes that standard error estimates obtained from the pairs boot-

strap and from the sandwich estimator are generally close to each other. This is

intuitively unsurprising as they both estimate the same asymptotic variances. A

closer connection between them will be established below.

2.8.1 The Plug-In Sandwich Estimator of Asymptotic Vari-
ance

The simplest form of the sandwich estimator of asymptotic variance is the plug-in

version of the asymptotic variance as it appears in the CLT of (2.20), replacing the

hard-to-estimate quantity m2( ~X) with the easy-to-estimate quantity δ2 = (Y −β ~X)2
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according to (2.20). For plug-in one estimates the population expectations E[ ~X ~X
T

]

and E[ (Y − ~X
T
β) ~X ~X

T
] with sample means and the population parameter β with

the LS estimate β̂. For this we use the notation Ê[...] to express sample means:

Ê[ ~X ~X
T

] = 1
N

∑
i=1...N

~X i
~X
T

i = 1
N

(XTX)

Ê[ (Y − ~Xβ̂)2 ~X ~X
T

] = 1
N

∑
i=1...N(Yi − ~X iβ̂)2 ~X i

~X
T

i = 1
N

(XTD2
rX),

where D2
r is the diagonal matrix with squared residuals r2

i = (Yi − ~X iβ̂)2 in the

diagonal. With this notation the simplest and original form of the sandwich estimator

of asymptotic variance can be written as follows (White, 1980b):

ÂVsand := Ê[ ~X ~X
T

]−1 Ê[ (Y − ~X
T
β̂)2 ~X ~X

T
] Ê[ ~X ~X

T
]−1 (2.24)

The sandwich standard error estimate for the j’th regression coefficient is therefore

defined as

ŜEsand(β̂j) :=
1

N1/2
(ÂVsand)

1/2
jj . (2.25)

2.8.2 The M-of-N Pairs Bootstrap Estimator of Asymptotic
Variance

To connect the sandwich estimator (2.24) to its bootstrap counterpart we need the

M -of-N bootstrap whereby the resample size M is allowed to differ from the sample

size N . It is at this point important not to confuse

� M -of-N resampling with replacement, and

� M -out-of-N subsampling without replacement.

In resampling the resample size M can be any M < ∞, whereas for subsampling it

is necessary that the subsample size M satisfy M < N . We are here concerned with
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bootstrap resampling, and we will focus on the extreme case M � N , namely, the

limit M →∞.

Because resampling is i.i.d. sampling from some distribution, there holds a CLT

as the resample size grows, M → ∞. It is immaterial that in this case the sampled

distribution is the empirical distribution PN of a given dataset {( ~X i, Yi)}i=1...N , which

is frozen of size N as M →∞.

Proposition: For any fixed dataset of size N , there holds a CLT for the M-of-N

bootstrap as M → ∞. Denoting by β∗M the LS estimate obtained from a bootstrap

resample of size M , we have

M1/2 (β∗M−β̂)
D−→ N

(
0, Ê[ ~X ~X

T
]−1 Ê[ (Y − ~X

T
β̂)2 ~X ~X

T
] Ê[ ~X ~X

T
]−1
)

(M →∞).

(2.26)

This is a straight application of the CLT of the previous section to the empirical

distribution rather than the actual distribution of the data, where the middle part

(the “meat”) of the asymptotic formula is based on the empirical counterpart r2
i =

(Yi − ~X
T

i β̂)2 of δ2 = (Y − ~X
T
β)2. A comparison of (2.24) and (2.26) results in the

following:

Observation:The sandwich estimator (2.24) is the asymptotic variance estimated by

the limit of the M-of-N pairs bootstrap as M →∞ for a fixed sample of size N .

2.9 Adjusted Predictors

The adjustment formulas of this section serve to express the slopes of multiple re-

gressions as slopes in simple regressions using adjusted single predictors. The goal

is to analyze the discrepancies between the proper and improper standard errors of

regression estimates in subsequent sections.
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2.9.1 Adjustment formulas for the population

To express the population LS regression coefficient βj = βj(P ) as a simple regression

coefficient, let the adjusted predictorXj• be defined as the “residual” of the population

regression of Xj, used as the response, on all other predictors. In detail, collect all

other predictors in the random p-vector ~X−j = (1, X1, ..., Xj−1, Xj+1, ..., Xp)
T , and

let βj• be the coefficient vector from the regression of Xj onto ~X−j:

βj• = argminβ̃∈IRp E[ (Xj − β̃
T ~X−j)

2] = E[ ~X−j
~X
T

−j]
−1E[ ~X−jXj] .

The adjusted predictor Xj• is the residual from this regression:

Xj• = Xj − βTj• ~X−j . (2.27)

The representation of βj as a simple regression coefficient is as follows:

βj =
E[Y Xj•]

E[Xj•
2]

=
E[µ( ~X)Xj•]

E[Xj•
2]

. (2.28)

2.9.2 Adjustment formulas for samples

To express estimates of regression coefficients as simple regressions, collect all predic-

tor columns other thanXj in aN×p random predictor matrixX−j = (1, ...,Xj−1,Xj+1, ...)

and define

β̂j•̂ = argminβ̃ ‖Xj −X−jβ̃‖2 = (XT
−jX−j)

−1XT
−jXj .
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Using the notation “̂•” to denote sample-based adjustment to distinguish it from

population-based adjustment “•”, we write the sample-adjusted predictor as

Xj•̂ = Xj −X−jβ̂j•̂ = (I −H−j)Xj . (2.29)

where H−j = X−j(X
T
−jX−j)

−1XT
−j is the associated projection or hat matrix. The

j’th slope estimate of the multiple linear regression of Y on X1, ...,Xp can then

be expressed in the well-known manner as the slope estimate of the simple linear

regression without intercept of Y on Xj•̂:

β̂j =
〈Y ,Xj•̂〉
‖Xj•̂‖2

. (2.30)

With the above notation we can make the following distinctions: Xi,j• refers to

the i’th i.i.d. replication of the population-adjusted random variable Xj•, whereas

Xi,j•̂ refers to the i’th component of the sample-adjusted random column Xj•̂. Note

that the former, Xi,j•, are i.i.d. for i = 1, ..., N , whereas the latter, Xi,j•̂, are not be-

cause sample adjustment introduces dependencies throughout the components of the

random N -vector Xj•̂. As N →∞ for fixed p, however, this dependency disappears

asymptotically, and we have for the empirical distribution of the values {Xi,j•̂}i=1...N

the obvious convergence in distribution:

{Xi,j•̂}i=1...N
D−→ Xj•

D
= Xi,j• (N →∞).

2.9.3 Adjustment Formulas for Decompositions and Their
CLTs

The vectorized formulas for estimation offsets (2.14) have the following component

analogs:
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Total EO : β̂j − βj =
〈Xj•̂, δ〉
‖Xj•̂‖2

,

Error EO : β̂j −E[ β̂j|X] =
〈Xj•̂, ε〉
‖Xj•̂‖2

,

Nonlinearity EO : E[ β̂j|X]− βj =
〈Xj•̂,η〉
‖Xj•̂‖2

.

(2.31)

Asymptotic normality can also be expressed for each β̂j separately using population

adjustment:

Corollary:

N1/2(β̂j − βj)
D−→ N

(
0,
E[m2( ~X)Xj•

2]

E[Xj•
2]2

)
= N

(
0,
E[ δ2Xj•

2]

E[Xj•
2]2

)

N1/2(β̂j −E[ β̂j|X])
D−→ N

(
0,
E[σ2( ~X)Xj•

2]

E[Xj•
2]2

)

N1/2(E[ β̂j|X]− βj)
D−→ N

(
0,
E[ η2( ~X)Xj•

2]

E[Xj•
2]2

)
(2.32)

2.10 Proper and Improper Asymptotic Variances

Expressed with Adjusted Predictors

The following prepares the ground for an asymptotic comparison of linear models

standard errors with correct assumption-lean standard errors. We know the former

to be potentially incorrect, hence a natural question is this: by how much can linear

models standard errors deviate from valid assumption-lean standard errors? We look

for an answer in the asymptotic limit, which frees us from issues related to how the

standard errors are estimated.
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Here is generic notation that can be used to describe the proper asymptotic vari-

ance of β̂j as well as its decomposition into components due to error and due to

nonlinearity:

Definition:
AV

(j)
lean(f 2( ~X)) :=

E[ f 2( ~X)Xj•
2]

E[Xj•
2]2

(2.33)

The proper asymptotic variance of β̂j and its decomposition is therefore according to

(2.32)

AV
(j)
lean(m2( ~X)) = AV

(j)
lean(σ2( ~X)) + AV

(j)
lean(η2( ~X))

E[m2( ~X)Xj•
2]

E[Xj•
2]2

=
E[σ2( ~X)Xj•

2]

E[Xj•
2]2

+
E[ η2( ~X)Xj•

2]

E[Xj•
2]2

(2.34)

The next step is to derive an asymptotic form for the conventional standard error

estimate in the assumption-lean framework. This asymptotic form will have the

appearance of an asymptotic variance but it is valid only in the assumption-loaded

framework of first and second order well-specification. This “improper” standard

error depends on an estimate σ̂2 of the error variance, usually σ̂2 = ‖Y −Xβ̂‖2/(N−

p−1). In an assumption-lean context, with both heteroskedastic error variance and

nonlinearity, σ̂2 has the following limit:

σ̂2 N→∞−→ E[m2( ~X) ] = E[σ2( ~X) ] +E[ η2( ~X) ]

Standard error estimates are therefore given by

V̂ lin[ β̂ ] = σ̂2 (XTX)−1, ŜE
2

lin[ β̂j] =
σ̂2

‖Xj•̂‖2
. (2.35)
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Their scaled limits are (a.s.) under usual assumptions as follows:

N V̂ lin[ β̂ ]
N→∞−→ E[m2( ~X) ] E[ ~X ~X

T
]−1, N ŜE

2

lin[ β̂j]
N→∞−→ E[m2( ~X) ]

E[X2
j• ]

.

(2.36)

These are the asymptotic expressions that describe the limiting behavior of linear

models standard errors in an assumption-lean context. Even though they are not

proper asymptotic variances except in an assumption-loaded context, they are in-

tended and used as such. We introduce the following generic notation for improper

asymptotic variance where f 2( ~X) is again a placeholder for any one among m2( ~X),

σ2( ~X) and η2( ~X):

Definition:
AV

(j)
lin (f 2( ~X)) :=

E[ f 2( ~X)]

E[Xj•
2]

(2.37)

Here is the improper asymptotic variance of β̂j and its decomposition into components

due to error and nonlinearity:

AV
(j)
lin (m2( ~X)) = AV

(j)
lin (σ2( ~X)) + AV

(j)
lin (η2( ~X))

E[m2( ~X)]

E[Xj•
2]

=
E[σ2( ~X)]

E[Xj•
2]

+
E[ η2( ~X)]

E[Xj•
2]

(2.38)

We examine next the discrepancies between proper and improper asymptotic vari-

ances.

2.10.1 Comparison of Proper and Improper Asymptotic Vari-
ances

It will be shown that the conventional asymptotic variances can be too small or too

large to unlimited degrees compared to the proper marginal asymptotic variances. A

comparison of asymptotic variances can be done separately for σ2( ~X), η2( ~X) and
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m2( ~X). To this end we form the ratios RAVj(...) as follows:

Definition and Lemma: Ratios of Proper and Improper Asymptotic Variances

RAVj(m
2( ~X)) :=

AV
(j)
lean(m2( ~X))

AV
(j)
lin (m2( ~X))

=
E[m2( ~X)Xj•

2]

E[m2( ~X)]E[Xj•
2]

RAVj(σ
2( ~X)) :=

AV
(j)
lean(σ2( ~X))

AV
(j)
lin (σ2( ~X))

=
E[σ2( ~X)Xj•

2]

E[σ2( ~X)]E[Xj•
2]

RAVj(η
2( ~X)) :=

AV
(j)
lean(η2( ~X))

AV
(j)
lin (η2( ~X))

=
E[η2( ~X)Xj•

2]

E[η2( ~X)]E[Xj•
2]

(2.39)

The second equality on each line follows from (2.38) and (2.34). The ratios in (2.39)

express by how much the improper conventional asymptotic variances need to mul-

tiplied to match the proper asymptotic variances. Among the three ratios the rel-

evant one for the overall comparison of improper conventional and proper inference

is RAVj(m
2( ~X)). For example, if RAVj(m

2( ~X)) = 4, say, then, for large sample

sizes, the correct marginal standard error of β̂j is about twice as large as the incorrect

conventional standard error. In general RAVj expresses the following:

� If RAVj(m
2( ~X)) = 1, the conventional standard error for β̂j is asymptotically

correct;

� if RAVj(m
2( ~X)) > 1, the conventional standard error for βj is asymptotically

too small/optimistic;

� if RAVj(m
2( ~X)) < 1, the conventional standard error for βj is asymptotically

too large/pessimistic.

