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Abstract
The design of targeted recombinant biotherapeutics is a rapidly growing area of translational biomedical
research, with particular relevance to acute and life-threatening conditions, in which the available treatment
options have narrow therapeutic indices. Although vascular immunotargeting typically has been thought of as
a strategy for controlling and altering pharmacokinetics, in the context of biotherapeutic delivery, precise
localization may be the primary goal, allowing optimal interaction of drug with endogenous partners. The
protein C pathway has important protective roles in a variety of human illnesses, including sepsis and acute
lung injury. We recently reported a strategy for augmenting this pathway by anchoring thrombomodulin (TM,
CD141) to the endothelium via an affinity ligand to platelet endothelial cell adhesion molecule-1 (PECAM-1,
CD31). Endothelial PECAM-1, however, is believed to localize to a different portion of the cell membrane
than the majority of endogenous TM and its key co-factor, the endothelial protein C receptor (EPCR,
CD201). The current document includes new data indicating that recombinant TM anchored to endothelial
PECAM-1 does not partner effectively with EPCR and describes the design, implementation, and validation
of two strategies for more effectively replicating the enzymatic partnering of these two molecules. In both
cases, proximity of these co-factors on the surface of the endothelial membrane appears to be the key variable
and has significant implications, affecting not only functional activity in vitro but therapeutic efficacy in vivo.
These findings underscore the complexity of targeting biotherapeutics to the plasmalemma, and suggest that
precision on a nanometer scale is necessary for optimal biotherapeutic effect.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Pharmacology

First Advisor
Vladimir R. Muzykantov

Keywords
Endothelial Protein C Receptor, Endothelium, Targeted Drug Delivery, Thrombomodulin

Subject Categories
Biomedical | Pharmacology

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1296

http://repository.upenn.edu/edissertations/1296?utm_source=repository.upenn.edu%2Fedissertations%2F1296&utm_medium=PDF&utm_campaign=PDFCoverPages


 

AUGMENTING THE PROTEIN C PATHWAY 

WITH ENDOTHELIAL TARGETED 

BIOTHERAPEUTICS: 
 

STRATEGIES TO PROMOTE PARTNERING OF TM AND EPCR 
 
 

Dr. Colin F. Greineder, MD 
 

A DISSERTATION 
 

in 
 

Pharmacology 
Presented to the Faculties of the University of Pennsylvania 

In 
Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy 

2014 
 

 

Supervisor of Dissertation     

_____________________    

Vladimir R Muzykantov, MD, PhD 

Professor of Pharmacology 

         

Graduate Group Chairperson 

______________________ 

Julie Blendy, PhD 

Professor of Pharmacology 

 

Dissertation Committee 

Dr. Mortimer Poncz, MD, Professor of Pediatrics (Chair) 

Dr. Steven M. Albelda, MD, Professor of Medicine 

Dr. Sriram Krishnaswamy, PhD, Professor of Pediatrics 

Dr. Emer M. Smyth, PhD, Research Associate Professor of Pharmacology 

Dr. Stephen R. Thom, MD, PhD, Professor of Emergency Medicine  



 

 
 
 
 
 
 
 
 
 
 
 
 
AUGMENTING THE PROTEIN C PATHWAY WITH ENDOTHELIAL TARGETED 

BIOTHERAPEUTICS: STRATEGIES TO PROMOTE PARTNERING OF TM AND EPCR 
 
COPYRIGHT 
 
2014 
 
Dr. Colin F. Greineder 
 
 
This work is licensed under the 
Creative Commons Attribution- 
NonComercial-ShareAlike 3.0 
License 
 
To view a copy of this license, visit 
 
http://creativecommons.org/license/by-ny-sa/2.0/ 



 

 iii

 
DEDICATION 

 

To my mother and father, who instilled in me a love of knowledge, dedication to 

hard work, and commitment to help others.  I miss you both and strive to honor 

your memory every day. 

  



 

 iv

ACKNOWLEDGEMENTS 
 

Like every PhD student on the verge of graduation, I look back at the last several 

years of my life and can scarcely begin to think of all of the people that deserve 

acknowledgement for helping me to complete this body of work.  Countless 

conversations come to mind – some which had major impact on the choices I 

made and some which simply helped me keep going in the face of frustration, 

disillusionment, and disappointment.  As many friends and colleagues have 

heard me say over the past 5 years, working in the emergency room is about 

95% success, and much of the challenge is in learning to deal with the rare, but 

devastating failures.  Working in the laboratory, on the other hand, seems to be 

about 95% failure, and much of the challenge is in learning to subsist on the rare, 

but rewarding successes.  All who are reading this are likely to have played some 

part in teaching me to be patient, persistent, honest, and ethical, in spite of the 

many challenges and temptations that have arisen along the way.  Each of you 

has contributed to the development of what I hope will be a long career spent in 

pursuit of novel diagnostics and therapeutics for the sickest amongst us. 

 

In particular, I would like to express my deep gratitude to my advisor, Dr. Vladimir 

Muzykantov, who saw in me the desire not only to develop hypotheses and 

conduct experiments, but to constantly ask “why are we doing this?” and “how do 

we plan to apply this to the real world?”  Although my initial impulses may have 

been naïve and my ideas poorly developed, Vladimir did not crush them, but 

rather stoked my enthusiasm and molded me into a (more) mature scientist.  He 

introduced me to the field of Drug Targeting, as I have introduced him to the 

practice of Emergency Medicine.  I hope to have a long career together, and that 

one day (not too far off, please!), our work will contribute to patient care. 

 

I also wish to thank the members of the Department of Emergency Medicine who 

helped to bring me to Penn and convinced me to pursue this rather atypical path.  



 

 v

In particular, I want to acknowledge Bob Neumar, who first suggested that a PhD 

would be the best preparation for my career as a physician scientist.  Bob’s 

institutional grant from SAEM supported my first two years, and although he has 

moved on from Penn, he remains a mentor, friend, and trusted advisor.  

Likewise, I am grateful to Steve Thom, now at the University of Maryland, and 

Lance Becker, who always seem willing to take time out of their incredibly busy 

schedules to offer their advice, or simply talk about science and medicine.  

Finally, I want to mention John Younger, who took me into his lab while still a 

resident in Michigan and encouraged my interest in basic science.  All four of you 

are pioneers and I draw great motivation from the examples that you provide. 

 

Next, I wish to thank Sarah Squire, our graduate group coordinator, and each of 

the members of my Thesis Committee.  With my atypical circumstances and 

crazy schedule, I certainly have not been the easiest graduate student to deal 

with!  I want to specifically thank Emer Smyth for understanding the challenges of 

doing science while having little children at home.  Emer’s door has always 

seemed open to me and she has taken the time to provide me much needed 

advice and support during the most trying of times.  Likewise, Dr. Albelda, with 

his vast experience mentoring physician scientists, has been a consistent source 

of advice and guidance regarding my chosen career path.  I want to thank Drs. 

Poncz and Krishnaswamy, two giants in the field of experimental hematology, for 

providing me a unique perspective on my work and challenging me to cut to the 

chase and focus my work.  I have already mentioned Dr. Thom, of course, but he 

deserves double thanks for his work on my committee. 

 

I want to express my deep gratitude to each and every member of the 

Muzykantov laboratory.  I have had the good fortune to work alongside an 

amazing set of post-docs and research scientists, who have taught me more than 

I can possibly acknowledge.  I must specifically thank Drs. Ann Marie Chacko, 

Blaine Zern, Elizabeth Hood, Ronald Carnemolla, Sergei Zaytsev, Melissa 



 

 vi

Howard, Jingyan Han, Vladimir Shuvaev, and Samira Tliba.  You have tolerated 

my foibles, listened to my stories, laughed at my jokes, and opened your lives to 

me.  I am deeply indebted to each of you and hope we will stay close going 

forward. 

 

Of course, the biggest thanks must go to my loving wife, Sarah, my two sons, 

Max and Niels, and my sisters, Kirsten and Britt.  The last few years have been a 

juggling act, to say the least, and without the support of my family, I would no 

doubt have been swallowed up long ago.  To Sarah, in particular, I want to 

express my gratitude, but I find that I have no words, other than to say that I 

could never have accomplished any of this without your help, patience, support, 

and belief in me.  This dissertation may pale in significance, in comparison to our 

two greatest accomplishments together, but nonetheless I treasure the fact that 

you share my vision of the future and want to get there together. 

  



 

 vii

 ABSTRACT 
 

AUGMENTING THE PROTEIN C PATHWAY WITH ENDOTHELIAL TARGETED 

BIOTHERAPEUTICS: STRATEGIES TO PROMOTE PARTNERING OF TM AND EPCR 
 

Dr. Colin F. Greineder 

Dr. Vladimir R. Muzykantov 
 

The design of targeted recombinant biotherapeutics is a rapidly growing area of 

translational biomedical research, with particular relevance to acute and life-

threatening conditions, in which the available treatment options have narrow 

therapeutic indices.  Although vascular immunotargeting typically has been 

thought of as a strategy for controlling and altering pharmacokinetics, in the 

context of biotherapeutic delivery, precise localization may be the primary goal, 

allowing optimal interaction of drug with endogenous partners.  The protein C 

pathway has important protective roles in a variety of human illnesses, including 

sepsis and acute lung injury.  We recently reported a strategy for augmenting this 

pathway by anchoring thrombomodulin (TM, CD141) to the endothelium via an 

affinity ligand to platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31).  

Endothelial PECAM-1, however, is believed to localize to a different portion of the 

cell membrane than the majority of endogenous TM and its key co-factor, the 

endothelial protein C receptor (EPCR, CD201).  The current document includes 

new data indicating that recombinant TM anchored to endothelial PECAM-1 does 

not partner effectively with EPCR and describes the design, implementation, and 

validation of two strategies for more effectively replicating the enzymatic 

partnering of these two molecules.  In both cases, proximity of these co-factors 

on the surface of the endothelial membrane appears to be the key variable and 

has significant implications, affecting not only functional activity in vitro but 

therapeutic efficacy in vivo.  These findings underscore the complexity of 

targeting biotherapeutics to the plasmalemma, and suggest that precision on a 

nanometer scale is necessary for optimal biotherapeutic effect.
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CHAPTER ONE: INTRODUCTION 
 

I. A Brief review of Drug Targeting 

Over the past four decades, thousands of scientists and clinicians have 

contributed to the study of drug targeting, resulting in the development and 

testing of hundreds of strategies for the delivery of therapeutics to various 

locations in the body.  By the late 1990s, annual sales of Advanced Drug 

Delivery Systems (ADDS) in the United States exceeded $10 billion, and they 

have continued to rise rapidly1.  While a comprehensive survey of the field is 

clearly beyond the scope of this document, it is instructive to briefly review the 

origins of drug targeting and its progression from the controlled release of small 

lipophilic drugs to the precise subcellular localization of macromolecular 

biotherapeutics. 

 

Magischen Kugeln: the origins of targeted drug delivery 

With few exceptions, the pharmaceuticals in clinical use distribute 

throughout the body based on their physical characteristics (size, charge, 

lipophilicity, etc.) and the physiologic state of the patient to which they are 

administered.  Without any specific control over pharmacokinetics, most drugs do 

not accumulate at their intended site of therapeutic action.  In order to achieve 

adequate concentration at the required location, large doses, repeated 

administration, or even continuous infusion may be required, increasing the cost, 

risk of harmful side-effects, and likelihood that patients will not adhere to the 

proper regimen.  Far from theoretical, these factors lead to the failure of the 

majority of prospective therapeutics2,3, as well as millions of dollars of annual 

health care expenses related to adverse drug events and medication non-

compliance4,5.  With the development of monoclonal antibodies (mAbs) and 

advances in polymeric chemistry in the 1970s, a new field of scientific 

investigation emerged, dedicated to the development of delivery systems for the 
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controlled release, distribution, and permeation of drugs across cellular 

membranes6. 

The basic concepts of drug targeting were formulated long before any 

technology existed to apply them to biological systems.  The Nobel laureate, Paul 

Ehrlich, is largely credited with advancing the theory of Seitenketten (“side 

chains”), or cellular receptors, in the early 20th century7.  He postulated that these 

receptors were responsible for the binding of bacterial toxins to particular cells – 

e.g. the attachment of tetanospasmin to the neuromuscular junction8.  Ehrlich 

went on coin the famous term magischen Kugeln (“magic bullets”) to refer to 

therapeutics that would mimic the action of these toxins, going directly to their 

intended cellular targets and attacking diseased tissue while inflicting no harm to 

the remainder of the body9.  While Ehrlich’s vision has yet to be fully realized, 

substantial progress has been made, with the design and implementation of 

hundreds of ADDS.  Research efforts have followed a natural progression from 

relatively basic strategies of therapeutic delivery to more sophisticated 

approaches.  Each new technology has been accompanied by practical 

applications, allowing physicians and scientists to tackle increasingly difficult 

biological questions and clinical challenges10. 

 

The polymeric drug depot: the first ADDS 

Perhaps the first and most elementary therapeutic delivery system was 

that of the polymeric drug depot, a device intended for the gradual and controlled 

release of pharmaceuticals.  The earliest drug depots, such as the Norplant® 

device, consisted of non-biodegradable polymers and aimed at reducing the cost 

and complexity of treatment regimens11.  Norplant®, a series of silicone capsules 

containing the steroid hormone, levonorgestrel, produced highly effective, long-

term contraception12.  Although the device achieved notoriety in the United 

States as the subject of a number of class action lawsuits, it continues to be 

utilized in the developing world, where it has the major advantage of long-term 

efficacy without the need for consumable supplies13.  Silicone and other non-
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degradable polymers were ultimately replaced by materials such as poly(lactic-

co-glycolic) acid, or PLGA14.  Biodegradable polymers allow for repeated 

administration, and their development enabled new clinical applications, such as 

monthly dosing of gonadotropins for the treatment of endometriosis, prostate 

cancer, and children with precocious puberty15,16.  The most recent depot 

technologies have achieved actual “drug targeting”, in the sense that they 

release therapeutics at a site of disease, rather than into the systemic circulation.  

