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A PDE-based Method for Optimizing Solar Cell Performance

Abstract
In this paper, we address the optimal design problem for organic solar cells (OSC).

In particular, our focus is to enhance short-curcuit photocurrent by optimizing the

donor-acceptor interface. To that end, we propose two drift-diffusion models for

organic solar cells, both of which account for the physics of OSC's that charge

carriers are mostly generated in the region near the donor-acceptor interface. For

the first drift-diffusion model, the generation of charge carriers is translated into

a boundary condition across the donor-acceptor interface. We apply the theory of

shape optimization to compute the shape gradient functional of the photocurrent. In

particular, shape differential calculus is extensively applied in the computation. For

the second drfit-diffusion model, we parameterize the donor-acceptor interface as a

leve set of a function, i.e. the "phase field function". The dependence of the second

drift-diffusion model on the geometry is therefore transformed into its dependence

on the phase field function. Such transformation greatly simplifies the sensitivity

analysis and leads to an easy-to-implement numerical optimization algorithm. In

numerical examples, it is shown that the maximum output power of the optimized

solar cell can be increased by a factor of 3. Our analysis and examples in this paper

are in two dimensions, but the generelization of both the analysis and numerical

optimization to three dimensions is straightforward.
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ABSTRACT

A PDE-BASED METHOD FOR OPTIMIZING SOLAR CELL PERFORMANCE

Xiaoxian Liu

Charles L. Epstein

In this paper, we address the optimal design problem for organic solar cells (OSC).

In particular, our focus is to enhance short-curcuit photocurrent by optimizing the

donor-acceptor interface. To that end, we propose two drift-diffusion models for

organic solar cells, both of which account for the physics of OSC’s that charge

carriers are mostly generated in the region near the donor-acceptor interface. For

the first drift-diffusion model, the generation of charge carriers is translated into

a boundary condition across the donor-acceptor interface. We apply the theory of

shape optimization to compute the shape gradient functional of the photocurrent. In

particular, shape differential calculus is extensively applied in the computation. For

the second drfit-diffusion model, we parameterize the donor-acceptor interface as a

leve set of a function, i.e. the “phase field function”. The dependence of the second

drift-diffusion model on the geometry is therefore transformed into its dependence

on the phase field function. Such transformation greatly simplifies the sensitivity

analysis and leads to an easy-to-implement numerical optimization algorithm. In

numerical examples, it is shown that the maximum output power of the optimized

solar cell can be increased by a factor of 3. Our analysis and examples in this paper
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are in two dimensions, but the generelization of both the analysis and numerical

optimization to three dimensions is straightforward.
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Chapter 1

Introduction

Organic solar cells (a.k.a.OSCs) have emerged as a promising candidate for future

solar cells, mostly due to its low cost to manufacture. However, the efficiency of

power conversion of current experimentally available OSCs is barely above 10%,

much lower than that of inorganic solar cells [28]. It is therefore important to

improve the efficiency of OSCs, which is what we are trying to address in this work.

1.1 Physics of Organic Solar Cells

A typical OSC is comprised of two different organic materials, known as the “donor”(D)

and “acceptor”(A). Both donor and acceptor are characterized by their electronic

structures, in particular the highest occupied molecular orbital (a.k.a. “HOMO”)

and the lowest unoccupied molecular orbital (a.k.a. “LUMO”). They are the analog

of valence band and conduction band in crystalline inorganic semiconductors such

1



as silicon.

When light is absorbed by organic polymers, an electron in the HOMO state is

excited to reach the LUMO state, and at the same time a hole (regarded as posi-

tively charged particle) is created in the HOMO state. Due to the strong Coulomb

attraction between the electron and the hole, they are closely bound together. Such

bound pairs of electrons and holes are treated as a charge neutral particles called

“excitons”. This is in contrast to the case of inorganic semiconductors, where the

Coulomb potential between electrons and holes is so weak that electrons and holes

are effectively treated as free particles after photo excitation.

Excitons are essentially an excited electronic state and they have, on average,

finite life time. Before their decay, excitons move inside either donor or acceptor by

diffusion. Excitons can also dissociate into free electrons and holes. The key feature

of the exciton dissociation is that it mainly takes place near the donor-acceptor

interface. Hence, it is not surprising that the performance of OSC’s is greatly

influenced by its morphology, i.e. the spatial distribution of donor material and

acceptor material. Once excitons arrive at the DA interface, due to the difference

in the energy levels of LUMO and HOMO, electrons and holes tend to stay in their

energetically favorable states, which leaves the electron in the acceptor and the hole

in the donor. The diagram in Figure 1.1 demonstrates such a process.

2



Figure 1.1: Exciton dissociation and charge transport near donor-acceptor interface.

The diagram is extracted from the paper [6].

1.2 Mathematical Modeling of Semiconductor De-

vices

1.2.1 A hierachy of existing models

There are a family of mathematical models for the transport properties of semi-

conductors [22, 18]. They can be roughly divided into two categories: micro-

scopic models and macroscopic models. Microscopic dynamics of electrons can be

modeled either classically by the Liouville’s equation or quantum mechanically by

Schrödinger’s equation or the density matrix operator. To address the dynamics of

a large collection of electrons in semiconductors, one needs to derive the Boltzmann

3



equation based on those microscopic models. Nonetheless, it is computationally

costly to use either microscopic models or the Boltzman equation, however accu-

rate they are, and it leads to the need for macroscopic models. In contrast, the

macroscopic models of semiconductors are concerned with macroscopic quantities,

such as electrical potential and spatial densities of charge carriers. In terms of

computational cost, they are more accessible than Boltzmann equation.

1.2.2 Drift-diffusion model for organic solar cells

The mathematical model that we use in this work is based on the drift-diffusion

equations, a macroscopic PDE model. Conventional drift-diffusion equations include

a Poisson’s equation for the electrical potential and reaction-diffusion equations for

the density functions of electrons and holes. It has proved successful on modeling

semiconductor devices in the past few of decades; in fact, it can be formally derived

from the Boltzmann equation under certain assumptions [22]. Questions on the

existence and uniqueness of such system are now well understood [21, 22, 17].

For OSC’s, one needs to extend the conventional drift-diffusion model by adding

a reaction-diffusion equation for excitons. Furthermore, as pointed out in Sec. 1.1,

it is essential to include the dependence of reaction rates on the morphology of

OSC’s. A few drift-diffusion models for OSCs have been proposed in previous works

[1, 19, 5, 6, 12, 11, 3]. In particular, [1, 19] proposed one-dimensional drift-diffusion

models for bipolar OSCs. Two-dimensional models were proposed in [5, 6, 11, 3];

4



The influence of morphology of OSC’s on its performance is investigated from a

computational point of view. Mathematical analysis of drift-diffusion equations in

OSCs was first addressed in [12].

1.3 Optimal Morphology

1.3.1 What is optimal morphology?

In the aforementioned works on drift-diffusion models for OSC’s, much emphasis

has been given to the modeling of physical parameters such as carrier mobilities,

dissociation rate of excitons, and recombination rate of electrons and holes. These

results laid the groundwork for the drift-diffusion model for OSC’s, but the quest

for optimal morphology was not resolved.

In [5, 6], an optimal design was postulated. By numerically solving the drift-

diffusion equations, it is observed that OSC’s with such “optimal” design exhibits

better performance than those with planar D-A interface. However, such “opti-

mality” is not defined with mathematical rigor; in fact, it’s not clear whether the

postulated design can be further optimized. In this work, it is our goal to uncover

the optimality condition on morphology. In other words, we would like to improve

what intuitions are capable of by mathematical analysis.

5



1.3.2 Optimal control with drift-diffusion equations

The first work on optimal design with drift-diffusion model is [15]. Unlike the ap-

proach of band structure engineering, the authors of this paper view the dopant

density as a control function and introduced the optimal control theory to semi-

conductor design. The same authors gave a summary of the optimal design with

drift-diffusion model in [16]. Furthermore, [27] extended the optimal control frame-

work to quantum drift-diffusion model.

Our analysis and computation in this work is similar to [15] in that it is also

an application of the optimal control theory on the drift-diffusion model. However,

the specific optimization problem is quite different from that in [15]. On the one

hand, the drift-diffusion model of organic semiconductors is very different from

its counterpart for conventional semiconductors. On the other hand, the control

function is not explicitly present in the model: since the goal is to identify the

optimal geomtry of the donor-acceptor interface, our control must be the geometry

itself or a representation of the geometry. Therefore, our primary goal is to formulate

the drift-diffusion model in such a way that its dependence on the geometry is

“easily” tractable.

We also note that, the idea of geometric optimization may also be applicable

to conventional semiconductors. In fact, we can transform the work of [15] to

a geometric optimization problem if we require the dopant density to have the

6



following form

C = Cp1p + Cn1n (1.3.1)

where Cp,n are the constants of dopant densities and 1p,n are the indicator functions

of the p-side and n-side of a PN junction, respectively. Unlike [15], the interest here

is the optimal indicator function 1p and 1n, i.e. the optimal layout of materials

for a PN junction. Even though the generation of electrons and holes are not

strongly associated with the interface of a PN junction, we expect the dependence

of solutions on the layout of C through the drift-diffusion model.

1.4 Two Drift-Diffusion Models for the Optimal

Design of Organic Solar Cells

1.4.1 The first drift-diffusion model: sharp donor-acceptor

interface and shape optimization

As pointed out in Section 1.1, most of the free charge carriers are generated in

a very narrow neighborhood of the donor-acceptor interface. The width of such

region is only a few percent of the dimension of the whole solar cell. When it

comes to mathematical modeling, it makes sense to take the limit of zero-width

for the interfacial region which leads to our first drift-diffusion model where all the

reactions between excitons, electrons, and holes are assumed to take place strictly

7



on the interface. By taking this limit, one can focus on the geometry of the interface

and analyze its influence on the performance of the solar cell.

Once such limit is taken, the optimal design problem falls into the regime of

shape optimization, which is prevalent in such fields as structural optimization in

mechanical engineering. We introduce the theory of shape differential calculus and

then apply it to the shape optimization problem of our first drift-diffusion model.

As is shown later, although shape optimization is conceptually easy, the analysis

of shape optimization is in general harder than ordinary optimization problems.

Statement of the first drift-diffusion model and the shape optimization analysis of

it can be found in Chapter 3 -5.

1.4.2 The second drift-diffusion model: phase field method

A few difficulties arise in the shape optimization approach above. First of all,

the formulations of the adjoint equations and the shape gradient functional are

very complicated and appear to be difficult for both analytical and computational

purposes. Also, optimal shapes are in general expected to be very complex. Explicit

parametrization of D-A interface leads to several difficulties in computation. For

instance, it is difficult to handle topological change via explicit parametrization of

shape boundary. Furthermore, one needs to resolve the issue of remeshing for each

updated shape.

These difficulties can be easily resolved by the level set method, where the

8



interface is assumed to be the level set of some function defined on the whole domain.

Such a viewpoint leads us to the second drift-diffusion model. To be specific, we first

introduce a level set function called the “phase field function” φ. Given any phase

field function φ, we can write down the drift-diffusion equations whose dependence

on the geometry is expressed by the dependence of all the modeling parameters on

φ. For example, if we have a Poisson equation with a diffusivity coefficient D,

−∇ · (D∇y) = f

its formulation, based on level set function, is

−∇ · (D(φ)∇y) = f(φ)

Such an approach provides certain convenience for our purpose. On the one

hand, the adjoint equations and the gradient functional for this phase field model

are much simpler, compared with the adjoint equations and shape gradient in the

approach of shape optimization. On the other hand, the numerical implementation

of the phase-field method is much easier: instead of updating the geometry for

each step and remeshing the whole domain, we can solve the equations on a fixed

rectangular grid without the overhead of remeshing, and the evolution of shape is

handled by updating the phase field function.

9



1.5 Summary of Later Chapters

In Chapter 2, we start by introducing the theory of optimal control with PDE

constraints, which is the standard method of solving optimization problems for

PDE’s and used in both drift-diffusion models.

From Chapter 3 to Chapter 5, we concentrate on the first drift-diffusion model

and the shape optimization problem. For completeness, useful results of shape dif-

ferential calculus are introduced in Chapter 4. We conclude Chapter 5 by computing

the shape gradient functional of photocurrent.

Chapter 6 and 7 are dedicated to the second drift-diffusion model based on the

phase field method. In Chapter 6, we introduce the second drift-diffusion model and

apply sensitivity analysis to it. In particular, we compute the phase-field gradient

functional G and state an optimization algorithm based on the Allen-Cahn equation.

In Chapter 7, we provide details of the numerical methods for solving each partial

differential equation of the optimization algorithm, and conclude the chapter with

examples of optimal design using the phase-field method.

10



Chapter 2

Optimal Control with PDE

Constraints

Before entering the details of optimal design of organic solar cells, let us briefly

review the mathematics of optimal control of partial differential equations, which

is applied repeatedly in later chapters. The purpose is to present a high-level

introduction to optimal control so that later chapters are more accessible to the

readers. Therefore, we focus on the formulation of optimal control in a PDE setting

and its sensitivity analysis; we do not worry about the mathematical topics such

as the existence and even uniqueness of optimal solution, albeit their importance is

evident. Many references are available on the theory of optimal control of PDE’s,

for example [20, 26].

11



2.1 Statement of an Optimal Control Problem of

Partial Differnetial Equations

To define an optimal control problem, we need to introduce the basic concepts of

functional analysis. Let V and U be two Banach spaces. We keep the convention

that V is the space of state functions or state variables and U is the space of control

functions or control variables; both concepts are made clear later.

A bounded linear functional l : V 7→ R is a linear function that maps all elements

in V to the set of real numbers. The vector space of bounded linear functionals on a

Banach space is called its dual space. The dual spaces of V and U are denoted as V ∗

and U∗, respectively. We assume both V and U are reflexive, meaning (V ∗)∗ = V

and (U∗)∗ = U . The action of a functional l ∈ V ∗ on a function y ∈ V is often

written as

l(y) =< l, y >(V ∗,V ) ∈ R (2.1.1)

It looks very much like an inner product on a Hilbert spaces. In fact, if V is a

Hilbert space, that is, a Banach space with an inner product structure, V ∗ can be

identified with V , and (2.1.1) is indeed an inner product.

Let y ∈ V be our state variable and u ∈ Uad ⊂ U be our control variable. Uad is

a closed subset of U , and is called the admissible subset of U ; we are only interested

in the control functions in Uad. The relationship between y and u is determined

by the so-called state equation, which may consist of more than one PDE. On an
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abstract level, we can formally write this PDE model as

A(y) = B(u) (2.1.2)

where A : V 7→ V ∗ and B : Uad 7→ V ∗ are two operators that map y and u to the

same element in V ∗. Note that A(y) = B(u) does not have to be linear PDE’s; both

A and B can possibly depend on y and u, and in such case we have a nonlinear PDE

model. We always assume the equation A(y) = B(u) is well defined for ∀u ∈ Uad.

Alternatively, we can define a solution operator S : U 7→ V such that y = S(u) is

the solution to A(y) = B(u).

An analogy in linear algebra may help to understand the dry statements so far.

Concretely, one can think of V as a finite-dimensional Eucledian space Rn: V is the

space of column vectors, and V ∗ is the space of row vectors (dual of column vectors).

The pairing between V and V ∗ is simply the dot product of Eucledian space. The

same analogy holds for U . Our state variable y and control variable u are column

vectors living in V and U , respectively. The operators A and B are represented

as n-by-n and n-by-m matrices, respectively. In other words, the finite-dimensional

analogue of our PDE model A(y) = B(u) is a system of algebraic equations.

Having defined state variable and control variable and the function spaces they

belong to, we are ready to formulate an optimal control problem with PDE con-

straints. Let J : V × U 7→ R be a cost functional of our optimal control problem,

which is supposed to be minimized by convention. We further assume that J is a
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smooth function of y and u. The corresponding optimal control problem with PDE

constraints can be formulated as

min
u∈Uad

J [y(u), u] (2.1.3)

where A(y) = B(u) (2.1.4)

2.2 Sensitivity Analysis of Optimal Control Prob-

lems

The purpose of sensitivity analysis is to understand how the state function y and the

cost functional J are affected by changef to control function u. To this end, we need

to introduce the notion of Gâteaux differentiability and Fréchet differentiability in

function space. We let u ∈ U and y(u) ∈ V be two elements in two Banach spaces.

Definition 2.2.1 (Directional derivative). The first variation of the state function

y(u) in the direction of u1 ∈ U is

y′(u;u1)
d
= lim

t→0+

y(u+ tu1)− y(u)

t
(2.2.1)

if the limit exists in V and u+ tu1 ∈ Uad for ∀t ∈ [0, ε) (ε > 0).

Definition 2.2.2 (Gâteaux differentiable). Suppose the directional derivative y′(u;u1)

exists for ∀u ∈ Uad, ∀u1 ∈ U . If there exists a continuous linear operator MG : U 7→

V such that

y′(u;u1) = MG u1 (2.2.2)
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for all admissible u1 ∈ U , then the map y(u) : Uad 7→ V is Gâteaux differentiable at

u and the linear operator MG is the Gâteaux derivative of y(u).

Definition 2.2.3 (Fréchet differentiable). y(u) is Fréchet differentiable at u if there

exist a continuous linear map MF : U 7→ V such that

lim
‖u1‖U→0

‖y(u+ u1)− y(u)−MFu1‖V
‖u1‖U

= 0 (2.2.3)

for ∀u1 ∈ U . The Fréchet derivative of y(u) at u is therefore defined to be the

operator MF .

Remark 2.2.4 (Gâteaux derivative v.s. Frêchet derivative). Fréchet differentiability

is a stronger requirement: Gâteaux differentiability only guarantees differentiability

in the sense of linear purturbation, whereas Fréchet differentiable defines uniform

differentiability for all possible ways of taking the limit. If a function is Fréchet

differentiable, then it is Gâteaux differentiable and its Fréchet derivative is also its

Gâteaux derivative; the reverse is in general false.

Remark 2.2.5 (Notation on derivatives). For our purpose, we shall mostly work with

Gâteaux derivative; sometimes it’s even sufficient to only look at directional deriva-

tives for all the admissible directions. Therefore we make the following convention

Directional derivative: y′(u;u1) or y′ (2.2.4)

Gâteaux derivative:
∂y

∂u
(2.2.5)
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Now we are in place to introduce the sensitivity of state equation A(y) = B(u)

and the cost functional J . We shall assume y(u) is always Gâteaux differentiable

with respect to u and J(y, u) is Gâteaux differentiable with respect to both y and

u. Then, formally, we have

• Sensitivity of the state equation A(y) = B(u)

The directional derivative y′(u;u1) satisfies the following linear equation

Ay y
′(u;u1) = Buu1 (2.2.6)

Here Ay is the formal derivative of A with respect to y, which is a linear

operator, and we have similar assertion on Bu

• Sensitivity of the cost functional J [y(u), u]

By the chain rule, it is easy to obtain the sensitivity of J with respect to u

J ′[y(u), u;u1] =<
∂J

∂y
, y′(u;u1) >V ∗,V + <

∂J

∂u
, u1 >U∗,U (2.2.7)

where ∂J
∂y

and ∂J
∂u

are the Gâteaux derivative of J with respect to y and u;

they are apparently functionals in V ∗ and U∗, respectively.

2.3 First-order Optimality Condition

For optimal control problem, one is often interested in the optimality condition

for J as a function of u. Thus the sensitivity of J in y, i.e. ∂J
∂y
∈ V ∗ needs to

be “translated” to the sensitivity in u. This can be achieved by the method of
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adjoint equations, and the most convenient way of deriving the adjoint equations is

by forming the Lagrangian functional L.

We first define the adjoint of a linear operator. Let A : V 7→ U be a bounded

linear operator. We also let l be a linear functional in U∗ and let y be a vector in

V . Then we can define the adjoint operator A∗ : U∗ 7→ V ∗

< l,Ay >(U∗,U)=< A∗l, y >(V ∗,V ) (2.3.1)

Now we let p ∈ V and then construct the Lagrangian functional L as

L(y, u, p) = J(y, u)− < A(y)−B(u), p >(V ∗,V ) (2.3.2)

The function p is the so-called Lagrange multiplier or adjoint variable. Note that

although L is in general a nonlinear functional of y and u, it is linear in the adjoint

variable p.

Now L(y, u, p) : V ×Uad×V 7→ R is a smooth function in y,u,and p, and therefore

we can consider its sensitivity with respect to the control variable u. Since p does

not depend on u, we have

L′(y, u, p;u1) = <
∂J

∂y
, y′(u;u1) >V ∗,V + <

∂J

∂u
, u1 >U∗,U

− < Ayy
′(u;u1)−Buu1, p >V ∗,V

= <
∂J

∂y
− A∗yp, y′(u;u1) >V ∗,V

+ <
∂J

∂u
+B∗u p, u1 >U∗,U (2.3.3)

L′ is apparently linear in y′(u;u1) and u1. Furthermore, we have the freedom of

choosing the adjoint variable p ∈ V at our convenience. In particular, if we define
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the adjoint equation in V ∗

A∗yp =
∂J

∂y
(2.3.4)

we end up with

L′(y, u, p;u1) = <
∂J

∂u
+B∗u p, u1 >U∗,U

= <
∂J

∂u
, u1 >U∗,U + < Buu1, p >V ∗,V

= <
∂J

∂u
, u1 >U∗,U + < Ay y

′(u;u1), p >V ∗,V

= <
∂J

∂u
, u1 >U∗,U + < A∗yp, y

′(u;u1) >V ∗,V

= <
∂J

∂u
, u1 >U∗,U + <

∂J

∂y
, y′(u;u1) >V ∗,V

= J ′(y, u;u1) (2.3.5)

i.e. we have recovered the sensitivity of J and have effectively defined the gradient

functional of J with respect to u by

G(y, u, p) =
∂J

∂u
+B∗up ∈ U∗ (2.3.6)

which is the main purpose of our sensitivity analysis. Thus we can summarize the

first-order optimality condition: if y and u solves the state equation A(y) = B(u)

and p solves the adjoint equation A∗yp = ∂J
∂y

then the necessary first-order optimality

condition at (y, u) is

J ′(y, u;u1) =< G(y, u, p), u1 >U∗,U ≥ 0 (2.3.7)

where G(y, u, p) =
∂J

∂u
+B∗up

(2.3.8)
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for all the admissible u1 ∈ U .

An important observation is that the method of adjoint equation does not only

help us identify the optimality condition, but also helps to compute the gradient

functional G, which in turn provides analytical tools for numerical methods of

solving for some optimal control ū.

Remark 2.3.1 (Formulation of Lagrangian functional). Previously we formulate the

Lagrangian functional as in (2.3.2). In fact, for equality constraints (such as PDE’s),

we can form a Lagrangian differently, i.e.

L(y, u, η) = J(y, u) + 〈A(y)−B(u), η〉 (2.3.9)

The only difference is that we use “+” instead of the “-” in (2.3.2). This of course

leads to a different adjoint equation, but it’s easy to see the two adjoint variables

have the simple relationship η = −ξ. One can use either (2.3.2) or (2.3.9) to

compute the optimality condition.
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2.4 Example: Optimal Control of Poisson Equa-

tion

Let Ω be a connected domain in R2 whose boundary is Lipschitz. We consider the

following optimization problem

min
u∈L2(Ω)

J =

∫
Ω

1

2
(y − yd)2 (2.4.1)

where −∇2y = u Ω (2.4.2)

y = 0 ∂Ω

where yd is a known function in L2(Ω). The PDE is a simple Poisson’s equation

with homogeneous Dirichlet boundary condition in R2. Our goal is to identify the

first order optimality condition of J with respect to the control u.