The ratiosRAVj(σ
2( ~X)) andRAVj(η

2( ~X)) express the degrees to which heteroskedas-

ticity and/or nonlinearity contribute asymptotically to the defects of conventional

standard errors.
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2.10.2 Meaning and Range of the RAV

Observations:

(a) If Xj• has unbounded support on at least one side, that is, if P [Xj•
2 > t] > 0 ∀t >

0, then

sup
f
RAVj(f

2( ~X)) =∞ . (2.40)

(b) If the closure of the support of the distribution of Xj• contains zero but there is

no pointmass at zero, that is, if P [Xj•
2 < t] > 0 ∀t > 0 but P [Xj•

2 = 0] = 0, then

inf
f
RAVj(f

2( ~X)) = 0 . (2.41)

Even though the RAV is not a correlation, it is nevertheless a measure of associ-

ation between f 2( ~X) and Xj•
2:

� Heteroskedasticities σ2( ~X) with large average variance E[σ2( ~X) |Xj•
2] in the

tail of Xj•
2 imply an upward contribution to the overall RAVj(m

2( ~X)); het-

eroskedasticities with large average variance concentrated near Xj•
2 = 0 imply

a downward contribution to the overall RAVj(m
2( ~X)).

� Nonlinearities η2( ~X) with large average valuesE[η2( ~X) |Xj•
2] in the tail ofXj•

2

imply an upward contribution to the overall RAVj(m
2( ~X)); nonlinearities with

large average values concentrated near Xj•
2 = 0 imply a downward contribution

to the overall RAVj(m
2( ~X)).

2.11 Discussion

We compared statistical inference from classical linear models theory with inference

from assumption-lean semiparametric theory. The former is a finite-sample theory
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that relies on strong assumptions and treats the predictors as fixed even when they

are random, whereas the latter uses asymptotic theory that relies on few assumptions

and treats the predictors as random. At a practical level, inferences differ in the type

of standard error estimates they use: linear models theory is based on the “ususal”

standard error which is a scaled version of the error standard deviation, whereas

econometric theory is based on the so-called “sandwich standard error” which derives

from an assumption-lean asymptotic variance. We observe the following:

� As the semiparametric framework makes no demands on the correctness of the

linearity and homoskedasticity assumptions of linear models theory, a new in-

terpretation of the targets of estimation is needed: linear fits estimate the best

linear approximation to a usually nonlinear response surface.

� The discrepancies between standard errors from assumption-rich linear models

theory and assumption-lean econometric theory can be of arbitrary magnitude

in the asymptotic limit, but real data examples indicate discrepancies by a

factors of 2 to be common. This is obviously relevant because such factors can

change a t-statistic from significant to insignificant and vice versa.

� The pairs bootstrap is seen to be an alternative the sandwich estimate of stan-

dard error. In fact, the latter is the asymptotic limit in the M -of-N bootstrap

as M →∞.

28



2.12 Proofs

2.12.1 Proofs from Section 2.4

The linear case is trivial: if µ0( ~X) is linear, that is, µ0(~x) = βT~x for some β,

then β(P ) = β irrespective of P (d~x) according to (2.5). The nonlinear case is

proved as follows: For any set of points ~x1, ...~xp+1 ∈ IRp+1 in general position and

with 1 in the first coordinate, there exists a unique linear function βT~x through the

values of µ0(~xi). Define P (d~x) by putting mass 1/(p + 1) on each point; define the

conditional distribution P (dy | ~xi) as a point mass at y = µo(~xi); this defines P

such that β(P ) = β. Now, if µ0() is nonlinear, there exist two such sets of points

with differing linear functions βT1 ~x and βT2 ~x to match the values of µ0() on these

two sets; by following the preceding construction we obtain P 1 and P 2 such that

β(P 1) = β1 6= β2 = β(P 2).

2.12.2 Conditional Expectation of RSS

The conditional expectation of the RSS allowing for nonlinearity and heteroskedas-

ticity:

E[‖r‖2|X] = E[Y T (I −H)Y |X] (2.42)

= E[(Xβ + η + ε)′(I −H)(Xβ + η + ε)|X] (2.43)

= E[(η + ε)T (I −H)(η + ε)|X] (2.44)

= tr(E[(I −H)(η + ε)(η + ε)T |X]) (2.45)

= tr((I −H)(ηηT +E[εεT |X]) (2.46)

= tr((I −H)(ηηT +Dσ2) (2.47)

= |(I −H)η|2 + tr((I −H)Dσ2) (2.48)
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2.12.3 Limit of Squared Adjusted Predictors

The asymptotic limit of ‖Xj•̂‖2:

1

N
‖Xj•̂‖2 =

1

N
XT

j (I −H−j)Xj

=
1

N

(
XT

jXj −XT
jH−jXj

)
=

1

N
X2
i,j −

(
1

N

∑
Xi,j

~X
T

i,−j

)(∑
i

~X i,−j
~X
T

i,−j

)−1(∑
i

~X i,−jXi,j

)
P−→ E[X2

j ] − E[Xj
~X−j]E[ ~X−j

~X
T

−j]
−1E[ ~X−jXj]

= E[Xj•
2]

2.12.4 Asymptotic Normality in Terms of Adjustment

We gave the asymptotic limit of the conditional bias in vectorized form after (2.20)-

(2.22). Here we derive the equivalent element-wise limit using adjustment The vari-

ance of the conditional bias is the marginal inflator of SE.

N1/2(E[β̂j|X]− βj) = N1/2 〈Xj•,η〉
‖Xj•‖2

=
1

N1/2X
T
j η − 1

N1/2X
T
jH−jη

1
N
‖Xj•‖2

1

N1/2
XT

jH−jη =
1

N1/2
XT

jX−j(X
T
−jX−j)

−1XT
−jη

=

(
1

N

∑
i

Xi,j
~X
T

i,−j

)(
1

N

∑
i

~X i,−j
~X
T

i,−j

)−1

(
1

N1/2

∑
i

~X i,−jη( ~X i)

)
D
≈ E[Xj

~X−j]E[ ~X−j
~X
T

−j]

(
1

N1/2

∑
i

~X i,−jη( ~X i)

)

= βTj·

(
1

N1/2

∑
i

~X i,−jη( ~X i)

)
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=
1

N1/2

∑
i

(βTj· ~X i,−j)η( ~X i)

1

N1/2

(
XT

j η −XT
jH−jη

) D
≈ 1

N1/2

∑
i

(
Xi,j − βTj· ~X i,−j

)
η( ~X i)

D−→ N
(

0,V [(Xj − βTj· ~X−j)η( ~X)]
)

= N
(

0,V [Xj•η( ~X)]
)

N1/2(E[β̂j|X]− βj)
D−→ N

(
0,
V [Xj•η( ~X)]

E[Xj•
2]2

)
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3
Improved Precision in Estimating Average

Treatment Effects

3.1 Abstract

The Average Treatment Effect (ATE) is a global measure of the effectiveness of an

experimental treatment intervention. In the context of randomized trials, classical

methods of its estimation either ignore relevant covariates or do not fully exploit

them. Regression based adjustment has primarily considered covariates as fixed, or

the model as correctly specified. We relax these assumptions and present a method for

improving the precision of the ATE estimate: the treatment and control responses

are estimated via a regression, and information is pooled between the groups to

produce an asymptotically unbiased estimate. The respective statistical models are

thought only to estimate some linear approximation to the population response sur-

faces. Marginally valid standard errors are derived, and the estimator’s performance

is compared to a classical estimator. Conditions under which the regression-based

estimator is preferable are detailed, and demonstrations on real and simulated data

are presented.
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3.2 Introduction

In the study of randomized controlled trials (RCTs), the average treatment effect

(ATE) is a measure of an experimental intervention’s global effect on a study popula-

tion. For a treatment population T and control population C, the ATE is defined as

τ = E [T ]− E [C] for some measured response that can be continuous or categorical.

The parameter τ can be estimated in a multitude of ways, each estimator depending

on the sampling framework and model specification. The interpretation of and scope

of inference for the ATE parameter will depend on these choices.

Past work has followed two principal strands. The first, earliest investigations of

randomized experiments centered around finite, fixed populations, all of whose mem-

bers would be randomized into either treatment(s) (the number of treatments could

exceed one) or control groups; the random assignment furnished the randomness,

and inference extended only as far as to these subjects in the trial. The foundation

was thereby laid by Neyman, and subsequently developed by Rubin, for the notion

of “potential outcomes,” whose unbiased estimation represented the first attempt to

estimate some ATE (Splawa-Neyman et al., 1990)1. In this, earliest exploration of

the ATE, the scope of inference was the collection of units examined in the study

only. The Neyman framework has since evolved to accommodate a superpopulation

from which the experimental units are sampled (Imbens and Rubin, 2007).

More recent literature has aimed to improve the precision of the ATE estimates via

regression; whenever signal exists, the conditional variance of the response is reduced,

with attendant gains in efficiency. The conventional philosophy behind regression

adjustments in RCTs is appealing: not only does the ATE become a parameter of the

model, but the random discrepancies in empirical covariate distributions between the

1Neyman considered a series of plots in a field, on each of which one of several varieties of fertilizer
was applied; he wished to estimate the true average yield of the aggregated plots, even though the
individual plots were fertilized with only one variety
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treatment and control groups are adjusted away, and the essential difference between

treatment and control groups is retained. Some authors (Freedman, 2008) assume

the framework in which a true, generating model exists, which could be correctly and

completely specified via a regression equation. The estimating regression model in

practice, however, is often misspecified, and in this case covariance adjustment can

lead to undesirable consequences: in an influential critique, Freedman demonstrates

how regression-based ATE estimators can lead to reduced asymptotic precision, and

how they can be beset by small-sample bias. Often, fixed-X design is often implicitly

assumed, explicitly when inference is restricted to the sample at hand. Elsewhere, also

in the name of improving precision of the ATE estimate, knowledge of the population

mean of the covariate distribution is assumed (Lin, 2013). In this chapter we will

step aside from the finite sample Neyman framework within which Freedman offers

his analysis, and we will make fewer assumptions.

In our view, the posited statistical model rarely captures the data generating pro-

cess, and subjects’ covariates ought to be treated as random. We therefore argue for

an analysis of RCTs that places minimal assumptions on the population from which

data are generated, and assume only that there exists a joint distribution between

the covariates, the treatment indicator, and the response2. There exist best linear

approximations to the regression surfaces, derived through population least squares,

and these linear approximations are the targets of inference for the treatment and

control regressions. Considered this way, we derive efficient, asymptotically unbiased

estimates for the unconditional average difference between these surfaces. Such an ap-

proach, with minimal assumptions placed on the data generating mechanism, echoes

the work of (Yang and Tsiatis, 2001) and (Tsiatis et al., 2008). In this assumption-

2Fixed X is rarely reasonable in the context of RCTs: after patients have entered a clinical trial,
nobody seriously presumes that other, putative patients in the target population have the same
individual characteristics as the study subjects.
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lean framework, we derive an efficient ATE estimator for a more powerful test of the

ATE.