The most widely publicized and medically significant example is that of the drug-

eluting stent (DES), a polymer-coated expandable metal tube, which is deployed 

within an atherosclerotic artery as a means to maintain blood flow following 

angioplasty.  Bare metal stents, used prior to the invention of DES, were 

complicated by high rates of in-stent restenosis (ISR), a pathological process in 

which vascular smooth muscle cell proliferation, or “neointimal hyperplasia”, 

leads to vessel re-occlusion17.  DES, which slowly release immunosuppressive or 

anti-proliferative agents from their polymer coating, achieve high local 

concentrations of drug with minimal side effects and have dramatically reduced 

the incidence of ISR18–20. 

 

Mobile drug delivery systems and a focus tumor targ eting 

While polymeric depots remain the most significant achievement of the 

drug delivery field from both a medical and commercial standpoint, even the most 

sophisticated examples employ an elementary targeting strategy – i.e. the direct 

implantation of drug at its intended site of action.  Since many diseases are 

disseminated (e.g. metastatic cancer) or inaccessible to implantable depots, the 

focus of the drug delivery field has largely turned to mobile targeting systems.  

These are capable of carrying therapeutics to diseased sites throughout the 

body, where local factors stimulate release10.  The vast majority of this work has 

dealt with the delivery of inherently toxic agents, such as antimicrobials and 

antineoplastics, which are limited in their dosing and efficacy due to narrow 

therapeutic indices.  In particular, the treatment of cancer has dominated the field 
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of targeted drug delivery for nearly two decades, perhaps because of the obvious 

and intuitive appeal of delivering chemotherapeutic drugs to tumor, while sparing 

normal tissues21. 

As in other cases, the simplest strategies have been explored first, 

amongst them the passive leakage of drug carriers into tumor.  The landmark 

observation that liposomes and other nanoparticles (NPs) accumulate in 

neoplastic tissue in excess of proportional blood flow has been termed the 

“Enhanced Permeability and Retention (EPR)” effect22.  As the name implies, 

EPR is believed to be the result of a combination of phenomena.  First, NPs that 

are normally too large to cross the endothelial barrier are able to permeate 

through defective and discontinuous neovasculature, which is formed by rapidly 

growing tumors.  Second, NPs are poorly cleared from tumor interstitium due to 

impaired lymphatic drainage23.  The EPR effect has had a profound and lasting 

impact on the development of drug targeting systems, despite the fact that it only 

applies to treatment of cancer, and specifically, the targeting of solid tumors.  In 

general, priority has been placed on the development of long-circulating drug 

carriers, which maintain the high plasma concentrations needed to drive passive 

tumor targeting.   Since anti-neoplastic drugs are typically toxic, retention of drug 

carrier in the bloodstream has the added benefit of preventing access to normal 

tissues (e.g. the bone marrow), thus reducing dose-limiting side effects24. 

 

Lessons from the clinic: liposomes and early polyme r conjugates 

The most successful drug carriers – from a clinical standpoint – have been 

passively targeted liposomal formulations of small molecule chemotherapeutics.  

The prime example is that of doxorubicin, a highly effective anticancer drug, 

which unfortunately causes cumulative, dose-dependent, and irreversible 

cardiomyopathy25.  Loading doxorubicin into long-circulating polyethylene glycol 

(PEG)-coated liposomes leads to a drastic reduction in its plasma clearance rate 

(0.1L/hr vs. 45L/hr for free drug) and volume of distribution (4L as opposed to 

254L for free drug), confirming the ability of the drug carrier to limit access to 
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normal tissues26.  The first FDA approved nanoparticle, Doxil® (PEGylated 

doxorubicin liposomes) demonstrated significantly less cardiotoxicity in clinical 

trials than free doxorubicin27.  At the same time, the EPR-mediated tumor 

targeting suggested by early pharmacokinetic studies26, failed to translate into a 

marked improvement in clinical efficacy, with overall survival rates similar to 

those of free doxorubicin, depending on the type of cancer being treated and 

combination of therapies utilized27,28. 

The development of another liposomal drug, amphotericin B, is a 

remarkably similar story.  Amphotericin is a highly effective anti-fungal agent 

whose utility is limited by dose-dependent and often irreversible nephrotoxicity.   

Early studies suggested that incorporation of amphotericin into liposomes could 

prevent its interaction with mammalian cell membranes29.  Moreover, a passive 

targeting mechanism was discovered based on non-specific binding of the drug 

carrier to the fungal cell wall.  Electron microscopy revealed that amphotericin-

loaded liposomes were disrupted by this interaction and free drug released into 

the fungal cytoplasm30.  This exciting pre-clinical work led to industrial 

development and clinical testing of AmBisome (liposomal amphotericin B), which 

demonstrated significant reductions in nephrotoxicity, as compared to free drug.  

As with Doxil®, however, AmBisome has been somewhat of a disappointment in 

that the antimicrobial efficacy appears to be similar to free amphotericin31.  Given 

these relatively modest clinical results, it is not surprising that both therapeutics 

have faded from widespread use.  AmBisome has been largely eclipsed by the 

equally effective and less toxic echinocandin class of antifungals32, and Doxil® 

has been in nearly continuous nationwide shortage since going off patent in 

2009, with no generic form of the drug available25.  In February, 2013, the FDA 

approved generic doxorubicin HCl liposomes, but it remains to be seen to what 

extent the drug will regain use after this hiatus33.   

 Liposomal formulations are by no means the only ADDS available for the 

delivery of toxic, small molecule drugs.   In fact, liposomes have relatively short 

circulation times in comparison to many newer drug carriers, in part because of 
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their limited capacity for PEGylation34.  More stable carriers have been 

developed based on N-(2-hydroxypropyl)-methacrylamide (HPMA), polyglutamic 

acid (PGA), cyclodextrin, and diblock PEG/PLGA copolymers35.  The elucidation 

of endocytic pathways in the 1950s and 60s lead to an important realization by 

the Nobel laureate Christian De Duve, who suggested that the lysosome might 

be a useful target for polymeric drug carriers36.  Peptide linkers susceptible to 

lysosomal proteases, such as Gly-Phe-Leu-Gly, were used to conjugate drugs to 

HPMA, such that the resulting complex would be stable in the circulation, but 

susceptible to cleavage once the conjugate had been internalized by 

endocytosis24.  Other polymers, like PGA, are directly degraded by lysosomal 

proteases37, whereas some incorporate pH sensitive bonds to encourage 

degradation in the lysosome and release of free drug within the cell38.  A few 

classes of polymer conjugates have advanced sufficiently to reach clinical trials.  

The first, HPMA copolymer-Gly-Phe-Leu-Gly-doxorubicin, or PK1 (FCE28068), 

was tested in patients with non-small-cell lung cancer (NSCLC), colon cancer, 

and anthracycline-resistant breast cancer.  No cardiotoxicity was observed, even 

in patients receiving large cumulative doses of doxorubicin, but the drug 

produced only partial therapeutic responses, and clinical trials were not 

continued39.  The most extensive clinical testing to date has been with a PGA 

conjugate, paclitaxel poliglumex, or Xyotax.  After early trials in NSCLC were 

positive, multiple phase III trials were conducted, all of which missed their 

primary endpoint of improved survival.  Although Xyotax appears to decrease 

incidence of paclitaxel-induced side effects, this was not enough to sustain its 

clinical development37.  In general, the lesson may be that passive targeting 

strategies, while capable of reducing off-target side effects from toxic small-

molecule drugs, are not enough to produce the “magic bullets” envisioned by 

Paul Ehrlich and long-expected by the medical community. 
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Ligand-targeted therapeutics 

 The limited success of liposomal carriers and early polymer conjugates 

has turned attention to the development of more sophisticated targeting 

strategies.  In particular drug carriers have been decorated with nutrients, peptide 

hormones, antibodies, and other molecules designed to promote binding and 

uptake by target cells.  The renewed interest in ligand targeting is not entirely 

surprising, given the recent commercial success of monoclonal antibody (mAb) 

therapeutics.  One of the most successful examples has been that of folate 

targeting.  While folic acid is essential for proliferation of all mammalian cells, 

only a few cell types, amongst them cancer cells, express high affinity folate 

receptors (FRs)40.  A variety of potent anti-cancer drugs have been generated by 

conjugation of toxic agents to folate.  These conjugates bind FRs and are 

internalized.  In some cases, such as the pseudomonas exotoxin PE38, the 

cargo has a built-in mechanism of endosomal escape41.  In other cases, 

conjugates have been designed with disulfide linkages, resulting in the discharge 

of free drug in the reducing environment of the endosome42.  Most importantly, 

the development of folate-targeted therapeutics has been accompanied by 

cognate imaging agents, which allow for the identification and selection of 

patients whose tumors overexpress FRs.  The pairing of molecular imaging and 

targeted drug delivery is a powerful concept, which has led to unprecedented 

success and multiple ongoing clinical trials43. 

 

New priorities: the emergence of macromolecular bio therapeutics 

 Perhaps the most significant shift in the field of drug targeting is the one 

currently underway, which has been driven by the rapid growth of a new class of 

drugs, macromolecular biotherapeutics.  In the thirty years since the FDA 

approval of recombinant human insulin, biotherapeutics (also referred to as 

“biologics”) have become a major force in the pharmaceutical industry44.  This 

rapidly growing category now accounts for 5 of the top 10 best-selling drugs and 

more than 50% of the portfolio of most pharmaceutical companies45.  The most 
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successful examples have been recombinant proteins that boost natural 

protective mechanisms, which are deficient or defunct in human disease.  

Examples include erythropoietin (EPO) administered to boost red cell production 

in patients with chronic renal failure and granulocyte colony-stimulating factor (G-

CSF) used to combat chemotherapy-induced neutropenia46.  While both EPO 

and G-CSF have achieved widespread use and commercial success47, they 

represent a relatively small subset of biotherapeutics that require no site-specific 

delivery.  Like small molecule drugs, most macromolecules (one notable 

exception being mAbs) do not inherently accumulate at their intended site of 

therapeutic action.  If anything, the size, complexity, and biocompatibility of these 

drugs limits their ability to permeate cell membranes and makes them more 

susceptible to the body’s mechanisms of inactivation and elimination48.  

Moreover, the greatest advantage of biotherapeutics – their extreme specificity 

for particular endogenous biological pathways – also represents one of their 

greatest challenges, in that these agents require precise delivery to specific 

locations in order to exert optimal activity. 

A good example is that of small interfering ribonucleic acids (siRNA), 

which are, in principle, able to reversibly silence the expression of any gene of 

interest.  siRNA could become the most important class of therapeutics in history, 

with the capacity to modulate the pathogenesis of nearly any disease.  However, 

they must be delivered to a specific multiprotein complex, the RNA-induced 

silencing complex (RISC), in order to have an effect.  Numerous obstacles stand 

between siRNA and the RISC, including RNAse-mediated destruction, immune 

recognition and clearance, lack of tissue targeting, inefficient cellular uptake, and 

inability to escape endosomal compartments and reach the perinuclear region of 

the cytoplasm49.  As a result, most of the RNA therapeutics in early clinical trials 

either require direct application of genetic material to the organ of interest (e.g. 

intravitreal injection) or target the liver via lipid nanoparticles naturally taken up 

through the fenestrated endothelium50. 
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Another interesting example is that of fibrinolytic enzymes.  Nearly two 

decades after the landmark 1995 NINDS trial51, which demonstrated a long-term 

benefit of recombinant tissue plasminogen activator (t-PA) in the setting of acute 

ischemic stroke, less than 5% of stroke patients receive fibrinolytic therapy52.  

The strict eligibility criteria, which exclude the vast majority of patients, are the 

result of a narrow therapeutic window and potentially life-threatening toxicity, 

intracranial hemorrhage53.  As is often the case, poor pharmacokinetics resulting 

from extremely rapid clearance (the plasma half-life of free t-PA is approximately 

3-1/2 minutes)54 and the presence of a circulating inhibitor55, necessitate large 

bolus doses and continuous infusion in order to achieve effective thrombolysis.  

This increases the cost and risk of side effects and has severely limited clinical 

use.  A variety of efforts have been made to alter pharmacokinetics and protect 

the drug en route to its therapeutic site, including PEGylation of the enzyme, 

genetic modification, and encapsulation in a variety of liposomal and polymeric 

drug carriers34.  While these modifications have improved circulation time, many 

simultaneously impede clot permeation and accessibility to fibrin.  

Correspondingly, none of these approaches have proven to have a decisive 

advantage over t-PA in the treatment of acute stroke56. 

The general lesson appears to be that targeting of macromolecular 

biotherapeutics may be quite different from the delivery of inherently toxic, small 

molecule drugs, especially in applications unrelated to cancer.  Characteristics 

which may be ideal for an ADDS carrying doxorubicin or paclitaxel, such as 

prolonged circulation time and impaired entry into normal tissues, may be 

disadvantageous in the delivery of biotherapeutics.  Attachment to targeting 

ligands, polymers, or stealth agents (e.g. PEG) may impair access to the 

necessary site of action or block partnering with cofactors.  Until technology is 

developed to precisely localize biotherapeutics and optimize their interaction with 

endogenous partners, the clinical development of numerous candidate drugs will 

be stifled, and the translation of many scientific discoveries will remain 

impossible. 
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II. Developing Therapeutics for Acute Vascular Diso rders 

 The obstacles encountered in the development and clinical testing of 

recombinant fibrinolytics demonstrate the enormous challenges which face the 

scientific and medical community in designing therapeutics for the treatment of 

acute vascular disorders.  Cardiovascular disease is already the most common 

cause of death in industrialized nations, and its incidence is on the rise57.   The 

acute manifestations are typically unforeseeable and life-threatening, meaning 

that candidate therapeutics must work after the onset of symptoms, achieve rapid 

efficacy, and demonstrate limited off-target side effects.  The most severe 

vascular disorders, including sepsis, acute lung injury, and post-traumatic multi-

organ failure, have been labeled “critical illnesses”, owing to the lack of disease-

specific therapies and reliance on sophisticated supportive measures in treating 

afflicted patients58.  Despite substantial improvements in emergency and 

intensive care, the morbidity and mortality of these conditions has remained 

essentially unchanged59,60. 