We let both the space of control functions U and the space of state functions V to

be the Sobolev space L2(Ω). Basic theory of PDE tells us, for a given u ∈ L2(Ω), we

have a unique state solution y ∈ H1
0 (Ω) ⊂ L2(Ω). We further let p ∈ H1(Ω) ⊂ L2(Ω)

be the Lagrange multiplier and write the Laplace equation in its weak form

∫
Ω

∇y · ∇p−
∫
∂Ω

∂y

∂ν
p =

∫
Ω

u p (2.4.3)

We then form the Lagrangian functional as

L(y, u, p) =

∫
Ω

1

2
(y − yd)2 −

∫
Ω

∇y · ∇p+

∫
∂Ω

∂y

∂ν
p+

∫
Ω

u p (2.4.4)

Note that in principle we should obtain the weak form of the PDE first and then
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form the Lagrangian functional, because the classical solution to −∇2y = u does

not exist in general when u only has L2 regularity.

To apply sensitivity analysis to the state equation, we proceed by formally taking

directional derivatives on (2.4.3) as well as the Dirichlet boundary condition in the

direction of u1 ∈ L2(Ω). After an integration by parts, we end up with the following

boundary value problem

−∇2y′ = u1 Ω (2.4.5)

y′ = 0 ∂Ω (2.4.6)

It’s not hard to show that there is a unique solution y′(u;u1) ∈ H1
0 (Ω) ⊂ L2(Ω). One

can even make one step further to show that y(u) is in fact Gâteaux differentiable

in V = H1
0 (Ω) with respect to u ∈ L2(Ω).

Next we compute the directional derivative of L. For ∀u1 ∈ U ,

L′(y, u, p;u1) =

∫
Ω

(y − yd)y′(u;u1)−
∫

Ω

∇p · ∇y′(u;u1) +

∫
∂Ω

∂y′(u;u1)

∂ν
p

+

∫
Ω

p u1 (2.4.7)

By applying integration by parts to the first line of the right hand side we

obtained the adjoint equation for p

−∇2p = y − yd Ω (2.4.8)

p = 0 ∂Ω (2.4.9)

Note that the adjoint equation above shows that p is in fact also a function in

H1
0 (Ω) ⊂ L2(Ω).
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Finally, we summarize the sensitivity of J with respect to the control variable u

J ′(y, u;u1) =< p, u1 >L2(Ω)=

∫
Ω

p u1 (2.4.10)

where the gradient functional is simply

G = p ∈ L2(Ω) (2.4.11)

The necessary optimality condition for an unconstrained problem is simply G =

0. Hence for this simple problem, we have

p∗ = 0 (2.4.12)

where p∗ is the adjoint function in H1(Ω) corresponding to the optimal solution y∗.

Since p∗ must satisfy the adjoint equation, it is easy to see that the optimal solution

is

y∗ = yd (2.4.13)

in L2(Ω), and the minimum value for cost functional J is 0.

2.5 Overture to Optimal Design of Organic Solar

Cells

Conceptually, it is not hard to translate the optimal design problem of organic

solar cells into the framework of optimal control with PDE constraints. Suppose

our cost functional is the short-circuit current J and the system is modeled by the
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drift-diffusion equations whose solution is denoted as y, Then we can view the donor-

acceptor interface Γ as the “control variable” which affects the value of J through

the drift-diffusion equations. But the subtle question here is how to represent the

geometry?

In later chapters, we present two views of the geometry of organic solar cells,

which leads to two different versions of the drift-diffusion model.

• Drift-diffusion model 1: zero-width donor-acceptor interface (cf. Chapter 3

-5)

In the first model, we take a shape optimization approach and view the donor-

acceptor interface as a zero-width boundary between the two materials. By

defining proper boundary conditions on Γ, we effectively define the map from

Γ to y. To find the optimality condition of Γ, we need to understand the

sensitivity of y with respect to Γ. To this end, we need to introduce tools of

shape differential calculus.

• Drift-diffusion model 2: phase-field method (cf. Chapter 6 - 7)

The second drift-diffusion model is based on a level-set approach. We intro-

duce the phase field function φ as a level set function and the level set defined

by φ = 0.5 is assumed to be the donor-acceptor interface Γ; in other words, we

replace Γ by φ as the control. As a result, all the parameters and coefficients of

the drift-diffusion model depend on φ, and thus we have made the dependence

of drift-diffusion equations on the domain explicit in the PDE’s. It turns out
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that the numerical implementation of this approach is rather straightforward

as we show in Chapter 7.
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Chapter 3

First Drift-Diffusion Model:

zero-width interface

In this section, we introduce the drift-diffusion equations that are used to model

organic solar cells. A few papers have been published on drift-diffusion model in

organic solar cells. For example, see [1, 6, 11]. In these works, specific models for

carrier mobilities and the dissociation rates of excitons have been discussed. Al-

though the modeling of such physical parameters is of fundamental importance, the

focus of this paper is to understand the influence of shape on the carrier transport

properties. Thus we only make some general and reasonable assumptions on these

physical parameters.

In what follows, we introduce the geometry of the device first. And then we

explicitly state our drift-diffusion model for organic solar cells, including physical

25



assumptions and mathematical formulations.

3.1 Geometry of organic solar cells: zero-width

interface

Organic solar cells are made up of two materials, known as the donor and the ac-

ceptor. We use ”1” to indicate the donor phase and ”2” to indicate the acceptor

phase. A two-dimensional example is given in 3.1

  

Figure 3.1: Two dimensional structure of an organic solar cell
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• domain

Let Ω ∈ Rd, d = 2, 3 be a rectangular open region. Let Ω1 ⊂ Ω and Ω2 ⊂ Ω

be two smooth open subregions such that Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅.

• exterior boundaries

Let ∂Ω1 and ∂Ω2 be the boundary of Ω1 and Ω2, respectively. In addition, we

require a side of Ω is part of ∂Ω1, denoted as ΓD1 and another disconnected

side is part of ∂Ω2, denoted as ΓD2. From a physical perspective, ΓD1 and ΓD2

are two contacts connected to different electrodes; apparently they must be

disconnected, because otherwise the two contacts are short-circuited. We also

define ΓN = ∂Ω\(ΓD1 ∪ ΓD2). It represents the parts of the boundary where

a zero flux boundary condition or a periodic boundary condition is defined.

• interface

We define the interface as Γ = ∂Ω1 ∩ ∂Ω2. Γ is supposed to be smooth, but it

does not have to be connected.

We use ν to denote outward normal vector for the whole domain. On the interface

Γ, we use ν1,2 for the outward normal vector for Ω1,2, respectively.

3.2 Drift-diffusion equations

For solar cells, we’re interested in the stationary case where the photo current and

voltage do not change in time. Hence we focus on the stationary drift-diffusion
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equations, where we solve for the following unknowns:

ψ Electric potential

n Electron density

p Hole density

u Exciton density

We first describe the basic assumptions of the model and then state the boundary

value problem explicitly.

3.2.1 Assumptions

• Reactions

Symbolically, we use (e−, h+) for excitons and e− and h+ for electrons and

holes. We assume there are only 3 reactions that need to be addressed in the

model.

1. All the incoming photons (light) are converted to excitons (e−, h+) with

rate Q. Here Q is a function of spatial variables, but it does not depend

on the design of OSCs.

2. There is a bi-directional reaction between excitons and free carriers: exci-

tons may dissociate into free electrons and holes, and electrons and holes

can also recombine to form excitons. We use f for the net production

rate of free carriers, i.e. f is the rate of exciton dissociation minus the

rate of carrier recombination.
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3. Excitons have a chance to decay into other forms of energy, which do not

lead to the formation of charge carriers any more. We assume its rate

takes the intuitive form duu, where τu = 1/du has the physical meaning

of average lifetime of excitons.

All three reactions are summarized in the table below.

Type of Reaction Reaction Rate

light −→ (e−, h+) Q

(e−, h+)
 e− + h+ f

(e−, h+) −→ thermal energy + ... duu

Remark 3.2.1. Omission of “triplet excitons”

In principle, there are two types of excitons that need to be considered: the

“singlets” (spin 0) and the “triplets” (spin 1). In the previous models such as

[6, 11], it was pointed out that carrier recombination can lead to the forma-

tion of both “singlets” and “triplets”, and yet it is the “singlets” that are of

interest. Therefore, in these models we have

Net conversion of singlet excitons: ku− αγnp

Net production of charge carriers: ku− γnp

where k is the dissociation coefficient of excitons, γ is the recombination coef-

ficient of charge carriers, and α is the fraction of singlets produced by carrier

recombination; α is typically set to be 1/4 to reflect the spin statistics.
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In this work, we do not differentiate between the “singlets” and “triplets” for

simplicity, i.e. we use f for both the net conversion rate of excitons to carriers

and the net production rate of carriers; cf. Section 3.2.2. The presence of

“triplets” can be enforced by a modification of the boundary value problems

in Section 3.2.2, but we choose not to do so for simplicity.

• Zero-width interface

The physics of organic solar cells indicates that the reactions among electrons,

holes, and excitons mainly take place near the donor-acceptor interface. The

width of this “active” region is relatively small compared with the dimension

of the device. In this paper, we take the limit of this width going to 0. In

other words, all reactions are assumed to take place strictly on the interface.

In mathematical terms, this is simply translated to a boundary condition on

the interface as shown in Section 3.2.2. Such an assumption was also made in

[11], where it is referred to as a “coarse-grained” model.

3.2.2 Boundary value problems of organic solar cells

The drift-diffusion equations stated below have been nondimensionalized as in [21]

and [22]. As mentioned in Section 3.1, we use subscripts “1” for quantities associated

with Ω1 and “2” for quantities associated with Ω2. In particular, if a is defined in

both Ω1 and Ω2, a1 denotes its restriction to Ω1 and a2 denotes its restriction to Ω2.

We apply this convention for subscripts only when there is a possibility of confusion,
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e.g. quantities defined on the interface Γ.

• ψ-equation

− λ2∇ · (ε∇ψ) = p− n Ω1 ∪ Ω2 (3.2.1)

ψ = ψD ΓD1 ∪ ΓD2 (3.2.2)

∂ψ

∂ν
= 0 ΓN1 ∪ ΓN2 (3.2.3)

ψ1 = ψ2

∂ψ1

∂ν1
+ ∂ψ2

∂ν2
= 0

Γ (3.2.4)

where λ > 0 is a constant due to nondimensionalization and ε is the relative

permittivity of the materials.

• n-equation


∇ · Fn = 0

Fn = −µn(∇n− n∇ψ)

Ω1 ∪ Ω2 (3.2.5)

n = nD ΓD1 ∪ ΓD2 (3.2.6)

Fn · ν = 0 ΓN1 ∪ ΓN2 (3.2.7)
n1 = n2

Fn1 · ν1 + Fn2 · ν2 = −f
Γ (3.2.8)

where µn is the mobility of electrons. 1

1From here on, any Euclidean vector
−→
F (such as a flux quantity) is denoted by a letter in its

bold face, i.e. F
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• p-equation


∇ · Fp = 0

Fp = −µp(∇p+ p∇ψ)

Ω1 ∪ Ω2 (3.2.9)

p = pD ΓD1 ∪ ΓD2 (3.2.10)

Fp · ν = 0 ΓN1 ∪ ΓN2 (3.2.11)
p1 = p2

Fp1 · ν1 + Fp2 · ν2 = −f
Γ (3.2.12)

where µp is the mobility of holes.

• u-equation


∇ · Fu = Q− duu

Fu = −µu∇u
Ω1 ∪ Ω2 (3.2.13)

u = uD ΓD1 ∪ ΓD2 (3.2.14)

Fu · ν = 0 ΓN1 ∪ ΓN2 (3.2.15)
u1 = u2

Fu1 · ν1 + Fu2 · ν2 = f

Γ (3.2.16)

where µu is the mobility of excitons.

Remark 3.2.2. Continuity of quantities on Γ

In the boundary value problems above, we assume ψ, n, p, u to be continuous across
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the interface Γ. Furthermore, we assume ∇ψ, i.e. the (negative) electric field, to

be continuous across Γ.

Remark 3.2.3. It is evident that excitons, electrons and holes are only coupled

through the reactions on Γ defined as f .

3.2.3 Modeling of parameters

Given that our interest is in the shape sensitivity analysis of the drift-diffusion

model, we do not specify the particular formulations for each parameter except for

their dependence on the following quantities:

• spatial variables x

• the unknowns ψ, n, p, u and their gradients

• geometric quantities such as the normal vector ν1 and the mean curvature H1

of the interface Γ

Hence, following the discussion in [1], [6], and [11], we make the following as-

sumptions on the parameters in our drift-diffusion model:
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Parameter Dependence

permittivity ε x

electron mobility µn x, ∇ψ

hole mobility µp x, ∇ψ

exciton mobility µu x

photo generation Q x

exciton decay coefficient du x

exciton conversion rate f x, ∇ψ, ν1 and H1 of interface Γ

The functional dependence on each parameter is assumed to be smooth enough to

take derivatives.

Remark 3.2.4. Observations

1. All parameters have an explicit dependence on the spatial variable x. This

reflects the fact that the material properties of donor and acceptor are in

general different.

2. The carrier mobilities µn,p also depend on the electric field−∇ψ, which reflects

the nonlinear dependence of current density on electric field (e.g. saturation

of carrier velocities).

3. The reaction rate f is assumed to have complex dependence on other quan-

tities. The models in [1, 6, 11] are all included by our assumption on f ,
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but the assumption we make on f is more general in the sense that we have

also included its dependence on geometric properties of Γ such as the mean

curvature.
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Chapter 4

Shape Differential Calculus

To find the optimality condition for the photo current, we need to understand how

the solution to drift-diffusion equations varies with respect to the change of the mor-

phology of solar cells, i.e. the “shape”. In this chapter, we give a brief introduction

to the shape differential calculus, which is the theoretical tool needed to analyze

shape dependence of a function or a functional on its domain of definition. Shape

differential calculus is itself an active research field, therefore we only introduce the

basic concepts and necessary results needed in later chapters 1.

In particular, Section 4.1 and 4.2 contain results for any fixed smooth domain

in Rd, whereas Section 4.3, 4.4 and 4.5 deal with results related to domain trans-

formation.

1All of the materials in this chapter can be found in the books [24, 7] and the articles [9, 14, 30].
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4.1 Tangential Differential Calculus

Let Ω be an open region in Rd and Γ = ∂Ω be its boundary of class C2. We also

let U represent arbitrary neighborhood of Γ.

We let ν be the unit normal vector field on Γ and H̄ = 1
d−1

∑
iHi to be the

mean curvature of Γ, where Hi’s are the principal curvatures of Γ. For convenience,

we also define

H = (d− 1)H̄ =
∑
i

Hi (4.1.1)

which is just the mean curvature multiplied by the constant d− 1. 2

Definition 4.1.1 (Tangential gradient, [24] Definition 2.53). Let an element h ∈

C2(Γ) be given and let h̃ be an extension of h, h̃ ∈ C2(U) and h̃|Γ = h. Then the

tangential gradient of h is

∇Γh = ∇h̃|Γ −
∂h̃

∂ν
ν (4.1.2)

Definition 4.1.2 (Tangential divergence, [24] Definition 2.52). Let V ∈ C1(Γ;Rd)

be a given vector field on Γ and Ṽ be its smooth extension to an open neighborhood

of Γ, U . Then the tangential divergence of V is

divΓV = (divṼ −
〈
DṼ · ν, ν

〉
Rd

)|Γ (4.1.3)

Note if h and V in the above definitions are defined not only on Γ but also in Ω,

their extensions to U are naturally given by themselves. It can be shown that ∇Γh

and divΓV are independent of the choice of extension (cf. [24], Prop. 2.51).

2Therefore we use “mean curvature” for both H and H̄ since they only differ by a constant.
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We also define the Laplace-Beltrami operator ∆Γ of h ∈ C2(Γ)

∆Γh
d
= divΓ(∇Γh) (4.1.4)

It can be shown that these definitions of tangential differentials can be extended

to larger function space such as the Sobolev spaces on Γ, H1(Γ). From Section

2.20-2.22 in [24], we have the tangential Green’s formula

Proposition 4.1.3. Let V ∈ H1(Γ;Rd). Define the tangential component of V as

Vτ = V − 〈V, ν〉Rd ν (4.1.5)

Then the tangential divergence of V is given by

divΓ(V) = divΓ(Vτ ) +H 〈V, ν〉Rd (4.1.6)

And we have the “tangential Green’s formula”

∫
Γ

[f divΓ(V) +∇Γf ·V] dΓ =

∫
Γ

HfV · ν dΓ (4.1.7)

In particular, if 〈V, ν〉Rd = 0, then we have the simple results

∫
Γ

[f divΓ(V) +∇Γf ·V] dΓ = 0 (4.1.8)

Remark 4.1.4. Note that the proposition 4.1.3 is valid only when Γ is the boundary

of a region Ω. If Γ is only part of the boundary of an open region (like the donor-

acceptor interface of an organic solar cell), Γ b ∂Ω, there are also integrals on the

boundary of Γ in the formula 4.1.7, i.e.
∫
∂Γ

. The formula 4.1.7 maintains its validity

by assuming V = 0 on ∂Γ.
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4.2 Signed Distance Function

It is useful to define the signed distance function for Ω with boundary Γ.

b(x) =


dist(x,Γ) x ∈ Rd − Ω

0 x ∈ Γ

−dist(x,Γ) x ∈ Ω

(4.2.1)

where dist(x,Γ) = inf
y∈Γ
|x − y|. In other words, Γ is the zero level set of its signed

distance function b(x) = 0.

Signed distance function b(x) has many good properties (cf. [7] Chapter 5 and

8). Some useful facts about the signed distance function are summarized below:

• If Γ is smooth, then b is smooth in a neighborhood of Γ

• On Γ, ∇b|Γ = ν

• |∇b(x)|2 = 1

• ∆b|Γ = H, i.e. the laplacian of b at x ∈ Γ is its mean curvature at x.

Signed distance function is convenient for certain calculations of geometric prop-

erties. An example is a calculation of the normal derivative of mean curvature

∂H
∂ν

= ∂ν(∆b)|Γ on Γ in [9], which we include below

Lemma 4.2.1 (Lemma 3.2 in [9]). The normal derivative of the mean curvature of

a surface Γ of class C3 is given by

∂νH = −Σ
i
H2
i (4.2.2)
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where Hi denote the principal curvatures of the surface. For a two-dimensional

surface in 3d, this is equal to

∂νH = −(H2
1 +H2

2 ) = −(H2 − 2HG) (4.2.3)

where HG = H1H2 is the Gauss curvature.

4.3 Speed Method

Speed method is a method of constructing continuous domain transformation. Let

Ω ⊂ Rd be the usual open region of interest. Let Tt be a continuous transformation

on Ω parametrized by a fictitious time t ≥ 0, i.e. Ωt = Tt(Ω). Equivalently, ∀x ∈ Ω,

xt = Tt(x) at ∀t > 0 and T0(x) = x. Furthermore, we let D ⊂ Rd to be a “holdall”

such that Ωt ⊂ D for all t > 0 and D is not changed by the Tt, i.e.

Tt(D) = D, ∀t ≥ 0

Such a transformation can be generated by a velocity field V : Rd → Rd in such

a way that the trajectory of Tt(X), 0 ≤ t < ε for ∀X ∈ Ω solves the following initial

value problem ([24] Sec.2.9):
d
dt
x(t,X) = V(t, x(t,X))

x(0, X) = X

(4.3.1)

Note that if V is smooth enough, then the smoothness of Ω is preserved by the

tranformation generated by B: if Ω is of class Ck and V ∈ Ck(Rd;Rd), then Ωt is
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Figure 4.1: Example of velocity field within a hold-all domain.

of class Ck. The notion of admissible velocity field is discussed in [24], Sec.2.9-2.10.

For our purpose, it is sufficient to assume all admissible velocity fields preserve the

smoothness of the original domain Ω for ∀t ∈ [0, ε). Note that if V is tangent to

∂Ω, Ω is not changed, i.e. Tt(Ω) = Ω. Following the convention in [24], we use

V k(D) to denote the space of admissible velocity field.

4.4 Shape Derivative of a Function

In this section, we introduce the notion of material derivative and shape derivative

of a function (cf. [24], Sec2.25, 2.30).

Let W(Ω) be a Banach space of functions defined on the domain Ω and y(Ω) ∈

W(Ω). The dependence of y on Ω is indicated by the bracket on Ω; such dependence

can be either explicitly defined by the spatial variable x or implicitly defined by such
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as the solution operator of a boundary value problem. Similarly, we let W(Γ) be a

Banach space on the boundary Γ and z(Γ) ∈ W(Γ).

In what follows, we assume a family of domain Ωt is generated by an admissible

velocity field V. Correspondingly, a family of yt(Ωt) and zt(Γt) are generated by

such transformations.

Definition 4.4.1 (Material derivative of a function, [24] Def 2.71). The element

ẏ ∈ W is the material derivative of y(Ω) ∈ W(Ω) in the direction of an admissible

vector field V if the limit exists:

ẏ(Ω; V) = lim
t→0

y(Ωt) ◦ Tt(V)− y(Ω)

t
(4.4.1)

Note the limit can be taken in either the strong sense or the weak sense in W(Ω).

A similar definition exists for z(Γ).

Definition 4.4.2 (Shape derivative of a function of the domain Ω, [24] Def 2.85).

Assume the material derivative ẏ(Ω; V) ∈ W(Ω) and ∇y · V ∈ W(Ω). Then the

shape derivative of y(Ω) in the direction V is the element y′(Ω; V) ∈ W(Ω) defined

by

y′(Ω; V) = ẏ(Ω; V)−∇y(Ω) ·V (4.4.2)

Definition 4.4.3 (Shape derivative of a function of the boundary Γ, [24] Def. 2.88).

Assume the material derivative ż(Γ; V) ∈ W(Γ) and ∇Γz · V ∈ W(Γ). Then the
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shape derivative of z(Γ) in the direction V is the element z′(Γ; V) ∈ W(Γ) defined

by

z′(Γ; V) = ż(Γ; V)−∇Γz(Γ) ·V (4.4.3)

Remark 4.4.4 (Chain rule for shape derivative). From the definition of shape deriva-

tive, it is not hard to see that the chain rule for ordinary derivatives also holds for

the shape derivative. Specifically, if y(Ω) has shape derivative y′(Ω; V) and f(y) is

a smooth function in y, then the shape derivative of f [y(Ω)] is simply

f ′(Ω; V) =
∂f

∂y
y′(Ω; V)

Remark 4.4.5. Note the difference in the definition of y′(Ω) and z′(Γ). It is quite

often that z(Γ) is the restriction of a domain function y(Ω) on Γ. In fact, if z(Γ) =

y(Ω)|Γ, we have the simple but useful identity (cf. [24], Sec. 2.33)

z′(Γ; V) = y′(Ω; V) +
∂y

∂ν
〈V, ν〉Rd (4.4.4)

where ν is the unit normal vector on Γ.

Remark 4.4.6 (Understand material derivative and shape derivative). First of all, the

material derivative ẏ(Ω; V) and the shape derivative y′(Ω; V) should be understood

in the sense of directional derivative as defined in Chapter 2. Secondly, ẏ(Ω; V) and

y′(Ω; V) are the analogs of “Lagrangian derivative” and ”Eulerian derivative” in

continuum mechanics, respectively. In some sense, ẏ(Ω; V) is the overal differential

of y with respect to V, whereas y′(Ω; V) keeps only the influence of “shape”.
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The following example can help understand the difference between material

derivative and shape derivative.

Example 4.4.7. Let y : Ω→ R be a smooth function on Ω and V be some admissible

velocity field which generates a family of shapes Ωt = Tt(Ω; V). Apparently we have

xt = Tt(x; V) ∀x ∈ Ω

We define the Ω-dependent function yt to be yt(xt) = y(Tt(x)). Then by the chain

rule, its material derivative in the direction of V is simply

ẏ(Ω; V) = ∇y ·V (4.4.5)

Let’s consider its shape derivative as a domain function y(Ω) as well as its restriction

on the boundary y|Γ.

• The shape derivative of y(Ω) is

y′(Ω; V)
d
= ẏ −∇y ·V = 0 (4.4.6)

From this example, it is easy to see that ẏ reflects the overall rate of change in

y under the velocity field V, whereas y′(Ω) removes the influence of convection

and keeps solely the impact from the change in “shape”.