In section 2 we describe the assumptions that have underlain much of previous

work. In section 3 we define our perspective, define our estimator of the ATE, and

compare its performance to an alternate, simple estimator. Section 4 illustrates the

comparison on a dataset and investigates the behavior of our estimator via simulation.

Section 5 concludes.

3.3 Neyman Framework, Fixed X, True Models

Most pithily, the heart of Neyman’s paradigm can be described as a “repeated-

sampling randomization-based” method (Rubin, 1990). Of N subjects {Yi}1:N , fixed

once and for all, nT are assigned to the treatment group, and the remaining nC =

N − nT are exposed to the control condition. In subsequent hypothetical realiza-

tions of the experiment, another nT subjects out of the original N are exposed to

the treatment, and the remainder to the control. Each of the
(
N
nT

)
subsets has an

equal probability of being the “treated block” in any given experiment. Note that in

the thought experiment, the same, fixed nT number of units are assigned treatment,

rather than each of the n subjects being assigned treatment as a Bernoulli trial with

probability nT/n.

To each subject are associated two hypothetical states, one of which is observed

in practice3. These are called “potential outcomes,” and they refer to the (determin-

istic) response of the subject, had he been subjected to the treatment (or control)

condition. Let Yi(0) be the ith patient’s response under the control, and let Yi(1) be

the corresponding response under treatment. The ith patient’s unobserved treatment

3Of course, with multiple treatments, multiple states will be associated with each subject
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effect is defined as Yi(1)− Yi(0). The sample-ATE, known as SATE, is defined as

τS =
1

N

N∑
i=1

[Yi(1)− Yi(0)] (3.1)

and is estimated (w.l.o.g. let Y1, . . . YnT be treated) by

τ̂S =
1

nT

nT∑
i=1

Yi(1)− 1

nC

nC∑
i=1

Yi(0) (3.2)

τ̂S is an unbiased estimate of τS.

In the literature a complementary parameter exists, called the population average

treatment effect (PATE). Here the subjects under investigation are thought to have

been sample from a superpopulation. The parameter, if the potential outcomes were

known, would be computed similarly to the SATE, except the summation in (3.1)

would be taken not over the sample in question but over all subjects in the population.

In RCTs, where the desired scope of inference extends beyond the sample in question,

the PATE is the more logical parameter to estimate. The estimate will be more

variable: “sample selection error,” defined by ∆S = PATE − SATE, adds to the

uncertainty of the ATE estimate (Imbens, 2004), (Imai et al., 2008).

The attractiveness of this estimator described lies in its simplicity: at its core it

is just a difference of means. In the name of simplicity, however, potentially useful

subject specific characteristics are sacrificed. It can therefore be desirable to estimate

the ATE by way of regression: the intention behind this approach being to make more

precise the estimate of the ATE parameter by adjusting for the treated and control

units’ covariates. The conclusions are sensitive to the assumptions made about the

statistical model.

Freedman (Freedman, 2008), responding to its pervasiveness as an estimation

tool, specifically considers OLS. He calls the ATE parameter bITT , where ITT is the
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acronym for “intention to treat.4” bITT can be estimated via regression in several

ways. In the first, most simple and slightly contrived way, one regresses the response

on the treatment indicator only, and takes note of the indicator’s coefficient. This

is akin to measuring the difference of treated and control means. For testing the

equality of bITT to some value, usually 0, one employs the usual t-tests 5

One may then proceed to introduce covariates into the regression; the new co-

efficient of the treatment indicator, b̂ITT , is now the estimator of bITT . Freedman

demonstrates that while augmenting the design with covariates can improve the per-

formance of the estimator, it can worsen it as well (standard error is either increased

or decreased, depending on the data). What’s worse, the nominal standard error of

b̂ITT , in addition to the estimator itself, can be severely biased. The counterintu-

itive result arises because, as Freedman writes: “randomization does not justify the

assumptions behind the OLS model.” That is, the demands the Neyman paradigm

places on the nature of the data are not nearly as stringent as those imposed by OLS,

with its requirements of homoscedasticity, linearity, and fixed design.

A recent and interesting paper by (Lin, 2013) reacts to Freedman’s critique, works

in the Neyman paradigm, and reports the conditions under which regression adjust-

ment can give asymptotically valid coverage. His most trenchant point is that, by in-

cluding a full set of covariate-treatment indicator interactions in the regression model,

thereby allowing heterogeneous effects, OLS adjustment cannot worsen asymptotic

precision. In his formulation, the covariates, once observed, are fixed, and “random

assignment is the sole source of randomness in this model.” Another recent paper

(Imbens and Wooldridge, 2008) analyzes ATEs under more flexible circumstances,

4“Intention to treat” is described as “the effect of assigning everybody to treatment, minus the
effect of assigning them to control.”

5Interestingly, the usual t-tests assume the units to have been randomly sampled, but conclusions
are little affected when the assumption does not hold for a difference in means.(Freedman et al.,
1998)
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allowing covariates to have a distribution and assuming heterogeneous effects. The

authors present their useful results “assuming the linear regression model is correctly

specified.” (Samii and Aronow, 2012) compare the variances of the Neyman based and

sandwich based estimators of the variance of the ATE, although the jump between

fixed and random covariates is not obvious.

We come to similar conclusions, but after relaxing assumptions of proper specifica-

tion. We opt for a parallel framework, one which is not hidebound by the assumptions

behind OLS. We permit the subjects’ covariates to be drawn from a distribution, and

though we analyze through OLS, we do not assume that linear relationships hold in

the population. We, too, include a full set of covariate-treatment indicator interac-

tions to model heterogeneous effects. The assumption-lean model is described fully

in the following section.

3.4 Target of Estimation

In this formulation, nearly all quantities are random. Whereas in the earlier Ney-

man framework and that adopted by some authors, only the assignment of the nT

treated units is random – but not the subject pool (hence not the covariates), nor the

potential responses – now all that will remain fixed is the number of units assigned

to treatment, and the number to control.6 Subjects are not assigned treatment with

probability nT/N . Mathematically, subjects are sampled independently from an in-

finite population; which subjects are chosen will vary from sample to sample, as will

the observed covariates. The subjects of both the treatment and control groups are

all assumed to have been sampled at random from the same population – that is, at

the population level, the covariate distributions are the same for the two groups, and

6As before, the thought experiment requires, in the next realization of the experiment, for the
same nT number of subjects to be assigned treatment, and the remaining nC – control.
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assignment of treatment is independent of covariates. To better define the mathe-

matical target of inference, we include a condensed variant of the exposition in the

previous chapter.

Consider for now either the treated or the control population. Let the population

of subjects be described by the random variables X1, . . . , Xp, Y . Their joint distribu-

tion P = P (dx1, . . . , dxp, dy) has a full rank covariance matrix and four moments. ~X

= (1, X1, . . . , Xp)
′ is the random vector of the predictor variables. Finally, let µ( ~X)

be the conditional mean of Y at ~X: µ( ~X) = E
[
Y | ~X

]
. We relax OLS assumptions,

permitting, for example, predictor variables to be omitted, and do not require the

true response surface to be linear in the predictors. Indeed, the operating assumption

is that it is not. Instead, we work with a conditional mean that can be decomposed

into linear and non-linear components.

The linear component is thought of as the best linear approximation to the true

conditional response surface; its partial slopes are defined by β =
(
E
[
XXT

])−1 E [Xµ(X)],

where the expectation is over the joint distribution of the X and the Y . That β will

ultimately become a target of inference.

The difference between µ( ~X) and βT ~X is denoted by η( ~X), which is itself a

random variable. Our operating assumption is that η( ~X) will not be identically

equal to zero – that is, that non-linearity will be present in the population. In this

chapter, β is estimated in the usual least squares fashion: β̂ =
(
XTX

)−1
XTY .

The additional results relevant to this chapter are the following:

(a) N1/2(β̂−β) converges to a random variable with mean 0; β̂ is an asymptotically

unbiased estimator of β.

(b) In finite samples, β̂ may be a biased estimator of β.

With this background presented, we paint in more detail the particulars of how

responses might be adjusted for covariates, and what the targets of inference are.
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The formulation is more general than in (Yang and Tsiatis, 2001), for example, which

considers a baseline measurement of Y (as well as a treatment indicator) as the sole

covariates. The treatment and control responses, respectively, can be denoted in the

population by

Ti = β
(0)
T + ~X

′
T iβT + ηT ( ~X)i + εT i (3.3)

and, analagously,

Ci = β
(0)
C + ~X

′
CiβC + ηC( ~X)i + εCi (3.4)

The β(0) are the respective intercepts at the population level, and the β are the

respective vectors of population partial slopes. ~X
′
T is a random vector of treated

units’ covariates. Again, because we no longer assume that the response is linear in

the covariates, β
(0)
T + ~X

′
TβT should be thought of as the treated group’s best linear

approximation, at the population level, to E
[
T | ~X

]
. Therefore β

(0)
T and βT are popu-

lation parameters derived from population least squares regression and minimize the

expected squared distance between the linear surface and the true response surface.

The nonlinearity ηT ( ~X) is a random variable that represents the difference between

the true conditional mean of T and its best linear approximation in the population.

In equations:

ηT ( ~X) = E
[
T | ~X

]
− (β

(0)
T + ~X

′
TβT ) (3.5)

Similar facts hold for ηC( ~X). Certain other assumptions and comments are war-

ranted here.

(a) Errors. We place minimal demands on the errors: they should have zero mean;

because of iid sampling, they will be independent. Their distributional form is

unspecified, and we do not assume normality of errors. Their variances, however,
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we allow to differ: denote the treated and control error variances, respectively,

by σ2
T and σ2

C .

(b) Heterogeneity Note, also, that in the population slopes are not assumed to be

the same; we allow for heterogeneous effects. The nonlinearity random variables,

too, are allowed to differ between the treatment and control groups.

As detailed in (Buja et al., 2013), the target of estimation – the intercept and

slopes – should be estimated, even in the random X setting, by the classical least

squares estimators, and we shall do the same.

3.4.1 ATE definition through regression

We are going to re-express the ATE parameter through regression, thereby foreshad-

owing the proposed estimator. As mentioned in the introduction, and using the

notation developed above, the ATE is the difference between the population average

of the treated subjects and their control counterparts:

τ = E [T ]− E [C] (3.6)

Subtracting (3.4) from (3.3) and taking expectations, we see that

τ =
(
β

(0)
T − β

(0)
C

)
+ E

[
~XT

]
βT − E

[
~XC

]
βC (3.7)

Note that the non-linear components ηT ( ~X) and ηC( ~X) from (3.4) and (3.3) do

not appear in the equation above. Simply, they are both equal to zero in expectation

over the joint distribution of ~X and Y .7 It deserves mentioning that the β in preceding

7This is an interesting point, whose derivation is not central to the discussion, and is therefore
deferred to the appendix
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equations are derived from the best linear approximations to the response surface,

and may differ appreciably therefrom.

The careful reader will remark that we did not simplify fully, as E
[
~XT

]
= E

[
~XC

]
= E

[
~X
]
, since, according to our assumptions, the treated and control subjects are

drawn from the same population. And, indeed, (3.7) can be written as

τ =
(
β

(0)
T − β

(0)
C

)
+ E

[
~X
]

(βT − βC) (3.8)

We consciously write these two true statement separately. In (3.7), one is tempted

to estimate the respective expected values separately by the respective covariate

means of treatment and control groups. In (3.8) a single estimate will do, perhaps

through a mean of all observed covariates, both treated and control. There will be a

difference, in practice, and we wished to emphasize it now.

One more remark: when E
[
~X
]

= 0, then τ =
(
β

(0)
T − β

(0)
C

)
, and the ATE is just

the difference between the respective population intercepts. This formulation hints

at how we may wish to estimate the ATE from sample regressions.

