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Magnetic Resonance Imaging of Short-T2 Tissues with Applications for
Quantifying Cortical Bone Water and Myelin

Abstract
The human body contains a variety of tissue species with short T2 ranging from a few microseconds to
hundreds of microseconds. Detection and quantification of these short-T2 species is of considerable clinical
and scientific interest. Cortical bone water and myelin are two of the most important tissue constituents.
Quantification of cortical bone water concentration allows for indirect estimation of bone pore volume and
noninvasive assessment of bone quality. Myelin is essential for the proper functioning of the central nervous
system (CNS). Direct assessment of myelin would reveal CNS abnormalities and enhance our understanding
of neurological diseases.

However, conventional MRI with echo times of several milliseconds or longer is unable to detect these short-
lived MR signals. Recent advances in MRI technology and hardware have enabled development of a number
of short-T2 imaging techniques, key among which are ultra-short echo time (UTE) imaging, zero echo time
(ZTE) imaging, and sweep imaging with Fourier transform (SWIFT). While these pulse sequences are able to
detect short-T2 species, they still suffer from signal interference between different T2 tissue constituents,
image artifacts and excessive scan time. These are primary technical hurdles for application to whole-body
clinical scanners. In this thesis research, new MRI techniques for improving short-T2 tissue imaging have
been developed to address these challenges with a focus on direct detection and quantification of cortical
bone water and myelin on a clinical MRI scanner.

The first focus of this research was to optimize long-T2 suppression in UTE imaging. Saturation and adiabatic
RF pulses were designed to achieve maximum long-T2 suppression while maximizing the signal from short-
T2 species. The imaging protocols were optimized by Bloch equation simulations and were validated using
phantom and in vivo experiments. The results show excellent short-T2 contrast with these optimized pulse
sequences.

The problem of blurring artifacts resulting from the inhomogeneous excitation profile of the rectangular
pulses in ZTE imaging was addressed. The proposed approach involves quadratic phase-modulated RF
excitation and iterative solution of an inverse problem formulated from the signal model of ZTE imaging and
is shown to effectively remove the image artifacts.

Subsequently image acquisition efficiency was improved in order to attain clinically-feasible scan times. To
accelerate the acquisition speed in UTE and ZTE imaging, compressed sensing was applied with a hybrid 3D
UTE sequence. Further, the pulse sequence and reconstruction procedure were modified to enable
anisotropic field-of-view shape conforming to the geometry of the elongated imaged object.

These enhanced acquisition techniques were applied to the detection and quantification of cortical bone
water. A new biomarker, the suppression ratio (a ratio image derived from two UTE images, one without and
the other with long-T2 suppression), was conceived as a surrogate measure of cortical bone porosity.
Experimental data suggest the suppression ratio may be a more direct measure of porosity than previously
measured total bone water concentration.

Lastly, the feasibility of directly detecting and quantifying spatially-resolved myelin concentration with a
clinical imager was explored, both theoretically and experimentally. Bloch equation simulations were
conducted to investigate the intrinsic image resolution and the fraction of detectable myelin signal under
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current scanner hardware constraints. The feasibility of quantitative ZTE imaging of myelin extract and lamb
spinal cord at 3T was demonstrated.

The technological advances achieved in this dissertation research may facilitate translation of short-T2 MRI
methods from the laboratory to the clinic.
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ABSTRACT 

MAGNETIC RESONANCE IMAGING OF SHORT-T2 TISSUES WITH 

APPLICATIONS FOR QUANTIFYING CORTICAL BONE WATER AND 

MYELIN  

Cheng Li 

Felix W. Wehrli, Ph.D. 

The human body contains a variety of tissue species with short T2 ranging from a 

few microseconds to hundreds of microseconds. Detection and quantification of these 

short-T2 species is of considerable clinical and scientific interest. Cortical bone water and 

myelin are two of the most important tissue constituents. Quantification of cortical bone 

water concentration allows for indirect estimation of bone pore volume and noninvasive 

assessment of bone quality. Myelin is essential for the proper functioning of the central 

nervous system (CNS). Direct assessment of myelin would reveal CNS abnormalities and 

enhance our understanding of neurological diseases. 

However, conventional MRI with echo times of several milliseconds or longer is 

unable to detect these short-lived MR signals. Recent advances in MRI technology and 

hardware have enabled development of a number of short-T2 imaging techniques, key 

among which are ultra-short echo time (UTE) imaging, zero echo time (ZTE) imaging, 

and sweep imaging with Fourier transform (SWIFT). While these pulse sequences are 

able to detect short-T2 species, they still suffer from signal interference between different 

T2 tissue constituents, image artifacts and excessive scan time. These are primary 

technical hurdles for application to whole-body clinical scanners. In this thesis research, 

new MRI techniques for improving short-T2 tissue imaging have been developed to 
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address these challenges with a focus on direct detection and quantification of cortical 

bone water and myelin on a clinical MRI scanner.  

The first focus of this research was to optimize long-T2 suppression in UTE imaging. 

Saturation and adiabatic RF pulses were designed to achieve maximum long-T2 

suppression while maximizing the signal from short-T2 species. The imaging protocols 

were optimized by Bloch equation simulations and were validated using phantom and in 

vivo experiments. The results show excellent short-T2 contrast with these optimized pulse 

sequences.  

The problem of blurring artifacts resulting from the inhomogeneous excitation 

profile of the rectangular pulses in ZTE imaging was addressed. The proposed approach 

involves quadratic phase-modulated RF excitation and iterative solution of an inverse 

problem formulated from the signal model of ZTE imaging and is shown to effectively 

remove the image artifacts.  

Subsequently image acquisition efficiency was improved in order to attain 

clinically-feasible scan times. To accelerate the acquisition speed in UTE and ZTE 

imaging, compressed sensing was applied with a hybrid 3D UTE sequence. Further, the 

pulse sequence and reconstruction procedure were modified to enable anisotropic field-

of-view shape conforming to the geometry of the elongated imaged object. 

These enhanced acquisition techniques were applied to the detection and 

quantification of cortical bone water. A new biomarker, the suppression ratio (a ratio 

image derived from two UTE images, one without and the other with long-T2 

suppression), was conceived as a surrogate measure of cortical bone porosity. 
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Experimental data suggest the suppression ratio may be a more direct measure of porosity 

than previously measured total bone water concentration.  

Lastly, the feasibility of directly detecting and quantifying spatially-resolved myelin 

concentration with a clinical imager was explored, both theoretically and experimentally. 

Bloch equation simulations were conducted to investigate the intrinsic image resolution 

and the fraction of detectable myelin signal under current scanner hardware constraints. 

The feasibility of quantitative ZTE imaging of myelin extract and lamb spinal cord at 3T 

was demonstrated.   

The technological advances achieved in this dissertation research may facilitate 

translation of short-T2 MRI methods from the laboratory to the clinic. 
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Chapter 1 Introduction	

1.1 T2 Relaxation Time 

MRI contrast of biological tissues is essentially characterized by their physical and 

physiological properties, which include T1 and T2 relaxation, magnetic susceptibility, 

diffusion and perfusion. However, the T2 relaxation time constant, which determines the 

lifetime of the transverse magnetization, is perhaps one of the important parameters for 

quantitatively assessing tissue physiology and pathology. The T2 relaxation time of 

biological tissues covers almost six orders of magnitude, ranging from a few 

microseconds to several seconds. Fig. 1.1 shows the T2 spectrum of various human 

tissues at 3T.  

 

 

As indicated in Fig. 1.1, the human body contains a variety of short-T2 tissue 

constituents with proton T2 values ranging from a few microseconds to tens and hundreds 

of microseconds, including myelin (1), cortical bone water (BW) (2,3), lung tissue (4), as 

well as 31P in bone mineral (5). Detection and quantification of these short-T2 species is 

Figure 1.1 T2 proton spectrum of various human tissues at 3T. A logarithmic scale is used
to indicate the full range of T2 values. 
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of considerable clinical and scientific interest. For example, assessment of myelin would 

reveal central nervous system abnormalities and enhance our understanding of 

neurological diseases (6). However, conventional MRI with echo times (TEs) of several 

milliseconds or longer is unable to detect these short life-time MR signals.  

With recent advances in MRI technology and hardware, several techniques have 

emerged for imaging short-T2 constituents, including ultrashort echo-time (UTE) imaging 

(7), zero echo-time (ZTE) imaging (8-10), and sweep imaging with Fourier transform 

(SWIFT) (11). With these imaging pulse sequences, the short-T2 species become visible, 

allowing researchers to explore and assess physiology and pathology of the short-T2 

tissues. 

1.2 Magnetic Resonance Imaging of Short-T2 Tissues 

1.2.1 UTE Imaging	

Currently UTE imaging is the most widely used short-T2 imaging pulse sequence on 

clinical scanners due to its minimal hardware requirements and the availability of both 

2D and 3D imaging (7,12). In order to capture the rapidly-decaying signal, effective echo 

times in UTE sequences need to be on the order of tens of microseconds or less. This can 

be accomplished by half or hard pulses (13,14), fast T/R switching and appropriate 

sampling strategies, e.g. radial center-out trajectories with ramp sampling. Figure 1.2 

shows a typical 2D UTE imaging pulse sequence diagram.  

 



3 
 

 
One advantage of UTE imaging is that both 2D and 3D imaging versions are 

available. In 2D imaging, slice selectivity is achieved by a half-pulse to maintain 

minimum echo time. Specifically, the half-pulse is played out with a slice-selection 

gradient of opposite polarities in pairs of scans acquired for each spoke (14). Although 

each half-pulse itself excites the out-of-slice spins, the undesired out-of-slice 

magnetization is removed by summation of the signal from the two scans. The underlying 

principle is that the spatial response of a real-valued pulse is skew-Hermitian symmetric 

and the sum of the spatial profiles from two scans with opposite gradients cancels the 

unwanted resulting magnetization. To further minimize the echo time, a variable rate 

selective excitation (VERSE) half-pulse is often used (15). Another advantage of UTE is 

that it is flexible to change the echo time, allowing to measure short-T2* relaxation time.  

Images acquired by UTE sequences are reconstructed by a gridding algorithm (16), 

consisting of non-uniform sampling density compensation and non-uniform fast Fourier 

transform (NUFFT) (17). Artifacts may appear in the reconstructed images mainly due to 

the imperfect half-pulse excitation and sampling during gradient ramp. Several 

(a) (b)  

 Figure 1.2 (a) 2D UTE pulse sequence diagram. The VERSE half-pulse is used to achieve slice
selection.  Data from two scans with slice selection gradient of opposite polarities are summed to
cancel the out-of-slice magnetization response resulting from half-pulse excitation. To minimize
the echo time, a radial center-out trajectory with ramp sampling is used. (b) The corresponding
radial sampling trajectory. The solid dots represent discrete k-space samples. 



4 
 

approaches were proposed to correct these artifacts. Most of these methods are based on 

accurate characterization of gradient waveforms (18,19), since the resulting artifacts in 

UTE are caused by eddy current and gradient delays. For example, the author’s 

laboratory developed a simple technique for mapping the k-space trajectory of the initial 

readout ramp to correct readout gradient imperfection (20). This method uses data from a 

short calibration scan in which two dimensions of spatial encoding are applied prior to 

readout. After correcting for B0 inhomogeneity, it provides an accurate measurement of 

the k-space trajectory during the ramp, which can be used as input to a gridding-based 

reconstruction algorithm. Figure 1.3 (a) shows the measured gradient at 7T MRI along 

with an ideally trapezoidal gradient. When using the trapezoidal gradient for image 

reconstruction, the artifact is obvious, especially on the edge of the image, as shown in 

Figure 1.3 (b, c). The artifact is removed when using the measured gradient information 

for image reconstruction. 

 

1.2.2 ZTE Imaging 

In distinction to UTE, in ZTE the imaging gradient is turned on before RF 

transmission, which offers multiple advantages over UTE imaging. First, k-space is 

 
Figure 1.3 (a) measured gradient waveform (red) in a UTE sequence deviates from the desired
trapezoidal gradient (blue). Images reconstructed assuming a trapezoidal gradient (b) and (c)
measured gradient waveforms. 
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traversed within a shorter time period, resulting in higher SNR and reduced blurring due 

to reduced T2 decay within the data acquisition window. Second, data sampling occurs 

during the plateau period of the readout gradient, thereby avoiding image distortion 

artifacts associated with ramp sampling. Furthermore, off-center imaging is more 

straightforward to achieve with ZTE. A typical ZTE pulse sequence diagram is shown in 

Figure 1.4. 

 

A common problem with ZTE is that the central k-space portion is missed due to the 

dead time between RF transmission and data acquisition. In order to recover the missing 

central k-space samples, several methods have been proposed, including algebraic 

reconstruction (10,21), acquisition of additional radial projections with lower gradient 

strength (WASPI: water- and fat-suppressed proton projection MRI) (8), or performing a 

complementary single-point imaging (SPI) scan (PETRA: pointwise encoding time 

reduction with radial acquisition) following the main body of the sequence (9).  

Another well-known problem is the presence of the spatial encoding gradient during 

hard pulse excitation, causing the RF pulse to become spatially selective and resulting in 

blurring and shadow artifacts. The problem is negligible on laboratory imaging systems 

(a) (b)  

Figure 1.4 (a) Pulse sequence diagram for ZTE encoding. The imaging gradient Gx,y,z is turned on
before RF excitation. The data acquisition starts immediately after the dead time. (b) The
corresponding trajectory. The solid dots represent the acquired k-space samples and the hollow
circles denote the missing samples. 
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which allow high peak power and thus very short pulse duration. However, B1 peak 

power and specific absorption ratio (SAR) limitations impose practical limits for in vivo 

scanning of humans (22). Recently, Grodzki et al. investigated the effects of the sinc-

shaped excitation profile in PETRA and proposed an approach to correct for the resulting 

image artifacts (23). However, their correction algorithm requires that the imaged object 

fit into the sphere defined by the main lobe of the sinc-shaped excitation profile. If these 

conditions are not met the amplified noise resulting from inversion of the ill-conditioned 

matrix rooted from the zero crossings of the sinc function will corrupt the resulting 

image. Chapter 3 will present a detailed analysis of the artifacts and describe a new 

algorithm for correcting them. 

1.2.3 SWIFT 

In conventional MRI pulse sequences, including UTE and ZTE sequences, 

excitation and acquisition are separated. In contrast, SWIFT excites spins and acquires 

signal nearly simultaneously (11), which allows echo times close to zero. Although ZTE 

is able to achieve the same echo time as SWIFT, it requires the excitation pulse to have a 

broad bandwidth to uniformly excite the spins across the whole FOV, which in turn limits 

the attainable flip angle due to the extremely short pulse duration and limited B1 peak 

power. SWIFT overcomes this limitation by using a frequency-swept pulse which covers 

the entire bandwidth spanned by the imaging gradient without B1 peak power limitation 

(11). In theory, it is possible to achieve arbitrary bandwidth with limited RF amplitude 

and without compromising the flip angle in SWIFT. 
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Due to the overwhelming voltage/signal from transmission compared with MRI 

signal level, the original SWIFT is operated in a time-share mode which interleaves 

between transmission and acquisition (24), therefore compromising SNR, which is 

roughly proportional to the square root of the transmission duty cycle. Fig. 1.5 shows the 

pulse sequence diagram of SWIFT sequence. In (10), Weiger et al. compared the gapped 

SWIFT and ZTE imaging with optimized protocols under clinical scanner hardware 

constraints, and concluded ZTE to yield higher SNR efficiency as well as shorter scan 

times than gapped SWIFT. More recently, Idiyatullin et al. achieved the transmitter-

receiver isolation by connecting a quad coil to a quadrature hybrid, therefore minimizing 

the leakage signal from transmitter and allowing SWIFT to be operated in the continuous 

mode (25). Continuous SWIFT has the potential to achieve higher SNR efficiency than 

its gapped counterpart. However, unlike UTE and ZTE imaging, a dedicated coil may be 

needed for the implementation of SWIFT on a clinical scanner, perhaps the main obstacle 

to its usage as a routine short-T2 imaging sequence on a whole body imager.  

1.2.4 Other Short-T2 Imaging Sequences 

The single point imaging (SPI) method is another technique for imaging short T2 

species (26,27). Without using the common frequency encoding, SPI is a pure phase 

 
Figure 1.5 Pulse sequence diagram of SWIFT. A frequency sweep pulse is divided into sub-
pulses, which interleave with the data acquisition (red dots). By using a frequency-modulated 
pulse, SWIFT is able to excite spins with a broad frequency band without compromising the 
optimal flip angle.  
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encode pulse sequence. During each repetition, the RF is applied simultaneously with the 

imaging gradient and only a single k-space sample is acquired after the dead time. Due to 

its fixed echo time, SPI is free of the image blurring due to T2 decay during the 

frequency-encoding period. Moreover, it is immune to B0 inhomogeneity, chemical shift, 

and susceptibility variations (28).  However, acquisition is inefficient since only one k-

space point is acquired for each gradient switch on/off. 

SPRITE (Single point Ramped Imaging with T1 enhancement) improves SPI 

acquisition efficiency by employing ramped phase encode gradient which permits image 

acquisition with less frequent gradient switching (29).  However, the sampling is still 

inefficient. To further shorten scan time, multipoint k-space mapping samples a k-space 

line segment of r points per TR cycle, thereby accelerating the acquisition speed by a 

factor of r (30,31). Even though SPI and its variants minimize the T2 decay effect, their 

usage in short-T2 imaging is still limited by the method’s relatively long scan time.   

1.3 Cortical Bone Water 

Although BW and myelin are unrelated to each other biologically, they share similar 

MRI properties, i.e. very short lifetime of the MR proton signals undetectable by 

conventional MRI with TEs of several milliseconds or longer. The remainder of this 

chapter briefly reviews research works on imaging of cortical bone water and myelin. 

Cortical bone water (BW) can be categorized into two pools: pore water resides in 

the spaces of the Haversian and lacuno-canalicular pore system, while there is a 

significant water fraction bound to collagen (32-34). Recent work based on proton NMR 

transverse relaxation spectroscopy in human cortical bone specimens suggests that 
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approximately two thirds of the total bone water signal arises from collagen-bound water 

and one third from pore water, with the two constituents differing in T2 relaxation time 

(32). The restricted motion of bound water by hydrogen bonding to the collagen 

backbone gives rise to its short T2 values of around 400 s. The pore water protons have 

relatively longer T2, ranging from 1 ms to a few seconds, since their rotational and 

translational motion is unimpeded.  

Cortical bone porosity, i.e. pore volume fraction, increases with advancing age and 

this process is further accelerated osteoporosis (35). Increasing in pore volume is a major 

cause of impaired strength of osteoporotic cortical bone (36,37). McCalden et al. found 

ultimate stress, ultimate strain, and energy absorption, to decrease by 5, 9, and 12 percent 

per decade, respectively (38).  However, there is no strong evidence that the intrinsic 

mechanical properties of osteoporotic bone are different from those of normal bone. 

Rather, the impaired strength of osteoporotic cortical bone is a consequence of increased 

pore volume fraction (37). However, pore architecture is not directly observable by 

current imaging modalities in vivo. Instead, indirect method for porosity estimation needs 

to be used for in vivo studies. Since the pore water occupies the pore network of cortical 

bone, its concentration scales with pore volume. Hence, if pore water could be quantified, 

it would be possible to estimate porosity indirectly without a need to spatially resolve the 

pores. 

Although the bone signal is undetectable with conventional MRI sequences, recent 

advances in MRI of short-T2 tissues enables to detect and quantify the proton signals 

from human BW (6). However, conventional UTE imaging only measures the total BW 
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concentration, including both collagen-bound and pore water, which may be a less than 

optimal measure of bone porosity. This prompted research toward design of methods to 

separate the two bone water fractions. Recent work suggests that such separation may be 

achievable by exploiting the hypothesized differences in T2* between the two water 

populations (39,40). Du et al. accomplished this goal via bi-exponential analysis of the 

UTE MRI signal decay measured from a series of UTE images with a range of echo-

times (39,41). Horch et al. proposed methods using adiabatic single or double-inversion 

pulses as a means to obtain images displaying signal from predominantly bound or pore 

water, respectively (42). The same group also showed that the collagen-bound water was 

strongly positively correlated with peak stress while the fraction comprising longer-T2 

values (T2 ~ 1-1,000ms), assigned to free water presumably residing in pore spaces, was 

negatively correlated with peak stress (43). Chapter 4 will introduce suppress ratio 

derived from long-T2 suppressed UTE imaging, as a surrogate biomarker of cortical bone 

porosity. 