• The shape derivative of y(Γ) is

y′(Γ; V) = ẏ −∇Γy ·V =
∂y

∂ν
V · ν (4.4.7)

Thus we see that when y is viewed as only a function on Γ, its shape derivative

is not the same as that of y.
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In general, y′(Ω; V) is non-trivial. The map y(Ω) is usually defined by the

solution operator of a boundary value problem on Ω, as we see in the example in

Section 4.7.

Finally, we introduce a lemma from [9] for the computation of the shape deriva-

tive of unit normal vector and mean curvature on a boundary Γ.

Lemma 4.4.8 (Lemma 3.1 in [9]). The shape derivatives of the normal ν and the

mean curvature H of a surface Γ of class C2 with respect to velocity V ∈ C2 are

given by

ν ′ = ν ′(Γ;V ) = −∇ΓV (4.4.8)

H ′ = H ′(Γ;V ) = −∆ΓV (4.4.9)

where V = V · ν is the normal component of the velocity field.

4.5 Shape Derivative of a Functional

Let y(Ω), y′(Ω; V), z(Γ) and z′(Γ; V) be as defined in Section 4.4. In addition, we

let yΓ
d
= y(Ω)|Γ to be the boundary value of y(Ω).

Below we present the shape derivative of two special types of functionals: do-

main integrals and boundary integrals. They are applied repeatedly in the shape

sensitivity analysis of our drift-diffusion model in Section 5.3.

First, let us introduce a convenient notation of integral. In this work, we assume
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the type of integration is indicated by the domain of integration, i.e.∫
Ω

dV ←→
∫

Ω

(4.5.1)∫
Γ

dS ←→
∫

Γ

(4.5.2)

Such a convention is kept for the remaining of this paper.

• Shape derivative of a domain integral (cf. [24], Sec 2.31)

J1(Ω) =

∫
Ω

y(Ω)

⇒dJ1(Ω; V) =

∫
Ω

y′(Ω; V) +

∫
Γ

yV · ν (4.5.3)

• Shape derivative of a boundary integral (cf. [24], Sec 2.33)

J2(Γ) =

∫
Γ

z(Γ)

⇒dJ2(Γ; V) =

∫
Γ

z′(Γ; V) + z H V · ν (4.5.4)

J3(Γ) =

∫
Γ

yΓ =

∫
Γ

y(Ω)|Γ

⇒dJ3(Γ; V) =

∫
Γ

(
y′(Ω; V) +

∂y

∂ν
V · ν

)
+ y H V · ν (4.5.5)

Note in equation (4.5.5), we have applied the result of equation (4.4.4).

4.6 The Structure Theorem and Shape Gradient

One of the most important results of shape optimization is the Hadamard-Zolésio

Structure Theorem. For accurate definition, we refer the readers to [24, 7, 30]. Here

we state a short version of Theorem 3.1 in [30]:
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Theorem 4.6.1 (Hadamard-Zolésio structure theorem). If the shape functional J

is shape differentiable at Ω with respect to V k(Ω), and Γ is sufficiently smooth, then

there exists a scalar Γ-distribution G(Γ) such that

J ′(Ω; V) = 〈G(Γ), γ(V) · ν〉Γ (4.6.1)

with γ(·) the trace operator on Γ.

What this theorem states is that the sensitivity of a shape differentiable func-

tional only dependes on the normal component of the velocity field. It is certainly

an intuitive result: a velocity field that is tangential to ∂Ω does not change the

shape of Ω, and we do not expect J(Ω) to change if Ω stays the same. In Chapter 5,

we see that the shape sensitivity of photocurrent is supported only on the interface.

Before diving into the shape sensitivity of the photocurrent functional, let’s

compute the shape gradient of some simple examples of geometric quantities.

Example 4.6.2 (Volume of Ω).

J1(Ω) =

∫
Ω

1 (4.6.2)

After taking shape derivative, we have

J ′1(Ω; V) =

∫
∂Ω

1(V · ν) (4.6.3)

Therefore we have obtained the shape gradient of volume: G1 = 1

Example 4.6.3 (Area of ∂Ω).

J2(Ω) =

∫
∂Ω

1 (4.6.4)
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After taking shape derivative, we have

J ′2(Ω; V) =

∫
∂Ω

1 ·H(V · ν) (4.6.5)

Therefore the shape gradient of surface functional is G2 = H.

As shown above, the computed shape gradients of these simple functionals are

consistent with the structure theorem.

4.7 Example of Shape Optimization

When the functional is associated with some PDE’s, we don’t expect the shape

gradient to take a form as simple as in the last section. To demonstrate the com-

putation for shape gradient, we end this chapter with a simple shape optimization

problem with PDE constraint.

Suppose Ω ⊂ D is a smooth domain in Rd. We only consider the admissible

domains Ω that are contained in some hold-all subset D ⊂ Rd. As we apply the

speed method to find shape sensitivity of a function or a functional, we assume

transformation between admissible domains is generated by some smooth velocity

field V. In what follows, we use V denotes the normal component of V on the

boundary ∂Ω, i.e. V = V · ν.
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We define the following shape optimization problem with a PDE constraint:

min
Ω
J =

∫
Ω

1

2
(y − yd)2 (4.7.1)

where −∇2y = h Ω (4.7.2)

y = 0 ∂Ω

Here we assume yd ∈ H1(D) and h ∈ L2(Ω) and they are not shape-dependent, i.e.

y′d = h′ = 0. Note this problem is almost the same example that we presented in

Chapter 2. The only difference is the “control”: here the control is the domain Ω,

or rather the shape of the boundary ∂Ω.

There are two ways to proceed for computing the shape gradient functional.

• One way is to form the nonlinear Lagrangian functional L first, and then

apply shape sensitivity analysis.

• The other way is to compute the shape derivatives of both y and J , i.e. y′

and J ′. In particular, we obtain a boundary value problem for y′ which is

linear even if the original PDE is not. The functional J ′ is also linear in y′.

Then we form a different Lagrangian functional L based on y′ and compute

the shape gradient.

We show that both methods lead to the same adjoint equations and the same

optimality conditions.
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• Method 1:

Let ξ ∈ H1(Ω) be the adjoint variable, and thus we have the weak form of the

state equation

∫
Ω

∇y · ∇ξ −
∫
∂Ω

∂y

∂ν
ξ =

∫
Ω

hξ (4.7.3)

Then we form the Lagrangian functional

L =

∫
Ω

1

2
(y − yd)2 +

∫
Ω

∇y · ∇ξ −
∫
∂Ω

∂y

∂ν
ξ −

∫
Ω

hξ (4.7.4)

Assume the shape derivative y′ exists. Then we can take shape derivative of

L

L′ =
∫

Ω

(y − yd)y′ +
∫
∂Ω

1

2
(y − yd)2V

+

∫
Ω

∇y′ · ∇ξ +

∫
∂Ω

(∇y · ∇ξ)V

−
∫
∂Ω

〈∇y′, ν〉 ξ −
∫
∂Ω

〈∇y, ν ′〉 ξ −
∫
∂Ω

∂

∂ν

(
∂y

∂ν
ξ

)
V −

∫
∂Ω

∂y

∂ν
ξHV

−
∫
∂Ω

hξV (4.7.5)

where we have applied the formula for computing shape derivative of domain

integral and boundary integral introduced in Section 4.5. We can simplify

this formula further by applying the tangential Green’s formula in Section 4.1

and the shape derivative of outward unit normal vector ν ′

L′ =
∫

Ω

(y − yd)y′ +
∫

Ω

∇y′ · ∇ξ −
∫
∂Ω

〈∇y′, ν〉 ξ

+

∫
∂Ω

[
1

2
(y − yd)2 −∆Γy ξ −

∂

∂ν

(
∂y

∂ν

)
ξ − ∂y

∂ν
ξH − hξ

]
V (4.7.6)
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If we define the following adjoint equation

−∇2ξ = −(y − yd) Ω (4.7.7)

where ξ = 0 ∂Ω (4.7.8)

we have the following integral identities∫
Ω

(y − yd)y′ +
∫

Ω

∇ξ · ∇y′ =
∫
∂Ω

y′
∂ξ

∂ν
(4.7.9)

(4.7.10)

Therefore, we can update L′ as

L′ =
∫
∂Ω

y′
∂ξ

∂ν
+

∫
∂Ω

1

2
(y − yd)2V (4.7.11)

We have written L′ as a boundary integral. To finally recover the form in the

Structure Theorem, we only need to compute y′ on ∂Ω. In fact, let φ be an

arbitrary smooth function on D(∫
∂Ω

yφ

)′
= 0

⇒
∫
∂Ω

y′φ+
∂y

∂ν
φV = 0

⇒ y′ = −∂y
∂ν
V (4.7.12)

Hence we have obtained the shape sensitivity of J

J ′(Ω; V) =

∫
∂Ω

[
1

2
(y − yd)2 − ∂y

∂ν

∂ξ

∂ν

]
V (4.7.13)

(4.7.14)

where ξ is the solution of the adjoint equation defined above.
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• Method 2:

First, we compute the shape derivative y′ and the boundary value problem

associated. Let φ ∈ C∞c (Ω) be an arbitrary smooth function that is 0 on the

boundary. Then we have

∫
Ω

∇y · ∇φ =

∫
Ω

hφ (4.7.15)

If y′ exist, we can take shape derivative on both size. Making use of the fact

that φ = 0 on ∂Ω and h′ = 0 we have

∫
Ω

∇y′ · ∇φ = 0 (4.7.16)

⇒ −∇2y′ = 0 in Ω (4.7.17)

On the bounary ∂Ω, we proceed exactly as in “Method 1” and obtain

y′ = −∂y
∂ν
V (4.7.18)

Therefore, the boundary value problem for y′ is

−∇2y′ = 0 Ω (4.7.19)

y′ = −∂y
∂ν
V ∂Ω (4.7.20)

The shape sensitivity of J is

J ′ =

∫
Ω

(y − yd)y′ +
∫
∂Ω

1

2
(y − yd)2V (4.7.21)
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Again let the adjoint variable ξ ∈ H1(Ω), so we can form the Lagrangian

functional

L =

∫
Ω

(y − yd)y′ +
∫
∂Ω

1

2
(y − yd)2V

+

∫
Ω

∇y′ · ∇ξ −
∫
∂Ω

∂y′

∂ν
ξ (4.7.22)

Note L = J ′ since
∫

Ω
∇y′ · ∇ξ −

∫
∂Ω

∂y′

∂ν
ξ = 0 by the PDE for y′.

From here we proceed in exactly the same way as in “Method 1”. We define

the adjoint equation

−∇2ξ = −(y − yd) Ω (4.7.23)

where ξ = 0 ∂Ω (4.7.24)

Again, by the following identities

∫
Ω

(y − yd)y′ +
∫

Ω

∇ξ · ∇y′ =
∫
∂Ω

y′
∂ξ

∂ν
(4.7.25)

y′ = −∂y
∂ν
V (4.7.26)

we have the shape sensitivity J ′

J ′(Ω; V) = L

=

∫
∂Ω

y′
∂ξ

∂ν

1

2
(y − yd)2V

=

∫
∂Ω

[
1

2
(y − yd)2 − ∂y

∂ν

∂ξ

∂ν

]
V (4.7.27)
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Remark 4.7.1 (Which method?). In both methods, we have exactly the same adjoint

equations (4.7.7) and (4.7.23), and the same shape sensitivity (4.7.13) v.s. (4.7.27).

But the Lagrangian functional (4.7.22) in “Method 2” is much simpler in form

compared to the shape derivative of the Lagrangian functional (4.7.5) in “Method

1”. This is because we do not introduce unnecessary boundary integrals before

taking the shape derivative; such a difference is peculiar to shape optimization

problem.

In Chapter 5, we take the second approach only for the sake of relatively simple

computation when we compute the shape sensitivity of photocurrent. It shouldn

not affect the sensitivity result just like in the example of this section.
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Chapter 5

Shape Optimization with

Drift-Diffusion Model

In this chapter, we apply the results of shape differential calculus to our drift-

diffusion model presented in Chapter 3 to identify the shape gradient functional G.

Specifically, we have the following optimization problem:

min
Γad

J [ψ, n, p, u; Γ] = −
∫

ΓD1

(Fp1 − Fn1) · ν1 (5.0.1)

(5.0.2)

where ψ, n, p, u are the solution of drift-diffusion equations and Fp−Fn is the flux of

charge carriers. Our purpose is to maximize the photocurrent, which is equivalent

to minimizing its negative and therefore the “−” sign before the integral. We make

this choice of formulation only to be consistent with the convention of optimization

in general.
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The method of computing shape gradient G is exactly the same as in the simple

shape optimization problem presented in Section 4.7 (Method 2):

• In Section 5.1, we define the admissible velocity field V for our purpose.

• In Section 5.2, we specify some notations that simplify our later computations.

• In Section 5.3, we derive the boundary value problems for the shape derivative

ψ′, n′, p′, u′.

• In Section 5.4, we first compute the shape sensitivity of photocurrent, J ′.

We then form the Lagrangian functional based on J ′ (like in “Method 2” in

Section 4.7) and derive the corresponding adjoint equation. Given the solution

of drift-diffusion equation and adjoint equation, we finally obtain an explicit

formula for the shape gradient functional of photocurrent. We show in the

end that the shape gradient functional G is only supported on the interface

Γ, which is what we should expect by the Structure Theorem.

Finally, we note that we always assume sufficient smoothness on the velocity field

V, the interface Γ and any parameters in the drift-diffusion equations to justify the

formal computations in this chapter.

5.1 Admissible Velocity Field

Given that our interest is only in the donor-acceptor interface for a fixed domain

Ω, we let V satisfy the following criterions:
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• Velocity field that only changes the interior of Ω

Our interest in this work is in the optimality condition of the donor-acceptor

interface Γ. Therefore, we only consider the tranformations Tt(Rd; V) that

change Γ but keep the whole domain Ω fixed. A velocity field V : Rd → Rd is

admissible only if

V(x) = 0 ∀x ∈ Rd \ Ω (5.1.1)

In particular, it guarantees that V = 0 on ∂Γ ⊂ ∂Ω. This requirment appears

to be too restrictive, since in principle we can move ∂Γ along ∂Ω without

changing Ω. However, such restrictive requirement is convenient when we

apply the tangential Green’s formula (4.1.7) without adding boundary terms.

• Smoothness of V

We also need to assume that both the interface Γ and the velocity field V are

smooth enough so that the solutions {ψ, n, p, u} to the drift-diffusion equations

and their shape derivatives {ψ′, n′, p′, u′} exist in a proper Banach space W .

Note that all shape derivatives in this chapter are defined in the sense of a

chosen velocity field and hence the dependence of a shape derivative y′ on V is kept

implicit.

An example of a domain perturbed by an admissble velocity field is shown in

Fig. 5.1.
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Figure 5.1: Example: shape transformation by admissible velocity field. Note that

in this two-dimensional graph, the rectangle Ω is not changed under V but only the

interface Γ is perturbed. Also note that the end nodes of Γ (i.e. ∂Γ) is fixed.

5.2 Preparation on Notations

• Subscripts for quantities on interface Γ (cf. 3.1)

We use subscript “1” for quantities defined on Ω1 and “2” for Ω2. This

convention is only necessary when interface quantities are considered.

• Projection operators on interface Γ

Let F ∈ Rd (d = 2, 3) be a vector field defined on Γ. Let ν1,2 be the unit

outward normal vector on Γ for Ω1,2, respectively; apparently ν1 = −ν2 on Γ.
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We define its normal projection

Pν1(F) = (F · ν1) ν1 (5.2.1)

and its tangential projection

PΓ(F) = F− (F · ν1) ν1

=
(
I− ν1 ⊗ νT1

)
· F (5.2.2)

• Normal component of velocity field on Γ

For convenience, we further define V1 = 〈V, ν1〉 |Γ and V2 = 〈V, ν2〉 |Γ. Ap-

parently V1 = −V2 on Γ.

• Mean curvature of Γ

Similarly, we define the mean curvature of Γ to be H̄1 when Ω1 is viewed

as the interior side and H̄2 when Ω2 is viewed as the interior side. By the

definition of H in (4.1.1), we have H1 = −H2 on Γ.

5.3 Shape Sensitivity Analysis of Drift-Diffusion

Model

The plan in this section is as follows:

• Shape sensitivity of physical parameters.

We compute the shape derivatives of the physical parameters specified in

59



Section 3.2.3. In particular, care must be taken when the shape derivative of

reaction rate f is computed, since f is a function only defined on the interface

Γ.

• Shape sensitivity of Dirichlet boundary conditions on ΓD1,2.

The Dirichlet boundaries are fixed in space for the admissible velocity field

defined in Section 5.1. The shape sensitivity of Dirichlet boundary conditions

are shown to be trivial.

• Shape sensitivity of function values on the interface Γ.

Specifically, we consider continuity conditions for the shape derivatives {ψ′1, n′1, p′1, u′1}

and {ψ′2, n′2, p′2, u′2} across Γ.

• Shape sensitivity of PDE’s in Ω1 ∪Ω2 and shape sensitivity of flux boundary

conditions on ΓN and Γ.

Note that in Section 5.3.2 and 5.3.3, we use y to denote any of {ψ, n, p, u}, since

the derivations are essentially the same for all unknowns.

5.3.1 Shape sensitivity of physical parameters

Below we list the shape derivatives of all the physical parameters defined in Section

3.2.3. The chain rule for shape derivative is applied repeatedly. The only peculiar

shape derivative is that of f , since f is a function only defined on the interface.
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• Relative electric permittivity ε in Ω

Since ε only depends on the spatial variable, we have

ε′ = 0 (5.3.1)

• Mobilities of particles in Ω

The mobilities of electrons and holes depend on both the spatial variable x

and electric field ∇ψ. Hence their shape derivatives are given by the chain

rule

µ′n,p =
∂µn,p
∂∇ψ

· ∇ψ′ (5.3.2)

The mobility of excitons, on the other hand, has no dependence on the un-

knowns, and therefore has a trivial shape derivative

µ′u = 0 (5.3.3)

• Photo generation rate G and exciton decay rate du in Ω

G and du only dependes on the spatial variable x, and therefore we have

G′ = 0 (5.3.4)

d′u = 0 (5.3.5)

• Reaction rate f on interface Γ

By the assumption in Section 3.2.3,functional form of f is

f = f(x, n|Γ, p|Γ, u|Γ, ∇ψ|Γ, y = ν1, H1) (5.3.6)
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where y|Γ denotes the restriction of any function y on the interface Γ and ν1

and H1 are the unit normal vector and mean curvature of Γ with respect to

Ω1.

Let’s recall that {ψ,∇ψ, n, p, u} are all continuous across Γ as defined in 3.2.2.

Therefore it is innocuous to write formula 5.3.6 in either way, i.e.

f = f(x, n = n1|Γ, p = p1|Γ, u = u1|Γ,∇ψ = ∇ψ1|Γ,y = ν1, H1) (5.3.7)

or
= f(x, n = n2|Γ, p = p2|Γ, u = u2|Γ,∇ψ = ∇ψ2|Γ,y = ν1, H1) (5.3.8)

However, it seems to lead to a confusion when computing f ′, since the chain

rule of computing shape derivative leads to different expressions for f ′

f ′ =
∂f

∂n
(n1|Γ)′ +

∂f

∂p
(p1|Γ)′ +

∂f

∂u
(u1|Γ)′ +

∂f

∂(∇ψ)
· (∇ψ1|Γ)′

+
∂f

∂y
· ν ′1 +

∂f

∂H1

H ′1 (5.3.9)

or
=
∂f

∂n
(n2|Γ)′ +

∂f

∂p
(p2|Γ)′ +

∂f

∂u
(u2|Γ)′ +

∂f

∂(∇ψ)
· (∇ψ2|Γ)′

+
∂f

∂y
· ν ′1 +

∂f

∂H1

H ′1 (5.3.10)

To resolve this confusion, one only needs to realize that n1|Γ, p1|Γ, u1|Γ and

∇ψ1|Γ should be viewed as functions defined on Γ, rather than on the whole

domain Ω. Such a subtlety makes a difference when computing their shape

derivative (cf. Section 4.4).

In fact, if we let y be any of {n, p, u,∇ψ}, we can apply the formula 4.4.4 and
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obtain the following identities

(y1|Γ)′ = y′1|Γ +
∂y1

∂ν1

V · ν1 (5.3.11)

(y2|Γ)′ = y′2|Γ +
∂y2

∂ν2

V · ν2 (5.3.12)

As shown in Section 5.3.3, for a function y such that y1|Γ = y2|Γ, we always

have

(y1|Γ)′ = (y2|Γ)′ (5.3.13)

although y′1|Γ 6= y′2|Γ in general.

Therefore, we conclude that the shape derivative f ′ is well defined and either

formula 5.3.9 or formula 5.3.10 is valid. For convenience, we assume f and f ′

are defined by the following forms:

f = f(x, n = n1|Γ, p = p1|Γ, u = u1|Γ,∇ψ = ∇ψ1|Γ,y = ν1, H1) (5.3.14)

f ′ =
∂f

∂n
(n1|Γ)′ +

∂f

∂p
(p1|Γ)′ +

∂f

∂u
(u1|Γ)′ +

∂f

∂(∇ψ)
· (∇ψ1|Γ)′

+
∂f

∂y
· ν ′1 +

∂f

∂H1

H ′1 (5.3.15)

5.3.2 Shape sensitivity of Dirichlet boundary conditions on

ΓD

Let y be any of {ψ, n, p, u}. Since the Dirichlet boundaries are fixed under the

velocity field V, the sensitivity of y on ΓD is quite simple.
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Let y = yD be the Dirichlet boundary condition which is the same for all admis-

sible shapes. Let φ be any test function on Γ. If we consider the shape derivative

of boundary integral of
∫

ΓD
yφ, we have the following idensity(∫

ΓD

yφ

)′
= 0 (5.3.16)

On the other hand, we can apply the formula 4.4.4 and obtain(∫
ΓD

yφ

)′
=

∫
ΓD

(y|ΓD
φ)′ +

∫
ΓD

yφHV · ν

=

∫
ΓD

(
y′|ΓD

φ+
∂y

∂ν
V · νφ

)
+

∫
ΓD

yφHV · ν (5.3.17)

Since V = 0 on ΓD and φ is arbitrary, we conclude

y′|ΓD
= 0 ∀x ∈ ΓD (5.3.18)

5.3.3 Shape sensitivity of function values on Γ

We again let y be any of {ψ, n, p, u}. We let y1 be its restriction on Ω1 and y2 be

its restriction on Ω2. Recall that all 4 unknowns are continuous across the interface

Γ as defined in Chapter 3, we conclude that y1(x) = y2(x), ∀x ∈ Γ.

Let φ be an arbitrary test function on Ω and we have the identity∫
Γ

y1φ =

∫
Γ

y2φ (5.3.19)

We then take shape derivative on both sides and apply formula 4.4.4∫
Γ

(
y′1φ+

∂(y1φ)

∂ν1

V · ν1

)
+

∫
Γ

y1φH1V · ν1

=

∫
Γ

(
y′2φ+

∂(y2φ)

∂ν2

V · ν2

)
+

∫
Γ

y2φH2V · ν2 (5.3.20)
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Note φ′ = 0 since it is an arbitrary test function that is not determined by the

shape.

Now making use of the fact that y1 = y2, V1 = −V2, ν1 = −ν2, H1 = −H2 on Γ,

and φ is an arbitrary smooth function on Ω, we have

y′1 +
∂y1

∂ν1

(V · ν1) = y′2 +
∂y2

∂ν1

(V · ν1)

y′1 +
∂y1

∂ν1

V1 = y′2 +
∂y2

∂ν1

V1 (5.3.21)

In view of Section 4.4, this is equivalent to

(y1|Γ)′ = (y2|Γ)′ (5.3.22)

a result that is already used when f ′ was computed in Section 5.3.1.