All the while, we have represented the treatment and control regressions sepa-

rately, if only to emphasize that the two functional relations of covariates to the

responses need bear no relation to one another in order for an ATE to be properly

defined, and, later, estimated. A single regression formulation, with interactions, may

be more familiar. The response can be written as:

Yi = β(0) + β(T )IT + β′ ~X i + β(Int)IT ~X i + η( ~X)i + ITg( ~X)i + εi (3.9)

where g( ~X) is the difference in the treatment and control non-linearity functions.

Here IT is the treatment indicator at the population level; β(Int) is the vector in

which are collected the differences in coefficients found in the treatment and control
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regressions respectively. The linear approximation being the target of estimation,

we will restrict our attention to estimating the β. In equation (3.9) above, β(T ) is

precisely the ATE parameter when the covariate expectation is equal to 0.

3.4.2 ATE estimation

In this section we define two ATE estimators that can be derived from a random-

X regression. The first reduces to the most familiar difference in means estimator,

while the second borrows information across the treated and control groups. For both

estimators, we write the regression-derived expression that is equivalent to the ATE,

and then appeal to plug-in MLE estimates for the associated estimator.

(a) Difference in means estimator.

Recall this fact of elementary statistics: that there is one point through which

the least squares regression line must pass, and that that point the mean of the

predictors and the mean of the response: ŷ|x=x̄ = ȳ. So if we substitute ~̄XT

into the treatment regression, the estimated conditional response will be T̄ , an

unbiased estimate of E [T ]. In the same way we can find an unbiased estimate of

E [C], and, as a result, of the ATE. One must be very careful when estimating

the standard error of this quantity
[
β̂

(0)
T + ~̄XT β̂T

]
−
[
β̂

(0)
T + ~̄XT β̂T

]
, as we do

in section 4.3.

What we have done, in effect, by substituting the respective covariate means

into the separate regressions, is estimate E
[
~X
]

separately in the treatment and

the control regression, which is congruent with the decomposition in (3.7). But

the winding path leads back to response sample means – to compute them no

regressions need to have been run, no covariates measured. The lesson here is

that for our purposes, controlling for covariates loses its appeal and effectiveness
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if no information is shared between the treatment and the control groups.

(b) A strictly regression derived estimator.

Alternatively, E
[
~X
]

can – and in most cases should – be estimated not sepa-

rately as above, twice, but rather once, by the complete set of the pooled covari-

ates. It should be estimated at the mean of all covariates,
(
nT ~̄XT + nC ~̄XC

)
/N .

The efficiency gains will be seen in section 4.2. This approach is more congruent

with (3.8), so that, substituting the single estimate into (3.7), we find that

τ̂regression =
(
β̂

(0)
T − β̂

(0)
C

)
+
nT ~̄XT + nC ~̄XC

N

(
β̂T − β̂C

)

The estimator is invariant to location – a shift of the empirical covariate dis-

tribution does not change the value of τ̂regression, so for the sake of appealing

interpretability, we mean center the covariates. Note that we mean-center with

respect to the common, pooled mean, so that
(
~XT

)
i

∗
=
(
~XT

)
i
− ~̄X, with(

~XT

)
i

∗
defined similarly. We thereby estimate the ATE for a covariate distri-

bution with expectation equal to 0. From this we learn that the ATE can be

estimated simply, via

τ̂regression =
(
β̂
∗(0)
T − β̂∗(0)

C

)
(3.10)

Theorem 3.4.1 τ̂regression is an asymptotically unbiased estimate of τ .

Corollary 3.4.2 E [τ̂regression] = τ when

(a) The population response is linear in the covariates, and all covariates have

been included in the statistical model, or

(b) E [T |X] = E [C|X] + k, and nT = nC, where k ∈ R.
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That is, if the treatment and control response functions are offset by a constant,

then τ̂regression will be unbiased exactly, so long as the treatment and control sam-

ple sizes are equal. When they are unequal, the result continues to hold when

the units are inversely reweighted. The proofs are deferred to the appendix.

The difference in intercepts (from a mean centered regression) enriches our

understanding of the relationship between a single regression with interaction

terms, and one without. In a single regression with no interactions, the ATE

can be estimated via the least squares regression coefficient of the treatment

indicator, which represents the constant gap between the treatment and control

response surfaces. It is the difference of intercepts (that is, at ~X = 0), but it is

also the difference in responses at any arbitrary ~X value, the difference being

constant. In a single regression with interaction, the gap between the response

surfaces is allowed to vary, and depends on the location of those covariates in-

teracting with the treatment indicator. What then, is the estimated ATE in the

regression with interactions? It, too, is the coefficient of the treatment indica-

tor. But how else can the treatment indicator be represented and understood?

It, too, is equal to the estimated difference in intercepts. Why intercepts? In-

tercepts are what are left when the regression is evaluated at 0; and since we

are evaluating at the average of the (pooled) mean-centered covariates, we are

evaluating at 0.

When

IT =

 1 Treatment is administered

0 Control is administered

then in equations, the predicted response, when represented by a single regres-

45



sion with interactions, looks like

Ŷi = β̂(0) + β̂(T )IT + ~Xβ̂ + ~Xβ̂
(Int)

IT (3.11)

With the covariates mean centered, substituting in the mean of the mean-

centered covariates results in

Ŷi

∣∣∣
~X= ~̄X∗

= β̂(0) + β̂(T )IT (3.12)

for which, as described, β̂(T ) represents the difference in intercepts. Here, the

coefficient of the treatment indicator is precisely equal to τ̂regression.

Nowhere in the definition of the model were any assumptions made about the na-

ture of the response variables. While a continuous response may have been implicitly

assumed, the analysis is not altered if the Ti, Ci are assumed to be count data, or

to take on values 0, 1. When the response is binary, the target of estimation is still

E [T ] − E [C], but these terms can now be rewritten as P (T ) − P (C), where P (T )

represents the proportion of treatment outcomes in the population that take on the

value 1.

One hopes that the estimate P̂ (T ) − Ĉ(V ) should fall inside [−1, 1]. If one es-

timates τ̂ by the difference in means estimator, then such a desirable outcome is

assured. However, τ̂regression, since it estimates the response Y not at the respective

sample means of the covariates ~X iT and ~X iC but at the weighted average nT ~̄XT+nC ~̄XC

N
,

P̂ (T )− P̂ (C) is not guaranteed with probability one to be restricted to [−1, 1]. The

problem arises if there is limited overlap between the observed treatment and control

covariates, and the slope coefficients differ appreciably between the two groups. The

probability associated with this possibility is small.
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3.4.3 Relative performance of ATE estimators

We present in this section the expression for the variances of the difference-in-means

and our regression based estimator, as well as for the standard error estimates, and

compare the sizes of the variances.

The most familiar expression for V ar[τ̂diff], of course, is V ar[T ]/nT + V ar[C]/nC .

For the purposes of comparison to V ar[τ̂regression], the variance can be re-expressed by

conditioning on covariates, and then marginalizing over their distribution, so that

Lemma 3.4.3

V ar (τ̂diff) =

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT
[β′TΣXβT ] +

1

nC
[β′CΣXβC ]

(3.13)

The proof is found in the appendix. The standard deviation of τ̂diff should be

estimated by

ŜE(τ̂diff) =

√
MSET
nT

+
MSEC
nC

+
1

nT

(
β̂T

ˆΣ(T )
X β̂T

)
+

1

nC

(
β̂C

ˆΣ(C)
X β̂C

)
(3.14)

In the above estimate, MSET is the mean square error computed in the treatment

regression, defined as usual by MSET =
(∑n

i=1(Ti − T̂i)2
)
/ (N − p− 1), and Σ̂X is the

empirical variance-covariance matrix of the complete collection of covariates.

The mean squared error is a scaled estimate of all the variability in the response that is

not captured by the linear approximation. So the MSE is composed of two components: the

estimate of the variability in the structural errors ε, together with the variability of η( ~X),

the random variable measuring the non-linearity in the conditional mean.

τ̂regression also admits a clean variance expression:
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Lemma 3.4.4

V ar(τ̂regression) =

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+O(N−2)+

1

N
(βT −βC)′ΣX(βT −βC)

(3.15)

The proof is deferred to the appendix.

The standard deviation of τ̂regression should be estimated by

SE(τ̂regression) =

√
MSET
nT

+
MSEC
nC

+
1

N
(β̂T − β̂C)′Σ̂X(β̂T − β̂C) (3.16)

The more interesting claim follows: the asymptotic variance of the regression-based

estimator dominates the variance of the naive estimator.

Theorem 3.4.5

AV ar(τ̂diff) ≥ AV ar(τ̂regression) (3.17)

The proof is found in the appendix.

To compare the relative asymptotic efficiencies of τ̂diff and τ̂regression, only their respec-

tive variances need be compared because τ̂diff is a trivially unbiased estimate of τ , and,

according to 3.4.1, τ̂regression is an asymptotically unbiased estimator of the ATE.

Tsiatis et al. (Tsiatis et al., 2008) also show that the estimator based on the model with

interactions – they call it the ANCOV A2 model – is efficient, and compare it with a large

class of augmentation estimators. The estimator here can be extracted from the general

class of estimators derived in (Zhang et al., 2008). Ours greatly simplifies the corresponding

procedure detailed in their section 4, and makes explicit the comparison to the difference

in means estimators. (Rosenblum and van der Laan, 2010) arrives at such an estimator

through the technique of targeted maximum likelihood. Our variance expressions are clean

and explicitly written down, so that the constituent parts of the variance are clearly seen.
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The aim here is to describe the nature of the interaction model’s efficiency and demon-

strate which terms contribute to it. The inequality in 3.4.5 is not strict; and equality

between the asymptotic variances can be attained, and is attained iff βC = −nC
nT
βT . When

the treatment and control sample sizes are equal, for example, then equality is attained

when βC = −βT . In this case, when the treatment and control slopes are negative inverses

of each other, the regression-based estimate of the ATE is maximally variable. This makes

sense: sample estimates of the difference in intercepts are just as likely to be positive as to

be negative, with equal probabilities of linearly increasing magnitudes of difference.

Theorem 1 refers, however, to the true variance of the respective estimators, rather

than to their estimated variances8. The theorem could analogously have been written, and

should be seen here for clarity, as

E
[

ˆV ar(τ̂diff)
]
≥ E

[
ˆV ar(τ̂regression)

]

A remark on the seemingly different estimators of τ̂diff. Every introductory statistics

textbook will teach that

V ar[T̄ − C̄] =
Var [T ]

nT
+

Var [C]

nC
(3.18)

and that it is estimated unbiasedly – for example, for the purpose of hypothesis testing –

by

s2
T

nT
+
s2
C

nC
(3.19)

In our chapter, we wrote different expressions for the variance and standard error estimates

of τ̂diff. This was done for ease of comparison. In fact, (3.4.3) and (3.18) are equal, as are

(3.14) and (3.19), which are unbiased estimates thereof.

8Which means that in a given sample, ŜE(τ̂regression) may exceed ŜE(τ̂diff)
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3.4.4 Conditional and marginal estimation

We pause to make explicit the essential difference between conditional and marginal infer-

ence in our problem, and to emphasize the role of covariates that are here random. The

variance of the difference-in-means estimator is a marginal variance: over all conceivable

repetitions of the experiment, as new subjects are sampled and assigned a treatment or a

control condition, irrespective of any other measured or unmeasured covariates,

V ar[T̄ − C̄] =
V ar[T ]

nT
+
V ar[C]

nC
. (3.20)

It is estimated, unbiasedly, by s2
T /nT + s2

C/nC .

Now,as in our problem, measure covariates, and run two separate regressions, so that

T̂ = β̂
(0)
T + ~XT β̂T , and Ĉ = β̂

(0)
C + ~XCβ̂C . From elementary regression, if we estimate

the response at the mean of the predictors, then T̂i

∣∣∣
~XT= ~̄XT

= T̄ , and Ĉi

∣∣∣
~XC= ~̄XC

= C̄.

Apparently, in estimating the ATE, T̄ − C̄ = T̂i

∣∣∣
~XT

− Ĉi
∣∣∣
~XC

, so the variance should depend

on the the observed covariates! What, then, is the proper variance of T̄ − C̄? Is it the same

as that reported in (3.20)?

