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Experimentation and Scientific Inference Building in the Study of
Hominin Behavior through Stone Artifact Archaeology

Abstract
Since the beginning of prehistoric archaeology, various methods and approaches have been developed to
describe and explain stone artifact variability. However, noticeably less attention has been paid to the
ontological nature of stone artifacts and the adequateness of the inferential reasoning for drawing
archaeological interpretations from these artifacts. This dissertation takes a scientific perspective to rethink
critically the ways that current lithic approaches generate knowledge about past hominin behavior from stone
artifacts through experimentation (Chapter 2), and further, to explore the use of controlled experiments and
uniformitarian principles for deriving inferences. The latter is presented as two case studies about Late
Pleistocene Neanderthal behavior in southwestern France (Chapter 3 & 4).

Archaeological reasoning is inescapably analogical, and archaeological knowledge is bound to be established
on the basis on modern observations. However, simplistic treatments of archaeological analogs often result in
inferences of questionable validity. In this dissertation, it is argued that greater attention is required to
consider the implication of experimental design, variable control, and analogic reasoning in the construction
of archaeological inference from stone artifacts. It is argued that the ability to move beyond the constraint of
modern analogs in archaeological knowledge production lies in the use of uniformitarian principles that
operate independently from the research questions archaeologists wish to evaluate.

By examining the uniformitarian connection between platform attributes and flake morphology, the first case
study explores how the production of unretouched flakes can be altered in ways that increase their relative
utility, as reflected in the ratio of edge length to mass. Application of this relationship to Middle Paleolithic
assemblages shows two modes of flake production pattern, possibly related to different ways Neanderthal
groups managed the utility of transported tool-kits. The second case study applies a geometric model to assess
the lithic cortex proportion in the Middle Paleolithic study assemblages. An excess or deficit of cortex relative
to artifact volume provides an indication of possible artifact transport to or from the assemblage locality.
Results show correlation between assemblage cortex proportions and paleoenvironmental conditions,
suggesting possible shifts in Neanderthal artifact transport pattern and land use during the late Pleistocene.
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ABSTRACT 

 

EXPERIMENTATION AND SCIENTIFIC INFERENCE BUILDING IN THE STUDY 

OF HOMININ BEHAVIOR THROUGH STONE ARTIFACT ARCHAEOLOGY  

Sam C. Lin 

Harold L. Dibble 

 

Since the beginning of prehistoric archaeology, various methods and approaches 

have been developed to describe and explain stone artifact variability. However, 

noticeably less attention has been paid to the ontological nature of stone artifacts and the 

adequateness of the inferential reasoning for drawing archaeological interpretations from 

these artifacts. This dissertation takes a scientific perspective to rethink critically the 

ways that current lithic approaches generate knowledge about past hominin behavior 

from stone artifacts through experimentation (Chapter 2), and further, to explore the use 

of controlled experiments and uniformitarian principles for deriving inferences. The latter 

is presented as two case studies about Late Pleistocene Neanderthal behavior in 

southwestern France (Chapter 3 & 4).  

Archaeological reasoning is inescapably analogical, and archaeological 

knowledge is bound to be established on the basis on modern observations. However, 

simplistic treatments of archaeological analogs often result in inferences of questionable 

validity. In this dissertation, it is argued that greater attention is required to consider the 

implication of experimental design, variable control, and analogic reasoning in the 



 

vi 
 

construction of archaeological inference from stone artifacts. It is argued that the ability 

to move beyond the constraint of modern analogs in archaeological knowledge 

production lies in the use of uniformitarian principles that operate independently from the 

research questions archaeologists wish to evaluate.  

By examining the uniformitarian connection between platform attributes and flake 

morphology, the first case study explores how the production of unretouched flakes can 

be altered in ways that increase their relative utility, as reflected in the ratio of edge 

length to mass. Application of this relationship to Middle Paleolithic assemblages shows 

two modes of flake production pattern, possibly related to different ways Neanderthal 

groups managed the utility of transported tool-kits. The second case study applies a 

geometric model to assess the lithic cortex proportion in the Middle Paleolithic study 

assemblages. An excess or deficit of cortex relative to artifact volume provides an 

indication of possible artifact transport to or from the assemblage locality. Results show 

correlation between assemblage cortex proportions and paleoenvironmental conditions, 

suggesting possible shifts in Neanderthal artifact transport pattern and land use during the 

late Pleistocene.  
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CHAPTER 1: Introduction 

 

1.1 Stone Artifacts and Archaeological Knowledge of the Past 

The goal of anthropology can be said to analyze and explain the total range of 

physical and cultural similarities and differences that are characteristic of the entire 

spatial-temporal span of human existence. For the study of human evolution and the 

emergence of our species, archaeology plays a pivotal role in supplying the basic 

Paleolithic framework that remains fundamental to much of the paleoanthropological 

discussion taking place today. From the Oldowan, Acheulian, and Mousterian, to the 

various Upper Paleolithic industries, the transformation of stone artifacts through time is 

seen to reflect evolution in hominin behavior and technological capabilities associated 

with biological evolution (Ambrose 2001; Foley and Lahr 2003).  

During the 1970s and 1980s, the growing interest of anthropological archaeology 

in North America (Binford 1962, 1965; Longacre 1970; see Trigger 2006) led research in 

the subsequent decades to focus on the organizational dynamics and anthropological 

processes underlying the formation of stone artifact assemblage variability, including 

mobility pattern, technological design, and subsistence strategies; behavioral processes 

that likely implicate hominin adaptation and evolution (e.g., Bamforth 1986, 1990; 

Binford 1977, 1979, 1980; Nelson 1991; Torrence 1983, 1989). More recent emphasis on 

the connection between material culture and the socio-demographic dimensions of 

behavior offers novel archaeological perspective to past hominin behavior (e.g., Shennan 
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2008, 2011). Because stone artifact production involves technological knowledge and 

skills that are necessarily transmitted through learning from one individual to another, the 

continuity and change in artifact variability over time signals historically-derived 

processes that are contingent on wider social, demographic, and biological factors (e.g., 

forms of learning, social network and demographic structure, and cognitive capability 

such as long-term memory and information storage) (Henshilwood and Dubreuil 2011; 

Lycett and Norton 2010; Lycett 2009b; Lyman and O’Brien 1998; O’Brien and Holland 

1990; O’Brien et al. 2001, 2010; Powell et al. 2009; Shennan 2011, 2000, 2008; Tennie et 

al. 2009).  

The development of these frameworks is crucial as they allow archaeological 

inferences to move beyond the objects themselves to a higher level of evolutionarily 

interesting issues, and from there to contribute to wider multidisciplinary discussions of 

human evolution. For example, the connection between material culture, neurological 

processes, and other cognitive aspects, including linguistic ability, has been repeatedly 

emphasized (e.g., Dediu and Levinson 2013; Stout and Chaminade 2009; Stout 2011; 

Stout et al. 2008, 2011; Wynn 1995, 2008; see McPherron 2013 for review). As such, 

interpretations of lithic technological complexity are now commonly featured as 

supporting evidence for past hominin brain evolution in terms of cognitive, symbolic, and 

language capacities (e.g., d’Errico et al. 2003; Pelegrin 2009; Stout 2011; Toth et al. 

1993; Wynn and Coolidge 2004; Wynn 2008; c.f. Dibble 1989). Likewise, archaeological 

data are increasingly sought by researchers in fields such as paleogenomics and physical 

anthropology to validate and contextualize hominin population models with cultural, 



 

3 
 

behavioral, and demographic details about the various hominin groups in question (e.g., 

Lalueza-Fox and Gilbert 2011; Lalueza-Fox et al. 2011; Pearce et al. 2013).  

For the study of stone artifacts, the wide array of archaeological knowledge 

generated in relation to past human behavior and evolution can be separated into four 

main domains: typology, technology, function, and cognition (following the classification 

proposed by Haidel 2007). While these domains are not mutually exclusive, they provide 

the main analytical structure for examining the behavioral context of past hominin groups 

in terms of subsistence, settlement, and social organization as well as the continuity and 

change in cultural behavior and technical innovation. Each of these domains is briefly 

summarized here. 

1.11 Typology 

The typological domain involves the characterization of artifacts and artifact 

assemblages based on artifact form and style. Specific stone artifact types that recur in 

assemblages over time are viewed as typifying prehistoric industries, populations, or 

groups (Haidel 2007). Definition of these archaeological entities is often based on 

particular artifact type(s) and/or their relative frequency within an artifact assemblage. 

The distribution of these industries across time and space, in turn, provides the culture-

historic framework of the prehistoric world that is commonly used today in Paleolithic 

studies. The more recent cultural transmission theory provided a supporting basis for this 

approach (Boyd and Richardson 1985; Dunnell 1980, 1989; Lycett 2010, 2011; O’Brien 

and Holland 1990; Shennan 2008, 2011). In this view, the continuity of artifact form is 
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seen to reflect processes of knowledge transmission where a particular style represented 

in material culture was selectively passed on. Based on the concept of formal similarities 

and heritable continuity, the persistent presence of specific artifact types or attributes 

through time signals positive or stabilizing selective process where the learning and 

practice of particular technical knowledge was maintained or encouraged (Collard and 

Shennan 2008; Lyman and O’Brien 1998; Shennan 2008). The degree of variation 

reflects constraints on learning and the levels of conformity (Shennan 2008). This 

historical connection in material culture allows archaeologists to reconstruct phylogenetic 

relationships between artifact forms through time and space (Clarkson 2010; Clarkson et 

al. 2012; Lycett and von Cramon-Taubadel 2008, forthcoming; Lycett 2007, 2008, 

2009a,b, 2010; Lycett et al. 2010), which are then taken to represent the culture-history of 

prehistoric populations.  

1.12 Technology 

The technological domain of archaeology offers a view of the broader behavioral 

sequence in the production and use of stone artifacts. It focuses on the role of raw 

material procurement, the operational sequence of core reduction, the reduction intensity 

and life history of artifacts, and artifact selection and transport (Bleed 2001). These 

technological activities are often considered within the wider context of land use pattern 

and foraging strategy. Much attention focuses on understanding the dynamic behavioral 

processes that underlie the formation of lithic assemblages in relation to the associated 

economic and environmental conditions. This sort of study examines the organization of 

technology in relation to mobility patterns, raw material economy, artifact function, 
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design, and maintenance, and risk management (e.g., Blades 2003; Delagnes and Rendu 

2011; Dibble and Rolland 1992; Feblot-Augustins 1993; Fernandes et al. 2008; Rolland 

and Dibble 1990; Roth and Dibble 1998; Wallace and Shea 2006). More recent emphasis 

on the chaîne opératoire concept stresses the importance of the overall technological 

system represented in lithic assemblages. Here, the goal is to capture the sequence of 

mental operations and technical gestures in prehistoric stone artifact production (Bar-

Yosef and Van Peer 2009; Pelegrin 1990; Perlés 1992; Sellet 1993). Because each stage 

of the technical sequence involves options influenced by technical, economic, social, and 

cultural factors, the recurrent combinations of these sequences of operation – sometimes 

referred to as “strategies” – are seen as technical traditions, or ‘knowledge’, shared 

among group members (Dobres 2000; Perlés 1992).  

In many ways, the technological domain provides a more coherent perspective on 

cultural transmission. Instead of focusing solely on the morphology of particular artifact 

type as the marker of technical knowledge, the emphasis on sequence implies that the 

transmission of knowledge encompasses the entire technical system. It involves not only 

the production of specific artifact types but also various other aspects of technological 

behavior, including raw material selection, core volume organization, artifact transport, 

and mobility pattern (Boëda et al. 1990; Delagnes and Meignen 2006; Delagnes and 

Rendu 2011; Delagnes 2010; Delagnes et al. 2007; Geneste 1985, 1991; Meignen et al. 

2009; Perreault et al. 2013). Indeed, much of the recent characterization of Middle 

Paleolithic variability has focused on technical sequences as oppose to the traditional 

assignment of Mousterian type facies (e.g., Delagnes and Meignen 2006; Delagnes and 
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Rendu 2011; Faivre et al. forthcoming). Furthermore, comparison between sequences 

also sheds light on the differences and similarities between industries in terms of 

manufacturing steps and end-product designs in relation to broader dynamics of 

population interaction, information exchange, and acculturation (e.g., Kuhn and Zwyns 

2014; Roussel 2013; Tostevin 2013; Zwyns 2012).  

1.13 Function 

The functional domain of archaeology refers to the study of artifact function and 

use. A greater interest in artifact function emerged in the 1970s and 1980s when the 

discussion over the nature of stone artifact variability led various research efforts to 

explore more objective and definite means for assessing artifact function (e.g., Brink 

1978; Briuer 1976; Hayden 1979; Semenov 1964). Today, microwear and residue studies 

are commonly featured in Paleolithic archaeology. These kinds of studies provide 

information on the type of use and activity for which artifacts were employed, and also 

provide a way to examine changes in artifact functionality associated with the appearance 

of new technologies. For example, experimental comparisons of the morphology and 

distribution of fractures on flakes have pointed to possible origins of projectile 

technology in the Middle Paleolithic and the Middle Stone Age (Lombard and Pargeter 

2008; Sahle et al. 2013; Shea 1987, 1988, 2006; Sisk and Shea 2011; Villa and Lenoir 

2006; Wilkins et al. 2012, 2014; Yaroshevich et al. 2013; but see Iovita et al. 2014; 

Pargeter 2011; Rots and Plisson 2014). Furthermore, as Haidel (2007) pointed out, 

studies of the functional domain also give evidence about technologies that left little 

direct archaeological trace, such as the manipulation of organic raw materials (e.g., Soffer 
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2004). This aspect is particularly important as stone artifacts may not have constituted the 

main component of past technological complexes. Instead, many activities were likely 

carried out with implements made from organic materials, as evidenced by, for example, 

the wooden spears from Schöningen (Thieme 1997). The identification of resin residue 

on artifacts possibly used as binding agents for hafting also provide evidence for the way 

stone artifacts were used in the past (Boëda et al. 1996, 2008; Lombard 2004, 2005, 2006, 

2007, 2008; Wadley 2005, 2010; Wadley et al. 2004). 

1.14 Cognition 

The cognitive domain concerns the neuro-cognitive background for hominin 

behaviors. In a sense, this is a higher level inference through combining information 

derived from the three previous domains to further investigate the range of behavioral 

choices and decision-making carried out by past hominin groups in relation to particular 

environmental conditions and social settings. What this domain offers is the ability for 

archaeologists to interpret the socio-cultural processes and cognitive capabilities of 

Paleolithic populations (Haidel 2007). For stone artifacts, the production of flakes 

requires the knapper to successfully articulate and combine various motor actions with 

respect to the physical properties of stone fracture as well as the geometric configuration 

of the stone surfaces (Moore 2011; Stout and Chaminade 2009; Stout 2011).  

While it is true that the cognitive capabilities underlying tool making, including 

forms of pattern recognition, rule abstraction, motor coordination, associative learning, 

and understanding of material properties, have been demonstrated to exist in extant 
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primates and presumably early hominins (Haslam et al. 2009; Matsuzawa 2001; Schick et 

al. 1999; Toth et al. 1993), consciousness is likely essential when the sensory pattern that 

controls motor coordination is extended spatially and temporally (Rossano 2009). In 

other words, artifact forms and manufacture sequence that appear to exhibit some form of 

standardization and a minimum level of expertise reflect not only the simple pursuit of 

obtaining a cutting edge but also a conscious control of multiple aspects of the 

technology, which signal the active involvement of long term memory, abstraction, and 

practice (Rossano 2003; Wynn 1981, 2002). The increased consciousness behind tool 

making is also viewed as a critical factor that enhanced the cognitive fluidity and 

creativity of hominins (Rossano 2009). Because technological advancement and 

creativity is highly integrated and is determined by cognitive and neurological structures, 

it has been argued that insights into prehistoric cognitive capacity may be gleaned from 

the technicality of artifact production. For example, based on the model of design space 

and the framework of technological innovation and cognition from psychology, Moore 

(2007) argued that the lack of hierarchically combined technological “units” in the lithic 

assemblages associated with Homo floresiensis may indicate a lack of cognitive capacity 

in creativity and technological inventiveness (also see Moore and Brumm 2009).  

1.2 Some Basic Research Questions in Stone Artifact Archaeology 

These four domains capture the majority of current research effort in stone artifact 

archaeology within the context of paleoanthropology. In particular, typological 

classification of archaeological industries provides the chronological structure for the 

basic divisions upon which behavioral and cognitive interpretations are made. 
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Assemblages of archaeological finds recovered from sites represent material remnants 

resulted from particular sets of behavior from specific groups of people at a certain point 

in time. The ability to attribute artifact and assemblage type to certain ‘people’ means 

archaeological variability can be seen to reflect differences in the nature of these 

groupings (populations, cultures, or biologically distinct hominin groups).  

While these frameworks have been productive in extending archaeological 

perspectives to paleoanthropological discussions, it is important to recognize that there 

exist a number of basic ontological and epistemological questions in these frameworks 

regarding the inferential linkage between stone artifact categories and higher level 

interpretations of hominin behavior and adaptation. These questions include: What is the 

nature of stone artifacts and how do they relate to human behavior? How do the artifact 

categories identified by archaeologists relate to the actual intentionality involved in the 

production and use of these artifacts in the past? Such theoretical issues are central to the 

current Paleolithic archaeology research agenda and impact many of the ways inferences 

are drawn from the lithic archaeological record. Yet, as researchers progressively move 

towards addressing wider evolutionary topics, discussions over the way that these 

research questions implicate the integrity and confidence of the resulting inference 

remain less apparent in the current literature (Shea 2011). As archaeological 

interpretations become increasingly integrated with broader paleoanthropological 

frameworks, these issues should be thoroughly considered.  
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The root of some of these inferential problems can be attributed, in part, to the 

fundamental difference between stone artifact archaeology and other fields of 

paleoanthropology. In physical anthropology, zooarchaeology, and paleogenomics, the 

connection between the subject of study and the actual organism of interest (hominins or 

primates) is relatively concrete. When a hominin fossil is uncovered, one can be certain 

that the bone came from a specific individual at a certain point in time. In other words, 

the connection between the bone and the biological reality of the hominin is clear. While, 

in most cases, we can be reasonably confident that the stone artifacts recovered by 

archaeologists were created by past hominins (but see Chase et al. 2009; Dibble et al. 

2006), it is more difficult to immediately assign further behavioral or biological reality to 

these implements (discussed more below). Because of this disjuncture between stone 

artifact and past “people”, much of the inferential logic in archaeological interpretations 

concerning lithics focuses on specific sets of epistemological connections between 

artifacts and broader behavioral or biological phenomena. In particular, classificatory 

units generated by archaeologists (etic categories) are utilized to capture aspects of reality 

concerning the intention of past people (emic categories). This theoretical distinction is 

not new and has played a central role in major archaeological discussions, such as the 

Ford/Spaulding debates in the 1950s (Ford 1954a–c; Spaulding 1953, 1954). Yet, they 

remain largely unresolved and continue to carry significant metaphysical consequences in 

the interpretations of hominin behavior from stone artifacts.  
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1.21 Etic vs. Emic – The Nature of Artifacts, Manufacture Sequence, and 

Intentionality 

Because of the inability to attribute prehistoric stone artifacts to any historically-

known phenomena, early Paleolithic archaeologists adopted classificatory schemes from 

the natural sciences, particularly geology and paleontology, with the goal of organizing 

the observed variability into meaningful units (Van Riper 1993; Rolland and Dibble 

1990). Specific artifacts were recognized for their recurring forms and/or secondary 

retouch, which led them to represent categories of intentional design and production 

(Davidson and Noble 1993; Davidson 1991, 2002). The debate between François Bordes 

and Lewis Binford in the 1960s about the functional and stylistic nature of artifacts 

signaled the wide-spread perception that artifact types – as created by archaeologists – 

held behavioral and cognitive reality about the past hominins who manufactured and used 

these objects. In many ways, this construct is deeply embedded in archaeological thought 

and can be seen in the terminology of lithic studies. The common referral of stone 

artifacts as “tools” reflects the assumed connection between lithic materials and their 

intended use or design. Also, because these tools represent discrete and mutually 

exclusive types, they are taken to correspond to particular designated functions such as 

cutting, scraping, or chopping (e.g., Schoville 2010). This assumed correlation is 

particularly apparent in the discussion of pointed artifacts and projectile weaponry (e.g., 

Brookes et al. 2006; Wilkins et al. 2012).  

What this discussion illustrates is the archaeologists’ goal of understanding the 

intention of past people through material culture. Indeed, the argument between James 
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Ford and Robert Spaulding in the 1950s demonstrated how differences in the conception 

of analytical categories carry metaphysical implications about archaeological 

interpretations of intentionality (O’Brien and Lyman 2002). While Ford (e.g., 1954) 

argued that classification of artifact types only serve as analytical units that help 

archaeologists interpret the grouping of assemblages (i.e., they are constructed by the 

analysts and are in no way ‘real’ to the people in the past), Spaulding (1953:305) held 

that the goal of artifact classification is the discovery “of combinations of attributes 

favored by the makers of the artifacts, not an arbitrary procedure of the classifier”. From 

this view, real types are inherent in artifacts, and, by collecting and analyzing enough 

data, these ‘emic’ categories can be inductively derived. Statistical techniques such as 

discriminant analysis were seen to provide objective means for determining these types 

by assessing which attributes co-occur at frequencies greater than that allowed by chance 

alone (Spaulding 1953). In other words, recurring combinations of attributes demonstrate 

intentional choice and decision in the manufacture of artifacts (O’Brien and Lyman 

2002).  

In a largely implicit way, the emic perspective characterizes much of the use of 

artifact types today in Paleolithic archaeology. As discussed before, because retouched 

and formal artifacts possess morphological characteristics that suggest intentional 

modification and design as opposed to variation allowable by chance, these types are 

considered to reflect prehistoric cultural norms or group-specific practice. Historically, 

the interpretation of past peoples has been centered on these artifact types, such as 

bifaces, Levallois end-products, scrapers, points, blades, and microlithic artifacts. Since 
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these ‘tools’ are identified as intentionally shaped end objects, their manufacturing 

sequence from the initial raw material can be reconstructed, and hence “debitage”, “by-

products”, or “waste” can be readily identified from the assemblage.  

A significant part of lithic studies have been dedicated to the study of the 

manufacturing sequences of these tool types (e.g., Boëda 1988, 1993, 1994, 1995; 

Bourguignon 1997; Forestier 1993; Magne and Pokotylo 1981). This emphasis is most 

strongly demonstrated by studies that view technology as holistic chains of events 

governed by individual- or group-specific mental templates or knowledge (Dobres and 

Hoffman 1994; Dobres 2000; Perlés 1992). However, the search for intentionality in 

stone artifacts through the reconstruction of production sequence leads to three issues. 

First, because the operational sequence of lithic reduction is perceived as sequential and 

linear, the chain of technical operation has to be driven by a pre-existing goal. This goal 

is often framed as the production of certain desired end-product at the end of the 

operational chain (Dibble & Bar-Yosef 1995). As Bar-Yosef and Van Peer (2009) 

pointed out, the identification of archaeological end products is a modern construct based 

on our analytical framework and cannot be extended to an emic designation of how these 

items were perceived in the past. It is true that certain artifact types, such as projectile 

points and adzes, were indeed rigidly produced for designated functions, and their 

morphology clearly associates with designs for enhancing efficiency and functionality. 

Then again, in most cases, these formal artifacts compose a small fraction of the overall 

assemblage and the life history of these artifacts may well span over multiple generations 

of individuals. In other words, without making a priori assumption that certain artifact 
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types are in essence ‘real’ to past technological systems, it is impossible to discern what 

the production chain and associated by-product or waste actually was. 

The other issue is that the linear sequence of these operational chains requires the 

underlying mental template to be a singular flow carried out by an individual or several 

individuals sharing similar mental template over the reduction sequence (Bar-Yosef and 

Van Peer 2009). In other words, in order for reduction sequences to be reconstructed 

from an assemblage, it must be assumed that individuals contributing to the formation of 

an assemblage all conformed to an identical standard of lithic production that 

characterizes the assemblage (Bar-Yosef and Van Peer 2009). This assumption is difficult 

to sustain given the coarse resolution of the Paleolithic record, not to mention the near 

impossibility of establishing that an assemblage or any of its sub-divisions correspond to 

contemporaneous activities or even ones that occurred over a short time interval.  

For this reason, studies have increasingly employed refitting as a way of 

controlling chronology and to find high-resolution events within the archaeological 

record (Chiotti et al. 2007; Close 2000; Vaquero 2008; Vaquero et al. 2012). While 

refittings do indicate sequential events in the reduction process, the way that these events 

relate temporally cannot be assumed as they could easily be attributable to unrelated 

actions by individuals separated by considerable amounts of time. Furthermore, as 

refitable elements most often only represent a subset of the assemblage, the connection of 

temporality and intent between these artifacts and the rest of the assemblage is difficult to 

establish. 
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The third issue relates to the conception that lithic assemblages from sites 

represent complete operational sequences involving coherent sets of actions and 

decisions. This perspective contrasts with ethnographic records which tend to suggest 

flexibility and fluidity in the production and use of stone artifacts, where the desired 

artifact or attribute differ by context or individual (Holdaway and Douglass 2012; Moore 

2003). In other words, a seemingly sequential process of lithic reduction may involve 

multiple individuals with varying intentions and views that are largely unrelated from 

each other. As Moore (2011) demonstrated, a sequence of flake production or the 

creation of recurring artifact forms does not necessarily require the involvement of 

higher-level intention and sequential planning. Instead, these patterns can be created by 

repeated actions of flake removal with basic recognition of core geometry.  

Furthermore, while the production of every flake clearly involves some form of 

intention, determining how these intentions relate to those that govern the selection of 

usable flakes is a different matter. As Hiscock (2004; also see Holdaway and Douglass 

2012; Turq et al. 2013) demonstrated in his ethnographic study, the process of flake 

production and selection may be performed at different stages and by different 

individuals with varying selection criteria. An archaeological reduction sequence as 

identified by archaeologists therefore could result from multiple unrelated ‘sequences’ 

involving many intentions concerning production and use. As a consequence, an 

ethnographic ‘type’ recognized emically could vary considerably in its forms between 

individuals, even within groups that share cultural identities and socially-conscious 

groupings (see White and Thomas 1972). These observations of stone artifact use in a 
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living context call into question the notion that archaeologists are able to distinguish 

complete technological sequences in lithic assemblages.  

1.3 Stone Artifacts and Evolution 

These issues illustrate the research challenges in archaeology of describing stone 

artifacts and other archaeological phenomenon as meaningful units that can be further 

related to aspects of hominin lifeways and evolution. They also demonstrate the 

aspiration shared by archaeologists to address evolutionary interesting questions. If the 

goal of stone artifact archaeology is to understand human evolution, then the critical 

question lies in delineating the relationship between stone artifact variability and the 

evolutionary fitness of the hominin toolmakers/users. Ultimately, of course, it is the 

organism that is the unit of natural selection and not the stone artifacts, and most 

archaeologists would agree with this statement. Nonetheless, demonstrating the linkage 

between stone artifacts and evolutionary fitness remains largely problematic.  

Discussions of this subject are often framed with a view that artifacts represent 

the technological medium for solving subsistence problems or achieving survival goals. 

In other words, artifacts are meaningful extensions of behavior and a proxy of selection 

on behalf of the tool users. Selection on artifacts hence is seen to have operated on the 

functionality of the tools for which they were designed and manufactured. Indeed, many 

studies have focused on examining the design of artifact forms and their relative 

effectiveness and economy for serving organizational needs and carrying out the 

designated tasks (e.g., Ahler and Geib 2000; Bleed 1986; Eren and Lycett 2012; Jennings 
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et al. 2010; Kelly and Todd 1988; Kelly 1988; Prasciunas 2007). The persistence or 

change in artifact form in turn reflects shifting technological or behavioral solutions in 

mediating people and the environment. Under a longer time scale, increased artifact 

complexity over time is seen to indicate innovation of more specialized and effective 

tools made possible by the greater cognitive and motor capability of hominin toolmakers. 