 

Endothelial cells: a critical target 

 The vascular endothelium, once thought to be a passive barrier between 

blood and tissue, is now recognized to have an important role in many of these 

same diseases in which the medical field has struggled to achieve improved 

outcomes61–63.  Endothelial cells (ECs) project a variety of protein complexes into 

the vascular lumen, which interact with circulating blood components and allow 

ECs to sense and respond to changes in flow, coagulation, nutrient delivery, and 

inflammation64,65.  In the last several decades, scientists have elucidated a 

variety of endothelial mechanisms, which help to maintain blood fluidity, control 

vascular tone and permeability, and regulate the innate immune response66.  

Advances in tissue culture have allowed the study of these mechanisms not only 

at rest, but under different patterns of flow67.  Molecular biology has enabled the 

identification of many of the proteins involved in these protective pathways, as 

well as variations in their level of expression in segments of the vasculature 
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exposed to high or low shear stress.  Finally, the creation of endothelial-specific 

genetic modifications in animals and the identification of disease-linked 

polymorphisms in patients have provided insight into the relative importance of 

these endothelial pathways in human disease68–70. 

 Despite the enormous accumulation of knowledge regarding endothelial 

biology, physicians and scientists remain largely unable to influence the 

endothelial mechanisms known to play a part in acute vascular disorders in 

humans.  Only a small number of drugs have significant effects on ECs and 

those that do typically have little endothelial specificity (e.g. non-steroidal anti-

inflammatory drugs), require complex regimens of administration (e.g. 

epoprostenol)71, or are meant for the treatment of chronic conditions like 

systemic hypertension (e.g. angiotensin converting enzyme-inhibitors).  

Biotherapeutics, in particular, tend to have no innate affinity for the endothelium, 

and only a tiny fraction of administered dose is typically retained at the vascular 

margin.  While the field of drug targeting has begun to take an interest in 

endothelial delivery, efforts have focused on directing therapeutics to tumor-

associated neovasculature72.  Only a small number of investigators have 

prioritized the delivery of biotherapeutics to normal ECs, and limited capacity 

exists to target specific vascular beds or areas of endothelial activation73–76. 

 

The Protein C pathway and its role in acute vascula r disease 

 Amongst the endogenous endothelial systems considered for 

pharmacologic intervention, the protein C pathway has attracted perhaps the 

most intense interest, in part because of its involvement in the coagulation 

cascade, the innate immune response, and the control of vascular permeability77.  

The existence of protein C (PC) was first predicted in 1970 by Ewa Marciniak, 

who described a “coagulation inhibitor elicited by thrombin”78.  In 1976, this factor 

was identified as vitamin K dependent and named “protein C” by Johan Stenflo, 

because it was present in the third major peak eluted off of an anion exchange 

column following the barium citrate adsorption of bovine plasma79.  Like other 
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vitamin K-activated, gamma-carboxyglutamate (Gla) containing factors, PC was 

found to be a zymogen, cleavable by thrombin and Russell’s viper venom80.  

Unlike other coagulation zymogens, however, the majority of PC could be 

recovered in serum81.  Indeed, its slow rate of activation in clotting assays led 

Charles Esmon to search for an endothelial cofactor capable of accelerating the 

generation of activated protein C (APC).  By perfusing discarded pig’s ears 

(collected from a local slaughterhouse) with thrombin and PC, Esmon discovered 

that such a cofactor was present, and subsequent efforts led to the isolation of 

thrombomodulin (TM)82. 

 TM was ultimately characterized as an endothelial transmembrane 

glycoprotein capable of altering the enzymatic specificity of thrombin.  When 

bound to TM, thrombin no longer activates fibrinogen, Factor V, or platelets, but 

instead generates APC83.  Although it is often thought of as an anticoagulant, TM 

differs substantially from molecules like antithrombin, heparin, hirudin, and the 

new direct thrombin inhibitors (e.g. dabigatran).  Rather than simply inhibiting 

thrombin activity, TM couples it to the generation of APC, which has anti-

inflammatory, anti-apoptotic, and endothelial barrier stabilizing activity, in addition 

to anticoagulant functions.  The importance of the protein C pathway is 

demonstrated by the uniform lethality of homozygous protein C deficiency, which 

manifests as neonatal purpura fulminans84.  No genetic form of human TM 

deficiency exists, presumably due to embryonic lethality.  In fact, even mice 

homozygous for a single point mutation in TM, which disrupts thrombin binding, 

have a severe prothrombotic and hyperinflammatory phenotype85. 

 The role of the protein C pathway in maintaining homeostasis is also 

demonstrated, albeit in less absolute terms, by the nearly universal finding of 

endothelial TM deficiency in the presence of human vascular disease.  Loss of 

TM has been demonstrated in nearly every condition involving acute or chronic 

vascular inflammation, from sepsis and ischemia/reperfusion injury to 

atherosclerosis and diabetic neuropathy86–89.  In addition to transcriptional 

downregulation, there is evidence to suggest that TM is internalized, inactivated, 
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and cleaved from the endothelial membrane in these conditions.  A wide variety 

of mediators have been implicated, including cytokines, reactive oxygen species, 

and neutrophil-derived proteases90–93.  Given its pervasive nature, it seems likely 

that this process must have conferred a selective advantage in some 

evolutionary situations, such as localized infection or trauma.  In the context of 

contemporary human medicine, however, loss of endothelial TM is no longer 

advantageous and has become an important component of the pathogenesis of 

numerous vascular diseases. 

 In addition to TM and PC, a third molecule, the endothelial protein C 

receptor (EPCR), has a critical role in the protective functions of this system.  

APC generation by the TM/thrombin complex is accelerated between 5 and 20 

fold when PC is bound to EPCR, depending on whether measurements are 

made in vitro or in vivo94,95.  Moreover, EPCR appears to play a central role in 

mediating the anti-inflammatory, anti-apoptotic, and barrier stabilizing effects of 

APC84.  Although EPCR has a short cytoplasmic tail and no direct intracellular 

signaling activity, it co-localizes with the protease-activated receptor 1 (PAR1) in 

caveolin-1 rich microdomains and participates in its activation by APC96.  

Specifically, APC must be bound to EPCR to cleave PAR197.  Some in vitro 

experiments indicate a second mechanism of protective signaling through PAR1, 

in which the specificity of thrombin is altered when EPCR is occupied by PC, 

switching it from a pro-inflammatory to anti-inflammatory signal98.  The 

APC/EPCR complex also appears to signal through additional receptors, 

including the sphingosine-1-phosphate receptor (S1PR) and PAR399–101.  Like 

TM, EPCR is cleaved from the endothelial membrane in the presence of 

systemic inflammation.  Plasma levels of a soluble form of EPCR (sEPCR) are 

elevated in human sepsis and a variety of autoimmune disorders and correlate 

with the severity of underlying disease102–104.  In vitro studies indicate that a 

matrix metalloprotease is responsible for EPCR cleavage and that release of 

sEPCR is stimulated by inflammatory mediators, reactive oxygen species, and 

coagulation factors105. 
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 Studies with genetically modified mice have confirmed the role of EPCR in 

mediating protective effects of the protein C pathway in vivo.  These results are 

particularly significant because of the distinct tissue distribution of TM and EPCR, 

the former predominantly found on capillaries and smaller vessels and the latter 

with higher expression on large vessels106.  These differing patterns of 

expression have led to questions about the importance of EPCR and its 

partnering with TM in vivo.  Nonetheless, EPCR is clearly involved in mediating 

protective effects, based on observations that mice with genetically-induced 

EPCR deficiency (~10% of normal expression levels) are more susceptible to 

endotoxemia than wild type controls, whereas animals with endothelial-specific 

overexpression of EPCR (150 times normal expression levels) are markedly 

more resistant69,107.  One theory is that the level of colocalization of TM, EPCR, 

and PAR1 might vary depending on the vascular bed examined, and that this 

might explain the overall importance of this signaling pathway, despite distinct 

patterns of expression noted in some organs84.  Consistent with this idea, one 

recent study investigated the importance of EPCR in maintaining endothelial 

barrier function in various organs and found significant variation depending on 

the vascular bed involved108.  Figure 1.1 shows the major components of the 

Protein C Pathway, in schematic form, and their primary functions at the luminal 

endothelial cell membrane.  

 

III. Biotherapeutic Interventions into the Protein C Pathway 

 Multiple approaches have been proposed to reverse the pathogenic 

suppression of the protein C pathway, including endothelial gene therapy and the 

infusion of recombinant proteins.  The former approach has intuitive appeal and 

has provided proof-of-principle for replenishing endothelial TM109–111, and 

potentially EPCR as well.  Nonetheless, it requires the site-specific delivery of 

siRNA or other genetic material – not only to endothelial cells, but a specific 

compartment of the EC cytoplasm.  As alluded to above, significant technological 

limitations exist which make gene therapy unrealistic, except in rare clinical 
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contexts (e.g. ex vivo viral transduction of ECs in harvested vein segments prior 

to bypass grafting)112.  Even if the technical limitations are overlooked, temporal 

considerations are unlikely to permit this approach in the treatment of emergent 

conditions like sepsis, stroke, and acute lung injury. 

 

Xigris® and other recombinant proteins 

In 1987, Taylor and Esmon reported that recombinant human APC (rhAPC) 

protected baboons from an otherwise lethal infusion of bacteria113.  The timing of 

this discovery was fortuitous, coinciding not only with the emergence of 

biotherapeutics as a viable class of pharmaceuticals, but also the recognition of 

systemic inflammation and derangements in coagulation as important 

components of human sepsis114.  rhAPC was developed by the pharmaceutical 

industry and became one of a number of recombinant proteins tested in septic 

patients in the late 1990s.  Ultimately, the phase III PROWESS trial 

demonstrated a survival benefit in patients randomized to rhAPC (28-day 

mortality of 24.7% vs. 30.8% with placebo), and led to the FDA approval of 

drotrecogin alfa (rhAPC), or Xigris®115.  Unfortunately, as in the case of 

recombinant t-PA, poor pharmacokinetics severely limited its clinical utility.  In 

fact, the similarities to t-PA are striking: rhAPC is rapidly cleared (the plasma 

half-life of free APC is approximately 13 minutes)116 and inactivated by a 

circulating inhibitor, and these factors led to the decision to administer the drug 

via continuous infusion.  This in turn increased the cost and risk of life-

threatening hemorrhage, and ultimately, the drug was withdrawn from the market 

when its risks were shown to outweigh any potential benefit117. 

 A variety of efforts have been made to replicate the beneficial 

effects seen with rhAPC, while avoiding its negative characteristics.  Genetically 

modified forms have been created which demonstrate reduced inactivation of 

Factors Va and VIIIa118.  These mutants lack the anti-coagulant and pro- 

fibrinolytic effects of wild type APC, while preserving other beneficial activities.  In 

fact, the lack of anti-coagulant effect actually results in indirect anti-inflammatory 
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Figure 1.1. The Protein C Pathway 

Protein C bound to EPCR is activated at the endothelial membrane by the 
TM complex.  Resultant APC may remain bound to endothelial EPCR, 

1 and other receptors, or it may exert a variety of other effects, 
amongst them inhibition of the coagulation cascade (via Protein S

of Factors Va and VIIIa) and modulation of immune cell (ne
macrophage, and dendritic cell) functions. 
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actions not seen with rhAPC, due to the increased generation of thrombin and 

activation of the thrombin-activatable fibrinolysis inhibitor (TAFI).  In addition to 

blocking the efficient activation of plasmin, TAFI inhibits bradykinin and the 

anaphylatoxins C3a and C5a119, both of which contribute to the systemic 

inflammatory response.  Although these genetic modifications may address some 

of the limitations of rhAPC120, the modified drugs still face significant 

pharmacokinetic challenges and their ability to succeed in the clinical realm has 

yet to be determined. 

Another strategy for augmenting the protein C pathway is the infusion of 

soluble forms of TM.  Unlike infusion of an activated zymogen, soluble TM (sTM) 

reproduces some of the “on demand” nature of the endogenous protein C 

pathway, generating a biological effect primarily at sites of thrombin 

generation121.  Genetic modifications have been made to sTM to separate the 

function of its domains, prolong circulation time, and prevent inactivation by 

reactive oxidant species93,122,123.  While preliminary studies in animal models and 

early stage human clinical trials have demonstrated beneficial effects124–126, sTM 

and its derivatives fail to reproduce a key aspect of the protein C pathway, its 

localization to the endothelial membrane.  Although improper localization in this 

case may not be as significant as it is with siRNA or other biotherapeutics, it does 

prevent the interaction of recombinant TM with a key cofactor, the endothelial 

protein C receptor (EPCR). 

 

Endothelial targeted biotherapeutics  

 Endothelial targeting of recombinant TM was first reported by our 

laboratory in 2008127.  To anchor sTM to the luminal membrane, its natural 

location and (presumably) site of optimal activity, it was fused to a PECAM-1-

specific single chain antibody fragment, 390 scFv.  The 390 scFv/TM fusion 

protein was found to bind to immobilized PECAM-1 in vitro and to lung ECs 

following IV injection.  Mice treated with 390 scFv/TM were protected from both 
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ischemic and inflammatory lung injury, without the bleeding side effects seen with 

equipotent doses of recombinant mouse APC127. 