It will not be equal, for the simple reason that the classical variance is considered

conditional on the observed covariates. To compute, note that T̄ is independent of C̄, so

let us for the moment consider just V ar[T̄ ]. T̄ was estimated in a regression at a specific

covariate value. For ease of exposition, recall the prediction variance from simple regression,

where

ˆV ar[ŷ|X = xp] = MSE

[
1 +

1

nT
+

(xp − x̄)2∑nT
i=1 (xi − x̄)2

]
(3.21)

That is to say, at the covariate mean,

ˆV ar[T̂ | ~X = ~̄XT ] = MSE

[
1 +

1

nT

]
(3.22)

which, of course, does not uniformly equal s2T
nT
. As a matter of fact, the two estimated
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variances will be equal only when the R2 from the regression exceeds p+2
nT+1 , where p is the

number of covariates; then the regression based estimated variance will be smaller than that

of the marginal, conventional estimated variance. The reason for this discrepancy, for how

the relative variances of ostensibly the same statistic depend on the quality of the fit, is

simple.

The variance estimated in (3.22) relies on classical regression theory, where the pre-

dictors are assumed to be fixed from one realization of the data to the next. Inference is

therefore conditional on the covariates; the estimate of the variance of T̄ in (3.22) is condi-

tional on being estimated at the (here, fixed) mean of the covariates. It is saying: when the

mean of the covariates is equal exactly to the mean of the covariates in this sample, what

is the variability of the average response? What is unaccounted for is that that selfsame

covariate mean is a random quantity, and its variability will contribute to the variability

in the average response. This naive regression based estimate (3.22), therefore, artificially

deflates the true variance of the response mean. In our analysis we compare two marginal

variances, from which an inequality follows that holds for all fits.

3.4.5 Alternative Conditions

3.4.5.1 Distribution of X known

Throughout the discussion and analysis, we have assumed that the underlying distribution

of X is unknown. The alternative may present in practice where, for example, covariates

like age, weight and income, for which measurements exists in the whole population, are

used in the study. In such a case, the variability inherent in estimating E [X] is removed

(only the regression slopes remain to be estimated), with a corresponding diminution of the

standard error of the ATE. The precise degree to which the standard error diminishes can

be found in the appendix.
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3.4.5.2 Treatment Correlated with Covariates

In the preceding discussion, we had assumed that the assignment of treatment (the treat-

ment indicator) was independent of the covariates, with correlation among them presenting

itself only in samples. It is conceivable and natural, however, that the decision to admin-

ister treatment should depend on the covariates: perhaps, by design and because of cost

constraints in the study, the researcher wishes to offer expensive treatment to a higher

proportion of those suspected to require it for a shorter duration.

Precisely, suppose that the regression is written as in 3.9, except that IT = H( ~X), either

deterministically or stochastically, as when IT ∼ Bern
(
H
(
~X
))

. The treatment indicator

is a function of the covariates so the assignment mechanism is different across different

strata. In this case, the functional form of H (·) is known, so that πi = P
(
IT = 1| ~X

)
does

not need to be estimated.

With the goal of estimating the ATE, an inverse probability weighting scheme is natural

because it can reduce the bias that would result from the differing sampling regimes across

strata. Accordingly, reweight the observed response yi according to

y
(T )∗
i =

y
(T )
i

πi

with πi defined as above for the treated units, and

y
(C)∗
i =

y
(C)
i

1− πi

Such a reweighting has been considered by, for example, (Freedman and Berk, 2008),

except the functional relationship between the confounders and the treatment indicator

was unknown and was consequently estimated via propensity scores. Our future work will

extend to cases when this functional relationship needs to be estimated.

One proceeds with the analysis as before, running the two separate treated and control

regressions, estimating the (weighted response) at the pooled mean of the covariates, and
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taking the difference. Another estimate of the ATE would be

1

nT

n∑
y

(T )∗
i =1

− 1

nC

n∑
y

(C)∗
i =1

(3.23)

, what (Freedman and Berk, 2008) call a weighted contrast, and is the weighted variant of

the difference in means estimator considered earlier. The latter is a Horvitz-Thompson type

estimator (the formal H-T estimator assumes a finite population from which one samples).

The derivations and analysis relating to the weighted scheme are beyond the scope of the

current chapter, and will be considered in depth in a forthcoming work.

3.4.5.3 Stratification

The results described in the preceding sections make no assumptions about the nature of

the covariates, which may be discrete, continuous, or both. An interesting special case arises

when, besides the treatment indicator, the other covariates represent stratum assignment,

and interactions are permitted between the treatment indicators and assignment indica-

tors. For example, subjects may be classified by treatment/control, and highest degree of

educational attainment (no high school, high school, college, etc.) The result of this pre-

stratification is a two-way ANOVA layout, with interactions. In the familiar ANOVA form,

the regression model may be described by

Yijk = µ+ si + τj + (sτ)ij + εijk (3.24)

si is the ith stratum, i = 1, . . . I, τj is the treatment effect, j = 0, 1 (WLOG, let j = 1

when treatment is administered), and (sτ)ij is the interaction effect. Denote the number of

patients in stratum i receiving regime j by Kij .

The difference-in-means estimator is written simply as

µ̄ = Ȳ.1. − Ȳ.0. (3.25)
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and is unbiased, since E [µ̄] = E [Y.1]− E [Y.0].

Now define the local ATEs, which represent the respective within-stratum ATEs by

ATEi ≡ θi = E [Yi1 − Yi0] .

The second estimator weights the per-stratum difference-in-means by the proportion of

the sample found in each stratum:

µ̃ =

I∑
i=1

(Ȳi1 − Ȳi0) ∗ p̂i (3.26)

where p̂i is the sample proportion of all subjects in stratum i; it is equivalently written

as Ki+
K++

. E [µ̃] =
∑I

i=1 piθi = θ, so it is also unbiased. The estimator is unbiased under

randomized assignment and under blocking since in both instances, the proportion of treated

cases in a stratum is independent of the mean, and in both cases, E [p̂i] = θi. As in

(Miratrix et al., 2013), which gives an impressive treatment of post-stratification in the

Neyman framework, the ATE estimate here is assumed to be well-defined – that is, the

estimator is computed conditional on the event that each stratum is populated by at least

one treated and one control unit. This second estimator just described is precisely τ̂regression.

Our results, in particular Lemma 4.4 and Theorem 4.5 continue to hold. Under slightly

modified conditions, (Miratrix et al., 2013) and (Imbens, 2011) show, for example, that

its variance is less than that of the difference-in-means estimator, and is higher than the

variance resulting from blocking (or pre-stratification) on an order of O
(
N−2

)
.

3.5 Illustration on real data

We present a typical application of our regression based ATE estimator on real data. We

illustrate the performance of the estimator on data furnished from a classic study discussed

in (LaLonde, 1986) and reanalyzed in (Dehejia and Wahba, 1999). The data in question
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come from the National Support Work (NSW) Demonstration. A pool of adults with

economic and social problems was randomized into two groups. The treated group was

offered job training while the control group was not. The intent of the work in (LaLonde,

1986) was to compare ATE estimates from experiments to those from observational studies.

He compared the unbiased estimate of the ATE from NSW groups to an estimate drawn

by comparing the treated adults to a batch of controls collected from separate comparison

groups (PSID-1 and CPS-1 in his paper). Dehejia and Wahba (Dehejia and Wahba, 1999)

apply matching techniques for this comparison; relevant for our work are the 185 treated

and 260 control male subjects they analyze, and which are available from the original NSW

experiment.

The following covariates were adjusted for: age, education (number of years), an indi-

cator for black, indicator for hispanic, indicator for marital status, indicator for high school

degree, and earnings in 1974. The response measured was earnings in 1978, after the job

training had concluded.

In this experimental context the difference in means is equal to 4709.4 dollars, with

a standard error equal to 443.5. The regression based method yields a point estimate of

τ̂ = 4435.2 dollars, with an SE estimate of 431.9. The gain in SE amounts to 3.1%, this

when the R2 of the regression of reservation price on covariates and their interaction with

the treatment indicator was 0.24. A gain of this magnitude is typical for an R2 of this size.

Higher R2 results in higher SE gains, which is vividly demonstrated in the following section.

3.5.1 Illustration on simulated data

The datasets on RCTs we have encountered have come with an R2 that doesn’t far exceed

0.2. To more vividly illustrate the results obtained in this chapter, we considered the

following model. The treated and control groups were defined, respectively, by

T = 2X1 + 3X2 + ZT (3.27)
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C = X1 +X2 + ZC (3.28)

where X1 ∼ Lognormal(0, 1), X2 ∼ Gamma(3, 4), and ZT , ZC
iid∼ N(0, 3). Under these con-

ditions, E [T ]− E [C] = 2e1/2 − 3/2 = 1.797. We simulated 10,000 times, with 250 tr.eated

and 250 control units in each simulation, and recorded the R2 of the combined regression,

as well as the ATE and SE estimates for both the difference-in-means, and for the regression

based estimator considered in this chapter. The average R2 in the 10,000 simulation was

0.75. Accordingly, the average ŜE (τ̂diff) = 0.676 (with simulation SE = 0.0011), while the

average ŜE (τ̂regression) = 0.332 (with simulation SE = 0.0002). Both estimators were unbi-

ased (up to simulation granularity), with difference-in-mean and regression-based average

ATEs equal to 1.798 and 1.796, respectively. Coverage of the true ATE was equal to 0.9473

and 0.949, respectively, when using Φ−1(0.975) as the multiplier. The regression based

estimate naturally leads to a more powerful test. There was nothing particular about the

model chosen; similar phenomena are observed for other choices of underlying distribution.

As a final illustration, we show the relationship between the R2 from the combined

model and the respective standard error estimates. τ̂diff, depending only on the response,

does not depend on the quality of the regression fit. τ̂regression, however, does. 10,000

simulations were again run, except the variance of ZT , ZC was dialed from 1 to 100, with

attendant decreases in the R2. The plot of R2 against ŜE (τ̂regression) /ŜE (τ̂diff) is shown.

As R2 decreases, the estimated standard errors converge. For high R2, the τ̂regression enjoys

a dramatically lower standard error.

3.6 Conclusion

This chapter lays the foundation for conducting principled and efficient asymptotic inference

on ATEs. After acknowledging the aesthetics but also limitations of the Neyman paradigm,

and the unreality of fixed X, we turned our focus to an infinite population, random de-
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Figure 3.1: R2 plotted against
ŜE(τ̂regression)

ŜE(τ̂diff)

sign, regression based estimation, where the response surface needn’t be linear. Since the

regression covariates are seen as random, generated from a distribution, the formulation

is a more realistic representation of the practice of random sampling: randomness arises

not only from the random assignment of treatment and control to subjects, but also from

these subjects’ (random) characteristics as well. Despite the added source of variability,

the derived standard error, which takes into account these sources of randomness but also

adjusts for covariates, is in expectation actually lower than its conventional counterpart.

Bootstrapped confidence intervals can easily be generated and inference conducted for

the population ATE. Moreover, the paired bootstrap, mimicking as it does the random X

framework, is the natural technique for such intervals. Future work will focus on weighting

schemes when the treatment is correlated with covariates, as it would be, for example, in

observational studies. In this work we estimated with linear models. We hope to extend

the work to GLMs.
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3.7 Technical appendix

Derivation of fact in footnote 5: in brief, that E
[
ηT ( ~X)

]
= 0 follows from E

[
ηT ~X

]
= 0.

~X, as defined, contains an intercept; and since the expectation of the dot product of ηT

with a vector of ones must be zero, then E
[
ηT ~X

]
= 0 is equivalent to saying that E [ηT ] = 0

Proof of 3.4.1

After mean centering, τ̂regression =
(
β̂

(0)
T − β̂

(0)
C

)
. Direct application of the proposition

on page 11 in (Buja et al., 2013) shows that the difference of the independent quantities

β̂
(0)
T − β̂

(0)
C is an unbiased estimate of β

(0)
T − β

(0)
C , which is equal to τ when µ = 0.