This perspective is tantalizing and represents a theme commonly featured in stone 

artifact archaeology studies today (Ambrose 2001; Stout and Chaminade 2012; Stout 

2011). However, if it is the tools that were selected and carry evolutionary significance in 

relation to the tool user, then two key assumptions concerning the relationship between 

tools and people must be satisfied. First, tools have to be an adaptive entity that fulfills 

specific functional purpose(s) regardless of the context of use – i.e., as an extended 

phenotype of the individual that possess an absolute functional or adaptive quality. Just 

like nests are always created to serve the particular function of incubating eggs and 

sheltering young birds, tools are designed to carry out specific functions. For some forms 

of tools, researchers can be relatively confident that tool function remained largely 

constant regardless of how they were used, e.g., projectile points. Thus, changes in the 

morphology of these points can be linked to the emergence and shifts in the overall 

projectile technology (e.g., spear vs. bow-and-arrow) and their relative efficiency in 

terms of factors such as velocity, aerodynamics, and penetrative power (Cheshier and 

Kelly 2006; Christenson 1986; Lipo et al. 2012; Shea and Sisk 2010; Shea 2006; Sisk and 

Shea 2009, 2011).  
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Then again, if we consider the design and actual usage of some modern tool types, 

this assumption may not always hold true, even for projectile points. For example, a 

hammer is designed for hammering nails through hard substrates. Yet, we know from 

experience that a hammer can and does, in fact, get used for various purposes under 

different circumstances. Likewise, the use of stone artifacts in the past probably also 

shifted widely and continuously. While we can say certain kinds of flakes, such as 

Levallois products, possess greater amounts of cutting edge and hence offer more utility 

for use (Eren and Lycett 2012; Kuhn 1994; Lin et al. 2013; Morrow 1996), it does not 

necessarily mean these flakes were exclusively manufactured and used for specific 

purposes. Instead, the use of Levallois flakes, as well as other flakes, likely changed 

depending on the tool user and where/when the task was performed. Similarly, both 

Oldowan chopper-chopping tools and Acheulian handaxes could be used as 

cutting/chopping tools, cores, and/or hammers by hominins at any given time depending 

on the task at hand.  

Although it could be argued that these earlier tool forms represent multifunctional 

tools and were later replaced by more specialized tools, this conception reflects the 

second assumption – because designed “tool types” are fundamental to the way 

technology operates in the modern world, they are universal to all tool-using hominin 

populations. It is therefore possible to identify these types from other unintended 

materials of production. This is commonly done through refitting and replicative 

flintknapping experiments, although sometimes the distinction is based purely on 

morphological characteristics alone, particularly with retouched pieces that share 
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recurring forms. However, as illustrated in the previous section, stone artifacts do not 

possess any quality in themselves in allowing archaeologists to differentiate what is 

wanted from the unwanted on the ground of morphology and production sequence. 

Specifically, there is no clear way for tying the production, use and discard of one object 

to one individual within a short time frame. Instead, the complexity in the interaction 

between human intention and the production and use of stone artifacts likely means that 

the manufacture, use, discard, recycle, transport of one flake could stem from 

independent events, perhaps separated by considerable amounts of time. In other words, 

end-products represent an etic category based on modern research criteria and it is 

difficult to justify them as emic types or units of selection in the past.  

1.4 Towards an Archaeological Science of Stone Artifact Archaeology 

The root to this issue of conflating etic and emic categories in stone artifact 

archaeology can be attributed to the mismatch between 1) the ways archaeological units 

are constructed from artifacts, versus 2) the ontological understanding of the ways the 

stone artifact record was formed in relation to human behavior. The latter aspect concerns 

the fundamental questions of where archaeological data come from, and how should 

researchers actually go about interpreting these archaeological observations in 

meaningful ways. Undoubtedly, many archaeologists would agree that the answer to the 

first question is ‘the archaeological record’, which is composed of archaeological remains 

and their contextual composition. It represents the empirical ‘facts’ created by past events 

that have been preserved until today (Binford 1987). Through observation of the 
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archaeological record, archaeologists generate data from the body of empirical facts to 

make inferences about the past.  

However, since observation is a modern phenomenon, it relies on the criteria that 

archaeologists deem profitable to observe (Binford 1987, 2001; Sullivan 1978). Then 

again, if we cannot observe the events that led to the formation of the archaeological 

record, how do we come up with analytical units that can allow us to meaningfully 

reconstruct these past events? In the 1960s and 1970s, the desire of many North 

American archaeologists to move archaeology towards an anthropological science 

(Binford 1962, 1965; Fritz and Plog 1970; Salmon 1975; Watson et al. 1971) meant a 

departure from the traditional empiricist’s view, where data and interpretation are 

acquired through the ‘natural work of the mind when freed from impediment’ (Bacon, in 

Commins and Linscott 1947: 154). The central focus of this change is to establish 

concrete referential frameworks to connect the archaeological record to past behavioral 

processes.  

1.41 Units of Measurement versus Units of Interpretation 

Despite advances afforded by these early studies associated with the New 

Archaeology movement, the etic/emic issue continues to undermine the inferential 

integrity of stone artifact archaeology in the 21th century. This issue signals that the 

theoretical issue runs even deeper in the production of archaeological knowledge that one 

might think. One alternative way to approach this issue is to argue as follows: if 

classification units are etic categories constructed by archaeologists, then it is necessary 
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for these units to be constructed on the basis of principles that are independent from the 

interpretation that archaeologists seek to make. If we define stone artifact types based on 

etic criteria but treat them as emic in nature, subsequent interpretation would inevitably 

mirror the definitions we have constructed in the first place (tautological). As a result, 

explanation of variability can only be achieved by granting these classifications some sort 

of ad hoc behavioral or cognitive reality in the form of either cultural preference or 

functional design (Dibble and Rolland 1992).  

If the goal of stone artifact archaeology is to understand the formation of 

archaeological variability in relation to human evolution, then such interpretations 

necessarily assume that the behavioral activities carried out by past hominins were based 

on individual decisions and intentions. Principles for classifying and organizing 

archaeological facts into data are therefore required to operate independently from 

assumptions concerning past intention. In other words, the units of measurement for 

deriving empirical data from the archaeological record must be separate from the units of 

interpretation upon which archaeological inferences are constructed. This rule may seem 

obvious to many fields of formation studies, including taphonomy and geoarchaeology, 

where their inquiry begins with observations based on processes that are uniformitarian 

and largely independent from human intentions.  

For many studies in archaeology this rule may seem more difficult to follow. 

More specifically, it is not clear how we can understand human behavior if we only focus 

on invariant processes unrelated to human intention. In stone artifact archaeology, 



 

22 
 

flintknapping experiments serve as one of the major areas for deriving referential 

knowledge for interpreting stone artifacts. Studies of this sort replicate the production or 

use of specific artifact types as a way to generate behavioral, or sometimes cognitive, 

analogs that can be projected to the past. However, the predicament presented here is that 

in order to replicate the production sequence or use of certain artifacts, archaeologists 

must first identify which artifacts are useful to replicate – i.e., the need to assume a priori 

the artifact types people in the past wanted to make and use. As a consequence, units of 

interpretation become confounded with units of measurement, and the final inference 

reflects more of the archaeological unit’s presumed significance rather than the nature of 

the independent observation.  

1.42 Archaeological Science and Uniformitarianism 

A possible way to break out of this cycle of inference fallacy is to seek examples 

of knowledge production in the archaeological sciences. Fields in archaeological science 

apply scientific methods to the archaeological material. Here, what makes a method 

‘scientific’ is its reliance on theories that were developed through repeated empirical 

observations, rigorous analysis, and hypothesis testing on the study subject (Binford 

2001). The invariant nature of these regularities means they likely operated in the same 

way in the past. Thus, these theories can be used to interpret the possible causal factors 

that contributed to the formation of the archaeological record as archaeologists study 

today. For stone artifacts, the hominin activities and other behavioral processes that led to 

their creation have long disappeared. Then again, stone artifacts are actual physical 

materials they operate on a set of uniformitarian rules, including fracture mechanics, solid 
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geometry, geochemistry, and mechanics of materials. This means that archaeologists can 

confidently utilize etic units of measurement without imposing a priori interpretations or 

classifications.  

Archaeological units, therefore, need to be constructed upon principles that are 

not only independent from interpretation but also uniformitarian in nature. It is critical 

that the framework utilized for determining which attributes are useful to record can be 

confidently assumed to have also operated in the distant past. What this requires is for 

archaeologists to ask very basic questions regarding the properties of the archaeological 

record. For example, how do stones break? What variables are important in governing the 

fracture of stones and what are their observable effects on stone artifacts? What variables 

affect the number and size of flakes produced from a nodule with a given set of 

attributes? How does artifact movement and transport affect assemblage composition? 

How do the various morphological attributes of flakes affect use in different tasks and 

how do they translate to observable wear patterns?  

These are basic ontological research questions concerning the formation of the 

stone artifact record that requires thorough investigation. They do not require 

assumptions about the behavioral significance of the analytical units, and therefore 

provide concrete connections between observable pattern and dynamic processes that are 

proxies to past behaviors. Through controlled experiments (defined in the following 

chapter) and other approaches such as simulation and modeling, it is possible to isolate 

and delineate the effect of specific variables and, from there, to show how different 
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behavioral processes can alter the structure and distribution of these variables within the 

archaeological sample. In so doing, it is possible to falsify hypotheses and establish 

baseline patterns to which archaeologists can compare archaeological data. These sort of 

inference constructions, in turn, allow archaeological interpretations to be drawn in a 

more scientifically sound manner.  

This perspective may give the impression that stone artifacts can tell us only 

mundane and trivial things about the human past. Higher exterior platform angle and 

platform depth result in larger flakes. Flakes from early reduction stages on average are 

bigger and contain more cortex. While one could attempt to dismiss these approaches for 

producing uninteresting “Mickey Mouse Laws” (Flannery 1973), these seemingly 

ordinary principles, coupled with the ubiquity of stone artifacts, are in fact useful proxies 

for detecting patterns of anthropologically interesting processes of artifact production, 

selection, and movement. Combinations of these proxy patterns from archaeological 

assemblages can further inform the broader behavioral configuration of hominin groups 

over the landscape that led to the formation of the archaeological record.  

1.5 The Structure of This Dissertation 

Ultimately, the question is how we, as archaeologists, arrive at the end goal of 

archaeological interpretation. If, instead of following a series of small steps constructed 

upon sound inferential practice, we leap directly to higher levels of interpretation for the 

sake of addressing more evolutionary interesting questions, then our explanations will 

quickly become difficult to substantiate and verify. This implication is further 
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exacerbated by the role of archaeology in the multidisciplinary field of 

paleoanthropology, where interpretations from various subfields are constantly being 

referenced to test and construct models of human evolution. Returning to the four 

domains of archaeological knowledge outlined earlier, it appears that constructing the 

various behavioral and cognitive inferences for understanding hominin evolution is not as 

straightforward as it seems. This is not to say that they are not achievable, but rather one 

must follow a chain of sound inferential logic based upon uniformitarian principles with 

clear consideration of the nature of archaeological categories and the structure of the 

archaeological record.  

This dissertation, a collection of three published or publishable articles, represents 

an effort to explore the potential of developing lithic archaeology in to an archaeological 

science project. The first paper (Chapter 2) is a manuscript that explores the nature of 

archaeological inference creation and the role of experiment in stone artifact archaeology. 

Specifically, the chapter critically examines the nature of conventional lithic experiments 

with respect to experimentation as a scientific method of variable testing. It is argued that 

the emphasis on replication as a common goal of lithic experiments causes the underlying 

reasoning to suffer from various inferential problems that are difficult to reconcile in a 

scientific manner. Instead, a focus on lithic experiments should be shifted towards the 

control of variables and the assessment of baseline patterns that can be unequivocally 

attributed to the controlled variables.  
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 The second paper (Chapter 3) is an article that has been previously published in 

American Antiquity (Lin et al. 2013). It serves as an example that uses basic fracture 

properties of stone to detect patterns that can be related to higher level inferences of 

technological behavior. The paper examines the use of a highly controlled experimental 

set-up to evaluate the relationship between flake platform attributes and the distribution 

of flake edge versus volume. This latter property of relative flake edge is defined as a 

measure of flake utility. By mapping the interrelationship between platform variables, a 

model is developed to trace changes in the configuration of flake utility and 

economization among archaeological assemblages. A test case study is presented that is 

based on lithic assemblages from three Middle Paleolithic sites in the Dordogne region of 

southwestern France.  

  The third paper (Chapter 4) is a manuscript currently under review in the Journal 

of Archaeological Science (Lin et al. submitted). It serves as an example of using 

controlled flintknapping experiments and statistical procedures to apply a geometric 

index to lithic assemblages as a measure of artifact transport. The paper employs a cortex 

quantification approach on lithic assemblages from three Middle Paleolithic sites in 

southwestern France. Flintknapping experiments and statistical approaches of 

bootstrapping and Monte Carlo sampling are used to establish statistical significance for 

the calculated Cortex Ratios. Variations in the cortex proportion among the study 

assemblages over time are considered with respect to the possible shifts in Neanderthal 

movement pattern associated with environmental changes during the late Pleistocene. 
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1.6 Conclusion 

 Archaeology is one of the fundamental subfields within the discipline of 

paleoanthropology. The rich material record preserved through time provides 

archaeologists a wealth of information for understanding the behavioral aspects of 

hominin evolution and population history. However, the process of relating material 

remains, in this case stone artifacts, to hominin behavior involves various theoretical 

challenges that are often left implicit in current archaeological research. These theoretical 

issues have significant metaphysical implications for the conduct of archaeological 

research and the integrity of archaeological interpretation. Thus, it is not only necessary 

but critical for archaeologists to confront these theoretical issues in the 21st century in 

order to move stone artifact archaeology forward as a scientific field. Here, science does 

not refer to a strict positivist and deductive position of inquiry. Instead, it means having a 

clear and explicit understanding of its subject matter and the ability to produce 

meaningful inferences about the past based on solid inferential grounding (Binford 2001). 

Furthermore, as various subfields within paleoanthropology have become 

increasingly integrated and are marked by greater collaboration and communication, the 

influence that archaeological knowledge will have on our understanding of human 

evolution will be greater than ever. Therefore, it is equally, if not more, important for the 

theoretical issues surrounding the production of archaeological knowledge to be 

transparent and available to non-archaeology specialists, as this will create the foundation 

for further evaluation and communication among fields as paleoanthropology continue to 

grow as a true multidisciplinary discipline.  
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CHAPTER 2: Experimental Design and Inference Building in Stone Artifact 

Archaeology1 

 

2.1 Abstract 

Lithic researchers rely heavily on experimentation to infer about past behaviors 

and activities based on stone artifacts. Yet, discussions of the background method and 

theory of experimentation and its relation with archaeological inference building continue 

to be lacking in current literature. This paper explores the analogical nature of 

archaeological inference and the relationship between experimental design and inference 

validity in stone artifact archaeology. Conventional replicative lithic experiments lack 

vital aspects of scientific experimentation, and thus are plagued by inferential issues of 

analogical adequacy and confidence. It is argued that a greater emphasis on variable 

control in experimental set-ups is needed in order to establish sound referential linkages 

upon which constructive analogic inferences about the past can be built. 

2.2 Introduction 

Experiments have played a central role in the development of lithic studies. In the 

late 19th century, experimental replication of prehistoric stone artifacts was used to 

demonstrate their anthropogenic origin, and, by extension, the antiquity of humankind 

(Johnson 1978). During the 1950s and 1960s, the work of Crabtree, Bordes, Tixier and 

others further brought lithic experiment to the forefront of lithic studies. In the following 

decades, the field saw a surge of experimental studies exploring various aspects of lithic 

                                                           
1 Author(s): Sam C. Lin.  
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technology through the replication of stone artifact forms, from basic properties of 

fracture mechanics and flake formation (e.g., Cotterell and Kamminga 1987; Cotterell et 

al. 1985; Dibble and Whittaker 1981) to lithic variability related to percussion techniques 

(e.g., Barham 1987; Flenniken 1987; Kobayashi 1975; Newcomer 1975; Sollberger 1985; 

Speth 1974), reduction strategies (e.g., Amick et al. 1988; Flenniken 1978; Newcomer 

1971; Sollberger and Patterson 1976) and resharpening (e.g., Flenniken and Raymond 

1986). Research areas also expanded from the production of stone artifacts to topics of 

function, use, and efficiency (e.g., Crabtree and Davis 1968; Fischer et al. 1984; Hayden 

1979a; Kamminga 1980; Sheets and Muto 1972; Walker 1978).  

Today, lithic experiments come in a variety of forms involving different research 

designs, methods, and questions. Increasingly, studies also use experimental 

reconstructions to address issues beyond the immediate production and use of artifacts, 

including the identification of technical systems, end-product design and production (e.g., 

Boëda 1993, 1994, 1995; Boëda et al. 1990; Delagnes and Meignen 2006; Meignen et al. 

2009; Mourre et al. 2010; Scimelmitz et al. 2011), skill and knowledge transmission (e.g., 

Eren et al. 2011; Geribàs et al. 2010; Nonaka et al. 2010), and the potential selective 

pressure on hominin cognition and biomechanics associated with the habitual production 

and use of stone tools (e.g., Key and Lycett 2011; Stout et al. 2000, 2014; Williams 2011; 

Williams et al. 2012).  

However, as researchers increasingly rely on experiments to draw higher order 

inferences of hominin behavior and evolution from stone artifacts, much less attention 
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has been paid to the nature and design of lithic experiments and their relation to the 

generation of archaeological inference. Specifically, while the methodology of 

experimentation is powerful, the confidence and security of the resulting inference is 

strongly contingent on the design of the experiment as well as the underlying analogic 

premise. To be sure, this sort of inquiry into the nature of archaeological reasoning and 

the role of experimentation is not new. For example, the rise of the New Archaeology in 

the 1960s and 1970s led a number of archaeologists to shift their focus to the philosophy 

of science (e.g., Fritz and Plog 1970; Watson et al. 1971). This shift was largely driven 

by the desire to establish firm referential frameworks, consisting of ‘middle-range 

theories’, to connect the static archaeological record to the dynamic yet unobservable past 

(Binford 1962, 1977b, 1981; also see Raab and Goodyear 1984; Schiffer 1998). Among 

these discussions, the role of experimentation was emphasized as part of the 

‘hypothetico-deductive’ process for testing and falsifying existing assumptions of 

archaeological interpretation (Ascher 1961b; Schiffer 1975). When a hypothesis resists 

falsification under experimental testing, it is viewed as potentially valid in the sense that 

the underlying principle can continue to be used for drawing archaeological inference 

until falsified by further testing (Outram 2008). In this context, validity can be defined as 

“the best available approximation to the truth or falsity of propositions” (Cook and 

Campbell 1979:37).  

From this perspective, experiments serve as one of the ‘gatekeepers’ for 

determining whether certain sets of knowledge in archaeological interpretation can be 

substantiated by empirical data. Given this important role, however, it is ironic that there 
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appears to be a lack of discussion about the basic attributes of experiments and the ways 

in which they should be designed to test hypotheses (Bartovics 1974). In his original 

publications of Archaeology by Experiment (1973) and Experimental Archaeology 

(1979), Cole devised a series of rules for the design of archaeological experiments to 

ensure a general level of inferential rigor and reliability. While these rules serve as useful 

general guidelines, their connection to the broader theoretical framework of 

archaeological inference generation remains under-developed. For example, Cole 

(1973:18) stated that “[t]he experiment should be assessed in terms of its reliability, that 

it asked the right question of the material, that the procedure adopted was appropriately 

conceived…” However, it remains unclear exactly how experimental reliability and 

research questions are connected, and how their appropriateness should be assessed in 

relation to the adequacy and validity of the resulting inference.  

Recently, studies have increasingly recognized the importance of experimental 

design and its implication for the adequateness of the resulting archaeological inferences. 

In zooarchaeology, for instance, Domínguez-Rodrigo (2008) demonstrated that variation 

among the outcomes of experiments more likely reflect differences of assumptions in 

experimental design and the underlying analogic premise rather than the studied material 

per se. This observation has direct implications for not only the inferential security but 

also applicability and comparability of experimental interpretations for past human 

behavior. This issue is especially pressing as archaeological knowledge is progressively 

being sought by disciplines such as genetics and physical anthropology to validate and 

contextualize models of human evolution and population dispersal (Henke and Tattersall 
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2007). It is within this context that the need for researchers to critically consider the 

theoretical interaction between experimental design, research strategy, and archaeological 

reasoning becomes all of the more imperative.  

Extending such observations to lithic studies, the goal of this paper is to examine 

the properties of experimental design and their interaction with the creation of 

archaeological inference of stone artifact archaeology. In order to do this, however, it is 

first necessary to consider the nature of archaeological reasoning in the form of analogic 

argument, particularly in terms of ‘formal’ versus ‘relational’ analogy. We then compare 

flintknapping as an actualistic approach to scientific experimentation with respect to the 

issue of confounded variables and the ways that uniformitarian assumptions are treated in 

the formulation of hypotheses. This analysis is accompanied by discussions regarding the 

basic properties of experimentation, including variable control, sources of error, and 

inference validity. Finally, we differentiate between ‘pilot’ versus ‘second generation’ 

experiments and discuss their respective roles in the process of archaeological knowledge 

generation.  

2.3 Analogy in Archaeological Reasoning 

According to Gibbon (1989:142-172), the structure of social science inquiry can 

be separated into three main realms: ‘the observed’, which is the phenomena we perceive 

from the world; ‘the empirical’, which is the data we construct from the observed; and 

‘the real’, which is the actual condition or process we wish to understand through the 

analysis of the empirical. In many disciplines, the interaction between the observed and 
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the real operates at a temporal scale that is discernible within an individual’s lifetime. For 

these fields, general theories regarding the phenomenon in question can be derived from 

multiple observations and verified through experimentally replicating the relevant 

processes and variables. For archaeology, however, the processes that led to the 

formation of the material outcome which we observe today (the archaeological record) 

cannot be directly experienced. Unless there are other sources of information, such as 

historical documentations, we rely instead on analogy to make inferences about the past 

by linking concepts and relationships derived from the present to aspects of the 

archaeological record (Binford 1981; Gifford-Gonzalez 1989; Wylie 1982, 1985).  

In her seminal paper, Gifford-Gonzalez (1991; also see Wylie 1985) differentiated 

between the use of ‘formal analogy’ and ‘relational analogy’ in archaeology. Based 

largely on the ordinary experience of the observer, formal analogy operates by drawing a 

causal connection between observed modern process and its material outcome. When 

archaeological items share formal similarities with a modern object, it follows that the 

observed process in the contemporary world also occurred in the past. The operation of 

formal analogy is summarized schematically by Gifford-Gonzalez (Figure 1) and 

contains three key assumptions: 1) the linkage between the observed modern object and 

process is causal; 2) the similarities between the modern and prehistoric objects are 

meaningful to the analogical inquiry; and 3) the inferred process is uniformitarian in 

nature. 
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Figure 1 – Gifford-Gonzalez’s model of analogical reasoning in formal analogy. Blank boxes indicate 

observations made in the present world. Redrawn after Gifford-Gonzalez (1991:222). 

 

Most of archaeological systematics is rooted in formal analogy. Because the 

archaeological record is an anthropological phenomenon, it is intuitive for archaeologists 

to use their daily experience of the human world as primary analogs for making sense of 

archaeological remains. This form of analogy can be seen in the basic naming and 

description of artifact categories to interpretations of past events and processes. The most 

explicit demonstration of formal analogy is the early approach of ethnographic analogy, 

where living groups are chosen as counterparts of past societies. The selection conditions 

for ethnographic analogs involve formal similarities in either material culture or 

ecological and subsistence conditions (Ascher 1961a; Stiles 1977).  
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Two inferential issues concerning formal analogy have been identified. The first 

is that an inference is primarily a projection of modern knowledge into the past, and thus 

what archaeologists can infer is inherently restricted to what is already known from the 

present (Gould and Watson 1982; Gould 1980). As such, the reasoning itself is incapable 

of generating general theories or novel knowledge about the past. It is, therefore, unclear 

how archaeologists can identify phenomena that are unknown in the present-day world, 

or whether or not it is even possible. Second, formal analogy operates more as a logical 

statement, and offers no obvious means to gauge the security of the derived analogic 

inference (Gould 1980). In some ways, an analogy is considered valid by default as long 

as the analog shares with the study subject similarities that are deemed relevant. As a 

result, considerations of inferential security come to rest on the exhaustive listing of 

selection criteria for modern analogs, or philosophical debates over the assumptions of 

causality with respect to the phenomenon under study (Ascher 1961a; Binford 1967; 

Stiles 1977). This inability to ascribe inferential confidence led to the dilemma of 

determining how far archaeological interpretations could and/or should be taken at the 

cost of methodological rigor (Wylie 1985).  

Then again, the trade-off between inference confidence and methodological rigor 

only becomes apparent as one moves from empirical ‘facts’ of archaeological materials to 

contextual interpretations of past practices. This concept of a hierarchical order of 

inference is exemplified by the work of Hawkes (1954), who postulated that, as one 

moves up the inferential order away from phenomenon restrained by the natural, physical 

world (i.e., technology, subsistence, and economy) to those of the socio-political and 
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ideological realm (i.e., intentionality, social norm, cultural tradition), the reliability of the 

inference drops significantly due to their greater reliance on culturally specific 

manifestations. From this perspective, the issue of inferential security in formal analogy 

can, in part, be attributed to the lack of differentiation between different inferential orders 

(Wylie 1985). Indeed, under formal analogy, all inferences are constructed upon a 

singular, causal relationship, regardless of the differences in the number of contextual 

variables involved among them. Consequently, the relationship between these variables 

and the study phenomenon are confounded and become impossible to tease apart.  

In contrast with formal analogy, relational analogy differentiates the inferential 

process into individual linkages that are structurally organized on the basis of a body of 

referential knowledge. This body of referential framework is internally coherent and 

therefore allows the construction of analogic inference by connecting multiple justifiable 

inferential linkages. Binford (1962, 1977b, 1981) conceptualized these referential 

linkages as ‘middle-range theories’. All middle-range theories need to have the following 

attributes (Wandsnider 2004). First, the causal connection between the material 

phenomenon and the generating process has to be unambiguously demonstrated and 

documented. Second, this causal connection has to be of uniformitarian nature and, more 

importantly, can be warranted as such, so the inference can be projected into the past with 

warrantable confidence. To be clear, these two attributes already exist in the operation of 

formal analogy (as illustrated above in Figure 1), although they tend to exist in implicit 

and confounded forms embedded within the underlying assumptions. The third attribute 

is that middle-range theory has to operate independently of ideas about the past that 
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archaeologists wish to investigate, and thus can serve as a neutral medium for inferring 

the occurrence of past processes from the archaeological record.  

While the definition and utility of middle-range theory has been debated and 

critiqued since its original proposal, many scholars have arrived at the same conclusion 

that in order for any archaeological inference to hold some level of security, the 

involvement of referential knowledge in forms similar to middle-range theory is critical 

(Trigger 1995; Tschauner 1996). Binford (1981, 2002; also see Wandsnider 2004) later 

termed the systematic compilation of these established referential knowledge as “frames 

of reference”. To be sure, the point of discussion here is not to equate relational analogy 

with the Binfordian notion of middle range theory and frames of inference. Instead, the 

goal is to characterize relational analogy as a separate analogical reasoning process with 

specific properties that are different from formal analogy. Building from firm referential 

linkages, relational analogy is considered to be more strongly warranted than formal 

analogy (Binford 1981; Gifford-Gonzalez 1991; Wylie 1985). Its explicit treatment of 

uniformitarian principles also forces researchers to confront the assumptions that underlie 

inference construction.  