5.3.4 Shape sensitivity of PDE’s in Ω1 ∪ Ω2 and shape sen-

sitivity of flux boundary conditions on ΓN ∪ Γ

The spirit of the calculation in this section is similar to that of “Method 2” in

Section 4.7, namely applying shape sensitivity analysis to the weak form of the

original drift-diffusion equations. The detailed calculation in this section is rather

lengthy and therefore saved for Appendix A.

5.3.5 Summary of boundary value problems for {ψ′, n′, p′, u′}

We combine the results in Section 5.3.2, 5.3.3, and 5.3.4 and summarize them as 4

(linear) boundary value problems:
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• Shape sensitivity of ψ-equation.

− λ2∇ · (ε∇ψ′) = p′ − n′ Ω1 ∪ Ω2 (5.3.23)

ψ′ = 0 ΓD1 ∪ ΓD2 (5.3.24)

∂ψ′

∂ν
= 0 ΓN1 ∪ ΓN2 (5.3.25)

ψ′1 = ψ′2 Γ (5.3.26)

ε2

(
∂ψ′1
∂ν1

− ∂ψ′2
∂ν1

)
= divΓ [(ε1 − ε2)∇Γψ1]V1

+
∂

∂ν1

[
(ε1 − ε2)

∂ψ1

∂ν1

]
V1

+ (ε1 − ε2)
∂ψ1

∂ν1

H1V1 Γ (5.3.27)

• Shape sensitivity of n-equation

∇ · F′n = 0 Ω1 ∪ Ω2 (5.3.28)

F′n = −µn (∇n′ − n′∇ψ)

+ µnn∇ψ′ − (∇n− n∇ψ)
∂µn
∂(∇ψ)

· ∇ψ′ Ω1 ∪ Ω2 (5.3.29)

n′ = 0 ΓD (5.3.30)

F′n · ν = 0 ΓN (5.3.31)

n′1 +
∂n1

∂ν1

V1 = n′2 +
∂n2

∂ν1

V1 Γ (5.3.32)

− F′n1 · ν1 − F′n2 · ν2 = −divΓ [V1 PΓ (Fn1 − Fn2)]

+ (f ′ + fH1V1) Γ (5.3.33)
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• Shape sensitivity of p-equation

∇ · F′p = 0 Ω1 ∪ Ω2 (5.3.34)

F′p = −µp (∇p′ + p′∇ψ)

− µpp∇ψ′ − (∇p+ p∇ψ)
∂µp

∂(∇ψ)
· ∇ψ′ Ω1 ∪ Ω2 (5.3.35)

p′ = 0 ΓD (5.3.36)

F′p · ν = 0 ΓN (5.3.37)

p′1 +
∂p1

∂ν1

V1 = p′2 +
∂p2

∂ν1

V1 Γ (5.3.38)

− F′p1 · ν1 − F′p2 · ν2 = −divΓ [V1 PΓ (Fp1 − Fp2)]

+ (f ′ + fH1V1) Γ (5.3.39)

• Shape sensitivity of u-equations

∇ · F′u + duu
′ = 0 Ω1 ∪ Ω2 (5.3.40)

F′u = −µu∇u′ Ω1 ∪ Ω2 (5.3.41)

u′ = 0 ΓD (5.3.42)

F′u · ν = 0 ΓN (5.3.43)

u′1 +
∂u1

∂ν1

V1 = u′2 +
∂u2

∂ν1

V1 Γ (5.3.44)

− F′u1 · ν1 − F′u2 · ν2 = −divΓ [V1 PΓ (Fu1 − Fu2)]

− (f ′ + fH1V1) Γ (5.3.45)
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5.4 Shape Gradient of Photocurrent and the First

Order Optimality Condition

5.4.1 Shape derivative of photocurrent J ′

Given an admissible velocity field V, the shape derivative of J is

J ′ = −
∫

ΓD1

[(Fp1 − Fn1) · ν1]′ −
∫

ΓD1

(Fp1 − Fn1) · ν1H1V1 (5.4.1)

where we have applied the formula 4.5.4. Note that V1 = 0 on ΓD1, and as a result

ν ′1|ΓD1
= 0. Therefore, the shape derivative of J is simply

J ′ = −
∫

ΓD1

(
F′p1 − F′n1

)
· ν1 (5.4.2)

5.4.2 Adjoint equations and the Lagrangian functional

We let (ξψ, ξn, ξp, ξu) to be the Lagrange multipliers for each of the shape sensitivity

equations of the drift-diffusion model (cf. 5.3.5); for convenience, we use Ξ =

(ξψ, ξn, ξp, ξu) to denote the collection of all the adjoint variables whenever necessary.

Thus we can form the Lagrangian functional as below:

L
d
= J ′ + Lψ + Ln + Lp + Lu (5.4.3)
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where

Lψ =

∫
Ω1∪Ω2

(
−λ2∇ · (ε∇ψ′)− p′ + n′

)
ξψ (5.4.4)

Ln =

∫
Ω1∪Ω2

(∇ · F′n) ξn (5.4.5)

Lp =

∫
Ω1∪Ω2

(
∇ · F′p

)
ξp (5.4.6)

Lu =

∫
Ω1∪Ω2

(∇ · F′u + duu
′) ξu (5.4.7)

The derivation of adjoint equations is given in Appendix B; here we only state

the results. For the adjoint variables ξψ, ξn, ξp, ξu, we have the following boundary

value problems:

• In Ω1 ∪ Ω2
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− λ2∇ · (ε∇ξψ)

+∇ · (µnn∇ξn)−∇ ·
(
∇ξn · (∇n− n∇ψ)

∂µn
∂(∇ψ)

)
−∇ · (µpp∇ξp)−∇ ·

(
∇ξp · (∇p+ p∇ψ)

∂µp
∂(∇ψ)

)
= 0 (5.4.8)

ξψ −∇ · (µn∇ξn)− µn∇ψ · ∇ξn = 0 (5.4.9)

− ξψ −∇ · (µp∇ξp) + µp∇ψ · ∇ξp = 0 (5.4.10)

−∇ · (µu∇ξu) + duξu = 0 (5.4.11)

• On ΓD1

ξψ1 = 0 (5.4.12)

ξn1 = 1 (5.4.13)

ξp1 = −1 (5.4.14)

ξu1 = 0 (5.4.15)

70



• On ΓD2

ξψ2 = 0 (5.4.16)

ξn2 = 0 (5.4.17)

ξp2 = 0 (5.4.18)

ξu2 = 0 (5.4.19)

• On ΓN

λ2ε
∂ξψ
∂ν

+∇ξn · (∇n− n∇ψ)
∂µn
∂(∇ψ)

· ν

+∇ξp · (∇p+ p∇ψ)
∂µp

∂(∇ψ)
· ν = 0 (5.4.20)

∂ξn
∂ν

= 0 (5.4.21)

∂ξp
∂ν

= 0 (5.4.22)

∂ξu
∂ν

= 0 (5.4.23)

• On Γ

We have 8 boundary conditions on Γ for the adjoint equations:
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–

λ2

(
ε1
∂ξψ1

∂ν1

+ ε2
∂ξψ2

∂ν2

)
− µn1n1

∂ξn1

∂ν1

− µn2n2
∂ξn2

∂ν2

+∇ξn1 · (∇n1 − n1∇ψ1)
∂µn1

∂(∇ψ)
· ν1

+∇ξn2 · (∇n2 − n2∇ψ2)
∂µn2

∂(∇ψ)
· ν2

+ µp1p1
∂ξp1
∂ν1

+ µp2p2
∂ξp2
∂ν2

+∇ξp1 · (∇p1 + p1∇ψ1)
∂µp1
∂(∇ψ)

· ν1

+∇ξp2 · (∇p2 + p2∇ψ2)
∂µp2
∂(∇ψ)

· ν2

− divΓ

[
(ξu2 − ξn2 − ξp2)PΓ

(
∂f

∂(∇ψ)

)]
= 0 (5.4.24)

–

µn1
∂ξn1

∂ν1

+ µn2
∂ξn2

∂ν2

+ (ξu2 − ξn2 − ξp2)
∂f

∂n
= 0 (5.4.25)

–

µp1
∂ξp1
∂ν1

+ µp2
∂ξp2
∂ν2

+ (ξu2 − ξn2 − ξp2)
∂f

∂p
= 0 (5.4.26)

–

µu1
∂ξu1

∂ν1

+ µu2
∂ξu2

∂ν2

+ (ξu2 − ξn2 − ξp2)
∂f

∂u
= 0 (5.4.27)

–

λ2 (−ε1ξψ1 + ε2ξψ2) + (ξu2 − ξn2 − ξp2)Pν1

(
∂f

∂(∇ψ)

)
= 0 (5.4.28)
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–

ξn1 − ξn2 = 0 (5.4.29)

–

ξp1 − ξp2 = 0 (5.4.30)

–

ξu2 − ξu1 = 0 (5.4.31)

5.4.3 Shape gradient

Now we are ready to state the first order optimality condition for the photocurrent

function J . Recall that the we form the Lagrangian functional L from J ′ and group

the terms by their integral domain; cf. Appendix B.

L = J ′ + Lψ + Ln + Lp + Lu

= LΩ1∪Ω2 + LΓD1
+ LΓD2

+ LΓN
+ LΓ (5.4.32)

Note J ′ has the same value as L, since L is formed by the method of Lagrange mul-

tipliers. By solving the adjoint equations, we effectively eliminate all the integrals

of shape derivatives in L. What is left leads to an explicit formula for the shape

gradient. Here we state the result:

J ′(V) =

∫
Γ

G V1 (5.4.33)
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where G is the shape gradient of J at (ψ, n, p, u) in the direction of an admissible

velocity field V

G = (−λ2)ξψ2

{
divΓ [(ε1 − ε2)∇Γψ1] +

∂

∂ν1

[
(ε1 − ε2)

∂ψ1

∂ν1

]
+ (ε1 − ε2)

∂ψ1

∂ν1

H1

}
− µn2

∂ξn2

∂ν1

(
∂n1

∂ν1

− ∂n2

∂ν1

)
−∇Γξn2 · PΓ (Fn1 − Fn2)

− µp2
∂ξp2
∂ν1

(
∂p1

∂ν1

− ∂p2

∂ν1

)
−∇Γξp2 · PΓ (Fp1 − Fp2)

− µu2
∂ξu2

∂ν1

(
∂u1

∂ν1

− ∂u2

∂ν1

)
−∇Γξu2 · PΓ (Fu1 − Fu2)

+ divΓ

[
(ξu2 − ξn2 − ξp2)PΓ

(
∂f

∂y

)]
−4Γ

[
(ξu2 − ξn2 − ξp2)

∂f

∂H1

]
+ (ξu2 − ξn2 − ξp2)

[
∂f

∂n

∂n1

∂ν1

+
∂f

∂p

∂p1

∂ν1

+
∂f

∂u

∂u1

∂ν1

]
+ (ξu2 − ξn2 − ξp2)

(
∂f

∂(∇ψ)
·D2ψ · ν1 +

∂f

∂H1

∂H1

∂ν1

+ fH1

)
(5.4.34)
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Chapter 6

Second Drift-Diffusion Model: the

Phase-Field Method

The shape gradient G in Chapter 5 provides insights into the optimal shape of

donor-acceptor interface Γ. On the other hand, it should raise concern when nu-

merical implementation is considered. First of all, it is obviously a very complicated

expression, and one must be careful when approximating the shape gradient G nu-

merically. Furthermore, to handle the possibly complex geometry of Γ, one typically

needs to put sample points on Γ and use the finite-element method to solve the drift-

diffusion equations and the numerical optimization problem. However, solving such

shape optimization problems involves updating the geometry and remeshing the do-

main for each step of optimization, which becomes complicated when the geometry

is intricate.
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In this chapter, we introduce the phase-field function φ as an alternative way

to parametrize the geometry. Roughly speaking, φ can be viewed as a smooth

approximation of a step function; instead of having an abrupt change in function

values from one phase to the other, there is a narrow region near the boundary

between two phases where this transition takes place, and the width of such region

is controlled by a built-in small constant κ of the phase-field equation.

We start by introducing the phase-field method. In specific, we introduce the

Allen-Cahn equation and see how this equation describes the evolution of shapes.

In Section 6.2, we write down a new drift-diffusion model where all the physical

parameters depend on the phase-field function φ. In particular, we see that the

sharp interface Γ in Chapter 3 is not present in our new drift-diffusion model;

instead, we have a volume term in the equations which is mostly supported within

a narrow region near Γ. Now the optimal design problem nicely falls into the

regime of ordinary optimal control theory of PDE’s. In Section 6.3, we derive

the sensitivity of our phase-field drift-diffusion model. In Section 6.4, we derive

the functional gradient of the photocurrent where we again employ the method of

adjoint equations. Having computed the phase-field gradient, we state a gradient-

descent type of optimization algorithm in Section 6.5.
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6.1 Introduction to Phase Field Method

Phase field method is a method of modeling phase transition. Its root in physics is

apparent from its name. There are a variety of phase field models, but the key idea

is the same for all of them: phase transition is a process of energy minimization.

For a phase field model, let φ be the phase field function and F [φ] be the energy

functional of φ. Then the evolution of φ is always such that F [φ] is minimized:

∂φ

∂t
= −∂F

∂φ
(6.1.1)

The energy functional F [φ] fully characterizes the phase field model. ∂F
∂φ

is the

gradient of F with respect to φ, therefore the evolution of phase field function is

also referred as gradient flow.

A typical form of F is

F [φ;κ] =

∫
D

κ

2
|∇φ|2 + f(φ;κ) (6.1.2)

where κ is a small positive constant and f(φ;κ) is a double-well potential which

attains local minimum at φ = 0 and φ = 1. A minimum value of F can only be

obtained from the trade-off between the two terms of the integrand, both of which

are controled by the small parameter κ. If φ is an element in L2(D), then the

equation of L2 gradient flow is the Allen-Cahn equation

∂φ

∂t
= κ∇2φ− f ′(φ;κ) (6.1.3)

In what follows, we present two simple examples using an energy functional of

the form above to illustrate the phase field method.
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Figure 6.1: Double-well potential for phase field function

6.1.1 Example: mean curvature flow

Let the double well potential take the following form (cf. Figure 6.1)

f(φ;κ) =
1

κ
fs(φ) (6.1.4)

where fs(φ;κ) = φ2(φ− 1)2 (6.1.5)

Therefore the energy functional is

F1[φ;κ] =

∫
D

κ

2
|∇φ|2 +

1

κ
φ2(φ− 1)2 (6.1.6)

And the Allen-Cahn equation for (6.1.6) is

∂φ

∂t
= κ∇2φ− 1

κ
f ′s(φ) (6.1.7)

= κ∇2φ− 2

κ
φ(φ− 1)(2φ− 1) (6.1.8)
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It is reasonable to assume that the initial phase field function φ(t = 0) only takes

values from [0, 1]. The only stationary states of the reaction term are

φ = {0, 0.5, 1}

If we ignore the diffusion part of this equation and take a close look at the reaction

term, it’s easy to see that, for any φ ∈ (0, 0.5), φ(t → ∞) decays to 0 and for any

φ ∈ (0.5, 1), φ(t→∞) grows to 1.

It is a well-known fact that in the limit of κ → 0, F1[φ;κ] converges to the

interface area in the sense of Γ-convergence; cf. [10, 2] and the references therein.

On the other hand, the shape gradient of the surface area
∫

Γ01
1 is simply the mean

curvature H (Section 4.6). 1 When κ → 0, (6.1.8) is indeed the mean curvature

flow where the interface is driven by the local curvature on the interface.

We show a 2D example of mean curvature flow in Figure 6.2. The plots show

the evolution of the interface {φ = 0.5} in time by solving the Allen-Cahn equation

(6.1.8). It is evident that the interface tends to move outward when the curvature

is negative and inward when the curvature is positive. The shape of the interface

is evolving towards a circle. As time goes by, the phase in the middle eventually

vanishes due to the positive curvature of a circle.

1Here Γ01 is to denote the interface between phase 0 and phase 1. It has nothing to do with

Γ-convergence.
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(a) t=0 (b) t=10 (c) t=20

(d) t=30 (e) t=40 (f) t=50

Figure 6.2: Mean curvature flow simulated by phase field method. The interface is

the level set of {φ = 0.5}. “t” is in numerical unit.
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(a) G = 0.1 (b) G = −0.1

Figure 6.3: Asymmetric double well potentials with differnet values of G

6.1.2 Example: prescribed geometry

In this example, we show that, by choosing a particular form of the double-well

potential f , in principle, we are able to realize arbitrary interface by the phase field

method. This method is applied when the phase field method is used to solve a

shape optimization problem in [25].

Following the idea in [25], we let the double well potential to be

f(φ;κ) =
1

κ
(fs(φ) +Gfa(φ)) (6.1.9)

where fs(φ) = φ2(φ− 1)2 (6.1.10)

fa(φ) = φ3(6φ2 − 15φ+ 10) (6.1.11)
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The corresponding energy functional is

F2[φ;κ] =

∫
D

κ

2
|∇φ|2 +

1

κ

[
φ2(φ− 1)2 +Gφ3(6φ2 − 15φ+ 10)

]
(6.1.12)

And the Allen-Cahn equation is

∂φ

∂t
= κ∇2φ− 1

κ
[f ′s(φ) +Gf ′a(φ)]

= κ∇2φ− 1

κ

[
2φ(φ− 1)(2φ− 1) +G · 30φ2(φ− 1)2

]
(6.1.13)

If G 6= 0, only one of the phases is global minimum and the other is local

minimum as is shown in Figure 6.3. A non-zero G drives the local-minimum phase

towards the global minimum phase.

To understand why this is so, let consider the case when G > 0 (the plot on the

left in Figure 6.3). In this case 0 is the global minimum whereas 1 is only a local

minimum. The second term of the reaction part of (6.1.13),

−1

κ
G · 30φ2(φ− 1)2

is always negative. Therefore, if it dominates the diffusion part as well as the other

reaction term, it drives the phase field function towards 0 as long as φ < 1.

In the following 2D example, we would like to construct a phase field function

whose Γ01 = {x ∈ D : φ(x) = 0.5} level set is a given sinusoidal curve: on the left

to Γ01, we have φ > 0.5 and on the right to Γ01, we have φ < 0.5. Therefore, we

choose G to be the following function

G(φ) =


−1 left to Γ01

1 right to Γ01

(6.1.14)
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(a) t=0 (b) t=10 (c) t=20

Figure 6.4: Example: evolution towards some given prescribed geometry. t is in

numerical unit.

The evolution of φ under the Allen-Cahn equation with G in (6.1.14) is given in

Figure 6.4.

6.1.3 Optimal design with phase field method

The examples in Section 6.1.1 and 6.1.2 show that, when G = 0, the evolution of

phase field function is merely an approximation of mean curvature flow, whereas

when G 6= 0, phase field function may evolve towards a preferred configuration,

given that G is sufficiently large to dominate other terms in the Allen-Cahn equa-

tion.

• Alternative double-well potentials.

From a mathematical point of view, the double-well potential f(φ;κ) in (6.1.3)

is needed to penalize any value of φ between 0 and 1. The particular choices

we made in Section 6.1.1 and 6.1.2 are by no means the only viable options.

For example, we can consider a family of phase field functions parametrized
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by both κ and w in the following way:

f(φ;κ,w) =
1

κ
(wfs(φ) +Gfa(φ)) (6.1.15)

where fs(φ) = φ2(φ− 1)2 (6.1.16)

fa(φ) = φ3(6φ2 − 15φ+ 10) (6.1.17)

Note w has to be a positive constant, and if w = 1, we recover the exact

double-well potential in (6.1.9).

The L2 gradient flow of φ(t) defined by (6.1.15) incorporates two factors:

wfs(φ) drives the phase field function to have smaller interface area (i.e. the

mean curvature flow), whereas Gfa(φ) drives the phase field function accord-

ing to some given gradient functional. Therefore, φ(t) is the result of two

competing processes. For the purpose of optimization, we have the conve-

nience of choosing w.

• Shape optimization with phase field method

To adapt a phase field method to shape (i.e. phase) optimization problem, we

need to find a proper G which breaks the symmetry between the two phases.

In the problem of optimizing photocurrent J with drift-diffusion model, we

replace this G with the gradient functional of photocurrent J with respect to

the phase field function, i.e.

G =
δJ

δφ
(6.1.18)

G is again obtained by the optimal control theory introduced in Chapter 2.
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In the next section, we specify a drift-diffusion model which depends on a

phase field function φ. From the point of view of optimal control, φ is our

control variable. By computing the sensitivity of J with respect to φ, we are

able to identify the phase-field gradient δJ
δφ

.

6.2 Phase-Field Drift-Diffusion Model

In this section, we introduce a drift-diffusion model which is parametrized by a

phase field function. Adding to that, we use the Allen-Cahn equation introduced

in 6.1.2 as our equation for the phase field function. We show in later sections how

we use this equation to find an optimal design.

6.2.1 Drift-diffusion model

For a given design of donor-acceptor complex of an organic solar cell, we can

parametrize it by a step function which takes value “1” in the donor phase and

“0” in the acceptor phase, and we let φ be its phase-field approximation. Like

before, the level set {φ = 0.5} has the meaning of donor-acceptor interface.

In the drift-diffusion model we are about to write down, the physical parameters

are modeled similar to those in [6] without explaining their physics origin. Their

phase dependence is enforced by their dependence on the phase-field function φ.

Also note that all the equations and physical parameters are nondimensionalized.
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• ψ-equation

− λ2∇ · (ε(φ)∇ψ) = p− n Ω (6.2.1)

ψ = ψD ΓD (6.2.2)

∂ψ

∂ν
= 0 ΓN (6.2.3)

• n-equation
∇ · Fn = k(∇ψ, φ)u− γ(∇ψ, φ)np

Fn = −µn(∇ψ, φ) (∇n− n∇ψ)

Ω (6.2.4)

n = nD ΓD (6.2.5)

Fn · ν = 0 ΓN (6.2.6)

• p-equation
∇ · Fp = k(∇ψ, φ)u− γ(∇ψ, φ)np

Fp = −µp(∇ψ, φ) (∇p+ p∇ψ)

Ω (6.2.7)

p = pD ΓD (6.2.8)

Fp · ν = 0 ΓN (6.2.9)

• u-equation
∇ · Fu + du(φ)u = Q− [k(∇ψ, φ)u− γ(∇ψ, φ)np]

Fu = −µu(φ)∇u
Ω (6.2.10)

u = uD ΓD (6.2.11)

Fu · ν = 0 ΓN (6.2.12)
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And the physical parameters are modeled as

• Permittivity

ε(φ) = εD φ+ εA(1− φ)

= εA + (εD − εA)φ (6.2.13)

where εD and εA are constant permittivities for donor and acceptor, respec-

tively.

• Mobilities

µp(∇ψ, φ) = µp,A(|∇ψ|) + [µp,D(|∇ψ|)− µp,A(|∇ψ|)]φ (6.2.14)

µn(∇ψ, φ) = µn,A(|∇ψ|) + [µn,D(|∇ψ|)− µn,A(|∇ψ|)]φ (6.2.15)

µu(∇ψ, φ) = µu,A + [µu,D − µu,A]φ (6.2.16)

Here we assume that exciton mobility µu takes constant values µu,D in donor

and µu,A in acceptor. The mobilities of charge carriers are assumed to take the

Poole-Frenkel form (i.e. exponential dependence on the amplitude of electric

field). Taking the mobilities in donor for example, we have

µp,D(∇ψ) = µp,D(|∇ψ| = 0) exp(γp,D|∇ψ|) (6.2.17)

µn,D(∇ψ) = µn,D(|∇ψ| = 0) exp(γn,D|∇ψ|) (6.2.18)

The carrier mobilities in the acceptor have similar form.

• Decay rate of excitons

du(φ) = du,A + (du,D − du,A)φ (6.2.19)
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Here du,D and du,A are both assumed to be constant.