Proof of 3.4.2

(a) When the regression model is correctly specified, then it is an introductory result

that the LS estimates are unbiased: E
[
β̂

(0)
T

]
= β

(0)
T and that E

[
β̂

(0)
C

]
= β

(0)
C , so

E
[
β̂

(0)
T − β̂

(0)
C

]
= β

(0)
T − β

(0)
C = τ .

(b) Suppose that the treatment and response surfaces have a constant offset: nT = nC

and E [T |X] = E [C|X]+k. In the decomposition of τ̂regression−τ in the proof of 3.4.4,

the only term which does not generally have expectation 0 is the term denoted by R2,

and equal to
[
X̄T − X̄C

] [
pC(β̂T − βT ) + pT (β̂C − βC)

]
. It will have expectation 0

when the two bracketed terms are uncorrelated. Exploiting the independence between

the treated and control groups, the bracketed terms will be uncorrelated iff

pCCov
(
X̄T , β̂T

)
= pTCov

(
X̄C , β̂C

)
(3.29)

Inversely weight the observations, giving weight 1
nT

to the control observations, and 1
nC

to

the treatment, so that (3.29) will hold true when Cov
(
X̄T , β̂T

)
= Cov

(
X̄C , β̂C

)
When

βC = βT , then, since the X̄T and X̄C are identically distributed, the above equality will

hold. βC = βT when there is a constant offset.

Proof of 3.4.3

The conventional estimator of the ATE is τ̂diff = T̄ − C̄. Assume the covariates have
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zero mean; then its difference from the true ATE equals

τ̂diff − τ = T̄ − C̄ −
(
β0
T − β0

C

)
=

[
T̄ −

(
β0
T + X̄TβT

)]
−
[
C̄ −

(
β0
C + X̄CβC

)]
+ X̄TβT − X̄CβC (3.30)

The two terms – the former the residual means, and the latter a function of the covariates

– are independent. Hence

V ar (τ̂diff) = V ar
{[
T̄ −

(
β0
T + X̄TβT

)]
−
[
C̄ −

(
β0
C + X̄CβC

)]}
+ V ar

{
X̄TβT − X̄CβC

}
=

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT

[
β′TΣXTβT

]
+

1

nC

[
β′CΣXCβC

]
=

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT

[
β′TΣXβT

]
+

1

nC

[
β′CΣXβC

]

as the covariance matrices of the treatment and control distributions are equal, since the

covariates are drawn from the same distribution.

Proof of 3.4.4

As before, we allow for unequal randomization, so that nT cases receive treatment, and

nC cases receive control; denote the proportions pT and pC , respectively, and suppose that

E [X] = µ and V ar[X] = Σ. Denote the ATE by τ . The ATE in the population, τ , equals

E [T ]− E [C] = (β0
T − β0

C) + µ(βT − βC). Then

τ̂regression = β̂0
T − β̂0

C + µ̂(β̂T − β̂C)
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τ̂regression = β̂0
T − β̂0

C +
[
pT X̄T + pCX̄C

]
(β̂T − β̂C)

= T̄ − X̄T β̂T − (C̄ − X̄Cβ̂C) +
[
pT X̄T + pCX̄C

]
(β̂T − β̂C)

= T̄ − C̄ −
(
X̄T − X̄C

) (
pCβ̂T + pT β̂C

)

The multivariate mean can be taken to equal 0p WLOG since the problem is one of

scale, rather than location. So

τ̂regression − τ = T̄ − C̄ −
(
X̄T − X̄C

) (
pCβ̂T + pT β̂C

)
− β0

T + β0
C

=
[
T̄ − (β0

T + X̄TβT )
]
−
[
C̄ − (β0

C + X̄CβC)
]

− (X̄T − X̄C)
[
pC(β̂T − βT ) + pT (β̂C − βC)

]
+ (pT X̄T + pCX̄C)(βT − βC)

= R1 +R2 +R3x (3.31)

R1, R2, and R3 are independent: R1 is a function of the errors, which are independent of

the covariates, while R2 and R3 lie in the column space of the covariates. R2 is uncorrelated

with R3 because [we have the correlation between sums and differences of i.i.d variables.

Check the math again]. Moreover, each of the terms has expectation 0p : the first, R1, is

a difference of average errors, equal to
(
ε̄T + f̄T

)
−
(
ε̄C + f̄C

)
. The ε have expectation 0 by

assumption, and the f by construction. R2 is asymptotically equal to 0, for the following

reason: the treatment and controls are uncorrelated, and E
[
X̄
]

= 0, so the only component

of R2 not equal for all n to 0 in expectation is pCX̄T β̂T − pT X̄Cβ̂C . We’ll now show that

E
[
X̄T β̂T

]
→ 0:

E
[
X̄T β̂

]
= E

[
X̄TE

[
β̂|XT

]]
= E

[
X̄T

(
X ′TXT

)−1
X ′TE [Y |XT ]

]
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= E
[
X̄T

(
X ′TXT

)−1
X ′T (XTβT + ηT (XT ))

]
= E

[
X̄T

(
X ′TXT

)−1
X ′TXTβT + X̄T

(
X ′TXT

)−1
ηT (XT )

]
= E

[
X̄TβT

]
+ E

[
X̄T

(
X ′TXT

)−1
ηT (XT )

]

The first terms is equal to 0 because E [X] = 0 by assumption. The second term is equal

to 0 because ηT (XT ) is uncorrelated with the covariates and itself has expectation zero.

E [R3] = 0 because E [X] = 0. So

V ar(τ̂regression) = E
[
R2

1

]
+ E

[
R2

2

]
+ E

[
R2

3

]
=

{(
E
[
ε̄2T
]

+ E
[
f̄2
T

])
+
(
E
[
ε̄2C
]

+ E
[
f̄2
C

])}
+O(N−2)

+ (βT − βC)′
(
p2
T

ΣXT

nT
+ p2

C

ΣXC

nC

)
(βT − βC)

=

(
σ2
T

nT
+
V ar[ηT ]

nT

)
+

(
σ2
C

nC
+
V ar[ηC ]

nC

)
+O(N−2)

+ (βT − βC)′
(
pT

ΣXT

N
+ pC

ΣXC

N

)
(βT − βC)

=

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+O(N−2) + (βT − βC)′

(
ΣX
N

)
(βT − βC)

The last line follows since ΣXT = ΣXC = ΣX – they are all variances of a common

distribution. �

Proof of 3.4.5.1 Suppose now that the distribution of X is known. Its mean can

be assumed to be 0 WLOG. Then τ = β0
T − β0

C and τ̂regression = β̂0
T − β̂0

C , so that,

using a similar rearrangement as before,

τ̂regression − τ =
(
T̄ − β̂TX̄T

)
−
(
C̄ − β̂CX̄C

)
− (βT − βC)

=
[
T̄ −

(
β0
T + X̄TβT

)]
−
[
C̄ −

(
β0
C + X̄CβC

)]
+ X̄T

(
βT − β̂T

)
− X̄C

(
βC − β̂C

)
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= R1 +R∗2 (3.32)

Direct comparison of 3.32 with 3.31 will show that the estimated ATE is also

asymptotically unbiased, and that its asymptotic variance is decreased by the value

of R3, and some of R2. With R3 omitted, the standard error of the regression can

just be estimated by
√

MSET
nT

+ MSEC
nC

Proof of 3.4.5

We now verify that the standard error of the proposed estimator dominates the

standard error estimator of the conventional ATE. We compare, therefore,

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+O(N−2) + (βT − βC)′

(
ΣX

N

)
(βT − βC)

to

[
σ2
T + V ar[ηT ]

nT
+
σ2
C + V ar[ηC ]

nC

]
+

1

nT
[β′TΣXβT ] +

1

nC
[β′CΣXβC ]

We easily show that the asymptotic variance of the conventional estimator is

higher than that of the regression estimator by comparing the variance components

that differ among the two equations, noting that the O(N−2) term vanishes.

(√
nC
nT
βT +

√
nT
nC
βC

)′
ΣX

(√
nC
nT
βT +

√
nT
nC
βC

)
≥ 0 (3.33)

nC
nT

(β′TΣXβT ) + 2β′TΣXβC +
nT
nC

(β′CΣXβC) ≥ 0

N

nT
β′TΣXβT +

N

nC
β′CΣXβC ≥ β′TΣXβT − 2β′TΣXβC + β′CΣXβC

1

nT
[β′TΣXβT ] +

1

nC
[β′CΣXβC ] ≥ (βT − βC)′

(
ΣX
N

)
(βT − βC)�

The only non-algebraic step is in the first line, which is true because the LHS is a

quadratic form. Equality is attained iff βC = −nC
nT
βT , which can be verified by direct
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substitution into (3.33).

Proof of remark on R2 following equation (3.22):

V ar(T̄ ) = SST
nT

, whereas the regression based variance at the covariate mean is

estimated by MSET [1 + 1
nT

], which can be rewritten as SST−SSR
nT−p−1

×
(
nT+1
nT

)
Dividing

both expressions by SST leads us to compare 1
nT

to 1−R2

nT−p−1
×
(
nT+1
nT

)
. Equality is

attained when R2 is equal to p+2
nT+1
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4
Calibrated Prediction Intervals

4.1 Abstract

Regression models are often fit even when regression assumptions are violated. As-

suming only a joint distribution between X, Y , and nothing about the nature of their

relationship besides mild regularity conditions, we offer coverage guarantees when

their relationship is modeled by a regression. In this light, we describe a procedure

for constructing intervals that capture (1−α) of future observations and prove its va-

lidity. The procedure is valid marginally over theX distribution, even in the presence

of severe misspecification. Several variants of the procedure, calibrated in-sample and

via bootstrapped resampling, are proposed and found to exhibit similar behavior.

4.2 Introduction

Classical linear model theory rests on the bedrock of these assumptions: the condi-

tional mean of the response is linear in the predictors; errors are normal, uncorrelated,

and homoscedastic; and each future observation will have the same x-coordinates as

some observation in the design. In recompense for these assumptions, classical theory

delivers guarantees about the conditional value of a future response:
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P

(
ynew ∈ ŷ ± tα/2,n−p−1σ̂

√
1 + ~xi

(
XTX

)−1
~xTi

)
= 1− α (4.1)

In the preceding expression, it is assumed that y = Xβ+ ε, ε ∼ N
(
~0N , σ

2IN×N

)
,

XN×(p+1) is the design matrix with N observations, p predictors, and a column of

ones prepended, and β = (β0, . . . , βp)
T ; ŷ = Xβ̂, where β̂ is the usual least squares

estimate of β, and the ~xi are row vectors of the design matrix, i = I, . . . N . More

concisely, it is assumed that the model is first- and second-order correct, and that the

design is fixed.

Experience with data teaches that the assumptions underlying regression are eas-

ily and commonly violated. Besides replicated laboratory experiments, few designs

can honestly claim to be fixed. Whereas in a bivariate regression visual inspection

suffices to establish linearity, with added predictor variables it is difficult to discern

whether the relationship between a predictor variable – adjusted for all other predic-

tor variables – and the response is linear. It can also be unclear which transformation

of the unadjusted ~xi and y is best suited for the modeling task. And so in practice,

the association between the response and some of the predictors can be decidedly

nonlinear. Errors, too, are not always well behaved. And the collection of covari-

ates in the probability model might not correspond to the covariate relationship it is

intended to model – that is, variables may be omitted.

Researchers use regression, even when its assumptions are violated. Such practice

is warranted when the purpose of the analysis is exploratory and the researcher wants

to understand general relationships and patterns lying in the data. On the other

hand, inferential statistics lose their validity; depending on the nature and degree of

the model violations, point estimates will be biased, and intervals will not give desired

coverage.