2.4 Experimentation in Lithic Studies 

The goal of establishing firm referential linkages for connecting aspects of the 

archaeological record to past dynamic processes, led many researchers in the 1970s and 

1980s to conduct experimental studies on various topics of archaeology. However, 

contrasting with the conventional definition of experiment as a scientific method, these 
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archaeological studies align more with actualistic research of discovering and evaluating 

archaeological relevant variables within living contexts. In fact, in one of the original 

articulations of middle-range theory, Binford (1981) advocated for archaeologists to 

conduct actualistic studies for detecting possible referential knowledge. His extensive 

ethnoarchaeological work with the Nunamuits constitutes a primary example of this sort 

of effort (Binford 1977a, 1978a,b, 1979, 1980, 1981). The source of this emphasis on 

actualistic research can be attributed to the analogical nature of archaeological reasoning. 

Because past processes can only be comprehended through modern observations, it 

makes sense that a general understanding of these processes can be gained through 

replicating past activities and behaviors.  

This sentiment is particularly apparent in stone artifact archaeology. Since few 

societies today use stone tools on a daily basis, lithic technology and stone artifacts in 

general remain largely a body of alien knowledge to modern archaeologists. While 

ethnographic accounts provide valuable information regarding the ways stone tools were 

used in modern living contexts, their direct applicability to archaeological material 

remains limited as they often represent a subset of technological behavior operating 

within a specific cultural context and time scale. As such, stone artifact researchers have 

come to rely on experimental replication as a principle means to understand the 

behavioral processes that underlie the formation of stone artifacts in the archaeological 

record. They have done this by primarily replicating particular artifact forms and their 

associated production procedures through flintknapping. The concept of replication in 

this context has been defined by Flenniken (1984) as the consistent recreation, with the 
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same lithic materials, the same reduction technology and end products as the prehistoric 

knapper. This anthropological sense of ‘replication’ is often distinguished from 

‘flintknapping’, which denotes only the effective production of flaked stone artifacts. The 

emphasis on systematic and technical replication also places demands on the relative skill 

level and expertise of the knapper who performs the replication experiment, as well as 

his/her familiarity and knowledge of the artifact that is being replicated (Flenniken 1984). 

The results of replication are then compared with archaeological materials on specific 

criteria to determine the analogic validity of the experimental technique for inferring 

reduction practices in the past (Mourre et al. 2010).  

The goals of experimental replication have shifted considerably since the initial 

adoption of the approach in lithic studies. Prior to the 20th century, scholars used 

replicative flintknapping primarily to support the artifactual nature of ancient chipped 

stone implements. This was done in part due to the recognition that flakes can be 

produced under natural conditions and thus the need to discriminate cultural artifacts 

from naturally flaked stones (Evens 1872; Skertchly 1879; also see Johnson 1978; Lerner 

2013;). In the late 19th century, Holmes (1894) employed replicative flintknapping in his 

study of American bifaces as a way to gain an understanding of the production sequence 

of artifacts from raw material acquisition, technical production, to forms recognized 

archaeologically. This notion of sequential manufacture to arrive at a particular end-

product became a key element of modern lithic experimentation (Bleed 2001).  
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In the first half of the 20th century, increased attention was given to experienced 

flintknappers and the documentation of various knapping techniques for replicating 

artifact types that are comparable to those observed archaeologically (Johnson 1978; 

Lerner 2013). Flintknapping replication was further popularized and incorporated into the 

realm of mainstream archaeological investigation in the 1960s by the work of several 

skilled flintknappers, including Crabtree, Bordes, Tixier, Callahan, and Bradley. 

Increased consideration was also paid to the reporting and/or control of variables 

involved in knapping experiments, such as the size and nature of the raw material, the 

technique of production, and the properties of hammerstones used (Johnson 1978). 

However, much of the literature on lithic replication during this time focused on 

identifying the how-to or craft aspects of replicative flintknapping rather than answering 

specific archaeological questions (Andrefsky 2005).  

Since the 1980s, the focus of experiments shifted from end-product manufacture 

to the production of by-products as well as the overall reduction sequence. Specifically, 

studies examined the interrelationship between different knapping sequences with the 

characteristics of the overall produced lithic assemblage. This is best represented by the 

reduction sequence approach of North American archaeologists (Bleed 1996; Dibble 

1984, 1987, 1995b; Frison and Raymond 1980; Morrow 1997) and the chaîne opératorie 

school of France and Continental Europe (e.g., Boëda 1986, 1988; Boëda et al. 1990; 

Geneste 1985; Perlés 1992; Pigeot 1990; Sellet 1993). These studies stress the 

importance of the technological/behavior process that underlies the formation of lithic 

artifacts, which could effectively be captured through refitting and replicative 
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flintknapping experiments. One of the main objectives of this approach to replicative 

experiment is to transcend traditional typological units and holistically investigate the 

procedural steps in the entire manufacture sequence of finished products (Bleed 2001). 

Experiments within this context are done by consistently replicating not only specific 

artifact forms but the entire manufacturing sequence and the technical features of the 

associated knapped products. The presence of reconstructed reduction strategies can, in 

turn, be identified in archaeological assemblages through either refitting or diagnostic 

artifacts that carry markers of specific reduction sequence (e.g., Boëda et al. 2013; Li et 

al. 2009).  

Regardless of the different goals of experimental replication, the inferential basis 

of the approach differs markedly from that of conventional scientific experimentation, 

and instead aligns more closely with formal analogy described earlier. Namely, a single, 

causal relationship is stipulated between a specific material outcome (e.g., a particular 

type of flake or flake attribute) and a generating process (e.g., particular reduction 

technique) based on the ordinary experience and perception of the observer regarding the 

phenomenon of interest. While the inference may appear to be supported by the matching 

qualities between modern experimental materials and prehistoric artifacts, its validity is, 

in fact, unverifiable due to the nature of the analogy. If an analog and the phenomenon in 

question share qualities that are considered applicable to the research inquiry, then the 

analogy is taken as valid; if the two subjects do not share relevant similarities, then the 

analogy is naturally rejected.  
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To further illustrate the dissimilarity between lithic replication and 

experimentation as a scientific method, it is useful to compare the nature of the two 

approaches. According to Bartovics (1974:201; also see Kosso 2011), experiments should 

contain four essential elements: 

1) They require a hypothesis that stipulates a connection between the observed 

material outcome and the generating conditions and processes for the 

phenomenon. 

2) Their set-up needs to allow a specific degree of manipulative control over to 

variables involved in the phenomenon under study. 

3) They must rely on objective, and preferably quantitative, modes of 

documentation in order that the experimental outcomes can be reproduced by 

other investigators. 

4) They are empirical demonstrations rather than arguments or debates. 

While all four attributes are critical for a strong experimental setup, the validity of an 

experiment is primarily determined by the first two elements.  

2.41 Hypothesis Construction and the Treatment of Uniformitarian Assumptions 

To carry out an experiment, the researcher must first have some idea of how the 

study subject is connected to the phenomenon in question. The sources of these ideas 

may vary. They could be derived inductively through particular observations, or 
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abductively through the logic of best probable explanation (Niiniluoto 1999). For these 

ideas to be turned into hypotheses, they have to be stated in an explicit cause-and-effect 

statement that is falsifiable. If stated correctly, an opposing hypothesis (i.e., null 

hypothesis) that postulates the neutral or null expectation of the original hypothesized 

relationship would naturally exist. As discussed above, the goal of an experiment is to 

test whether the null hypothesis can be successfully rejected. If so, then the stated 

hypothesis is considered to be valid in the sense that the postulated relationship can 

continue to be used for inference construction until it is falsified by further testing.  

The key to a good hypothesis is its capacity to be rejected. This characteristic may 

seem straightforward, although, it is often more difficult to achieve due to the ways the 

underlying assumptions and premises are outlined. Specifically, all experiments require 

uniformitarian assumptions in order to generalize particular observations to other 

settings. However, whether a hypothesis is falsifiable is, in part, dictated by how the 

underlying uniformitarian theory is treated. According to Bailey (1983), when a 

uniformitarian theory is treated ‘methodologically’, it becomes a means for assessing 

another theory. When a uniformitarian theory is treated ‘substantively’, on the other 

hand, it becomes a substantive extension of the theory that is to be investigated (c.f. 

Gould 1965). It can be said that all archaeological inquiries are driven at some level by 

substantive uniformitarianism. From biological to socio-cultural evolution, cultural 

transmission, and behavioral ecology, these theoretical frameworks that archaeologists 

employ require some level of uniformitarian assertion to warrant investigation of related 

topics in the past.  



 

44 
 

However, if the uniformitarian theory underlying the test hypotheses is 

substantively treated, the test conclusion is bound to be predetermined by the preexisting 

theory (Bailey 1983). For example, if a hypothesis asks whether certain flake forms were 

manufactured as end-products by a specific reduction strategy, the test outcome is 

necessarily predetermined by the underlying uniformitarian assertion – that certain flake 

forms represent end-products and that the knapping process, irrespective of time and 

space, is driven by the production of these end forms. What is problematic here is that the 

question that archaeologists wish to investigate is already presumed, implicitly, by the 

uniformitarian theory. Thus, if the knapper successfully produces the specific flake forms 

with the reduction strategy, the experimental technique is taken to be valid for inferring 

reduction practices in the past. If a knapper fails to produce these flake types, on the other 

hand, then it is either due to the use of incorrect knapping strategy or that the knapper’s 

skill is insufficient. One way or the other, the hypothesis of whether the specific flake 

forms can be manufactured as end-product becomes an untestable assertion, given that 

the uniformitarian nature of these flake types as end-products are already asserted 

substantively.  

Another danger in the substantive treatment of uniformitarianism is the risk of 

generating tautological arguments. Since these kinds of hypotheses cannot be falsified, 

the study outcome could only be taken to substantiate the original assumed premise. As a 

result, what archaeologists can learn about the past is inherently limited by the analytical 

categories which we have generated. If studies investigating past knapping behavior 

begin by asserting that the ways with which knappers reduce stones are uniformitarian 
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and, hence, can be modeled as such on the basis of ethnographic or actualistic analogs, 

then the resulting inference is bound to be expressed in these predefined ways. In other 

words, the limiting factor in archaeological inference is not the archaeological data 

themselves, but rather the boundaries of our own imaginations about how stones could be 

reduced (discussed further below).  

However, if we treat the uniformitarian theory methodologically, the process with 

which we assume to operate in the present as well as in the past is required to be 

intellectually independent from what we wish to investigate (Bailey 1983; also see 

Binford 1981). This treatment grants independence to the formulated hypothesis from its 

theoretical origin, and constitutes a chief merit of scientific reasoning (Bettinger 1987; 

Hempel 1965). If, for example, we are interested in determining whether certain flake 

forms are made as end-products, we may first ask whether certain reduction strategies can 

produce flakes that contain the relevant morphological characteristics as the 

archaeological artifacts of question. This inquiry is based on the uniformitarian 

assumption that fracture mechanics and stone property operate in an invariant way, and 

thus mechanical processes that led to the creation of specific flake types observed in the 

present very likely also operated in the same way in the past. At this point, researchers 

may examine whether these specific flake types were treated in any ways different from 

other flake forms, such as in their use, resharpening, and transport (e.g., Dibble 1995a). 

These results in turn help support whether the artifact forms were indeed end-products 

that were preferentially selected and manufactured, or, on the other hand, if they share no 

clear distinction with the rest of the assemblage and perhaps represent arbitrary forms 
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singled out by modern archaeologists (Bar-Yosef and Dibble 1995; Bar-Yosef and Van 

Peer 2009; Dibble 1995a).  

It is useful to point out here the importance of keeping independent the criteria for 

assessing differences between artifact groups from the attributes used to define these 

categories in the first place. Otherwise, the resulting pattern would risk reflecting the 

definitions of these categories made by the researcher more than the actual reality and 

difference between the groups. For example, Schlanger (1992) and Eren and Lycett 

(2012) examined the difference between Levallois end-products with non Levallois 

debitage flakes based on formal attributes (Schlanger used dimensional measures; Eren 

and Lycett used geometric-morphometric analysis). Because the differentiation between 

the two artifact groups is defined in part on the basis of formal characteristics (Levallois 

flakes as defined are generally larger, wider, and relatively thinner), it was unclear 

whether the observed difference between the two categories was meaningful. A similar 

point regarding the reality of ovate versus pointed handaxe was discussed by McPherron 

(1999). The point is that the uniformitarian theories for establishing our inferential 

reasoning and analytical units for conducting these studies should be independent from 

the research question asked, and, more importantly, that the hypothesis can only be 

falsified or supported, but cannot be proven to be true.  

A methodological uniformitarian approach for formulating hypotheses requires 

that the phenomenon under experimental testing be unrelated to human behavior. This 

may seem counterintuitive. After all, the business of archaeologists is to explain the 
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archaeological record in behavioral terms. If the test hypothesis is required to explain 

processes that are independent from our research goal, then the inference resulting from 

the experiment would also be independent from behavior. For example, the connection 

between exterior platform angle, platform depth, and flake size (Dibble and Rezek 2009; 

Dibble 1997; Lin et al. 2013) is, in and of itself, independent from anthropogenic 

activities – i.e., the processes operates regardless of hominin behavior. It is simply a 

physical phenomenon that operates in the natural world. However, such relationship, 

verified through experimentation, can be effectively applied to archaeological material to 

detect patterns from which further behavior interpretations can be drawn. This is an 

important departure from the Binfordian approach of middle range theory, where the 

referential linkages for constructing relational analogy are sought in human terms and 

generally situated in a behavioral ecology framework (Gifford-Gonzalez 1991). Such 

emphasis on the theoretical reduction of uniformitarian behavior has instead yielded 

trivial or oversimplified explanations (Flannery 1973). If the research question is instead 

framed on a methodological uniformitarian basis, then the interpretation of past behavior 

can be constructed on patterns that are neutral and, more importantly, verifiable through 

experimentation.  

2.42 Experimental Control and the Issue of Confounding Variables 

In an experiment, a hypothesis is operationalized into variables that are relevant to 

the inquiry. In general, an experiment manipulates one or more independent variables and 

then records changes in the dependent variables while exerting control on all other 

nuisance variables (Kirk 2009, 2012). At this point, it is worth emphasizing that it is 
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pivotal for the various independent variables involved in the phenomenon under study to 

be explicitly parsed out. This is done to avoid possible confounding relationships 

between independent variables where the levels of one independent variable are 

systematically associated with the levels of the other (Abdi et al. 2009:6). When two or 

more independent variables are confounded it, becomes impossible to interpret the results 

because the outcome may be caused by one variable or the others, or from the interaction 

among them (Figure 2). For example, for a study concerned with whether flake edge 

angles affect cutting efficiency on wood, independent variables would include edge 

angle, edge length, flake thickness, flake weight, wood quality and consistency (e.g., 

hardness), cutting force, cutting speed, and cutting time. If, for instance, flake edge angle 

and flake size are not separately treated and the two variables are systematically 

associated (e.g., larger and heavier flakes have on average higher edge angle), then the 

effects of the two independent variables will be confounded, making it impossible to 

know if the outcome reflects the influence of edge angle, or flake weight, or the 

combined effect of the two variables.  

 

Figure 2 – Scenarios of confounding variables in experiments. White circles represent independent 

variables; black circles represent dependent variables. Scenario A: the dependent variable is simultaneously 

influenced by multiple independent variables. Scenario B: the dependent variable results from the 
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interaction between two (or more) independent variables. Scenario C: the causal linkage between the 

dependent and independent variables is triggered by other independent variable(s).  

Actualistic studies, including replicative flintknapping, are particularly prone to 

the problem of confounded variables. As many flintknappers would agree, flintknapping 

is a complex process involving a wide range of variables – from fracture mechanics to 

nodule geometry, individual technique, skill, intention, technical know-how and folk 

knapping wisdom, as well as knappers’ biometric capacity and cognitive ability to decide, 

plan, and execute specific knapping actions. In replicative flintknapping, many of these 

independent factors are allowed to vary freely during the knapping process. Idiosyncratic 

characteristics due to the use of human participants also potentially further introduce 

confounded variables that systematically bias certain variables (Kirk 2009).  

As an example, Whittaker (1994) observed unique regional patterns in North 

American knapping circles where knappers employ distinct techniques to achieve similar 

end goals. Knappers, thus, are likely to systemically associate certain historically-derived 

practices, almost at a subconscious level, with particular knapping activities. As such, it 

becomes impossible to attribute experimental outcome directly to specific variables. To 

be sure, most replicative studies do exert some form of control over specific test 

variables. Thus, studies often hold some level of control over raw material, hammer type, 

and knapping techniques throughout the flintknapping process (e.g., Amick et al. 1988; 

Henry et al. 1976; Newcomer 1971). Then again, because the extraneous nuisance 

variables involved in the knapping process remain uncontrolled, their relationship with 

the study outcome remains confounded. It is also worth noting here that monitoring the 

changes of these uncontrolled variables also does not resolve the confounded nature of 
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the experimental outcome. Without actual control, it remains impossible to discern 

whether the relationship between these monitored parameters and the test outcome is 

indeed causal and meaningful.  

In light of these issues, a number of studies turned to the use of artificial setups 

with flaking apparatus to simulate the process of flake formation under truly controlled 

conditions (Bonnichsen 1977; Dibble and Pelcin 1995; Dibble and Rezek 2009; Dibble 

and Whittaker 1981; Dibble 1997; Faulkner 1972; Pelcin 1997a,b; Speth 1972). The 

emphasis in these studies tends to be placed on the ability to vary relevant variables while 

holding others constant throughout the experimental process. This is done with the goal 

of explicitly testing the interactions between specific independent variables under the 

control of the flintknapper and other variables that are observable on flakes (Dibble and 

Whittaker 1981). For example, recent studies by Dibble and colleagues (Dibble and 

Rezek 2009; Lin et al. 2013; Magnani et al. 2014; Rezek et al. 2011) employed highly 

controlled settings and examined the relative effects of core surface and platform 

morphology and the various modes of force application on flake attributes using molded 

glass cores. This sort of study, termed a “controlled experiment” by Dibble and Whittaker 

(1981), is designed specifically to manipulate and control variables involved in specific 

aspects of flake formation for the goal of discerning their respective effects on flake 

attributes. This approach contrasts with ‘replicative experiment’, which emphasizes the 

replication of artifacts by flintknapping under settings that resemble past knapping 

conditions.  
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However, experiments performed under more controlled settings are not 

necessarily free of confounded variables. Indeed, early controlled studies by Speth (1972) 

and Bonnichsen (1977) produced confounded results due to the lack of separation 

between systematically associated variables, such as hammer mass versus velocity, and 

the angle of hammer blow versus exterior platform angle (see Rezek et al. forthcoming). 

Then again, under controlled settings, the chance for confounded variables to occur is 

less as the control of the various variables is more explicitly delineated. Confounded 

variables are not always easy to identify and may require repeated experiments to 

untangle the interaction between correlating variables. One effective approach for 

identifying confounded variables is through duplicating the experimental setup (Abdi et 

al. 2009). Given that all variables are treated in the same way, if the replicated study does 

not produce the same results as the original, then it is reasonable to suspect the presence 

of confounded variables.  

Studies are also more prone to confounded variables when they employ nominal 

classifications of independent variables, which are groupings representing predefined 

conditions and therefore cannot be manipulated by the experimenter (Abdi et al. 2009). 

Examples of these in lithic studies include core versus flake, flake versus tool, or end-

product versus debitage. Objects assigned to these classificatory groups would inevitably 

be different in many other respects and can therefore confound the possible interactions 

between independent variables. For instance, soft and hard hammer are predefined 

categories that an experimenter can employ as a variable distinction. However, hammers 

belonging to either one of these classifications are inevitably different in many other 
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ways (morphology, weight, hardness, elasticity, grain size, grain morphology, etc). 

Without further separation, the differences in knapping results between the two hammer 

material types can only be attributed to the level of the nominal classification (Magnani et 

al. 2014). 

2.43 Inferential Validity, Sources of Error, and Equifinality 

At the end of the day, the question of experimental design and inferential validity 

boils down to whether or not the experiment setup is sufficient in answering a specific 

research question. When only a single independent variable is considered, the 

experimental design is often straight forward. However, such limited experiments also 

tend to be further away from any natural setting due to their simplistic design. 

Experiments can become more realistic when the number of independent variables is 

increased to approach reality. In the social sciences, this is referred to as an increase in 

‘external validity,’ or where the experimental results are valid beyond the limits of the 

experimental setting and can be generalized and applied across a wide array of contexts 

(Abdi et al. 2009; Campbell and Stanley 1963; Kirk 2009, 2012). The contrast to this is 

‘internal validity’ which depends on the precision of the experiment within the 

experimental context, where it is possible to conclude accurately that an independent 

variable is responsible for variation in the dependent variable of question. 

By this definition, internal validity is inversely correlated with the size of 

experimental error, which represents the total variability in the dependent variable due to 

causes other than the tested independent variables (Abdi et al. 2009:11). Internal and 
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external validity thus is commonly seen as the two opposing ends of a continuum that 

stresses simplicity and clarity on the one hand and complexity and generality on the 

other. At one level, it is useful to think of controlled experimentation as high in internal 

validity for its internal consistency within the experimental setup due to its high level of 

control over all variables. Flintknapping is high in external validity due to the number of 

variables involved in the process and its proximity to the reality of the knapping process. 

However, given that the reality of past processes cannot be intuitively attained, viewing 

external validity as an approximation of past reality is problematic. Alternatively, a more 

productive position may be to view external validity as the degree of generalizability of 

the observed inference to other settings. From this perspective, external validity decreases 

if the experiments focus more narrowly on the particularities of past lithic technology, 

regardless of whether the experiments are performed in a controlled fashion (e.g. 

production of Mesoamerican prismatic blades by Faulkner 1972) or by flintknapping (e.g. 

Levallois flake as the object of study in Eren and Lycett 2012). In this sense, controlled 

experiments focusing on fundamental fracture principles are also high in external validity 

because the investigated relationship is relevant to the study of the production of stone 

artifacts across wide geographical, temporal and technological contexts (Magnani et al. 

2014).  

Note that the use of internal and external validity here differs from how these 

terms are used by Lycett and Eren (2013), who argued that the archaeological record is 

high in external validity due to its empirical reality but low in internal validity because 

the record is biased and incomplete, due to preservation and sampling (see Sullivan 
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1978). On the other hand, mathematic models of reduction techniques are high in internal 

validity for their internal consistency but low in external validity for their abstractness 

(Brantingham and Kuhn 2001; Brantingham 2010). Experimentation is instead argued as 

a means for bridging the two data sources to strengthen archaeological inquiry.  

However, with this definition, it is difficult to see how the archaeological record 

or models of flake production can possess any form of validity at all. Specifically, the 

concept of internal and external validity was developed in the social sciences for the 

purpose of describing the reliability and applicability of inferences derived from 

experimentation (Abdi et al. 2009; Campbell and Stanley 1963). Given that an inference 

is defined as a logical conclusion regarding a phenomenon derived from specific 

premises (Sullivan 1978), the archaeological record only represents the phenomenon 

observed by modern archaeologists and does not in and of itself offer any inferential 

power about past behavior. Likewise, conceptual models of flake production are premises 

assumed to hold certain relevance to knapping processes in reality. Inference can only be 

developed when the models are connected with empirical observations and, more 

importantly, archaeological data. Therefore, Lycett and Eren’s (2013) argument seems to 

reflect a general misunderstanding of the original definition and usage of internal and 

external validity in the social sciences.  

Following the discussion above, a good experimental design that can lead to a 

secure basis of inferential knowledge in stone artifact archaeology would avoid 

confounding variables while at the same time possess high internal validity. In other 
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words, it allows us to determine how confident we can conclude that an independent 

variable is, in fact, responsible for the variation observed in the dependent variable. In the 

social sciences, sources of error are recognized that can compromise the internal validity 

of an experiment. These are ‘history’, ‘maturation’, and ‘selection’. As Kirk (2009:25) 

outlines, history describes “events other than the treatment that occur between the time 

the treatment is presented and the time that the dependent variable is measured”; 

maturation represents instances where “[t]he dependent variable may reflect processes 

unrelated to the treatment that occur simply as a function of the passage of time”; and 

selection is the possibility “that the participants in the experiment are different from those 

in the hypothesized comparison sample.”  

For stone artifact archaeology, maturation does not apply as stone artifacts do not 

change by themselves through time, although this also depends largely on how artifact 

categories are construed depending on the dominant lithic paradigm. On the other hand, 

‘history’ and ‘selection’ are potentially problematic for any replicative experiment. In 

terms of ‘history’, lithic assemblages represent accumulation of lithic artifacts over time 

at given locations (produced by many people). The potential complex formation history 

of lithic assemblages means artifacts found in close spatial proximity may, in fact, share 

distinct and independent settings of production and use (Dunnell 1992; Turq et al. 2013). 

In the context of experimental replication, however, these assortments of stone artifacts 

which archaeologists attempt to replicate through flintknapping are often treated as a 

collection of materials that are meaningfully related in terms of production sequence. 

This issue seems difficult to reconcile, given that there exists little empirical evidence 
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that can substantiate the temporal integrity of lithic artifacts at a production event level. 

Even refitted artifacts could arguably be produced by different individuals at different 

points in time.  

As a result, the solution to this issue may instead fall on the research question 

instead of experimental design. That is, if one can make shift away from treating 

assemblages as systemic collections of products that are connected in some behaviorally 

meaningful way, then one can develop a view that emphasizes the temporal and 

processual complexity of assemblage formation (Holdaway and Wandsnider 2008 and 

references therein; Kuhn 2004; Stern 1994). Of course, this question touches on much 

broader metaphysical issues concerning the ontology of archaeological thinking, and thus 

is beyond the scope of the current discussion. The point here instead is to draw awareness 

to the connection between the conceptualization of archaeological material and 

experimental design, and its implication for the resulting inference validity.  

The second problem, that of ‘selection,’ relates to the issue of substantive 

uniformitarianism as discussed earlier: how do modern knappers know if the employed 

experiment techniques are indeed counterparts to behaviors in the past? In lithic studies, 

because the knapping process is complex, there exists a common sentiment that the only 

way to comprehend the process is to immerse oneself in the practice of knapping under 

conditions, to the best of one’s knowledge, that resemble past knapping settings. This 

belief has often led to an emphasis on ecological validity (Brunswik 1956; originally 

articulated as "representative design"), i.e., the resemblance to empirical reality in 
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replicative flintknapping. However, as a historical discipline, archaeology’s emphasis on 

ecological validity appears oxymoronic, since the ‘reality’ in which past knapping events 

occurred simply cannot be known. In fact, the accurate reconstruction of past knapping 

techniques is typically the goal of such experiments. While some level of ecological 

validity can be assured by using raw materials and hammer materials that are in line with 

what is found in an archaeological context, various other aspects of knapping conditions 

are speculative. These include the posture of the knapper (standing, sitting, kneeling), the 

placement of the nodule (on the ground, freehand, on the lap), the way hammers struck 

the nodule (thrown, direct percussion, swing-arm percussion). Individual knappers 

oftentimes preferentially adopt specific combinations of these factors for particular 

knapping tasks. Though some of these factors may leave discernable traces on flakes, 

many of these variables remain impossible to detect archaeologically.  