 While the ability of endothelial-anchored 390 scFv/TM to partner with 

endogenous EPCR was not tested in these initial experiments, studies conducted 

in the field of biomaterials suggested that this would be an important question.  

Material scientists have long taken an interest in the protein C pathway as a 

potential means of preventing the activation of the immune system and 

coagulation cascade on implantable medical devices128.  TM has been 

immobilized on polyurethane, PEG-modified glass, and even liposomes129–131.  In 

2006, one group reported in vitro flow studies utilizing a membrane-mimetic 

material, which had been functionalized with phospholipids and TM.  The rate of 

APC generation was measured following the perfusion of thrombin and PC.  At 

relatively low TM surface density, increases in TM surface content accelerated 

APC production.  Beyond a certain critical TM density, however, a plateau was 

reached and further increases in TM surface content had no effect132.  This 

finding was attributed to a limitation in protein C availability at the surface, 

presumably due to the absence of EPCR.  Subsequent efforts achieved higher 

rates of APC generation via co-immobilization of TM and EPCR, but the effect 

was only seen if the recombinant proteins were in close proximity (< 10nm).  

Random, unordered distribution of TM and EPCR was not effective133.  This 

potentially stringent requirement for proximity between TM and EPCR gave rise 

to several important questions regarding the potential partnering of EC-anchored 

390 scFv/TM and endogenous EPCR. 

 

IV. Scope of the Dissertation 

 As indicated above, the primary goal of targeting recombinant TM to the 

endothelial membrane has been to optimize its activity by allowing for partnering 

with endogenous cofactors.  As of 2009, it remained unknown to what extent 390 

scFv/TM was able to take advantage of its localization.  There were three 
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questions, in particular, which we wanted to answer, and which form the basis of 

this dissertation: 

 

1) Is thrombin bound to membrane-anchored scFv/TM capable of interacting 

with PC bound to EPCR? 

 

 There were two reasons for concern that partnering between scFv/TM and 

EPCR might not be possible.  The first was related to the design of the 390 

scFv/TM fusion protein, which was constructed with the scFv moiety on the N-

terminal end and the sTM moiety on the C-terminal end (figure 1.2a).  While this 

design was chosen for technical reasons (prior data suggested that 390 scFv 

may not bind to PECAM-1 if a large cargo protein like TM was fused to its N-

terminus), it left the sTM moiety in an “inverted” conformation.  The N-terminal 

lectin domain of TM is typically the most distal to the membrane, with the six 

EGF-like domains, including the thrombin-binding site (EGF-like domains 5 and 

6), more proximal.  In contrast, the lectin domain in the fusion is adjacent to the 

scFv and the EGF domains may be further from the membrane, depending on 

the exact conformation the protein takes after binding to PECAM-1 (figure 1.2b). 

 The second, and somewhat related, reason for concern was that the 

combination of the scFv moiety and PECAM-1 might introduce too much distance 

between recombinant TM and the surface membrane to allow access to PC and  

EPCR (Figure 1.2b).  Some separation from the plasmalemma is known to be 

required for full activity of the thrombin/TM complex, which sits approximately 

65Å from the cell surface134.  Specifically, this was studied in a series of 

experiments, in which the Ser/Thr rich region of TM (which is positioned 

immediately adjacent to the membrane) was replaced by polypeptides of varying 

length.  Decreasing the size of this spacer progressively diminished thrombin 

binding and protein C activation, suggesting that the active site is optimally held 

at a certain distance from the membrane135.  Nonetheless, the interposition of 

 



 

 

 
 
 
 
 
 
 
 

Figure 1.2. Schematic 
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Schematic depiction of 390 scFv/TM molecular design and 
positioning vs. endogenous TM 

(a) sTM moiety was placed on 3’, or C-terminal, end.  (b) The “inverted” 
conformation of the sTM moiety, its distance from the plasmalemma, and its 

cell junctions could all impair partnering with endogenous 
EPCR. 
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PECAM-1 and the 390 scFv might introduce a significantly greater distance than 

65Å, and the effect of this displacement on partnering with EPCR was unknown. 

 

2) Assuming the thrombin-scFv/TM complex is physically capable of interacting 

with PC-EPCR, do differences in the distribution of PECAM-1 and EPCR 

along the EC membrane prevent effective enzymatic partnering? 

 

PECAM-1 on ECs is predominantly localized to cell-cell junctions136,137, whereas 

endogenous TM and EPCR are believed to be concentrated in lipid rafts in the 

endothelial apical plasmalemma96,138.  Based the results of the previously 

described experiments involving co-immobilization of TM and EPCR on artificial 

surfaces, there was concern that PECAM-anchored TM might have insufficient 

proximity to allow effective partnering with EPCR (figure 1.2b). 

 Chapter 2 details our experimental approach to these first two questions.  

We describe an assay for measuring the activation of PC by cell membrane-

bound TM fusion proteins.  We use this method to show that 390 scFv/TM is 

capable of partnering with EPCR, at least while anchored to the membrane of 

non-endothelial cells, engineered to overexpress mouse PECAM-1 and EPCR.  

In contrast, experiments on mouse ECs indicate that PECAM-anchored 390 

scFv/TM is largely unable to partner with EPCR, at least in comparison to 

endogenous TM. 

 

3) What approaches can be designed to allow or improve enzymatic partnering 

between EC-anchored scFv/TM and EPCR (without compromising 

therapeutic delivery)? 

 

In the light of the results presented in Chapter 2, two strategies were developed 

for enhancing enzymatic partnering between endothelial-targeted TM and EPCR.  

The implementation and validation of these approaches are discussed at length 

in Chapters 3 and 4. 
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CHAPTER TWO: PECAM-BOUND scFv/TM – MEASUREMENT OF    
PROTEIN C ACTIVATION AND PARTERING WITH EPCR 

 
 
I. INTRODUCTION 

As discussed in Chapter 1, vascular immunotargeting of drugs involves 

conjugation or recombinant fusion to specific affinity ligands of determinants on 

the luminal surface of ECs.  Although in the past it has been thought of as a 

strategy for controlling and altering pharmacokinetics, its application to 

biotherapeutics is primarily intended to precisely localize drugs and allow optimal 

interaction with endogenous partners.  Indeed, the primary justification for 

targeting recombinant TM to ECs, reported by our lab in 2008, was not one of 

pharmacokinetics127.  Other means exist for achieving prolonged circulation of 

sTM, including subcutaneous injection, chemical modification (e.g. PEGylation), 

genetic alteration (e.g. solulin), and attachment to blood cells139–141.  While these 

therapeutics are systemic and cannot be directed to one organ in particular, the 

fact that sTM activates PC only at sites of thrombin generation “localizes” its 

effect to sites of inflammation or thrombosis. 

Given that endothelial targeting of TM was primarily motivated by potential 

partnering with EPCR and other endogenous cofactors, our group had great 

interest in determining if such interaction was possible.  To address these 

questions, we developed an assay for measuring the activation of protein C by 

cell-bound 390 scFv/TM and utilized this method to determine the extent of 

partnering with EPCR. 

 
II. RESULTS 
 

Studies on Non-Endothelial REN Cells 

The human mesothelioma cell line REN is a useful model system, with no 

expression of mouse PECAM, ICAM, TM, or EPCR at baseline.  REN-PECAM 
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Figure 2.1. Non-endothelial REN cell system 
Western blot demonstrating expression of mouse endothelial proteins on REN 

cells (wt = wild type) and stably transfected REN-PECAM cells, with MS1 mouse 
endothelial cells included for comparison. 
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cells, which stably express mouse PECAM-1, have been utilized in our laboratory 

extensively (Figure 2.1)142,143. 
 

Binding and functional activity of 390 scFv/TM on PECAM-expressing REN cells 

Both 390 scFv and 390 scFv/TM fusion protein demonstrated nanomolar affinity 

to REN-PECAM cells.  Little or no non-specific binding was seen to wild type 

REN cells (Figure 2.2a,b).  For the next series of experiments, we developed an 

assay for measuring the activation of protein C by TM fusion proteins bound to 

the surface of REN cells.  390 scFv/TM demonstrated dose-dependent, 

thrombin-mediated activation of protein C on REN-PECAM cells, but not on wild 

type REN cells (Figure 2.3).  Recombinant sTM was used as an additional 

control and showed no activity on either cell type. 

 

EPCR expression potentiates the functional activity of 390 scFv/TM bound to 

REN-PECAM cells 

 Having determined the baseline rate of protein C activation by REN cell-

bound 390 scFv/TM, we next assessed its ability to partner with EPCR in the 

membrane.  To achieve this, EPCR expression was induced on REN-PECAM 

cells, producing the stable cell line REN-PECAM-EPCR.  Expression of EPCR 

was confirmed by western blotting (Figure 2.4).  Expression of EPCR expression 

resulted in ~4-fold enhancement of thrombin-mediated APC generation by 390 

scFv/TM (Figure 2.5a).  To confirm that this effect was dependent on EPCR, we 

utilized a monoclonal antibody that blocks the binding of PC to murine EPCR and 

thereby inhibits its ability to accelerate APC production by the thrombin-TM 

complex69.  Treatment with this antibody resulted in approximately 75% reduction 

in APC generation (Figure 2.5b). 

 

Studies on Mouse Endothelial Cells 

EPCR expression on MS1 cells vs. REN-PECAM-EPCR cells 

 While transfected REN cells are convenient for studying TM fusion  
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Figure 2.2. Binding of 390 scFv and scFv/TM to REN- PECAM cells 
Cell based ELISAs show binding of (a) 390 scFv and  (b) 390 scFv/TM fusion 

protein to PECAM expressing REN cells.  No significant binding is seen to wild 
type REN cells.  Experiments were done in triplicate (each point shown 

represents three wells).  SD are shown but too small to be seen in most cases.  
EC50 is shown for each curve. 
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Figure 2.3. APC generation by 390 scFv/TM on REN-PE CAM cells 
390 scFv/TM activates protein C while bound to PECAM-expressing cells. 

Minimal APC is generated on wild type REN cells, presumably due to lack of 
binding. All experiments were done in triplicate.  Data shown are mean ± SD. 
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Figure 2.4. Creation of REN cells stably expressing  PECAM and EPCR 
Western blot of REN-PECAM-EPCR cells, which stably overexpress mouse 

EPCR.  REN wt, REN-PECAM, and MS1 endothelial cells included as 
comparison. 
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Figure 2.5. APC generation by 390 scFv/TM on REN-PE CAM-EPCR vs. 
REN-PECAM cells 

(a) A ~4-fold increase in APC generation is seen when 390 scFv/TM is anchored 
to REN-PECAM-EPCR cells, as compared to EPCR-negative counterparts.  

Differences between groups were highly significant (p < 0.001) at all (non-zero) 
doses of 390 scFv/TM fusion protein. (b) Cells treated with anti-EPCR mAb1560, 

which blocks protein C binding to EPCR, show ~75% reduction in APC 
generation. Differences between groups were highly significant (p < 0.001) at all 
(non-zero) doses of fusion protein.  All experiments were done in triplicate.  Data 

shown are mean ± SD, error bars too small to be seen at some points. 
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proteins, they clearly represent an artificial system, in which the surface 

expression and distribution of PECAM, ICAM, and EPCR do not necessarily 

reflect what is present on endothelial cells.  For example, radioimmunoassays 

performed using 125I-labeled anti-EPCR revealed that the number of binding sites 

on REN-PECAM-EPCR cells is an order of magnitude higher than on MS1 

mouse endothelial cells (Figure 2.6). 

 

Binding of 390 scFv/TM to MS1 endothelial cells 

 390 scFv/TM demonstrated specific binding to PECAM-1, as evidenced by 

near complete inhibition of binding by a 10-fold excess of parental 390 mAb 

(Figure 2.7).  Calculated affinity constants were similar to those seen in previous 

experiments using REN-PECAM cells. 

 

Suppression of endogenous TM on MS1 cells 

 Measuring the activity of 390 scFv/TM while bound to MS1 cells proved to 

be substantially more complicated than on REN cells, due to high level of 

expression of endogenous TM.  These cells express endogenous TM at high 

level in a stable fashion resistant to agents that typically suppress its level in 

endothelium (e.g., TNF and other cytokines).  To measure fusion protein-

specific APC generation on endothelial cells, we experimented with several 

methods of suppressing the activity of endogenous TM.  The first of these 

methods utilized mouse TM-specific siRNA.  Although western blotting 

demonstrated robust suppression of TM levels, relatively high levels of lipid 

transfecting reagent were required (Figure 2.8a).  The cells were damaged in this 

process and inevitably lifted off gelatinized 24 well plates during the repeated 

washes of the APC generation assay.  We subsequently transfected MS1 cells 

with a TM-specific shRNA vector containing the puromycin resistance gene.  

Stably transfected cells were selected and maintained in puromycin.  

Unfortunately, western blotting demonstrated no difference in the expression of 

mouse TM in shRNA-transfected vs. wild type cells (Figure 2.8b). 
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Figure 2.6. Quantification of EPCR on ECs vs. REN-P ECAM-EPCR cells 
(a) Radioimmunoassays of 125I-labeled anti-EPCR antibody (mAb1560). 