1.4 Myelin 

Myelin is another important short-T2 tissue constituent. It is essential for proper 

functioning of the central nervous system (CNS) and accounts of 14% of the wet mass of 

white matter. It is a lipid-protein bilayer that extends from the outer membrane of glial 

cells, and discretely winds around individual axonal fibers acting as an insulator 

preventing loss of charge and leading to an increase in conduction velocity (6). Myelin 

pathology is one of the major causes of neurological diseases and deficiencies of myelin 

lay at the core of many demyelinating disorders, such as multiple sclerosis (6). Therefore, 
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the ability to measure myelin density noninvasively would have a major impact on 

diagnosis and evaluation of diseases that are responsible for much of CNS morbidity. 

Assessment of myelin may also provide insight into the function of oligodendrocytes 

since they shield axons with myelin membrane and also provide trophic support to the 

neurons (44-46). Hence, better capabilities for monitoring myelin status would further 

provide indirect evidence of glial status, and hence neuronal integrity.  

To observe and quantify myelin, the common methods rely on histology-based 

optical microscopy (47), X-ray diffraction (48) or non-linear optical techniques (49,50). 

Unfortunately, all these techniques are destructive and thus applicable only to animal 

studies. During the past two decades MRI has made significant progresses toward 

detection of myelin abnormalities, mostly via magnetization transfer (MT) imaging based 

on the interaction between myelin and tissue water, yielding the magnetization transfer 

ratio (51,52) or quantities such as the bound proton fraction derived from a more detailed 

model-based analysis of the MT data (53,54). Another approach relies on detection of 

myelin water, which is interspersed between adjacent myelin lipid bilayers, and identified 

based on its T2 relaxation properties (55,56). However, this reliance may be compounded 

by non-myelin loss related changes, for example, inflammation (57,58). Both methods 

are indirect, i.e. providing surrogate measures of myelin content (59), rather than 

detecting myelin itself, and the underlying biophysical mechanisms are not well 

understood. Therefore, direct detection of myelin with MRI would remove these 

complications and may provide contrast specific to myelin concentration.  

Ramani et al. investigated the T2 relaxation properties of myelin proton by using a 

multi-exponential fit of spin-echo decays on fixed human white matter samples from 
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normal and multiple sclerosis patients, concluding myelin protons have a T2 value of ~50 

s (60). Recently, Horch et al. showed that these ultra-short T2 signals are predominantly 

from methylene 1H, originating from phospholipid membranes and various intracellular 

and extracellular proteins and reported T2* and T2 relaxation times of myelin proton with 

values of ~70 s and between 50 to 1000 s, respectively (61). More recently, the 

author’s laboratory first showed that direct myelin imaging is feasible with UTE imaging 

with long-T2 suppression on a 9.4 T spectrometer (1). In Chapter 6, the feasibility of 

direct detection of myelin with the developed short-T2 imaging techniques will be further 

explored on clinical scanners.  

1.5 Dissertation Outline 

This thesis research aims to address some existing problems in UTE and ZTE 

imaging sequences and help establish them as routine solid-state pulse sequences on a 

clinical MRI imager with a focus on direct detection and quantification of cortical BW 

and myelin. The dissertation is organized as follows. In Chapter 2, the imaging 

parameters of three long-T2 suppression techniques in UTE imaging are optimized and 

their performance is compared in vivo in the lower extremities of test subjects. Chapter 3 

presents a method to correct the image artifacts in ZTE imaging caused by the spatial 

selectivity of the hard excitation pulse by applying quadratic phase-modulated excitation 

pulse and iterative reconstruction. In Chapter 4, the scan time of UTE and ZTE sequences 

is reduced by applying compressed sensing method and anisotropic FOV trajectory. In 

the remainder of the dissertation, applications of UTE and ZTE imaging to cortical bone 

water and myelin quantification are demonstrated. Chapter 5 describes a new biomarker, 
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suppression ratio in UTE imaging, as a surrogate measure of cortical bone porosity.  

Chapter 6 explores the feasibility of direct myelin quantification with long-T2 suppressed 

ZTE imaging with a clinical scanner setup. Finally, Chapter 7 concludes the dissertation 

with a summary of this thesis research work and a brief discussion of future work. 
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Chapter 2 UTE Imaging with Soft Tissue Suppression 

2.1 Abstract 

Ultra-short echo time (UTE) imaging reveals short-T2 components (typically 

hundreds of microseconds to milliseconds) ordinarily not captured or obscured by long-

T2 tissue signals on the order of tens of milliseconds or longer. However, since long-T2 

tissues also give signal during UTE imaging it is critical to suppress these components. If 

this suppression is successful, the technique enables visualization and quantification of 

short-T2 proton signals such as those in highly collagenated connective tissues. In this 

chapter, the performance of the three most commonly used long-T2 suppression UTE 

sequences, i.e. echo subtraction (dual-echo UTE), saturation via dual-band saturation 

pulses (dual-band UTE), and inversion by adiabatic inversion pulses (IR-UTE) is 

compare at 3T, via Bloch simulations and experimentally in vivo in the lower extremities 

of test subjects. For unbiased performance comparison, the acquisition parameters are 

optimized individually for each sequence to maximize short-T2 SNR and CNR between 

short- and long-T2 components. Results show excellent short-T2 contrast is achieved with 

these optimized sequences. A combination of dual-band UTE with dual-echo UTE 

provides good short-T2 SNR and CNR with less sensitivity to B1 homogeneity. IR-UTE 

has the lowest short-T2 SNR efficiency but provides highly uniform short-T2 contrast and 

is well suited for imaging short-T2 species with relatively short T1 such as bone water. 

2.2 Existing Soft Tissue Suppression Techniques  

As discussed in last chapter, UTE imaging is able achieve effective TEs of 100 s or 

less depending on the MR system hardware, thereby capturing a significant portion of the 
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signal arising from short-T2 nuclei. Although short-T2 species become detectable in UTE 

imaging, their signals are often obscured by the much more intense signals of the 

surrounding long-T2 components, which usually have far higher proton density. To better 

visualize the short-T2 protons, long-T2 suppression techniques are commonly employed in 

UTE imaging (12). Generally, the goal of long-T2 suppression is to maximize suppression 

of the long-T2 components while preserving the short-T2 components. Several methods 

have been proposed for soft-tissue suppression and short-T2 species contrast enhancement 

which can be categorized into two types: a combination of different TEs, or some form of 

magnetization preparation involving either saturation or inversion nulling. 

The first type is perhaps the most common and the simplest, in which an image 

obtained with longer TE, containing signal principally from long-T2 protons only, is 

subtracted from a short-TE image (12). The main benefit of this approach is that it is 

simple and can easily be incorporated into 2D and 3D UTE sequences without significant 

sequence modification or increase in scan time. However, T2* losses and SNR reduction 

from the subtraction operation may degrade the quality of soft-tissue suppression. The 

first of the magnetization preparation based soft-tissue suppression techniques was 

proposed by Pauly et al. (62), i.e. T2-Selective RF Excitation Contrast or TELEX, in 

which a long rectangular /2 saturation pulse is applied followed by a spoiler gradient 

preceding short RF pulse excitation. The long saturation pulse selectively excites the 

long-T2 species while leaving the short-T2 components largely unperturbed since their 

decay rate exceeds the excitation rate. An improved version of this technique, referred to 

as refocused TELEX (63), reduces the sensitivity of the original method to B0 
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inhomogeneity by interrupting the long /2 pulse using a series of short refocusing pulses 

to broaden the bandwidth of the saturation pulse. However, the performance of this 

approach varies with T1/T2. 

Recently, several research groups reported various improved long-T2 suppression 

methods (64-68), based either on saturation or inversion pulses. Larson et al. designed 

single-band and dual-band maximum-phase saturation pulses (65) using the Shinnar-Le 

Roux (SLR) design tools with complex Parks-McClellan algorithm (69). The beneficial 

feature of SLR design algorithm is that the designer has the freedom to specify the pulse 

parameters, such as pulse duration, suppression bandwidth and desired ripple values for 

each band. These saturation pulses created good short-T2 contrast at 1.5 T. However, they 

are sensitive to B1 inhomogeneity, causing nonuniform soft-tissue suppression. To 

overcome the sensitivity to B1 field variation, long adiabatic inversion pulses can be 

employed to invert the long-T2 components, while affecting to a lesser extent the short-T2 

species, then followed by UTE acquisition at the null point of the long-T2 components 

(12). Recently, two variants of this approach have appeared. Larson et al. used phase-

sensitive inversion recovery at 1.5 T to allow UTE acquisition immediately after the 

adiabatic inversion pulse by combining the images with inversion preparation with those 

collected without preparation pulses (66). Du et al. proposed dual inversion-recovery 

UTE (DIR-UTE) (67) in which two long adiabatic inversion pulses centered on the water 

and fat resonance frequencies are applied to account for the T1 difference between water 

and fat.  
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Other magnetization-preparation based soft-tissue suppression methods exist as 

well. In work performed on a 4.7 T small-bore system, Wu et al. used two long 

rectangular /2 pulses placed on resonance with fat and water, executed with and without 

 pulses in two successive scans added to cancel the effect of /2 pulse imperfections in 

what they termed water- and fat-suppressed proton projection MRI (WASPI) (8,64). 

However, because of the greater B1 variation on a clinical scanner and doubled imaging 

time due to the need for two scans, only two long rectangular /2 pulses were applied in 

this more recent implementation of the WASPI technique (70). Thus, the long-T2 

suppression portion of this embodiment of WASPI is essentially identical to TELEX. Du 

et al. conceived the technique called UTE with off-resonance saturation contrast (UTE-

OSC) (68), in which two images with and without application of a high-power off-

resonance saturation pulse are acquired. Short-T2 contrast is achieved by subtraction of 

the two images. One possible problem with this approach is that the subtraction operation 

and magnetization transfer effect may impair the effectiveness of long-T2 suppression.  

Given the many long-T2 suppression schemes available, comparison of their 

performance would provide insight and guide their use in research and clinical 

applications. Although several research groups compared some soft-tissue suppression 

approaches (71,72), these comparisons were not based on optimal imaging protocols and 

the results therefore were not conclusive. 

This work compared the performance of the three most commonly used soft-tissue 

suppression schemes, echo subtraction using two different TEs (termed as dual-echo 

UTE), saturation via dual-band saturation pulses (dual-band UTE) and inversion by 
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adiabatic inversion pulses (IR-UTE) at 3T, via Bloch equation simulations and 

experimentally in vivo in the lower extremities of test subjects. The strategy adopted that 

allows for unbiased performance comparison entails optimization of the acquisition 

parameters individually for each method to maximize short-T2 SNR and CNR between 

short- and long-T2 components. Based on the outcome of these experiments for the target 

short-T2 tissues (bone and tendon), the performance of the various methods examined 

was quantitatively evaluated. 

2.3 Image SNR of Long-T2 Suppressed UTE Sequences   

For unbiased comparison of the various soft-tissue suppression methods, the 

acquisition parameters for each of the three pulse sequences need to be optimized to 

maximize SNR of short-T2 species and CNR between short- and long-T2 components. 

SNR efficiency (SNReff) is defined as image SNR normalized by the square-root of total 

scan time for the purpose of comparing sequences with different imaging times. Image 

SNR depends on field strength, T1, T2, voxel dimensions, pulse sequence type and timing 

parameters, and total sampling time. Since the long-T2 suppression methods are variants 

of the original UTE sequence, the imaging parameters to be optimized reduce to a small 

set, including TR, flip angle of the half excitation pulse and magnetization preparation 

pulses, with all other parameters being held constant. The following subsections describe 

each pulse sequence and the relevant parameters for optimizing long-T2 suppression and 

short-T2 SNReff. 
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2.3.1 Dual-echo UTE 

Dual-echo UTE is the most commonly used method for soft-tissue suppression. As 

shown in the pulse sequence diagram (Fig. 2.1), two identical half radial projections 

differing in echo times are acquired after each half-pulse excitation. The long-TE image, 

containing signal predominantly from long-T2 species, is subtracted from the first echo 

image, which contains both long and short-T2 species. The resulting difference creates an 

image highlighting the short-T2 tissue components. Assuming that the magnetization 

reaches the steady state and there is negligible short-T2 proton signal in the second TE 

image, SNReff of short-T2 species in dual-echo UTE can be written as: 

where fxy, fz representing the normalized transverse and longitudinal magnetizations 

in response to the excitation pulse (63) deviate from the usual sine and cosine terms of 

the flip angle due to the evolution of the magnetization during the finite duration of the 
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Figure 2.1 2D UTE pulse sequence with soft-tissue suppression. In dual-echo UTE two identical 
half-radial projections differing in echo time are acquired after each half-pulse excitation. The 
dashed box indicates the magnetization-preparation portion of long-T2 suppression, in which a 
dual-band pulse (dual-band UTE) or adiabatic inversion pulse (IR-UTE) followed by a spoiler 
gradient is applied before standard UTE acquisition. For IR-UTE, an inversion time (not shown 
here) is inserted to null the longitudinal magnetization before UTE acquisition. 
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pulse relative to T2, and need to be numerically evaluated from the Bloch equations. Tacq 

is the total sampling time, which is proportional to TR. The factor  results from the 

subtraction operation.  

2.3.2 Dual-band UTE 

Dual-band UTE involves magnetization-preparation based soft-tissue suppression, in 

which a long dual-band saturation pulse is played out before the UTE acquisition in order 

to suppress the long-T2 species. The dual-band pulse has two spectral saturation bands at 

water and fat resonances, which can be designed using SLR algorithm with complex 

Parks-McClellan algorithm (65,69). Since lipid protons have multiple resonance peaks 

and relaxation times considerably shorter than those of water protons, the optimal flip 

angle of the saturation pulse for fat may be different from water. Therefore, the flip 

angles for both water and fat were included as design variables, along with the pulse 

duration, filter order, fat resonance frequency, desired ripple values and suppression 

bandwidth corresponding to the range of the off-resonance frequencies. Considering the 

effect of dual-band pulse on short-T2 species, SNReff can be expressed as follows, 

assuming magnetization is in the steady state: 

where fz,dualband is the normalized longitudinal magnetization in response to the dual-

band pulse. This can be calculated by numerical solution of the Bloch equations. 

Quantities fxy, fz and Tacq have previously been defined, and Tdualband is the dual-band pulse 

duration. From Eq.2, one can see that the SNR of short-T2 species depends on the dual-

2
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band saturation pulse, the excitation pulse and TR. Since the dual-band pulse has already 

been designed to maximally suppress the long-T2 components, its saturation effect on 

short-T2 species could be predetermined by the Bloch equation evaluation prior to 

optimizing the excitation pulse and TR. 

2.3.3 IR-UTE 

IR-UTE is a soft-tissue suppression method in which a long adiabatic pulse inverts 

the long-T2 components while only slightly perturbing the short-T2 protons, followed by 

UTE acquisition at the null point of the long-T2 components. This method is relatively 

immune to spatial B1 variations because of the properties of adiabatic pulses. A potential 

difficulty with IR-UTE is achieving simultaneous nulling of both types of protons given 

the significantly different T1 relaxation times of water and fat protons. However, it turns 

out that for TR < T1 optimal inversion delays for water and fat are close (i.e. differing by 

a few milliseconds), thereby resulting in negligible residual longitudinal magnetization at 

the time-point of sampling the UTE signal. Including the effect of the adiabatic inversion 

pulse and assuming the magnetization to have reached a steady state, SNReff for the short-

T2 protons is calculated according to: 

In Eq. 3 fz,inv is the normalized longitudinal magnetization of the short-T2 protons in 

response to the adiabatic inversion pulse. Tinv is the adiabatic inversion pulse duration. TI 

is the inversion time, defined as the time interval between the end of the adiabatic pulse 

and the start of the half-sinc pulse. Short-T2 SNR is a function of the inversion pulse, TI, 
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excitation pulse and TR. The inversion pulse, TR and TI are optimized to suppress the 

long-T2 species. The effect of the adiabatic inversion pulse on short-T2 components was 

evaluated by numerically solving the Bloch equations, and the optimal flip angle of the 

excitation pulse was determined from Eq. 3. 

2.4 Imaging Protocol Optimization 

For each of the three sequences, the adjustable parameters described above were first 

optimized to maximize soft-tissue suppression, including TE2 (dual-echo UTE), dual-

band pulse (dual-band UTE), and adiabatic inversion pulse, TR and TI (IR-UTE), The 

imaging parameters were then chosen to maximize short-T2 SNReff. After initially 

optimizing the imaging parameters for each sequence via Bloch equation simulations, the 

optimized sequences were used to acquire in vivo images for cortical bone and Achilles 

tendon, and SNR and CNR of the three sequences were compared to evaluate their 

performance. 

2.4.1 Tissue Parameters 

To optimize the imaging parameters for each sequence, the relaxation times for the 

target tissue components needed to be determined first as input parameters for the Bloch 

equation simulations and computation of SNR. Although there is significant age 

dependence of relaxation times in cortical bone and Achilles tendon (for example, in 

cortical bone as a result of porosity and pore size (3)), the typical T1 and T2 relaxation 

times used in the optimization procedures were: T1,bone = 200 ms, T2,bone = 420 s (73), 

T1,tendon = 600 ms, T2,tendon = 1 ms (74,75). 
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2.4.2 Imaging Parameter Optimization 

The critical variable determining the effectiveness of soft-tissue suppression in dual-

echo UTE is the second TE, which needs to be chosen to allow adequate short-T2 signal 

decay while minimally affecting the long-T2 components. To avoid signal cancellation 

from long-T2 components with different chemical shifts, the water and fat methylene 

resonances should be in phase at TE2, i.e., at an integer multiple of 2.3 ms at 3T. The 

durations for sampling of the first echo and readout rewinding gradients limit TE2 to a 

minimum of 4.6 ms.  

For dual-band UTE, the dual-band pulse must be optimized to achieve maximal soft-

tissue suppression. As stated in the theory section, the optimal flip angle of the saturation 

pulse for fat may differ from that for water. To determine optimal saturation pulse flip 

angles, a series of conventional dual-band pulses were first designed with flip angles 

from 80o to 130o degrees in steps of 5o. These preparation pulses were then incorporated 

into a spoiled gradient echo sequence to image a phantom consisting of containers of 

distilled water doped with 0.09 mM MnCl2 and 0.2M NaCl and vegetable oil with the 

following parameters: FOV = 200×200 mm2, slice thickness of 5 mm, matrix size = 

256×256, TR = 200 ms, TE = 4 ms. SNR of both water and fat images were calculated 

and plotted as a function of the flip angle of the dual-band saturation pulse. As suggested 

in Fig. 2.2, the optimal flip angle to produce minimal water signal is 100o, while for fat it 

is 110o. Once the optimal flip angles for water and fat were obtained, a dual-band pulse 

with different flip angles on water and fat bands was designed using the SLR and 

complex Parks-McClellan algorithms. The design function was derived from Larson et 

al.’s dual-band pulse design function (65), which includes flip angles for water and fat, 
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pulse duration, filter order, fat resonance frequency, desired ripple values and suppression 

bandwidths as input design parameters.  A pulse duration of 15 ms, filter order of 300, 

flip angles of 100o for water and 110o for fat, suppression bandwidths of 120 Hz on 

resonance and 320 Hz at the fat resonance centered at -430 Hz at 3T, and ripple values of 

0.5% were chosen for all the in vivo experiments. To validate the performance of the 

dual-band pulse, its off-resonance and T2 profiles were evaluated using matrix-form 

Bloch equation simulation (76). For off-resonance simulation, T2 = 100 ms, T1 = 1 s were 

used with frequencies between -800 Hz and 400 Hz relative to water protons. 

 

The adiabatic inversion pulse, TR and TI are the parameters to be optimized to 

suppress the long-T2 species in IR-UTE. A hyperbolic secant (HS) adiabatic inversion 

pulse was used in all in vivo experiments. To minimize bone water suppression and 

maximally suppress the long-T2 components, the HS pulse was optimized as follows: 1) 

Pulse bandwidth/duration = 1 kHz/20 ms, with a frequency shift of 270 Hz towards the 

lipid peak in order to cover both fat and water peaks; 2) The frequency was swept from 

 
Figure 2.2 SNR for doped water and vegetable oil vs. flip angle of the conventional dual-band 
pulse. The optimum flip angles are different for water (100 degrees) and fat (110 degrees),
reflecting their different relaxation times and spectral bandwidths. 
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higher to lower frequency, inverting water before fat to compensate for the longer T1 of 

water; 3) The HS pulse amplitude was set to allow 30% B1 variation. Bloch equation 

simulations were performed to evaluate the off-resonance and T2 profiles of the HS pulse 

and overall performance. T2 = 100 ms, T1 = 1 s were used in the off-resonance simulation. 

Water and fat longitudinal magnetizations could not be completely nulled simultaneously 

because of their very different T1 values. However, as pointed out previously, their null 

time points (i.e. TIs), are relatively close when TR is short and the magnetization has 

reached a steady state. Based on Ref. (77) and of some of the authors’ previous work 

(78), a combination of TR = 300 ms and TI = 100 ms is a good balance between short-T2 

SNR and long-T2 suppression. 