Ultimately, the issues of selection and history reflect the question of equifinality 

in replicative experiment, where distinct configurations of knapping process and 

formational history can lead to similar material outcomes in artifact morphology and 

assemblage characteristics (Magnani et al. 2014). Indeed, the process of knapping and 

stone reduction is sequential and thus can be reconstructed as such in an empirical 

manner. However, it is more challenging to substantiate that the behavioral processes 

underlying the formation of the lithic record can be intuitively replicated as systemic 

knapping sequences.  
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2.5 Discussion 

The inferential issues related to lithic actualistic experiments outlined above is 

due largely to the replicative nature of the experimental design. Regardless of the 

theoretical justifications for the criteria of replication, the resulting inference from these 

experiments is inescapably of formal analogic nature. As a consequence, the validity of 

the stipulated inference is difficult to verify and in turn has to be taken on faith. 

Fundamentally, the question of whether our modern replications do, indeed, serve as 

meaningful analogs to past processes remains unresolvable. Within this context, it is 

useful to distinguish replicative experiments from others that are orientated to the control 

of variables in an attempt to strengthen the internal validity of the study outcome (Dibble 

and Whittaker 1981; Dibble 1997). Unlike replicative experiments, controlled 

experiments are carried out with the goal of establishing referential linkages upon which 

relational analogic inferences can be built.  

The concept of a controlled experiment is associated almost exclusively with 

studies that employ artificial settings for flake production (e.g., Dibble and Rezek 2009; 

Magnani et al. 2014; Rezek et al. 2011). However, this does not necessarily mean that 

flintknapping as an experimental approach cannot be carried out in a controlled fashion. 

Although with less ability to control variables comparing to highly controlled setups, 

flintknapping allows for relatively greater flexibility in variable manipulation and thus 

provides a useful means for investigating broader topics of lithic assemblage composition 

and other assemblage-scale variability. However, as previously pointed out, conducting 

flintknapping experiments in a controlled manner requires much more than just the 



 

59 
 

control or monitor of few independent variables during the knapping process. Rather, it 

necessitates a fundamental shift in experimental design from being centered on artifact 

replication to the controlled examination of the relative effects of specific independent 

variables. Specifically, the goal of the experiment should be capturing the range of 

variability attributable to certain knapping factors that operate on uniformitarian 

processes. By comparing the experimentally derived pattern to the archaeological data, it 

is then possible to infer the relative effect of the examined variable in shaping the 

observed archaeological pattern.  

The flintknapping process, however, requires a wider range of assertions and 

inconsistencies over variables that are difficult to control. A possible resolution to this 

issue is to deliberately maximize the degree of variability in the nuisance variables while 

maintaining high control over the specific independent variables that are under testing. 

This approach is employed to minimize the involvement of assumptions regarding how 

knapping activities took place in the past (the replicative approach). It also increases the 

internal validity of the resulting conclusion by establishing a sound, cause-and-effect 

linkage between the tested variable and the experimental outcome. For example, if one 

wishes to examine the effect of nodule size on assemblage composition, it is more 

effective to conduct the necessary experiments by employing a range of knapping 

configurations (reduction technique, hammer type, core placement, and the knapper) 

while controlling stone nodules at different size levels. More importantly, the pairing of 

the various knapping configurations to the different nodule size levels need to be 

arbitrary and random. Such an approach is akin to randomization in experimental design 
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of the social sciences, and serves to minimize the potential systemic bias of the 

uncontrolled nuisance variables on the test outcome by randomly distributing their effects 

across all test groups.  

This sort of controlled and comparative design for flintknapping experiment has 

been adopted by several studies reported in the literature, particularly with respect to 

artifact reduction intensity. A number of studies in the 1980s and 1990s employed 

flintknapping experiment to establish models of lithic reduction (Amick et al. 1988; 

Bradbury and Carr 1999; Ingbar et al. 1989; Magne and Pokotylo 1981; Shott 1996b). 

These studies controlled reduction intensity at different intervals to examine its relative 

effect on artifact attributes. Using a similar protocol, Braun (2006; also see Braun et al. 

2008) examined the effect of reduction intensity on core attributes by experimentally 

knapping stones over various iterations of core reduction. The knapping was done 

independently by multiple knappers having different skill levels. Instead of attempting to 

replicate the archaeological artifacts, cores were reduced with no specific assumed 

intention of producing particular core form or end product. Rather, reduction was done 

with the goal of producing large flakes (Sahnouni et al. 1997). Through multivariate 

regression analysis, Braun used the experimentally derived pattern of core reduction to 

draw inferences regarding the relative reduction intensity represented in the Oldowan 

assemblages in Kanjera South and Koobi Fora. Similar experimental approach to assess 

the effect of reduction intensity was adopted by Archer and Braun (2010), who examined 

Acheulian bifaces from the site of Elandsfontein, South Africa, Douglass (2010) for core 

reduction intensity in the Holocene lithic assemblages from western New South Wales, 
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Australia, and Marwick (2008) for the flaked stone artefacts from mainland Southeast 

Asia during the terminal Pleistocene and Holocene. Such an experimental design 

provides a platform for flintknapping experiments to avoid the inferential problems 

associated with replication and formal analogy, and move towards the construction of 

verifiable referential linkages on which solid relational analogies regarding past 

behavioral processes can be inferred.  

Despite the inherent issues associated with replicative experiments, this kind of 

approach serves an important role as ‘pilot’ experimentation (Mathieu 2002) to identify 

and assess the importance of unknown variables and set of experiment protocols. 

Through this form of experiment, archaeologists can gain a general understanding of the 

procedure that is under question and how future research should be formulated. With this 

goal, the attempt to encompass all variables that would have been involved in past 

activities is not only justified but necessary (Comis 2010). At this phase, inferences are 

derived through formal analogy based on observations and experience of the 

experimenter. Although the security of the inference may be low, it illuminates the 

potential relationships among relevant variables.  

In order for the potential relationships observed by pilot experiments to become 

firm referential linkages upon which relational analogy can be constructed, they need to 

be broken down further and independently verified by ‘second generation’ experiments. 

These experiments follow a clear protocol to ensure repeatability and allow quantifiable 

results (Mathieu 2002). At this stage, the emphasis is placed on the control of the 
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variable(s) in question rather than ecological validity. Therefore, experiments can be 

carried out with materials of a different nature to the original ones, depending on the 

hypothesis. In fact, because the variables have been evaluated before in the pilot 

experiment, they can now be tested in relation to each other in order to establish 

meaningful relationships to the studied phenomenon. Furthermore, as Domínguez-

Rodrigo (2008) advocated, it is vital for studies to explicitly outline the assumptions and 

uniformitarian premises underlying experimental designs and interpretations in order for 

results to be effectively evaluated and compared. Through the falsification of test 

hypotheses, these sorts of experiment are able to establish concrete linkages of referential 

knowledge for drawing further archaeological inference.  

Clearly, both kinds of experiments contribute to the study of past behavior, and it 

is important to acknowledge the limitations and potentials of each. However, the bulk of 

lithic inference construction should be based on second generation experiments with firm 

control over internal validity. That being said, the interaction between pilot and second 

generation experiment is not necessarily a one-way street but operates in a cyclical form 

of induction and deduction (Ingersoll and MacDonald 1977). Specifically, observations 

made from actualistic pilot data inductively generate ideas regarding the past 

phenomenon in question. These stipulated ideas are then deductively verified to see if the 

relationships are valid upon the ground of methodological uniformitarianism. Once a 

referential knowledge is established, new questions could once again arise and be 

formulated into testable relationships through actualistic studies. In addition, it is 

important for experimentally tested relationships to be related and compared to 
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archaeological data. After all, as Amick and colleagues (1989) related, “the ability to 

work back and forth between experimental work and the archaeological record is 

essential for learning about the past.” 

2.6 Conclusion 

The issues regarding lithic experimentation and archaeological inference are not 

new. Indeed, numerous theoretical debates and discussions in the last several decades 

have been concerned with the nature of archaeological reasoning and how archaeologists 

should go about constructing sound inferences about the past (e.g., Fogelin 2007; Fritz 

and Plog 1970; Gibbon 1989). Stone artifact archaeology has come a long way since 

then, and employed increasingly sophisticated methods and theories for forwarding our 

understanding of prehistoric lithic artifacts. Recent years have witnessed experimentation 

playing a bigger part in lithic studies, and moving from the goal of simple reconstruction 

of reduction sequence to asking higher-level questions about hominin behavioral 

organization and evolution. Coupled with the growing role of archaeological knowledge 

in broader paleoanthropological discussions, the goal of this critical examination of lithic 

experimentation and analogic reasoning is to draw awareness to the importance of 

experimental design in lithic studies and its implication on the validity and security of the 

resulting inference.  

It is hoped that as new territories of explanatory frameworks and analytical 

methods are explored and developed, lithic researchers can a maintain ‘critical self-

consciousness’ (sensu Clarke 1973) of the field by carefully scrutinizing the rigor and 
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integrity in the way that they generate archaeological inference. This involves greater 

transparency in the assumptions guiding hypothesis generation and the basic properties of 

experimental design (Domínguez-Rodrigo 2008). Finally, as stated earlier, this essay 

does not call for the rejection of replicative experimentation. Instead, both replicative and 

controlled experimentation in the forms of pilot and second generation studies are 

necessary for the investigation of the origin and use of lithic artifacts. In conjunction with 

greater efforts to outline experimental design and its relationship to the overall 

experimental process, lithic experiments can effectively provide constructive referential 

linkages for building sound inferences of past behavior and adaptation based on 

prehistoric stone artifacts. 
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CHAPTER 3: On the Utility and Economization of Unretouched Flakes: The Effects 

of Exterior Platform Angle and Platform Depth2 

 

3.1 Abstract 

In recent years, lithic studies have emphasized the role of technology in the 

overall adaptation of past societies to their environments, including the economization of 

lithic resources. This paper explores how particular characteristics of individual, 

unretouched flakes can be altered in ways that increase their economy, as reflected in the 

ratio of edge length to mass. Results of controlled laboratory experiments are presented 

that identify exterior platform angle and platform depth as being primary independent 

variables affecting this ratio. These relationships are then tested against a number of 

archaeological assemblages. 

3.2 Introduction 

The explanation of variability in lithic assemblages has been one of the 

fundamental goals in archaeology since the beginning of the discipline. Moving beyond 

the traditional cultural-historical paradigms based on artifact typology, archaeologists in 

the 1980s began to place emphasis on the organization of behavior that underlies overall 

variability in the archaeological record. In stone tool studies, this was reflected by a focus 

on the organization of technology (Bamforth 1986; Binford 1979, 1980; Potts 1991; Shott 

1986; Torrence 1983). Relying on frameworks of behavioral ecology and optimal 

                                                           
2 Author(s): Sam C. Lin, Zeljko Rezek, David R. Braun, and Harold L. Dibble. Author contributions: S.C.L., 
Z.R., H.L.D. designed research; S.C.L., Z.R., H.L.D. performed research; D.R.B. contributed data; S.C.L., Z.R., 
H.L.D. analyzed data; S.C.L., Z.R., H.L.D. wrote the paper. 
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foraging theory, archaeologists shifted attention from describing recurring tool forms to 

investigating the behavioral context of raw material acquisition, stone tool manufacture, 

use, transport, and discard. One of the main themes of these studies is the emphasis on 

behavioral strategies and their adaptive relationships with environmental constraints. In 

this paper a new dimension of variability with implications for adaptive significance will 

be explored, namely the production of flakes with a higher ratio of cutting edge to mass. 

Based on a series of controlled experiments (Dibble and Rezek 2009), it will be shown 

here that this ratio can be affected by certain parameters (specifically platform depth and 

exterior platform angle) that are directly under the control of a knapper, and the 

archaeological relevance of the interaction between these two variables is confirmed with 

reference to a large number of archaeological lithic assemblages. 

In the framework of technological organization, lithic variability arises as a result 

of the dynamic interaction between behavioral strategies and the broader environment. 

These strategies “guide” the technological component of human behavior in relation to 

resource distribution, cost/benefit of time and energy, and risk management (Andrefsky 

2009; Nelson 1991). The framework of technological organization is commonly 

conceptualized as different levels of strategic behavior organized hierarchically (Carr and 

Bradbury 2011; Nelson 1991). Artifact design and activity distribution are influenced by 

strategies such as scheduling and mobility, which are in turn structured by higher order 

economic and social strategies. The economic relationship between resources and the 

cost/benefit of energy has been argued to play a large part in the way these strategies are 

inferred. For example, the degree of time and energy invested in the production and use 
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of stone tools is seen as a technological behavior associated with risk management in 

relation to resource procurement (Bamforth and Bleed 1997; Bousman 1993, 2005; 

Elston 1990; Torrence 1983, 1989). And as resource distribution varies in both quality 

and quantity across the landscape, the economic relationship involved in resource 

procurement would have played a significant role in the organization of hunter-gatherer 

technology (Bousman 1993; Smith 1979; Winterhalder 2001). The importance of the 

design of lithic toolkits in relation to environmental conditions and group mobility is seen 

as being especially important, as the design of stone tools is a reflection of their 

immediate and future use (Bousman 1993; Jeske 1989; Kuhn 1994, 1995; Torrence 1983, 

1989). 

Thus far, much of the attention for studying the economic structure of lithic 

technology has been on retouched implements. Several discussions (e.g., Andrefsky, 

1994; Bamforth, 1986, 1990; Bleed, 1986; Kelly & Todd, 1988; Kelly, 1988; Parry & 

Kelly, 1987; Shott, 1986) have focused on the design properties of mobile toolkits that 

facilitate different aspects of technological organization. These criteria include reliability, 

maintainability, transportability, risk management, time-stress, utility, and use life. 

Accompanied by an increasingly sophisticated methodology (e.g., Andrefsky, 2006; 

Clarkson, 2002; Iovita & McPherron, 2011; Iovita, 2011; Kuhn, 1990), various 

characteristics of retouched edges became a central focus for lithic analysts because it 

was felt that they provide observable and quantifiable units of intentional tool 

modification. The recognition of the effects of resharpening has also allowed the 

assessment of the extent of reuse and recycling among these formal tools as economic 
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strategies to buffer against the supply and demand of available toolstone. Thus, studies of 

retouched edges aim to interpret the extent of tool reuse and maintenance (e.g., Bamforth, 

1986; Dibble, 1984, 1995b; Frison, 1968; Kuhn, 1992, 1995; Shott, 1989) and its effect 

on tool form and degree of curation (Andrefsky 2006, 2009; Shott and Sillitoe 2004, 

2005; Shott 1996a). 

Unretouched flakes, however, receive relatively less attention despite their clear 

significance in the organization of hunter-gatherer technology, as shown especially in 

ethnographic studies (Binford & O’Connell, 1984; Hayden, 1979b; Shott & Sillitoe, 

2005; Sillitoe & Hardy, 2003; White & Thomas, 1972; White, 1967; see Holdaway & 

Douglass, 2012 for review), and by the fact that they usually represent the largest 

component of lithic assemblages. It has also been shown that flakes are deliberately 

produced and used in an unretouched state (Dibble and McPherron 2006). The fact is, 

however, that they are most often regarded as byproducts of particular core reduction 

strategies, or in terms of the selection of blanks for making retouched “tools.” As a result, 

they are often not considered to be a central element of models concerning technological 

organization and optimization. While some measures involving unretouched flakes, such 

as blank-to-core or tool-to-flake ratios, are seen as reflecting reduction intensity and 

artifact recycling (Dibble 1995b), methods for quantifying the specific attributes of 

unretouched flakes that reflect efficiency, or relative utility, have yet to be fully 

developed in stone artifact studies. 
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This brings up the question: where is the utility in unretouched flakes? While 

characteristics such as size and durability clearly played significant roles in the 

production and selection of lithic artifacts (Braun et al. 2009b; Key and Lycett 2011; 

Prasciunas 2007), ethnographic data has repeatedly demonstrated the importance of a 

flake’s usable sharp edge. For example, in their review of ethnographic accounts on stone 

artifact selection, Holdaway and Douglass (2012) argue that unretouched flakes 

constitute the fundamental functioning unit within lithic technologies and that the 

overriding purpose of many, if not most, lithic reduction technologies is simply to 

produce usable edges (also see Douglass, 2010). Kuhn (1994, 1995) and Morrow (1996; 

see also Roth and Dibble 1998) have discussed the expression of flake utility in terms of 

the amount of cutting edge vs. flake volume (weight) (also see Leroi-Gourhan 1964). 

This view underlies Shott and Sillitoe’s (2005:657) argument that utility represents “the 

amount of use that a tool can supply in time, tasks performed, or other measures of use,” 

and that utility can be realized from the artifact volume through edge rejuvenation and 

resharpening. In a sense, the amount of usable edge and the total volume of the artifact 

represent a trade-off between utilities that are immediately available and those that are 

potentially extractable in the future. 

Momentarily putting aside its potential utility through subsequent (re-

)modification, if an unretouched flake’s utility, or value, is thus defined as the amount of 

cutting edge it provides, then any measure of economization for such flakes should be 

based on the amount of cutting edge in relation to the amount of material used. In other 

words, and to the extent that flake shape is constrained because of different raw material 
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properties or different uses, flakes with longer edges and less mass overall can be seen as 

being more economical, while flakes with shorter edges and more mass can be considered 

less so. 

It does appear that certain core reduction technologies vary in the number of 

flakes produced and thus also in the total amount of cutting edge produced for a given 

volume of raw material. For instance, Levallois technology has been argued to be an 

efficient reduction strategy in both maximizing the amount of usable edge produced and 

minimizing waste of core preparation (Brantingham and Kuhn 2001; Dibble and Bar-

Yosef 1995; c.f. Sandgathe 2004). Related to this, it has also been argued that the 

reduction of cores through what is known as “classic” linéal Levallois (Boëda 1994, 

1995) results in flakes that are thinner and with mass that is more evenly distributed 

across their cross section (Eren and Lycett 2012; Van Peer 1992), which gives them a 

more viable working edge. Likewise, the systematic production of blades has been 

viewed as an example of enhanced technological efficiency for higher rates of flake 

production, as well as the large increase in the total length of cutting edge per volume of 

stone (Bar-Yosef and Kuhn 1999; Mackay 2008; c.f. Eren et al. 2008). However, these 

approaches largely remain restricted to categorical distinctions between technologies 

(e.g., Levallois vs. discoidal vs. blade) rather than relying on explicit measures of 

continuous variation in flake properties. An exception is Tactikos’ (2003) quantitative 

assessment on the temporal trends of flake-edge-to-mass ratio across the Paleolithic and 

Mesolithic based on archaeological data and samples generated by replicative 

experiments. 



 

71 
 

Using experimental and archaeological data, it has been suggested earlier (Dibble 

1997) that it is possible to control flake size and morphology through manipulation of 

certain platform attributes under the direct control of a knapper. Specifically, these 

platform variables are exterior platform angle and platform depth. What we will 

demonstrate here is that these same variables directly affect the length of cutting edge in 

relation to the mass of individual flakes. 

3.3 Increasing the Ratio of Flake Edge to Mass 

There are a number of flake attributes that directly affect edge length and mass. 

The first three to be discussed are based on solid geometry, while the last two take into 

account characteristics specifically relevant to stone flakes.  

 

Figure 1 – Three geometric models of flake shape: (a) a sphere intersected by a plane; (b) a triangular 

prism with a square base (i.e., length = width); (c) a triangular prism with a rectangular base (i.e., length = 

4 * width). 

 

 

Figure 1 presents three geometric models that resemble flakes: a sphere 

intersected by a plane (Figure 1A) and two triangular prisms, one whose base length and 

width are equal (Figure 1B) and one whose length is four times its width (Figure 1C). 

Table 1 presents the numerical results of the first three strategies to be discussed. 
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Table 1 – Basic dimensions and dimension ratios of the three geometric models shown in Figure 1. Note: 

For each shape, the second row represents a doubling of all three dimensions given in the first row, while 

the third row decreases height in relation to the surface area of the base, while maintaining the same 

volume as the first row.  

 

One strategy to increase the length of working edge, and perhaps the most 

obvious one, is to increase overall flake size. In Table 1, comparing the first and second 

rows for each geometric shape shows what happens when each of the three flake 

dimensions are doubled. While increasing overall flake size results in a doubling of edge 

length, this approach also has certain costs. The square-cube principle of proportional 

solids, sometimes referred to as allometry, results in an overall eight-fold increase in 

flake volume. In a very real sense, then, increasing flake size to obtain more edge is 

extremely uneconomical in itself, but it does remain an attractive option if the goal is to 

resharpen the flake repeatedly. A second strategy is to change the shape of the flake, and 

this can be done in two different ways. The first is to change the two-dimensional shape 

of the flake. Using the same three shape models, and with each shape having the same 

volume (of 1 unit3), it is clear from comparing the first rows of Table 1 that the three 

 

Shape 

  

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

Ratio of 

Length 

to Width 

Surface 

Area 

(mm2) 

Surface 

Area/ 

Thickness 

Edge 

Perimeter 

(mm) 

Volume 

(mm3) 

  2.22 2.22 0.49 1 3.88 8 6.98 1 

Circular 4.44 4.44 0.97 1 15.51 15.99 13.96 8 

  3.23 3.23 0.24 1 8.19 33.76 10.14 1 

  2 2 0.5 1 4 8 8 1 

Square 4 4 1 1 16 16 16 8 

  2.83 2.83 0.25 1 8.01 32.04 11.32 1 

  4 1 0.5 4 4 8 10 1 

Rectangle 8 2 1 4 16 16 20 8 

  5.65 1.41 0.25 4 7.98 31.92 14.13 1 
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different flake shapes have different perimeters, with circular ones having the lowest and 

the elongated rectangular prism having the highest. Thus, in knapping terms, increasing 

the ratio of length to width will result in flakes that have more usable edge per unit of 

volume. A second possible change in shape is to decrease flake thickness relative to 

surface area. As shown in Table 1, comparing the third row for each shape with its first 

row, decreasing thickness relative to surface area substantially increases edge length, 

even though volume is held constant. 

While these simple geometric shapes can clarify certain relationships between 

edge length and flake volume, actual flakes are not quite as simple. In particular, two 

other considerations have to be taken into account. One of these is the size of the 

platform. While the models used above assume that the entire perimeter of a flake 

represents usable edge, in reality much of the proximal end of a flake is taken up by the 

striking platform. Not only does the platform represent an unusable edge, it also 

represents material that is taken from a core’s striking platform, with the implication 

being that larger platforms will also diminish the use life of a core. Therefore, decreasing 

the size of the platform while maintaining edge length would not only conserve material 

that is part of the flake, but it would also help to maintain the core itself. 

The final flake characteristic to be taken into account is the volume of the bulb of 

percussion. In most cases, the volume of material included in the bulb is essentially 

wasted mass, and in our experimental flakes, the volume of the bulb can exceed 20 
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percent of the overall flake volume. Therefore, decreasing bulb volume in relation to 

overall flake volume should be an economically desirable feature of flake production. 

So, if the goal is to increase the absolute length of a flake’s edge, one approach is 

(a) to increase the overall size of the flake, though this is in itself a relatively inefficient 

approach if the flake remains unretouched. It is much better, therefore, to change the 

shape of the flake so that it is either (b) more elongated or (c) has a reduced thickness 

relative to surface area. Either of these changes will help increase the edge length while 

limiting increases in overall volume. Other strategies that can be used in conjunction with 

the first two are (d) decrease the relative size of the platform, which both reduces the 

amount of unusable edge and maintains the core’s striking platform surface, and (e) 

decrease the relative volume of the bulb of percussion, which is typically wasted 

material. While all of these attributes work together, in the following sections we will 

examine how a knapper can affect each of them when producing individual flakes. 

3.4 Materials and Methods 

Experimental data presented here were produced by the controlled experiment 

setup described in Dibble and Rezek (2009) and Rezek et al. (2011). It consists of a 

flaking apparatus with a core mount. Cores are securely clamped in the mount on the 

sides and the back, and the mount is adjustable for changes in the angle of the core 

platform surface relative to the angle at which the hammer strikes the platform (angle of 

blow) and also the distance from the point of percussion to the platform edge (platform 

depth, as defined by Dibble and Pelcin (1995); Dibble and Whittaker (1981); Figure 2). 
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The exterior surface of the core is completely exposed to prevent potential interference 

from the mount during flake formation. The hammer is made of steel and attached to a 

pneumatic cylinder; the tip of the hammer is shaped so that only the edge of it strikes the 

core. The extension of the pneumatic cylinder allows the hammer to hit the core platform 

and thus initiate the fracture that results in a flake. The cores themselves were 

manufactured from standard soda/lime glass with a semispherical surface morphology 

(Dibble and Rezek 2009), and thus are consistent in both size and shape. Because of the 

pneumatic cylinder, the applied force and velocity of each hammer displacement is 

uniform for every strike. 
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Figure 2 – Illustrations showing how basic flake measurements were taken. See text for more details. 
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In addition to the experimentally produced flakes, a large number of complete, 

unretouched flakes from various archaeological contexts were also included this study 

(Table 2). These data were collected by several individuals over the course of many years 

as part of their basic descriptions of these assemblages. While impossible to quantify at 

this stage, there is undoubtedly some degree of inter-observer error (reliability), although 

the manner in which all of the observations were taken has always been similar. It should 

be noted that in the subsequent analyses, no effort was made to control for various scar 

morphologies, raw materials, or other factors that may confound the results being 

investigated. In other words, all of the flakes greater than 2.5 cm in maximum dimension 

that had non-missing values for the specific variables being analyzed were included. 
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Assemblage Location Layer Industry N Reference  

1017 Nubia N/A Khormusan (MSA) 145 Marks 1968  

FxJj1 Kenya N/A Oldowan 58 Isaac and Harris 1997  

FxJj10 Kenya N/A Oldowan 157 
Braun 2006; Isaac and 

Harris 1997 

FxJj16 Kenya N/A Karari Industry 63 Harris and Isaac 1997  

FxJj18G Kenya N/A Karari Industry 95 Harris and Isaac 1997  

FxJj20_M Kenya N/A Karari Industry 113 Isaac and Harris 1997  

FxJj63 Kenya N/A Acheulian 269 Harris and Isaac 1997  

FxJj82 Kenya N/A Oldowan 87 Braun et al. 2009a  

Brakfontein S. Africa N/A LSA (Smithfield) 38 White and White 1964  

Biache St-Vaast N. France IIA Ferrassie Mousterian 1378 Dibble 1995a  

Combe-Capelle S. France 1D Quina Mousterian 433 Dibble and Lenoir 1995  

Combe-Capelle S. France 1D1 Quina Mousterian 103 Dibble and Lenoir 1995  

Combe-Capelle S. France 1E Quina Mousterian 365 Dibble and Lenoir 1995  

Combe-Capelle S. France 2A Quina Mousterian 285 Dibble and Lenoir 1995  

Combe-Capelle S. France 2B Quina Mousterian 114 Dibble and Lenoir 1995  

Combe-Capelle S. France 4A Quina Mousterian 183 Dibble and Lenoir 1995  

Combe-Capelle S. France 4B Quina Mousterian 125 Dibble and Lenoir 1995  

Combe-Capelle S. France 4C Quina Mousterian 224 Dibble and Lenoir 1995  

Pech IV S. France 3a MTA 1510 Turq et al. 2011  

Pech IV S. France 3b MTA 2452 Turq et al. 2011  

Pech IV S. France 4a Mousterian w Levallois 166 Turq et al. 2011  

Pech IV S. France 4c Mousterian w Levallois 488 Turq et al. 2011  

Pech IV S. France 5a Mousterian w Levallois 1211 Turq et al. 2011  

Pech IV S. France 5b Mousterian w Levallois 382 Turq et al. 2011  

Pech IV S. France 6a Mousterian w Levallois 1547 Turq et al. 2011  

Pech IV S. France 6b Mousterian w Levallois 1311 Turq et al. 2011  

Pech IV S. France 8 Mousterian w Levallois 991 Dibble et al. 2009  

Roc de Marsal S. France 2 Quina Mousterian 345 Unpublished  

Roc de Marsal S. France 3 Quina Mousterian 104 Unpublished  

Roc de Marsal S. France 4 Quina Mousterian 1062 Unpublished  

Roc de Marsal S. France 5 Mousterian w Levallois 861 Unpublished  

Roc de Marsal S. France 6 Mousterian w Levallois 256 Unpublished  

Roc de Marsal S. France 7 Mousterian w Levallois 1327 Unpublished  

Roc de Marsal S. France 8 Mousterian w Levallois 1195 Unpublished  

Roc de Marsal S. France 9 Mousterian w Levallois 2835 Unpublished  

Boker (D100A) Levant (Israel) Area A Ahmarian 133 Marks 1977  

Rosh Ein Mor Levant (Israel) Area A Levantine Mousterian 213 Crew 1976  

Rosh Ein Mor Levant (Israel) Area C Levantine Mousterian 200 Crew 1976  

Ein Aqev (D31) Levant (Israel) Lower Levantine Aurignacian 128 Marks 1976  

Ein Aqev (D31) Levant (Israel) Upper Levantine Aurignacian 83 Marks 1976  

Ein Aqev East (D34) Levant (Israel) All Ahmarian 107 Ferring 1977  

D40 Levant (Israel) All Levantine Mousterian 157 Munday 1976  

 

Table 2 – Details on archaeological assemblages used in the analyses. Note: Only complete, unretouched 

flakes are included, as indicated by their respective N. 
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All independent variables, including angle of blow, hammer material, platform 

and core surface morphology, are held constant except for exterior platform angle (EPA) 

and platform depth (PD). EPA is measured at the intersection of the platform and the 

exterior core surface. To facilitate control over this variable, cores were designed so that 

there was no longitudinal curve along the exterior surface immediately behind the 

platform. For the experimental data used here, core EPA varies from 55 degrees to 95 

degrees in 10-degree intervals. Different exterior platform angles are produced by making 

transverse cuts at the platform end with a diamond blade wet saw and measured with a 

goniometer. PD is measured from the point of percussion to the exterior edge of the 

platform. PD varies continuously between flakes. To minimize inter-observer error, four 

individual measurements of PD were taken on each flake separately and the mean was 

used for analysis. Dependent variables included in this study include flake weight, flake 

dimension, platform width, and the volume of the bulb of percussion. Flake weight is 

measured with an electronic scale to the nearest .1 gm. Flake dimensions consists of flake 

length (measured from the point of percussion to the most distal point on the flake), flake 

width (measured perpendicularly to flake length at the midpoint of the flake), and flake 

thickness (measured at the point of intersection of length and width). Platform width is 

measured perpendicularly to the axis of PD along the platform from one lateral edge to 

the other. 