• Recombintation coefficient is

γ(∇ψ, φ) =
1

ε(φ)
[µn(∇ψ, φ) + µp(∇ψ, φ)] (6.2.20)

• Dissociation rate of excitons

k(∇ψ, φ,∇φ) = k0 g

(
|∇ψ|
ε(φ)

)
f(φ, |∇φ|) (6.2.21)

Here k0 is understood as a constant. The dependence of k on the electric field

−∇ψ is enforced by g
(
|∇ψ|
ε(φ)

)
. In the series formula (6) of [6], g is a infinite

series in the amplitude of electric field. For computational purposes, one must

truncate this series into finitely many terms. Here we only keep up to the 1st

order term in the electric field for simplcity, assuming g = 1 + b and

b = b0
|∇ψ|
ε(φ)

(6.2.22)

where b0 is a numeric constant after nondimensionalization.

In addition, f(φ, |∇φ|) is a positive smooth function of φ and ∇φ such that

it is significant only when φ is not flat, i.e. near the donor-acceptor interface.

We also expect f to be bounded when κ → 0 and |∇φ| → ∞, Therefore we

assume

f(φ, |∇φ|) =
κ|∇φ|2

1 + κ|∇φ|2
(6.2.23)

Note that although all the parameter models are ad hoc, they are selected to contain

all the desired physics of organic solar cells.
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Remark 6.2.1 (Neumann boundary conditions). The boundary conditions on ΓN

are equivalent to homogeneous Neumann boundary conditions, i.e.

∂ψ

∂ν
=
∂n

∂ν
=
∂p

∂ν
=
∂u

∂ν
= 0 ΓN (6.2.24)

Remark 6.2.2 (Comparison with the first drift-diffusion model in Chapter 3). Note

that in Chapter 3, we effectively have boundary value problems associated with

two distinct regions and we need to define a coupling boundary condition on the

interface Γ, whereas in this new drift-diffusion model based on phase field function,

we no longer handle Γ explicitly.

Remark 6.2.3 (Dependence on |∇ψ|). We have assumed that all the parameters only

depend on the amplitude of electric field |∇ψ|, not its direction. This simplifies the

boundary conditions on ΓN for the adjoint equations derived in Section 6.4. Note

that this is also consistent with all the aforementioned existing drift-diffusion models

for organic solar cells [1, 6, 12].

6.2.2 Boundary value problem for the phase field function

of an organic solar cell

We use the Allen-Cahn equation in Section 6.1.3 as our equation for the phase field

function φ. In particular, we choose w = 1
4

for the double-well potential (6.1.15),

which is the same as equation (41) in [25].

Since the phase field function is confined within the region of donor-acceptor

complex Ω, we need to impose proper boundary conditions on ∂Ω = ΓD ∪ ΓN . On
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the Dirichlet boundaries, we require φ = 1 on the anode contact and φ = 0 on the

cathode contact to make sure anode is always connected to the donor and cathode

is always connected to the acceptor. For the Neumann boundaries ΓN , we simply

let φ have homogenous Neumann boundary condition, i.e. ∂φ
∂ν

= 0.

Hence, we end up with the following boundary value problem for the phase field

function:

∂φ

∂t
= κ∇2φ− 1

κ

[
φ(φ− 1)(φ− 1

2
) +G · 30φ2(φ− 1)2

]
Ω (6.2.25)

φ = 1 ΓD1 (6.2.26)

φ = 0 ΓD2 (6.2.27)

∂φ

∂ν
= 0 ΓN (6.2.28)

where G reflects our “preference” on phase distribution.

6.3 Sensitivity Analysis of Phase Field Model

We compute the sensitivity of the drift-diffusion model in Section 6.2.1. with re-

spect to a change in the phase field function. To be specific, if φ ∈ H1(Ω) is

our current phase field function and {ψ(φ), n(φ), p(φ), u(φ)} are the solution to the

drift-diffusion equation, we want to determine the equation for their directional

derivatives

{ψ′(φ;φ1), n′(φ;φ1), p′(φ;φ1), u′(φ;φ1)}
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in the direction of some φ1 ∈ H1(Ω). In fact, given that the boundary conditions

of φ are not supposed to change after any valid perturbation, φ1 must satisfy the

constraints

φ1 = 0 ΓD (6.3.1)

∂φ1

∂ν
= 0 ΓN (6.3.2)

6.3.1 Sensitivity of parameters

For all the parameters, their dependence on φ is either explicitly on φ and ∇φ

or through their dependence on the state variables {ψ, n, p, u}. Let X be any of

{ψ, n, p, u} or their gradient and consider a general function y(X,φ,∇φ) To be

consistent with the notation of directional derivative introduced in Chapter 2, we

let y′ be the complete sensitivity of y with respect to φ in the direction φ1. Then

the directional derivative of y(φ,∇φ) is simply given by the chain rule.

y′(X,φ,∇φ;φ1) =
∂y

∂X
X ′ +

∂y

∂φ
φ1 +

∂y

∂(∇φ)
· ∇φ1

=
∂y

∂X
X ′ + δy(X,φ,∇φ;φ1) (6.3.3)

Therefore we have defined the partial sensitivity of y through its explicit depen-

dence on φ and ∇φ as 2

2The notation is not standard outside this thesis: in most literature, δy typically refers to the

first variation of a function. The author hope this unconventional notation does not cause much

confusion.
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δy(φ;φ1)
d
=
∂y

∂φ
φ1 +

∂y

∂(∇φ)
· ∇φ1 (6.3.4)

In what follows, we use the abbreviation y′(φ;φ1) = y′ and δy(φ;φ1) = δy; the

directional dependence is always implied.

• Partial sensitivity of the permittivity

δε = (εD − εA)φ1 (6.3.5)

• Partial sensitivity of mobilities

δµp = (µp,D − µp,A)φ1 (6.3.6)

δµn = (µn,D − µn,A)φ1 (6.3.7)

δµu = (µu,D − µu,A)φ1 (6.3.8)

• Partial sensitivity of decay rate of excitons

δdu = (du,D − du,A)φ1 (6.3.9)

• Partial sensitivity of recombintation rate of electrons and holes

δγ =

(
−δε
ε2

)
(µn + µp) +

1

ε
(δµn + δµp) (6.3.10)

• Partial sensitivity of exciton dissociation rate

δk = k0
∂g

∂φ
fφ1 + k0g

(
∂f

∂φ
φ1 +

∂f

∂(∇φ)
· ∇φ1

)
(6.3.11)

Given the explicit definition of g and f , it is straightforward to compute their partial

derivatives with respect to φ and ∇φ.
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6.3.2 Sensitivity of drift-diffusion equations

Details of the computation are saved in Appendix C. Here we only state the result.

In particular, {ψ′, n′, p′, u′} satisfy the following boundary value problems:

• Sensitivity of ψ-equation

− λ2∇ · (ε∇ψ′)− p′ + n′ = λ2∇ · (δε∇ψ) Ω (6.3.12)

ψ′ = 0 ΓD (6.3.13)

∂ψ′

∂ν
= 0 ΓN (6.3.14)

• Sensitivity of n-equation

−∇ ·
[
∂µn
∂(∇ψ)

· ∇ψ′ (∇n− n∇ψ)− µnn∇ψ′
]

−
(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)
· ∇ψ′

−∇ · [µn (∇n′ − n′∇ψ)] + γn′p

+ γnp′

− ku′

= ∇ · [(δµn) (∇n− n∇ψ)] + [(δk)u− (δγ)np] Ω (6.3.15)

n′ = 0 ΓD (6.3.16)

∂n′

∂ν
= 0 ΓN (6.3.17)
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• Sensitivity of p-equation

−∇ ·
[
∂µp

∂(∇ψ)
· ∇ψ′ (∇p+ p∇ψ) + µpp∇ψ′

]
−
(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)
· ∇ψ′

+ γn′p

−∇ · [µp (∇p′ + p′∇ψ)] + γnp′

− ku′

= ∇ · [(µp) (∇p+ p∇ψ)] + [(δk)u− (δγ)np] Ω (6.3.18)

p′ = 0 ΓD (6.3.19)

∂p′

∂ν
= 0 ΓN (6.3.20)
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• Sensitivity of u-equation(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)
· ∇ψ′

− γn′p

− γnp′

−∇ · (µu∇u′) + (du + k)u′

= ∇ · [(δµu)∇u]− (δdu)u− [(δk)u− (δγ)np] Ω (6.3.21)

u′ = 0 ΓD (6.3.22)

∂u′

∂ν
= 0 ΓN (6.3.23)

6.4 Phase-Field Gradient and First-Order Opti-

mality Condition

In this section, we derive the first-order sensitivity of photocurrent with respect to

the phase field function φ. To that end, we again form the Lagrangian functional

and then the adjoint equations. By the end of this section, we obtain an explicit

formula for the L2 phase-field gradient functional G.

We introduce the Lagrange multiplier {ξψ, ξn, ξp, ξu}, and form the Lagrangian

functional as below

L = J − Lψ − Ln − Lp − Lu (6.4.1)

95



where

J = −
∫

ΓD1

(Fp − Fn) · ν (6.4.2)

Lψ =

∫
Ω

λ2ε∇ψ · ∇ξψ + (n− p)ξψ −
∫

ΓD

λ2ε
∂ψ

∂ν
ξψ (6.4.3)

Ln =

∫
Ω

µn(∇n− n∇ψ) · ∇ξn − (ku− γnp)ξn +

∫
ΓD

Fn · ν ξn (6.4.4)

Lp =

∫
Ω

µp(∇p+ p∇ψ) · ∇ξp − (ku− γnp)ξn +

∫
ΓD

Fp · ν ξp (6.4.5)

Lu =

∫
Ω

µu∇u · ∇ξu + [duu−Q+ (ku− γnp)] ξu +

∫
ΓD

Fu · ν ξu (6.4.6)

Each of {Lψ,Ln,Lp,Lu} is the weak form of one of the drift-diffusion equations.

Note that we have applied the flux boundary conditions of {ψ, n, p, u} on ΓN to

obtain the expressions above.

Now we take the directional derivative of L in some valid direction φ1. In order

to simplify the derivation, we repeatedly make use of the boundary conditions of

{ψ, n, p, u} and {ψ′, n′, p′, u′} and the fact that {µn, µp, k, γ} only depend on the

amplitude of electric field |∇ψ|.

• J ′

J ′ = −
∫

ΓD1

(
F′p − F′n

)
· ν (6.4.7)

• L′ψ
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L′ψ

=

∫
Ω

λ2(δε)∇ψ · ∇ξψ + λ2ε∇ψ′ · ∇ξψ + (n′ − p′)ξψ −
∫

ΓD

λ2ε
∂ψ′

∂ν
ξψ

=

∫
Ω

λ2(δε)∇ψ · ∇ξψ +

∫
Ω

[
−λ2∇ · (ε∇ξψ)

]
ψ′ + ξψn

′ − ξψp′

+

∫
ΓN

λ2ε
∂ξψ
∂ν

ψ′ −
∫

ΓD

λ2ε
∂ψ′

∂ν
ξψ (6.4.8)

• L′n

L′n

=

∫
Ω

(δµn)(∇n− n∇ψ) · ∇ξn − [(δk)u− (δγ)np] ξn

+

∫
Ω

[
(∇n− n∇ψ) · ∇ξn

∂µn
∂(∇ψ)

− ξn
(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)]
· ∇ψ′

+

∫
Ω

µn(∇n′ − n′∇ψ − n∇ψ′) · ∇ξn − (ku′ − γn′p− γnp′)ξn

+

∫
ΓD

F′n · ν ξn

=

∫
Ω

(δµn)(∇n− n∇ψ) · ∇ξn − [(δk)u− (δγ)np] ξn

+

∫
Ω

[−∇ · (µn∇ξn)− µn∇ψ · ∇ξn + γpξn]n′ − kξnu′ + γnξnp
′

+

∫
Ω

[ ∇ · (µnn∇ξn)

−∇ ·
(

(∇n− n∇ψ) · ∇ξn
∂µn
∂(∇ψ)

)
+∇ ·

(
ξn

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

))]
ψ′

+

∫
ΓN

µn (n′ − nψ′) ∂ξn
∂ν

+

∫
ΓD

F′n · ν ξn (6.4.9)
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• L′p

L′p

=

∫
Ω

(δµp)(∇p+ p∇ψ) · ∇ξp − [(δk)u− (δγ)np] ξp

+

∫
Ω

[
(∇p+ p∇ψ) · ∇ξp

∂µp
∂(∇ψ)

− ξp
(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)]
· ∇ψ′

+

∫
Ω

µp(∇p′ + p′∇ψ + p∇ψ′) · ∇ξp − (ku′ − γn′p− γnp′)ξp

+

∫
ΓD

F′p · ν ξp

=

∫
Ω

(δµp)(∇p+ p∇ψ) · ∇ξp − [(δk)u− (δγ)np] ξp

+

∫
Ω

[−∇ · (µp∇ξp) + µp∇ψ · ∇ξp + γnξp] p
′ − kξpu′ + γpξpn

′

+

∫
Ω

[−∇ · (µpp∇ξp)

−∇ ·
(

(∇p+ p∇ψ) · ∇ξp
∂µp

∂(∇ψ)

)
+∇ ·

(
ξp

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

))]
ψ′

+

∫
ΓN

µp (p′ + pψ′)
∂ξp
∂ν

+

∫
ΓD

F′p · ν ξp (6.4.10)

• L′u
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L′u

=

∫
Ω

(δµu)∇u · ∇ξu + [(δdu)u+ (δk)u− (δγ)np)] ξu

+

∫
Ω

µu∇u′ · ∇ξu + duu
′ξu + (ku′ − γn′p− γnp′)ξu

+

∫
ΓD

F′u · νξu

=

∫
Ω

(δµu)∇u · ∇ξu + [(δdu)u+ (δk)u− (δγ)np)] ξu

+

∫
Ω

[−∇ · (µu∇ξu) + duξu + kξu]u
′ − γpξun′ − γnξup′

+

∫
ΓN

µuu
′∂ξu
∂ν

+

∫
ΓD

F′u · νξu (6.4.11)

By re-arranging the integrals in L by their domain of integration and their inte-

grands, we obtain the boundary value problems for the adjoint variables ξψ, ξn, ξp, ξu.
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• In Ω, we have a system of linear partial differential equations

− λ2∇ · (ε∇ξψ)

+ [∇ · (µnn∇ξn)

−∇ ·
(

(∇n− n∇ψ) · ∇ξn
∂µn
∂(∇ψ)

)
+∇ ·

(
ξn

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

))]
+ [−∇ · (µpp∇ξp)

−∇ ·
(

(∇p+ p∇ψ) · ∇ξp
∂µp

∂(∇ψ)

)
+∇ ·

(
ξp

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

))]
= 0 (6.4.12)

ξψ + [−∇ · (µn∇ξn)− µn∇ψ · ∇ξn + γpξn] + γpξp − γpξu = 0 (6.4.13)

− ξψ + γnξn + [−∇ · (µp∇ξp) + µp∇ψ · ∇ξp + γnξp]− γnξu = 0 (6.4.14)

− kξn − kξp + [−∇ · (µu∇ξu) + (du + k)ξu] = 0 (6.4.15)

• Boundary conditions

ξψ = ξu = 0, ξn = 1, ξp = −1 ΓD1 (6.4.16)

ξψ = ξn = ξp = ξu = 0 ΓD \ ΓD1 (6.4.17)

∂ξψ
∂ν

=
∂ξn
∂ν

=
∂ξp
∂ν

=
∂ξu
∂ν

= 0 ΓN (6.4.18)

100



Note that, compared to the adjoint quations obtained in Chapter 5, the adjoint

equations for the phase-field drift-diffusion model is much more “friendly”. In par-

ticular, we don’t need to handle the complicated boundary condition on the interface

Γ.

Finally, given the solution to the state equations ψ, n, p, u and the solutions

to the adjoint equations ξψ, ξn, ξp, ξu, we obtain the sensitivity of current J with

respect to the phase field function φ

J ′ =

∫
Ω

(
−λ2∇ψ · ∇ξψ

)
(δε)

+ [−(δµn) (∇n− n∇ψ) · ∇ξn]

+ [−(δµp) (∇p+ p∇ψ) · ∇ξp]

+ [−(δµu)∇u · ∇ξu − (δdu)uξu]

+ [(δk)u− (δγ)np] (ξn + ξp − ξu) (6.4.19)
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Next we substitute the sensitivities of parameters into the formula above.

J ′(φ;φ1) =

∫
Ω

(
−λ2∇ψ · ∇ξψ

)
(εD − εA)φ1

+ [−(µn,D − µn,A) (∇n− n∇ψ) · ∇ξn]φ1

+ [−(µp,D − µp,A) (∇p+ p∇ψ) · ∇ξp]φ1

+ [−(µu,D − µu,A)∇u · ∇ξu − (du,D − du,A)uξu]φ1

+ u(ξn + ξp − ξu)
[
k0
∂g

∂φ
fφ1 + k0g

(
∂f

∂φ
φ1 +

∂f

∂(∇φ)
· ∇φ1

)]
− np(ξn + ξp − ξu)

{
−εD − εA

ε2
(µn + µp)

+
1

ε
[(µn,D − µn,A) + (µp,D − µp,A)]

}
φ1

(6.4.20)

Note the presence of ∇φ1 in the formula above. To obtain the L2 gradient

functional G with respect to φ, we apply one last integration by parts and make

use of the boundary condition of φ. Finally we have an explicit formula

J ′(φ;φ1) =

∫
Ω

G φ1 (6.4.21)

102



where

G =
(
−λ2∇ψ · ∇ξψ

)
(εD − εA)

+ [−(µn,D − µn,A) (∇n− n∇ψ) · ∇ξn]

+ [−(µp,D − µp,A) (∇p+ p∇ψ) · ∇ξp]

+ [−(µu,D − µu,A)∇u · ∇ξu − (du,D − du,A)uξu]

+ u(ξn + ξp − ξu)k0
∂g

∂φ
f

+ u(ξn + ξp − ξu)k0g
∂f

∂φ

−∇ ·
[
u(ξn + ξp − ξu)k0g

∂f

∂(∇φ)

]
− np(ξn + ξp − ξu)

{
−εD − εA

ε2
(µn + µp)

+
1

ε
[(µn,D − µn,A) + (µp,D − µp,A)]

}
(6.4.22)

6.5 Optimization Algorithm

The optimization algorithm we use was introduced in [25]: the Allen-Cahn equation

(6.2.25) is used to update the phase field function from some given φ towards the

optimal phase field function φoptimal, where the asymmetry term G in (6.2.25) is

replaced by the L2-gradient functional obtained in (6.4.22) up to a normalization

constant. It has a gradient-descent flavor because a positive G drives φ towards 0

and a negative G drives φ towards 1. On the other hand, one should keep in mind

that (6.2.25) tends to reduce interface area when G is not large enough; cf. Section
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6.1.2 and 6.1.3.

Given the nonlinear nature of the optimization problem, we must use an iter-

ative method to search for the optimal phase field function. Let {φ(i)} i = 0, 1, ...

be the optimization sequence of the phase field function. We start with some φ(0),

solve the state equations to obtain {ψ(0), n(0), p(0), u(0)}, and compute the anode

photocurrent J (0) = −
∫

ΓD1
(F

(0)
p − F

(0)
n ) · ν. We also predefine a positive tolerance

parameter εtol << 1 to determine when the iteration should be terminated.

Then for each i = 1, 2, ...,

1. Solve the adjoint equations (6.4.12-6.4.15) and obtain {ξ(i)
ψ , ξ

(i)
n , ξ

(i)
p , ξ

(i)
u }

2. Compute the L2 gradient functional G(i) in (6.4.22)

3. Substitute G̃(i) = G(i)

C
into the Allen-Cahn equation (6.2.25) 3. and solve it

with initial time t(i) and some chosen terminal time t(i+1).

4. Solve the state equations to update the state variables to {ψ(i+1), n(i+1), p(i+1), u(i+1)}.

5. Compute the photocurrent J (t+1) = −
∫

ΓD1
(Fp − Fn) · ν using the newly ob-

tained state variables.

• If J (t+1)− J (t) < −εtol, we go back to Step “1” to start another iteration

step;

3Here C is a normalization constant and can be chosen to be ‖G(i)‖L∞(Ω)
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• If J (t+1) − J (t) > −εtol, we decrease the step size of ∆t(i+1) = t(i+1) − t(i)

to avoid overshooting and go to Step “4”. We do this line search for a

finite number of times. If a descent step ∆t(i+1) satisfying the criterion

J (t+1) − J (t) < −εtol is found, we continue the iteration by going to Step

“1”; otherwise, we terminate the iteration and return the current phase

field function φ(i).

In next chapter, we move into the nitty-gritty of the numerical implementation

of this optimization algorithm and present some examples of optimal design.
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Chapter 7

Numerical Optimization with the

Phase-Field Drift-Diffusion Model

This chapter is a continuation of Chapter 6. We look at the numerical implemen-

tation of the optimization algorithm in Section 6.5. The numerical methods are

illustrated with two-dimensional examples, but its generalization to three dimen-

sions is straightforward.

7.1 Numerical Methods for Solving Partial Dif-

ferential Equations

According to the optimization algorithm in Section 6.5, each iteration step involves

three successive steps:
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• solving the adjoint equations for adjoint variables {ξψ, ξn, ξp, ξu}

• solving the Allen-Cahn equation for updating the phase field function φ

• solving the state equations (i.e. the drift-diffusion equations) for {ψ, n, p, u}.

These steps are discussed in details seperately, but the method we use to solve all

the equations is based on a finite difference method.

7.1.1 Mesh for numerical solutions

We let Ω be the unit square in the xy-plane and generate a uniform rectangular

mesh on it. The x-spacing is hx = 1
Nx

and the y-spacing is hy = 1
Ny

. There-

fore, for each row and each column, there are Nx + 1 and Ny + 1 grid points,

respectively. The coordinates of any grid point are Pij = (xi, yj) = ( i
Nx
, j
Ny

),

where 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny. In particular, Pij is on the Dirichlet

boundaries if i ∈ {0, Nx}, 0 ≤ j ≤ Ny, and it is on the Neumann boundaries if

0 < i < Nx, j ∈ {0, Ny}.

(a graph of rectangular mesh should be included)

7.1.2 Numerical method for solving state equations

1. Stationary solutions as the limit of time-dependent solutions

The state equations of our optimization problem are the stationary drift-
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diffusion equations defined in Section 6.2. Note that, without the exciton

equation, it becomes the standard drift-diffusion model for semiconductor

devices. The numerical solutions to the drift-diffusion model have been a

challenging task, mostly because of the convection terms in both equations

for the electrons and the holes. Nonetheless, much has been known about its

numerical solution. There are two perspectives on how to solve the stationary

drift-diffusion equations.

• Iterative methods

Most iterative methods are built upon two basic methods: the Gummel’s

map and the Newton’s method. For both methods, one needs to have

some initial guess of the solution and hope the solution converges to a

faithful numerical approximation of an analytical solution.

Gummel’s map is known to be less sensitive to the initial guess but also

has a relatively slow rate of convergence. By contrast, Newton’s map has

better convergence rate, but it’s much more sensitive to the initial guess.

Note that, before convergence, any intermediate step of the iterative

process has no physical meaning. Details of the Gummel’s map and the

Newton’s method can be found in [21, 22].

• Limiting solution of the transient drift-diffusion model.

Recall that the stationary drift-diffusion model is in fact obtained from

the time-dependent drift-diffusion model by setting the time derivative ∂
∂t
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to be zero [22]. Therefore, it is natural to obtain the stationary solution

by solving the time-dependent drift-diffusion equations for a sufficiently

large time period. This approach is arguably more “physical” in that it in

fact simulates the evolution of electrical potentials and particle densities

in time, and can be compared to experimental results.

In our work, we adopt the second perspective and solve the following time

dependent drift-diffusion equations

− λ2∇ · (ε∇ψ) = p− n (7.1.1)

∂n

∂t
= −∇ · Fn + (ku− γnp) (7.1.2)

∂p

∂t
= −∇ · Fp + (ku− γnp) (7.1.3)

∂u

∂t
= −∇ · Fu +Q− duu− (ku− γnp) (7.1.4)

(7.1.5)

Letting t→∞, we obtain the stationary solutions.