After the soft-tissue suppression related parameters were determined, other imaging 

parameters were optimized to maximize the SNReff of the target short-T2 species for each 

sequence according to Eqs. 1-3. The effects of dual-band pulse, HS pulse and half 

excitation pulse were calculated by Bloch equation simulation. The parameters of the 

dual-band and HS pulses have been described above. The parameters for the Hamming 

filtered half-sinc variable rate-selective excitation (VERSE) pulse (15) were as follows: 

pulse duration = 830 s with 580 s played out at the plateau and 250 s at the ramp-

down of the slice selection gradient (bandwidth = 4258 Hz creating 5mm slice thickness 

with 20 mT/m slice selection gradient). For dual-echo UTE and dual-band UTE, TR and 

flip angle of the half excitation pulse were optimized, while in IR-UTE, only the optimal 

flip angle of the half excitation pulse needs to be determined. In the case where the 

optimal excitation flip angle was close to 90o, the half-sinc pulse was replaced by a half-
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SLR pulse (79) in the subsequent in vivo scans as a means to improve the slice profile. 

All pulse design tasks, simulations and optimizations were implemented with MATLAB 

(Mathworks, Natick, MA, USA) using in-house programs. 

2.4.3 Human Subject Studies 

All in vivo MRI scans were performed at 3T (TIM Trio; Siemens Medical Solutions, 

Erlangen, Germany). The mid-tibia (38% site as measured from the lateral malleolus) and 

Achilles tendon of five healthy volunteers (age range: 24-40 years; gender: 3 males and 2 

females) were imaged with all the three sequences. The protocol for this study was 

approved by the Institutional Review Board and informed written consent was obtained 

for each participant. The same scan parameters were used for the UTE acquisition portion 

of the three sequences to ensure unbiased comparison (slice thickness = 5 mm, TE1/TE2 = 

60 s/4.6 ms). For the dual-TE sequence 2000 ramp-sampled half-radial projections were 

acquired (corresponding to 24% oversampling) to achieve adequate SNR considering the 

short TR (20 ms). For the other two sequences (dual-band and IR-UTE) only 500 

projections were acquired (corresponding to an undersampling factor of 3.2) in order to 

reduce total scan time, given the much longer TR required by these sequences (see Table 

1). Note here that the superior long-T2 suppression tolerates some undersampling without 

causing apparent streaking artifacts. In order to drive the magnetization to steady state, 40 

dummy scans were performed before data acquisition. For the mid-tibia, an 8-channel 

transmit-receive knee coil was used with FOV = 180×180 mm2, sampling frequency 

bandwidth = ±83.3 kHz, 268 readout points for each half radial projection resulted in a 

reconstructed matrix size of 512×512 and image resolution 0.35×0.35 mm2. The Achilles 
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tendon was imaged with a 4-channel receive-only ankle coil (Insight MRI, Boston, MA) 

with FOV = 120×120 mm2, sampling frequency bandwidth = ±62.5 kHz, 205 readout 

samples for each half radial projection, reconstructed matrix size = 384×384 and pixel 

size = 0.31×0.31 mm2. The body coil was used for RF transmission. To avoid 

confounding effects from the angle dependence of the collagen-bound water, the subjects 

were positioned horizontal and supine to ensure collagen fibers in the tendon aligned with 

the main magnetic field (80). Other acquisition parameters are listed in Table 2.1.  

 Cortical Bone  Tendon 

dual-echo UTE TR = 20 ms, FA = 25o  TR = 20 ms, FA = 15o 

dual-band UTE TR = 240 ms, FA = 75o TR = 500 ms, FA = 76o 

IR-UTE TR = 300 ms, TI = 100 ms, FA = 87o TR = 300 ms, TI = 100 ms, FA = 89o 

Table 2.1 Imaging parameter sets for dual-echo UTE, dual-band UTE and IR-UTE used in the in 
vivo experiments. 

2.4.4 Image Reconstruction and Analysis 

The acquired k-space data were remapped onto Cartesian grids using Greengard’s 

regridding algorithm (17) before applying 2D IFFT. Prior to gridding, sampling density 

compensation weighting was performed. The weighting was calculated based on the 

gradient mapping (20) which measured the k-space trajectories. The final magnitude 

image was synthesized as the square-root of the sum-of-squares of the multi-coil images. 

The subtracted image was reconstructed as the magnitude image difference between the 

short- and long-TE images. The image reconstructions were implemented with 

MATLAB. 

To quantitatively assess the performance of dual-echo UTE, dual-band UTE and IR-

UTE, short-T2 SNR and CNR were calculated. SNR was calculated as the ratio of the 
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mean magnitude image intensity inside a user-defined region of interest to the standard 

deviation of the background signal. Typical regions of interest included more than 100 

pixels. CNR was calculated as the difference between SNR of the tissue components of 

interest. For comparing sequences with different scan times, SNR was normalized by the 

square-root of total scan time to obtain relative SNReff with dual-echo UTE as the 

reference. The ratio of short-T2 SNR to surrounding long-T2 SNR was also calculated as a 

quantity measuring the level of short-T2 retention and long-T2 suppression. 

2.5 Simulation and Experimental Results 

The off-resonance and T2 profiles of the designed dual-band pulse are shown in Fig. 

2.3. The dual-band pulse generates flip angles at water and fat bands of 100o and 110o, 

respectively (Fig. 2.3b). Since the bandwidth was designed large enough to compensate 

for field inhomogeneity and to cover the broad fat spectrum at 3T, its saturation effect on 

short T2 species becomes substantial. The dual-band pulse is predicted to saturate 40% of 

cortical bone water (T2 = 420 s) and 60% of the tendon water protons (T2 = 1 ms). Fig. 

2.4 shows the off-resonance and T2 profiles of the designed HS adiabatic pulse. As 

illustrated in Fig. 2.4b, a variation in RF amplitude by ±30% has negligible effect on the 

spectral profile of the pulse, demonstrating its insensitivity to B1 inhomogeneity. 

However, Fig. 2.4c shows that short-T2 signals are significantly attenuated. The residual 

longitudinal magnetizations of cortical bone water and tendon protons are on the order of 

5% only immediately after the HS adiabatic pulse. Further, as T2 shortens, the HS pulse 

gradually loses its insensitivity to B1 variations (81).  
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The normalized theoretical SNReff of both cortical bone and tendon, as a function of 

TR for all three sequences, is shown in Figs. 2.5a and b, respectively. Imaging parameters 

used in the in vivo scans are indicated by markers in the figure. For each TR value the 

 
Figure 2.3 Bloch equation simulations of (a) 15 ms dual-band pulse. (b) Off-resonance profile for
T2 = 100 ms, T1 = 1 s. The dual-band pulse had a suppression bandwidth of 120 Hz with flip angle
of 100o on resonance with water and bandwidth of 320 Hz with flip angle of 110o at the fat
resonance centered at -430 Hz. (c) On-resonance T2 profile. Due to the increased suppression
bandwidth at 3T, 40% of cortical bone water (T2 = 420 s) and 60% of the tendon signal (T2 =
1ms) are saturated. 

 
Figure 2.4 Bloch equation simulations of (a) 20 ms HS pulse with bandwidth of 1 kHz. (b) Off-
resonance profile for T2 = 100 ms, T1 = 1 s. The HS pulse is shifted 270 Hz towards the lipid peak to cover
both fat and water peaks. The solid line was calculated at the desired B1 amplitude. The dashed and dotted
lines correspond to 70% and 130% of the desired amplitude, respectively. For B1 variations of up to 30%
the frequency profile of the HS pulse changes negligibly. (c) On-resonance T2 profile: less than 5%
longitudinal magnetization remains for protons with T2 ≤ 1 ms upon application of the HS adiabatic pulse. 
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SNReff was calculated at the optimal flip angle of the excitation pulse. In IR-UTE, to 

obtain the SNReff dependence on TR, TI is selected as the time point for which the 

magnitude sum of fat and water signals achieves a minimum at a given TR. However, it 

is noted that the extent of soft-tissue suppression is TR dependent. For dual-band UTE, 

TR of 500 ms was used instead of optimal TR around 750 ms for tendon imaging, to 

trade off SNR efficiency gain and scan time. 

 

Fig. 2.6 displays a representative comparison of left mid-tibia images from a 26-

year-old healthy male volunteer using the three soft-tissue suppression methods with 

optimized image protocols. Fig. 2.6a shows the first echo image of dual-echo UTE in 

which the contrast between cortical bone and the surrounding tissue is poor. In dual-echo 

UTE (Fig. 2.6b), although the muscle signal is well suppressed, the bone marrow and 

subcutaneous fat signal are not removed by subtraction since T2* of the lipid protons is 

on the order of the inter-echo time. Dual-band UTE yields considerably better short-T2 

 
Figure 2.5 Normalized theoretical SNR efficiencies for (a) cortical bone and (b) tendon as a 
function of TR for the three sequences. Short-T2 SNR efficiency is highest for dual-echo UTE 
(solid line) but generally lower for dual-band UTE (dashed line) and IR-UTE (dashed-dotted line)
due to perturbation of the spin system by the magnetization preparation pulses. The imaging 
parameters used in the in vivo scans are indicated by markers: circle: dual-echo UTE; triangle: 
dual-band UTE; diamond: IR-UTE. 
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contrast, but the soft-tissue suppression is not uniform across the FOV due to B1 

inhomogeneity, (Fig. 2.6c). When combining dual-band UTE with echo subtraction, 

better overall soft-tissue suppression is achieved (Fig. 2.6d). IR-UTE yields the highest 

contrast between short- and long-T2 regions with homogeneous soft-tissue suppression 

(Fig. 2.6e). On the other hand, cortical bone SNR in IR-UTE is lowest.  

 

Fig. 2.7 shows images of the left Achilles tendon of a 38-year-old healthy male 

volunteer. Since the water density in tendon is substantially higher than that in bone, its 

 
Figure 2.6 Axial mid-tibia images of a healthy volunteer: a, b) dual-echo UTE; c, d) dual-band
UTE; e, f) IR-UTE. Left column (a, c, e): first-echo images; right column (b, d, f): difference
images (first minus second-echo). Cortical bone (thin arrow) is obscured by the surrounding
intense soft-tissue signal, but highlighted in the long-T2 suppressed images. The tendon signal also
appears enhanced (dotted-dashed arrow). There is significant residual fat signal in dual-echo UTE
(dashed arrow in (b)). Dual-band UTE has high short-T2 SNR but its soft-tissue suppression is
inhomogeneous (dashed arrow in (c)). Cortical bone contrast is highlighted and uniform in IR-
UTE (e, f). For better comparison, (c, d, e, f) are on the same window/level. Signal extraneous to
the boundaries of the calf is from polymeric structures of the coil. 
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signal intensity is comparable to the surrounding muscle tissue even without long-T2 

suppression. Otherwise, the relative benefits and trade-offs of the various suppression 

techniques are replicated for this short-T2 tissue.  

 

Table 2.2 quantitatively compares the performance of the three sequences in terms 

of the evaluation criteria used. Overall, dual-echo UTE yields the highest SNReff but the 

lowest contrast between short- and long-T2 components. Relative to IR preparation dual-

band saturation pulse preserves a greater fraction of short-T2 signal. IR-UTE generates 

 
Figure 2.7 Axial lower-extremity images of a healthy volunteer: a, b) dual-echo UTE, c, d) dual-
band UTE: e, f) IR-UTE. Left column (a, c, e): first-echo images; right column (b, d, f): difference
images (first minus second-echo). Contrast between Achilles tendon (thin arrow) and muscle is
poor without soft-tissue suppression. Considerable residual fat signal appears in dual-echo UTE
(dashed arrow in b)). Soft-tissue suppression is inhomogeneous (dashed arrow in c)) but it is
improved when combined with dual-echo UTE (d). IR-UTE creates the highest and most
homogeneous tendon contrast. Residual blood signal is visible (dotted arrow in (e)) due to its long
T1. The image window levels for echo row images are individually adjusted for better visualization
since the image SNRs are substantially different from each other (see Table 2.2). Signal extraneous
to the anatomy is from proton-containing structures of the ankle coil. 
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the highest contrast between short and long-T2 tissues, albeit at the expense of short-T2 

SNR, which is lowest at this suppression scheme. This behavior is exacerbated when the 

short-T2 protons have relatively long T1, as in the case of tendons. Some discrepancies 

were observed between the simulations (Fig. 2.5) and experimental results (Table 2.2), 

particularly for the tendon images. Possible reasons are the presence of multiple T2 

components for tendon water protons, and deviations from the desired flip angle due to 

the tendon’s off-center location. 

. 

 

Cortical Bone  

      

dual-echo UTE 25.6±2.7 15.6±1.1 -42.4±2.4 1.00 2.56 0.38 

 dual-band UTE 32.1±7.3 20.7±6.6 16.3±7.0 0.72 2.84 2.03 

IR-UTE 26.1±5.0 20.2±4.5 17.1±3.0 0.53 4.42 2.90 
 

 Tendon

    

dual-echo UTE 140.5±17.4 126.5±9.1 1.00 10.0 

dual-band UTE 172.2±34.6 160.0±29.0 0.49 14.1 

IR-UTE 86.5±7.2 81.4±7.2 0.32 17.0 
 
Table 2.2 Quantitative comparison of three long-T2 suppression sequences, including absolute 

SNR of cortical bone ( ) and Achilles tendon ( ), CNR Between cortical bone 

and muscle ( ), cortical bone and marrow ( ), Achilles tendon and muscle 

( ), relative SNR efficiencies of cortical bone ( ) and Achilles tendon 

( ), SNR ratios of cortical bone to muscle ( ), cortical bone to marrow 

( ), and Achilles tendon to muscle ( ), expressed as means ± standard 

deviation from five subjects 
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2.6 Discussion and Conclusions 

Soft-tissue suppression techniques employed in UTE imaging generate high short-T2 

contrast so as to reveal short-T2 components ordinarily obscured by long-T2 components. 

This work attempted to compare the performance of three long-T2 suppression UTE 

sequences in an unbiased manner via simulation and experiment. Results show that 

excellent short-T2 contrast can be achieved when generated with these optimized 

sequences.  

Dual-echo UTE is the most commonly used soft-tissue suppression method. It is 

insensitive to both B1 and B0 inhomogeneities and is most SNR efficient as predicted 

theoretically and experimentally. This result is intuitive since no magnetization 

preparation is needed, which will always involve losses. Somewhat unexpected was the 

finding that background noise appears to be attenuated in multi-coil combined magnitude 

image subtraction, even though noise is amplified by in a single-channel complex 

difference image. In fact, the noise level is amplified as expected by a factor of . 

However, since the mean of the background signal is substantially reduced after 

subtraction (all values before subtraction are strictly positive), the noise appears to be 

attenuated in the magnitude display (refer to Figs. 3.6(b), (d) and (f)). Additionally the 

subtraction operation may attenuate subtle streaking artifacts. The major problem with 

dual-echo UTE is the significant residual signal from species with T2* comparable to the 

echo spacing, such as bone marrow and subcutaneous fat. Lipid protons tend to have T2* 

values as short as 10 ms resulting from destructive interference of their various 

chemically shifted components, and field inhomogeneity induced by susceptibility 

2

2
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variations of the air-tissue and bone-soft tissue interfaces. The data suggest that 

incorporation of dual-echo subtraction into magnetization preparation methods may be 

beneficial as a means to capitalize on the latter’s complementary long-T2 suppression 

properties.  

With the optimized dual-band pulse, dual-band UTE achieves short-T2 contrast 

superior to dual-echo UTE and higher SNR than IR-UTE. Since the UTE acquisition is 

played out immediately after the dual-band pulse, shorter scan time is possible than with 

IR-UTE which demands inclusion of an inversion delay. As well, the pulse design 

algorithm offers significant freedom to control the dual-band pulse, including flip angles, 

bandwidths and ripple values. In particular, frequency-band flip angles allow suppression 

of either long-T2 component, which is not possible with a single-band saturation pulse. 

However, as all frequency-selective saturation pulses are, the dual-band pulse is sensitive 

to spatial variations in B1 and B0 fields, resulting in inhomogeneous soft-tissue 

suppression. A possible alternative is the use of 90o adiabatic pulses to address the B1 

sensitivity problem (82), but its saturation effect on short-T2 species first needs to be 

investigated. To minimize sensitivity to B0 inhomogeneity, larger bandwidths are 

required, particularly at high magnetic field, which in turn augment undesired saturation 

of the short-T2 protons (65). To alleviate the pulse’s sensitivity to B1 and B0 

inhomogeneities and maximize soft-tissue suppression as demonstrated by the results, it 

is recommended to combine the dual-band UTE and echo subtraction method. 

IR-UTE produces the highest short-T2 contrast, achieved at the expense of SNR, 

which is lowest among the three long-T2 suppression techniques. Soft-tissue suppression 

is uniform across the entire FOV due to the relative immunity of the adiabatic inversion 
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pulse to B1 inhomogeneity. In the present work the pulse was designed to achieve optimal 

soft-tissue suppression. Further, judicious choice of TR minimizes the TI difference 

between components differing in T1. However, because of the time delay for long-T2 

inversion nulling, the scan time is relatively extensive compared to other sequences. 

Phase-sensitive IR (66) obviates the need for an inversion delay allowing for UTE 

acquisition immediately after the adiabatic inversion pulse. However, as shown in the 

simulations, saturation of the short-T2 protons is significant, particularly in combination 

with long T1 and increased pulse-bandwidth of the preparation pulse. Furthermore, two 

acquisitions with and without inversion preparation are required, which would double 

total scan time. Therefore, this method is not well suited in high-field applications since 

greater absolute field inhomogeneity and broader lipid spectrum necessitate larger pulse 

bandwidth. Also, because of the substantial saturation caused by the adiabatic pulse, the 

short-T2 signal in IR-UTE mainly arises from longitudinal magnetization built up during 

the inversion time. This intuitively explains why half pulses with flip angles near 90 

degrees are used in IR-UTE to maximize the short-T2 signal, which indicates that IR-UTE 

may not be favorable to image short-T2, long-T1 species. Instead of a single adiabatic 

inversion pulse, two back-to-back pulses were used by Du et al. in DIR-UTE to suppress 

long-T2 components with different T1s (67). However, since the difference in inversion 

null times for water and fat is usually less than the duration of the long adiabatic pulse, TI 

for fat is suboptimal. Prolonging TR can partially rectify this problem, but at the expense 

of impractically long scan times. Another possible solution is to use dual-band adiabatic 

inversion pulse (83) to invert the long-T2 components sequentially rather than 

simultaneously according to their TI difference. In (23), Du et al. conducted a comparison 
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between the soft-tissue suppression schemes investigated in this work with 3D UTE 

imaging. Although the imaging parameters for each individual long-T2 suppression 

method were not optimized and the comparison experiments were not carried out on the 

same anatomy due to long scan time of 3D UTE in (23), the authors also concluded that 

IR-based UTE (IR-TUE or DIR-UTE) is a simple and efficient method that can relatively 

easily be implemented on clinical scanners. The evaluation in this work showed that IR-

UTE is a low-SNR but high-CNR sequence with uniform soft-tissue suppression, which 

is preferred for imaging short-T2 species with relatively short T1, such as cortical bone. 

The results of the performance evaluation and comparison among the various sequences 

are summarized in Table 2.3. 

 

Performance criterion dual-echo UTE dual-band UTE IR-UTE

Short-T2 SNR + = - 
Long-T2 suppression  - = + 

Robustness to B0 inhomogeneity + = = 
Robustness to B1 inhomogeneity + - + 

Scan time + = - 

 
Table 2.3 Relative performance of three soft-tissue suppression sequences: -/=/+ scale indicating 
poorest to best. 

 
The short-T2 SNR efficiency could be improved by acquiring multiple slices in an 

interleaved fashion. For the dual-echo UTE this mode of operation would increase SNR 

efficiency by a factor equal to the square-root of the number of slices acquired within a 

given TR period (just as in conventional multi-slice MRI). For dual-band UTE and IR-

UTE, multiple slices can also be acquired within a TR period after each magnetization 

preparation pulse. However, this may result in somewhat impaired soft-tissue suppression 
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across slices. Thus, there is a trade-off between SNR efficiency and extent of long-T2 

suppression when translating these soft-tissue suppression schemes into multislice mode. 