Four dependent variables were measured and calculated using a digitizing stylus 

Microscribe G2X and Rhinoceros software. These are flake edge length (measured to the 

nearest .01 mm), flake surface area (measured to the nearest .01 mm2) representing a 
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projected two-dimensional measure of the outlined flake surface, platform area 

(measured to the nearest .01 mm2), and volume of the bulb (measured to the nearest .01 

mm3) (Figure 3). For archaeological flakes, flake surface area was estimated by 

multiplying flake length by flake width, while edge perimeter was measured as 2 x 

(length + width). Bulb data are available for only a small portion of the archaeological 

data and consist of measurements of the length of the bulb. Platform area was calculated 

as Platform Width x Platform Depth. By comparing the results of using both ways to 

record these variables on the experimental flakes, it is possible to show that the 

differences are not significant (Table 3). 

 

  r2 p 

Edge Length .9475 <.000001 

Surface Area .9398 <.000001 

Platform Area .9974 <.000001 

Bulb Volume  .5147 .00004 

 

Table 3 – A test of the differences in which particular variables were recorded (using a Microscribe for the 

experimental flakes, linear measurements for archaeological flakes) by applying both techniques to the 

experimental flakes. 
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Figure 3 – Definition of bulb of percussion. After digitizing the interior surface of a flake (a) five curves 

were projected on that surface, emanating from the point of percussion and with 45° between each adjacent 

pair (b). Each of the five curves follows convexities and concavities present at the surface (c). With the aid 

of the curvature graph (represented by rays which are scaled to the degrees of convexity or concavity along 

the length of a curve in (e) and (f), the local minimum point of the first upward concavity from the point of 

percussion (d) is marked for each respective curve (g). These five points are then connected with another 

curve (g), which serves as a limit of the bulb in its definition (h). 
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3.5 Results 

3.51 Increasing Overall Flake Size 

Two independent experimental studies have shown previously that flake size is 

not a function of the amount of force applied to the core, even though larger (i.e., in terms 

of overall mass) flakes require more force to be successfully removed (Dibble and Pelcin 

1995; Dibble and Rezek 2009). At the same time, the morphology of a core’s flaking 

surface does not affect size either (Pelcin 1997a). However, and this has been confirmed 

repeatedly in many controlled experiments (Dibble and Pelcin 1995; Dibble and Rezek 

2009; Dibble and Whittaker 1981; Pelcin 1997a; Speth 1981), flake size is undeniably a 

function of two variables: platform depth and exterior platform angle. Increasing either or 

both of those will result in larger flakes. 

Figure 4 presents data obtained from recent controlled experiments (Dibble and 

Rezek 2009) concerning platform depth, exterior platform angle, and flake size. In this 

figure, note that platform depth is expressed as the cube, which renders the relationship 

linear due to the square-cube principle of proportional solids (platform depth increases in 

one dimension, while weight represents the combined effect of all three dimensions). 

There are two things to emphasize with these graphs. The first is that for each value of 

exterior platform angle, increasing the platform depth results in flakes with larger mass. 

Second, as the exterior platform angle increases, the relationship between flake mass and 

platform depth changes such that smaller increases in the latter result in even larger 

increases in the former. This is reflected by the slope of the regression equation, which 

shows that for lower values of exterior platform angle, flake weight increases relatively 
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slowly per unit increase of platform depth; but at higher values of exterior platform angle, 

flake weight increases much more rapidly for each unit that platform depth increases. 

Thus, platform depth and exterior platform angle each contribute to increasing the overall 

size (weight) of flakes. 

 

Figure 4 – Graphs of flake mass (vertical axes) and the cube of platform depth (horizontal axes) by 

increments of exterior platform angle for both the experimental and archaeological samples. 
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As shown in the lower portion of Figure 4, these exact same relationships can be 

seen in samples drawn from archaeological assemblages. This serves to confirm the 

results of the controlled experiment, and demonstrates as well that these relationships are 

quite fundamental in terms of basic flake production. 

3.52 Changing Flake Shape 

Increasing the Length to Width Ratio: Controlling the two-dimensional plan-view 

flake shape, in particular the ratio of length to width, is something that has been 

investigated over many years of replicative experiments, resulting in an almost axiomatic 

consensus that core surface morphology is the major independent variable that affects 

flake shape (Bar-Yosef and Kuhn 1999; Boëda 1986; Bordes 1961; Debénath and Dibble 

1994; Inizan et al. 1995; Tixier et al. 1980). For example, it is most often believed that a 

core with parallel ridges will produce elongated blades, that a more rounded surface will 

produce circular flakes, and so forth. Recently, a controlled experiment was conducted 

focusing on core morphology and its effects on flake shape, and the results showed that 

while core surface morphology does influence flake shape, exterior platform angle has an 

even stronger influence (Rezek et al. 2011). When examined within a single core 

morphology (Figure 5), flakes made with higher exterior platform angles expressed 

higher ratios of length to width than those made with lower exterior platform angles. 

Moreover, these same results are obtained when using archaeological lithic assemblages 

without controlling for exterior scar morphology. 
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Figure 5 – Mean values of the ratio of flake length to width by increments of exterior platform angle for 

both the experimental and archaeological samples. For this and the following figures, F values were 

calculated with ANOVA. 

 

Increasing the Flake Area to Thickness Ratio: As discussed above, the other 

change to flake shape that can influence the amount of usable edge relative to overall size 

is to decrease flake thickness relative to flake area. As already shown, platform depth is 

directly related to overall flake size, but as shown in Table 4, it affects each of the three 

linear dimensions of length, width, and thickness that all contribute to overall size. 

However, in both the experimental and archaeological data, the highest correlations 

between platform depth and flake dimensions are with flake thickness (Table 4). So, 

decreasing platform depth will decrease flake thickness more than the other two 

dimensions, but overall size will decrease as well. Then again, since overall size is also 

influenced by the exterior platform angle, decreasing platform depth while 

simultaneously increasing exterior platform angle will result in flakes that are still large 

in terms of surface area, but relatively thinner and lighter. Since both thickness and 

weight are reflecting the contribution of platform depth, dividing flake surface area by 
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either of these measures (while controlling for allometric effects) indirectly standardizes 

the effects of platform depth on these measures, thus allowing us to examine these 

variables with regard to exterior platform angle alone. In Figure 6, it is clear that in both 

the experimental and archaeological samples flake surface area, in relation to both flake 

thickness and weight, increases with increases in exterior platform angle. 

 

 

 

 

 

 

 

Table 4 – R-squared and p values for correlations between platform depth and various flake measurements 

for both the experimental and archaeological samples. 

  

 Experimental 

Sample 

 Archaeological 

Sample 

 (N=35)  (N=10,886) 

  r2 p  r2 p 

Weight .588 <.0001  .229 <.0001 

Length .17 .0112  .084 <.0001 

Width .704 <.0001  .231 <.0001 

Thickness .783 <.0001  .304 <.0001 

Platform Width .972 <.0001  .422 <.0001 
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Figure 6 – Mean values of the ratios of flake area to both thickness and weight by increments of exterior 

platform angle for both the experimental and archaeological samples. 
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3.53 Reducing the Size of the Platform and Bulb of Percussion 

So far the discussion has been on the size and shapes of flakes and the effects 

these have on increasing surface area in relation to thickness or weight. In this section, 

attention is turned to two other flake attributes, platform size and the volume of the bulb 

of percussion, which also relate to efficiency, since both represent potentially wasted 

material. The size of both of these attributes is also highly influenced through the 

combination of platform depth and exterior platform angle. 

When the shape of the core behind the platform is held constant, platform depth 

has a strong and direct effect on platform width (Figure 7), though if the surface behind 

the platform becomes more convex or more concave, the ratio of platform width/platform 

depth either decreases or increases, respectively. However, detailed examination of those 

relationships, and strategies to control them, are beyond the scope of the present paper. 

What is of most interest here is not the shape of the platform, but its overall size, as 

represented by platform area, since it represents the portion of the core’s platform surface 

that is removed along with the flake itself. All else being equal, flakes with smaller 

platform areas have less waste, and smaller flake platforms also minimize the effect of 

the flake removal on the core’s striking surface. Since platform depth has such a strong 

effect on platform width, the strategy again is to decrease platform depth (which 

decreases platform width and, therefore, platform area as well), while maintaining flake 

size by increasing the exterior platform angle. The same strategy applies to decreasing the 

volume in the bulb of percussion. 
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Figure 7 – Correlation of platform width and platform depth in experimental sample with constant core 

morphology. 
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Platform area is especially important in terms of maintaining the core surface 

area, but platform width alone, on the other hand, represents a portion of a flake’s edge 

that is usually not useful. In examining the effects of platform depth and exterior platform 

angle on platform width, it is best to break down the overall edge perimeter into that 

portion represented by platform width and the other portion that is usable (of course, 

assuming no natural backing on the flakes). For both samples, then, the ratio that is most 

relevant is the percentage of usable edge, which is calculated as (total flake perimeter— 

platform width) / total flake perimeter. As shown in Figure 8, there is a clear relationship 

between exterior platform angle and this ratio in both the experimental and 

archaeological samples. 

 

Figure 8 – Mean values of the percentage of usable edge (see text) by increments of exterior platform 

angle for both the experimental and archaeological samples. 
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Finally, equally clear effects are seen between exterior platform angle and the size 

of the bulb of percussion (Figure 9) in that higher exterior platform angles result in 

smaller bulbs of percussion. 

 

 

Figure 9 – Mean values of the ratios of bulb volume to flake weight by increments of exterior platform 

angle for both the experimental and archaeological samples. 
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So far we have examined, in turn, several variables that contribute to increasing 

the edge length in relation to mass, and in each case exterior platform angle plays a 

significant role. It should also be true, therefore, that the primary ratio of interest— edge 

length to mass— is similarly affected by this independent variable. Figure 10 shows that 

this is the case. 

 

Figure 10 – Mean values of the ratios of usable edge perimeter (see text) to the cube root of flake weight 

by increments of exterior platform angle for both the experimental and archaeological samples. 
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It should be clear at this point that through an interplay of both platform depth and 

exterior platform angle— two variables that are under the direct control of the knapper— 

it is possible to effectively increase the ratio of usable edge to flake mass. The above 

results are summarized in Figure 11, which illustrates the various effects of these two 

variables as two diagonal axes. First, overall flake size is determined by increasing or 

decreasing both of these variables at the same time, resulting in larger or smaller flakes, 

respectively. If, however, one of these variables is decreased while the other is increased, 

the result is a number of changes in a flake’s morphology that, when analyzed either 

individually or together, alter measures of the overall economy of the flake. 

 

Figure 11 – Schematic diagram illustrating the relative effects of exterior platform angle and platform 

depth on variables reflecting more or less economical flakes and smaller vs. larger overall size. The dashed 

lines reflect the mean values of exterior platform angle and platform depth for the archaeological 

assemblages used here, thus creating the four groups of assemblages that are compared in Table 4. 
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While the preceding analyses were based on individual flakes, it is also possible 

to test these effects by comparing mean values of the relevant variables computed for 

whole assemblages of flakes. First, the mean values of exterior platform angle and 

platform depth are computed for each archaeological assemblage, and then the average 

(for all assemblages) of those means (= 76.8 and 6.9 for exterior platform angle and 

platform depth, respectively) is used to divide the assemblages into four groups: those 

with higher or lower than average values of exterior platform angle, and those with 

higher or lower than average values of platform depth. Then it is possible to compare the 

average values of each of the groups for the dependent variables analyzed thus far (with 

the exception of bulb length, which was recorded on very few of the assemblages used 

here). Thus, and referring again to Figure 11, we can compare the average assemblage 

values of weight between groups B and C (the opposite extremes along the size axis) and 

the average values of the other variables between groups A and D along the economical 

axis. As shown in Table 5, all of these comparisons fall in the direction predicted, and all 

are significant. Thus, all of the relationships discussed above are clearly apparent even at 

the level of assemblages, rather than individual flakes. Since the relationships are the 

same in both cases, it shows that the effects crosscut major technologies and exist, 

therefore, at the very fundamental level of the mechanics of chipped stone. 
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  High EPA Low EPA       

   Low PD High PD     

  (Group A) (Group D)     

  Mean Mean T df p 

Length / Width 1.74 1.40 4.55 23 .000143 

Flake Area / 

Thickness 
5.62 3.89 5.97 23 .000004 

Flake Area / Weight  16.20 14.68 6.72 23 .000001 

% Usable Edge .86 .84 3.85 23 .000822 

Usable Edge / 

Weight 
58.99 50.25 9.69 23 .000000 

        

  High EPA Low EPA       

  High PD Low PD      

  (Group C) (Group B)      

  Mean Mean T df p 

Weight 47.59 10.19 5.44 15 .000068 
 

Table 5 – Statistical comparisons of the groups defined in Figure 11 on the basis of variables that reflect 

economization (upper) and overall size (lower). 
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3.6 Assessing Economic Behavior in Archaeological Assemblages 

What has been demonstrated so far is that the interaction of EPA and PD 

significantly affects flake morphology. These relationships are not only seen under 

controlled experimental conditions, but are also apparent in archaeological samples. 

While we have argued that the kinds of changes in flake morphology described here 

relate to varying degrees of economization— and these arguments are based on simple 

geometric principles— it would be more satisfying if it were possible to test whether or 

not hominin populations actually employed such strategies in increasing the length of 

working edge under particular conditions, such as in situations of raw material scarcity. 

However, our inability to control, characterize, or quantify such external factors makes 

such a test impossible, at least with the methods currently at our disposal. 

Even so, it is possible to show that there is variation in the two independent 

variables, and in the concomitant effects that they have on flake morphology, among 

archaeological assemblages. For example, Figure 12 plots a series of French Mousterian 

assemblages from three sites: Pech de l’Azé IV (Turq et al. 2011), Combe-Capelle Bas 

(Dibble and Lenoir 1995), and Roc de Marsal. In traditional Bordian systematics based 

on relative proportions of different tools (Debénath and Dibble 1994), these assemblages 

represent several different variants. In this figure, however, two groups emerge: one 

contains all of the assemblages from the various sites that are identified as belonging to 

the Quina Mousterian, while the other represents a number of non-Quina variants. Based 

on the above analysis, the Quina group would appear to be the least economical group, 

and the non-Quina group would appear to be the more economical one. 
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Figure 12 – Various French Mousterian assemblages plotted according to their mean values of EPA and 

PD. 

 

 

In fact, this dichotomous relationship within Mousterian assemblages is reflective 

of two distinct strategies of economization. One, evident in the non-Quina group, is the 

production of flakes, especially those produced through Levallois technology, that have 

higher edge to mass ratios (Figure 13). There are relatively fewer retouched pieces in 

these assemblages, and the degree of resharpening (as measured by those “tools” that 

reflect more or less resharpening episodes; Dibble 1995b) is also less. The other strategy, 

evident in the Quina group (Figure 14), emphasized the production of flakes having less 
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edge margin to mass, but these assemblages reflect a distinctly different approach to 

conservation of material. As has been demonstrated earlier (e.g., Rolland and Dibble 

1990; Turq 1989, 1992), many characteristics of Quina Mousterian lithic assemblages 

reflect an emphasis on repeated tool resharpening. Such a strategy is based on the 

production of flakes with a suitable shape and volume to maximize the number of 

resharpening episodes. Undoubtedly, these two approaches are not mutually exclusive, 

since more economical flakes can themselves be resharpened. Nevertheless, they both 

show deliberate, though different, attempts to increase the efficiency of their lithic 

technologies, one through changing the morphology of the flakes to provide more usable 

edge per units of mass (the non-Quina group) and the other by maximizing the 

resharpening potential of the flakes. While it remains unclear as to why one strategy 

would be adopted over the other, clearly each group manipulated the two independent 

variables of EPA and PD to produce different flake morphologies, and each approach can 

be viewed as having different effects on economization. What this potentially suggests is 

that by the time of the French Mousterian, at least, hominins were aware of the need for 

more efficient products and developed varying strategies for achieving them. 
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Figure 13 – Lithic artifacts from various non-Quina assemblages plotted in Figure 12. (a), (b), (e) Pech IV, 

Level 5A; (c), (d) Roc de Marsal, Level 9; (f) Pech IV, Level 6a; (g) Roc de Marsal, Level 5; (h) Pech IV, 

Level 3B. 
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Figure 14 – Lithic artifacts from various Quina assemblages plotted in Figure 12. (a) Pech IV, Level 4A; 

(b) Combe-Capelle Bas, Level I-2B; (c) Combe-Capelle Bas, Level I-2A; (d), (e) Combe-Capelle Bas, 

Level I-1E.  
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3.7 Discussion and Conclusions 

For many years it has been emphasized that economization of resources 

constitutes an important explanation for many aspects of lithic variability (Odell 1996). 

As discussed in the opening of this paper, such explanations have largely focused on the 

design or maintenance of retouched pieces or on major technologies. Until now there has 

been little discussion of how economization works at the level of the production of 

individual flakes. To a large extent, this lag is a result of the lack of solid middle range 

theory (Binford 1977b) concerning the most fundamental aspects of flake production and 

the means by which knappers can alter specific characteristics of the flakes they produce. 

Highly controlled experiments are now beginning to contribute significantly to that body 

of theory, and to a large extent, such experiments allow us to completely turn around the 

scientific process through which we can develop new models of lithic variability. Instead 

of drawing on the archaeological record to generate hypotheses that are then “tested” 

through replicative studies, it is now possible to identify specific cause-and-effect 

relationships in the lab and then proceed to test them with the archaeological record. 

This latter process is the one that has been used here. This study began with the 

assumptions that (a) people relying on stone tool technologies use unretouched flakes; 

and (b) that the cutting edge represents one fundamental utility of an unretouched flake. 

Thus, one way to economize on lithic resources would be to increase the amount of 

cutting edge in relation to the amount of mass contained in a flake. There are then two 

levels of understanding as to how this can be achieved. The first level is theoretical. By 

drawing on models of solid geometry and particular attributes of chipped stone flakes, it 
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is possible to identify a number of characteristics— including overall shape, platform 

width, and bulb size— that can contribute to increasing edge length to mass. The second 

level is more practical— determining how those characteristics can be altered by a 

knapper— and it was facilitated by the experimental design. Based on these results, the 

variables of platform depth and exterior platform angle— both of which are directly 

under the control of the knapper— emerged as the two most important. The overall size 

of the flake is controlled by both of these variables working synchronously— increasing 

both platform depth and exterior platform angle results in larger flakes, and reducing both 

of them results in smaller flakes. However, in terms of all of the shape and other flake 

characteristics contributing to the ratio of edge length to mass, it is the adjusting of one of 

these independent variables in relation to the other that makes the biggest difference. 

Increasing the exterior platform angle while decreasing platform depth results in more 

economical flakes; decreasing the former and increasing the latter results in less 

economical flakes. The final step was then to test these relationships with flakes 

recovered from the archaeological record. This was also done on two levels. The first was 

at the level of individual flakes (combining flakes from several different industries and 

technologies), while the second was at the level of whole assemblages— comparing 

mean values of the dependent variables from different assemblages that differed in terms 

of the mean values of the two independent variables. Finally, an example was presented 

showing that in the French Mousterian these two independent variables were manipulated 

in two different ways, each contributing to different approaches to economization. 
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It should be noted that altering exterior platform angle and platform depth are not 

the only strategies that can lead to increased ratios of edge length to mass. For example, 

an increase in the length to width ratio can also be facilitated through core preparation, 

though, as shown earlier (Rezek et al. 2011), core morphology, at least in terms of 

configuration of core surface ridges, plays a more minor role relative to the two 

independent variables discussed here. It is also possible, though not yet demonstrated 

under controlled conditions, that the use of an indirect “punch” technique may contribute 

to producing smaller platforms. And, as discussed above, certain patterns of core 

reduction may also contribute to overall economization. Our point here, however, is that 

such effects may also be achieved at the level of individual flake production. 

What is interesting about the archaeological assemblage data is that assemblages 

vary significantly in terms of all of the attributes discussed here, and thus also in terms of 

the overall economization of their unretouched flakes. Moreover, the temporal range of 

these assemblages spans almost 2 million years of technological variation— from the 

Oldowan through the Later Stone Age. This suggests in itself that these are fundamental 

properties of flake production and not just the result of particular technological patterns. 

At this point it is unknown what the underlying factors are that gave rise to that 

variability, though it is likely that access to suitable raw material is a significant one. 

This also has implications for concepts such as curation and expediency. The 

decision to abandon or retain certain materials is likely to be based on considerations of 

utility (Shott 1996a), transportability (Nelson 1991), usable edge proportion (Kuhn 
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1994), and quality (Brantingham et al. 2000; Roth and Dibble 1998). This economic 

relationship between mobility and technological organization lies at the center of the 

curation concept proposed by Binford (1973, 1977a). Despite debate regarding the nature 

and use of the term (see Andrefsky 2009 for review), curation captures the economic 

aspect of behavior in the production and maintenance of stone artifacts for maximizing or 

prolonging their utility. If the utility of unretouched flakes is in the amount of cutting 

edge they provide, then the results presented here clearly show how utility can be altered 

in terms of the economization of raw materials. As such, curation behavior can also be 

seen in the economic production of unretouched flakes, even in the absence of the 

production of more formal “tools” (Douglass 2010). In current approaches, the 

production of unretouched flakes alone would be taken by many as indicative of some 

sort of “expedient” lithic technology (Bamforth 1986; Parry and Kelly 1987), even 

though that might not be the case. This points to an inadequacy of an overly simplified 

theoretical dichotomy between “curated” (or “formal”) and “expedient” artifacts, and it 

also suggests that we should avoid focusing exclusively on retouched artifacts when 

addressing issues of curation (Holdaway and Douglass 2012). 

In this same vein, however, it is also important to recognize that whatever the 

economy and utility apparent in the unretouched flakes, it does not necessarily adequately 

reflect the complexity or efficiency of the overall underlying technology. In other words, 

assemblages with less economical flakes in terms of cutting edge length to mass ratio, 

such as those seen above in the Quina Mousterian, do not necessarily translate to less 

efficient lithic strategies than those that produced thinner and broader flakes (Carr and 
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Bradbury 2001). Hunter-gatherer technological organization involves a complex mixture 

of activities, strategies, and decision-making (Bamforth 1991; Torrence 2001). The same 

goal can be achieved or similar problems resolved through many different combinations 

of different actions. What this means is that technology is multidimensional (Chatters 

1987) and strategies that underlie the production of individual flakes represent just one of 

those dimensions. It is an important dimension, however, and one that should be taken 

into account more fully in future studies of lithic technological variability. Finally, it is 

not the intent of this paper to argue that hominins were always under pressure to 

economize their raw materials. Rather, our purpose here is to present a “proof of 

concept,” namely, to describe how an individual knapper can manipulate certain platform 

variables to change the overall morphology of flakes. Moreover, such changes can likely 

be interpreted in economic terms rather than just simple function vs. style alternatives. 

Ultimately, it will be essential to test these patterns with independent data, especially raw 

material quantity and accessibility, but perhaps also group mobility and other relevant 

factors. It is important to keep in mind, however, that there are undoubtedly many ways 

to economize raw materials, and just as important, there are undoubtedly many situations 

in which such economization is not necessary. Our point here, therefore, is to introduce 

some of the ways in which economization can take place on the fundamental level of 

individual flake production.  
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CHAPTER 4: Establishing Statistical Confidence in Cortex Ratios between Lithic 

Assemblages: A Case Study of the Middle Paleolithic of southwestern France3 

 

4.1 Abstract 

Recent studies have demonstrated the usefulness of the Cortex Ratio for 

quantifying the cortex composition in lithic assemblages and as a viable index of 

prehistoric artifact transport. Yet, the lack of means for assigning statistical confidence to 

archaeologically observed Cortex Ratios inhibits the approach’s utility for objective 

comparisons and interpretation. We derive statistical confidence for archaeological 

Cortex Ratios through Monte Carlo and resampling techniques. Experimental data with 

known geometric properties and measured cortex values were employed as a reference 

for attaching a probability to an archaeological assemblage’s Cortex Ratio. The method is 

demonstrated on assemblages from the Middle Paleolithic sites of Roc de Marsal, Pech 

de l’Azé IV, and Combe-Capelle Bas in southwestern France.  

4.2 Introduction 

In stone artifact archaeology, cortex is an attribute commonly used for assessing 

reduction intensity and sequence (Andrefsky 2005; Dibble et al. 2005), raw material 

exploitation and transportation (e.g., Reher 1991), site use (e.g., Roth & Dibble 1998) and 

mobility (e.g., Fernandes et al. 2008; Olszewski et al. 2010; Kuhn 1991, 2004). Because 

lithic technology is reductive in nature, the amount of cortex retained on stone artifacts is 

                                                           
3 Author(s): Sam C. Lin, Shannon P. McPherron, Harold L. Dibble. Author contributions: S.C.L., S.P.M., 
H.L.D. designed research; S.C.L. performed research; S.C.L. analyzed data; S.C.L. wrote the paper. 
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directly correlated with the degree of nodule reduction (Dibble et al. 2005; Douglass et al. 