In this chapter we focus our attention on prediction intervals, both for individual
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future responses, and also for mean responses. In 4.3 and 4.4, we propose a class of

methods which are robust to departures from model assumptions; even in the presence

of non-linearity, heteroscedasticity, and random design, our prediction intervals cover

at the promised confidence level. In one variant, conditioning on the fitted regression,

intervals are nonparametrically calibrated in-sample. An alternate method can prop-

erly be called a resampling-based calibration technique: intervals are computed for

each resampled dataset, and a functional of these intervals is the one applied to the

model. Various shapes for the prediction intervals are considered, but the conclusions

are general. In 4.6 we address the problem of covering the mean response.

The prediction interval procedure proposed yields promised coverage that is marginal :

it ensures that, in probability, a pre-specified proportion (1− α) of future observations

will fall within the constructed interval. We do not condition on the X-coordinates

and insist that (1− α) of future observations be covered at a given X = ~x, and those

insisting on robust conditional coverage will not find their answer here. But the need

for marginal coverage does find justification in the world as it is: when the cost of

not covering an observation is the same across all observations, the marginal criterion

is the appropriate criterion. For example, suppose a researcher wishes to predict tax

revenues for the following year in different cities. He constructs a regression based

on covariates measured this year, constructs uncertainty intervals, and demands 95%

certainty that his predictions for next year will fall within his intervals. It is enough

for him to know the expected number of cities which revenues falling short of or

exceeding these interval boundaries; the identity of the cities falling outside the inter-

val are immaterial to him. Then a marginal coverage guarantee is exactly what the

researcher seeks and finds useful for his aims.

Moreover, as examined in chapter 2, conditional inference in the classical sense

remains valid so long as the population response surface is linear in the predictors. But
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when the covariates are seen not as fixed, but as generated from a joint distribution,

and there are departures from model assumptions, then ancillarity, the argument

according to which the distribution of the predictors does not affect inference on the

model parameters, ceases to hold. Congruently with the marginally correct standard

errors derived in chapter 2, we aim for marginally correct predictions, and do not

condition on the realization of the covariates in the sample.

The chapter will be composed of the following sections: we will first detail a

theoretical method for marginally correct prediction and prove that it makes good

on its coverage guarantees in section 3. In section 4 we present an algorithm for

implementing the several methods, and compare their performance with classical

regression’s in section 5. Section 6 concerns valid coverage for the mean response.

Section 7 concludes.

4.3 Marginally correct intervals

We first describe the problem in English, and then symbolically. A sample of predictor-

response vectors is observed, and a regression line is fit to the data. We wish to design

a procedure by means of which an interval is created around the regression line that

guarantees marginal 1− α coverage of future responses.

Minimal assumptions on the data generating mechanism are imposed, and as-

sumptions such as linearity, homoscedasticity, etc. are absent. As in (Buja et al.,

2013) and chapter 2, allow (X1, . . . ,Xp, Y ) to be jointly distributed according to

joint distribution F , and observe an iid sample (Xij, Yi) j = 1, . . . p, i = 1 . . . n. De-

note the observed sample by S. Define the conditional mean µ(X) ≡ E [Y |X = ~x]

and assume it exists, as wells as the second moment of Y .

Note that we no longer assume that µ(X) is linear in X. Rather, the working
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assumption is that the conditional mean is probably non-linear. Since OLS can in

this case no longer claim to estimate the population conditional expectation function,

we define an alternate target of estimation, similarly to (White, 1980b). Irrespective

of the functional form of µ(X), there is a unique hyperplane whose mean square

error with respect to µ(X) is minimized. The slope of that hyperplane is the target,

and it is computed through a (population) least squares regression. Therefore the

population least squares slope, β, is defined as

β = E
[
XXT

]−1 E [XY ] (4.2)

which defines the slope of the hyperplane minimizing expected squared error loss

with respect to the true conditional expectation, and averaged over the joint distri-

bution F . This β, a population parameter defined through minimization, and the

target of estimation, can be estimated, in the usual fashion, via least squares:

β̂ =
(
XTX

)−1
XTY

(Buja et al., 2013) and chapter 2 derive proper standard error estimates for the

β̂ when they are considered as estimates of β defined in (4.2); the source of their

randomness includes both the variability of the errors, and the stochastic mechanism

behind generating (X, y) pairs during sampling. Unlike classical methods, these

standard errors offer valid coverage for β. We also take into account the randomness

deriving from the joint distribution of the (X, y).

4.3.1 Precise Statement

In this section we write down an interval granting valid coverage. Let λ (X) be a

prespecified function of the observations – λ (X) will define the shape of the interval.
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Let K̂ be a multiplier estimated from the data, and which will define the interval’s

width. And let β̂ be the vector of partial slopes for a hyperplane fit to the data. The

statement and proof will hold a vector of slopes computed anyhow, but, in the most

familiar case, this vector is estimated through OLS. We will therefore refer to Xβ̂ as

the “regression line” out of convenience, and may implicitly assume β to be βOLS.

Represent the interval by

Xβ̂ ± K̂λ (X) ≡ ĈI
(
X, β̂, K̂

)
1. (4.3)

Such an interval is now sought after that, centered at the regression line, it will

have honest marginal coverage: given a level α, it will be necessary for

PSPF
Y,X
(
Y ∈ ĈI

(
X, β̂, K̂

))
≥ 1− α (4.4)

Note the distributions over which the probabilities are computed. We wish to

offer a procedural guarantee: over all realizations of samples, and over the joint dis-

tribution of future observations, given a vector of partial slopes, and an appropriately

calibrated width of interval, the probability that a future observation will fall within

the calibrated interval will be at least 1 − α. Equivalently, and giving more insight,

we seek an interval to guarantee that:

ES
[
PF

Y,X
(
Y ∈ ĈI

(
X, β̂, K̂

)
|S
)]
≥ 1− α (4.5)

We are able to fulfill this guarantee asymptotically.

Let us now describe why such an interval is attainable, and concretely how to

attain it.

1In the classical interval, K̂ would be equal tα/2,n−p−1σ̂, while λ(X) would equal√
1 + ~xi (XTX)

−1
~xTi
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4.3.2 Parallel Bands

To illustrate the general point, take λ (X) from (4.3) above to equal 1. Such a choice

generates a one-parameter family of band widths K̂, with the bands parallel to the

regression surface. This is not the “funnel shape” familiar from classical prediction

intervals, which widens as points lie farther from the mean of the predictors, and will

not give and does not promise conditional coverage.

We claim and will prove that, given a sample, and a hyperplane passing through

it, a procedure that with parallel lines marginally captures 1− α of the sample data

points, will, asymptotically, offer (1− α) % coverage.

For the statement of the main proof, recall that, with λ(X) = 1,

ĈI
(
X, β̂, K̂

)
= Xβ̂ ± K̂

In the most general formulation, the β̂ should be thought of simply as the statistic

that converges to its limit in the population. Adopting the philosophy from section

2, β̂OLS converges to β defined in (4.2). But the β̂ needn’t necessarily be the least

squares slope. At its most uninspired, it can be taken to be a constant (and can

therefore not depend on the sample) – coverage will be guaranteed even in this case.

But centering at the regression line will be more efficient, and we therefore proceed

assuming that the slopes in the sample and population are derived from sample and

population least squares regressions, respectively.

Now, define the population analog to the sample coverage interval and call it

CI(X,β, K) = Xβ ±K, which is just a hypothetical band around the line defined

by the population parameter β (the X parameter is therefore redundant). Define

also the “coverage function” to be

QF (β, K) = PF
Y,X (Y ∈ CI (X;β, K)) (4.6)
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QF (X;β, K) measures, given the slope applied to the X in the population and

interval width K, how much Y -mass is contained in the strip. And let K0 (F,β;α)

be that interval width derived from

inf
K
{QF (X;β, K) ≥ 1− α|β} (4.7)

K0 is an oracular constant – if the joint distribution and slope were known, then an

interval of width at least K0 would contain at least the prespecified 1−α of Y -mass.

The main theorem is now presented.

Denote by F n the sampled data’s empirical distribution. Suppose K0 is unique,

and F n comes from a family F of distributions with bounded second moments. Then

Theorem 4.3.1 K̂0

(
F n, β̂, α

)
→ K0 (F,β;α) in probability.

First the consequence: a procedure that captures (1 − α)% of the data in the

sample, asymptotically captures (1−α)% of the data in the population.Proof: Metrize

the space of distributions with the weak∗ topology, with metric ‖ · ‖∗. We will need

the following fact:

Lemma 4.3.2 K0 (F,β;α) is continuous over F × Rp

The proof is found in the appendix.

It is standard that ‖ F n − F ‖∗→ 0 and that ‖ β̂ − β ‖→ 0 in Rp. 2 Because,

by Lemma 4.3.2, K0 is a continuous function of the arguments, it follows that K̂0

converges to K0.

2Alternatively, when the slopes are not derived through regression, include as an assumption in
the statement of the theorem that ‖ β̂ − β ‖→ 0 in Rp
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4.3.3 Nonparallel bands

Up until now we have considered only bands parallel to the regression line. While

offering promised coverage, the shape of the interval ignores leverages, and in gen-

eral, strays from conditional coverage guarantees. The funnel shape of prediction

bands preserves those guarantees under classical assumptions, and we consider such

a shape as well. Instead of λ(X) = 1 as in the previous section, now allow λ(X) =√
1 + ~xi

(
XTX

)−1
~xTi , as in standard regression.

We emphasize that the substantive results do not change when the shape of the

interval does: the procedure still calibrates the bands in-sample to capture 95% of

the observed data, and the resultant band intervals will still converge to population

intervals capturing 95% of mass. But, when regression assumptions are in fact met,

conditional coverage will be improved at locations away from the mean relative to

the parallel band method.

Corollary 4.3.3 When λ̂(X) converges pointwise to λ(X), the conclusion of Theo-

rem (4.3.1) holds.

Proof. With the pointwise convergence, the limiting strips in equation (4.14) in the

appendix converge, and the rest of the proof follows without change.

4.4 Procedures

We first describe the most natural in-sample calibration technique. We then propose

a resampled calibration technique that also achieves promised coverage.and detail it

below3:

3Working name, calibrated resampled prediction (CARP)

72



In-sample procedure:

Parallel Bands

(a) Fit regression: given the (X, y) sample, find, via least squares, β̂ and ŷ = Xβ̂.

(b) Calibrate: find such a half-width K̂(α) that 100 ∗ (1−α)% of the responses are

bracketed by ŷ ± K̂(α). That is, (1− α) of the responses should lie within the

calibrated prediction bands. Procedurally, the width equals |ri|(1−α), the 1− α

quantile of all the absolute residuals.

(c) Report Xβ ± K̂ as the prediction interval.

CARP procedure:

(a) Begin with the original data: n data rows, each of them composed of a p-vector

of observations and a response ( ~xi, yi)
n
i=1, where ~xi = (X i1, . . .X ip).

(b) Fit regression: find, via least squares, β̂ and ŷ = Xβ̂.

(c) Nboot times, sample n observations with replacement.

(d) Calibrate: In simulation s, find such a half-width K̂(s)(α) that 100∗ (1−α)% of

the test responses are bracketed by ŷtrain± K̂(s)(α). That is, (1−α) of the test

set responses should lie within the calibrated prediction bands. Procedurally,

the width equals |ri|(1−α), the 1− α quantile of all the absolute residuals.

(e) Record Med
[
K̂(s)

]
, the median of the half-widths from the resampled datasets,

as the (constant) half-width.

(f) Publish the regression line obtained from least squares regression applied to the

original data, together with the prediction interval whose width was computed

in step (e).
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Several variants to this procedure exist, which will now be described. Specifically,

we consider non-parallel prediction bands.

Resampled nonparallel bands

To construct non-parallel bands, proceed exactly as in the preceding section until

and including step (c). To generate the “hourglass” shape of classical prediction

bands, normalize the raw residuals by the classical prediction band width: Define

r̃i
(s) =

r
(s)
i

k(x(s))
, where k(x) is the classical prediction interval

σ̂

√
1 + ~xi(X

TX)−1xTi .