(b) Summary of anti-EPCR binding parameters on each cell type.  
Radioimmunoassays were done in quadruplicate (i.e. each data point represents 

4 wells of cells).  Data shown are mean ± SD. 
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Figure 2.7. Binding of 390 scFv/TM to MS1 mouse ECs  
Specificity is demonstrated by inhibition of binding by 10-fold excess of parental 
390 mAb. All experiments were done in triplicate (i.e. each data point represents 
3 wells of cells).  Data shown are mean ± SD, error bars too small to be seen at 

some points. 
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Figure 2.8. Attempts to knockdown endogenous TM on MS1 cells 
(a) Mouse TM specific siRNA effectively suppressed TM, especially at high 
doses.  Unfortunately, cell toxicity made APC generation assays technically 

impossible.  (b) Stable transfection of a mouse TM specific shRNA did not result 
in effective knockdown, despite antibiotic selection. 
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Isolation of lung microvascular endothelial cells from TMpro/pro mice 

 TMpro/pro mice are homozygous for a single amino acid mutation, 

Glu404�Pro, in the interdomain loop between the fourth and fifth EGF-like 

domains of TM.  This mutation results in a 75% reduction in the level of 

expression of TM in lung homogenates, a ~100-fold reduction in thrombin 

binding, and a ~1000-fold reduction in the rate of APC generation144.  We 

reasoned that TMpro/pro ECs would provide an ideal system for testing activation of 

protein C by EC-bound 390 scFv/TM.  Accordingly, lung endothelial cells were 

isolated from TMpro/pro mice.  The cells were grown to passage 4 (Figure 2.9a) 

and tested for the binding of 390 scFv/TM.  Unfortunately, no binding was seen 

on TMpro/pro ECs, in contrast to MS1 cells (Figure 2.9b). 

 

Blockade of endogenous TM on MS1 cells 

 Another strategy employed to suppress the activity of endogenous TM 

was that of antibody blockade.  A variety of anti-mouse TM (mTM) antibodies 

were screened for their ability to block thrombin binding and APC generation, 

with PPACK-inactivated thrombin used as a positive control.  While several anti-

mTM mAbs had no effect, a polyclonal anti-mTM antibody was able to fully inhibit 

APC generation (Figure 2.10a).  Unlike PPACK-thrombin, the polyclonal antibody 

had a sustained effect after washing (Figure 2.10b).  Sustained blockade of 60-

70% of endogenous TM activity, provided by anti-TM antibody, enabled 

measurement of dose responsive, 390 scFv/TM-dependent protein C activation 

(Figure 2.10c). 

 

Functional activity of EC-bound 390 scFv/TM and lack of EPCR partnering 

 We employed anti-mTM antibody blockade to assess protein C activation 

by 390 scFv/TM anchored to MS1 cells.  Since the expression of PECAM-1 on 

ECs is more than an order of magnitude higher than that of TM (106 copies/cell 

vs. 4x104 copies/cell)145,146, we expected that saturating concentrations of 390 

scFv/TM (e.g. 40nM based on enzyme-linked Immunosorbent assays, ELISAs)  
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Figure 2.9. Isolation and culture of lung ECs from TMpro/pro  mice  
(a) Phase contrast image of isolated ECs.  (b) Cell-based ELISA demonstrated 

binding of 390 scFv/TM to MS1 cells, but not isolated TMpro/pro cells. 
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Figure 2.10. APC generation on MS1 cells following blockade of 
endogenous TM 

(a) Blockade of endogenous TM with PPACK-inactivated thrombin and polyclonal 
anti-TM prevents thrombin-dependent APC generation.  Monoclonal anti-TM 
antibodies, clone 411 and clone 273 (generously provided by Dr. Stephen J. 

Kennel, University of Tennessee, Knoxville, TN) did not inhibit APC generation. 
(b) Antibody blockade, but not inactivated IIa, had a sustained blocking effect 

when cells were washed prior to addition of thrombin and protein C. (c) Antibody 
blockade of endogenous TM enabled measurement of dose responsive, fusion 
protein-dependent protein C activation. All experiments were done in triplicate.  

Data shown are mean ± SD, error bars too small to be seen at some points. 
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Figure 2.11. APC generation by 390 scFv/TM on MS1 c ells 
MS1 cells blocked with anti-mTM antibody and treated with 390 scFv/TM 

unexpectedly showed less activation of PC than unblocked MS1 cells (which 
reflect the activity of endogenous TM).  One potential explanation is the finding 
that APC generation by 390 scFv/TM is not significantly affected by blockade of 
EPCR (p = 0.32), unlike unblocked MS1 cells (p << 0.001), indicating ineffective 

partnering of the fusion protein with this key co-factor.  Experiments were done in 
triplicate (i.e. n=3).  Data shown are mean ± SD. 
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would result in substantially higher levels of APC than unblocked MS1 cells.  

When we compared unblocked MS1 cells to antibody-blocked cells treated with 

40nM of 390 scFv/TM, however, we found that the latter actually generated 

significantly less APC (Figure 2.11). 

 To assess the role of EPCR in this result, we utilized EPCR blocking 

antibody and found that treatment of MS1 cells with the anti-EPCR antibody 

resulted in approximately 50% reduction in thrombin-dependent activation of 

protein C by endogenous TM.  In contrast, there was no significant effect on the 

activation of protein C by 390 scFv/TM (Figure 2.11). 

 

III. CONCLUSIONS 

 Several significant conclusions can be drawn from the in vitro data 

presented in this chapter.  First, experiments using the non-endothelial REN 

cell system clearly demonstrate that partnering between TM fusion proteins 

and EPCR is at least possible.  In this system, in which EPCR is marked 

overexpressed (~10-fold more copies per REN-PECAM-EPCR cell than MS1 

cell), PECAM-anchored 390 scFv/TM is able bind thrombin and access PC 

bound to EPCR.  This is conclusively demonstrated by both the 4-fold 

increase in APC generation seen on REN-PECAM-EPCR cells, as well as the 

near complete reversal of this effect following EPCR blockade with mAb1560.  

This antibody has been well characterized and is known to inhibit approximately 

70% of protein C binding to mouse EPCR, eliminating to substantial extent, but 

not completely, its ability to accelerate the activation of protein C69. Our results 

were quite consistent with these figures, demonstrating a 75% reduction in 

390 scFv/TM-dependent APC generation following antibody blockade (Figure 

2.5b). 

 The other main finding is the apparent inability of PECAM-bound 390 

scFv/TM to partner with EPCR on MS1 cells.  Two pieces of evidence 

suggest that 390 scFv/TM differs substantially from endogenous TM in terms 
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of its partnering with endogenous co-factors.  First, anti-mTM blocked MS1 

cells treated with a saturating concentration of 390 scFv/TM generate only 

~70% as much APC than unblocked MS1 cells (Figure 2.11).  Since PECAM-

1 is typically expressed at much higher levels per EC than TM (~20 fold 

difference has been reported for HUVECs), this observation indicates a huge 

difference in the amount of APC generated per TM molecule.  Since 390 

scFv/TM and sTM demonstrate similar rates of APC generation in fluid-phase 

assays127, there was no reason to suspect a difference in thrombin binding or 

catalytic efficiency.  Instead, we suspected that our data might be explained 

by a difference in partnering with EPCR.  Indeed, blockade of EPCR using 

mAb1560 had essentially no effect on APC generation by 390 scFv/TM, whereas 

a highly significant 50% reduction was seen on unblocked MS1 cells (Figure 

2.11).  Together, these data strongly suggest that PECAM-anchored 390 

scFv/TM is unable to effectively partner with endogenous EPCR, at least with 

respect to protein C activation. 

 

IV. MATERIALS AND METHODS 

Cell lines and animals 

 MS1 cells were purchased from ATCC (Manassas, VA) and maintained in 

DMEM with 10% FBS and 1X antibiotic-antimycotic (Life technologies, Grand 

Island, NY).  TMpro/pro mice were a generous gift from Dr. Helmut Weiler at the 

Blood Center of Wisconsin. 

 

Antibodies and other reagents 

 Purified anti-PECAM (390) antibody was obtained from BioLegend (San 

Diego, CA).  Anti-mTM polyclonal antibody (AF3894) and anti-EPCR polyclonal 

antibody (AF2749) were purchased from R&D systems (Minneapolis, MN).  Anti-

EPCR blocking antibody, mAb1560, was supplied by the Esmon laboratory.  

Collagenase A and HRP-conjugated Anti-FLAG (M2-HRP) antibody were 

obtained from Sigma Aldrich (St Louis, MO).  PPACK-inactivated thrombin was a 
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generous gift of Sriram Krishnaswamy.  Bovine thrombin was purchased from 

Sigma.  Human protein C zymogen was obtained from Haematologic 

Technologies (Essex Junction, VT). APC substrate S-2366 was purchased from 

Diapharma (West Chester, OH).  Mouse TM-specific siRNA (sc-36687), control 

siRNA (sc-37007), siRNA transfection reagent (sc-29528), and siRNA 

transfection media (sc-36868) were purchased from Santa Cruz Biotechnology 

(Santa Cruz, CA).  FITC-conjugated Anti-ICAM-2 antibody, clone 3C4, was from 

Southern Biotech (Birmingham, AL). 

 

Generation of REN-PECAM-EPCR stable cell line 

 A vector containing the entire coding sequence of mouse EPCR and a 

portion of the 5’ and 3’ UTRs (nt 171-1413) was obtained from the Esmon 

laboratory147.  The EPCR cDNA was excised using XbaI and EcoRI and ligated 

into the pcDNA3.1/Zeo(-) vector (Life Technologies, Grand Island, NY).  Since 

REN-PECAM cells already stably express the Geneticin resistance gene, this 

expression vector (which confers resistance to the antibiotic Zeocin) was utilized.  

Cells were transfected with Lipofectamine 2000 and REN-PECAM-EPCR cells 

were selected in media with Geneticin and 250 µg/mL of Zeocin. 

 

Live cell ELISA Assays 

 ELISAs were performed on live cells as previously described142, although 

in the experiments reported here, cell monolayers were incubated with increasing 

concentrations of scFv or scFv/TM fusion protein rather than whole antibodies.  

Since all fusion proteins carry a C-terminal triple FLAG tag, anti-FLAG (M2)-

peroxidase (HRP) conjugate was used as a detection antibody.  In experiments 

involving MS1 endothelial cells, specific binding of 390 scFv/TM was assessed 

by co-incubation with 10-fold excess of parental 390 mAb.  ELISA binding data 

was analyzed and binding parameters (EC50) were determined using PRISM 6.0 

software (GraphPad, San Diego, CA)142. 
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Protein C Activation Assays 

 Generation of APC by scFv/TM fusion was assayed following the 

incubation of confluent REN cell or MS1 monolayers with 390 scFv/TM fusion 

protein.  Cells were washed x 3 with media to remove non-specifically bound 

protein, prior to the addition of 1 nM thrombin and 100 nM protein C.  In all cases, 

protein C activation occurred at 37°C in assay buff er (20 mM Tris, 100 mM NaCl, 

1 mM CaCl2, 0.1% (w/v) bovine serum albumin (BSA), pH 7.5) and the reaction 

was stopped by addition of an excess of hirudin.  In experiments involving MS1 

cells, the monolayer was first treated with 200nM anti-mTM antibody to block 

endogenous TM and then washed x 3 prior to incubation with scFv/TM fusion 

protein.  In experiments involving EPCR blockade, cells were incubated with 

300nM of anti-EPCR antibody (Ab1560) for 15 minutes prior to the addition of 

protein C and thrombin.  This antibody has been well characterized and is known 

to inhibit approximately 70% of protein C binding, eliminating to a substantial 

extent the ability of EPCR to accelerate the activation of protein C by the 

thrombin-TM complex69. 

 

Radioimmunoassays (RIAs) using 125I-labeled Antibodies 

 Anti-EPCR antibody (mAb1560) was directly radioiodinated with [125I]NaI 

(Perkin Elmer, Waltham, MA) and purified using Zeba desalting spin columns 

(ThermoScientific).  Radiolabeling efficiency was > 75% and free iodine was < 

5%, post-purification.  RIAs were performed and binding parameters (Kd, Bmax) 

determined as previously reported142. 

 

siRNA knockdown of mouse TM 

 MS1 cells were transfected with a pool of three mouse TM-specific siRNA 

or control siRNA per manufacturer protocol.  Specific siRNA sequences were not 

made available by the manufacturer.  Cells were plated and allowed to grow until 

they were approximately 75% confluent.  10 pmol of siRNA were mixed with 

transfection reagent and allowed to sit for 30 minutes at room temperature prior 
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to addition to each well of cells.  Cells were exposed for 7 hours, after which they 

were gently washed and incubated with antibiotic-free growth media.  48 hours 

later, cells were lysed for analysis of TM expression by western blot. 

 

shRNA knockdown of mouse TM 

 MS1 cells were transfected with a pool of three mouse TM-specific 

shRNAs using Lipofectamine 2000 (as with siRNA, sequences proprietary to 

manufacturer).  Cells were selected using 4 µg/mL puromycin, a concentration 

found to kill 100% of wild type MS1 cells. 

 

Isolation of TMpro/pro lung endothelial cells 

 Animal studies were carried out in accordance with the Guide for the Care 

and Use of Laboratory Animals as adopted by the NIH, under protocols (803320 

and 804349) approved by University of Pennsylvania IACUC.  The genotype of 

TMpro/pro mice was verified using genomic DNA obtained from mouse tail tips.  