2008). However, as Dibble et al. (2005:545) noted, it often remains unclear whether an 

assemblage has more or less cortex than expected given models of varying site use, 

curation, and technological organization. A large part of this uncertainty relates to the 

variability in the initial cortex abundance of lithic assemblages caused by differences in 

the size and shape of the cobbles from which artifacts were produced from. Recognizing 

this issue, Dibble et al. (2005) established an objective measure of the expected amount 

of cortex that should be observed for a given quantity of stone assuming when fully 

cortical nodules were reduced on site and all products of reduction remained on site. The 

approach is based on estimates of the geometric shape of unworked stone cobbles, the 

volume of the assemblage measured and the number of nodules worked.  

This measure of expected cortex is compared to the total cortical surface present 

in the assemblage. The relationship between these two values, expressed by the Cortex 

Ratio as the amount of cortex observed in an assemblage versus the amount expected, 

thus provides a mean to determine whether all of the products resulting from nodule 

reduction are present at a location, or if some elements were either removed or added. If 

the Cortex Ratio is equal to 1, then it suggests that all of the knapped elements are 

present. If the ratio is less than or greater than 1, then it suggests that less or more cortex, 

respectively, is present than would be expected under the assumption of fully cortical 

nodules knapped in place without subsequent transport. While the concept is clear, 

further studies are needed to objectively interpret archaeological Cortex Ratios. 

Specifically, we would like to know how far the ratio has to deviate from a value of 1 to 
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indicate with confidence the effects of artifact transport. Likewise, we currently lack a 

sound statistical basis with which to interpret variation in Cortex Ratio values for 

different archaeological samples. The purpose of this paper is to investigate the use of 

Monte Carlo sampling approaches to derive sampling distributions for the Cortex Ratio 

that, in turn, will allow us to assign a probability for rejecting or accepting the null 

hypothesis that differences between archaeological Cortex Ratios are due to sampling 

error alone. We will then apply this method to the Cortex Ratios from several French 

Middle Paleolithic assemblages. 

4.3 Background 

Aside from the original experiments by Dibble et al. (2005), the robustness of this 

methodology has also been repeatedly verified by other experimental testing (Douglass 

and Holdaway 2011; Douglass 2010; Douglass et al. 2008; Holdaway et al. 2008; Lin et 

al. 2010; Parker 2011). Subsequent applications of this approach demonstrated its 

feasibility for assessing the relative extent of artifact transport and, hence, the degree of 

past mobility (Dibble et al. 2012; Douglass 2010; Douglass et al. 2008; Holdaway et al. 

2010, 2012, 2013; Phillipps 2012). Differences in cortex composition among lithic 

assemblages therefore provide an objective and quantitative way of comparing variation 

in the patterns of past movement and technological behavior.  

To date, the most thorough application of the cortex approach was by Douglass 

(2010; also see Douglass et al. 2008) with the mid-to-late Holocene surface lithic 

assemblage in western New South Wales, Australia. Douglass examined a sample of over 
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170,000 stone artifacts from four study locations, and one excavation, across the region. 

Cortex Ratios ranging from 0.16-0.68 indicated that cortex was consistently 

underrepresented at all locations. Because the lithic artifacts were almost exclusively 

produced from locally abundant stones, the underrepresented cortex most likely reflects 

repeated removal of the larger flakes, which also tend to be disproportionally cortical 

(Roth and Dibble 1998) from the sampling localities. This interpretation is supported by 

experimental simulations of artifact transport (Parker 2011), which suggested the cortex 

deficits can be accounted for by removals of up to 25% of the assemblage in large flakes. 

The spatial scale of the cortex pattern and its recurrence in a broad sample of 

assemblages further indicate high mobility where past populations travelled over wide 

territories, possibly taking advantage of ephemeral opportunities for occupation in an arid 

and extremely unpredictable landscape (Douglass 2010; Douglass et al. 2008; Holdaway 

and Allen 2013; Holdaway and Douglass 2012; Parker 2011).  

Phillipps’ (2012; also see Holdaway et al. 2010) study of the lithic assemblages at 

stratified Neolithic sites in the Fayum, Egypt, on the other hand, suggests that lithic raw 

materials were transported to the former lake margin. In these assemblages, Cortex Ratios 

range from 0.7 to 0.9, which suggest a considerable amount of cortex remained in the 

assemblages. Because workable stone does not occur naturally in the study area, cortical 

cobbles were likely transported as cores to the lake margin. This observation was 

supported by the higher frequencies of cores than the expected number of worked 

nodules in the assemblages. The higher Cortex Ratios approaching 1 indicate that, while 

cortical nodules were transported to the lake shore, reduced artifacts were not 
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consistently moved away from the area in sufficient distances, signaling that substantial 

activities of the Neolithic populations occurred close to the lake edge. 

More recent work examined the Cortex Ratios at the Middle Stone Age site of 

Contrebandiers Cave, Morocco (Dibble et al. 2012). The industries at the site (so-called 

Aterian and Maghrebian Mousterian), which are associated with North African modern 

Homo sapiens in the Upper Pleistocene, are mainly made on quartzite that is available 

200m from the site, along the coast (Bouzouggar 1997; Dibble et al. 2013). Applying the 

Cortex Ratio to the quartzite artifacts, the Maghrebian Mousterian assemblage produced a 

value of 0.7 while the four Aterian assemblages yielded a set of rather consistent values 

in the 0.5 range. This general deficiency in cortex across the assemblages was taken to 

reflect that local lithic materials were transported away from the site. Although it is true 

that the same cortex pattern could be created by the import of decertified cores, this 

scenario was argued to be unlikely due to the close proximity of the raw material sources. 

This issue of equifinality could potentially be clarified by further simulation work, such 

as the study by Parker (2011). The discrepancy between the ratio values of the two 

industries at Contrebandiers Cave was interpreted to reflect differences in the mobility 

and land use strategies employed. 

These studies have all helped to demonstrate the effectiveness of the cortex 

methodology in capturing the relative amount of cortex to volume of a given 

archaeological sample. However, a ratio value is simply a number at this point, and it is 

less clear how different Cortex Ratios can be compared objectively. This problem raises 
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two key issues. First, how do we assess whether the cortex composition of a given 

assemblage is different from that of a complete assemblage not influenced by artifact 

transport? That is, how can we determine with confidence that a ratio value above or 

below 1 does, indeed, indicate that transport has affected assemblage composition? For 

example, do the ratios of 0.7 to 0.9 observed by Phillips (2012) at the Fayum reflect real 

cortex deficits, or could they instead be due to sampling error? The second issue relates to 

the method of determining if Cortex Ratios between two different assemblages are indeed 

different from one another at a given level of statistical significance and thus reflect 

different patterns of production, selection, transport and discard. While the Aterian 

assemblages at Contrebandiers with ratios in the 0.5 range have less cortex relative to 

artifact volume than the Mousterian assemblage that has a ratio of 0.7, it is difficult to say 

immediately whether this difference is significant or, again, whether it is simply due to 

sampling error.  

4.4 Materials and Methods 

The establishment of statistical confidence of Cortex Ratios is investigated here 

through the use of sampling techniques on both experimental and archaeological data. 

The archaeological data used are from three Middle Paleolithic sites located in 

southwestern France. The rationale for the use of these sites is that they contain a range 

of assemblage sizes among stratigraphic layers that allows the assessment of sampling 

error in Cortex Ratios. Their spatial proximity and diachronic lithic sequence spanning 

the late Pleistocene across different Mousterian industries also offers the potential for 

comparing different Cortex Ratio values with existing models of Neanderthal mobility in 
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Western Europe (e.g., Delagnes and Rendu 2011). Because the cortex quantification 

method is partly contingent on the contextual information of the study assemblages, the 

archaeological data are outlined first below and followed by descriptions of the 

methodological procedure and the experimental data employed.  

4.41 Archaeological Assemblages 

Roc de Marsal is a small cave site located in a small tributary valley of the Vézère 

River in the Dordogne region of southwestern France. Original excavation of the site was 

carried out by Lafille from 1953 to 1971. The study presented here is based on material 

from new excavations that took place from 2004 through 2009 (Sandgathe et al. 2011a,b; 

Turq et al. 2008). A roughly 2m stratigraphic sequence containing 13 stratigraphic layers 

was recognized, of which Layers 13 through 10 at the base of the sequence represent 

sterile layers formed through in situ weathering of the limestone bedrock (Sandgathe et 

al. 2008, 2011b). Thermal luminescence (TL) and optically stimulated luminescence 

(OSL) dates obtained on sediment samples from these basal layers indicated that initial 

occupation of the site occurred in Marine Isotope Stage (MIS) 5a (Guérin et al. 2012; 

Guibert et al. 2009; Sandgathe et al. 2008).  

Artifact densities in the Paleolithic layers 9 through 2 are very high, with over 

23,000 lithic artifacts greater than 2.5cm in maximum dimension. The lower layers (9-5) 

contain Mousterian artifact assemblages that are relatively high in Levallois components 

and include some so-called Asinipodian or small-flake production elements (Bordes 

1976; Dibble and McPherron 2006, 2007) and relatively few scrapers. The abundance of 
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fauna remains belonging to forest adapted species, including red deer (Cervus elaphus), 

roe deer (Capreolus capreolus), horse (Equus sp.), and wild pig (Sus scrofa) (Castel et al. 

in Sandgathe et al. 2008) throughout these lower layers indicates a more temperate 

climate, although recent OSL and TL dating by Guérin et al. (2012) suggest the 

association of these layers with the colder MIS 4.  

The upper layers (4-2) saw a change in the lithic assemblage with greater 

frequencies of scrapers, including numerous diagnostic Quina scrapers. A dominance of 

reindeer (Rangifer tarandus) and various vole species, including common vole (Microtus 

arvalis) and water vole (Arvicola terrestris), from these layers indicate a much colder, 

drier and more open environment (Marquet in Sandgathe et al. 2008). Electron spin 

resonance (ESR), TL, and OSL dates from these upper layers suggest correlation with 

MIS 4 and 3 (Guérin et al. 2012; Sandgathe et al. 2008).  

Pech de l’Azé IV: is one of a complex of four Lower and Middle Paleolithic sites 

located in the Dordogne region, about 24km east of Roc de Marsal. The site is a collapsed 

cave originally excavated by Bordes (1975) from 1970 to 1977 (McPherron and Dibble 

2000). The assemblages examined here come from renewed excavations at the site that 

took place from 2000-2003. Eight major Pleistocene layers were identified that in general 

matched the sequence identified by Bordes (Turq et al. 2011). The basal layer, Layer 8, 

rests directly on bedrock and contains rich Middle Paleolithic materials as well as 

numerous superimposed combustion features (Dibble et al. 2009; Goldberg et al. 2012). 

The lithic components are marked with high frequencies of scrapers and Levallois 
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elements. Recent TL dates attributed this basal layer to MIS 5c (Richter et al. 2013). The 

overlying Layer 7 represents a solifluction lobe, which indicated by a general lack of 

faunal material and a large component of heavily rolled, rounded, or edge-damaged 

lithics (Sandgathe et al. 2011b). This layer is capped by a layer of major roof fall, thus 

providing further evidence of severely cold conditions during its formation. Layer 6 

(subdivided into 6A and 6B) contain lithic elements with high scraper proportions and 

noticeable Levallois and Asinipodian components. The faunal record in this layer 

indicates a temperate environment with the presence of red deer, roe deer, wild pig, and 

beaver (Castor fiber), a finding that matches the climatic conditions of MIS 5a (Dibble et 

al. 2009; Richter et al. 2013; Sandgathe et al. 2011).  

Layer 5 (subdivided into 5A and 5B) saw an increase in reindeer remains while 

the presence of roe deer and wild pig decreased or disappeared, signaling the start of a 

colder period that likely correlates with the beginning of MIS 4. This interpretation is 

supported by a mean date of 68-71 kya from four TL samples (Richter et al. 2013). The 

lithic assemblages also contain greater frequencies of scrapers while Levallois elements 

declined significantly. In Layer 4 (subdivided into 4A, 4B, and 4C), the trend of change 

continues where reindeer becomes the dominant species represented in the faunal record 

(Niven 2013). The lithic assemblage, particularly that of Layer 4A, is very rich in 

scrapers, including many heavily-reduced forms. The uppermost Layer 3 (subdivided into 

3A and 3B) contains an industry that correlates with the Mousterian of Acheulian 

Tradition (MTA), with bifaces and backed knives present. Both ESR and AMS dates 
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from this layer suggest a temporal association with MIS 3 (McPherron et al. 2012; 

Richter et al. 2013; Sandgathe et al. 2011). 

Combe-Capelle Bas: is part of a Paleolithic site complex located in the valley of 

the Couze River, a tributary of the Dordogne. The site is at the base of a hillside slope 

below a south-facing limestone cliff approximately 20 km southwest from Roc de 

Marsal. Early excavation was conducted by Ami from 1926 to 1931. The data presented 

here come from the excavations of Dibble and Lenoir from 1987 to 1990 (Dibble and 

Lenoir 1995). In the new excavation, three sectors were established based on Ami's old 

trench. Sector I is located at the base of the slope and contains a number of stratigraphic 

layers. Following Roth and Dibble (1998), these layers are grouped into three general 

units in this study: upper (layers I-IB, I-ICI, I-1C2, I-ID, and I-IDI), lower (layers I-lE, I-

2A and I-2B), and I-3. The deposits from Sector II appear to be stratigraphically distinct 

from those of Sector I and likely shared different depositional histories (Dibble and 

Lenoir 1995). The six layers from this sector are grouped into two major units – II-3 and 

II-4 (contains II-4A, II-4B, II-4C, II-4D, and II-4E). Sector III is located at the top of 

Ami’s trench and is represented by several layers. However, only the upper layer (III-1) 

is included in this study due to the small sample of artifacts within other layers. 

The lithic assemblages from all layers at Combe-Capelle Bas share similar 

typological and technological characteristics. The overall presence of scrapers and 

notches/denticulates in moderate proportions and the lack of bifaces have led the 

assemblages to be attributed to the Typical Mousterian industry. However, their 
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technological similarity to Quina Mousterian with an emphasis on thick flake production 

as defined by Turq (1989, 1992) has been emphasized by Dibble (1995), who further 

argued that Combe-Capelle Bas assemblages represent a Quina industry with low rates of 

raw material utilization in terms of scraper production due to the abundance of raw 

material at the locality. More recent TL dates on samples from Sector I have placed the 

Combe-Capelle Bas assemblages to MIS 3 (Valladas et al. 2003).  

4.42 Computation of the Cortex Ratio 

In this study, the calculation of the Cortex Ratio is based on the analysis of all 

lithic artifacts greater than or equal to 25mm in maximum dimension from the three sites. 

Only artifacts made on local flint types are considered in order to control for potential 

variation in original nodule morphology among other raw material types. Among these 

artifacts, pieces exhibiting alluvial cortex are also excluded to limit the consideration to 

ones made from locally derived nodules.  

The first step is to determine the total cortical surface area in the assemblage, 

which is only relevant for objects that exhibit cortex. For complete flakes, flake 

fragments, and retouched pieces, surface area is estimated by multiplying artifact length 

by width. Length on complete flakes is measured from the point of percussion to the most 

distal end of the flake, and width is measured at the midpoint of, and perpendicular to, the 

length axis (Debénath and Dibble 1994). For flake fragments lacking platforms, 

maximum dimensions are taken instead. For shattered pieces that possess no diagnostic 

flake features, surface area is calculated in the same way but the value was further 
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multiplied by two to compensate for the greater artifact surfaces that have the potential to 

bear cortex (Dibble et al. 2005). For cores and core fragments, an ellipsoid equation is 

used to account for the three geometric axes of maximum length, width, and thickness 

(see Douglass et al. 2008; Lin et al. 2010 for detail).  

Artifact surface area is then multiplied by the midpoint of the cortex proportion 

present on each artifact to give an estimate of cortical surface area. In this study, cortex 

proportion was recorded here with a seven-interval scale: 0%, 1-9%, 10-39%, 40-59%, 

60%-89%, 90-99%, 100% (Dibble et al. 2005). Total assemblage cortical surface area is 

calculated as the sum of the cortex area for each individual artifact. The accuracy of this 

recording protocol was tested on a set of experimentally produced artifacts (n=77) made 

from a flint nodule collected close to Roc de Marsal. Cortical surface area on each artifact 

was digitized and measured using the NextEngine scanner with methodology described 

elsewhere (Lin et al. 2010). The total cortical surface area estimated from cortex intervals 

(64,488.29 mm3) underestimates the scanned area (69,645.43 mm3) by 7.4%, although 

the two sets of values are not significantly different (Student’s t-test: t=.985, df=76, 

p=.328). This result differs from that of the study by Lin and colleagues (2010), which 

showed an 11% overestimation of the scanned value in their cortex calculation. This 

discrepancy likely resulted from their use of maximum clast dimension for calculating 

artifact surface area for all artifact types.  

The second step is to calculate the expected cortex amount in a given assemblage. 

This requires an estimate of the number and morphology of nodules that were brought to 
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the site and reduced to create each of the assemblages. Dibble et al. (2005) suggested the 

using the number of cores in an assemblage to estimate the number of nodules (also see 

Douglass et al. 2008 and Douglass 2010 for archaeological application, and Douglass and 

Holdaway 2011and Douglass 2010 for demonstration of the suitability of this approach 

for the Australian case studies). However, because the cores in the study assemblages 

here are generally heavily reduced, there was little evidence to suggest a pattern of one 

core per worked nodule.  

Alternatively, the average size of the originally worked nodules for each of the 

three sites can be estimated based on the length of the longest flake present at each site. 

This is based on the premise that the largest producible flake is limited by the nodule’s 

dimensions. Then again, while the maximum length of a nodule constrains the longest 

flake length achievable from a nodule, maximum nodule length is likely to be more often 

much greater than the length of the longest flake. This trend is likely because, in order for 

knappers to fully exploit the longitudinal dimension of a core in a single strike, a tight 

combination of platform variables is required (Dibble and Rezek 2009; Lin et al. 2013). 

This kind of platform configuration is likely rare at the early stages of reduction when 

cortex surface area is at the fullest.  

To test the relationship between nodule size and the longest possible flake length, 

an experimental assemblage was produced by one of the authors (SCL) using 30 flint 

nodules of various sizes (1010-3800g), shapes, and reduction intensity. Prior to reduction, 

each nodule’s dimensions (maximum length, width, and thickness) and weight were 
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recorded (Table 1). Nodules were reduced by freehand hardhammer percussion through 

simple flake removal as well as bifacial and single-surface flaking (sensu Sandgathe 

2004; but see Eren and Bradley 2009). A total of 2,502 flakes and flake fragments larger 

than 25mm were produced. The length of the longest flake from each nodule reduction 

set was used as the dimensional proxy to estimate original nodule volume (Table 1). 

Linear regression models showed best results when the longest flake length was used as 

proxy for nodule width, which produced an average 17% underestimation of actual 

volume (s.d.=27%; regression: standardized coefficient (β) =.43, p<.05). This method 

outperformed models based on nodule length (underestimation by 42.1% with s.d.=19%; 

regression: β=.47, p<.05) and thickness (overestimates by 42.34% with s.d.=54%; 

regression: β=.84, p<.001). It is true that, in some cases, flake lengths would mimic 

nodule length more than width, such as blade production, or when nodules are of 

cylindrical or conical shape. However, it is argued here that this general correlation 

between longest flake length and original nodule width is largely related to solid 

geometry and likely to hold for most stone morphologies and flake-based production 

techniques, including those of the Mousterian assemblages studied here. Therefore, the 

length of the longest flake from each of the three study assemblages was taken here as an 

estimate of original nodule width for the purpose of approximating nodule volume. 
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Nodule 

volume 

(cm3)  

Max. 

length 

(mm)  

Max. 

width 

(mm)  

Max. 

thick. 

(mm)  

Length of 

longest 

flake (mm)  

Nodule 

volume 

(cm3)  

Max. 

length 

(mm)  

Max. 

width 

(mm)  

Max. 

thick. 

(mm)  

Length of 

longest 

flake (mm)  

1437.8 239.0 110.6 99.3 97.6 811.2 150.3 137.1 79.5 109.5 

433.5 194.6 85.9 43.4 69.7 974.2 195.1 119.3 67.5 87.8 

888.4 170.5 136.0 72.0 82.7 987.1 174.6 131.1 80.5 125.9 

815.5 191.4 120.3 71.5 103.6 699.6 151.5 151.5 51.6 57.6 

845.5 178.0 97.1 87.4 56.3 974.2 181.6 138.9 70.2 76.5 

613.7 155.0 105.1 65.0 91.4 961.4 193.8 128.0 87.2 110.1 

1111.6 170.5 144.0 79.1 112.6 712.4 221.2 135.3 71.1 91.2 

639.5 151.4 111.5 72.8 76.3 1257.5 223.2 114.7 87.0 103.7 

918.5 188.9 134.5 65.3 90.4 905.6 154.5 96.5 93.0 106.0 

802.6 170.8 130.6 77.6 107.6 884.1 154.6 133.4 79.3 104.6 

506.4 211.9 105.7 39.7 94.4 622.3 155.0 107.9 69.1 67.9 

553.6 207.8 118.3 49.2 127.1 1630.9 224.6 147.3 90.1 98.2 

1047.2 201.9 141.1 90.3 99.5 1326.2 236.1 115.4 105.3 90.8 

763.9 193.6 128.9 61.2 74.8 446.4 170.9 85.4 40.3 72.4 

1304.7 214.6 111.9 90.0 105.9 712.4 178.5 113.2 51.8 64.4 

          

Table 1 – Basic descriptions of the thirty experimentally reduced nodules used to test the use of longest 

flake length to approximate original nodule volume. 

 

To determine nodule size, the derived axial estimates of nodule width needs to be 

related to the overall nodule volume. Fortunately, flint occurs naturally in close proximity 

to all three sites, and the majority of artifacts from each assemblage are attributed to these 

locally derived flint types (Turq et al. 2008, 2011). This finding matches the general 

observation that raw materials represented in Middle Paleolithic sites of Western Europe 

tend to be dominated by local rock types, most coming from within a radius of 4-5km 

from the site (Feblot-Augustins 1999; Fernandes et al. 2008; Geneste 1985; Kuhn 1991; 

Turq 1992, 2000; Turq et al. 2013). At Roc de Marsal, local flint is found on the adjacent 

limestone plateau. For Pech de l’Azé IV, Senonian flint nodules exist along the 

immediate hillside slope and nearby valley floor (Turq et al. 2011). At Combe-Capelle 
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Bas, Campanian-Senonian flint outcrops are found along the valley slope where the site is 

located (Turq 1995). Samples of these local flint types were collected to generate 

regression models for estimating nodule size based on width (Figure 1). Because flint 

nodules are mostly buried at these localities and difficult to find, the survey could not be 

conducted systematically for the goal of maximizing sample size. Rather, emphasis was 

placed on obtaining a representative size range of the naturally occurring nodules at each 

locality.  

A total of 26 nodules (175-1505g) were collected from Roc de Marsal and 23 

(197-1443g) from Pech de l’Azé IV. At Combe-Capelle Bas, samples were taken from 

one subsurface outcrop exposed by a recent road cut near the site (n=14; 539-7579g). 

However, because these flints were freshly broken, only nodules with more than 60% 

cortex were used as they retain greater resemblance to those that occur naturally; though 

this limits the sample size considerably (n=6; 539-2157g). These cortical nodules are 

mostly of oblong tubular form (Figure 1). All raw material samples were digitized into 

three dimensional models by the same procedure mentioned above, and volume, surface 

area, and cortical surface area were computed. A comparison between nodule mass and 

scanned volume provided an average density constant of 2.34, which was then used to 

convert artifact mass to volume. 
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Figure 1 – Examples of flint nodules collected nearby the three sites. 
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Because the axial dimensions of these flint nodules were found to strongly 

correlate with nodule volume, a set of linear regressions were generated for predicting 

original nodule volume based on maximum nodule width for Roc de Marsal and Pech de 

l’Azé IV: 

Roc de Marsal: V=(.573 × W + 10.944)3 (n=26, β=.84, p<.001) 

Pech de l’Azé IV: V=(.495 × W + 19.113) 3 (n=23, β =.88, p<.001) 

where V is the reconstructed nodule volume and W is maximum nodule width. The length 

of the longest complete flake from the site was then input into the respective regression 

model as an estimate of nodule width to calculate original nodule volume. While it is true 

that nodule size may have varied through time between layers, this measure allows an 

estimate of the largest nodule that could have been utilized at each site.  

For Combe-Capelle Bas, a different approach for estimating nodule volume was 

employed since, in these assemblages, there are a number of cores that are much larger 

(in maximum length) than the longest flake. This likely occurs because the site is situated 

on or immediately adjacent to the outcrop. Therefore, the largest core was taken instead 

for establishing the approximation. The following regression model was derived from the 

nodule samples collected at Combe-Capelle for nodule volume based on nodule length: 

V=(.599 × L – 10.23)3 (n=6, β=.84, p<.05) 
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where V is, again, the reconstructed nodule volume and L is maximum nodule length. The 

longest core length from the assemblage was input as nodule length in order to calculate 

the largest nodule possible for the site. The number of nodules used for constructing this 

regression is small (n=6). Therefore, it is expected that the estimated nodule volume for 

Combe-Capelle Bas will have greater error ranges than the estimates of the other two 

sites. The reconstructed nodule volume for each site was then used to divide the total 

artifact volume of the respective assemblages to arrive at the estimated number of 

nodules. 

The third step in the Cortex Ratio calculation is determining the expected amount 

of cortex per nodule. This is done by inputting the reconstructed nodule volume into 

appropriate equations that approximate the surface area of a geometric solid based on a 

given volume. A comparison between scanned cortex surface area of the collected nodule 

samples and those established from different geometric solid models, including sphere, 

cylinder, and cube (Dibble et al. 2005), showed that the surface area to volume 

relationship of a cylinder [Surface Area=4π(Volume/π)2/3] best summarizes the average 

characteristic of Pech de l’Azé nodules, with an average underestimation of 0.29% 

(s.d.=6.6%; Pearson correlation: n=23, r=.99, p<.001). On the other hand, the cube 

equation (Surface Area=6×Volume2/3) was best for nodules collected from Roc de 

Marsal, with an underestimation of 5.82% (s.d.=6.41%; Pearson correlation: n=32, r=.99, 

p<.001), and Combe-Capelle Bas, with an underestimation of 0.51% (s.d.=4.34%; 

Pearson correlation: n=5, r=.97, p<.05). It should be noted that the use of these models 

does not imply that the shapes of raw materials resemble these standardized geometric 
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solids, although in some cases this may be true (Douglass 2010; Douglass et al. 2008). In 

this study, it simply means that the surface area to volume relationships of these solids 

approximates those of natural stones.  

The reconstructed nodule surface area represents the amount of cortex on a stone 

if cortex coverage is 100%. However, unlike alluvial stones that tend to be completely 

cortical, the cortical surfaces of flint nodules derived from local limestone formations 

tend to contain varying degrees of old, non-cortical surfaces that are unrelated to 

anthropogenic activities but that can be confused with newly exposed (rather than 

cortical) surfaces when quantifying the cortex on the artifacts of an assemblage (see 

Figure 1). An assumption that the flint nodules reduced at a site all began in complete 

cortical forms would therefore overestimate the expected amount of cortex that should be 

present in the assemblage. To correct for this assumption, the estimated cortex is 

corrected by subtracting the naturally occurring non-cortical surfaces on these nodules.  

From our flint sample, nodules from Roc de Marsal on average have 18.5% 

(s.d.=13.7%) non-cortical surfaces and Pech de l’Azé nodules have 9.2% (s.d.=8.6%). 