Subsequently,

(a) find such a multiplier Ĉ(α) that

ŷtrain ± C(s)k(x(s))

captures (1−α) of the nsim×N test responses. That is, (1−α) of the test set

responses should lie within the calibrated prediction bands. Procedurally, the

width equals |ri|(1−α), the 1−α quantile of all the absolute normalized residuals.

(b) Publish the regression line obtained from least squares regression applied to the

original data, together with the prediction interval whose width was computed

in (a).

4.5 Performance comparison

In this section we compare the coverage performance of regression prediction inter-

vals, parallel bands calibrated in-sample, and parallel bands derived from resampled
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calibration. For sample size equal to 100, 500, 1000, and 10,000, for several model

specifications, we report the proportion ynew covered by nominally 95% classical in-

tervals and the parallel bands. For each sample size and model specification, we ran

the procedure 100, 000 times and recorded the average coverage proportion.

As expected, the parallel bands’ coverage approaches the promised 95% as sam-

ple size increases. When the model is correctly specified, then in-sample calibra-

tion under-performs for small sample sizes, but does converge. In the face of mis-

specification, we present two typical examples. A powerful lesson is that even in

the face of severe model mis-specification, regression-based prediction intervals at

worst have coverage not too far below the promised confidence level (model (b)).

Sometimes (model (c)) they over deliver and give confidence limits that are overly

conservative. Such wide limits are not practically useful. Coverage guarantees can

therefore, asymptotically, either not be met, or else the intervals can be overly wide

and therefore less informative. 4

(a) Correctly specified linear model: Z1, Z2
iid∼ N(0, 1), X1 ∼ N(0, 1), X2 ∼ Unif [0, 1],

X3 ∼ Expo(2), X4 = X1 + X2 + Z1, X5 ∼ Gamma(2, 3) and Y = X1 + 2X2 −

3X3 + 0.1X4 +X5 +Z2. The Xi, i = 1, . . . , 5 are measured and available, and a

regression is fit to them.

(b) Transformed predictors: Z ∼ N(0, 1), X1 ∼ N(0, 1), X2 ∼ Unif [0, 1], X3 ∼

Expo(2), X4 ∼ Norm(0, 1), X5 ∼ Gamma(2, 3) and Y = X2
1 + logX2 − 3X3 +

0.1X1∗X2+exp(X5)+Z. The regression fits Y to the untransformed X1, . . . , X5.

(c) With heteroscedasticity: same as (b), except Z ∼ N(0, 5X3).

4These model specifications were chosen to illustrate the general point, but were not the extremes
of models considered. We have worked with models, for example, whose classical prediction intervals
would cover 93% of the time.
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Table 4.1: n = 100

Classical Coverage Parallel Band Coverage CARP coverage
Model 1 0.9505 0.9269 0.9266
Model 2 0.9389 0.9314 0.9311
Model 3 0.977 0.9330 0.9326

Table 4.2: n = 500

Classical Coverage Parallel Band Coverage CARP coverage
Model 1 0.9499 0.9450 0.9449
Model 2 0.9420 0.9463 0.9462
Model 3 0.9959 0.9470 0.9469

Table 4.3: n = 1000

Classical Coverage Parallel Band Coverage CARP coverage
Model 1 0.9503 0.9485 0.9484
Model 2 0.9432 0.9482 0.9481
Model 3 0.9934 0.9484 0.9482

Table 4.4: n = 10000

Classical Coverage Parallel Band Coverage CARP coverage
Model 1 0.9501 0.9493 0.9493
Model 2 0.9439 0.9499 0.9502
Model 3 0.9992 0.9501 0.9498

4.6 Calibrated Intervals for the Mean Response

According to classical regression guarantees, the conditional mean response of the re-

gression can be covered with specified confidence level (1− α). The corresponding sta-

tistical procedure creates an interval with half-width t1−α/2,np−1σ̂

√
~xi
(
XTX

)−1
~xTi ,

and centers it at the estimated conditional mean response, ŷ. Here σ̂ is the RMSE –
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computed through
√∑n

i=1
(yi−ŷi)2

n−p−1
, and ~xi is the (p+ 1) vector at which one wishes

to estimate the mean.

(Buja et al., 2013) and chapter 2 elucidate how the violation of the linearity

assumption, in concert with stochastically generated predictors, results in overly con-

servative, or else invalid standard errors for the regression coefficients: they can either

over- or under-cover with respect to the nominal confidence level.

The estimated regression line, at any point a linear combination of the coefficients

β̂, should experience a similar departure from nominal coverage. When the condi-

tional response is linear in the predictors, it is the conditional response proper that

is being estimated with the conventional statistical procedure. When the conditional

response is not linear in the predictors either because of a different functional form,

or because some variables are omitted, then the natural target of estimation is the

population least squares approximation to the conditional response surface,where the

population coefficients are derived through population least squares.

In the following section we show just how far coverage can depart from the nominal

level, and we detail an improving remedy.

Example

A basic example illustrates the principle well. Consider the simplest non-linear sce-

nario: y = x2. There is no noise. And consider three distributions for the x:

(a) x ∼ N(0, 1)

(b) x ∼ |N(0, 1)| and

(c) x ∼ eN(0,1).
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For each scenario, the population least squares slopes β were computed, then

100,000 samples of size n = 50 were drawn, the conventional confidence interval

for the mean computed, and the proportion of points at which the least squares

response surface contained – tallied. In none of the scenarios was the nominal coverage

guarantee honored, with the third violation particularly egregious:

(a) x ∼ N(0, 1). Coverage: 79%

(b) x ∼ |N(0, 1)|. Coverage: 75%

(c) x ∼ logN(0, 1.) Coverage: 20%

When the sample size was quadrupled to n = 200, coverage increased slightly to

81%, 78%, and22%, respectively.

4.6.1 Calibration

Earlier in this chapter, we calibrated prediction intervals in-sample, captured (1−α)∗

100% of the points with our interval, and proved that, asymptotically, the procedure

offers valid coverage for future individual observations.

In a similar spirit, we seek a procedure to compute that multiple K̂ such that

ŷ ± K̂ ∗ t1−α/2,np−1σ̂

√
~xi (XTX)−1 ~xTi

has (1−α) marginal probability of capturing the best linearly approximating surface.

The pairs bootstrap, elucidated in chapter 2, offers a means to approximate K.

A comparison of the resultant bootstrap multiples to the “true” multiples found

through simulation shows that the population K can be found through bootstrap,

but in the severe case of a skewed X distribution, one with high leverage points with

low probabilities, a bootstrap will not capture the necessary interval. This makes

78



sense: the rarely seen leverage point appreciably impacts the slope of the population

least squares line; but such points are rarely found in sample, and rarer still in the

bootstrap sub-sample.

Procedurally, since the population β is known, we repeatedly sampled n = 50

observations, computed the regression line and confidence interval for the mean, and

searched over a grid of multiples until the dilated confidence intervals covered Xβ

with desired probability. The complementary procedure was performed in the sample

with 10,000 bootstrap replicates, and the results are here presented.

In scenario (a), the bootstrap multiple was 1.77 (±.1), while the population mul-

tiple was 1.7. Using K = 1.77 in the population, 96% coverage is attained.

In scenario (b), the bootstrap multiple was 1.9 (±.4), and the population multiple

was 2.3. Using K = 1.9 in the population, 91% coverage is attained.

In scenario (c), the bootstrap multiple was 6.2 (±3), while the population multiple

was 20.1. Using K = 6.2 in the population, 64% coverage is attained.

Again, points with high leverage (at the population level) that have a low proba-

bility of appearing, and which appear in regions of high nonlinearity, inflate both the

interval, and the ratio of the population K to the bootstrap derived K̂. There must

be a connection to the RAV, which will be investigated in subsequent research.

Maybe we should all become robustniks.

4.7 Conclusion

We have delivered on our promise to provide marginally asymptotically valid pre-

diction intervals that are robust to model misspecification. Nowhere in this chapter

is anything assumed about the covariates or response other than some moment and

regularity conditions. Simple in-sample calibration suffices, and nothing is gained
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from resampling techniques for prediction intervals. Classical statistical formulas are

robust against mild departures from assumptions. Grosser violations ought to be

caught by the researcher but may not be. Our technique protects the researcher from

an unnecessary application of regression techniques and guarantees asymptotically

marginal coverage for all reasonable data-generating mechanisms. For coverage of

the mean, resampling techniques offer hope of salvaging nominal coverage.

Subsequent work will apply to model selection. While intervals that offer coverage

for all conceivably selected models will be untenably large, we believe that work for

submodels of a fixed size is manageable.

Appendix

Recall that, given a desired coverage level 1−α, K0 is that oracular constant so that

P Y,X
F (Y ∈ X ′β ±K0|α) = 1− α. The goal is to prove that K0(F, β;α) is continuous

over F × R. The task cannot be completed directly, so we introduce an auxiliary

evaluation function, V, which evaluates a coverage level, and one of whose arguments

will be the confidence band width K. Let

V (F, β, k) =

∫
Xβ±k

dF (4.8)

and denote the mass of the distribution function over the strip defined by Xβ ± k.

Through V , Kα can be equivalently defined as the smallest constant which, for a

given α, sets

V (F, β,K) = 1− α (4.9)

To wit, Kα = infF,β{K|V (F, β, k) = α}. In this way, Kα is defined implicitly as a

function of F, β, and α. Notationally, write Kα(Fn, βn, α) as Kα,n, and we have that

V (F, β,Kα,n) = 1− α.
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I claim that V is uniformly continuous.

Lemma 4.7.1 : If Kα is unique then V is uniformly continuous.

Proof:

Denote by X the support of F. Let X ∈ X and take ε > 0. Choose δ appropriately.

Let
∣∣∣(Fn, βn, K̂)− (F, β,K)

∣∣∣ < δ Then

|V (Fn, βn, K)− V (F, β,K)| =

∣∣∣∣∣∣
∫

Xβn±kn

dFn −
∫

Xβ±k

dF

∣∣∣∣∣∣ (4.10)

≤

∣∣∣∣∣∣
∫

Xβn±kn

dFn −
∫

Xβn±kn

dF

∣∣∣∣∣∣ (4.11)

+

∣∣∣∣∣∣
∫

Xβn±kn

dF −
∫

Xβ±k

dF

∣∣∣∣∣∣ (4.12)

=

∣∣∣∣∣∣
∫

Xβn±kn

d(Fn − F )

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫

Xβn±kn−Xβ±k

dF

∣∣∣∣∣∣(4.13)

We will now show that the two terms in (4.13) tend to 0. [For notational convenience,

let Sn represent the strip Xβn±kn, and S the limiting strip Xβ±k]. By assumption,

Fn → F weakly, so Fn(X) → F (X) for all X at which F (X) is continuous. This is

equivalent to the formulation that ∀c,
∫
c(x)dFn →

∫
c(x)dF , and, in particular, for

c = 1Sn(x). The first term therefore tends to zero. and the integral is evaluated over

a compact set.

Second term:

The integral in question can be represented with characteristic functions:

∫
Ω

[1Sn(x) − 1S(x)]dF (x) (4.14)
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Now 1Sn(x) converges pointwise to 1S(x), and is dominated by, say, 2, so the second

term converges to 0 by dominated convergence, and V is uniformly continuous, as

desired.

Lemma: Assume that dFn is bounded away from zero. In the implicit function defined

by V (F, β,Kα,n) = 1− α, K is a strictly decreasing function of α.

Proof: The conclusion follows directly from the statement. Since dFn is bounded

away from 0, V (Fn, βn, Kα,n) is a strictly increasing function of Sn, the region over

which it is integrated. Because βn is fixed, that region, in turn, is an increasing

function of K. As α increases, the RHS decreases, the LHS must decrease for equality

to hold, and K must decrease.

Claim: Kα is a continuous function.

Proof.

Consider V −1(α|F, β). Since V is uniformly continuous and monotonically increasing

in K, the inverse is continous as well. But V −1(α|F, β) is equal to Kα(F, β), and we

are done �
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