2. Spatial discretization

To illustrate the spatial discretization of the divergence operator and gradient

operator, we pick an arbitrary interior node Pi,j = (xi, yj), We also let Pi+ 1
2
,j =

(xi+ 1
2
, yj) be the mid-point between Pi,j and Pi+1,j. Therefore xi+ 1

2
= (i+ 1

2
)hx.

Similar definitions hold for Pi,j+ 1
2
, Pi− 1

2
,j, and Pi,j− 1

2
.

• Approximation of divergence operator (∇ · F)ij

We let F = (F x, F y) be a two-dimensional flux vector. We then use the
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standard central difference scheme to discretize divergence operator

(∇ · F)i,j =
F x
i+ 1

2
,j
− F x

i− 1
2
,j

hx
+
F y

i,j+ 1
2

− F y

i,j+ 1
2

hy
(7.1.6)

Note that F x
i,j+ 1

2

and F y

i+ 1
2
,j

are not needed for our purpose, since all we

care about is the divergence of a flux at a grid point.

• Approximation of diffusion flux F = −µ∇y

If the flux is a simple diffusive flux, we again apply central difference

scheme to discretize the gradient operator

F x
i+ 1

2
,j

= −µi+ 1
2
,j

ui+1,j − ui,j
hx

(7.1.7)

F y

i,j+ 1
2

= −µi,j+ 1
2

ui,j+1 − ui,j
hy

(7.1.8)

• Approximation of convection-diffusion flux F = −µ(∇y + y∇ψ)

It is well-known that, for the convection-diffusion flux, an ordinary cen-

tral difference scheme causes numerical instability. The Scharfetter-

Gummel discretization scheme was invented to ensure the stability of

convection-diffusion fluxes in drift-diffusion models, and it can be im-

plemented on either a structured mesh (such as the one we use) or

an unstructured finite element mesh. We refer the readers to [21] and

[29] for details of the formulation. Below we simply state the formula

for the Scharfetter-Gummel flux approximation for the electron flux

Fn = −µn(∇n−n∇ψ); the expression for Fp is easily obtained by chang-
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ing the ψ in Fn to −ψ.

F x
n (i+ 1

2
,j)

= −µn (i+ 1
2
,j)

ni+1,jB(ψi+1,j − ψi,j)− ni,jB(ψi,j − ψi+1,j)

hx

(7.1.9)

F y

n (i,j+ 1
2

)
= −µn (i,j+ 1

2
)

ni,j+1B(ψi,j+1 − ψi,j)− ni,jB(ψi,j − ψi,j+1)

hy

(7.1.10)

where B(z) is the Bernoulli function

B(z) =


z

ez−1
z 6= 0

1 z = 0

(7.1.11)

Note that when there is no convection, i.e. ∇ψ = 0, we effectively have

a pure diffusion, and this Scharfetter-Gummel flux recovers exactly the

central-difference scheme for diffusive fluxes.

3. Time discretization

To numerically solve the time-dependent equations, we need to discretize

“time” and transform differentiation into a difference. We pick a sufficiently

small ∆t > 0 as our time step for solving (7.1.2-7.1.4). Specifically, let

tl = l∆t, l = 0, 1, ...

be the discretized times, and we use the following formulae for updating so-
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lutions in time

− λ2∇ · (ε∇ψ(l+1)) = p(l) − n(l) (7.1.12)

n(l+1) − n(l)

∆t
= −∇ · F(l+1)

n + (ku− γnp)(l) (7.1.13)

p(l+1) − p(l)

∆t
= −∇ · F(l+1)

p + (ku− γnp)(l) (7.1.14)

u(l+1) − u(l)

∆t
= −∇ · F(l+1)

u + (ku− γnp)(l) (7.1.15)

where the superscript of y(l) is the numerical approximation of y(t) at time

tl = l∆t.

Note that the equations (7.1.13-7.1.15) are all reaction-diffusion equations.

To ensure numerical stability, we use a backward Euler scheme for the

divergence of fluxes; forward Euler scheme is applied for the reaction terms

for simplicity.

We also add a note on the numerical implementation of the fluxes. In fact,

the fluxes Fn, Fp, and Fu are not fully evaluated at time tl+1. We take F
(l+1)
n

as an example; F
(l+1)
p and F

(l+1)
u have similar expression. To have a numerical

approximation that is linear in the particle densities, we re-write (7.1.9-7.1.10)
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as below

F
x, (l+1)

n (i+ 1
2
,j)

= −µ(l)

n (i+ 1
2
,j)

n
(l+1)
i+1,jB(ψ

(l)
i+1,j − ψ

(l)
i,j )− n

(l+1)
i,j B(ψ

(l)
i,j − ψ

(l)
i+1,j)

hx

(7.1.16)

F
y, (l+1)

n (i,j+ 1
2

)
= −µ(l)

n (i,j+ 1
2

)

n
(l+1)
i,j+1B(ψ

(l)
i,j+1 − ψ

(l)
i,j )− n

(l+1)
i,j B(ψ

(l)
i,j − ψ

(l)
i,j+1)

hy

(7.1.17)

In other words, in the expression of F
(l+1)
n , only the unknown n is evaluated

at time tl+1, and all the other terms are evaluated at time tl.

For each time step, we solve the equations (7.1.12-7.1.15) successively. The

time marching process is terminated when the rate of change for all of {ψ(l),

n(l), p(l), u(l)} is smaller than some chosen tolerance ε > 0.

7.1.3 Numerical method for solving adjoint equations

The adjoint equations (6.4.12-6.4.15) are a system of linear elliptic equations. The

spatial discretization of these equations are all standard central difference method

(the same as in the discretization of divergence operator and gradient operator in

Section 7.1.2). In what follows, we introduce an iterative solution map to solve the

system of adjoint equations.

Among the four equations, (6.4.12) is different from the other 3 adjoint equa-

tions: (6.4.12) is second order in all three unknowns {ξψ, ξn, ξp}, whereas (6.4.13),

(6.4.14), and (6.4.15) are second order in only ξn, ξp and ξu, respectively.
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Therefore, instead of solving the whole system all at once, we propose an iterative

solution map.

We start with an initial guess solutions {ξ(0)
ψ , ξ

(0)
n , ξ

(0)
p , ξ

(0)
u }. Then given the

adjoint variables {ξ(l)
ψ , ξ

(l)
n , ξ

(l)
p , ξ

(l)
u } at l ≥ 0, we solve for {ξ(l+1)

ψ , ξ
(l+1)
n , ξ

(l+1)
p ,

ξ
(l+1)
u } by the following two steps

1. Given ξ
(l)
ψ , we solve for {ξ(l+1)

n , ξ
(l+1)
p , ξ

(l+1)
u }

[
−∇ · (µn∇ξ(l+1)

n )− µn∇ψ · ∇ξ(l+1)
n + γpξ(l+1)

n

]
+ γpξ(l+1)

p − γpξ(l+1)
u = −ξ(l)

ψ

(7.1.18)

γnξ(l+1)
n +

[
−∇ · (µp∇ξ(l+1)

p ) + µp∇ψ · ∇ξ(l+1)
p + γnξ(l+1)

p

]
− γnξ(l+1)

u = ξ
(l)
ψ

(7.1.19)

− kξ(l+1)
n − kξ(l+1)

p +
[
−∇ · (µu∇ξ(l+1)

u ) + (du + k)ξ(l+1)
u

]
= 0 (7.1.20)
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2. Given {ξ(l)
n , ξ

(l)
p , ξ

(l)
u }, we solve for ξ

(l+1)
ψ

− λ2∇ · (ε∇ξ(l+1)
ψ )

= −
[
∇ · (µnn∇ξ(l)

n )

−∇ ·
(

(∇n− n∇ψ) · ∇ξ(l)
n

∂µn
∂(∇ψ)

)
+∇ ·

(
ξ(l)
n

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

))]
−
[
−∇ · (µpp∇ξ(l)

p )

−∇ ·
(

(∇p+ p∇ψ) · ∇ξ(l)
p

∂µp
∂(∇ψ)

)
+∇ ·

(
ξ(l)
p

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

))]
(7.1.21)

The solution map is analogous to the Jacobi Method in linear algebra. In fact,

if we think of {ξψ, ξn, ξp, ξu} as a vector of functions, and the linear operators as a

matrix, the adjoint system can be re-written in an symbolic way as

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44





ξψ

ξn

ξp

ξu


=



b1

b2

b3

b4


(7.1.22)

Here the subscripts “1”, “2”, “3” and “4” corresponds to ξψ, ξn, ξp, and ξu, re-

spectively. Aij denotes the differential operator which acts on the j-th adjoint

variables in the i-th adjoint equation. And bi is the right-hand side vector that has

incorporated the boundary conditions of the i-th adjoint equation.
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With the help of such symblic representation, we can re-write our iterative

method. For each step, we effectively are solving the following linear system:

A11 0 0 0

0 A22 A23 A24

0 A32 A33 A34

0 A42 A43 A44





ξ
(l+1)
ψ

ξ
(l+1)
n

ξ
(l+1)
p

ξ
(l+1)
u


=



A12 A13 A14

A21 0 0 0

A31 0 0 0

A41 0 0 0





ξ
(l)
ψ

ξ
(l)
n

ξ
(l)
p

ξ
(l)
u


+



b1

b2

b3

b4


(7.1.23)

The validity of such iterative solution map needs to be justified, but in practice,

we have observed convergence within 10 iterations for fairly small tolerance (e.g.

10−6).

7.1.4 Numerical method for solving the Allen-Cahn equa-

tion

Finally, to update the phase field function, we need to solve the Allen-Cahn equation

(6.2.25). We re-write the equation below

∂φ

∂t
= κ∇2φ+ φ(1− φ)r(φ) (7.1.24)

where

r(φ) =
1

κ

[
(φ− 1

2
) + G̃(φ) · 30φ2(φ− 1)2

]
(7.1.25)

Here G̃(φ) is the normalized phase field gradient functional and in general it de-

pends on the current phase field function φ(t); cf. Section 6.5.
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The numerical implementation of solving the Allen-Cahn equation is similar to

that in [25]. In fact, the only difference is that we use a backward Euler scheme

for the diffusion term κ∇2φ.

Let φ
(l)
i,j be the finite difference approximation of the phase field function evalu-

ated at Pi,j = (xi, yj) and time tl. Then the difference equation of the Allen-Cahn

equation is

φ
(l+1)
i,j − φ(l)

i,j

∆t
=
(
κ∇2

hφi,j
)(l+1)

+


φ

(l+1)
i,j

(
1− φ(l)

i,j

)
r
(
φ

(l)
i,j

)
for r

(
φ

(l)
i,j

)
≤ 0

φ
(l)
i,j

(
1− φ(l+1)

i,j

)
r
(
φ

(l)
i,j

)
for r

(
φ

(l)
i,j

)
≥ 0

(7.1.26)

Note that the spatial discretization of (κ∇2
hφi,j)

(l+1)
is just the standard center

difference scheme for Laplacian operator, and the backward Euler scheme is to

ensure numerical stability, like in the case of solving state equations in Section

7.1.2.

The special treatment of the reaction term is to enforce that φ
(l)
i,j is a value

between 0 and 1 for all grid points Pi,j and all times tl. The detailed analysis can

be found in Appendix B of [25].

We also note that in our implementation of the optimization algorithm, (7.1.26)

is solved for only one time step for each iteration of the optimization, since the

gradient functional G(l) at any time step is in general dependent on the current

phase field function φ(l).
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7.2 Numerical values for physical parameters

We specify typical values for the physical parameters in our phase-field drift-diffusion

model in Section 6.2. In later sections, we make changes to the numerical values of

some parameters when needed. We note that many of the values below are chosen

from the examples in [6].

• Environmental parameters and universal constants

Temperature T = 300K

Device length L = 100nm

Built-in potential ψbi = −0.6V

Vacuum permittivity ε0 = 8.854× 10−12 F ·m−1

Boltzmann constant kB = 1.38× 10−23 m2 · kg · s−2 ·K−1

Unit charge q = 1.602× 10−19 C

In particular, we compute the thermal potential

UT =
kBT

q
≈ 0.0259 V (7.2.1)

• Relative permittivity

relative permittivity of donor εD = 4

relative permittivity of acceptor εA = 4
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• Mobility and diffusivity

Zero-field electron mobility in donor µn,D = 10−9 m2 · V −1 · s−1

Zero-field electron mobility in acceptor µn,A = 10−8 m2 · V −1 · s−1

Field dependent coefficient of electron mobility γn,D = γn,A = 5× 10−4 m
1
2 · V − 1

2

Zero-field hole mobility in donor µp,D = 2× 10−8 m2 · V −1 · s−1

Zero-field hole mobility in acceptor µp,A = 2× 10−9 m2 · V −1 · s−1

Field dependent coefficient of hole mobility γp,D = γp,A = 5× 10−4 m
1
2 · V − 1

2

Exciton diffusivity in donor µu,D = 10−10 m2 · s−1

Exciton diffusivity in acceptor µu,A = 10−10 m2 · s−1

Note that µn,D << µn,A, whereas µp,D >> µp,A. This reflects the observation

that hole transport is dominant in donor material, whereas electron transport

is dominant in acceptor materials. This can be seen in later computations on

electron flux and hole flux.

• Reactions

Photogeneration rate Q = 1027 m−3 · s−1

Exciton dissociation rate at zero electrical field k0 = 106 s−1

Exciton decay rate dD = dA = 106 s−1

Here the recombination coefficient γ is missing, because it is defined as a

derived quantity which depends on permittivity ε and carrier mobilities µn

and µp; cf. Section 6.2.1
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• Dirichlet boundaries

Electrical potential at ΓD1 ψΓD1
= ψapp + ψbi V

Electrical potential at ΓD2 ψΓD2
= 0 V

Here ψapp is the applied potential on anode ΓD1; we fix the electrical potential

on cathode ΓD2 to be 0. The reason to choose these Dirichlet boundary

conditions for ψ are explained in [21, 22].

Electron density at ΓD1 nΓD1
= 0 m−3

Electron density at ΓD2 nΓD2
= 1020 m−3

Hole density at ΓD1 pΓD1
= 1020 m−3

Hole density at ΓD2 pΓD2
= 0 m−3

Exciton density at ΓD1 uΓD1
= 0 m−3

Exciton density at ΓD2 uΓD2
= 0 m−3

All these quantities need to be converted dimensionless values before substituted

into the drift-diffusion equations. In particular, we want to compute the dimension-

less constant λ2 in (6.2.1) from Section 6.2. To this end, we only need to introduce

a “typical particle density constant”

Ñ = 1020m−3 (7.2.2)
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By scaling the particle densities with Ñ , we note that the Dirichlet boundary con-

ditions for dimensionless ñ and p̃ are

ñD1 = 0 ñD2 = 1 (7.2.3)

p̃D1 = 1 p̃D2 = 0 (7.2.4)

Finally, following the procedure in [21], we compute the scaling factor λ2 as

λ2 =
ε0UT

qÑL2
≈ 1.4287 (7.2.5)

.

7.3 Numerical Examples

7.3.1 An example of a phase field function

We first look at the numerical solutions of phase field function φ. Recall that φ is

the solution to the Allen-Cahn equation

∂φ

∂t
= κ∇2φ− 1

κ

[
φ(φ− 1)(φ− 1

2
) +G · 30φ2(φ− 1)2

]
Ω (7.3.1)

This is the same equation as in (6.2.25) with the boundary conditions omitted.

Obviously, the solution of φ(t) is determined by both κ and G; recall κ > 0 is the

(small) phase field parameter and G is a function defining the asymmetric double-

well potential.

In [5] and [11], the authors consider an interface morphology which consists of

a few rectangular barriers. Apparently, by increasing the number of barriers, one
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(a) Phase field function (b) Indicator function

Figure 7.1: Phase field function and the corresponding indicator function for the

interface of 1 rectangular barrier. Mesh: 101x101. Phase field parameter: κ = 0.03

effectively increases the interface length (area in 3D). As mentioned in Chapter 1,

it is our goal to improve such intuition of an “optimal” interface. Hence, we first

consider the morphology of only one rectangular barrier.

To obtain the corresponding phase field function, we set κ = 0.03 and define G

to be

G1 =


−1 phase 1

1 phase 0

(7.3.2)

in the Allen-Cahn equation. The obtained phase field function is shown in Figure

7.1. The corresponding indicator function is included as well to show the level set

{φ = 0.5}.
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For the underlying geometry, we are mainly concerned with two quantities: the

area of each phase, and the interface length. Since the phase field function is the

level-set function of the underlying geometry, we instead compute the following two

quantities.

• Area of phase 1 is approximated by

A1[φ] =

∫
Ω

φ (7.3.3)

• Interface length

In Section 6.1.1, we have seen how phase field function can be used to rep-

resent interface and the flow associated with its curvature. We also have

mentioned that one can recover the interface area/length by taking the limit

of κ→ 0 in solving the Allen-Cahn equation. Hence, we consider the following

integral functional as a measure of interface length (or “area of the interface

neighborhood”)

Aint[φ] =

∫
Ω

κ

2
|∇φ|2 +

1

4κ
φ2(1− φ)2 (7.3.4)

7.3.2 Solutions to the phase-field drift-diffusion model

We substitute the phase field function φ obtained in Section 7.3.1 into our phase-

field drift-diffusion model.

We use the values of physical parameters in Section 7.2 for our drift-diffusion

equations. We also need to specify the applied electrical potential ψapp on anode
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(i.e. ΓD1) for the boundary condition of ψ; ψapp is sometimes called “bias”. Here

we set ψapp = 0, i.e. the organic solar cell is short-circuited, to show the solutions

at a fixed bias.

As described in Section 7.1.2, we solve for the stationary solution by evolving

the time-dependent drift-diffusion equations. We choose the discrete time step to

be t(l+1) − t(l) = 0.01 for all l ≥ 0 and exit the marching in time when

∣∣∣∣f (l+1) − f (l)

t(l+1) − t(l)

∣∣∣∣ < 10−2,

where f can be any of {ψ, n, p, u}.

Figure 7.2 is the stationary solution of electrical potential. In spite of the non-

smooth structure of the interface, the electrical potential changes almost linearly

from the anode ΓD1 to cathode ΓD2. This is also seen by the plot of electrical field,

which is almost a constant vector field. This may be the result of choosing the same

value for relative permittivity εA = εD = 4.0.

Unlike ψ, the particle densities clearly “see” the existence of an interface. Fig-

ure 7.3, Figure 7.4, and Figure 7.5 show the stationary solution of density and flux

for electrons, holes, and excitons, respectively.

In Figure 7.3 and Figure 7.4, electrons and holes are escaping the interface

region towards the electrodes, whereas in Figure 7.5, excitons are moving towards
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(a) Electrical potential (b) Electrical field

Figure 7.2: Electrical potential and electrical field when ψapp = 0. Mesh: 101x101.

Phase field parameter: κ = 0.03

the interface. This is consistent with the physics of organic solar cells: free carriers

are generated from excitons near the interface.

It is also observed that electron transport is much more active in the donor

region and hole transport is much more active in the acceptor region. This is also

intuitive because the imbalance of mobilities for both carriers:

µn,D << µn,A µp,D >> µp,A

. .
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(a) Electron density (b) Electron flux

Figure 7.3: Electron density and flux when ψapp = 0. Mesh: 101x101. Phase field

parameter: κ = 0.03

(a) Hole density (b) Hole flux

Figure 7.4: Hole density and flux. Mesh: 101x101. Phase field parameter: κ = 0.03
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(a) Exciton density (b) Exciton flux

Figure 7.5: Exciton density and flux when ψapp = 0. Mesh: 101x101. Phase field

parameter: κ = 0.03

Finally we add a plot of total current density Fp−Fn in Figure 7.6. We see that,

although the total current density varies near the interface both in its amplitude and

direction, its amplitude is not significantly different from one side of the interface

to the other side; this is in contrast to the fluxes of electrons and holes. We can

also conclude that, in donor material, hole tranport is dominant, whereas electron

transport is dominant in acceptor material.

7.3.3 Optimal phase field function

In this section, we present the results of implementing the optimization algorithm in

Section 6.5 on the example in Section 7.3.1 and 7.3.2. In particular, the algorithm
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Figure 7.6: Total current density when ψapp = 0. Mesh: 101x101. Phase field

parameter: κ = 0.03
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(a) k=0 (b) k=4 (c) k=8

(d) k=12 (e) k=16 (f) k=20

Figure 7.7: Optimization sequence of phase field functions Mesh: 101x101. Phase

field parameter: κ = 0.03

generates a sequence of phase field functions φ(k), and φ(0) is the phase field function

in Section 7.3.1.

Figure 7.7 shows the sequence of phase field functions obtained by running the

optimization algorithm in Section 6.5. The corresponding sequence of indicator

functions follows in Figure 7.8. An optimal phase field function is obtained at step

k = 20.

As in Section 7.3.2, we also solve the drift-diffusion model of the optimal phase
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(a) k=0 (b) k=4 (c) k=8

(d) k=12 (e) k=16 (f) k=20

Figure 7.8: Optimization sequence of indicator functions. Mesh: 101x101. Phase

field parameter: κ = 0.03
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Figure 7.9: Electrical potential and electrical field for φ(20). Mesh: 101x101. Phase

field parameter: κ = 0.03.

field functionφ(20); the solutions are saved in Figure (7.9 -7.13).

Figure 7.14 shows the average current density at anode for each step of the

optimization sequence. Clearly, it shows that our optimization algorithm leads to
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Figure 7.10: Electron density and flux for φ(20). Mesh: 101x101. Phase field pa-

rameter: κ = 0.03.

Figure 7.11: Hole density and flux for φ(20). Mesh: 101x101. Phase field parameter:

κ = 0.03.
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Figure 7.12: Exciton density and flux for φ(20). Mesh: 101x101. Phase field param-

eter: κ = 0.03.

a phase field function that has larger short-curcuit photocurrent; recall we are still

considering the particular example of zero bias, i.e. ψapp = 0.

Figure 7.15 plots the integral functional Aint[φ] against the optimization steps.

Recall that Aint[φ] is a measure of the interface length of the underlying geometry.

Therefore Figure 7.15 shows that, under our optimization algorithm, the phase field

function tends to evolve in such a way that generates more interface region. We also

note the counter-intuitive and significant drop from Aint[φ
(0)] to Aint[φ

(1)]. This is in

fact not the effect of the optimization algorithm but rather a result of the gradient

G that we used to generate the initial phase field function φ(0); we address this issue

in Section 7.4.1.

133



Figure 7.13: Current density for φ(20). Mesh: 101x101. Phase field parameter:

κ = 0.03.
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Figure 7.14: Average current density at anode vs optimization steps. Mesh:

101x101. Phase field parameter: κ = 0.03
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Figure 7.15: Aint[φ
(k)] vs optimization steps k. Mesh = 101x101. Phase field

parameter: κ = 0.03
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Figure 7.16: I-V characterstics of initial phase field φ(0) and optimal phase field

φ(20). Mesh = 101x101. Phase field parameter: κ = 0.03
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Figure 7.17: Output power Pout of initial phase field φ(0) and optimal phase field

φ(20). Mesh = 101x101. Phase field parameter: κ = 0.03
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A larger short-curcuit current density is not a sufficient proof of a better design

for an organic solar cell, because solar cells do not operate with zero bias. It is the

output power Pout = −ψapp×Iphoto that we should compare. The bias at which solar

cells operates can be any value between 0 and ψoc, where ψoc is the open-curcuit

voltage at which photocurrent is zero. Hence, we compare the I-V characteristic

and the output power density between the initial phase field φ(0) and the optimal

phase field φ(20).

Figure 7.16 shows, for most biases ψapp that are below ψoc, the design of optimal

phase field φ(20) generates much more photocurrent than that of φ(0). ψoc, on the

other hand, is not significantly affected by our optimization algorithm. Figure 7.17

is the plot of Pout versus applied bias ψapp. It is clear that the maximum output

power of the solar cell φ(20) is much larger than that of the solar cell φ(0). This

shows that the solar cell φ(20) indeed has a better performance than φ(0).