The key motivation for soft-tissue suppression in UTE imaging is to enhance the 

visualization of short-T2 tissues obscured by the overwhelming long-T2 signal. More 

recently, soft-tissue-suppressed UTE imaging has been applied to directly quantify short-

T2 species, such as cortical bone water concentration (77), carotid plaque calcium (84,85) 

and myelin content (86). The motivation for incorporating long-T2 suppression into UTE 

imaging is to avoid soft-tissue contamination because UTE imaging without suppression 

suffers from contamination of the signal from long-T2 components or slice profile 

imperfections in 2D UTE. To decide on specific suppression schemes for short-T2 

imaging, the user will have to evaluate their performance and optimize the imaging 

parameters with SNR and CNR as the objective function. Also, as new soft-tissue 

suppression methods arise, it would seem appropriate to examine their performance 

against the methods evaluated in the present work to allow for unbiased comparison. 

A limitation of this study is its focus on a comparison of short-T2 SNR and CNR 

between short- and long-T2 tissues for the three most widely used soft-tissue suppression 

methods in their 2D embodiments. Other methods, such as TELEX (62,63) and DIR-UTE 

(67), were not evaluated and compared although they are variants of the methods 

investigated in this work. The sensitivity of these methods to pathologic changes of short-

T2 tissues remains to be examined to assess their clinical capabilities. Lastly, 3D 

implementations of the above sequences and their potential to visualize the 

microanatomy of collagen-rich short-T2 tissues need to be investigated in future work.   
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This work has attempted to achieve an unbiased quantitative performance 

assessment of the three most commonly used soft-tissue suppression methods by 

optimizing imaging protocols by both simulation and measurements in phantoms and in 

vivo. IR-UTE provides the highest short-T2 contrast and is well suited for imaging short-

T2 species with relatively short T1. A combination of dual-band UTE with dual-echo UTE 

yields both good SNR and CNR and reduced sensitivity to B1 inhomogeneity. The results 

provide a guide for the use of soft-tissue-suppressed UTE in research and in the clinic 

and the approach described may be useful for evaluating the performance of future soft-

tissue suppression methods. 
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Chapter 3 ZTE Imaging with Excitation Profile Correction  

3.1 Abstract 

ZTE imaging is a promising technique for MRI of short-T2 tissue nuclei in tissues. A 

problem inherent to the method currently hindering its translation to the clinic is the 

presence of a spatial encoding gradient during excitation, which causes the hard pulse to 

become spatially selective, resulting in blurring and shadow artifacts in the image. While 

shortening RF pulse duration alleviates this problem, the resulting elevated RF peak 

power and specific absorption rate (SAR) in practice impede such a solution.  In this 

work, an approach is described to correct the artifacts by applying quadratic phase-

modulated RF excitation and iteratively solving an inverse problem formulated from the 

signal model of ZTE imaging. A simple pulse sequence is also developed to measure the 

excitation profile of the RF pulse. Results from simulations, phantom and in vivo studies, 

demonstrate the effectiveness of the method in correcting image artifacts caused by 

inhomogeneous excitation. The proposed method may contribute toward establishing 

ZTE MRI as a routine 3D pulse sequence for imaging protons and other nuclei with quasi 

solid-state behavior on clinical scanners. 

3.2 Introduction 

As discussed in Chapter 1, the unique feature of ZTE imaging is the presence of the 

spatial encoding gradient during non-selective excitation. The sequence variants currently 

in practice include SPRITE (single-point ramped imaging with T1 enhancement) (29), 

WASPI (water- and fat-suppressed proton projection MRI) (8) and PETRA (pointwise 

encoding time reduction with radial acquisition) (9). Compared to UTE, ZTE traverses k-
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space faster, resulting in higher SNR and reduced blurring due to less T2 decay within the 

data acquisition window (87). Since data sampling occurs during the plateau period of the 

readout gradient in ZTE, the image distortion artifact associated with ramp sampling in 

UTE imaging is avoided.  

However, problems can arise in ZTE due to the imaging gradient being on during 

hard pulse excitation. First, the central portion of k-space is missed resulting from the 

time delay between the end of RF transmission and the start of data acquisition. Several 

approaches have been proposed to solve this problem, including algebraic reconstruction 

(10,21), acquisition of additional radial projections with lower gradient strength as in 

WASPI (8), and single point imaging as in PETRA (9) following the radial encoding 

portion of the sequence.  

Another well-known problem resulting from the presence of the imaging gradient is 

that the hard pulse becomes spatially selective. In the low flip-angle regime, the 

excitation profile of the hard pulse as a function of frequency is sinc-shaped as given by 

the Fourier transform of a rectangular waveform. The problem is negligible on laboratory 

imaging systems allowing for high peak power and thus very short pulse duration. 

However, B1 peak power and SAR limitations impose practical limits for in vivo scanning 

of humans (22). As elaborated upon in the following section, both blurring and shadow 

artifacts near the object’s boundary can arise in the reconstructed image without 

correction of the spatially dependent excitation profile.  

Recently, Grodzki et al. investigated the effects of the sinc-shaped excitation profile 

in PETRA and proposed an approach to correct for the resulting image artifacts (23). 

However, their correction algorithm requires that the imaged object fit into the sphere 
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defined by the main lobe of the sinc-shaped excitation profile. If these conditions are not 

met the amplified noise resulting from inversion of the ill-conditioned matrix rooted from 

the zero crossings of the sinc function would corrupt the resulting image. Thus, the 

problem of spatially dependent excitation in ZTE imaging of humans in clinical scanners 

has yet to be solved. 

In this work, the ZTE sequence signal is modeled to include the excitation profile 

effect, and formulate a correction algorithm as a solution to an inverse problem. In order 

to eliminate the zero crossings in the sinc excitation profile and to condition the inverse 

problem, the hard RF pulse is modulated with quadratic phase, which produces a flatter 

excitation profile. A simple pulse sequence is also developed to measure the excitation 

profile of the RF pulse. Without loss of generality, the proposed method was applied to 

one variant of ZTE imaging sequences, namely PETRA. By combining phase-modulated 

RF excitation and iteratively solving the inverse problem, results from simulations, 

phantom and in vivo studies demonstrate the effectiveness of the proposed method for 

correcting image artifacts caused by inhomogeneous excitation, even when the extent of 

the imaged object exceeds the main lobe of the sinc function.  

3.3 Signal Model of ZTE Imaging 

In standard MRI, the signal model is given by:  

where s(k) is the complex signal at the spatial frequency-space (k-space) location k, 

m(r) denotes the spatial distribution of the imaged object’s transverse magnetization at 
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spatial coordinate r, denotes the vector inner product, and  is additive complex 

Gaussian noise. The k-space location k at a particular point in time depends on the 

sampling pattern of the pulse sequence. For example, for PETRA, as shown in Fig. 3.1, 

the k-space sampling is divided into two parts: the outside portion is acquired with radial 

trajectories, while the center is filled on a Cartesian grid by single point imaging (9).  

 

As pointed out above, the presence of the spatial encoding gradient during RF pulse 

excitation makes the non-selective pulse in ZTE frequency selective. As a result, an 

excitation profile is superimposed onto m(r): 

For a given RF pulse waveform, p(f) is the excitation profile expressed as a function 

of resonance frequency f which is given by f =G, r>, with  being the gyromagnetic 

ratio and G the imaging gradient. The goal is to reconstruct m(r). In conventional image 

,  

   [2]
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Figure 3.1 Pulse sequence diagram of PETRA, consisting of, a) radial acquisition, b) Cartesian
portion. The latter uses single point encoding to fill the missing k-space points; c) corresponding
k-space trajectory. 
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reconstruction a uniform excitation profile p(f) is assumed. A gridding algorithm is 

usually employed to accomplish image reconstruction (16).  

However, in practice p(f) is not homogeneous due to the finite pulse duration 

imposed by the peak RF power and SAR constraints (particularly restrictive with clinical 

imaging hardware). The profile must therefore be included in the image reconstruction in 

order to avoid artifacts that would degrade image quality. A rectangular hard pulse is 

typically used for excitation in ZTE: 

where  is the pulse duration, and the reference time of the hard pulse is at the center 

of the pulse, i.e. the k-space center. The pulse amplitude b1 is determined by the desired 

flip angle  and the pulse duration  according to  =b1. 

Based on the small-tip-angle approximation theory, which is valid for flip angles 

less than 30 degrees (88,89), the excitation profile p(f) is calculated as the Fourier 

transform of rectangular hard RF pulse waveform: 

Substituting f =G, r> into Eq.4: 

Eq.[5] shows that the excitation profile is a function of both the imaging gradient and the 
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spatial location thereby resulting in image artifacts. During acquisition of the outer (i.e. 

radial) portion in PETRA, the imaging gradient amplitude |G| is kept constant for each 

projection. As r increases from the center to the edge of the field-of-view (FOV), p(G, r) 

decreases and signal variation is introduced across the FOV causing a shadow artifact at 

the object’s boundary. One can see that the artifacts are less severe in the center FOV 

region because of smaller r, and in fact the FOV center should be relatively free of 

artifacts. On the other hand, in the central Cartesian portion of k-space, a lower gradient 

amplitude |G| is used, resulting in higher p(G, r) values. From a signal processing 

perspective, p(G, r) acts like low spatial frequency filter and the reconstructed image 

without correction suffers from blurring.  

The severity of the image artifacts depends on the relative length of the pulse 

duration  compared to the readout sampling time gap d (termed dwell time). To see this, 

the maximum distance from the FOV center, rmax, is given by: 

Inserting Eq.6 into Eq.5, obtain the profile at the FOV boundary: 

As is evident from Eq.7, the excitation profile is relatively uniform and no image as 

long as the pulse duration is much shorter than the dwell time d, in which case no 

artifacts are apparent. However, for longer pulse durations, the profile becomes 

increasingly heterogeneous and image artifacts become noticeable. In practical imaging 
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experiments, a typical value of d is 5 s, therefore the pulse duration should be less than 

5 s in order to make the image artifacts negligible. In practice, this condition is difficult 

to achieve as the B1 peak power to allow a desired flip angle may exceed SAR limits 

when scanning humans. 

3.4 Proposed Algorithm for Excitation Profile Correction 

3.4.1 Model as an Inverse Problem 

In order to eliminate image artifacts, the effect of the non-uniform excitation profile 

needs to be considered in image reconstruction. The discretization of Eq.2 yields 

where N is the number of pixels of the reconstructed image, and M is the number of 

k-space samples. In matrix form, Eq.8 becomes: 

where A is the system matrix with its elements .  

Image reconstruction can now be formulated as an optimization problem with an 

optional regularization term. As pointed out in (90), a small total variation (TV) 

regularization term is helpful to alleviate the streaking artifact in radial imaging. The final 

form of the reconstruction problem can be written as: 

2 ,

, ( , ) j ii k r

i j j iA p G r e   

   [8]

   [9]

        [10]

2 ,

1

( ) ( ) ( , )    1, 2, ...,j i

N
i k r

j i j i j
i

s k m r p G r e j M   



  

s Am  

2

2 1
ˆ arg min

m
m Am s Dm  



47 
 

where D is the finite difference operator. ||·||1 denotes the vector’s L1-norm and  is 

the regularization parameter. Several algorithms can be used to solve Eq.10, among 

which the Split-Bregman method (or Augmented Lagrangian method) (91) has been 

proven to be efficient. During the iteration, a Conjugate Gradient algorithm is employed 

as a subroutine to solve a quadratic optimization problem, in which the matrix-vector 

multiplication is the most computationally intensive (~O(N2)). For example, assuming the 

reconstructed image matrix size (or N) is 1283, each matrix-vector multiplication takes 

O(1286)~O(1012) computations. Therefore, the enormous size of the system matrix A 

prevents explicit matrix-vector multiplication during the iterations.  

Instead, the matrix-vector multiplication is implicitly computed as a series of 

operators on a vector. Here s is defined as the coordinate along the imaging gradient 

direction. According to the central slice theorem, the k-space signal along the gradient 

direction in Eq.2 is rewritten as: 

where R denotes the Radon transform. The noise term is dropped for simplicity. 

Noting that s = <G, r>, p is a function of s and thus can be moved out of the Radon 

transform: 

Therefore, the k-space signal of each projection in ZTE imaging can be interpreted 

as the 1D Fourier transform of the Radon transform of the magnetization modulated by 
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the excitation profile. The Radon transform can be approximated by the non-uniform fast 

Fourier transform (NUFFT) (17,92) with sufficient accuracy and fast computation, which 

reduces to ~O(NlogN) per the matrix-vector multiplication. From Eq.12, the system 

matrix is decomposed into three operators: 

where F is the NUFFT operator that maps the (Cartesian) image to k-space (full) 

radial spokes, with one spoke for each radial trajectory, and additionally one spoke for 

each Cartesian point. The P operator acts on each projection separately by zero-padding 

(by a factor of 2), 1D IFFT, multiplication with the excitation profile, 1D FFT, and 

finally restoration of the original vector length. The sampling operator, denoted R, masks 

out the fraction of the radial signal that was not acquired (recall that less than half of each 

radial spoke is acquired) and performs Dirichlet interpolation in the Cartesian portion 

(since the coordinates of the single points may not coincide with those in the radial 

spokes) (93). Application of the operator F is the most time-consuming process, requiring 

~O(NlogN) computations. The adjoint operator AH is the reverse process of the above 

steps. A flow chart describing the algorithm is shown in Fig. 3.2. The image 

reconstruction algorithm was implemented in Matlab (Mathworks, Natick, MA, USA) 

with NUFFT algorithm as a mex function written in C. 

      [13]A RPF
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3.4.2 Quadratic Phase-Modulated Hard RF Pulse 

As shown in Eq.7, when the RF pulse duration is twice the dwell time, the profile’s 

zero crossings are within the FOV, causing the system matrix A to be singular and the 

inverse problem to be ill conditioned. In order to eliminate the zero crossings of the 

rectangular pulse excitation profile, a quadratic phase is modulated to the RF pulse 

waveform: 

 

 
Figure 3.2 Diagram of the implementation of the system matrix A, composed of three sequential
operators: the NUFFT operator F, the excitation profile modulation operator P and the sampling
operator R. The solid dots in a) and b) represent the acquired samples in k-space and the hollow
circles denote the locations which are interpolated by NUFFT but not acquired by the sequence. 
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where controls the amount of quadratic phase applied to the RF pulse. In all of the 

following applications,  is set to 1. The corresponding excitation profile can be 

computed by numerical Bloch equation simulation. The quadratic phase-modulated pulse 

has a flatter excitation profile than does a simple hard pulse. More importantly, no zero-

crossing point occurs in the profile even when the pulse duration is four times that of the 

dwell time (see Fig. 3.4). 

3.4.3 Excitation Profile Measurement 

In order to confirm that the theoretical excitation profile is indeed achieved, a simple 

pulse sequence is  used for its measurement, which can be inserted as a pre-scan into the 

ZTE sequence. A sketch of this pulse sequence is shown in Fig. 4.3(a, b). Suppose the 

signals acquired by the first and second acquisitions are S1 and S2, respectively. The 

excitation profile p(f) is calculated as: 

A flow diagram illustrating the data acquisition and processing procedures is shown in 

Fig. 3.3. 
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3.4.4 Simulations 

A 2D Shepp-Logan phantom was used to generate the simulated data by applying the 

operators described in Eq.13. The excitation profile effects of both the rectangular and 

quadratic phase-modulated RF pulse were simulated. The pulse duration  was varied 

from one to four times the dwell time d of 5 s. Other parameters of the sequence used in 

the simulation were: T/R switch dead time = 70 s, 300 half radial projections, and 

reconstructed image matrix size = 128×128. Complex Gaussian noise was then added to 

the simulated k-space data, yielding SNR ~50. The images were reconstructed with and 

without the correction algorithm from the simulated noisy k-space data.  

3.4.5 Experiments 

A doped-water phantom was imaged at 3T (SIEMENS Tim Trio, Erlangen, 

Germany) using the PETRA sequence with a four-channel receive-only head coil and 

body coil RF transmission and the following scan parameters: 1.30 mm isotropic voxel 

 
Figure 3.3 Pulse sequence diagram for RF pulse excitation profile measurement. The signals
from acquisitions a) and b) are first transformed into image space by inverse Fourier transform,
generating projections with and without modulation excitation profile. The profile is then
obtained by taking ratio between the projections. 
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size, matrix size = 1923, number of half-projections = 30,000, flip angle = 6º, TE = 100 

s, TR =10 ms. To investigate the effect of inhomogeneous excitation profile a series of 

scans were performed with dwell times of 5, 10 and 20 s while fixing the pulse duration 

at 20 s. The excitation profiles of both rectangular (Eq.3) and phase-modulated (Eq.14) 

RF pulses were measured by the proposed pulse sequence and compared with those 

obtained by Bloch equation simulations. A product spoiled gradient-echo (GRE) 

sequence with TE of 2.5 ms was also run with the same image resolution for comparison.  

The head of a 40 year-old healthy male volunteer was scanned with the PETRA 

sequence with the same coil as previously used in the phantom experiments. The protocol 

for this study was approved by the Institutional Review Board and written informed 

consent was obtained from the subject. Scan parameters were: 1.17 mm isotropic voxel 

size, matrix size = 2563, number of half-projections = 50,000, flip angle = 5º, TE = 85 s, 

TR = 10 ms, readout bandwidth = ±62.5 kHz (corresponding to 5 s dwell time). Both 

rectangular and phase-modulated excitation pulses were used as excitation pulses with 20 

s duration. Images from a GRE sequence with TE of 2.5 ms obtained at the same image 

resolution were used for comparison.  

To ensure that all reconstructions were performed under identical conditions, the 

same regularization parameter  = 0.0001 was used after automatically scaling the raw 

data for consistency. While it is possible that the image quality could be improved 

slightly with a different choice of the total variation weight, this type of optimization is 

beyond the scope of the present analysis. Since k-space was not significantly 

undersampled, modest L1 regularization is not expected to appreciably impact image 
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quality. For the sake of simplicity, the multiple-coil data are treated separately. All 

images were first reconstructed channel-by-channel and then combined as square root of 

the sum of squares.  

3.5 Results 

3.5.1 Excitation Profile Measurement 

The rectangular and quadratic phase-modulated pulse waveforms with 20 s 

duration are shown in Fig. 3.4a. Figs. 3.4b and c compare the magnitude and phase of the 

excitation profiles of both RF pulses as a function of frequency, obtained by numerical 

Bloch equation simulations, with measurements by the proposed pulse sequence, 

respectively. The simulation results are in good agreement with those obtained 

experimentally. As seen from Fig. 3.4b, the phase-modulated pulse eliminates the zero 

crossings in the sinc-shaped profile of the hard pulse excitation, which improves the 

condition number of the system matrix of the inverse problem. 
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3.5.2 Simulations 

The simulated uncorrected images with varying pulse durations and constant dwell 

 
Figure 3.4 a) Waveforms of hard and quadratic phase-modulated RF pulses with 20 s duration 
and flip angle of 5o; b) Magnitude and c) the phase of the excitation profiles of both pulses
obtained by Bloch equation simulations and measurements with the pulse sequence in Fig. 4.3
with dwell time of 5 s. The experimental data are in good agreement with simulations. The 
noisy oscillations in b) and c) occur in the region outside the imaged object. 
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time are shown in Figs. 3.5a-c. Figs. 3.5d-f and j-l show the corresponding corrected 

images with hard and phase-modulated pulse excitation, respectively, along with the 

difference images from the true image in Figs. 3.5g-i and m-o. No visible artifacts are 

present in the uncorrected image (Fig. 3.5a) with the same pulse duration and dwell time 

since the excitation bandwidth covers the spin resonance frequencies created by the 

spatial encoding gradient and the excitation profile inside the phantom is relatively 

uniform. However, as the pulse duration increases, the excitation bandwidth becomes 

narrower, resulting in a less homogeneous excitation profile and a more severe image 

artifact, as predicted by the theoretical analysis. The corrected images with hard pulse 

excitation eliminate the artifacts within the main lobe of the sinc-shaped profile, indicated 

by the dashed circle. However, residual artifacts are visible in the region outside the 

circle (Fig. 3.5f) since the spins in this area resonate at frequencies where the excitation 

profile is close to zero. The reconstructed images with phase-modulated pulse excitation 

in Figs. 3.5j-l effectively correct the artifacts even in the region outside the first zero 

crossing of the sinc function. 
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3.5.3 Experiments 

Similar results as simulations are observed in phantom images with different dwell 

times in Figs. 3.6. As the dwell time gets shorter, the blurring and shadow artifacts 

become more apparent. The algorithm presented based on quadratic phase-modulated 

pulse excitation successfully removes the image artifacts in all cases and the images 

compare favorably with the reference gradient-echo image (Fig. 3.6j). 