Lung endothelial cells were isolated as previously described148.  Briefly, neonatal 

pups (7-14 days old) were anaesthetized with ketamine and xylazine and given 

an intramuscular injection of 25 µL of heparin (1000U/mL).  The thoracic cavity 

was entered and 5 mL of ice cold DMEM was injected into the pulmonary 

circulation via the right ventricle.  1 mL of collagenase A (1.0 mg/mL) was 

instilled through the trachea into the lungs, which were then tied off.  The lungs 

were removed and incubated with 5 mL of collagenase A for 30 min at 37°C.  30 

mL of sterile PBS was added and the tube was shaken.  The resulting tissue/cell 

suspension was passed through a 70µm filter, centrifuged, resuspended in 

complete DMEM, and plated onto gelatinized T75 flasks.  The cells were grown 

in M199 medium for 2 days, trypsinized, and subjected to FACS sorting using 

anti-ICAM-2 antibody (clone 3C4).  The sorted cells were pooled, plated at 3x105 

cells/mL in a T25 flask, and split 1:2 at each passage.  
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Data analysis and statistics 

 Results are expressed as mean ± SD unless otherwise noted. Significant 

differences between means were determined using Student’s t-test or one-way 

ANOVA followed by appropriate multiple comparison (Tukey) test.  For 

experiments involving the comparison of multiple dose response curves (e.g. 

APC generation by 390 scFv/TM on REN-PECAM vs. REN-PECAM-EPCR cells), 

two-way ANOVAs were performed.  P<0.05 was considered statistically 

significant.  
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CHAPTER THREE: OPTIMIZATION OF PARTNERING WITH ENDO GENOUS 
EPCR 

 
 
I. INTRODUCTION 

 Having reached the conclusion that 390 scFv/TM anchored to PECAM on 

ECs likely does not partner efficiently with endogenous EPCR, our attention 

turned to potential strategies for enhancing interaction between endothelial 

targeted TM and this key co-factor.  Another cell adhesion molecule, ICAM-1, 

has been shown to localize to apical membrane microdomains on ECs, and to 

cluster in lipid rafts following cytokine stimulation, leukocyte adhesion, and/or 

binding of anti-ICAM-1 antibodies149.  Since EPCR, PAR1, and to some extent, 

TM, are also believed to localize to these membrane microdomains96, we 

hypothesized that anchoring TM to ICAM-1 might allow for enhanced proximity 

and improved partnering with endogenous co-factors and signaling pathways. 

 

II. RESULTS 
 

PECAM-1 vs. ICAM-1 

Relative proximity of PECAM-1 and ICAM-1 to EPCR 

 To assess the relative proximity of EPCR to PECAM-1 and ICAM-1, 

mouse MS1 endothelial cells were stained for each antigen and imaged using a 

fluorescence microscope (Figure 3.1a).  390 mAb, the parental antibody of the 

390 scFv/TM fusion, was used to stain PECAM-1.  YN1/1.7.4 (hereafter referred 

to as YN1) was used to stain ICAM-1.  This mAb has been extensively studied in 

our laboratory and blocks leukocyte LFA-1 interaction150.  In agreement with 

previous reports, most PECAM-1 staining occurred at cell-cell borders136, with 

minimal overlap with EPCR.  In contrast, there was overlap of staining for ICAM-

1 and that for EPCR (Figure 3.1a).  

 

Binding of anti-ICAM and anti-PECAM mAbs to MS1 cells 

 Next, we studied the binding to MS1 cells of 125I-labeled YN1 and 390  
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Figure 3.1. Localization of PECAM-1, ICAM-1, and EP CR on mouse 
endothelial cells 

(a) Immunofluorescence images demonstrate superior co-localization of ICAM-1 
and EPCR, as compared to PECAM-1 and EPCR. (b) Radioimmunoassay data 

using 125I-labeled anti-PECAM (390 mAb) and anti-ICAM (YN1 mAb) to 
determine affinity and number of binding sites per endothelial cell.  

Radioimmunoassays done in quadruplicate (i.e. each point represents four wells 
of cells), data shown are mean ± SD, some error bars too small to be seen. 
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mAbs.  The antibodies had similar subnanomolar affinities (Kd of approx. 0.12 

and 0.22nM, respectively), although PECAM-1 provided ~20-fold more binding 

sites than ICAM-1 (approximately 240,000/cell vs. 12,000/cell, respectively), 

reflecting a substantial difference in the level of cell surface expression of these 

molecules (Figure 3.1b).  Interestingly, according to these data, MS1 have a 

slightly lower number of anti-PECAM binding sites than human umbilical vein 

endothelial cells (HUVECs, ~106 binding sites per cell145), which may reflect 

innate differences between these cell lines.  MS1s are a transformed cell line, 

whereas HUVECs are primary ECs.  Moreover, MS1s are smaller than HUVEC, 

so their number of PECAM copies per cell surface area may be fairly similar. 

 

Construction of an ICAM-targeted scFv/TM Fusion Pro tein 

Cloning of YN1 scFv and fusion to sTM 

 Using a previously reported PCR-based technique, we next cloned an 

anti-ICAM-1 scFv from the YN1 hybridoma151.  Whereas cloning of the VH cDNA 

was straightforward, the typical approach produced only the previously reported 

Y3-Ag 1.2.3 myeloma VL sequence152 (i.e. the myeloma used to make the YN1 

hybridoma).  As a result, mass spectrometry was used to identify an 8 amino acid 

peptide unique to the ICAM-specific VL, which was then used to produce a full 

length VL cDNA (Figure 3.2).  The VH and VL cDNAs were assembled into a 

complete anti-ICAM-1 YN1 scFv, which was fused to the extracellular domain of 

TM.  The YN1 scFv/TM construct was designed to be identical to 390 scFv/TM, 

with the scFv moiety on the 5’ end (Figure 3.3a).  The purity of YN1 scFv and 

YN1 scFv/TM is shown by gel electrophoresis (Figure 3.3b). 

 

Functional activity of 390 scFv/TM, YN1 scFv/TM, and sTM in solution 

 To ensure that activity of the TM moiety in YN1 scFv/TM was intact, we 

measured APC generation in a fluid-phase assay.  Both YN1 scFv/TM and 390 

scFv/TM fusion proteins were nearly identical to soluble TM in their ability to 

stimulate thrombin-mediated activation of protein C (Figure 3.4). 
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Figure 3.2. Cloning of anti-ICAM V H and V L cDNAs 
(a) A PCR-based approach to cloning of variable heavy and light chain regions 
(VH and VL) utilizes degenerate 5’ primers corresponding to the beginning of the 

1st framework region (FR1) and a 3’ primer corresponding to the start of the 
constant region151. (b) In the case of the YN1 hybridoma, the VH domain was 

readily cloned, but the typical approach amplified only the myeloma-derived VL, 
which is nearly identical to the anti-ICAM VL at the N-terminus of FR1. Mass 

spectrometry was used to identify an 8 amino acid sequence unique to the anti-
ICAM VL. This sequence allowed the majority of the VL to be cloned. A 9 amino 

acid sequence in FR4 was paired with the original 5’ primers to identify the 
residues at the N-terminus of the anti-ICAM VL. 
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Figure 3.3. Design and synthesis of YN1 scFv and sc Fv/TM 
(a) Assembly of VH and VL sequences into scFv and scFv/TM constructs. (b) 
SDS PAGE gel electrophoresis of YN1 scFv, soluble TM, and YN1 scFv/TM 

fusion protein under reducing and non-reducing conditions. 
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Figure 3.4. Fluid-phase APC generation 
Thrombin-dependent activation of protein C was measured in solution and 

compared to soluble TM (sTM). The proteins were mixed with 0.5 nM thrombin 
and a large excess of protein C (1 µM). The reaction was stopped after 15min by 
addition of hirudin. The fusion proteins performed identically to sTM over a range 

of concentrations. 
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Creation of ICAM-1 expressing REN cells 

 As discussed in Chapter 2, the human mesothelioma cell line REN is a 

useful model system, with no expression of mouse PECAM, ICAM, TM, or EPCR 

at baseline (see Figure 2.1).  Although wild type REN cells do express low levels 

of human ICAM-1153, they were found to have no detectable cross-reactivity with 

YN1 mAb by flow cytometry and cell-based ELISA (data not shown).  As a result, 

we created a new stably transfected cell line, REN-mICAM cells, which express 

high levels of mouse ICAM-1. 

 

Binding and functional activity of YN1 scFv/TM on ICAM-expressing REN cells 

 Both YN1 scFv and YN1 scFv/TM demonstrated nanomolar affinity to 

REN-ICAM cells, with no non-specific binding seen on wild type REN cells 

(Figure 3.5a,b).  YN1 scFv/TM demonstrated dose-dependent, thrombin-

mediated activation of protein C on REN-ICAM cells, but not on wild type REN 

cells (Figure 3.6a).  Recombinant sTM showed no activity on either cell type. 

 

EPCR expression potentiates the functional activity of YN1 scFv/TM on REN-

ICAM cells 

 We next assessed the ability of ICAM-anchored YN1 scFv/TM to partner 

with EPCR in the artificial REN cell system.  As had been done for REN-PECAM 

cells, EPCR expression was induced on REN-ICAM cells, producing the stable 

cell line REN-ICAM-EPCR.  As was seen with 390 scFv/TM, EPCR expression 

resulted in ~4-fold enhancement of thrombin-mediated APC generation by YN1 

scFv/TM (Figure 3.6b).  In summary, while bound to their corresponding anchors 

on non-endothelial REN cells, PECAM and ICAM-targeted scFv/TM fusion 

proteins demonstrated roughly equivalent functional activity and similar capacity 

to partner with cellular EPCR, at least with respect to thrombin-dependent APC 

generation. 
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Figure 3.5. Binding of YN1 scFv and scFv/TM to REN- ICAM cells 
Cell based ELISAs show binding of (a) YN1 scFv and  (b) YN1 scFv/TM fusion 

protein to ICAM expressing REN cells.  No significant binding is seen to wild type 
REN cells.  Experiments were done in triplicate (i.e. each point shown represents 

three wells of cells).  Data shown are mean ± SD, although error bars are too 
small to be seen in most cases.  EC50 is shown for each curve. 
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Figure 3.6. APC generation by YN1 scFv/TM on REN-IC AM cells with and 
without EPCR expression 

(a) YN1 scFv/TM activates protein C while bound to ICAM-expressing cells. 
Minimal APC is generated on wild type REN cells, presumably due to lack of 

binding. (b) A ~4-fold increase in APC generation is seen when YN1 scFv/TM is 
anchored to REN-ICAM-EPCR cells, as compared to EPCR-negative 

counterparts.  Differences between groups were highly significant (p < 0.001) at 
all (non-zero) doses of YN1 scFv/TM fusion protein. All experiments were done in 
triplicate (i.e. each point shown represents three wells of cells).  Data shown are 

mean ± SD, although error bars are too small to be seen in some cases. 
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Studies on Mouse Endothelial Cells 

Binding of YN1 scFv/TM to quiescent and TNF-stimulated endothelial cells 

 The binding of YN1 scFv/TM was tested on MS1 cells.  Unlike most 

endothelial cells (e.g., HUVEC), quiescent MS1 cells express significant levels of 

ICAM-1, although they demonstrate a similar ~1.5-fold increase in response to 

TNF or other cytokine stimulation.  YN1 scFv/TM demonstrated ICAM-specific 

binding to MS1 cells, as evidenced by near complete inhibition of binding by a 

10-fold excess of parental antibody (Figure 3.7).  Likewise, stimulation of the 

cells with mouse TNF demonstrated a small but significant increase in fusion 

protein binding.  Calculated affinity constants were similar to those seen in REN-

ICAM cell experiments. 

 

Functional activity of EC-bound 390 scFv/TM and lack of EPCR partnering 

 We employed anti-mTM antibody blockade (described in Chapter 2) to 

assess protein C activation by YN1 scFv/TM anchored to MS1 cells.  APC 

generation was compared to unblocked MS1 cells and antibody blocked MS1 

cells treated with 40nM 390 scFv/TM.  As with 390 scFv/TM, a high concentration 

of YN1 scFv/TM was used (40nM), in order to saturate available binding sites.  

The maximum numbers of PECAM- and ICAM-binding sites were known from 

our radioimmunoassays (Figure 3.1b).  Despite a 20-fold difference in binding 

sites, only a ~1.5 fold difference was seen in the level of APC generation (Figure 

3.8a).  We assessed the role of EPCR using the mAb1560 blocking antibody and 

found that YN1 scFv/TM-treated MS1 cells showed a 50% reduction in protein C 

activation, similar to unblocked MS1s and in contrast to 390 scFv/TM-treated 

cells (Figure 3.8a). 