7.4 Discussion

7.4.1 Amplitude of G

In Figure 7.15, we observed a counter-intuitive drop of Aint[φ] at the beginning of

the optimization from φ(0) to φ(1). And we mentioned that this should not be caused

by our optimization algorithm but rather by the gradient G(k) we used to generate

the new phase field function φ(k):
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• k ≥ 1

For k ≥ 1, G(k) is chosen to be the normalized gradient functional G̃. In

numerical implementation, we choose the normalization constant to be the

maximum of G which is computed by (6.4.22). Therefore we have |G(k)| ≤ 1

for k ≥ 1.

• k = 0

For k = 0, in order to obtain the desired initial phase field function φ(0), we

set G(0) to have constant value 1 in phase 0 and constant value −1 in phase

1, just like in Section 6.1.2. Therefore we have |G(0)| = 1.

We postulate that it is the difference between the amplitude of G(0) and G(k) for

k ≥ 1 that causes the drop from φ(0) to φ(1) in Figure 7.15.

To show the impact of |G|, we consider the following simple example. Concretely,

we consider two choices of G for generating the initial phase field function φ(0).

G1 =


−1 phase 1

1 phase 0

(7.4.1)

and

G100 =


−100 phase 1

100 phase 0

(7.4.2)
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(a) G1 (b) G100

Figure 7.18: Phase field function for different gradient G. Mesh: 101x101. Phase

field parameter: κ = 0.03

In other words, we intentionally let |G100| >> |G1|. We plot the obtained phase field

functions for both G’s in Figure 7.18. Apparently, the larger |G| is, the “sharper”

the interfacial region is. If we compute the integral functional Aint[φ
(0)] for both

phase field functions, we have

Aint[φ
(0)] = 0.4164 if G(0) = G1 (7.4.3)

Aint[φ
(0)] = 1.4890 if G(0) = G100 (7.4.4)

Therefore, it doesn’t make much sense to compare Aint[φ
(0)] with Aint[φ

(1)] as

they are generated by very different gradient functionals G.
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(a) φ1 (b) φ2

Figure 7.19: Two phase field functions: φ1 and φ2. Mesh: 101x101. Phase field

parameter: κ = 0.03

7.4.2 Interface length v.s. domain connectivity

Now we address the following question: does connectivity of the domain have sig-

nificant impact on the performance of organic solar cells?

To answer this question, we consider two phase field functions, φ1 and φ2, plotted

in Figure 7.19. In particular, the interface corresponding to φ1 is connected, whereas

the interface corresponding to φ2 is not connected. For φ2, we set the positions of

interfaces to be x = 0.25, 0.5, 0.75. Thus the interface length for φ2 is 3, as the whole

domain is a unit square. For φ1, we set the coordinates of all the corner vertices

along the interface to be (0.3, 0.2), (0.8, 0.2), (0.8, 0.4), (0.3, 0.4), (0.3, 0.6), (0.8, 0.6),

(0.8, 0.8), and (0.3, 0.8). Note that we intentionally choose these coordinates such
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that the total length of the interface for φ1 is also 3.

We solve the phase-field drift-diffusion models of both phase field functions with

zero bias. Physical parameters of the models are the same as in Section 7.2 except

for the zero-field mobilities of minority carriers, i.e. electron mobility in donor ma-

terial µn,D and hole mobility in acceptor material µp,A.

We consider the particular case where µn,D = µp,A = 0 m2 ·V −1 · s−1. Recall the

definition of phase-field-dependent mobilities of charge carriers from Section 6.2.1

µp(∇ψ, φ) = µp,A(|∇ψ|) + [µp,D(|∇ψ|)− µp,A(|∇ψ|)]φ (7.4.5)

µn(∇ψ, φ) = µn,A(|∇ψ|) + [µn,D(|∇ψ|)− µn,A(|∇ψ|)]φ (7.4.6)

When µp,A = 0, µp = [µp,D(|∇ψ|)− µp,A(|∇ψ|)]φ ≈ 0 in acceptor, because the value

of φ in acceptor is close to 0. Similarly, when µn,D = 0, µn = µn,A(|∇ψ|)(1−φ) ≈ 0

in donor, because the value of φ in donor is close to 1.

Figure 7.20 and Figure 7.21 include the charge carrier densities and fluxes for

the model of φ1 and the model of φ2, respectively. In particular, for both models,

we see a high concentration of electrons in the donor region near the interface, and,

similarly, a high concentration of holes in the acceptor region near the interface.
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(a) n (b) Fn

(c) p (d) Fp

Figure 7.20: Solutions for the drift-diffusion equations of φ1 in Case 1. Mesh:

101x101. Phase field parameter: κ = 0.03
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(a) n (b) Fn

(c) p (d) Fp

Figure 7.21: Solutions for the drift-diffusion equations of φ2 in Case 1. Mesh:

101x101. Phase field parameter: κ = 0.03
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φ1 φ2

µn,D = 0, µp,A = 0 -3.801 -2.888

µn,D = 10−9, µp,A = 2× 10−9 -3.807 -3.916

Table 7.1: Shortcurcuit photocurrent densities for both φ1 and φ2 with different

choices for minority mobilities. Current density has unit A ·m−2. Mobility has unit

m2 · V −1 · s−1.

We have computed the short-curcuit photocurrent densities for the models of

both φ1 and φ2. To make a comparison, we also compute the short-curcuit pho-

tocurrent densities with the non-zero values for µn,D and µp,A from Section 7.2. All

the results are summarized in Table 7.1.

When µn,D and µp,A are set to zero, we see that the photocurrent for the model

of φ1 is much larger than that for the model of φ2. In contrast, when µn,D and

µp,A are positive and well above zero, we see little difference in the photocurrent

between the models of φ1 and φ2. Hence, we conclude that connectivity of the

domain is important especially when the carrier mobilites vary significantly from

donor to acceptor. In fact, if the carrier mobilites are not very different for donor

and acceptor, we should see little difference between donor and acceptor if only

charge transport is concerned.
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7.4.3 Phase parameters κ

We now consider the choice for the value of κ. κ is the small parameter that

determines the width of interface neighborhood where 0 < φ < 1. Intuitively, one

would expect that a smaller value for κ should allow one to discover finer structures

than is possible for larger κ.

We consider 3 values for κ: 0.04, 0.03, and 0.02. The optimization algorithm

is run for all these 3 cases. As we see here, this intuition is indeed correct: the

optimal phase field function for κ = 0.02 has much more fine structure than that

for κ = 0.04, and the optimal phase field function for κ = 0.03 is the intermediate

case.

We also plot the photocurrents for all 3 optimization sequences in Figure 7.23

This plot, combined with Figure 7.22, shows that, if a larger photocurrent is desired,

we should use a small enough value for κ to implement the numerical algorithm in

this paper.
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(a) Optimal φ for κ = 0.04 (b) Optimal indicator function for κ = 0.04

(c) Optimal φ for κ = 0.03 (d) Optimal indicator function for κ = 0.03

(e) Optimal φ for κ = 0.02 (f) Optimal indicator function for κ = 0.02

Figure 7.22: Optimal phase field functions and indicator functions for different κ’s.

Mesh: 101x101. 148



Figure 7.23: Photocurrent densities of optimization sequence for different κ’s. Mesh

= 101x101.
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Chapter 8

Conclusion

In this paper, we present a rational quantitative approach for the optimal design

of organic solar cells. We focus on the specific goal of maximizing the amplitude of

photocurrent. In our approach, organic solar cells are modeled by the drift-diffusion

equations and the design problem is formulated as an optimal control problem for

the partial differential equations.

In the first drift-diffusion model, we explicitly define the position of the donor-

acceptor interface Γ. The optimal design problem becomes the shape optimization

problem of finding an optimal Γ. To this end, we apply the theory of shape differ-

ential calculus to this drift-diffusion model and obtain the formula for computing

the shape gradient G of photocurrent as a linear functional along the interface Γ.

However, it appears difficult to adapt this shape gradient functional to numerical

optimization algorithm.
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In the second drift-diffusion model, we parametrize the interface Γ by the level

set {φ = 0.5} of a phase field function φ. The shape dependence of this drift diffu-

sion model is defined through the explicit dependence of each physical parameter on

the phase field function φ. Hence, the optimal design problem becomes a standard

optimal control problem where the control φ is in the coefficients of the system of

partial differential equations. Sensitivity analysis for this phase-field drift-diffusion

model leads to a relatively simple formula for the gradient functional. Numerical

examples of optimal design using this approach are also provided to show its appli-

cability.

This current work can be continuted in a few directions.

• The existence of optimal solution in both drift-diffusion models are lacking.

A proper functional analytical framework is in need to validate the sensitivity

computations.

• The connection between the two drift-diffusion models can be explored. In

particular, in the limit of κ → 0, it is expected to recover the first drift-

diffusion model from the second phase-field approach.

• For the implementation of the optimization algorithm in Chapter 6, it de-

sirable to re-write the programs for parallel computing environment so that

the computation can be implemented on a much finer grid and with a smaller

phase field parameter (e.g. κ < 0.01). This may reveal possible finer structure
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of the optimal shape.

• It is also interesting to use the same ideas from shape optimization to improve

the performance of conventional semiconductor devices.
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Appendices
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Appendix A

Shape Sensitivity of the First

Drift-Diffusion Model

In this appendix, we let φ be an arbitrary smooth function on Ω that is 0 on Dirichlet

boundaries ΓD = ΓD1 ∪ ΓD2.
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A.1 Shape sensitivity of ψ-equation

The boundary value problem of electric potential is

− λ2∇ · (ε∇ψ) = p− n Ω1 ∪ Ω2 (A.1.1)

ψ = ψD ΓD1 ∪ ΓD2 (A.1.2)

∂ψ

∂ν
= 0 ΓN1 ∪ ΓN2 (A.1.3)

ψ1 = ψ2

∂ψ1

∂ν1
+ ∂ψ2

∂ν2
= 0

Γ (A.1.4)

We note that

∇ψ1 = ∇ψ2 ∀x ∈ Γ (A.1.5)

by A.1.4.

We multiply φ on both sides of ψ-equation and apply integration by parts on

both Ω1 and Ω2 to obtain the weak form

∫
Ω1

ε1∇ψ1 · ∇φ+

∫
Ω2

ε2∇ψ2 · ∇φ−
∫
∂Ω1

(ε1 − ε2)
∂ψ1

∂ν1

φ =

∫
Ω1∪Ω2

(p− n)φ

(A.1.6)

where we have applied the boundary condition A.1.4.

We then compute shape derivative with respect to V and apply formulas 4.5.3
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and 4.5.5 to obtain

∫
Ω1

λ2ε1∇ψ′1 · ∇φ+

∫
Γ

λ2ε1∇ψ1 · ∇φV1

+

∫
Ω2

λ2ε2∇ψ′2 · ∇φ+

∫
Γ

λ2ε2∇ψ2 · ∇φV2

−
∫

Γ

λ2 (ε1 − ε2) (∇ψ′1 · ν1 +∇ψ1 · ν ′1)φ

−
∫

Γ

{
∂

∂ν1

[
λ2(ε1 − ε2)

∂ψ1

∂ν1

φ

]
+ λ2(ε1 − ε2)

∂ψ1

∂ν1

H1φ

}
V1

=

∫
Ω

(p′ − n′)φ (A.1.7)

We then apply another integration by parts for the domain integral and make

use of 4.4.8 and A.1.5 to obtain

∫
Ω1

[
−λ2∇ · (ε1∇ψ′1)

]
φ+

∫
Ω2

[
−λ2∇ · (ε2∇ψ′2)

]
φ

+

∫
∂Ω1

λ2ε1
∂ψ′1
∂ν1

φ+

∫
∂Ω2

λ2ε2
∂ψ′2
∂ν2

φ−
∫

Γ

λ2(ε1 − ε2)
∂ψ′1
∂ν1

φ

+

∫
Γ

λ2(ε1 − ε2)∇Γψ1 · ∇ΓφV1 +

∫
Γ

λ2(ε1 − ε2)∇Γψ1 · ∇ΓV1 φ

−
∫

Γ

{
∂

∂ν1

[
λ2(ε1 − ε2)

∂ψ1

∂ν1

φ

]
+ λ2(ε1 − ε2)

∂ψ1

∂ν1

H1φ

}
V1

=

∫
Ω

(p′ − n′)φ (A.1.8)

Then we apply the tangential Green’s formula 4.1.7 and rearrange the integrals
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to obtain

∫
Ω1

[
−λ2∇ · (ε1∇ψ′1)

]
φ+

∫
Ω2

[
−λ2∇ · (ε2∇ψ′2)

]
φ∫

∂Ω

λ2ε
∂ψ′

∂ν
φ+

∫
Γ

λ2ε2

(
∂ψ′1
∂ν1

− ∂ψ′2
∂ν1

)
φ

−
∫

Γ

λ2

{
divΓ [(ε1 − ε2)∇Γψ1]V1 +

∂

∂ν1

[
(ε1 − ε2)

∂ψ1

∂ν1

]
V1 + (ε1 − ε2)

∂ψ1

∂ν1

H1V1

}
φ

=

∫
Ω

(p′ − n′)φ (A.1.9)

By observing that φ was arbitrarily chosen, we reached the final results, which

are summarized below together with 5.3.18 and 5.3.21

− λ2∇ · (ε∇ψ′) = p′ − n′ Ω1 ∪ Ω2 (A.1.10)

ψ′ = 0 ΓD1 ∪ ΓD2 (A.1.11)

∂ψ′

∂ν
= 0 ΓN1 ∪ ΓN2 (A.1.12)

ψ′1 = ψ′2 Γ (A.1.13)

ε2

(
∂ψ′1
∂ν1

− ∂ψ′2
∂ν1

)
= divΓ [(ε1 − ε2)∇Γψ1]V1

+
∂

∂ν1

[
(ε1 − ε2)

∂ψ1

∂ν1

]
V1

+ (ε1 − ε2)
∂ψ1

∂ν1

H1V1 Γ (A.1.14)
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A.2 Shape sensitivity of n-equation

The boundary value problem of electron density is
∇ · Fn = 0

Fn = −µn(∇n− n∇ψ)

Ω1 ∪ Ω2 (A.2.1)

n = nD ΓD1 ∪ ΓD2 (A.2.2)

Fn · ν = 0 ΓN1 ∪ ΓN2 (A.2.3)
n1 = n2

Fn1 · ν1 + Fn2 · ν2 = −f
Γ (A.2.4)

Recalling the dependence of µn on ∇ψ, we compute the shape derivative of Fn

by the chain rule

F′n = −µn (∇n′ − n′∇ψ) + µnn∇ψ′ − (∇n− n∇ψ)
∂µn
∂(∇ψ)

· ∇ψ′ (A.2.5)

where ∂µn
∂(∇ψ)

denotes the gradient of µn with respect to ∇ψ. For convenience, we

will use F′n for the sensitivity of electron flux in the derivation below and replace

F′n by A.2.5 only when necessary.

We multiply φ on both sides of the n-equation, apply integration by parts, and

make use of A.2.4 to obtain

∫
Ω1

(−Fn1) · ∇φ+

∫
Ω2

(−Fn2) · ∇φ =

∫
Γ

fφ (A.2.6)

Note here f is a function defined only on the interface Γ. Hence, we then take
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shape derivative on both sides, applying the fomulars 4.5.3, 4.5.4 and 4.5.5∫
Ω1

(−F′n1) · ∇φ+

∫
∂Ω1

(−Fn1) · ∇φV1

+

∫
Ω2

(−F′n2) · ∇φ+

∫
∂Ω2

(−Fn2) · ∇φV2

=

∫
Γ

f ′φ+ f
∂φ

∂ν1

V1 +

∫
Γ

fφH1V1, (A.2.7)

where f ′ is given as in equation 5.3.15.

We note the identity Fn = PΓ(Fn) + Pν1(Fn) on Γ. After substituting it to the

last equation and applying the boundary condition A.2.3 and A.2.4, we have∫
Ω1

(−F′n1) · ∇φ+

∫
Ω2

(−F′n2) · ∇φ

+

∫
Γ

(−PΓ(Fn1) + PΓ(Fn2)) · ∇Γφ V1

=

∫
Γ

(f ′ + fH1V1)φ. (A.2.8)

Next we apply integration by parts to the domain integral and have∫
Ω1

(∇ · F′n1)φ+

∫
Ω2

(∇ · F′n2)φ

−
∫
∂Ω1

F′n1 · ν1φ−
∫
∂Ω2

F′n2 · ν2φ

=

∫
Γ

PΓ (Fn1 − Fn2) · ∇Γφ V1 +

∫
Γ

(f ′ + fH1V1)φ. (A.2.9)

Then, we apply integration by parts formula 4.1.7 on Γ∫
Ω1

(∇ · F′n1)φ+

∫
Ω2

(∇ · F′n2)φ

−
∫
∂Ω1

F′n1 · ν1φ−
∫
∂Ω2

F′n2 · ν2φ

=

∫
Γ

{−divΓ [V1 PΓ (Fn1 − Fn2)] + (f ′ + fH1V1)}φ. (A.2.10)
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Finally, we obtain the PDE by observing that φ was arbitrarily chosen. We

summarize the shape sensitivity PDE of n-equation below

∇ · F′n = 0 Ω1 ∪ Ω2 (A.2.11)

n′ = 0 ΓD (A.2.12)

F′n · ν = 0 ΓN (A.2.13)

n′1 +
∂n1

∂ν1

V1 = n′2 +
∂n2

∂ν1

V1 Γ (A.2.14)

− F′n1 · ν1 − F′n2 · ν2 = −divΓ [V1 PΓ (Fn1 − Fn2)]

+ f ′ + fH1V1 Γ (A.2.15)

A.3 Shape sensitivity of p-equation

The boundary value problem of hole density is
∇ · Fp = 0

Fp = −µp(∇p+ p∇ψ)

Ω1 ∪ Ω2 (A.3.1)

p = pD ΓD1 ∪ ΓD2 (A.3.2)

Fp · ν = 0 ΓN1 ∪ ΓN2 (A.3.3)
p1 = p2

Fp1 · ν1 + Fp2 · ν2 = −f
Γ (A.3.4)

where µp is the mobility of holes.

Recalling the dependence of µp on ∇ψ, we compute the shape derivative of Fp

160



by the chain rule.

F′p = −µp (∇p′ + p′∇ψ)− µpp∇ψ′ − (∇p+ p∇ψ)
∂µp

∂(∇ψ)
· ∇ψ′ (A.3.5)

where ∂µp
∂(∇ψ)

denotes the gradient of µp with respect to ∇ψ. For convenience, we

will use F′p for the sensitivity of hole flux in the derivation below and replace F′p by

A.3.5 only when necessary.

The derivation of the shape sensitivity of p-equation is identical to that of the

n-equation; we only need to replace Fn with Fp. Hence we write down the shape

sensitivity of p-equation

∇ · F′p = 0 Ω1 ∪ Ω2 (A.3.6)

p′ = 0 ΓD (A.3.7)

F′p · ν = 0 ΓN (A.3.8)

p′1 +
∂p1

∂ν1

V1 = p′2 +
∂p2

∂ν1

V1 Γ (A.3.9)

− F′p1 · ν1 − F′p2 · ν2 = −divΓ [V1 PΓ (Fp1 − Fp2)]

+ f ′ + fH1V1 Γ (A.3.10)
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A.4 Shape sensitivity of u-equation

The boundary value problem of exciton is
∇ · Fu = G− duu

Fu = −µu∇u
Ω1 ∪ Ω2 (A.4.1)

u = uD ΓD1 ∪ ΓD2 (A.4.2)

Fu · ν = 0 ΓN1 ∪ ΓN2 (A.4.3)
u1 = u2

Fu1 · ν1 + Fu2 · ν2 = f

Γ (A.4.4)

The shape derivative of the exciton flux is very simple, since µu has no depen-

dence on other unknowns. Hence we have

F′u = −µu∇u′ (A.4.5)

The derivation of shape sensitivity of u-equation is not identical but similar to

that of the n-equation. Let φ be a test function that is 0 on Dirichlet boundaries

ΓD = ΓD1 ∪ ΓD2. We multiply φ on both sides of the u-equation, apply integration

by parts, and make use of A.4.3 and A.4.4 to obtain

∫
Ω1

(−Fu1) · ∇φ+

∫
Ω2

(−Fu2) · ∇φ+

∫
Ω

duuφ =

∫
Ω

Gφ−
∫

Γ

fφ (A.4.6)
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We then take shape derivative on both sides, applying 4.5.3, 4.5.4, and 4.5.5

∫
Ω1

(−F′u1) · ∇φ+

∫
∂Ω1

(−Fu1) · ∇φV1

+

∫
Ω2

(−F′u2) · ∇φ+

∫
∂Ω2

(−Fu2) · ∇φV2

+

∫
Ω

duu
′φ

=−
∫

Γ

(
f ′φ+ f

∂φ

∂ν1

V1

)
−
∫

Γ

fH1V1φ (A.4.7)

where we have used the boundary condition of u across the interface and the fact

that G does not depend on the shape.

What remains is again very similar to the steps of deriving the sensitivity of

n-equation. Following exactly the same route map, we can obtain the sensitivity of

u-equation, which is summarized below

∇ · F′u + duu
′ = 0 Ω1 ∪ Ω2 (A.4.8)

u′ = 0 ΓD (A.4.9)

F′u · ν = 0 ΓN (A.4.10)

u′1 +
∂u1

∂ν1

V1 = u′2 +
∂u2

∂ν1

V1 Γ (A.4.11)

− F′u1 · ν1 − F′u2 · ν2 = −divΓ [V1 PΓ (Fu1 − Fu2)]

− [f ′ + fH1V1] Γ (A.4.12)
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Appendix B

Adjoint Equations of Shape

Optimization for the First

Drift-Diffusion Model

In this chapter, we derive the adjoint equations for computing the shape gradient

in Section 5.4.