Since nodules collected from Combe-Capelle were freshly broken, this consideration was 

made on the possible non-cortical surfaces that may have existed when flint in tubular 

outcrop form were broken up in the past. Tubular pieces in our sample exhibit on average 

30.6% (s.d.=9.9%) non-cortical surface. These average non-cortical proportions were 

subtracted from the estimates of nodule surface area at each site to arrive at the expected 

cortical surface area per nodule.  
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Total expected cortex for an assemblage was computed by further multiplying this 

cortex estimate by the estimated number of original nodules as described above. Dividing 

the total observed cortex of a given assemblage by the total expected cortex results in the 

Cortex Ratio. A 75% confidence interval was also determined for each Cortex Ratio to 

account for the error range in nodule volume estimation. This level was chosen because 

higher confidence intervals would return negative volume estimates for the Combe-

Capelle Bas assemblages, which makes calculation of ratio values impossible. 

4.5 The Experimental Dataset and Archaeological Resampling 

Two approaches were employed to examine the null hypothesis that a given 

archaeological Cortex Ratio is statistically equivalent to a ratio from an assemblage that 

is “complete” (i.e., where cortical nodules were brought in and reduced and where no 

artifacts were subsequently removed or added), which in theory should have a ratio of 1. 

For the first approach, the hypothesis tested is whether a given archaeological Cortex 

Ratio is different from a ratio of 1. To do this, each archaeological assemblage was 

bootstrapped to generate a sampling distribution that provides an estimate of the shape 

and range of Cortex Ratio distribution. Sampling was done with replacement, meaning 

that after an artifact was randomly selected, it was placed back into the sampling 

population and had an equal chance of being selected again. Bootstrapping was 

conducted in R software package (R Core Team 2013) and contains three steps: (a) 

randomly resample from the archaeological assemblage with replacement a sample of 

artifacts of size equal to the original assemblage; (b) calculate the Cortex Ratio on this 

sample; and (c) repeat these steps 10,000 times. Ten thousand iterations was chosen in 
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order to have a maximum detectable significance of p=.0001 and to capture the 

potentially high variance of the Cortex Ratio due to the arithmetic nature of ratios where 

the numerator and denominator affect the value unequally (discussed below).  

Because the distribution is nonsymmetrical, it is necessary to look at one side of 

the curve or the other depending on whether the archaeological Cortex Ratio is less than 

or greater than 1. If the archaeological Cortex Ratio is below 1, then the one-tailed 

probability for the archaeological Cortex Ratio to equal 1 is represented by the relative 

occurrence of ratios in the sampling distribution that are equal to or greater than 1 (Figure 

2). On the other hand, if the archaeological Cortex Ratio is greater than 1, then the one-

tailed probability is represented by the relative frequency of cases equal to or smaller than 

1. Because the hypothesis is non-directional (i.e., the direction of difference not 

predicted), the two-tailed probabilities were estimated by multiplying the one-tailed 

probabilities by two. An alpha level of 0.05 was employed for this test as well as all other 

tests described below.  
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Figure 2 – A hypothetical bootstrap sampling distribution of an archaeological assemblage with a Cortex 

Ratio of .75. Because the archaeological Cortex Ratio is below one, the one-tailed probability is determined 

by the occurrence of resampled ratio values equal to or greater than 1 (represented by the shaded area).  

 

This first approach provides a relatively efficient way of evaluating the 

probability that a given archaeological assemblage can produce a Cortex Ratio of 1. 

However, this method relies solely on the archaeological sample itself and is unable to 

account for the potential range of variation in the Cortex Ratios producible from a 

“complete” assemblage. In other words, although an assemblage may have unity between 

cortex and volume, its Cortex Ratio may not be exactly 1 due to sampling error and other 

factors.  

To take this issue into consideration in the process of establishing statistical 

significance, we employed a second approach using a large collection of experimental 

data containing multiple reduction sets to generate sampling distributions of Cortex 

Ratios at different sample size levels. These sampled Cortex Ratios represent the range of 
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values obtainable from assemblages that retain all products of nodule reduction. The data 

include the previously described reduction sets made on 30 flint nodules, and also two 

other experimental sets from previous studies of Dibble et al. (2005) and Douglass 

(2010). The set produced by Dibble and colleagues (2005) was made on 33 nodules of 

chert and obsidian with varying forms and sizes (350-4350g). Nodules were reduced by 

multiple knappers using both hard and soft hammer through a variety of technologies, 

although most were simple flake removals without significant core preparation. The 

Douglass (2010) set was made on 29 silcrete nodules (107-1535g), mostly spherical in 

shape, with freehand hardhammer percussion and also followed a general flake 

production technique without formal core preparation techniques. When combined, the 

three experimental datasets included 236 nodule reductions and a total of 9,524 artifacts 

with maximum length equal to or over 25mm. Reduction intensities of the nodules vary 

from 2 to 125 flakes (with platform) per nodule.  

It may appear intuitive to argue that the experimental dataset should be produced 

primarily through reduction strategies that are characteristic of the Middle Paleolithic 

assemblages studied here, namely Levallois and prepared core techniques. However, 

because these assemblages cover a range of dissimilar technological characteristics 

(Levallois, Quina, MTA), it is difficult to determine in what way the experimental data 

should be generated to best resemble the archaeological reality. At a deeper level, the 

issue is whether the experimental data are comparable to the archaeological data, namely, 

if the two share similar structural variables that are relevant to the metric calculated, i.e., 

the Cortex Ratio. Cortex Ratio is largely a function of the geometric composition of the 
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assemblage, expressed in the forms of flake size and cortex distribution. However, if one 

wants to make the geometric composition of an experimental dataset to match that of an 

archaeological assemblage, then the resulting experimental Cortex Ratio would inevitably 

be constrained by the need to resemble that of the latter.  

The point here is that the purpose of the experimental data is not to replicate the 

archaeological assemblage, but to serve as a reference for null hypothesis testing. We 

recognize that such a procedure requires the assumption that the experimental dataset 

captures a range of variability akin to those exhibited in the archaeological assemblages 

studied here. The reason for compiling such a large dataset with diverse nodule 

morphology, reduction intensity, and knapping technique is thus to attain the largest 

possible range of variation in reduction sets. The difference between some of the raw 

materials used in the experimental dataset and that of the archaeological assemblages in 

question here would have little impact on the utility of the experimental data because the 

way that stone volume and cortex are distributed among flaked products is similar across 

raw material types. The main feature of the experimental data that is of interest here is 

that it contains all of the products of nodule reduction; therefore, in theory, it should have 

a Cortex Ratio of 1. In fact, a Cortex Ratio of 1.00 was calculated from the combined 

experimental dataset by using the known average original nodule weight and a spherical 

model to approximate nodule shape (Douglass et al. 2008; Lin et al. 2010).  

Treating the compiled experimental data as a population with known geometric 

parameters, a sampling distribution of Cortex Ratios was generated by a Monte Carlo 
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sampling approach that randomly draws samples from the experimental population over a 

large number of instances. Sampling was again done with replacement. Consequently, the 

samples of artifacts drawn share a distinct structure from the experimental data but attain 

a mean Cortex Ratio that approximates one. The test hypothesis, which again is non-

directional, is whether or not the archaeological cortex ratio is different than the mean 

ratio of the experimental dataset and based on the shape of the sampling distribution 

formed by the repeated iterations.  

The sampling process was carried out by a similar R routine as described before 

and contains the following three steps: (a) randomly sample with replacement a group of 

artifacts from the experimental data with a size equal to the archaeological assemblage in 

question; (b) calculate the Cortex Ratio of the sample; and (c) repeat this routine 10,000 

times. This routine creates a sampling distribution of Cortex Ratios of a given sample 

size corresponding to the archaeological assemblage. For archaeological Cortex Ratios 

lower than 1, the one-tailed probability is represented by the relative occurrence of ratios 

in the sampling distribution that are equal to or greater than the archaeological ratio. On 

the other hand, if the archaeological Cortex Ratio is greater than 1, then the one-tailed 

probability is represented by the relative frequency of cases equal to or smaller than the 

archaeological ratio. Similar to the bootstrapping test above, two-tailed probabilities were 

estimated here by multiplying the one-tailed probabilities by two.  

The second research issue of this study is to compare two archaeological Cortex 

Ratios with statistical confidence. This can be translated to a test of the null hypothesis 
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that the two archaeological samples were drawn from the same population. This is 

achieved with a separate R routine that performs a permutation test, which is a 

randomization test that creates the null hypothesis distribution of a test statistic by 

permuting the combined data of the two compared groups. However, since there may be 

too many possible orderings to the combined data, an exact test is adopted here instead of 

Monte Carlo sampling to generate reference distributions over limited number of 

permutations.  

Here, the method creates an empirical sampling distribution of the differences 

between the two archaeological Cortex Ratios in question. This routine consists of the 

following steps – a) calculate the difference between the Cortex Ratios of two 

archaeological assemblages, b) combine the two assemblages, c) randomly draw a sample 

without replacement of artifacts of the same size as one of the assemblages in question, d) 

assign the rest of the artifacts (the previously unselected ones) in the pooled data to 

represent the other assemblage in question, e) compute the difference between the Cortex 

Ratios of the two samples of artifacts, f) repeat steps c through e 10,000 times. The 

Cortex Ratio is calculated with the procedure used for the archaeological study 

assemblages as described above. Because the difference between the two archaeological 

Cortex Ratios in question could be either negative or positive depending on which way 

the subtraction goes (e.g., the difference between ratios of 0.5 and 0.8 can be either 0.3 or 

-0.3), the probability that the two archaeological Cortex Ratios were drawn from the 

same population of artifacts is based on the relative frequency of resampled Cortex Ratio 
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differences both greater than or equal to the positive difference and less than or equal to 

the negative difference (Figure 3).  

 

Figure 3 - A hypothetical sampling distribution of the differences between two archaeological 

assemblages with Cortex Ratios of 0.5 and 0.8 generated by the permutation test. The shaded areas 

represent the occurrence of resampled Cortex Ratio differences that are more extreme than the actual 

difference between the two archaeological ratio values.  
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4.6 Results 

Table 2 shows the Cortex Ratios and other associated variables of the three sites. 

The probabilities for Cortex Ratios to equal 1 or to be drawn from a complete assemblage 

differ considerably between the bootstrap and Monte Carlo approaches. According to the 

bootstrap approach, over half of the layers examined here have Cortex Ratios that are 

statistically different from a ratio of 1; however, results from Monte Carlo sampling 

suggest they fall within the 95% confidence interval. This has likely occured because the 

experimental dataset produces more variability than a single archaeological assemblage. 

As a result, although these layers did not produce a ratio of 1 in the bootstrap distribution, 

their respective ratios in fact fall within the range of values that can be produced from 

complete assemblages with chances over the level of statistical significance. Because of 

this, the Monte Carlo results provide a more conservative perspective on the testing of the 

null hypothesis. Considering these issues, only the results from the Monte Carlo test are 

used in the following analyses. 
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Layer 

Total 

Artifact 

Count 

No. of 

Expected 

Nodules 

Observed 

Cortex 

Surface 

(mm2) 

Expected 

Cortex 

Surface 

(mm2) 

Cortex 

Ratio (± 

75%) 

Bootstrap 

p (equal to 

ratio of 1)* 

Monte Carlo 

p (from 

assemblage with 

ratio of 1)* 

Roc de Marsal (Length of longest flake=116.5mm; Predicted Nodule Mass=1097.4g) 

2 685 12.8 268158 376339 .71 ±.09 <.0001 .019 

3 174 3.1 74618 92255 .81 ±.11 .004 .43 

4 2485 32.4 650745 956136 .68 ±.09 <.0001 <.0001 

5 1780 17.4 426358 512845 .83 ±.11 <.0001 .042 

6 501 5.3 145098 154886 .94 ±.15 .087 .70 

7 2758 25.2 680740 742792 .92 ±.12 .0001 .28 

8 2410 25.7 734792 758438 .97 ±.13 .40 .71 

9 4651 40 1198649 1177759 1.02 ±.14 .40 .75 

Pech de l'Azé IV (Length of longest flake=129.5mm; Predicted Nodule Mass=1347.5g) 

3A 1547 9.6 454295 354296 1.28 ±.14 <.0001 .042 

3B 2762 14.8 650882 545835 1.19 ±.13 <.0001 .041 

4A 216 2 62985 72222 .87 ±.09 .17 .57 

4B+C 647 5.6 216923 207359 1.05 ±.12 .68 .80 

5A 1366 8.1 371261 299270 1.25 ±.13 <.0001 .076 

5B 622 5.2 193922 193424 1.00 ±.11 .96 .98 

6A 2309 17.8 660788 656330 1.01 ±.11 .82 .92 

6B 2304 14.2 576487 522843 1.10 ±.12 .0002 .31 

7 2784 18.7 572112 690488 .83 ±.09 <.0001 .015 

8 2076 9 336748 332025 1.01 ±.1 .72 .95 

Combe-Capelle Bas (Length of longest core=246mm; Predicted Nodule Mass=6033.3g) 

I-upper 2167 11.5 589292 954442 .60 ±.45 <.0001 <.0001 

I-lower 2222 31.7 2338540 2630714 .86 ±.66 .0002 .071 

I-3 109 0.9 61774 78710 .76 ±.58 .29 .43 

II-3 207 0.5 29618 38296 .75 ±.57 .087 .27 

II-4 1484 5.9 366107 487072 .73 ±.56 <.0001 .0012 

III-1 525 1.9 74216 155806 .46 ±.35 <.0001 <.0001 

* Two-tailed probability 

 

Table 2 – Summary of Cortex Ratios and other results for the study assemblage layers. Bootstrap p 

represents the probability derived from bootstrap distribution of the archaeological sample itself. Monte 

Carlo p denotes the probability derived from comparing the archaeological Cortex Ratio to the test 

distribution generated from the experimental dataset. Bold values represent probabilities that are 

statistically significant.  
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Most layers at Pech de l’Azé IV and the lower layers of Roc de Marsal have ratio 

values close to 1. Conversely, the two upper layers of Pech de l’Azé IV show an excess 

of cortex while those at Roc de Marsal indicate a general deficit in cortex. Combe-

Capelle Bas shows a general pattern of underrepresenting cortex throughout the 

sequence; though three of the six layers did not exhibit ratios that are statistical different 

from 1. The probability for a given Cortex Ratio to be not statistically different from a 

complete assemblage is partly affected by assemblage size. This outcome is particularly 

clear with Layer 3 of Roc de Marsal (n=174), Layer 4A of Pech de l’Azé IV (n=216) and 

Layer I-3 and II-3 from Combe-Capelle Bas (n=109 and 207 respectively), where a below 

1 Cortex Ratio can be achieved through sampling with considerably higher probability 

due to the small sample size of these layers.  

That being said, there are large assemblages, such as many of the lower layers at 

Roc de Marsal and Pech de l’Azé IV that are not statistically different from complete 

assemblages. This suggests these assemblages have not been altered in ways that changed 

their initial cortex composition. It should also be noted that the error bars associated with 

Combe-Capelle Bas Cortex Ratios are considerably larger than the other two sites due to 

the greater uncertainty in the original nodule morphology estimate.  

Figure 4 shows examples of the generated Cortex Ratio sampling distributions 

and their comparison with archaeological ratio values. The sampling distributions are 

slightly asymmetrically skewed towards above 1 values. This is likely a result of the 

arithmetic nature of the ratio measure, where the range of variability for above and below 
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1 ratios is unequal. Specifically, while below 1 values can only range between zero and 

one, there is no upper bound for above 1 ratios. That said, the sampling distribution and 

confidence interval does narrow down and become more symmetrical as sample size 

increases. 

 

Figure 4 – Sampling distributions derived from the experimental data with sample sizes equivalent to those 

of Roc de Marsal Layers 6 and 7. Dashed lines indicate the 95% confidence intervals of the distributions. 

The grey areas represent sampled Cortex Ratios equal to the archaeological ratio or of more extreme 

values.  
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Tables 3-5 show the results of the permutation test at the three sites. Figure 5 

illustrates examples of sampling distributions derived from permutation test and their 

comparison to archaeological Cortex Ratio differences. Again, the issue with sample size 

is clear, as layers with small assemblage size, such as Layer 3 at Roc de Marsal, do not 

show statistical significance with any other layers due to the wide variance in its 

sampling distribution. For Roc de Marsal, the ratios for Layers 9-6 at the bottom half of 

the stratigraphic sequence are relatively similar and close to one. However, as we move 

up the sequence, Layers 5, 4, and 2 all exhibit ratio values that are significantly lower 

than the layers below. If we exclude Layer 3 because of small sample size, then the 

Cortex Ratios of each layer do not share significant differences with adjacent layers, 

except for Layer 4 which has a ratio that is significantly lower than all others. This 

pattern indicates a gradual decline in assemblage cortex over time and the tendency for 

cortex underrepresentation in the layers higher up in the stratigraphy.  

 

 

 

 

 

 

 

Table 3 – Permutation test results indicating the probabilities for corresponding layers to be from the same 

assemblage at Roc de Marsal. Bold values represent statistically significant layers. 

  

Layer 
2 

(.71) 
3  

(.81) 
4  

(.68) 
5  

(.83) 
6  

(.94) 
7  

(.92) 
8  

(.97) 

2 (.71) - - - - - - - 

3 (.81) .29 - - - - - - 

4 (.68) .50 .12 - - - - - 

5 (.83) .032 .81 <.0001 - - - - 

6 (.94) .0047 .31 <.0001 .24 - - - 

7 (.92) .0003 .29 <.0001 .032 .87 - - 

8 (.97) .0001 .16 <.0001 .0043 .45 .27 - 

9 (1.02) <.0001 .049 <.0001 <.0001 .089 .0021 .25 



 

139 
 

Layer 
3A 

(1.28) 
3B 

(1.19) 
4A 
(.87) 

4B+C 
(1.05) 

5A 
(1.25) 

5B 
(1.00) 

6A 
(1.01) 

6B 
(1.1) 

7  
(.83) 

3A (1.28) - - - - - - - - - 

3B (1.19) .068 - - - - - - - - 

4A (.87) .0003 .0026 - - - - - - - 

4B+C 
(1.05) 

.0027 .044 .15 - - - - - - 

5A (1.25) .64 .3 .0059 .025 - - - - - 

5B (1.00) <.0001 .0062 .21 .59 .0028 - - - - 

6A (1.01) <.0001 <.0001 .2 .57 <.0001 .95 - - - 

6B (1.1) <.0001 .03 .023 .42 .0073 .11 .03 - - 

7 (.83) <.0001 <.0001 .62 .0002 <.0001 .002 <.0001 <.0001 - 

8 (1.01) <.0001 .0001 .23 .68 <.0001 .87 .88 .059 <.0001 
 

Table 4 – Permutation test results indicating the probabilities for corresponding layers to be from the same 

assemblage at Pech de l’Azé IV. Bold values represent statistically significant layers.  

 

 

 

 

 

 

 

 

 

Table 5 – Permutation test results indicating the probabilities for corresponding layers to be from the same 

assemblage at Combe-Capelle Bas. Bold values represent statistically significant levels. 

 

Layer 
I-upper 

(.60) 

I-lower 
(.86) 

I-3 
(.76) 

II-3 
(.75) 

II-4 
(.73) 

I-upper (.60) - - - - - 

I-lower (.86) <.0001 - - - - 

I-3 (.76) .31 .53 - - - 

II-3 (.75) .20 .38 .97 - - 

II-4 (.73) .021 .029 .87 .87 - 

III-1 (.46) .074 <.0001 .11 .022 .0021 



 

140 
 

 

Figure 5 – Sampling distributions derived from permutation tests for comparing Cortex Ratios between 

Pech de l’Azé IV Layers 6A and 6B, and Combe-Capelle Bas Layers I-3 and III-3. The relative frequency 

of values occurring at the same level as the Cortex Ratio difference or of more extreme values provide the 

probability for such difference to be significant. In the two cases shown here, Layers 6A and 6B at Pech de 

l’Azé IV have Cortex Ratios that are statistically different despite having a difference of just .1. In contrast, 

the Cortex Ratios for Layer I-3 and III-3 at Combe-Capelle Bas differ markedly in value but share no 

statistical difference.  
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The permutation results of Pech de l’Azé IV are less straight forward. Several 

layers have ratios that are relatively similar in value (Layers 4B+C, 5B, 6A, 6B, and 8), 

and the permutation tests indicate that most of them are not statistically different, with the 

exception of the difference between 6A and 6B. Unlike Roc de Marsal, most layers here 

exhibit significant differences in the Cortex Ratio of adjacent layers. Layers 3A, 3B, 5A 

in the upper half of the sequence stand out for having above 1 ratios that are statistically 

identical from each other; though the ratio of 5A has been shown to be not statistically 

different from 1. This pattern suggests that the top two layers of Pech de l’Azé IV contain 

greater amounts of cortex relative to assemblage volume, while, with the exception of 

Layer 7, the rest of the layers are statistically indistinguishable from assemblages that 

contain unity between cortex and volume. However, in comparison to Roc de Marsal, the 

pattern at Pech de l’Azé IV appears to be more varied through time, being marked with 

greater fluctuations between layers instead of a more gradual trend. 

At Combe-Capelle Bas, Sector III has a Cortex Ratio that is markedly lower than 

all other layers while the two layers in Sector II share similar ratios. In Sector I, the 

Cortex Ratios for the three layers are more varied and I-upper and I-lower differ 

significantly.  

Figure 6 graphically presents the Cortex Ratio results of the three sites. Ratios for 

Roc de Marsal and Pech de l’Azé IV are ordered in stratigraphic sequence with 

correspondence to fauna assemblage composition. This is done instead of using MIS 

stages because of the uncertainties in the current dating of the two sites. At Roc de 



 

142 
 

Marsal, layers with ratio values close or equal to 1 have faunal assemblages dominated 

by red deer, indicating an overall temperate and forested landscape during these time 

periods. Upper layers with below 1 ratios, on the other hand, are dominated with reindeer 

remains, and likely correspond to cold and open environments. Pech de l’Azé IV layers at 

the lower half of the sequence are dominated by red deer remains and also exhibit Cortex 

Ratios approximating 1. This is especially true if we exclude Layer 7 due to its having 

suffered from solifluction (Goldberg et al. 2012; Sandgathe et al. 2011b), which may 

have influenced assemblage cortex composition in some way by removing and/or 

modifying artifacts of certain shape or clast size. The stratigraphically higher layers have 

faunal assemblages with higher proportions of reindeer remains. However, only the two 

upper most layers exhibit Cortex Ratios that are statistically different from 1. Combe-

Capelle Bas has been dated to MIS 3, but it is less clear how the three separate excavated 

sectors relate to each other in terms of chronology due to their distinct depositional 

histories (Dibble and Lenoir 1995). Therefore, it is difficult to organize Cortex Ratios at 

Combe-Capelle Bas into a unified chronological framework other than considering them 

together for the period of MIS 3. 
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Figure 6 – Cortex Ratios by layer at Roc de Marsal, Pech de l’Azé IV and Combe-Capelle Bas. Circles 

represent ratio values not statistically different from 1 while stars represent those that differ significantly 

from 1. The dotted line is reference for a Cortex Ratio of 1. Error bars indicate 75% confidence interval 

from nodule shape estimation.  
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4.7 Discussion 

The cortex approach differs from traditional methods of measuring artifact 

transport, such as raw material sourcing and artifact design theory, which largely rely on 

the presence of specific artifact forms or traits. For example, sourcing requires the 

occurrence of stone types attributable to localized primary or secondary deposits 

(Fernandes et al. 2008; Hughes 1998; Jia et al. 2010; Shackley 1998; Sheppard et al. 

2011; Montet-White and Holen 1991 and papers therein). Likewise, models of artifact 

design and technological organization depend on the presence of specific artifact types, 

including formal or retouched forms (Andrefsky 1994; Bamforth 1986; Kelly and Todd 

1988; Nelson 1991). In many instances, however, the majority of artifacts within an 

archaeological assemblage was not made on stones of demonstrably non-local origin and 

tends to lack significant retouch. Conjoined artifacts from different sites are another 

possible means for demonstrating movement between sites, but they also tend to be rare 

and their identification is heavily constrained by time and expertise (Close 2000). 

Therefore, the representativeness of these observations in relation to the overall pattern of 

artifact transport at an assemblage scale remains open to question.  

More specifically, while the existence of non-local material or certain artifact 

types may indeed indicate forms of transport, it is less certain whether the absence of 

these material markers signal the opposite pattern of no artifact movement. This issue 

illustrates the danger of false negatives in these conventional approaches which 

potentially have significant ramifications for the interpretation of past mobility and 

technological organization. In contrast, the Cortex Ratio quantifies the overall 
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composition of the assemblage regardless of artifact type or form. Because the 

measurement is a ratio variable standardized by assemblage size and operates solely on 

the principles of solid geometry, the applicability of the method is not constrained by 

variability introduced through technological differences, such as knapping technique and 

reduction intensity.  

A critical aspect of the calculation of the Cortex Ratio is the cortex-to-volume 

proportion estimated for the original knapped nodules, which serves as the main 

reference for the quantification of assemblage cortex. While Dibble et al. (2005) 

proposed the use of geometric solid models for such approximation, other ways for 

calculating the relationship can nevertheless be applied. The flexibility in the way that 

this estimate can be achieved means the cortex quantification approach can be applied to 

a wide array of archaeological settings. On the other hand, because this estimate is 

contingent on the geometrical qualities of local raw material, it would be inappropriate to 

expect a methodological procedure developed under one circumstance to work in another. 

Instead, it is important to validate and test appropriate approximations of nodule 

geometry through contextual observation and experiments. The study here employed the 

length of the longest flake present in an assemblage as proxy for the axial dimension of 

the largest nodule that was used at the site. Geometric models of nodules were then 

generated from raw material samples obtained through survey. Given that actual nodule 

sizes in the past were likely larger than what is estimated here, the values provide a 

conservative baseline that is empirically supportable, although they probably 

underestimate the expected amount of cortex by some extent.  
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Once the Cortex Ratio of an assemblage is derived, its interpretation faces two 

main challenges. First, it is difficult to discern at face value whether an archaeological 

ratio is statistically different to those generated from complete assemblages that contain 

all products of nodule reduction. The ability to establish statistical significance between a 

given Cortex Ratio and the ratios of complete assemblages therefore provides a vital 

mean for interpreting assemblage cortex composition. As shown earlier, the probability 

for a given Cortex Ratio to be derived from a complete assemblage is largely dependent 

on sample size. Here, a large experimental dataset consisting of complete reduction 

sequences was employed to create sampling distributions of Cortex Ratios based on 

different sample sizes. This, in turn, allowed us to determine the probability for an 

archaeological assemblage with a given size and ratio value to be derived from a 

population that is at unity between artifact cortex and volume.  

This approach, however, requires repeated sampling of Cortex Ratios from the 

experimental data for any given archaeological assemblage. A possible alternative 

method is to compute the confidence interval of the sampling distribution based on the 

size of the archaeological assemblage under question. Figure 7 shows the plotted mean 

and standard error of sampled Cortex Ratios from the experimental dataset with varying 

log-transformed sample sizes. The pattern where small samples have much higher Cortex 

Ratio may be explained by the different rate of increase between surface area and volume 

for geometric solids. Specifically, surface area increases as a square while volume 

increases as a cube. As a result, when an assemblage has only a few artifacts, there is 

likely to be proportionally more surface area than artifact volume present. However, the 
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plot does show that the Cortex Ratio mean becomes increasingly stable after sample size 

reaches ~500 (log-transformed=6.2). 