 

Figure 3.5 Simulated 2D phantom images with various pulse durations and constant dwell time
of 5 s. As the pulse duration increases image artifacts become more severe in the uncorrected
image (a-c). The proposed algorithm and hard pulse excitation (d-f) removes the artifacts inside
the sinc main lobe indicated by the dashed circle. However, residual artifacts are still visible
outside the circle (f), which is also evident in the difference images (g-i). Combination of our
algorithm and quadratic-phase modulated pulse effectively correct the artifact even when the
pulse duration is four times of dwell time (j-o). 
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Fig. 3.7 compares in vivo ZTE brain images on the sagittal and coronal planes with 

and without correction, along with images from a reference GRE sequence. The dashed 

circles in the second column images (Figs. 3.7c and d) indicate the locations of the zero 

crossing of sinc-shaped profile with hard pulse excitation. While no residual artifact 

appears in the regions inside these circles, the noise amplification due to the inversion of 

a singular system matrix creates artifacts in the corrected images with hard pulse 

excitation. In contrast, the artifacts are effectively corrected with quadratic-phase pulse 

excitation yielding image quality comparable to the GRE sequence. Lastly,  one can see 

Figure 3.6  Axial ZTE phantom images obtained with constant pulse duration but varying dwell 
time. As the dwell time gets shorter, blurring and shadow artifacts become more apparent in (a-c). 
Although artifacts in images with hard pulse excitation are corrected inside the main lobe of the 
sinc-shaped excitation profile indicated by the dashed circle, the outside region still suffers from 
artifacts (d-f). The new algorithm, along with phase-modulated RF pulse excitation (g-i) removes 
the artifacts yielding image quality to that of a conventional GRE sequence (j). 
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that the ZTE images are free from the susceptibility artifact due to the air-tissue interface 

in GRE images as indicated by the arrows in Fig. 3.7g. 

 

3.6 Discussion and Conclusions 

In ZTE imaging, the presence of the spatial encoding gradient during non-selective 

RF excitation offers advantages over UTE imaging in terms of faster k-space traversal 

and elimination of artifact from ramp sampling. However, the imaging gradient also 

causes a non-uniform excitation profile across the FOV. Therefore, as pointed out in (23) 

and in section III, the measured ZTE signal turns out to be the Fourier transform of the 

Radon transform of the magnetization modulated by the excitation profile according to 

the central slice theorem. As a result, blurring and shadow artifacts appear in the 

uncorrected images. Although extremely short RF pulse durations compared to the dwell 

time can be used to alleviate such artifacts, high peak power is needed to achieve the 

 
Figure 3.7 In vivo ZTE brain images with 20 s pulse duration and 5 s dwell time showing the
sagittal and coronal planes. Results are in good agreement with those from simulations and
phantom experiments. Note that the ZTE images corresponding to TE = 85 s eliminate the
susceptibility artifact due to the air-tissue interface noticeable in GRE images (TE = 2.5 ms) as
indicated by arrows (g). 
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optimal Ernst angle and SAR could be an issue for human scans. Also higher power RF 

transmission requires a stronger RF amplifier and a dedicated transmit coil. In (23), the 

effect of the inhomogeneous excitation profile was simulated and an algorithm was 

proposed to correct the artifacts. This algorithm works under the condition that the object 

is inside the main lobe of the sinc-shaped excitation profile of the rectangular pulse. 

However, once this condition is violated, the elevated noise level corrupts the 

reconstructed image.  

This chapter has presented an effective algorithm for correcting the artifacts in ZTE 

imaging within the limits of current clinical scanner hardware and SAR constraints 

without any modification of coil hardware, and more importantly, allowing the imaged 

object to extend beyond the main lobe of the hard pulse excitation profile. The proposed 

method is readily adapted to other ZTE sequences, e.g. SPRITE (29), WASPI (8).  

There are several innovations in this proposed method. First, the signal model in 

ZTE imaging was derived to include the effect of non-uniform excitation profile, from 

which the origins of the artifacts can be analyzed. An inverse problem was formulated 

from the signal model. By taking advantage of the central slice theorem and 

computationally efficient NUFFT, an iterative algorithm was designed and implemented 

to solve the inverse problem with an optional regularization term. Since the noise effect is 

included in this new correction algorithm, the reconstructed image quality is superior to 

the corrected images shown in (23). 

Second, a quadratic phase-modulated rectangular (chirped) pulse was designed for 

excitation instead. As shown in both simulations and experiments, the corrected image 

with hard RF pulse excitation shows residual artifact outside the spherical region defined 
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by the main lobe of the sinc-shaped profile. This is because the null points in the 

excitation profile cause the system matrix to be singular and make the inverse problem 

ill-conditioned. When a quadratic phase modulation is applied to the RF pulse, the 

excitation profile becomes flatter and lacks a null point, as shown in the Bloch equation 

simulation results. This improved excitation profile can be understood as a type of 

regularization to physically reduce the condition number of the inverse problem. The 

sinc-shaped hard pulse excitation profile is pure real. As a way to remove the null point, 

an imaginary part is added into the profile to make it complex. Hence the magnitude of 

the profile is no longer singular. The improvement in the reconstructed images is evident. 

The amount of phase modulation applied to the RF pulse constitutes a trade-off between 

the flip angle and the minimum value of the absolute magnetization profile within the 

field of view. Application of too much phase yields low flip angle for a given peak B1 

amplitude and pulse duration. On the other hand, inadequate quadratic phase causes the 

magnetization profile to approach a sinc profile, and the noise will be amplified due to a 

close-to-singular system matrix. Here, a relatively small amount of quadratic phase was 

chosen in order achieve minimal flip-angle loss while maintaining a relatively flat 

excitation profile. 

Third, a pulse sequence was proposed to measure the excitation profile. In (23), the 

profile was obtained by measuring the actual pulse shape with an oscilloscope followed 

by taking the Fourier transform of the pulse shape. This proposed approach does not 

require additional hardware and can be inserted as an optional component into the ZTE 

pulse sequence. The spectral profile measured by the new sequence shows good 

agreement with that obtained from the Bloch equation simulation. Therefore, the profile 
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from the numerical simulation is sufficiently accurate as an input for the correction 

algorithm.  

As pointed out in (22), a general drawback of ZTE imaging in humans is the need 

for high power RF transmission with large-bandwidth excitation and the associated 

increase in SAR. With the proposed approach, ZTE imaging operated at lower peak 

power, longer pulse duration, larger flip angle or higher readout bandwidth becomes 

practical on clinical imagers, thus providing new opportunities for short-T2 imaging. 

While the majority of short-T2 imaging reported so far in the literature (1,2,12) has been 

by UTE MRI, there is both theoretical and experimental evidence that ZTE achieves 

superior SNR (94,95). The need for prolonged RF pulses is particularly stringent when 

the method is combined with soft-tissue suppression preparation pulses. In order to 

optimize short-T2 contrast, inversion recovery (IR)-based long-T2 suppression is usually 

employed to highlight short-T2 tissue components (72,96). However, the optimal 

excitation flip angle of IR-based sequences is close to 90 degrees, therefore, requiring 

relatively long RF pulses to achieve the desired flip angle that optimizes SNR of the 

short-T2 tissue without incurring image artifacts. Lastly, the proposed method allows for 

higher readout bandwidth thus shortening sampling time, which in turn reduces blurring 

due to T2 decay within the acquisition window (87). 

 Besides its capability to image extremely short-T2 species, ZTE imaging has also 

been shown to have potential applications in routine clinical scans due to its low acoustic 

noise from smoothly varying gradients that reduce the slew rate requirements (22). 

Therefore, the proposed method may be helpful to broaden the clinical utility of the ZTE 

imaging sequence.        
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Currently, the running time of the algorithm to reconstruct a 2563 image matrix is on 

the order of 3-4 hours on a PC with 3.16 GHz Intel Xeon CPU and 16 GB RAM. 

However, the computation of the operators in the system matrix is highly parallelizable, 

which could significantly accelerate reconstruction speed (current implementation used a 

single processing thread). GPU implementation of the NUFFT operator has shown more 

than two orders of magnitude acceleration (97,98). The P operator processes each 

projection independently and can be parallelized trivially. Devising an accelerated 

version of the proposed algorithm will be investigated in future work. Another minor 

limitation is that the B1 peak power increases ~10% for a phase-modulated pulse to 

achieve the same flip angle as the hard pulse, which is a slight trade-off in return for the 

significant improvement in image quality. 

In conclusion, an effective approach integrating quadratic-phase modulated RF 

excitation and iterative reconstruction for correcting artifacts caused by the 

heterogeneous excitation in ZTE imaging is presented. The new method has potential to 

establish ZTE imaging as a routine pulse sequence for visualization and quantification of 

short-T2 tissue constituents. 
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Chapter 4 Accelerated UTE and ZTE Imaging 

4.1 Abstract 

Although UTE and ZTE pulse sequences are able to directly image tissue 

components with sub-millisecond T2 values, they usually require long scan time. In this 

chapter two approaches are described to accelerate their imaging speed: compressed 

sensing and anisotropic field-of-view (FOV). 3D compressed sensing UTE (COMPUTE) 

and anisotropic FOV ZTE (AFOV ZTE) imaging were developed. Imaging performance 

was evaluated by simulations and experimentally by phantom, ex vivo and in vivo scans. 

Results demonstrated COMPUTE technique achieved an acceleration factor of ~6 and 

scan time was shortened by a factor of ~3 in AFOV ZTE. They both have potential 

applications in short-T2 imaging with long scan time, such as non-proton short-T2 

imaging and inversion recovery-based long-T2 suppressed imaging. 

4.2 Introduction  

Although UTE and ZTE pulse sequences are able to directly image tissues with very 

short-T2 relaxation time on the order of hundreds of microseconds, they usually require 

long scan time. For example, 2D UTE imaging is time-inefficient: half-pulse excitation 

requires two scans with opposite slice-selection gradient polarities to achieve spatial 

selectivity; radial center-out sampling doubles the scan time for full k-space coverage. 

ZTE imaging is also scan-time intensive, for mainly two reasons: (i) the method is 

exclusively 3-dimensional by default, which requires a large number of half-projections; 

(ii) the additional acquisition may be relatively long to fill the missing central portion of 

k-space, depending on the number of missing k-space points per half projection. In order 
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to reduce scan time and improve imaging efficiency, compressed sensing (CS) and 

trajectory with anisotropic field-of-view are employed in this chapter.  

Recently, CS has emerged as a widely used approach to accelerate the imaging 

speed (99). CS mainly consists of two ingredients: incoherent artifacts and sparse 

constraint. Since radial trajectories are typically used in UTE and ZTE imaging and 

undersampled radial trajectories often result in streaking artifact in the reconstructed 

images which mimics the incoherent artifacts, CS is compatible for UTE and ZTE 

sampling strategy if the underlying image exhibits sparsity in some transformation 

domain and the incoherent artifacts are also present in that domain. Typical sparsifying 

transforms are finite transform, wavelet transform. For long-T2 suppressed UTE and ZTE, 

the image itself exhibits sparsity since only short-T2 tissue signals show up. 

In many MRI applications, the target anatomies have asymmetric dimension, which 

can also be exploited to accelerate scan speed by tailoring the field-of-view (FOV) to 

their anisotropic shape. This property is especially applicable in short-T2 imaging, since 

many short-T2 tissue rich sites, such as extremities, are elongated. Scheffler et al. 

proposed to apply trajectory functions with varying angular density to create anisotropic 

2D FOV (100). Larson et al. utilized the relationship between k-space interval and FOV 

to design radial trajectories conforming to a given FOV shape (101), allowing shorter the 

scan time and aliasing artifacts reduction at the same time. 

In this chapter, a 3D compressed sensing UTE (COMPUTE) imaging method was 

developed with a hybrid-radial encoding strategy. Phantom and in vivo results show the 

performance of COMPUTE. A ZTE sequence was designed with anisotropic FOV 

(AFOV) to tailor its FOV to the shape of the target anatomy. Point spread function (PSF) 
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simulations were used to evaluate the predicted FOV shape. Further, the proton AFOV 

ZTE imaging performance was evaluated in a synthetic polymer as well as in cortical 

bone of the human tibia. Lastly, the feasibility of the method for 31P imaging of 

mineralized tissue was examined.     

4.3 Compressed Sensing UTE (COMPUTE) Imaging 

4.3.1 Pulse Sequence  

Compared with 2D UTE, 3D UTE provides volume coverage and higher SNR 

efficiency. Since a hard pulse is employed, 3D UTE is also immune to artifacts associated 

with half-pulse excitation and obviates the need for two scans with opposite slice-

selection gradient polarities. A hybrid stack-of-radial pattern, rather than pure 3D radial 

acquisition was chosen as the sampling trajectory for the following reasons: 1. It is more 

straightforward to achieve anisotropic FOV considering that the dimensions of most 

target anatomies are not spherical, (e.g., tibia); 2. Compared with 3D gridding, the image 

reconstruction is faster by first applying IFFT in slice dimension followed by 2D gridding 

reconstruction in each slice, especially considering that iterative image reconstruction 

algorithm used in this work is time-consuming.  

As shown in Fig. 4.1, the hybrid encoding is achieved via radial readout with ramp 

sampling on the kx–ky plane and Fourier encoding along kz. To minimize the signal loss 

from T2* decay during the phase-encoding period, the duration of the trapezoidal 

gradients is stepped, thereby minimizing TE at kz=0. To test the feasibility and evaluate 

the performance of COMPUTE, the full data sets were acquired in both phantom and 

mid-tibia in vivo with the following scan parameters: FOV=160×160×250mm3, 
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TEmin/TR=50s/10ms, FA=10º with 20s pulse duration, 500 half-projections 

(corresponding to an undersampling factor of 1.6) and 180 readout points per projection, 

readout bandwidth=±125kHz, 128 slices, reconstructed image matrix=256×256×128, 

total scan time=10minutes. A four-channel head coil and an eight-channel knee coil were 

used to image phantom and mid-tibia, respectively. 

 

4.3.2 Simulations and CS Reconstruction  

The undersampled data were synthesized by randomly sampling kz and variably 

undersampling the projection views. A power of 5 of distance from the kz center was 

chosen as the sampling probability density function to achieve an undersampling factor of 

2 in the kz dimension. 250 equiangular views were selected in the central kz portion while 

125 views in the edge kz region. With this undersampling strategy, a total acceleration 

factor of 10 was achieved. 

The images were reconstructed by solving the following optimization problem with 

total variation (TV) as the sparsity constraint (99): 

 

Figure 4.1 Hybrid 3D UTE pulse sequence diagram. The hybrid encoding is achieved via radial
readout with ramp sampling on the kx–ky plane and Fourier encoding along kz. To minimize the
signal loss from T2* decay during the phase-encoding period, the duration of the trapezoidal
gradients is stepped to minimize TE. 
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Here is the reconstructed image, y denotes the undersampled k-space data and is 

the regularization parameter. Fu represents the undersampled Fourier transform operator 

that maps the image onto the k-space data according to the sampling pattern in 

COMPUTE, and D is the finite difference operator. ||·||p denotes the vector’s p-norm. A 

nonlinear Conjugate Gradient algorithm was used for solving Eq.1. The images were also 

reconstructed from the undersampled data by zero-filling with density compensation (ZF-

w/dc), which consists of zero-filling the missing k-space data, multiplying with k-space 

density compensation factor (DCF), IFFT along kz and NUFFT (17) on the kx–ky plane. 

DCF is computed from the probability density function with random sampling, the 

variable density of radial views along kz and the radial ramp sampling. For comparison, 

full data sets were used to reconstruct the reference images with the similar procedure as 

ZF-w/dc but without zero-filling. 

4.3.3 Results  

Axial phantom images reconstructed from full and undersampled data sets with CS 

and ZF-w/dc are shown in Fig. 4.2. The streaking artifacts are apparent with ZF-w/dc 

reconstruction (Fig. 4.2c). These artifacts are significantly reduced with CS 

reconstruction (Fig. 4.2b). To further compare the reconstruction accuracy, the signal 

profiles along the dash lines indicated in Fig. 4.2a-c are plotted in Fig. 4.2d, 

demonstrating that the CS reconstruction recovered the signal from undersampled k-space 

data with high accuracy.  

m̂

            [1]
2

2 1
ˆ arg min um
m F m y Dm  
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Fig. 4.3 shows the images of the mid-tibia of a 25-year-old male volunteer in axial 

and coronal planes with different reconstructions. The CS reconstructed images are still 

comparable to the fully sampled images but correspond to one sixth of the original scan 

time. Some smoothing effects are observed in the images from CS reconstruction. A 

more appropriate choice of the regularization parameter  would further improve the CS 

reconstructed images. 

    

 

 

Figure 4.2 Phantom images reconstructed from full data set (a), from undersampled data set with
CS (b) and ZF-w/dc (c), with the signal profiles along the red dashed line (d) 
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4.4 Anisotropic FOV ZTE (AFOV ZTE) Imaging 

4.4.1 Pulse Sequence  

The anisotropic FOV ZTE imaging sequence was derived from its isotropic 

counterpart, PETRA, in which the central k-space portion is filled by Cartesian SPI while 

the outer portion is sampled with center-out radial trajectory (9). PETRA was chosen as 

the prototype ZTE sequence since it offers constant effective echo time in the central k-

space part and a smooth k-space modulation transfer function, resulting in minimal T2-

blurring. 

To generate an asymmetric FOV, the k-space sampling patterns of the radial and 

Cartesian portions in PETRA are treated separately. First, according to the shape of the 

target anatomy, the FOV is prescribed with estimated size based on localization images; 

 

Figure 4.3 in vivo mid-tibia images reconstructed from full data set (a, d), from undersampled
data set with CS (b, e) and ZF-w/dc (c, f). (a-c) are in the axial plane and (d-f) are in the coronal
plane. 
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for example, the mid-tibia can be made to fit into a cylindrical or elliptical volume. Based 

on the prescribed FOV, the half-projections in the 3D radial part are arranged in a manner 

analogous to a spiral-based anisotropic FOV design approach described in (101). 

Specifically, the relationship between the FOV and the k-space sampling interval ∆  

between adjacent projections as a function of the polar angle  and the azimuthal angle  

obey the following relations (101): 

where  and  denote the polar angle and azimuthal directions, respectively. 

Because of the diffuse nature of streaking artifacts, the radial portion is allowed to be 

undersampled. In the current implementation, a typical undersampling factor of 4~5 is 

used.   

In the SPI portion, the k-space sampling interval in each dimension between 

neighboring data samples is determined by the maximum FOV in the corresponding 

dimension according to  

where i denotes the encoding direction, i.e. x, y and z, and ∆  is the k-space encoding 

step. To avoid aliasing artifacts, the FOV of SPI should be large enough to encompass the 

entire object. Fig. 4.4 shows a schematic trajectory diagram in the kx-kz plane, creating an 
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elongated FOV along the kz dimension. The pulse sequence was implemented on 

SIEMENS 3T and 7T scanners with cylindrical and ellipsoidal FOV shape support.  

 

4.4.2 Image Reconstruction  

Typically, the image can be reconstructed from the hybrid k-space data with the 

Cartesian portion in the center and radial portion outside by regridding (16). A proper 

sampling density compensation factor (DCF) needs to be first estimated in the gridding 

algorithm. However, calculating DCF is more complicated in this case due to the 

complex k-space sampling. Instead, the images were reconstructed by solving the 

following optimization problem: 

 arg min‖ ‖   [5]

 

Figure 4.4  Schematic k-space trajectory in kx-kz plane of (a) conventional ZTE with isotropic
FOV and (b) AFOV ZTE sequences with coordinate system indicated. In the radial portion, the
FOV is determined by the spacing between adjacent projections. For example, the FOV along the
polar angle  direction is determined by the k-space interval ∆  between adjacent spokes along
its orthogonal direction. In the Cartesian part, the k-space interval ∆  determines the FOV along
the corresponding axis.  
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Here	  is the reconstructed image, y denotes the k-space data and F represents the 

non-uniform Fourier transform operator that maps the image onto the k-space data 

according to the sampling trajectory. A linear conjugate gradient algorithm was used for 

solving Eq. 5. The Fourier transform operator F and its adjoint operator FH were 

performed by using the NFFT C library function (92).  

4.4.3 Simulations and Experiments  

Numerical PSF Simulation 

PSF simulations were conducted to evaluate the accuracy of the FOV relative to the 

target shape. The k-space trajectory of the radial portion was designed to generate an 

aliasing-artifact-free cylindrical FOV volume with diameter and length of 64 and 128, 

requiring 22,282 half projections in total. The Cartesian portion with 506 single points 

supported a FOV of size 128×128×256. To better visualize the FOV shape, the image 

was reconstructed with matrix size of 256×256×256. 

Synthetic Polymer Study 

A cylindrical sample (length/diameter 60 mm/35 mm) of ultrahigh molecular-weight 

polyethylene (McMaster-Carr, Robbinsville, NJ) was imaged at 3T (TIM Trio; Siemens 

Medical Solutions, Erlangen, Germany) using a custom-built 4.5-cm diameter solenoidal 

RF coil with both anisotropic and isotropic FOV ZTE-PETRA sequences. The T1 and T2* 

relaxation times of this material were 240 ms and 90 s, respectively, as obtained by 

saturation recovery NMR and curve fitting. Imaging parameters were the same for both 

sequences: TR = 7 ms, FA = 15º with 16 s hard pulse duration, duration between the 
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end of the RF pulse and the start of the data acquisition was 50 s, dwell time = 8 s. 