 In order to directly compare the activity of EC-bound YN1 scFv/TM and 

390 scFv/TM, APC generation was normalized to the number of binding sites per 

cell.  This analysis revealed that YN1 scFv/TM has ~15-fold greater functional 

activity then 390 scFv/TM, while anchored to MS1 cells (Figure 3.8b). 
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Figure 3.7. Binding of YN1 scFv/TM to quiescent and  activated MS1 cells 
Specificity is demonstrated by inhibition of binding by 10-fold excess of parental 

390 mAb. All experiments were done in triplicate (i.e. each point shown 
represents three wells of cells).  Data shown are mean ± SD, although error bars 

are too small to be seen in some cases. 
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Figure 3.8. APC generation by PECAM- vs. ICAM-ancho red scFv/TM on 
antibody blocked MS1 cells 

(a) Despite a 20-fold difference in the number of PECAM vs. ICAM binding sites, 
antibody-blocked MS1 cells treated with 390 scFv/TM generate only ~1.5-fold 

more APC than those treated with YN1 scFv/TM.  Moreover, APC generation by 
YN1 scFv/TM, but not 390 scFv/TM, is affected by blockade of EPCR (p < 

0.001).  The 50% reduction is similar to what is seen with unblocked MS1 cells 
(reflecting the activity of endogenous TM). (b) Normalization of APC generation 
to number of binding sites shows that functional activity of YN1 scFv/TM is ~15-

fold greater than 390 scFv/TM (p << 0.001).  Experiments done in triplicate.  Data 
shown are mean ± SD. 
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Figure 3.9. YN1 scFv/TM reduces MIP-2 in a mouse mo del of lung injury 
(a) Timeline of intratracheal LPS lung injury model.  In experiments assessing 

endothelial barrier dysfunction, a tracer amount of 125I-labeled albumin was 
injected 5 minutes prior to LPS administration. (b) Concentration of the critical 

neutrophil chemokine, MIP-2, in bronchoalveolar lavage (BAL) fluid.  Data shown 
are mean ± SD, with number of animals as shown. 
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Figure 3.10. YN1 scFv/TM reduces inflammatory marke r expression and 

endothelial barrier dysfunction in mouse lung injur y model 
(a) mRNA transcript levels of pro-inflammatory cell adhesion molecules, VCAM-1 

and E-selectin, in lung homogenate. (b) Endothelial barrier dysfunction, as 
measured by leakage of 125I-labeled albumin from blood into lung interstitium 

and/or alveolar space.  All data shown are mean ± SD, with number of animals 
as shown.  
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In vivo Experiments 

Endothelial protective effects of YN1 scFv/TM and 390 scFv/TM in a mouse 

model of acute lung injury 

 Anti-inflammatory effects of YN1 scFv/TM and 390 scFv/TM were then 

compared in a model of lung inflammation, in which mice receive an intratracheal  

(IT) injection of endotoxin154.  The fusion proteins, or PBS vehicle, were injected 

intravenously 30 minutes prior to LPS challenge (Figure 3.9a).  Relevant indices 

of lung inflammation and injury were measured, including the level of MIP-2 in 

bronchoalveolar lavage fluid (Figure 3.9b), expression of cell adhesion molecules 

VCAM-1 and E-selectin in lung tissue homogenate (Figure 3.10a), and 

extravascular leakage of radiolabeled albumin injected intravenously and 

detected in the lungs (Figure 3.10b).  While both YN1 scFv/TM and 390 scFv/TM 

showed evidence of protection, the ICAM-targeted fusion protein was more 

effective in all cases. 

 

III. CONCLUSIONS 

 The data presented in this chapter support the notion that the ability of 

endothelial targeted scFv/TM fusion proteins to interact with endogenous 

EPCR depends on which surface determinant is targeted, and that this 

variable may have significant therapeutic implications, with YN1 scFv/TM 

fusion demonstrating more potent protective effects in vivo.  Our data, along 

with prior reports regarding the distribution of ICAM and PECAM on the 

endothelial membrane136,137,149, suggest that the proximity of the TM fusion to 

EPCR may be the critical factor.  Figure 3.11 shows a simplified model of an 

endothelial cell with the TM fusion proteins bound to their target ligands.  The 

figure accurately depicts the fusion proteins binding the domains of PECAM-1 

and ICAM-1 which lie furthest from the plasma membrane, consistent with the 

location of their target epitopes142,150.  The schematic highlights the proposed 

difference in proximity to the EPCR/Protein C complex, which may account for 

our experimental observations. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.11. Schematic representation of TM fusion proteins anch ored to 

The proximity of ICAM
account for its enhanced activity 
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Schematic representation of TM fusion proteins anch ored to 

the endothelial plasmalemma 
The proximity of ICAM-targeted scFv/TM to endogenous EPCR/Protein C may 

account for its enhanced activity in vitro and in vivo
 

 

Schematic representation of TM fusion proteins anch ored to 

targeted scFv/TM to endogenous EPCR/Protein C may 
. 
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 It is worth noting that these results align with the general notion that 

anchoring agents to distinct determinants on the same target cell may produce 

distinct outcomes, due to the differing functions, location, surface density, and  

trafficking of these surface molecules. For example, our laboratory previously 

reported that binding of the H2O2-producing enzyme, glucose oxidase (GOX), to 

endothelial cells induced varying degrees of vascular damage, depending on 

whether PECAM or TM was chosen as the surface target155.  The variation in 

outcome in those experiments was attributed to the substantially different 

function of these two surface molecules and the consequences of their blockade 

by GOX conjugates.  In contrast, it is difficult to attribute the current results to any 

functional difference between ICAM and PECAM, two closely related proteins 

which both support leukocyte adhesion, pro-inflammatory signaling, and uptake 

of antibody conjugates via a similar endocytic mechanism156,157.  For this reason, 

we believe that the most logical explanation for our current experimental results 

is the distinct localization of ICAM and PECAM on the endothelial membrane and 

their differing capacity to allow interaction of anchored scFv/TM with EPCR. 

 In summary, our first approach for enhancing partnering of endothelial-

targeted TM and EPCR involved the rational selection of an endothelial 

determinant, ICAM-1, based on knowledge of its membrane distribution.  We 

constructed and synthesized a recombinant ICAM-targeted scFv/TM fusion 

protein.  In comparing its function to that of PECAM-targeted scFv/TM, we found 

evidence of superior functional activity on ECs, partnering with endogenous 

EPCR, and enhanced protective effects in a mouse model of lung injury.  

Together, these results suggest that delivery of recombinant TM to the 

endothelial membrane in a way that mimics its natural distribution and optimizes 

interaction with endogenous co-factors is more effective.  These findings 

underscore the complexity of targeting biotherapeutics to the plasmalemma, and 

suggest that precision on a nanometer scale is necessary for optimal 

biotherapeutic effect. 
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IV. MATERIALS AND METHODS 

Cell lines 

 YN1 hybridoma and MS1 cells were purchased from ATCC (Manassas, 

VA).  YN1 cells were cultured in RPMI 1640 supplemented with 10% (v/v) fetal 

bovine serum (FBS).  MS1 cells were maintained in DMEM with 10% FBS and 

1X antibiotic-antimycotic (Life technologies, Grand Island, NY). 

 

Antibodies and other reagents 

 Purified anti-PECAM (390) and anti-ICAM (YN1) antibodies were obtained 

from BioLegend (San Diego, CA).  Anti-TM polyclonal antibody (AF3894) and 

anti-EPCR polyclonal antibody (AF2749) were purchased from R&D systems 

(Minneapolis, MN).  Anti-EPCR blocking antibody, mAb1560, was supplied by the 

Esmon laboratory.  HRP-conjugated Anti-FLAG (M2-HRP) antibody was obtained 

from Sigma Aldrich (St Louis, MO).  Alexa Fluor-labeled secondary antibodies 

were purchased from Life Technologies (Grand Island, NY). Bovine thrombin, 

LPS (serotype B4), and mouse TNF were purchased from Sigma.  Human 

protein C zymogen was obtained from Haematologic Technologies (Essex 

Junction, VT). APC substrate S-2366 was purchased from Diapharma (West 

Chester, OH). 

 

Endothelial cell immunofluorescence staining 

 MS1 cell monolayers were grown in 8 well µ-slides (Ibidi, Verona, WI) and 

fixed for 20 minutes at room temperature (RT) with Histochoice (Amresco, Solon, 

OH).  In some cases, cells were treated with 10 ng/mL mouse TNF for 8 hours 

prior to fixation.  After three washes, cells were blocked with 3% (w/v) BSA in 

HBSS for 1 hour at RT.  Cells were stained with either anti-PECAM (390, 15 

µg/mL) or anti-ICAM (YN1, 1 µg/mL) mAbs, in addition to polyclonal goat anti-

mouse EPCR (0.5 µg/mL) for 2 hours at RT.  Cells were washed three times with 

0.1% Tween in HBSS and then stained with Alexa Fluor 594 anti-rat (1:200) and 

Alexa Fluor 488 anti-goat (1:1000).  After 1 hour incubation, cells were washed 
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four times with 0.1% Tween in HBSS and once in PBS.  ProLong Gold Antifade 

reagent with DAPI (Life technologies, Grand Island, NY), and a coverslip was 

applied and cells were allowed to dry overnight prior to immunofluorescence 

imaging. 

  

Cloning of anti-ICAM VL and VH cDNAs 

 Total cellular RNA was isolated from YN1 hybridoma cells using the 

RNeasy kit (Qiagen, Valencia, CA).  Combined reverse transcription and PCR 

was performed using SuperScript One Step RT-PCR kit (Life Technologies, 

Grand Island, NY) and previously reported FR1 region primers151.  Mass 

spectrometry to identify an 8-aa sequence unique to the ICAM-specific VL was 

done by the Core Facility at the University of Pennsylvania using purified YN1 

antibody that had been run on a denaturing SDS PAGE gel and excised.  

Degenerate PCR primers were synthesized based on this sequence and used to 

produce a full length VL distinct from the known Y3-Ag 1.2.3 myeloma VL 

sequence152. 

 

Assembly and expression of anti-ICAM scFv and anti-ICAM scFv/TM constructs 

 Completed anti-ICAM VL and VH cDNAs were assembled into constructs 

encoding anti-ICAM scFv and the anti-ICAM scFv/TM fusion protein.  In each 

case, VH and VL sequences were separated by a (GGGGS)3 linker, and a triple 

FLAG tag was appended to the 3’ end (C terminus) for purposes of purification 

and detection.  The YN1 scFv moiety was separated from the extracellular 

domain of TM (amino acids Leu17-Ser517) by an (SSSSG)2AAA linker.  Both 

proteins were expressed in S2 cells and purified using a C-terminal triple FLAG 

tag.  Purity was assessed using SDS-PAGE. 

 

Generation of REN-derived Stable Cell Lines 

 REN-mICAM cells. A full-length cDNA for mouse ICAM-1 was purchased 

from Thermo Scientific (Rockford, IL).  The clone was sequenced and found to 



 

 62 

contain the entire coding sequence of mouse ICAM-1 and a portion of the 5' and 

3' UTRs (nt 46-2440) between EcoRI and XbaI restriction enzyme sites.  The 

clone was excised and ligated into the pcDNA3 mammalian expression vector, 

and transfected into REN cells using Lipofectamine 2000 (Life Technologies, 

Grand Island, NY).  Stably expressing cells were selected in media containing 

200 µg/mL of Geneticin (Life Technologies, Grand Island, NY). 

  

 REN-mICAM-mEPCR cells.  A vector containing the entire coding 

sequence of mouse EPCR and a portion of the 5’ and 3’ UTRs (nt 171-1413) was 

obtained from the Esmon laboratory147.  The EPCR cDNA was excised using 

XbaI and EcoRI and ligated into the pcDNA3.1/Zeo(-) vector (Life Technologies, 

Grand Island, NY).  Since REN-ICAM cells already stably express the Geneticin 

resistance gene, this expression vector (which confers resistance to the antibiotic 

Zeocin) was utilized.  Cells were transfected with Lipofectamine 2000 and REN-

ICAM-EPCR cells were selected in media with Geneticin and 250 µg/mL of 

Zeocin. 

 

Live Cell ELISA Assays 

 Enzyme-linked Immunosorbent Assays (ELISAs) were performed on live 

cells as described in Chapter 2. ELISA binding data was analyzed and binding 

parameters (EC50) were determined using PRISM 6.0 software (GraphPad, San 

Diego, CA)142. 

 

RIAs using 125I-labeled antibodies 

 390 and YN1 mAbs were directly radioiodinated with [125I]NaI (Perkin 

Elmer, Waltham, MA) and purified using Zeba desalting spin columns 

(ThermoScientific).  In all cases, radiolabeling efficiency was > 75% and free 

iodine was < 5%, post-purification.  RIAs were performed and binding parameters 

(Kd, Bmax) determined as previously reported142. 

 



 

 63 

Protein C activation assays 

 Generation of APC by cell-bound scFv/TM fusion was assayed as 

described in Chapter 2.  For fluid-phase APC generation experiments, sTM, 390 

scFv/TM, and YN1 scFv/TM were each mixed with 0.5nM thrombin and 1 µM 

protein C in a micro-Eppendorf tube.  In all cases, protein C activation occurred 

at 37°C in assay buffer (20 mM Tris, 100 mM NaCl, 1  mM CaCl2, 0.1% (w/v) 

BSA, pH 7.5) and the reaction was stopped by addition of an excess of hirudin.  

As described in Chapter 2, MS1 cell monolayers were first treated with anti-TM 

antibody to block endogenous TM and then washed x 3 prior to incubation with 

scFv/TM fusion protein.  The amount of APC generated by cell-bound fusions in 

these experiments was normalized to the number of binding sites per cell, as 

determined in MS1 RIAs (approximately 240,000/cell for PECAM-1 and 

12,000/cell for ICAM-1).  Antibody blockade of EPCR was performed as 

described in Chapter 2, using 300nM of anti-EPCR antibody (Ab1560) for 15 

minutes prior to the addition of protein C and thrombin. 

 

IT LPS model 

 Animal studies were carried out in accordance with the Guide for the Care 

and Use of Laboratory Animals as adopted by the NIH, under protocols (803320 

and 804349) approved by University of Pennsylvania IACUC.  C57BL/6 male 

mice weighing 20-30 gm were anaesthetized and placed in a supine position.  

Acute lung injury was induced via IT injection of 2 mg/kg of endotoxin in a volume 

of 100 µL of PBS.  Endotoxin injection was followed immediately by injection of 

150 µL of air, to ensure even distribution of LPS throughout all distal airspaces. 

In relevant experiments, anti-PECAM scFv/TM, anti-ICAM scFv/TM, or PBS 

vehicle and 125I-labeled albumin were injected intravenously prior to LPS 

administration as shown.  6 hours after induction of lung injury, blood was 

withdrawn from the inferior vena cava and animals were euthanized. 

 In experiments involving tracing of 125I-labeled albumin, a catheter was 

placed in the pulmonary artery and the pulmonary circulation was gently flushed 
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with PBS prior to the harvesting of organs.  The amount of radioactivity in the 

blood and lungs was measured using a Wizard2 2470 gamma counter 

(PerkinElmer, Waltham, MA).  The localization ratio of 125I-albumin (calculated as 

(% injected dose present in lung/g of lung tissue)/blood level) was used as a 

surrogate for pulmonary edema. 