 

Figure 7 – Scatter plots of the mean and standard error of Cortex Ratios from the sampling distributions 

generated from the experimental dataset with varying sample sizes (log-transformed). Quadratic curve 

models are fitted to the two plots. 
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The following two equations summarize the polynomial models fitted to the two 

plots: 

µ=-.00054248x4+.0082668x3+.0048148x2-.55961x+3.16565 (n=23; r=.998) 

where µ is the mean Cortex Ratio of the sampling distribution and x is the log 

transformed sample size. 

se=-.0091008 x4+ .23755x3- 2.24241x2+ 8.87460x- 11.74312 (n=23; r=.998) 

where se is the standard error of the Cortex Ratio sampling distribution and x is the log 

transformed sample size. By using the above two equations and substituting x with the 

size of archaeological assemblages, it is possible to compute the confidence interval of 

Cortex Ratios for any given assemblage. Clearly, this method requires the assumption 

that Cortex Ratios are normally distributed. As pointed out before, Cortex Ratio sampling 

distributions are somewhat skewed when the sample size is small, although the 

distribution does quickly become symmetrical as sample size increases. Table 6 compares 

the significance levels of the study assemblages determined by the 95% confidence 

intervals based on the above two equations and the probabilities obtained from the Monte 

Carlo simulations presented earlier. The results of the two approaches show general 

agreements except for a few layers. At this point, it is unclear why the disagreements 

exist, although factors such as sample size likely play a key role in affecting the resulting 

significance levels. Thus, while the confidence interval approach may be useful to 

provide preliminary statistical information regarding archaeological Cortex Ratios, more 

thorough statistical treatment, such as the Monte Carlo sampling technique employed 

here, is still needed for more concrete assignments of statistical probability.  
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Layer 
Cortex 

Ratio 

Assemblage 

Size 

Monte Carlo 

p (from 

assemblage with 

ratio of 1)* 

p (95% Confidence 

Interval)* 

Roc de Marsal    

2 .71 685 .019 >.05 (.67-1.40) 

3 .81 174 .43 >.05 (.12-2.19) 

4 .68 2485 <.0001 <.05 (.83-1.19) 

5 .83 1780 .042 >.05 (.81-1.21) 

6 .94 501 .70 >.05 (.57-1.53) 

7 .92 2758 .28 >.05 (.83-1.18) 

8 .97 2410 .71 >.05 (.83-1.19) 

9 1.02 4651 .75 >.05 (.89-1.12) 

Pech de l’Azé IV    

3A 1.28 1547 .042 <.05 (.80-1.22) 

3B 1.19 2762 .041 <.05 (.83-1.18) 

4A .87 216 .57 >.05 (.22-2.04) 

4B+C 1.05 647 .80 >.05 (.65-1.42) 

5A 1.25 1366 .076 <.05 (.79-1.23) 

5B 1.00 622 .98 >.05 (.64-1.43) 

6A 1.01 2309 .92 >.05 (.83-1.19) 

6B 1.10 2304 .31 >.05 (.83-1.19) 

7 .83 2784 .015 <.05 (.83-1.18) 

8 1.01 2076 .95 >.05 (.82-1.20) 

Combe-Capelle Bas   

I-upper .60  2167 <.0001 <.05 (.82-1.20) 

I-lower .86  2222 .071 >.05 (.82-1.19) 

I-3 .76 109 .43 >.05 (.0-2.52) 

II-3 .75 207 .27 >.05 (.20-2.07) 

II-4 .73 1484 .0012 <.05 (.80-1.22) 

III-1 .46 525 <.0001 <.05 (.59-1.51) 

*Two-tailed probability  
 

Table 6 – Comparison of statistical significance levels derived from the experimental data through Monte 

Carlo sampling and using 95% confidence interval based on the regression models. Bold values indicate 

significance level exceeds an alpha of .05. Bracketed values denote the range of the confidence interval. 
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The second challenge of the cortex methodology concerns the ability to compare 

two Cortex Ratios in a statistically confident manner. In this study, a permutation test is 

employed to construct the null distributions of the differences between resampled Cortex 

Ratios, with which the actual difference between archaeological ratios can be compared. 

Results from both tests have clear implications for the analytical potential of small 

assemblages with sizes in the 100-200 range, where their Cortex Ratios are difficult to 

compare and interpret due to the high degree of variance. This difficulty arises because 

the sampling distribution of Cortex Ratios from smaller assemblages is much wider, 

which therefore increases the chance for the difference between two archaeological ratio 

values to occur in frequencies over the alpha threshold. This observation echoes concerns 

over the effects of assemblage size on richness and diversity (Grayson and Cole, 1998; 

Hiscock, 2001; Meltzer et al., 1992), and likely extends to other properties, such as flake 

to core ratio, tool to flake ratio, and flake percentage that are commonly used for 

describing assemblages, and therefore warrants further examination. A better grasp of the 

potential impact of sample size on Cortex Ratios and other assemblage measures would 

allow us to investigate different archaeological samples more meaningfully.  

Roc de Marsal and Pech de l’Azé IV show similar cortex patterns in the lower 

layers but opposite patterns in upper layers. Statistical evaluation demonstrate that the 

trend at Roc de Marsal was more gradual whereas that at Pech de l’Azé IV was more 

punctuated and fluctuating shifts between layers. What is clear, however, is that most 

assemblages which correspond to colder and more open environments exhibit rather 

extreme cortex proportions (Layers 2 and 4 at Roc de Marsal, Layers 3A, 3B, and 5A at 
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Pech de l’Azé IV, all layers at Combe-Capelle Bas) compared to layers that contain 

faunal records characteristic of temperate settings. The pattern observed here suggests 

that there was little artifact movement during warmer periods that altered the assemblage 

cortex and volume composition at these localities. By contrast, during colder periods, 

greater degrees of artifact transport occurred and caused the apparent imbalance in 

assemblage cortex composition. Specifically, patterns of artifact movement during this 

period led to a gradual loss of cortex at Roc de Marsal while Pech de l’Azé IV saw 

greater fluctuation and excess in cortex proportions. At Combe-Capelle Bas, the layers 

exhibited an overall trend of underrepresented cortex. The considerable variability in 

Cortex Ratios between the stratigraphic units might also suggest the underlying 

behavioral processes that gave rise to these patterns were likely temporally varied and 

complex.  

The results here fit with the model of Middle Paleolithic mobility strategies 

proposed by Delagnes and Rendu (2011). At Roc de Marsal and Pech de l’Azé IV, the 

Levallois rich layers at the lower half of the stratigraphic sequence exhibit less extensive 

artifact movement and therefore likely reflect lower degrees of mobility. On the other 

hand, non-Levallois industries, such as the Quina and MTA technology, dominate layers 

with Cortex Ratios showing greater deviation from 1 at all three sites. This trend likely 

indicates a shift in technological strategies geared towards heightened mobility pattern 

perhaps in response to increasing environmental unpredictability (Delagnes and Rendu 

2011; Hiscock et al. 2009; Niven et al. 2012). However, departures in the Cortex Ratios 
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between the three sites suggest variation in the nature and extent of artifact transport 

between places even within a single technological system or climatic setting.  

At this point, it is worth considering the sort of artifact transport patterns that 

could have led to the formation of the observed differences in Cortex Ratios. A Cortex 

Ratio of 1 may suggest that no artifact import or export had occurred at a locality and 

therefore the unity between cortex and stone volume remained intact. On the other hand, 

a transport pattern based purely on random selection would also not affect the cortex to 

volume ratio of an assemblage. This scenario is nevertheless unlikely as it would require 

all artifacts regardless of size and type to have the same probability of being transported, 

which contradicts much of the discussion on artifact utility where size and cutting edge 

has been identified as a central criterion in terms of functionality, transportability, and 

utility (Kuhn 1994; Lin et al. 2013; Shott and Sillitoe 2005).  

The other possibility consists of repeated back and forth movements of artifacts 

between places through a more tortuous (non-linear) mobility pattern that causes 

assemblage cortex compositions to remain relatively balanced overtime (Douglass 2010). 

This kind of movement would involve less long linear movements and more frequent 

“turns” (Brantingham 2006). The consistent pattern of cortex to volume at unity 

represented in the lower layers at Roc de Marsal and Pech de l’Azé IV opens the 

possibility that this sort of artifact movement pattern took place at the two localities 

during this period. If we consider Roc de Marsal and Pech de l’Azé IV as places of not 

only artifact production but also of discard, reuse, and retooling, then the cortex pattern 
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can be explained by the recurring production, selection, import, and export of artifacts at 

these sites. In other words, there was potentially great overlap in the utilization of these 

places by Neanderthals during warmer and forested conditions. 

For the following colder periods, potentially corresponding to MIS 3 and 4, the 

greater excess and deficit in cortex at the three sites indicate a tendency for artifacts to be 

transported away from the sites and not come back as frequently, or vice versa. This 

pattern suggests a changing Neanderthal mobility pattern possibly between unevenly 

distributed and spatially localized resource patches (Delagnes and Rendu, 2011; Kuhn, 

1995). The distinct cortex patterns during this period at Roc de Marsal and Pech de l’Azé 

IV also suggest that forms of artifact transport differ spatially between sites (see Soressi 

2002). The lithic technologies associated with these layers, including the Quina and 

MTA, have been characterized as having greater emphasis on the renewal and 

maintenance of artifact utility, especially through resharpening (Delagnes and Rendu, 

2011; Hiscock et al., 2009; Turq 1989; Niven et al., 2012). These observations point to 

the tendency for Neanderthals to carry out long distance movements during this period. 

Such movement patterns may relate to the targeted exploitation of migratory reindeer 

during colder periods where the ecological conditions was more heterogeneous (Delagnes 

and Rendu 2011).  

However, the nature of the underlying processes that gave rise to this difference in 

assemblage cortex proportions remains unclear, especially given that specific cortex 

ratios can be created by multiple assemblage configurations. The deficit of cortex at Roc 
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de Marsal can be explained by either an export of cortex or import of volume and vice 

versa for the excess of cortex at Pech de l’Azé IV. Furthermore, the relationship between 

Cortex Ratio variability and the various facets of occupation and mobility, such as the 

regularity and duration of (re)occupation or the frequency, velocity, and linearity of 

movement, need to be further assessed. Further examination of the relationship between 

Cortex Ratios and other technological variables are required to provide a more contextual 

understanding of the underlying behavioral process. It is also important to note that the 

assemblages considered in this study only include those that are attributed to locally 

derived flint types. Although these elements compose the majority of the study 

assemblages, the analysis here only partially captures the artifact movement patterns 

represented in these three sites. Additional studies of assemblage materials made on other 

raw material types are needed to shed light on other aspects of Middle Paleolithic artifact 

movement patterns.  

4.8 Conclusion 

Even in the context where workable materials are abundant, stone artifacts were 

still transported as populations moved and carried out activities across the landscape 

(Douglass and Holdaway 2011; Douglass 2010; Douglass et al. 2008). In other words, the 

use of stone artifacts was likely more widespread than the localized places where raw 

materials occur. As Douglass and Holdaway (2011) have stated, from a landscape 

perspective there was likely always a tendency for stone artifacts to be moved with 

varying distances from some localities for use and discard elsewhere. A similar 

observation was recently made by Turq et al. (2013) concerning the movement of raw 
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material in the Middle Paleolithic of Western Europe. This interaction between 

movement and the formation of lithic assemblages across different places over the 

landscape means that mobility can be conceptualized by the over or under abundance of 

knapping products at particular localities (Dibble et al. 2005; Douglass and Holdaway 

2011; Holdaway et al. 2008).  

From this perspective, cortex quantification offers a viable alternative for gauging 

the nature and extent of past mobility and land use patterns. The ability to establish 

statistical confidence between Cortex Ratios thus further extends the approach’s 

analytical utility to archaeological materials. In addition, it is important to note that 

Cortex Ratios merely summarize the cortex composition of lithic assemblages and do not 

offer immediate behavioral explanations. In particular, the impact of various contextual 

factors, including cobble size and reduction intensity, need to be taken into consideration. 

Future work is needed to further examine and test the nuanced interaction between 

Cortex Ratios and various forms of artifact movement and behavioral processes.  
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CHAPTER 5: Summary and Conclusions 

 

“Science seeks to build a cumulative learning trajectory through the study of its 

empirical subject matter” (Binford, 2001:672). 

The line of research presented in this dissertation explores the application of an 

archaeological science perspective to the study of prehistoric stone artifacts. The rationale 

for this body of research stems from the inferential challenges faced in current stone 

artifact archaeology, especially the shift to lower levels of inferential confidence as 

researchers seek to address higher order topics of hominin behavior and adaptation. This 

issue of inferential adequateness and validity is attributed to the common conflation of 

behavioral assumptions within basic archaeological units and the dependence on 

simplistic analogic treatment of uniformitarian theory and experimental design. 

Alternatively, by approaching lithic studies as an archaeological science, it is argued here 

that stone artifact archaeology can develop as a productive scientific enterprise in its own 

right by applying greater rigor to the design of experimental research and the overall 

process of archaeological inference building.  

Chapter 2 provided an analysis on the role of analogy and experimentation in the 

building of lithic inference. The study described therein first critically examined the 

nature of analogic reasoning in archaeology, and related the inferential issues in much of 

archaeological systematics to the operation of formal analogy. In stone artifact 

archaeology, conventional replicative experimentation lacks elements of experimental 
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rigor, causing its reasoning process to fall in line with formal analogy. Consequently, the 

generated inferences are prone to issues of analogical inadequacy.  

To establish sound relational inferences of high validity between lithic artifacts 

and past causal processes, it is argued that rigorous treatment of experimental design is 

necessary in terms of variable control and hypothesis formulation. The focus of lithic 

experimentation should also shift from replication of artifacts to a comparative approach 

based on the evaluation of archaeological assemblages with reference to experimentally 

verified relationships attributable to controlled variables. The chapter advocated a two-

step procedure to lithic experimentation – ‘pilot’ experiments that obtain a general 

understanding of the phenomenon in question through an emphasis on high ecological 

validity; and, ‘second generation’ experiments that explicitly test the stipulated 

relationships under controlled settings to ensure high internal validity of the experimental 

outcome. The repeated back-and-forth between pilot and second generation experiments, 

along with continual comparative feedback from the archaeological record, allows 

concrete linkages of referential knowledge to be established in a constructive manner for 

drawing broader archaeological inference.  

The following two chapters investigated the use of the proposed comparative 

experimental approach on the study of stone artifacts. Chapter 3 employed a highly 

controlled experimental setup to examine uniformitarian linkages between platform 

configurations and the formation of lithic attributes that are relatable to higher level 

technological behaviors. Specifically, this paper explored how particular characteristics 
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of individual, unretouched flakes can be altered in ways that increase their relative utility 

and economy, as reflected in the ratio of flake edge length to mass. Experimental results 

identified exterior platform angle and platform depth as being primary independent 

variables affecting this ratio. These relationships were tested against a number of Middle 

Paleolithic archaeological assemblages with distinct manufacturing characteristics. The 

results indicated diachronic patterns in flake utility and economization, possibly related to 

differences in tool-kit selection and maintenance associated with changes in ranging and 

provisioning behavior of late Pleistocene Neanderthals in southwestern France.  

Chapter 4 applied the cortex quantification approach to the lithic assemblages of 

three Middle Paleolithic sites in southwestern France. The geometric method quantified 

the cortex proportion among assemblages as the Cortex Ratio, which indicates the excess 

or deficit of assemblage cortex relative to existing artifact volume. This paper determined 

statistical confidence for archaeological Cortex Ratios through Monte Carlo and 

resampling techniques. Experimentally produced data generated from local raw material 

samples with known geometric properties and measured cortex values were employed as 

a reference for attaching a probability to an archaeological assemblage’s Cortex Ratio. 

The archaeological results indicated changes in assemblage cortex proportion among the 

study assemblages over time, namely a tendency for assemblages associated with colder, 

dryer, and more open environments to exhibit Cortex Ratios that deviate from a value of 

one. This observation was discussed with respect to the possible artifact movement 

patterns that could have contributed to the formation of the observed assemblage cortex 

composition.  



 

159 
 

The results of Chapter 3 and 4 revealed interesting diachronic patterns in the lithic 

assemblages from the three Middle Paleolithic sites studied here. Specifically, a clear 

association is demonstrated between lithic assemblages characterized by (1) small, thin 

flakes with high cutting-edge-to-mass ratio, (2) relatively fewer scrapers, and (3) values 

of assemblage volume and cortex that approach unity. These assemblages are further 

linked to temperate forest environmental conditions as indicated by the dominance of red 

deer and roe deer remains. The close or equal-to-one Cortex Ratios of these assemblages 

indicate that the selection and movement of artifacts occurred in ways that did not cause 

imbalance in the original assemblage cortex composition. These findings suggest that 

either the selection of artifacts was based on criteria unrelated to geometry and hence 

utility (as defined by the relative amount of usable edge), or the movement of artifacts 

between places was more ‘tortuous’ (i.e., non-linear path) and caused assemblage cortex 

composition to remain relatively balanced overtime (Douglass 2010). This kind of 

movement would involve fewer long linear movements and more frequent “turns” that 

result in more thorough use of a localized landscape (Brantingham 2006).  

Based on models of technological organization and risk management (Elston 

1990; Nelson 1991), this ranging strategy would involve less frequent movements where 

extensive tool-kit provisioning and curation is required. This scenario is supported by the 

general abundance of small and thin flakes in these assemblages that shows an emphasis 

on the production of immediately usable cutting edge. The proportionally lower 

frequencies of retouched scrapers among these assemblages may relate to either an 

overall lower rate of flake utility rejuvenation (Lin et al. 2013), or that the activities 
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involving artifact use-life maintenance occurred away from these cave localities and over 

the wider river valley.  

In contrast, some other assemblages, particularly those from Roc de Marsal, are 

characterized by (1) larger and thicker flakes, (2) higher proportions of scrapers, (3) 

Cortex Ratios that statistically differ from a value of one, and (4) a tendency to be 

associated with colder and dryer environments, as indicated by the dominance of reindeer 

remains in these assemblages. The Cortex Ratios suggest that the nature and degree of 

artifact movement likely occurred in ways that caused an imbalance in the assemblage 

cortex proportions – i.e., artifacts moved away from places but did not come back as 

frequently, or vice versa. This pattern may relate to ranging behaviors consisting of long 

linear distant movements away from places (Brantingham 2006; Douglass 2010). The 

dominance of large, thick flakes and the higher proportions of retouched scrapers among 

these assemblages further suggest that focus of tool-kit provisioning were placed on the 

selective transport of large flakes with greater potential for utility rejuvenation (Lin et al. 

2013).  

This shift in Neanderthal ranging and tool-provisioning behavior likely reflects 

broader changes in land use. Specifically, the transition from a warmer and more 

temperate climate to a colder and dryer one, likely corresponding to the move from 

Marine Isotope Stage 5 to 4, would have had an effect on the overall distribution and 

abundance of resources, specifically large mammals. Isotopic studies have shown that the 

Neanderthal diet mainly consisted of large herbivores, including large bovids, horses, 



 

161 
 

reindeer, wooly rhinoceros, mammoth, and large deer (Bocherens 2009; Bocherens et al. 

2005; Richards and Trinkaus 2009; Richards et al. 2000, 2008; Salazar-García et al. 

2013). In long term cold climatic episodes, permafrost conditions and the decline in 

vegetation cover would have increased surface sediment runoff due to greater overland 

fluvial discharge (Bogaart et al. 2003; Vandenberghe 1995, 2002, 2003). This process 

would have led drainage organization to change from a single and stable river system 

(e.g., meandering) to a more ephemeral and multi-channeled system (e.g., braided or 

anabranching) (Bertran et al. 2013; Vandenberghe 2001, 2008). Under this scenario, the 

occurrence of large herbivores during cold pleniglacial episodes could have fluctuated 

with greater spatial and temporal heterogeneity in the Dordogne region due to seasonal 

changes in snow/frost cover. In conjunction with the lower vegetation diversity compared 

to warmer interglacial cycles (Rivals et al. 2009), the observed archaeological shifts may 

reflect Neanderthal foraging responses to major alterations in food resource composition 

and distribution across the landscape. 

However, as emphasized in the beginning of this dissertation, much more research 

into a variety of topics will be required to confidently and holistically arrive at a higher 

level inference of late Pleistocene Neanderthal land use across the Dordogne landscape. 

In particular, the current study sample is small and restricted to cave localities. It is 

therefore unclear whether the observed archaeological pattern is representative of wider 

behavioral processes, or only captures a subset of past Neanderthal dynamics limited to 

these cave settings. Furthermore, a greater understanding of paleoenvironmental 
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conditions of the region would allow a more in-depth assessment of foraging and land use 

models in relation to changes in prey distribution and movement.  

Related to this point, more contextual information about the changes in raw 

material availability (i.e., distribution in primary and secondary context, visibility, 

abundance, morphology, etc.) between the two climatic periods is also critical in 

discerning the factors affecting the shift in flake production strategies and conditions for 

artifact selection and transport. In addition, application of the same analytical procedure 

to Upper Paleolithic assemblages in the same region would provide a useful comparison 

for evaluating the differences in behavioral patterns between Neanderthals and modern 

humans under similar ecological settings. This sort of dataset would prove invaluable to 

the understanding of the differences between the behavioral capacities of Neanderthals 

and Upper Paleolithic modern human populations.  

Finally, while it is advocated here that archaeological units of measurement 

should be established upon uniformitarian processes, behavioral interpretations for 

explaining the observed patterns cannot be sought in a hypo-deductive manner. This is 

because such reasoning exercise necessitates a priori assumptions about hominin 

behavior. In doing so, we would fall back into the cycle of inferential fallacy of formal 

analogy. Instead, behavioral interpretations may be more effectively constructed as 

inference to the best explanation (Fogelin 2007). Contrary to the deduction-induction 

archaeological hermeneutics (Hodder 1999; Wandsnider 2004), this reasoning process is 

abductive in nature, being based on the assumption that the explanation capable of 
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accounting for the most evidence is also the most likely to be true (also see Wylie 1993). 

By increasing the number of lines of independent evidence, each grounded in sound 

inferential framework, it is thus possible to construct complex explanations by testing the 

relative capacity of competing explanatory models, possibly through approaches such as 

simulation and agent-based modeling.  

 Returning to the broader discussion of science and lithic studies, a common 

definition of archaeological science is the application of scientific techniques to the study 

of archaeological materials (Tite 1991). However, exactly what makes a technique 

‘scientific’ has yet to be critically evaluated and defined. More recently, the definition 

seems to have been made explicit by specifying the use of computational modeling and 

natural science methods for anthropological and archaeological inquiry. This view is 

increasingly apparent in current stone artifact archaeology. Advanced computational 

techniques such as 3D digitization and geometric-morphometrics are now commonly 

featured in the analysis of prehistoric stone artifacts (Bretzke and Conard 2012; Clarkson 

2010; Iovita and McPherron 2011; Iovita 2009, 2011; Lin et al. 2010; Lycett and von 

Cramon-Taubadel 2013; Lycett et al. 2010; Rezek et al. 2011). Renewed attention to 

quantification, objectification, modelling, and hypothesis testing have equally been 

revived recently (Lycett and Chauhan 2010) in conjunction with the growing application 

of outside frameworks, including phylogenetic and transmission models to lithic analysis 

(Lycett 2009a,b; O’Brien et al. 2001).  
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However, while studies embrace this movement towards the adoption of more 

sophisticated and rigorous techniques, most of which are developed in other fields, the 

underlying theoretical framework that governs the inferential logic of stone artifact 

archaeology remains largely unchanged. Artifacts continue to be treated as emic units, 

from which past intentionality, decisions, goals, and cultural affinity are reconstructed via 

replicative experiments on the basis of modern observers’ ordinary experience, common 

sense, and intuition. At one level, this approach can be attributed to a general absence of 

scientific training in archaeology programs, which results in the implicit notion that mere 

quantification and experimentation equal science. In the absence of developed theory and 

understanding of process, the simple pursuit of quantification and objectification has been 

shown to be largely unproductive in previous attempts (Dunnell 1982). In addition, while 

experimentation has proved to be an increasingly popular approach, the lack of attention 

to its nature and role has led to many of the generated inferences being difficult to 

compare and evaluate.  

In some ways, this issue is reflected by the need for Dibble and Whittaker (1981) 

to ironically emphasize the ‘control’ aspect of lithic experimentation, given that the 

ability to manipulate and control variables is commonly viewed as the chief virtue of 

experimentation as a scientific method (Gauch 2003; Kosso 2011). At a higher level, the 

recurring theme of concept and technique borrowing from outside disciplines in 

archaeology (Dunnell 1982; Hodder 2012) points to a general deficiency of 

archaeological theory to deal with the ontological nature of the archaeological record and 

its inferential linkage to behavioral and cultural interpretations (Binford 2001; Clarke 
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1968). The apparent contradictory, yet interchangeable ways stone artifacts are currently 

treated (e.g., units of cultural affinity, functional design, chronological pattern, 

continuous reduction, or natural selection), signal that the nature and role of theory in 

lithic studies is in disarray (see Schiffer, 1988).  

If we take the notion of scientific practice as outlined in the opening quote to this 

chapter by Binford (2001), science entails having a clear and explicit understanding of its 

subject matter and the ability to produce meaningful inferences based on solid inferential 

grounding. More importantly, the scientific process of inference building is purposefully 

slowed down in order to establish sound control over variables and analytical 

transparency (Kosso 2011). The scientific method is powerful as it can take something 

that is obvious to our ordinary experience and show its actual complicated nature. Indeed, 

from radiometric and geochronological dating, to isotopic analysis and 

paleoenvironmental reconstructions, practices of archaeological science have provided 

incredible insights and discoveries into the past that are simply beyond the scope and 

imagination of ordinary researchers.  

It has been argued that the role of science in archaeology does not exist as an 

unified enterprise, and the credibility and utility of archaeological investigation is related 

more to the wide range of theories and techniques that make interdisciplinary interactions 

possible and effective (Wylie 2000). Indeed, archaeology is situated in the unique 

position of being able to utilize and integrate knowledge from various disciplines to study 

the past. However, as demonstrated throughout this dissertation, it is equally important to 
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be critically aware of the goals and the associated inferential reasoning processes that 

underlie such an interdisciplinary effort. As David Clarke (1968:13) famously expressed, 

“Archaeology is archaeology is archaeology”. Few would disagree that archaeological 

inquiry is grounded in material reality, and that this material reality – the archaeological 

record – constitutes the primary subject of study for archaeologists. Given the potential 

complex formational history of the record, as well as issues such as equifinality and time 

scale difference, it cannot be assumed that this record can be intuitively translated into 

units of behavior based on the common sense or daily ordinary experience of the 

observers. It is, thus, important for archaeologists to construct past interpretations on the 

basis of a thorough understanding of its study subject. 

The point here is that the aspiration of scientific practice emphasizes the 

ontological and formational component of archaeological inquiry – i.e., what is the 

material reality of the archaeological record, and how was it formed in relation to past 

behavioral processes? It is argued here that the virtue and analytical power of 

archaeological science resides in the use of principles from the natural sciences as the 

foundation for building archaeological interpretations. Because of their uniformitarian 

nature and, more importantly, their independence from the anthropological phenomenon 

that we wish to investigate, these principles serve as powerful tools for establishing 

referential foundations and linkages for constructing archaeological inferences.  

As this dissertation has demonstrated, the application of a similar scientific design 

and a methodological treatment of uniformitarian theory to lithic studies do not 
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necessarily restrict lithic research to the discovery of low level physical phenomena. 

Indeed, the disconnect between the mundane material reality of archaeological objects 

and the behavioral dynamics of past human phenomena that archaeologists seek to 

understand is often translated into a dilemma between inferential security and interpretive 

details (Wylie 1985). Earlier attempts to search for human universals have instead 

resulted in behaviors that are either trivial or too obvious to be mentioned (Flannery 

1973).  

This dissertation outlines an alternative strategy for resolving this issue by 

suggesting a move away from the search for singular causal connections for linking 

archaeological material to past human processes that we wish to evaluate. More 

specifically, research cannot begin with the assertion that there is an inherent and 

meaningful uniformitarian connection between the subject of study and the research 

question, and that this inferential connection can somehow be intuitively discovered. 

Instead, because all archaeological phenomena are grounded in material reality and 

therefore obey universal laws, the approach advocated here involves the use of 

uniformitarian processes to detect physical patterns in stone artifacts and draw behavioral 

inferences about the possible underlying formational processes.  
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