Additional parameters relevant to FOV and trajectory are summarized in Table 4.1.  

31P Imaging 

A cortical bone specimen of the mid-tibia from an 83 years old female donor was 

scanned at 7T (Magnetom; Siemens Medical Solutions, Erlangen, Germany) with the 

same AFOV ZTE sequence and a custom-built solenoidal RF coil. 4,872 half-projections 

were arranged to create a cylindrical FOV with diameter and length of 30 and 60 mm. 

The SPI portion consisted of 983 samples with FOV of 160×160×320 mm3 (large FOV 

was chosen due to low 31P gyromagnetic ratio). Other parameters were: TR = 250 ms, 

FA=5º with 10 s hard pulse duration, T/R switch time = 50 s, readout bandwidth 

=±100 kHz, reconstructed image matrix = 128×128×256. The total scan time was 24 

minutes.  

1H Inversion-Recovery (IR) ZTE Imaging of the Human Mid-Tibia in Vivo 

To evaluate the performance of proton ZTE for the visualization of collagen-bound 

bone water the anisotropic FOV sampling strategy was applied to image the mid-tibia of 

a 30-year-old healthy male subject with an eight-channel transmit/receive knee coil at 3T 

(TIM Trio; Siemens Medical Solutions, Erlangen, Germany). Informed written consent 

was obtained from the subject. A hyperbolic secant (HS) adiabatic pulse with a pulse 

bandwidth/duration of 5000 Hz/5 ms was inserted for magnetization inversion with the 

central frequency set to the resonance frequency of water. To further shorten scan time, 

seven ZTE spokes were acquired after each inversion and their excitation flip angles were 

determined by a binary search algorithm in order to achieve optimum response and 
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constant amplitude of the collagen-bound bone water signal. The resulting seven flip 

angles were 16.6o, 17.1o, 17.5o, 18.0o, 18.6o, 19.3 o and 20.0o. The binary search algorithm 

is given as follows: 

Step 0: Specify tissue parameters, i.e. T1, T2, and some imaging parameters: TI, TR, 

pulse duration , maximum available flip angle max, number of ZTE readouts;  

Step 1:  

a. Set the initial longitudinal magnetization after the inversion recovery (assume the 

saturation effect of the adiabatic inversion pulse on the bound water pool): 

1 / ; 

b. Set the maximum available transverse magnetization:	 1 / ; 

c. Set the minimum transverse magnetization:	 0; 

d. Set the initial guess of the target transverse magnetization at the midpoint: 

	 /2; 

e. Set the tolerance tol, for example, 10-5. The binary search is completed when the 

search interval size is less than tol;   

Step 2: Repeat until the search is finished  

      for each ZTE readout after the inversion 

         Set initial guess of flip angle: sin
	

 

         Obtain the flip angle  by solving the following nonlinear equation for the 

magnetization response to hard pulse excitation: 

⁄ sinc 2⁄  
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         If  exceeds max or there is no feasible solution, set the search interval to 

, , and terminate the for loop;  

         Set  as the excitation flip angle for current ZTE readout; 

         Calculate the longitudinal magnetization after the ZTE readout: 

⁄ cos 2⁄ 2⁄ sinc 2⁄  

         Set the initial longitudinal magnetization for the next ZTE readout: 

1 1 ⁄  

      end (for) 

      if  the search interval is set to , , set ; 

      else set ; 

      if , bisect the interval: 	 /2; 

      else complete the search; 

      Reset the initial longitudinal magnetization back:		 1 / ; 

Step 3: Output the optimal flip angles  and the resulting transverse magnetization 

. 

Other imaging parameters were: TR = 300 ms, T/R switch time = 50 s, TI (duration 

between HS pulse and the first ZTE acquisition) = 90 ms, TR of ZTE acquisition = 2 ms, 

readout bandwidth = ±100 kHz, reconstructed image matrix = 160×160×250. 7,641 half-

projections were acquired in the radial part to support an ellipsoidal FOV with principal 

axes lengths of 40, 40 and 80 mm. The central k-space was filled with 1,731 single point 

samples to support a FOV of 160×160×250 mm3. For the purpose of comparison, an 

isotropic FOV IR-ZTE was also run with identical imaging parameters except with 
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isotropic FOV of 80 mm consisting of 20,125 half-projections and 4,139 single points. 

The total scan time was 6 minutes 30 seconds for AFOV IR-ZTE and 17 minutes for the 

isotropic version.  

4.4.4 Results  

Fig. 4.5 shows the simulated PSF in the three orthogonal planes. The aliasing-

artifact free FOV is rectangular in both yz and xz planes and circular in the xy plane, in 

excellent agreement with the cylindrical shape.   

 

Axial, coronal and sagittal views of the polyethylene sample are shown in Fig. 4.6. 

The extremely short T2* of 90 s results in ~2-pixel image blurring. Scan time is reduced 

by a factor of about 3 in AFOV ZTE imaging while no aliasing artifacts are observed in 

the images. However, as expected, the image SNR is lower compared with the isotropic 

version, as 28 versus 47, calculated as the ratio between the plastic sample signal and the 

background intensity. Scan parameters and performance characteristics of full FOV and 

AFOV experiments are summarized in Table 4.1. 

 

Figure 4.5 PSF of ZTE with cylindrical FOV in the three orthogonal planes: (a) x=0, (b) y=0 and
(c) z=0. The rectangular shapes in (a) and (b) and the circular shape in (c) confirm the desired
cylindrical FOV shape. 



77 
 

 

Sequences 
Number of Half-

Projections 
FOV of Radial 

Portion 
Number of Single 

Points 
FOV of SPI 

(mm3) 
Total Scan 

Time 
SNR 

Isotropic ZTE 58,352 128 mm sphere  2,103 128×128×128  7mins 4s 47 

AFOV ZTE 22,281 
64×64×128 mm3 

cylinder  
507 64×64×128  2mins 40s 28 

Table 4.1  Comparison of imaging parameters, scan time and SNR between isotropic FOV ZTE 
and AFOV ZTE in polyethylene phantom scans. 

31P image images representing three orthogonal slices, along with 3D volume 

rendition, are shown in Fig. 4.7. The image blurring due to the short T2* decay within the 

sampling is about 3 pixels.  

 

Figure 4.6    AFOV ZTE images at 3T of a polyethylene sample: (a) axial, (b) coronal and (c)
sagittal. K-space was sampled with 22,281 half-projections and 507 single points. The cylindrical
sample was 35 mm in diameter and 60 mm in length. Given the material’s T2* of approximately
90 s, a 2-pixel image blurring is estimated. Image SNR was 28 at 1 mm nominal isotropic
resolution.   

 

Figure 4.7  AFOV ZTE images at 3T of a polyethylene sample: (a) axial, (b) coronal and (c) sagittal. K-
space was sampled with 22,281 half-projections and 507 single points. The cylindrical sample was 35 mm
in diameter and 60 mm in length. Given the material’s T2* of approximately 90 s, a 2-pixel image blurring
is estimated. Image SNR was 28 at 1 mm nominal isotropic resolution.   
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Fig. 4.8 displays representative left mid-tibia images in axial and sagittal planes 

from the long-T2 suppressed AFOV IR-ZTE image (a, b) and IR-ZTE with isotropic 

FOV(c, d), along with gradient-echo (GRE) images (e, f) as anatomic references. The 

corresponding FOV boundaries are indicated by dashed lines in Fig. 4.8 (b) and (d). High 

contrast between cortical bone and surrounding soft tissue was achieved in all IR-ZTE 

images, while scan time of AFOV IR-ZTE images was about one third of that of the full-

FOV images. Cortical bone SNR of AFOV and isotropic IR-ZTE was 8 and 20, 

respectively. The signal is predominantly from collagen-bound water while the free water 

residing in pores with longer T2 is largely suppressed (42).    

         

 
Figure 4.8  In vivo mid-tibia images: (a, b) AFOV IR-ZTE, (c, d) isotropic FOV IR-ZTE and (e, f)
anatomic reference images from gradient echo sequence. Dashed lines in (b) and (d) indicate the designed
FOV boundaries (40×40×80 mm3 ellipsoid and 80 mm sphere, respectively, with 1 mm isotropic voxel
size). 7,641 half-projections and 1,731 single points were used to sample k-space in AFOV IR-ZTE while
20,125 half-projections and 4,139 single points were sampled for isotropic FOV IR-ZTE. Note high
contrast between cortical bone and surrounding soft tissue.  
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4.5 Discussion and Conclusions   

In this chapter, CS was applied to UTE imaging (COMPUTE) and anisotropic FOV 

trajectory to ZTE imaging (AFOV ZTE) to reduce their scan time. COMPUTE consists 

of a custom-designed hybrid 3D UTE sequence and CS reconstruction. It achieved an 

acceleration factor of 10 with no perceptible image quality degradation in phantom study 

and in vivo scans.  AFOV ZTE was achieved by appropriately arranging the spokes in the 

radial portion of k-space and the single-sample points in the Cartesian part. PSF 

simulations confirm that the designed trajectory indeed creates the specified FOV shape. 

Experiments on synthetic materials indicate that image quality is not compromised while 

achieving a near 3-fold scan-time reduction relative to isotropic FOV scanning. 31P ZTE 

of a bone specimen and in vivo 1H IR-ZTE imaging of mid-tibial shaft demonstrate its 

potential applications for non-proton short-T2 solid-state imaging and inversion recovery-

based long-T2 suppressed imaging.       

As shown in Chapter 2, long-T2 suppression based on adiabatic inversion nulling is a 

particularly effective approach to create highly uniform short-T2 contrast (72,96). 

However, the scan time is largely determined by the inversion delay because data 

sampling cannot commence until the magnetization of the undesired species reaches the 

null point, thus rendering IR-ZTE particularly time-inefficient and resulting in 

prohibitively long scan time for in vivo studies.  

Both CS and AFOV approaches are suitable to accelerate the imaging speed in IR-

based long-T2 suppressed UTE and ZTE imaging. For CS reconstruction, the sparsity is 

readily available in the image domain since most of the signals are from short-T2 tissue 

constituent. As demonstrated in AFOV ZTE imaging, IR-ZTE combined with multi-
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spoke readouts after each adiabatic inversion preparation achieved an acceleration factor 

of ~3 with effective suppression of long-T2 components.  

CS and AFOV are also beneficial for solid-state imaging applications of nuclei other 

than protons, such as 31P of mineralized tissues or imaging of rapidly relaxing 

quadrupolar nuclei (e.g. 23Na, 11B, 17O), where the resulting image is sparse and signal is 

not contaminated by external objects such as polymeric RF coil structures, which are 

usually visible in proton ZTE imaging. Extremely long T1 and short T2 relaxation times of 

31P (~60 s and ~120 s, respectively (5)), in addition to low gyromagnetic ratio (17.235 

MHz/T) pose difficulties in phosphorus imaging of cortical bone. In order to obtain 

sufficient image SNR, much longer TR is ordinarily used than for proton short-T2 

imaging, thereby resulting in significantly prolonged scan time. One can exploit the 

sparsity in the image domain since the 31P signal arises from cortical bone only (soft-

tissue metabolite concentrations are two to three orders of magnitude lower). FOV can 

also be adjusted to the bone region rather than including soft tissue, thereby effectively 

reducing the total scan time.  

The main potential problem for CS and AFOV applications in short-T2 imaging is 

the SNR loss. Since image SNR is proportional to the square root of the total sampling 

time, the reduction in the number of projections sampled will exact a SNR penalty. A 

possible solution to the tradeoff between scan time and SNR is to incorporate anisotropic 

resolution. In this manner the SNR loss could be offset while possibly further shortening 

scan time. Anisotropic resolution may be indicated when the signal variation along a 

given direction is less than in other directions. A case in point is imaging of long bones or 
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spinal cord, i.e. structures with quasi-axial symmetry. Future extension of the method will 

include anisotropic resolution as an option.   

In summary, UTE and ZTE sequences with compressed sensing and anisotropic 

FOV were designed and implemented on clinical scanners. COMPUTE and AFOV ZTE 

achieve substantially reduced scan time without notable image quality degradation. They 

have potential applications in short-T2 imaging with long scan times, such as non-proton 

short-T2 imaging and IR-based long-T2 suppressed imaging.  
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Chapter 5 Cortical Bone Water Quantification with UTE Imaging 

5.1 Abstract 

In this chapter, UTE sequences were applied to quantify bulk bone water to test the 

hypothesis that bone water concentration (BWC) is negatively correlated with bone 

mineral density (BMD) and positively with age, and propose the suppression ratio (SR) 

(the ratio of signal amplitude without to that with long-T2 suppression) as a potentially 

stronger surrogate measure of porosity, which is evaluated ex vivo and in vivo. BWC in 

the tibial mid-shafts of 72 healthy human subjects was quantified with a hybrid radial 

UTE sequence. In a subset of 40 female subjects, the SR was measured with the long-T2 

suppressed UTE sequences developed in Chapter 2. Cortical volumetric BMD (vBMD) 

was measured with peripheral quantitative computed tomography (CT). The method was 

validated against micro-CT–derived porosity in 13 donor human cortical bone specimens. 

Statistical analysis results show that BWC was positively correlated with age (r = 0.52) 

and negatively correlated with vBMD at the same location (r = −0.57). Stronger 

associations with SR were observed (r = 0.64 for age; r = −0.67 for vBMD), indicating 

that SR may be a more direct measure of porosity. Ex vivo measurements show SR was 

strongly positively correlated with micro-CT porosity (r = 0.88) and with age (r = 0.87). 

The MR imaging-derived SR may serve as a biomarker for cortical bone porosity that is 

potentially superior to BWC. 

5.2 Introduction 

UTE MRI has been shown to detect the short-T2 proton components in cortical bone 

(7,102). Fernandez et al. subsequently showed that the large majority of the short-T2 
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signal resulted from exchangeable protons (103), and Techawiboonwong et al. developed 

a quantitative UTE method to determine total (bulk) bone water concentration (3,104). 

Some of this work indicated bulk bone water to be significantly greater in 

postmenopausal women than in their premenopausal peers and was found to be 

particularly elevated in patients with end-stage renal disease (3).  A significant problem is 

that during aging and osteoporosis, a loss of osteoid results in a proportionate loss of 

collagen-bound water while the resulting increase in pore space would cause an increase 

in pore water. Total bone water concentration, being the sum of these two constituents, 

may therefore be a less than optimal measure of bone health. This prompted research 

toward design of methods to separate the two bone water fractions.  

Recent work suggests that such separation may be achievable using UTE MRI by 

exploiting the hypothesized differences in T2* between the two water populations 

(39,40). The authors accomplished this goal via bi-exponential analysis of the UTE MRI 

signal decay measured from a series of UTE images with a range of echo-times (39). 

While this method is straightforward to implement, it requires collection of image data at 

many echo times, substantially prolonging scan time and increasing the risk of image 

corruption by subject motion. It is further complicated by static magnetic field 

inhomogeneity caused by the magnetic susceptibility difference between bone tissue and 

water (105), decreasing the T2* of pore water to values closer to those of bound water, 

particularly at elevated field strengths. More recently, Horch et al. proposed methods 

using adiabatic single or double-inversion pulses as a means to obtain images displaying 

signal from predominantly bound or pore water, respectively (42). 
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This chapter aims to quantify bulk bone water to test the hypothesis that BWC is 

negatively correlated with BMD and positively with age, and to propose the suppression 

ratio, i.e. the ratio of signal amplitude without and with long-T2 suppression, as a 

surrogate measure of porosity, which is evaluated ex vivo and in vivo.   

5.3 Methods and Materials 

5.3.1 Bulk Bone Water Quantification 

Bulk (i.e. total) BWC was quantified with a three-dimensional hybrid-radial ultra-

short echo-time (3D HRUTE) imaging technique (Fig. 6.1a). The pulse sequence and 

processing method were previously developed in the author’s laboratory and described in 

(2). The sequence consists of a half-sinc slab-selective excitation pulse, variable-TE 

slice-encoding, and involves measurement of T1 of both bone water and a reference 

sample of known proton concentration. Signal intensity of bone ( ) is converted to 

bone water concentration ( ) using the following equation (2): 

where  is the proton concentration of the reference sample,  is the reference 

signal, is the effective echo time, and  and are the effective transverse 

proton relaxation rates of the reference sample and bone, respectively. Further, the 

variable F is given as: .  
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where  is the duration of the UTE half-pulse and terms fxy and fz are the responses of the 

transverse and longitudinal magnetization to the RF pulses used in the imaging sequence. 

Although analytical expressions for fxy and fz have been derived for rectangular pulses  

(63), they must be calculated numerically for shaped RF pulses. 

This technique does not resolve signals from water residing in different spaces and 

binding environments; rather, it yields all detectable water in the cortex. All MRI studies 

were performed on a 3T whole-body scanner (TIM Trio, Siemens Medical Solutions, 

Erlangen, Germany).  

5.3.2 Suppression Ratio  

The SR, defined as the ratio of the unsuppressed to the long-T2 suppressed UTE 

signal intensity, yields an index of porosity (106). The rationale underlying the proposed 

approach is that bound water possesses shorter T2 values (T2 ~ 300-400 s) than pore BW 

(T2 > 1 ms), as pointed out in the introduction. Thus, in the absence of suppression the 

UTE sequence detects the signal from both bound and pore water, while the long-T2 

suppressed UTE signal arises primarily from bound water. The suppression ratio should 

therefore scale positively with pore water fraction, thus representing a surrogate marker 

of pore volume fraction (i.e., porosity).  

In order to partially suppress pore BW, the long-T2 suppression techniques detailed 

in Chapter 3 were used. Long-T2 suppression was achieved in two different ways: (a) 

with a dual-band saturation pulse (DB-UTE), and (b) with an adiabatic inversion pulse 

(IR-UTE). In (a), the dual-band saturation pulse used the following parameters: pulse 

length = 15 ms, flip angle FA (water/fat) = 100°/110°, suppression bandwidth = 120 Hz 
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on resonance with water and 320 Hz on resonance with the lipid protons centered at 430 

Hz (3T). For inversion nulling (b), a hyperbolic secant (HS) pulse was used with the 

following parameters: pulse bandwidth/duration = 1 kHz/20 ms, 270 Hz frequency-shift 

towards the lipid peak. The B1 amplitude was set to allow for 30% variation (maximum 

B1 amplitude ~20 T), and TI = 100 ms was chosen to null the pore water signal. The 

scanner center frequency was set to that of muscle water.  The response of different 

proton pools in cortical bone to the dual-band RF pulse computed by numerical Bloch 

Equation simulation is shown in Fig. 5.1. The collagen protons with extremely short-T2 

values (~50 s) (103) are beyond the detection limit of the UTE sequences. The bound 

water protons contribute to the major portion of UTE signal. On the other hand, the 

extent to which the pore water is suppressed depends to some extent on the pore size 

since its T2 relaxation time is inversely proportional to the surface-to-volume ratio of the 

pore (107). Generally, the larger the pore size, the smaller the surface-to-volume ratio, 

resulting in longer T2 relaxation times for the water in larger pores. Therefore, not only 

will an increase in pore BW fraction cause increased SR, the increasing contribution of 

large pores will further enhance the effectiveness of suppression, thereby further 

elevating SR values. Lastly, any increase in pore volume fraction occurs at the expense of 

loss of osteoid and therefore bound water, thus reducing the denominator in the quotient 

Sunsuppressed/Ssuppressed, which defines the suppression ratio.  Identical digital and analog 

gain settings were used in the unsuppressed and long T2-suppressed scans. 

In order to evaluate the reproducibility of the SR method, seven subjects (three 

males and four females) covering the entire age range, were scanned at three time points 
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within an average period of two weeks and root-mean square error and intra-class 

correlation coefficient were computed.  