• Step 1: Integration by parts for (Lψ, Ln, Lp, Lu)

In this part, we apply integration by parts on each of (Lψ, Ln, Lp, Lu). During

the process of integration by parts, the boundary conditions for (ψ′, n′, p′, u′)

on ΓD ∪ ΓN as well as Γ will be applied; cf. Section 5.3.5.
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–

Lψ =

∫
Ω1∪Ω2

(
−λ2∇ · (ε∇ψ′)− p′ + n′

)
ξψ

=

∫
Ω1∪Ω2

[
−λ2∇ · (ε∇ξψ)

]
+ (−ξp)p′ + ξψn

′

+

∫
ΓD

(
−λ2ε

∂ψ′

∂ν

)
ξψ

+

∫
ΓN

λ2εψ′
∂ξψ
∂ν

+

∫
Γ

λ2

[
−ε1

∂ψ′1
∂ν1

ξψ1 − ε2
∂ψ′2
∂ν2

ξψ2

]
+ λ2

[
ε1ψ

′
1

∂ξψ1

∂ν1

+ ε2ψ
′
2

∂ξψ2

∂ν2

]
(B.0.1)

– The expression of F′n from Section 5.3.5 is

F′n = −µn (∇n′ − n′∇ψ)

+ µnn∇ψ′ − (∇n− n∇ψ)
∂µn
∂(∇ψ)

· ∇ψ′ (B.0.2)

We replace it into Ln and apply integration by parts and the boundary
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conditions for F′n and n′:

Ln =

∫
Ω1∪Ω2

(∇ · F′n) ξn

=

∫
Ω1∪Ω2

[−∇ · (µn∇ξn)− µn∇ψ · ∇ξn]n′

+

[
∇ · (µnn∇ξn)−∇ ·

(
∇ξn · (∇n− n∇ψ)

∂µn
∂(∇ψ)

)]
ψ′

+

∫
ΓD1

F′n1 · ν1ξn1

+

∫
ΓD2

F′n2 · ν2ξn2

+

∫
ΓN

(µn∇ξn · ν)n′

+

[
−µnn∇ξn · ν +∇ξn · (∇n− n∇ψ)

∂µn
∂(∇ψ)

· ν
]
ψ′

+

∫
Γ

F′n1 · ν1 ξn1 + F′n2 · ν2 ξn2

+ (µn1∇ξn1 · ν1)n′1 + (µn2∇ξn2 · ν2)n′2

+

[
− (µn1n1∇ξn1 · ν1) +∇ξn1 · (∇n1 − n1∇ψ1)

∂µn1

∂(∇ψ)
· ν1

]
ψ′1

+

[
− (µn2n2∇ξn2 · ν2) +∇ξn2 · (∇n2 − n2∇ψ2)

∂µn2

∂(∇ψ)
· ν2

]
ψ′2

(B.0.3)

– The expression of F′p from Section 5.3.5 is

F′p = −µp (∇p′ + p′∇ψ)

− µpp∇ψ′ − (∇p+ p∇ψ)
∂µp

∂(∇ψ)
· ∇ψ′ (B.0.4)

We replace it to Lp and apply integration by parts and the boundary
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conditions for F′p and p′:

Lp =

∫
Ω1∪Ω2

(
∇ · F′p

)
ξp

=

∫
Ω1∪Ω2

[−∇ · (µp∇ξp) + µp∇ψ · ∇ξp] p′

+

[
−∇ · (µpp∇ξp)−∇ ·

(
∇ξp · (∇p+ p∇ψ)

∂µp
∂(∇ψ)

)]
ψ′

+

∫
ΓD1

F′p1 · ν1 ξp1

+

∫
ΓD2

F′p2 · ν2 ξp2

+

∫
ΓN

(µp∇ξp · ν) p′

+

[
µpp∇ξp · ν +∇ξp · (∇p+ p∇ψ)

∂µp
∂(∇ψ)

· ν
]
ψ′

+

∫
Γ

F′p1 · ν1 ξp1 + F′p2 · ν2 ξp2

+ (µp1∇ξp1 · ν1) p′1 + (µp2∇ξp2 · ν2) p′2

+

[
(µp1p1∇ξp1 · ν1) +∇ξp1 · (∇p1 + p1∇ψ1)

∂µp1
∂(∇ψ)

· ν1

]
ψ′1

+

[
(µp2p2∇ξp2 · ν2) +∇ξp2 · (∇p2 + p2∇ψ2)

∂µp2
∂(∇ψ)

· ν2

]
ψ′2

(B.0.5)
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–

Lu =

∫
Ω1∪Ω2

(∇ · F′u + duu
′) ξu

=

∫
Ω1∪Ω2

[−∇ · (µu∇ξu) + duξu]u
′

+

∫
ΓD1

−µu1∇u′1 · ν1ξu1 +

∫
ΓD2

−µu2∇u′2 · ν2ξu2

+

∫
ΓN

µu∇ξu · νu′

+

∫
Γ

µu1∇ξu1 · ν1 u
′
1 + µu2∇ξu2 · ν2 u

′
2

− µu1∇u′1 · ν1 ξu1 − µu2∇u′2 · ν2 ξu2 (B.0.6)

• Step 2: group integrals on the same domain

In this step, we will re-arrange the terms of L = J ′ + Lψ + Ln + Lp + Lu so

that the integrals on the same domain are put together.

– Integration on Ω1 ∪ Ω2

168



LΩ1∪Ω2 =

∫
Ω1∪Ω2

[
−λ2∇ · (ε∇ξψ)

]
ψ′ + (−ξψ) p′ + ξψ n

′

+ [−∇ · (µn∇ξn)− µn∇ψ · ∇ξn]n′

+

[
∇ · (µnn∇ξn)−∇ ·

(
∇ξn · (∇n− n∇ψ)

∂µn
∂(∇ψ)

)]
ψ′

+ [−∇ · (µp∇ξp) + µp∇ψ · ∇ξp] p′

+

[
−∇ · (µpp∇ξp)−∇ ·

(
∇ξp · (∇p+ p∇ψ)

∂µp
∂(∇ψ)

)]
ψ′

+ [−∇ · (µu∇ξu) + duξu]u
′

=

∫
Ω1∪Ω2

[
−λ2∇ · (ε∇ξψ)

+∇ · (µnn∇ξn)−∇ ·
(
∇ξn · (∇n− n∇ψ)

∂µn
∂(∇ψ)

)
−∇ · (µpp∇ξp)−∇ ·

(
∇ξp · (∇p+ p∇ψ)

∂µp
∂(∇ψ)

)]
ψ′

+ [ ξψ −∇ · (µn∇ξn)− µn∇ψ · ∇ξn ]n′

+ [ −ξψ −∇ · (µp∇ξp) + µp∇ψ · ∇ξp ] p′

+ [ −∇ · (µu∇ξu) + duξu ]u′ (B.0.7)

– Integration on ΓD1 ∪ ΓD2
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LΓD1
=

∫
ΓD1

(
−F′p1 · ν1 + F′n1 · ν1

)
+

∫
ΓD1

[(
−λ2ε1

∂ψ′1
∂ν1

)
ξψ1 + (F′n1 · ν1) ξn1

+
(
F′p1 · ν1

)
ξp1 −

(
µu1

∂u1′

∂ν1

)
ξu1

]
(B.0.8)

LΓD2
=

∫
ΓD2

[(
−λ2ε2

∂ψ′2
∂ν2

)
ξψ2 + (F′n2 · ν2) ξn2

+
(
F′p2 · ν2

)
ξp2 −

(
µu2

∂u2′

∂ν2

)
ξu2

]
(B.0.9)

Note that we differentiate the LΓD1
and LΓD2

because that the photocur-

rent is defined on ΓD1 only and therefore the expression of LΓD1
differs

from that of LΓD2
.

– Integration on ΓN
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LΓN
=

∫
ΓN

(
λ2ε

∂ξψ
∂ν

)
ψ′

+

(
µn
∂ξn
∂ν

)
n′ +

[
−µnn

∂ξn
∂ν

+∇ξn · (∇n− n∇ψ)
∂µn
∂(∇ψ)

· ν
]
ψ′

+

(
µp
∂ξp
∂ν

)
p′ +

[
µpp

∂ξp
∂ν

+∇ξp · (∇p+ p∇ψ)
∂µp

∂(∇ψ)
· ν
]
ψ′

+

(
µu
ξu
ν

)
u′

=

∫
ΓN

ψ′
[
λ2ε

∂ξψ
∂ν

− µnn
∂ξn
∂ν

+∇ξn · (∇n− n∇ψ)
∂µn
∂(∇ψ)

· ν

+µpp
∂ξp
∂ν

+∇ξp · (∇p+ p∇ψ)
∂µp

∂(∇ψ)
· ν
]

+ n′
(
µn
ξn
ν

)
+ p′

(
µp
ξp
ν

)
+ u′

(
µu
ξu
ν

)
(B.0.10)

– Integration on interface Γ

The details of the derivation for the integral on Γ is omitted, but the

major steps are outlined below:

1. First we replace all shape derivatives with subscript “2” by their

counterparts with subscript “1”. To achieve this, we apply the

boundary conditions on the interface for the shape derivatives (ψ′, n′, p′, u′);

cf. Section 5.3.5.
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2. After applying the boundary conditions of (ψ′, n′, p′, u′) on Γ, we

observe the presence of integrals whose integrands contain the shape

derivative of interface reaction rate f ′. Therefore, we replace f ′ by

its expression in formula 5.3.15. Also we apply the formula 4.4.8 and

4.4.9 for ν ′1 and H ′1. All these operations convert the orginal integral

of f ′ to integrals of terms containing ψ′, n′, p′, u′ and V1.

3. Then we group integrals on Γ by their integrands. For example, we

put all integrals whose integrands contain ψ′1 into one integral. The

same is done for all other types of integrands.

4. Finally, we apply the tangential Green’s formula 4.1.7 to obtain the

form that we expected.

After going through these steps, we arrive at the formula of integral on

Γ as below:

LΓ = LΓ(ψ′1) + LΓ(n′1) + LΓ(p′1) + LΓ(u′1)

+ LΓ(
∂ψ′1
∂ν1

) + LΓ(F′n1) + LΓ(F′p1) + LΓ(
∂u′1
∂ν1

)

+ LΓ(V1) (B.0.11)

where
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∗

LΓ(ψ′1) =

∫
Γ

ψ′1

{
λ2

(
ε1
∂ξψ1

∂ν1

+ ε2
∂ξψ2

∂ν2

)
− µn1n1

∂ξn1

∂ν1

− µn2n2
∂ξn2

∂ν2

+∇ξn1 · (∇n1 − n1∇ψ1)
∂µn1

∂(∇ψ)
· ν1

+∇ξn2 · (∇n2 − n2∇ψ2)
∂µn2

∂(∇ψ)
· ν2

+ µp1p1
∂ξp1
∂ν1

+ µp2p2
∂ξp2
∂ν2

+∇ξp1 · (∇p1 + p1∇ψ1)
∂µp1
∂(∇ψ)

· ν1

+∇ξp2 · (∇p2 + p2∇ψ2)
∂µp2
∂(∇ψ)

· ν2

−divΓ

[
(ξu2 − ξn2 − ξp2)PΓ

(
∂f

∂(∇ψ)

)]}
(B.0.12)

∗

LΓ(n′1) =

∫
Γ

n′1

{
µn1

∂ξn1

∂ν1

+ µn2
∂ξn2

∂ν2

+(ξu2 − ξn2 − ξp2)
∂f

∂n

}
(B.0.13)

∗

LΓ(p′1) =

∫
Γ

p′1

{
µp1

∂ξp1
∂ν1

+ µp2
∂ξp2
∂ν2

+(ξu2 − ξn2 − ξp2)
∂f

∂p

}
(B.0.14)
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∗

LΓ(u′1) =

∫
Γ

u′1

{
µu1

∂ξu1

∂ν1

+ µu2
∂ξu2

∂ν2

+(ξu2 − ξn2 − ξp2)
∂f

∂u

}
(B.0.15)

∗

LΓ(
∂ψ′1
∂ν1

) =

∫
Γ

∂ψ′1
∂ν1

{
λ2 (−ε1ξψ1 + ε2ξψ2)

+ (ξu2 − ξn2 − ξp2)Pν1

(
∂f

∂(∇ψ)

)}
(B.0.16)

∗

LΓ(F′n1) =

∫
Γ

F′n1 · ν1(ξn1 − ξn2) (B.0.17)

∗

LΓ(F′p1) =

∫
Γ

F′p1 · ν1(ξp1 − ξp2) (B.0.18)

∗

LΓ(
∂u′1
∂ν1

) =

∫
Γ

∂u′1
∂ν1

µu1(ξu2 − ξu1) (B.0.19)

∗

LΓ(V1) =

∫
Γ

G V1 (B.0.20)
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and

G = (−λ2)ξψ2

{
divΓ [(ε1ε2)∇Γψ1] +

∂

∂ν1

[
(ε1 − ε2)

∂ψ1

∂ν1

]
+ (ε1 − ε2)

∂ψ1

∂ν1

H1

}
− µn2

∂ξn2

∂ν1

(
∂n1

∂ν1

− ∂n2

∂ν1

)
−∇Γξn2 · PΓ (Fn1 − Fn2)

− µp2
∂ξp2
∂ν1

(
∂p1

∂ν1

− ∂p2

∂ν1

)
−∇Γξp2 · PΓ (Fp1 − Fp2)

− µu2
∂ξu2

∂ν1

(
∂u1

∂ν1

− ∂u2

∂ν1

)
−∇Γξu2 · PΓ (Fu1 − Fu2)

+ divΓ

[
(ξu2 − ξn2 − ξp2)PΓ

(
∂f

∂y

)]
−4Γ

[
(ξu2 − ξn2 − ξp2)

∂f

∂H1

]
+ (ξu2 − ξn2 − ξp2)

[
∂f

∂n

∂n1

∂ν1

+
∂f

∂p

∂p1

∂ν1

+
∂f

∂u

∂u1

∂ν1

]
+ (ξu2 − ξn2 − ξp2)

(
∂f

∂(∇ψ)
·D2ψ · ν1 +

∂f

∂H1

∂H1

∂ν1

+ fH1

)
(B.0.21)

• Step 3: Derive the adjoint equations and the shape gradient

To summarize the results of previous steps, we re-write the Lagrangian func-

tional L in the following way:

L = J ′ + Lψ + Ln + Lp + Lu

= LΩ1∪Ω2 + LΓD1
+ LΓD2

+ LΓN
+ LΓ (B.0.22)
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Thus the adjoint equations is obtained by letting the integrals that contain

ψ′, n′, p′, u′ be 0. Hence we have the system of adjoint equations for the adjoint

variables Ξ = (ξψ, ξn, ξp, ξu):

– In Ω1 ∪ Ω2

− λ2∇ · (ε∇ξψ)

+∇ · (µnn∇ξn)−∇ ·
(
∇ξn · (∇n− n∇ψ)

∂µn
∂(∇ψ)

)
−∇ · (µpp∇ξp)−∇ ·

(
∇ξp · (∇p+ p∇ψ)

∂µp
∂(∇ψ)

)
= 0 (B.0.23)

ξψ −∇ · (µn∇ξn)− µn∇ψ · ∇ξn = 0 (B.0.24)

− ξψ −∇ · (µp∇ξp) + µp∇ψ · ∇ξp = 0 (B.0.25)

−∇ · (µu∇ξu) + duξu = 0 (B.0.26)

– On ΓD1

ξψ1 = 0 (B.0.27)

ξn1 = 1 (B.0.28)

ξp1 = −1 (B.0.29)

ξu1 = 0 (B.0.30)
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– On ΓD2

ξψ2 = 0 (B.0.31)

ξn2 = 0 (B.0.32)

ξp2 = 0 (B.0.33)

ξu2 = 0 (B.0.34)

– On ΓN

λ2ε
∂ξψ
∂ν

+∇ξn · (∇n− n∇ψ)
∂µn
∂(∇ψ)

· ν

+∇ξp · (∇p+ p∇ψ)
∂µp

∂(∇ψ)
· ν = 0 (B.0.35)

∂ξn
∂ν

= 0 (B.0.36)

∂ξp
∂ν

= 0 (B.0.37)

∂ξu
∂ν

= 0 (B.0.38)

– On Γ

We have 8 boundary conditions on Γ for the adjoint equations:
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∗

λ2

(
ε1
∂ξψ1

∂ν1

+ ε2
∂ξψ2

∂ν2

)
− µn1n1

∂ξn1

∂ν1

− µn2n2
∂ξn2

∂ν2

+∇ξn1 · (∇n1 − n1∇ψ1)
∂µn1

∂(∇ψ)
· ν1

+∇ξn2 · (∇n2 − n2∇ψ2)
∂µn2

∂(∇ψ)
· ν2

+ µp1p1
∂ξp1
∂ν1

+ µp2p2
∂ξp2
∂ν2

+∇ξp1 · (∇p1 + p1∇ψ1)
∂µp1
∂(∇ψ)

· ν1

+∇ξp2 · (∇p2 + p2∇ψ2)
∂µp2
∂(∇ψ)

· ν2

− divΓ

[
(ξu2 − ξn2 − ξp2)PΓ

(
∂f

∂(∇ψ)

)]
= 0 (B.0.39)

∗

µn1
∂ξn1

∂ν1

+ µn2
∂ξn2

∂ν2

+ (ξu2 − ξn2 − ξp2)
∂f

∂n
= 0 (B.0.40)

∗

µp1
∂ξp1
∂ν1

+ µp2
∂ξp2
∂ν2

+ (ξu2 − ξn2 − ξp2)
∂f

∂p
= 0 (B.0.41)

∗

µu1
∂ξu1

∂ν1

+ µu2
∂ξu2

∂ν2

+ (ξu2 − ξn2 − ξp2)
∂f

∂u
= 0 (B.0.42)

∗

λ2 (−ε1ξψ1 + ε2ξψ2) + (ξu2 − ξn2 − ξp2)Pν1

(
∂f

∂(∇ψ)

)
= 0

(B.0.43)

178



∗

ξn1 − ξn2 = 0 (B.0.44)

∗

ξp1 − ξp2 = 0 (B.0.45)

∗

ξu2 − ξu1 = 0 (B.0.46)

Once the adjoint equations are solved, most terms in the formula of La-

grangian (B.0.22) vanish except for LΓ(V1). Therefore, one can compute the

shape derivative of photocurrent formally

J ′(V) = L

= LΓ(V1)

=

∫
Γ

G V1 (B.0.47)

where G is the shape gradient given in formula B.0.21.
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Appendix C

Sensitivity Analysis of Phase-Field

Drift-Diffusion Model

In this section, we derive the sensitivity analysis in Section 6.3. For any function b,

we let b′ denote its directional derivative with respect to the phase field function φ

in some valid direction φ1, i.e. b′ = b′(φ;φ1).

We also recall that we defined δb in Section 6.3 to be its partial directional

derivative through its explicit dependence on φ and ∇φ. In particular, if b is a

physical parameter (such as the mobilities and reaction rates) that depends on the

φ, δb 6= 0. On contrast, if b is any of the unknowns {ψ, n, p, u}, then δb = 0,

since they have no explicit dependence on φ; rather their directional derivative is

determined by analyzing the sensitivity of drift-diffusion equations, which is the

goal in this Appendix.
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As in Appendix A, a common observation for all the unknowns in the drift-

diffusion model is that ψ′ = n′ = p′ = u′ = 0 on ΓD, since the Dirichlet boundary

condition is invariant with respect to the change in phase field function. What

remains to show is the PDE’s for ψ′, n′, p′, u′ on Ω and their boundary conditions

on ΓN .

In what follows, we let ξ be an arbitrarily chosen smooth function over Ω such

that ξ = 0 on ΓD.

C.1 Shape Sensitivity of ψ-equation

The weak form of equation (6.2.1) is

∫
Ω

−λ2∇ · (ε∇ψ) ξ =

∫
Ω

(p− n) ξ (C.1.1)

After applying integration by parts and boundary conditions, we obtain

∫
Ω

λ2ε∇ψ · ∇ξ =

∫
Ω

(p− n) ξ (C.1.2)

We then take derivative of both sides with respect to φ

∫
Ω

λ2ε∇ψ′ · ∇ξ −
∫

Ω

(p′ − n′) ξ = −
∫

Ω

λ2(δε)∇ψ · ∇ξ (C.1.3)

Another integration by parts on both sides gives us

∫
Ω

[
−λ2∇ · (ε∇ψ′)− p′ + n′

]
ξ +

∫
ΓN

λ2ε
∂ψ′

∂ν
ξ =

∫
Ω

λ2∇ · [(δε)∇ψ] (C.1.4)
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Recalling that ξ is an arbitrarily chosen smooth function, we obtain the sensitivity

of ψ-equation

− λ2∇ · (ε∇ψ′)− p′ + n′ = λ2∇ · [(δε)∇ψ] Ω (C.1.5)

ψ′ = 0 ΓD (C.1.6)

∂ψ′

∂ν
= 0 ΓN (C.1.7)

C.2 Shape Sensitivity of n-equation

The weak form of n-equation is∫
Ω

∇ · [−µn (∇n− n∇ψ)] ξ =

∫
Ω

[ku− γnp] ξ (C.2.1)

We then apply integration by parts and the boundary conditions of n and ψ, we

have ∫
Ω

µn (∇n− n∇ψ) · ∇ξ =

∫
Ω

[ku− γnp] ξ (C.2.2)

Then we take derivative of both sides with respect to φ and obtain∫
Ω

{
(∇n− n∇ψ) · ∇ξ ∂µn

∂(∇ψ)
− µnn∇ξ − ξ

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)}
· ∇ψ′

+

∫
Ω

{µn (∇n′ − n′∇ψ) · ∇ξ + γpξn′}

+

∫
Ω

ξγnp′

−
∫

Ω

ξku′

= −
∫

Ω

(δµn) (∇n− n∇ψ) · ∇ξ +

∫
Ω

[(δk)u− (δγ)np] ξ (C.2.3)
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We apply another integration by parts and the boundary conditions of ψ and n, and

make use of the fact that ξ is arbitrarily chosen, and finally we have the sensitivity

of n-equation

−∇ ·
[
∂µn
∂(∇ψ)

· ∇ψ′ (∇n− n∇ψ)− µnn∇ψ′
]

−
(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)
· ∇ψ′

−∇ · [µn (∇n′ − n′∇ψ)] + γn′p

+ γnp′

− ku′

= ∇ · [(δµn) (∇n− n∇ψ)] + [(δk)u− (δγ)np] Ω (C.2.4)

n′ = 0 ΓD (C.2.5)

∂n′

∂ν
= 0 ΓN (C.2.6)

C.3 Shape Sensitivity of p-equation

The weak form of the p-equation is∫
Ω

∇ · [−µp (∇p+ p∇ψ)] ξ =

∫
Ω

[ku− γnp] ξ (C.3.1)

We then apply integration-by-parts and the boundary conditions of ψ and p to

obtain ∫
Ω

µp (∇p+ p∇ψ) · ∇ξ =

∫
Ω

[ku− γnp] ξ (C.3.2)
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We then take derivative of both sides with respect to φ and have

∫
Ω

{
(∇p+ p∇ψ) · ∇ξ ∂µp

∂(∇ψ)
+ µpp∇ξ − ξ

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)}
· ∇ψ′

+

∫
Ω

ξγn′p

+

∫
Ω

{µp (∇p′ + p′∇ψ) · ∇ξ + ξγnp′}

−
∫

Ω

ξku′

= −
∫

Ω

(δµp) (∇p+ p∇ψ) · ∇ξ +

∫
Ω

[(δk)u− (δγ)np] ξ (C.3.3)

We then apply integration-by-parts again as well as the boundary conditions of ψ

and p to the formula above. Finally, recalling that ξ is an arbitrary smooth function,

we obtain the sensitivity of the p-equation

−∇ ·
[
∂µp

∂(∇ψ)
· ∇ψ′ (∇p+ p∇ψ) + µpp∇ψ′

]
−
(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)
· ∇ψ′

+ γn′p

−∇ · [µp (∇p′ + p′∇ψ)] + γnp′

− ku′

= ∇ · [(δµp) (∇p+ p∇ψ)] + [(δk)u− (δγ)np] Ω (C.3.4)

p′ = 0 ΓD (C.3.5)

∂p′

∂ν
= 0 ΓN (C.3.6)
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C.4 Shape Sensitivity of u-equation

The weak form of the u-equation is

∫
Ω

∇ · (−µu∇u) ξ +

∫
Ω

duuξ =

∫
Ω

Qξ − (ku− γnp) ξ (C.4.1)

We then apply integration-by-parts and the boundary conditions of u to obtain

∫
Ω

µu∇u · ∇ξ +

∫
Ω

duuξ +

∫
Ω

(ku− γnp) ξ =

∫
Ω

Qξ (C.4.2)

We then take derivative of both sides with respect to φ and have

∫
Ω

ξ

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)
· ∇ψ′

−
∫

Ω

ξγn′p

−
∫

Ω

ξγnp′

+

∫
Ω

µu∇u′ · ∇ξ + duu
′ξ + ku′ξ

= −
∫

Ω

(δµu)∇u · ∇ξ −
∫

Ω

(δdu)uξ −
∫

Ω

[(δk)u− (δγ)np] ξ (C.4.3)

We note that the integral of Qξ is insensitive to φ, and therefore its derivative with

respective to φ is 0.

Finally, we apply integration-by-parts again, noting the boundary conditions of u,

and make use of the fact that ξ is an arbitrary smooth function to obtain the
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sensitivity of the u-equation

(
u

∂k

∂(∇ψ)
− np ∂γ

∂(∇ψ)

)
· ∇ψ′

− γn′p

− γnp′

−∇ · (µu∇u′) + (du + k)u′

= ∇ · [(δµu)∇u]− (δdu)u− [(δk)u− (δγ)np] Ω (C.4.4)

u′ = 0 ΓD (C.4.5)

∂u′

∂ν
= 0 ΓN (C.4.6)
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