 

5.3.3 Human Subject Study 

A prospective human subject study was conducted between July 2009 and May 

2012. Bulk water was quantified in healthy men (N=30, ages 22-77 years, average 51 

years) and women (N=42, ages 26-79 years, average 57 years) evenly covering the age 

range from 20 to 80 years. Since after menopause bone quality is more variable in women 

than in men, the number of women enrolled was nine per decade for the age range of 50 

to 80 years, and five per decade for men and females less than 50 years old. Subjects with 

medical histories that included diseases or treatments known to affect bone mineral 

 

Figure 5.1  Longitudinal magnetization of different proton pools in cortical bone following
application of a dual-band saturation pulse as a function of T2 simulated by a numerical Bloch
equation solver. While bound water covers a narrow band centered around 250 µs the pore water
ranges in T2 from about 1 to 1,000 ms. Increased porosity along with greater pore sizes shifts the
free water spectrum toward longer T2 along with increased overall magnitude, therefore leading to
increased suppression ratio. In parallel, both bound water and (not detectable) collagen fractions
decrease. The various populations of protons are for illustration of principle only and are not
drawn to scale.  
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homeostasis (e.g. malabsorption syndromes, renal or hepatic disease, or treatment with 

dexamethasone or methotrexate) or conditions that limit normal physical activity (e.g. 

stroke, hip or leg fracture, or rheumatoid arthritis) were excluded, as were subjects with 

BMI>35, or hip BMD z-score ≥2 or ≤-2). Patients were examined with the protocol 

described above and detailed in Rad et al. (2). 3D UTE images were acquired with the 

pulse sequence shown in Fig. 2.1 and processed and analyzed as in (2).  Specifically, a 

5.0-cm axial slab of the left mid-diaphyseal tibia, centered at 38% of tibial length 

proximal to the lateral malleolus (site of thickest cortex) was scanned with an 8-channel 

transmit-receive knee coil (Invivo Corp., Gainesville, FL).  The lateral malleolus was 

chosen because it is an easily identifiable landmark.  

A subset of the female subjects for whom bulk BWC had previously been obtained 

(N=34, ages 26-79 years, average 57 years) were selected (complemented by six new 

subjects since some subjects from the prior cohort were not available) and were re-

examined with the SR protocol detailed above. Again, it was ensured that the 

postmenopausal age range was represented by a greater number of subjects than the 

premenopausal range. The purpose of this part of the study was to explore the differential 

abilities of the suppression ratio as a determinant of porosity in comparison to bulk bone 

water. The rationale for selecting women only was the observation that the range of bulk 

BWC in men was far smaller than in women (see Results). The anatomic site selected and 

the size and location of the imaging FOV matched that of the bulk water study.  The total 

scan time for unsuppressed UTE, DB-saturated UTE, and IR-UTE sequences was 15 

minutes. The protocols for all human studies were approved by the investigators’ 

Institutional Review Board and written informed consent was obtained from the subjects. 
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5.3.4 Ex vivo Study 

To validate the suppression ratio’s relationship to porosity, a specimen study was 

conducted and the results validated by micro-computed tomography (µCT)-based 

measurements. Thirteen 36-mm long bone specimens were cut from human tibiae (9F, 

4M, 27-97 years) procured from the National Disease Research Interchange (NDRI, 

Philadelphia, PA). The center of each specimen was located at 38% of the total length of 

the tibia measured proximally from the lateral malleolus to match the scan locations in 

the in vivo study. Bone specimens were housed in plastic tubes containing phosphate-

buffered saline and the samples were centrifuged and sealed prior to scanning to 

eliminate air bubbles. Imaging was performed with an in-house custom-built elliptical 

transmit-receive birdcage wrist coil at 3T using 2D UTE sequences without and with 

long-T2 suppression magnetization preparation. The latter was achieved by both DB-UTE 

and IR-UTE as described above. Imaging parameters common to all three sequences 

were: FOV = 180×180 mm2, slice thickness = 5 mm, TR/TE = 300 ms/50 μs, FA= 60°, 

sampling frequency bandwidth= ±125 kHz, number of readout points per half-radial 

projection = 288. Reconstruction yielded a matrix size of 512×512 and in-plane 

resolution = 0.35×0.35 mm2. The entire bone volume was scanned and included in the 

analysis. 

For comparison to MRI metrics, cortical bone porosity was measured using µCT. A 

3D µCT image dataset of each entire bone specimen was acquired at 9µm isotropic 

resolution using a Bruker µCT scanner (Bruker, Kontich, Belgium). The endosteal and 

periosteal borders were segmented, and binary thresholding was applied to distinguish 

pore space from bone tissue. Porosity was quantified as the ratio of pore volume to total 
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volume of the segmented bone. Apparent bone mineral density was also measured by 

peripheral quantitative computed tomography (pQCT). A single slice was acquired at the 

center of each cortical bone specimen (0.4 mm×0.4 mm×2.3 mm) using a Stratec XCT 

pQCT scanner (Orthometrix, White Plains, NY), and apparent cortical bone mineral 

density was quantified in a manner similar to the standard approach used for clinical mid-

tibia pQCT studies using the software provided by the manufacturer. 

5.3.5 Image Reconstruction  

First, k-space sampling density compensation weighting, computed on the basis of 

gradient mapping (which measures the true k-space trajectories) (96), was performed. 

Next, k-space data were remapped onto a Cartesian grid using a gridding algorithm and 

2D inverse Fourier transform performed. The final magnitude images were generated as 

the square-root of the sum-of-squares of the images from each coil. 

SR maps were computed as a ratio of the conventional UTE image amplitude to the 

corresponding DB-UTE and IR-UTE image amplitude. Manual segmentation of the 

periosteal and endosteal cortical boundaries was performed, followed by voxel-wise 

extraction of IR- and DB-SR values.  

5.3.6 Statistical Analysis 

A flow chart illustrating the data processing procedure is shown in Fig. 5.2. All 

image analysis and reconstruction steps were performed using custom-designed software 

programmed in MATLAB (MathWorks, MA). Correlations between relevant parameters 

were examined in StatPlus:Mac LE2009 by linear least-squares regression yielding the 

Pearson correlation coefficient. The significance of each correlation was determined 
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using one-way ANOVA, with a significance threshold of p < 0.05. Retest reproducibility 

and reliability were assessed in terms of the root-mean-square error and intra-class 

correlation coefficient. 

 

 

Figure 5.2  Flow chart of SR data acquisition and processing procedure showing an axial slice
acquired without (labeled ‘conventional UTE’) and with DB and IR suppression, yielding
suppression ratio maps by taking ratio between conventional UTE image and the corresponding
DB- and IR-UTE images. After segmentation of the periosteal and endosteal cortical boundaries
SR parametric maps of the cortical bone are obtained. (NUFFT: Non-uniform fast Fourier
transform) 
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5.4 Results 

5.4.1 Human Subject Study 

Associations involving BWC and suppression ratio versus age and BMD are charted 

in Fig. 5.3 (data for IR-SR only are shown). While data for all subjects are presented, 

comparisons of correlation coefficients between the two measures of porosity involve the 

same cohort of subjects.  Both BWC and SR correlated positively with subjects’ age 

(Figs. 5.3a, c). Inclusion of all 72 subjects (30 males, 42 females) in the regression for 

BWC yielded r=0.46 (N=72, 95% CI: (0.26, 0.63), p<0.001). Stratifying by gender 

showed no significant correlation for males (N=30, p=0.08) unlike when regressing 

females only (N=42, r=0.51, 95% CI: (0.25, 0.71), p<0.001). The positive association 

involving SR (N=34, r=0.64, 95% CI: (0.39, 0.81), p<0.001) appeared stronger than that 

for BWC involving the same 34 subjects (r=0.52, 95% CI: (0.22, 0.73), p=0.002). This 

observation is consistent with bulk BW comprising both bound and pore water, which 

have opposing relationships with porosity (43,108). For the same reason, bulk BW and 

SR (for the same subjects undergoing studies with both protocols) were only moderately 

positively associated with each other (N=34; r=0.48, 95% CI: (0.17, 0.70), p=0.004, Fig. 

5.3e). Cortical BMD was inversely correlated with BWC (N=72; r=-0.51, 95% CI: (-0.66, 

-0.32), p<0.001; Fig. 5.3b) and with SR (N=40; r=-0.70, 95% CI: (-0.83, -0.50), p<0.001; 

Fig. 5.3d) suggestive of the notion that increased porosity is an outcome of osteoid loss, 

which in the case of constant mineralization density scales with volumetric BMD. 

Fig. 5.4 shows representative axial mid-tibia SR parametric maps of six subjects 

covering the spectrum of SR values (Figs. 5.4a-f), along with the corresponding 

histograms (Fig. 5.4g). Note that SR histograms of bone with low values of SR are 
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relatively symmetric. In contrast, in bone with higher average SR values, histograms 

become increasingly asymmetric, with long tails toward high SR values, suggesting the 

presence of large pores commensurate with long T2 values. Noticeable also is cortical 

thinning along with periosteal expansion of the bone in older subjects (e.g. Figs. 5.4e and 

f). 

 

 

Figure 5.3   Associations between a) BWC and age; b) BWC and cortical pQCT BMD for the
entire study population; c) IR-SR and age; d) IR-SR and cortical BMD from pQCT; e) IR-SR 
and BWC. Both BWC and SR are positively correlated with age but negatively with BMD. The
larger correlation coefficients involving SR, as opposed to BWC as the predictor, suggest the
former to be a superior biomarker of porosity. 
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5.4.2 Reproducibility 

Reproducibility data in humans for the measurement of bulk BWC in the tibial shaft 

have been presented previously (2). Fig. 5.5a shows the test-retest data for SR derived by 

IR-suppression, yielding an intra-class correlation coefficient of 0.99. As a metric of 

repeatability, the root mean square error was computed for each subject, which yielded an 

average within-subject coefficient of variation of 1.5% illustrated in the scatterplot of Fig. 

5.5b. Analysis of variance further indicates real differences between subjects (p<0.001) 

suggesting SR to be a reliable differentiator. Similar results were obtained for DB-based 

suppression (average within-subject coefficient of variation: 1.8%). 

 

Figure 5.4  Axial mid-tibia IR-SR parametric maps overlaid on anatomic UTE images obtained
without long-T2 suppression in six representative subjects (a-f), along with the corresponding 
histograms (g). As SR values increase, histograms become increasingly asymmetric with long
tails toward high SR values, in line with the notion of elevated T2 of the water in larger pores.  
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5.4.3 Correlation between SR values from IR and DB Methods 

A high degree of positive correlation between SR values measured by IR and DB 

methods is observed from the in vivo study (N=40; r=0.98, 95% CI: (0.96, 0.99), 

p<0.001), suggesting that both methods are consistent with each other. For this reason 

data from only one of the two methods are reported for the in vivo study, given the large 

number of associations examined. 

 

Figure 5.5 Test-retest reproducibility of the IR-SR method. a) Correlation between baseline and
first and second follow-up data plotted together on the ordinate in seven subjects; b) Scatterplot
of IR-SR values at three time points. Data yielded an intra-class correlation coefficient of 0.99
and average CV of 1.5%.    
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5.4.4 Ex vivo Study 

Specimen data, shown for both suppression modes (DB and IR) shown in Figs. 5.6a 

and b indicate SR and μCT-derived porosity to be strongly positively correlated ((IR) 

r=0.88, 95% CI: (0.64, 0.96), p<0.001). As expected, cortical BMD was inversely 

associated with both μCT porosity (r=-0.83, 95% CI: (-0.95, -0.50), p<0.001) and SR (r=-

0.57, 95% CI: (-0.85, -0.03), p=0.04), suggesting the variations in BMD to be the result 

of differences in porosity (data not shown). Further SR and donor age were highly 

positively correlated with each other (r=0.87, 95% CI: (0.62, 0.96), p<0.001; Fig. 5.6c 

and d), supporting the expected increase of cortical bone porosity with age (109). Fig. 5.7 

shows binary μCT images after pore segmentation and corresponding SR parametric 

maps from six donors demonstrating a range of mean SR values (Figs. 5.7a-f), along with 

the histogram of pixel-wise SR values (Fig. 5.7g). Notable are elevated SR in the cortex 

of older donors paralleling greater μCT porosity. Greater SR is likely the result of a 

greater proportion of large pores (values up to 385 µm have been reported histologically 

(110)) associated with elevated T2 expected in the larger mobile water pools.  
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Figure 5.6 Correlation plots in ex vivo validation study (N=13 samples). Data indicate strong
associations of SR with both porosity (a, b) as well donor age (c, d) for both SR metrics. 

 

Figure 5.6 Binary μCT images after pore segmentation and corresponding SR parametric maps
below from six donors (a-f), along with SR histogram (g). Note the high similarity between the pore
distribution in μCT images and the SR maps.  
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5.5 Discussion and Conclusions 

Quantification of BWC has previously shown to be reliably achievable by 

quantitative UTE imaging techniques in conjunction with a reference sample of known 

composition and approximately matching relaxation characteristics (3,104). A previous 

pilot study from the author’s laboratory suggested BWC to increase with age (3). By 

contrast, one would expect a stronger association of bound water with age given that 

bound water scales with osteoid. The present study suggests SR to be more strongly 

associated with age than bulk BWC. Both parameters merely require the cortex to be 

thick enough to provide enough voxels for averaging. However, unlike BWC, the 

quantification of SR does not require a reference sample. Also, both bulk BWC and SR 

were negatively correlated with vBMD, with the association of the latter appearing 

stronger.  

Previously, bicomponent analysis (39,111), an approach that makes use of the 

expected longer effective transverse relaxation time T2* of pore versus bound water (2-5 

ms versus 300-400 µs) has yielded compelling results ex vivo in bovine and human 

cortical bone. However, the method is difficult to perform in vivo because of the large 

number of successive scans that are needed to accurately map the signal decay curve. In 

contrast, SR, even though it does not yield pore volume fraction, is shown in this work to 

be a strong predictor of porosity as evidenced by the ex vivo data. Notably, these were 

obtained from human cortical bone of the same anatomic location as the in vivo data, and 

the parameter can conveniently be derived from only two successive scans, obtained with 

and without long-T2 suppression, respectively. Indeed, the data in excised bone from the 
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mid-tibia show that SR is highly predictive of micro-CT porosity (R2=0.70, p<0.001), 

more strongly so than the long-T2* signal fraction as reported in a recent study (R2=0.25; 

p<0.001) (111). Further, image processing is simple and does not require curve fitting, 

which is a fundamentally ill-posed problem. Nevertheless, at least in specimens, where 

high signal-to-noise ratio is achievable and neither scan duration or subject motion are a 

consideration, the work in (39,111) performed at 3T field strength shows that the method 

yields bound water fractions that are of the expected order of magnitude. Further, the 

bicomponent fitting approach rests on the assumption of only two relaxation components, 

which has been shown not to be the case since T2* in porous media is a function of the 

surface-to-volume area (112).  

The present approach is more akin to the method suggested by Horch et al. (42), 

which showed that pore water can selectively be imaged by preceding the UTE sequence 

by two successive adiabatic inversion pulses, which restore the pore water signal by 

virtue of its long T2 relaxation time while saturating the bound water protons. Obtaining 

pore volume fraction then requires either a measurement of bulk BW or bound water 

separately. Manhard et al. recently implemented this technique (113) ona 3T clinical 

scanner and showed the derived pore water fraction to correlate with values from T2 

spectra obtained independently on a small-bore system at 4.7T as described in (32,43). 

The clinical motivation for quantifying pore and bound water is these parameters’ 

relationship to the bone’s mechanical properties. As has been well known for over two 

decades, pore volume fraction is, entirely analogous to man-made materials, a predictor 

of material strength (see, for example (114)). In a study involving data from over 200 

specimens of human cortical bone of the femur, McCalden et al. (38) found age-related 
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increases in porosity to account for over 70 % of the reduction in strength. Conversely, 

bound water fraction, as pointed out previously, is proportional to the true density of bone 

material and thus should be a predictor of bone strength in its own right (43). Indeed, 

Nyman et al.’s work conducted in femoral cortical bone specimens by means of a 

relaxometric MR approach on a low-field wide-line system indicated that the fraction 

assigned to bound water was positively, and mobile water negatively, correlated with 

fracture toughness (115). More recently, Horch et al., using similar MR relaxometric 

techniques to separate the relevant water constituents in bone, found the fractions of 

bound and free (i.e. pore) water to correlate positively (R2=0.68) and negatively 

(R2=0.61), respectively, with peak stress (43).  

Importantly, porosity has been shown to be a modifiable parameter. Treatment with 

antiresorptives has provided evidence of reduced porosity (116,117) quantified on the 

basis of histomorphometry or µCT analysis of bone biopsies. Since biopsy-based 

measurements of bone microstructure such as porosity are not clinically practical, a 

robust noninvasive tool with adequate reproducibility would be desirable. High-

resolution peripheral quantitative computed tomography (HRpQCT) has shown to be able 

to partially resolve pores in the cortex of the distal extremities using segmentation 

techniques (42). The method has provided useful insight, for example, by differentiating 

subjects with from those without fractures. In distinction, the MRI-derived SR index can 

be measured at any anatomic location, including the femoral neck, the site of the most 

traumatic fractures, since it does not hinge on the ability to physically resolve pores.  

Some limitations of this study are noted. First, smaller pores tend to have larger 

surface-to-volume ratio, resulting in shorter T2 values of the resident water compared to 
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larger pores, thereby potentially contributing to the long-T2 suppressed UTE signal. 

Generally, IR-UTE is less susceptible to pore BW contamination than DB-UTE due to 

superior T2-selecitivity and less sensitivity to B1 inhomogeneity of the adiabatic 

inversion pulse. These distinguishing properties in the long-T2 suppression methods 

probably explain the higher IR-SR values. Second, the proposed SR is a semi-quantitative 

index in the sense that it does not provide actual pore water volume fraction. Third, this 

study is not statistically powered to test the hypothesis that SR is more strongly positively 

correlated with age and negatively with pQCT BMD than is BWC. Lastly, the SR study 

was conducted 12-18 months after measurement of BWC, so one could argue that 

biological effects may have confounded the results. This, however, is unlikely since all 

subjects were healthy and cortical bone remodeling is substantially slower than trabecular 

remodeling.  

Aside from the evidence the study provides for the greater effectiveness of SR as a 

biomarker for porosity relative to BWC, its simplicity and compatibility with clinical 

scanners are particularly attractive features. Finally, given the method’s reproducibility 

and ease of implementation, studies in patients at risk of fracture and as a means to 

evaluate the response to intervention are indicated. 

In conclusion, the suppression ratio, i.e. the ratio of UTE MRI signal amplitude 

obtained without long-T2 suppression, over the signal with long-T2 suppression, can 

potentially be a better biomarker for cortical bone porosity than bulk bone water 

concentration, thereby providing quantitative insight into the structural degradation of 

cortical bone in degenerative bone disease.  
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Chapter 6 Direct Myelin Detection and Quantification with ZTE Imaging 

6.1 Abstract 

Direct assessment of spatially-resolved myelin concentration has the potential to 

reveal central nervous system (CNS) abnormalities and enhance our understanding of 

neurological diseases. The proton spectrum of reconstituted extracted myelin was 

measured on a 9.4T NMR laboratory spectrometer, from which its T2 spectrum was 

calculated via super-Lorentzian line shape fitting. Bloch equation simulations were 

conducted to investigate the T2 blurring effect by calculating the image point spread 

function (PSF) and the fraction of detectable myelin signal under current scanner 

hardware constraints. Finally, the feasibility of zero-echo time (ZTE) imaging of myelin 

was demonstrated by imaging reconstituted extracted myelin and intact lamb spinal cord 

at 9.4T and on a 3T whole-body scanner.    

6.2 Introduction 

Myelin is an essential biomaterial responsible for electrically insulating axons and 

thus ensuring efficient neural current transport. Image-based quantification of myelin 

concentration has the potential to reveal CNS abnormalities, such as multiple sclerosis, 

and enhance our understanding of neurological diseases. Most current MRI methods for 

detection of myelin abnormalities use magnetization transfer (MT) imaging or T2 

relaxometry based on water’s interaction with myelin. Both methods are indirect, i.e. 

providing surrogate measures of myelin content, rather than detecting myelin itself, and 

the underlying biophysical mechanisms are not well understood. Direct detection of 

myelin would eliminate these complications.  Previous work in the author’s laboratory 
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demonstrated that myelin extract and intact rat spinal cord myelin can be imaged on a 

laboratory 9.4T spectrometer with ultra-short echo time (UTE) imaging (1). However, the 

extremely short T2 values (ranging from 1-100 s) and relatively low proton density pose 

significant challenges given clinical systems’ hardware limitations. In this chapter, the 

performance of zero-echo time (ZTE) imaging is evaluated with imaging of reconstituted 

myelin and lamb spinal cord at 9.4T as well as on a 3T whole-body scanner.    

6.3 Methods 

6.3.1 Myelin Sample Preparation  

Myelin was extracted from bovine spinal cord by a sucrose gradient technique, in 

which the lipid bilayer structure has been shown to be largely preserved (118). Following 

isolation, the crude myelin was dissolved in a (4:2:1) ternary mixture of chloroform, 

methanol, and water to remove residual sucrose contaminants. Dissolution in the ternary 

mixture inverts the bilayer, thereby releasing imbedded proteins, yielding myelin lipids 

(119). Purified myelin lipids were removed from the chloroform phase following 

evaporation under a continuous flow of nitrogen gas. The remaining myelin lipid residue 

was then re-suspended in distilled water, frozen, and lyophilized to remove all remaining 

traces of solvent. Finally, the purified extract was suspended in 99.9% D2O to achieve 

14% concentration matching that of myelin in white matter. The 1H spectrum of the 

purified myelin extract was recorded at 9.4T with the following parameters: SW=100 

kHz, NS (number of scans) =256, TD=262144, TR=3.6 s, =90o, pulse duration = 9.6 s. 

Two 36-mm segments of cervical spinal cord were dissected from the neck of a 

lamb slaughtered 2 weeks prior.  Before imaging, one segment was D2O-exchanged in 4 
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passes of 12 mL D2O-saline each over the course of 44 hours, and one was stored in 12 

mL of H2O-phosphate buffered saline. 

6.3.2 Estimation of Fraction of Detected Signal 

In order to estimate the fraction of detected signal, the T2* distribution of myelin 

was first estimated by fitting the acquired 1H spectrum into a super-Lorentzian (SL) line 

shape given by (120): 

where 0 is the chemical shift,  is the angle of the lipid bilayer surface normal with 

respect to B0, and f (-0) is set to be a Lorentzian. From the widths and intensities of 

these Lorentzians, the T2
* distribution of a single SL can be calculated. Protons at 

different chemical shifts, e.g. alkyl chain methylenes, terminal methyls, and choline, are 

each expected to give rise to SL line shapes (121). 

Spectral fitting was performed in Matlab (Mathworks, Natick, MA, USA). Four SLs 

were used to represent alkyl chain methylenes from fatty acid, cholesterol alkyl chain 

methylenes, terminal methyls, and choline, while a single Lorentzian was used to model 

residual HDO. The chemical shifts of each SL were set to the known isotropic shift of the 

various moieties, and the width and relative intensities were free parameters to be 

determined from the SL fitting.  

Based on the SL fitting results, the fraction of the total myelin signal detected by 

imaging was estimated. Including the effect of the adiabatic inversion pulse and assuming 
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the magnetization to have reached a steady state, the acquired myelin signal was 

calculated as: 

where fz,inv is the normalized longitudinal magnetization of the myelin protons in response 

to the adiabatic inversion pulse. Tinv is the adiabatic inversion pulse duration, TI is the 

inversion time, defined as the time interval between the end of the adiabatic pulse and the 

start of the rectangular excitation pulse. Further, fxy and fz represent the normalized 

transverse and longitudinal magnetizations in response to the hard pulse. TR and TE are 

the repetition time and echo time (defined as the time interval between the end of hard 

pulse and the start of signal acquisition, i.e. the first readout point), and T1 and T2
* are the 

relaxation times. T1 was obtained by standard inversion recovery of the myelin lipid 

extract yielding a value of 0.66±0.03 s. The response of the magnetization to the 

adiabatic and rectangular pulses due to coherence losses during nutation of the 

magnetization were computed numerically from the Bloch equations. A matrix-form 

based Bloch equation simulation algorithm was used to accelerate the computation. 

Specifically, the pulses were approximated by a series of rectangular sub-pulses of 1 s 

duration and the effect of each pulse on the magnetization was evaluated by 

multiplication with rotation and relaxation matrices. The same approach was also used 

for computing losses during the RF pulse in the spectroscopic experiments.  

The T2* decay effect on the image blurring was also computed in terms of the point-

spread function (PSF). The PSF is governed by the ratio of acquisiton time to T2*, which 
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determines the extent to which the highest spatial-frequency signals are attenuated during 

readout. For 3D radial sampling the FWHM of the PSF in units of voxel length is given 

as (87): 

An effective T2* was estimated from the full width at half maximum (FWHM) of the 

myelin spectrum and Tacq is given as  with Ns and BW representing the number 

of samples along each radial trajectory and BW is the sampling frequency bandwidth.   

6.3.3 Hardware Configuration and Image Acquisition 

The myelin sample and lamb spinal cord samples were scanned on both 9.4T 

spectrometer and 3T clinical scanner. At 9.4T, scans were performed using a 15-mm 

linearly-driven birdcage RF coil in a 1,000 mT/m 3-axis gradient set. 3T imaging was 

performed with a custom-built 4.5 cm-diameter, 8 cm-long, 3-turn transmit/receive 

solenoid RF coil constructed using fully 1H-free materials, with 40 mT/m maximum 

gradient strength.  

The myelin extract and D2O-exchanged lamb spinal cord were scanned at 9.4T using 

a commercial ZTE sequence with the following parameters: TR=2 ms, FA=4.1o, 2 µs 

pulse duration, 3.2 µs dwell time, G=245 mT/m, 80,892 half projections, 

188×188×375µm3 resolution, scan time ~21 mins. To provide reference anatomic images, 

the H2O buffered lamb spinal cord was scanned with a turbo-RARE sequence at 

51×51×400 µm3 voxel size. At 3T, the myelin sample was imaged with a ZTE-PETRA 

sequence with the following parameters: TR=7 ms, FA=8.3o, 32 µs pulse duration, 16 µs 

Ns / BW

  [3]FWHM  0.41
Tacq

T2

*
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dwell time, 25,000 half-projections, 1×1×1mm3 voxel size, 4 averages, scan 

time~13mins. To evaluate the feasibility of long-T2 suppression, the myelin phantom was 

scanned with an IR-ZTE sequence in which 7 ZTE acquisitions were performed after 

each adiabatic inversion with TR=300 ms and TI=120 ms (scan time ~18 min). The D2O-

exchanged lamb spinal cord was imaged using the same protocol as myelin extract 

imaging.  

6.4 Results 

Fig. 6.1 shows the 1H NMR spectrum of the D2O suspension of myelin lipid extract. 

A broad resonance with a superimposed narrow water resonance was observed, consistent 

with dipolar broadened liquid-crystalline lipid system. The narrow water resonance was 

from residual HDO. Fig. 6.2 shows the calculated T2
* distribution for the super-

Lorentzian representing the alkyl chain methylene protons as derived from the fit of the 

myelin lipid extract 1H NMR spectra at 20C and 37C. It is representative of the general 

T2
* distribution characteristics for all SLs. The T2

* distribution is bi-modal with the first 

peak starting at 8 s and the second peak starting at 16 s. These two peaks arise from 

protons with an effective angle of  = 0 and /2 relative to the main magnetic field. The 

factor of two difference in T2
* between the peaks results from the angular 

dependence of T2
* for a SL line shape (120). The large difference in peak intensities is 

due to the much lower weights ( ) of T2
* components at = 0 compared to 

those at = /2. 

12 1cos3
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Based on the calculated T2
* spectrum, the Bloch equation simulation showed that 

4.9% of the total myelin proton signal (i.e. 0.7% of the total proton signal given that 

myelin accounts for 14% of WM) to be recoverable on a 3 T clinical MRI system, under 

  

Figure 6.1  The proton spectrum from myelin extract suspended in D2O. The inset shows the 
broad resonance with wide tail in the spectrum, indicating the presence of short-T2 proton 
signal. The narrow water resonance may from residual HDO. 

 

Figure 6.2  Proton NMR spectra and analysis of purified bovine myelin extract suspended in 
D2O. (a) NMR spectrum (black) and SL fitting showing the resulting myelin (red) and HDO 
(blue) fits, as well as the four individual SL components of myelin (shaded).  (b) T2* 
histogram of myelin components at 20 and 37 °C derived from the SL fitting. Inset: Myelin 
extract spectra collected at the two temperatures.
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the maximum B1 and gradient constrains and assuming a 20 µs hard pulse of 7.6º flip 

angle is used. 

FWHM of the PSF for a 3D UTE/ZTE pulse sequence was computed as the intrinsic 

resolution expected for proton imaging of myelin, at 20 and 37ºC, under the experimental 

conditions at 9.4 T and 3 T are shown in Table 6.1. As indicated in Table 6.1, the image 

blurring due to the T2* decay within the sampling window may be tolerable for direct 

myelin imaging.   

 

Fig. 6.3 shows the 400 MHz myelin extract image at SNR~50. The signal 

surrounding the sample originates from the RF coil’s plastic support. Figs. 6.3b and c 

show the RARE image of the native tissue sample and ZTE image of the same lamb 

spinal cord specimen after D2O-exchange, respectively. The white matter region shows 

higher signal intensity than gray matter in the ZTE image, consistent with the notion that 

myelin content is higher in white matter.  

Temperature (ºC) 20 37 

FWHM (Hz) at 9.4T 2059 1525 

xi (mm) at 9.4T 0.15 0.11 

xi (mm) at 3T 1.21 0.90 

Table 6.1 Full width at half maximum (FWHM) of the PSF for a 3D UTE/ZTE sequence for 
myelin imaging at 20 and 37 ºC and field strengths of 9.4 T and 3 T. 
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Myelin extract images at 3T are shown in Figs. 6.4a and b. Image SNR of the myelin 

sample was ~20 and whereas the signal of D2O was virtually at noise level, 

demonstrating that over 99% of the signal in the myelin suspension arose from myelin 

rather than from residual HDO. More than 90% of the water signal was suppressed in 

Fig. 6.4b while the myelin extract signal was attenuated by 15%, resulting in higher 

signal level in the myelin sample than in water. Fig. 6.4c shows the image of D2O-

exchanged lamb spinal cord with SNR~20. Due to the low gradient strengths available on 

clinical scanners and the very short T2 of myelin, point-spread function blurring is severe; 

nevertheless, the central low-signal intensity gray matter is clearly visible. The spectrum 

in Fig. 6.4d further confirms that the measured signal in Fig. 6.4c arises from myelin.     

 

Figure 6.3  9.4T results: (a) ZTE image of myelin extract in D2O; (b) High-resolution RARE 
image of lamb spinal cord; (c) ZTE of D2O exchanged spinal cord.  
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6.5 Discussion and Conclusions 

In this chapter, the feasibility of direct imaging and quantification of myelin was 

explored at 3T.  To this end, the spectral properties of the myelin proton signal in 

reconstituted suspensions of myelin lipid extract were characterized. The results show 

that the short T2
* component of WM originates primarily from myelin lipid protons and 

further that direct imaging of these protons is possible at 3 T with ZTE even though the 

shortest components are not detectable. However, direct myelin imaging in vivo is still 

limited by the hardware constraints, such as gradient strength and the B1 peak power.   

The spectrum of the isolated, reconstituted myelin exhibited a very broad line with 

relatively narrow components centered approximately 3.5 ppm upfield from water, 

consistent with methylene protons of alkyl chains, the main constituent of myelin. The 

myelin resonance is consistent with the SL line shape of a dipolar-broadened liquid-

crystalline lipid system (120,122). Following previous work (121), the myelin lipid 

 

Figure 6.4  3T results: ZTE images of myelin sample (a) without and (b) with long-T2 
suppression; (c) ZTE image and spectrum of D2O-exchanged lamb spinal cord  
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extract spectrum was modeled as a sum of SLs representing protons from alkyl chain 

methylenes, alkyl chain methylenes, terminal methyls, and choline. While the T2
* 

distribution showed a wide range of values (0.008 to 26 ms), the distribution was 

dominated by that of the alkyl chain methylenes as they make up ~75% of the four 

myelin lipid proton moieties under consideration.  

In contrast to the SL fitting performed in this work, Horch et al performed multi-

exponential fitting of the time-domain signal decay (61). While the SL line shape 

theoretically cannot be described with a basis set of exponential functions, the authors 

suggested that the resulting errors would be small for the case of myelin. Horch et al 

analyzed FID signals of myelinated mammalian and amphibian nerves as well as 

synthetic myelin at 4.7 T, yielding histograms of relaxation times. The authors detected 

significant components with T2
* values of 20 and 70 s in frog sciatic nerve, which they 

conjectured to arise from protein and methylene protons of myelin, respectively. In 

contrast, as the myelin extract used in this work was free of protein, the present data 

alternatively suggest the short T2
* components (<25 s) to arise from myelin lipids.  

The results indicate that about 20% of the protons in myelin lipids have an effective 

T2
* less than 25 µs. Even under the more favorable conditions of imaging experiments, 

the majority of these short T2
* components remains undetectable. The very short lifetime 

of the signal has potentially adverse effects on the PSF manifesting as blurring. However, 

since these extremely short T2 is not detectable under the current experimental condition, 

their effects on the image blurring would be negligible. Indeed, the calculation predicted 

an intrinsic resolution on the order of 1 mm at 3T.  
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Direct myelin imaging, especially performed in vivo, is still challenging. The major 

limitation is the achievable image SNR. The simulation showed that 4.9% of the total 

myelin proton signal (i.e. 0.7% of the total proton signal given that myelin accounts for 

14% of WM) to be recoverable on a 3 T clinical MRI system. Given that tissue proton 

centration is ~100 M, the concentration of detectable myelin protons is only about 700 

mM. Several factors result in low SNR. First, its extremely short T2 causes significant 

signal decay during RF excitation and data sampling. The hardware limitations on 

clinical scanners pose additional difficulties. In order to minimize the T2 decay effect, the 

RF pulse duration needs to be shorten to several microseconds, which would cause the 

achievable flip angle lower than the optimal angle due to the B1 peak power and SAR 

constraints. The maximum gradient strength on the 3T scanner used is 40 mT/m, ~25 

times lower than the 9.4T spectrometer used in this work, resulting in longer sampling 

time and larger T2 decay effect. Therefore, a dedicated RF coil and gradient coil would be 

necessary for myelin imaging on clinical scanners.  

The performance of long-T2 suppression is critical in myelin imaging. The residual 

long-T2 signal may be misclassified as short T2
* and hence falsely identified as myelin. 

Moreover, the long-T2 suppression module also partially suppresses the myelin proton 

signal. For example, in IR-based method, the adiabatic inversion pulse saturates the 

magnetization of myelin protons and the available myelin signal is in fact from the T1 

recovery during the inversion time. However, given the relatively long T1 of myelin 

proton (~660 ms), the recovered longitudinal magnetization is about 15% of the 

equilibrium magnetization.    
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Another concern is the specificity on myelin detection since it detects myelin solely 

based on its T2
* properties. There are other possible non-myelin short-T2

* sources that 

could contribute to the ZTE signal, including glial cell membranes, calcifications, tissue 

scars, vasculature, and hemorrhage (123) that would be indistinguishable from myelin.   

In conclusion, both theoretical analysis and the images of myelin extract and spinal 

cord acquired with ZTE at 3T suggest feasibility of myelin imaging on a clinical scanner. 

However, in vivo myelin imaging is still challenging. Future work needs to optimize the 

long-T2 suppression module in ZTE imaging and to apply it to native tissue specimens, 

eventually to human brain in vivo.    
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

The main results of this thesis research are summarized as follows:  

 Three long-T2 suppressed UTE sequences, i.e. echo subtraction (dual-echo UTE), 

saturation via dual-band saturation pulses (dual-band UTE), and inversion by 

adiabatic inversion pulses (IR-UTE) at 3T, were optimized and compared via 

Bloch simulations and experimentally in vivo in the lower extremities of test 

subjects. Results show that excellent short-T2 contrast can be achieved with these 

optimized sequences. A combination of dual-band UTE with dual-echo UTE 

provides good short-T2 SNR and CNR with less sensitivity to B1 homogeneity. 

IR-UTE was found to have the lowest short-T2 SNR efficiency but provides 

highly uniform short-T2 contrast and is well suited for imaging short-T2 species 

with relatively short T1 such as bone water. 

 A novel approach was proposed to correct the image artifacts in ZTE imaging due 

to the presence of a spatial encoding gradient during excitation by applying 

quadratic phase-modulated RF excitation and iteratively solving an inverse 

problem formulated from the signal model of ZTE imaging. A simple pulse 

sequence was also developed to measure the excitation profile of the RF pulse. 

Results from simulations, phantom and in vivo studies demonstrate the 

effectiveness of the method in correcting image artifacts caused by 

inhomogeneous excitation. The proposed method may contribute toward 

establishing ZTE MRI as a routine 3D pulse sequence for imaging protons and 
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other nuclei with quasi solid-state behavior on clinical scanners. 

 Compressed sensing (CS) and anisotropic field-of-view (FOV) trajectories were 

firstly applied to shorten the scan time in UTE and ZTE imaging. A hybrid 3D 

compressed sensing UTE (COMPUTE) sequence and an anisotropic FOV ZTE 

(AFOV ZTE) sequence were developed.  Numerical simulations, phantom and in 

vivo experiments were conducted to demonstrate their imaging performance. A 

scan time reduction factor of ~6 in COMPUTE and ~3 in AFOV ZTE was 

achieved without visible image quality degradation. These may have potential 

applications in non-proton short-T2 imaging and inversion recovery-based long-T2 

suppressed imaging where long scan time is typically required. 

 A new biomarker, suppression ratio (SR) (the ratio of signal amplitude without to 

that with long-T2 suppression) as a surrogate measure of cortical bone porosity, 

was introduced. Ex vivo and in vivo studies were designed to evaluate the 

performance of SR index. Experimental data suggest SR may be a more direct 

measure of porosity than total bone water concentration (BWC), which is also 

supported by ex vivo measurements showing SR to be strongly positively 

correlated with micro-CT porosity and with age. The MR imaging-derived SR 

may serve as a biomarker for cortical bone porosity that is potentially superior to 

BWC. 

 The feasibility of direct myelin quantification on a 3T clinical whole body scanner 

was demonstrated. The proton spectrum of reconstituted extracted myelin on a 

9.4T NMR laboratory spectrometer was measured and its T2 spectrum was 
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calculated via super-Lorentzian line shape fitting. Bloch equation simulations 

were conducted to investigate the T2 blurring effect by calculating the image PSF 

and the fraction of detectable myelin signal under current scanner hardware 

constrain. Finally, the feasibility of quantitative ZTE imaging of reconstituted 

extracted myelin and intact lamb spinal cord was demonstrated at 9.4T and on a 

3T whole-body scanner.    

7.2 Future Work 

Based on the results in this dissertation, several issues need further investigation in 

future work: 

 Develop better long-T2 suppression methods with shorter scan time and higher 

SNR: Chapter 3 compares different long-T2 suppression approaches in UTE 

imaging and concludes that the IR-based method achieves the most uniform T2 

contrast with less sensitivity to B1 inhomogeneity. However, IR-UTE suffers 

from long scan time and low short-T2 SNR since the adiabatic inversion pulse 

saturates the short-T2 species and the short-T2 signal is mainly from the T1 

recovery during the inversion time. One possible way to achieve shorter scan 

time and higher SNR is to design more effective T2-selective pulses to suppress 

the long T2 tissue while preserving the short-T2 species with relatively high B0 

and B1 inhomogeneity tolerance. Post-processing approaches may also provide a 

way to separate short and long-T2 components from the acquired datasets, such 

as designing a T2-selective filter (124,125). 

 Develop a faster reconstruction method for ZTE imaging with artifact correction: 
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Currently, the iterative reconstruction proposed in Chapter 3 needs several hours 

of CPU time and the most time-consuming step is the NUFFT process, which 

maps the data between k-space and image space. As discussed in Chapter 3, 

parallel computation is a possible direction. Alternative way is to modify the 

reconstruction into a non-iterative version. Since the gradient strength changes 

continuously from k-space radial to the center Cartesian region, the excitation 

profile therefore is also continuous, which allows transformation of the Cartesian 

into a radial trajectory matched to the acquired radial k-space. Then the 

correction can be done at each projection separately in a non-iterative fashion, 

followed by regridding to generate the final corrected image. 

 Applications of COMPUTE and AFOV ZTE imaging: Chapter 5 showed that 

scan time can be reduced significantly by compressed sensing and anisotropic 

FOV. However, only proof-of-concept experiments have been done so far, either 

by extracting a portion of the fully sampled data, and scanning phantoms and a 

single healthy subject. Full integration of these methods into UTE and ZTE 

imaging is needed for applications in short-T2 tissue quantification, such as 

cortical bone water and myelin quantification.   

 Comparison of myelin imaging with other MRI-based indirect methods: It will 

be necessary to compare the myelin images with the myelin content derived from 

indirect methods, such as magnetization transfer or T2 relaxometry. Results could 

also be evaluated by correlation with established histological methods by means 

of myelin staining.  

 In vivo direct myelin imaging: Chapter 6 presented ZTE images of purified 
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myelin extract and D2O-exchanged lamb spinal cord specimen by means of a 

small solenoidal coil. However, in vivo myelin imaging is still challenging and 

needs a great amount of work and effort. Dedicated RF and gradient coils 

generating greater B1 power and gradient strength would almost certainly be 

necessary for in vivo myelin imaging on clinical scanners. Lastly, the 

performance of long-T2 suppression needs further improvement in order to 

further reduce the long-T2 signal and to maximally preserve the myelin proton 

signal. 
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