 In other experiments, bronchoalveolar lavage was performed via a 19-

gauge stainless steel catheter (Harvard Apparatus, Holliston, MA) placed in the 

trachea and secured via a 5-0 silk suture.  Each animal was lavaged twice with 

0.8 mL of ice-cold PBS.  The lavages were pooled and MIP-2 was quantified 

using a Quantikine ELISA kit (R&D systems, Minneapolis, MN).  For 

quantification of VCAM-1 and E-selectin mRNA, lungs were homogenized with 

steel beads (Sigma) and a Tissue Lyser II (Qiagen).  Total RNA was isolated with 

RNeasy kit and cDNA was synthesized using the Transcriptor 1st Strand cDNA 

Synthesis Kit (Roche Applied Science, Indianapolis, IN).  qPCR was performed 

using the FastStart DNA MasterPLUS kit (SYBR green) and a Lightcycler 1.5 

carousel-based system (Roche Applied Science).  Validated Quantitect primers 

for mouse VCAM-1, E-selectin, and actin (housekeeping control) were utilized 

(Qiagen, Valencia, CA). 

 

Data analysis and statistics 

 Results are expressed as mean ± SD unless otherwise noted. Significant 

differences between means were determined using Student’s t-test or one-way 

ANOVA followed by appropriate multiple comparison (Tukey) test.  For 

experiments involving the comparison of multiple dose response curves (e.g. 

APC generation by YN1 scFv/TM on REN-ICAM vs. REN-ICAM-EPCR cells), 

two-way ANOVAs were performed.  P<0.05 was considered statistically 

significant. 
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CHAPTER FOUR: DUAL TARGETING OF TM AND EPCR FUSION PROTEINS 
TO THE ENDOTHELIUM 

 
 
I. INTRODUCTION 

 Although anchoring TM to ICAM-1 appears to improve partnering with 

endogenous EPCR, PECAM-1 has desirable features from the standpoint of 

vascular immunotargeting48.  Its constitutive, stable, and high level of expression 

throughout the vasculature makes it the preferred choice for targeting of 

prophylactic agents, e.g., prior to a predictable vascular insult like 

cardiopulmonary bypass or organ transplantation.  Likewise, PECAM-1 differs 

from other pan-endothelial determinants (e.g., angiotensin converting enzyme, or 

ACE), in that it is relatively poorly internalized by ECs, allowing for surface 

targeting of TM fusion proteins.  Finally, anchoring of scFv/TM to PECAM-1 is 

unlikely to be deleterious, and if anything, would be expected to have an anti-

inflammatory effect due to inhibition of transendothelial leukocyte migration158,159. 

 As a result, we wanted to explore the possibility of utilizing PECAM-1 as a 

surface determinant for dual targeting of recombinant scFv/TM and scFv/EPCR.  

By anchoring both proteins to PECAM-1, we hypothesized that we would achieve 

sufficient proximity to allow enzymatic partnering.  Another reason for choosing 

PECAM-1 as the surface determinant was our discovery of the “collaborative 

enhancement” phenomenon, in which paired antibodies to adjacent, distinct 

epitopes on PECAM-1 increase each other’s binding to the endothelium in vitro 

and in vivo142.  Based on this mechanism, we hypothesized that scFv/TM and 

scFv/EPCR fusion proteins directed to paired PECAM-1 epitopes would enhance 

– rather than competitively inhibit – each other’s binding.  Altogether, dual 

targeting of these therapeutic fusion proteins would have the capacity to 

accelerate protein C activation via two distinct mechanisms: 1. collaborative 

enhancement of binding and 2. enzymatic partnering of the TM and EPCR 

moieties. 
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II. RESULTS 
 

Construction of a PECAM-targeted scFv/EPCR Fusion P rotein 

Cloning of Mec13 scFv and fusion to mouse EPCR 

 Previous studies in our laboratory demonstrated that mAbs 390 and 

Mec13.3 (hereafter referred to as Mec13), which bind to distinct, but adjacent, 

epitopes located in the extracellular Ig-domain 2 of mouse PECAM-1160, enhance 

each others binding (Figure 4.1a).  This phenomenon of “collaborative 

enhancement” exists in both transfected (i.e. REN-PECAM) cells and mouse 

endothelial cells (Figure 4.1b) and also contributes to enhanced endothelial 

binding of antibodies in vivo (Figure 4.1c)142. 

 To take advantage of collaborative enhancement with 390 scFv/TM, we 

wanted to design the scFv/EPCR fusion protein using an antibody fragment 

derived from the Mec13 hybridoma.  As in the cloning of the YN1 scFv described 

in Chapter 3, the Mec13 VH cDNA was easily identified using degenerate 

framework region 1 (FR1) primers.  Once again, however, this approach 

produced only a non-functional, myeloma-derived VL cDNA, with an in frame stop 

codon in the FR1 region (Figure 4.2a).  As a result, the Mec13 light chain was 

sequenced using the N-terminal Edman technique.  The first 7 amino acids of the 

FR1 region were identified and used to clone of a full length VL cDNA (Figure 

4.2a).  The VH and VL cDNAs were assembled into a complete anti-PECAM-1 

Mec13 scFv, which was fused to the extracellular domain of EPCR.  The scFv 

moiety was positioned on the 3’ end, to keep the protein C binding site of EPCR 

(located on the N-terminal end) freely accessible (Figure 4.2b).  Recombinant 

soluble mouse EPCR (sEPCR) was synthesized as well.  The purity of each 

protein is shown by gel electrophoresis (Figure 4.2c). 

 

Binding of Mec13 scFv/EPCR to REN-PECAM cells and immobilized Protein C 

 Both Mec13 scFv and the Mec13 scFv/EPCR bound to REN-PECAM-  
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Figure 4.1. Collaborative enhancement of mAb bindin g to PECAM-1 
(a) Amino acid location of epitopes for mAbs 390 and MEC13 on Ig-domain 2 
(IgD2) of mouse PECAM-1 (b) Collaborative binding studies of mAbs 390 and 
MEC13 on REN-PECAM cells.  Whereas unlabeled self-paired mAb 390 and 

mAb MEC13 competitively inhibit binding of [125I]-mAb390 and [125I]-mAb MEC13 
to REN-PECAM cells, mAb pairs [125I]-mAb 390/MEC13.3 and [125I]-mAb 

MEC13.3/390 enhance binding by 1.5 fold and 2.7 fold, respectively. (c) In vivo 
endothelial targeting of [125I]-mAb to PECAM-1 is enhanced by paired anti-

PECAM-1 mAb.  Lung:blood ratio for [125I]-mAb 390/mAb MEC13 and [125I]-mAb 
MEC13.3/mAb 390 pairs increases 3.4 fold.  The dotted red line is the lung:blood 

ratio of [125I]-IgG at 30 minutes.  Data is reported as the standard error of the 
mean of n = 4–5 animals (***, P = 0.001).  (All data reproduced from Chacko A-M 

et al. PLoS One 2012, reference 142) 
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Figure 4.2. Cloning, assembly, and purification of Mec13 scFv, sEPCR, 
and Mec13 scFv/EPCR fusion protein 

(a) The Mec13 VL  and the myeloma-derived VL are nearly identical at the N-
terminus of FR1 region.  N-terminal (Edman) sequencing was used to identify a 

one amino acid difference (Gln vs. Val), which ultimately enabled amplification of 
a full length Mec VL cDNA. (b) Assembly of VH and VL sequences into Mec13 
scFv and Mec13 scFv/EPCR constructs.  An sEPCR construct was also made  

(c) Purity of recombinant proteins as shown by SDS PAGE. 
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Figure 4.3. Function of scFv and EPCR moieties of M ec13 scFv/EPCR 
fusion protein 

(a) Cell based ELISAs show that binding of Mec13 scFv/EPCR fusion protein to 
PECAM expressing REN cells is similar to that of Mec13 scFv.  No significant 
binding is seen to wild type REN cells.  (b) Mec13 scFv/EPCR fusion protein 

binds immobilized protein C in nearly identical manner as sEPCR.  Empty 
triangles (�) indicate non-specific binding of Mec13 scFv/EPCR to BSA-coated 

wells.  All experiments were done in triplicate (each point shown represents three 
wells), with SD shown.  
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cells, but not wild type REN cells (Figure 4.3a).  Having confirmed the function of 

the scFv moiety, the function of the EPCR moiety was tested by comparing the 

binding of Mec13 scFv/EPCR and sEPCR to immobilized protein C.  Both 

proteins showed equal binding, with no non-specific binding to albumin-coated 

wells (Figure 4.3b). 

 

Functional Activity of Mec13 scFv/EPCR 

Creation of TM expressing REN wt and REN-PECAM cells 

 To assess the ability of Mec13 scFv/EPCR to augment protein C 

activation by TM/thrombin complex on the cell surface, we generated a series of 

transfected REN cells stably expressing mouse TM and/or PECAM-1 on their 

surface.  Thrombin-dependent protein C activation was measured on REN-

PECAM-TM cells, which stably express both mouse PECAM-1 and TM (Figure 

4.4a), and compared to APC generation on REN-TM and REN-PECAM cells.  As 

expected, REN-TM and REN-PECAM-TM cells, but not TM-lacking cells (REN 

and REN-PECAM) exerted thrombin dependent activation of protein C (Figure 

4.4b). 

 

Mec13 scFv/EPCR enhances APC generation on REN-PECAM-TM cells 

 Mec13 scFv/EPCR stimulated thrombin-dependent production of APC by 

REN-PECAM-TM, but not REN-TM cells (Figure 4.4c).  This indicates that the 

EPCR fusion protein is able to partner with TM in the cell membrane while bound 

to PECAM.  No such effect was seen with Mec13 scFv or sEPCR (Figure 4.4d), 

confirming the need for both functional moieties in the fusion protein to bind to 

target cells and partner with TM in the plasma membrane.   

 

Dual Targeting of Mec13 scFv/EPCR and 390 scFv/TM t o REN Cells 

Mec13 scFv/EPCR and 390 scFv/TM demonstrate collaborative enhancement 

 Collaborative enhancement of binding was originally described with paired  
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Figure 4.4. Functional activity of Mec13 scFv/EPCR fusion protein 
(a) Western blotting confirms expression of mouse TM on REN-PECAM-TM and 

REN-TM cells. (b) APC generation assay on REN-PECAM-TM and REN-TM 
cells confirms surface localization and functional activity of expressed TM. (c) 

Mec13/EPCR enhances protein C activation by surface expressed TM on REN-
PECAM-TM cells.  No effect is seen on REN-TM cells, to which the fusion does 

not bind.  (d) Mec13 scFv and sEPCR (each 150 nM) have no effect on APC 
generation on REN-PECAM-TM cells. 
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antibodies to PECAM-1 (Figure 4.1).  We were interested to determine if TM and 

EPCR fusion proteins directed to the same paired epitopes would demonstrate 

the same phenomenon.  Indeed, both Mec13 scFv and Mec13 scFv/EPCR 

increased the binding of 390 scFv/TM to REN-PECAM cells (Figure 4.5a).  

Likewise, 390 scFv and 390 scFv/TM increased the binding of Mec13 

scFv/EPCR to these cells (Figure 4.5b).  

 

Mec13 scFv/EPCR enhances protein C activation by 390 scFv/TM on REN-

PECAM cells 

 We next studied the activation of protein C on REN-PECAM cells following 

dual targeting of scFv/TM and scFv/EPCR fusion proteins.  Mec13 scFv/EPCR 

demonstrated a dose-dependent enhancement of thrombin-dependent APC 

generation in cells also treated with 390 scFv/TM, with nearly ~5-fold increase 

seen at the highest dose (Figure 4.6a). 

 In theory, both enhanced binding and functional partnering between the 

TM and EPCR moieties may contribute to the 5-fold increase observed.  We 

conducted several experiments to determine the relative contribution of each 

effect.  First, Mec13 scFv (lacking the EPCR moiety) was used to estimate the 

“binding effect” and provided ~2-fold stimulation of APC production by 390 

scFv/TM (Figure 4.6b).  Conversely, we estimated the contribution of enzymatic 

partnering (the “EPCR effect”) by using mAb1560 to block the interaction of 

EPCR and murine protein C.  In REN-PECAM cells treated with Mec13 

scFv/EPCR and 390 scFv/TM, blockade of EPCR reduced APC generation by 

~2-fold to almost exactly the level seen in cells co-treated with TM fusion protein 

and Mec13 scFv (Figure 4.6b).  Taken together, these data reveal two distinct 

mechanisms, which make roughly equivalent contributions to the net effect of 

Mec13 scFv/EPCR on the generation of APC by 390 scFv/TM. 
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Figure 4.5. Mec13 scFv/EPCR and 390 scFv/TM fusion proteins 
demonstrate collaborative enhancement of binding 

(a) In agreement with experiments done using intact antibodies, Mec13 scFv and 
Mec13 scFv/EPCR enhance the binding of 390 scFv/TM and (b) 390 scFv/TM 

enhances the binding of Mec13 scFv/EPCR to REN-PECAM cells.  Experiments 
were done in triplicate (each point shown represents three wells), with SD shown. 
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Figure 4.6. Mec13 scFv/EPCR enhances APC generation  by 390 scFv/TM 
via two distinct mechanisms 

(a) Co-treatment of REN-PECAM cells with Mec13 scFv/EPCR produces a dose 
dependent increase in APC generation by surface bound 390 scFv/TM.  (b) 

Additional experiments suggest that two distinct effects contribute to the action of 
Mec13 scFv/EPCR fusion protein: 1. an increase in 390 scFv/TM binding and 2. 
partnering of cell bound TM and EPCR.  The binding effect, demonstrated by co-
treatment of cells with 390 scFv/TM and Mec13 scFv (150 nM), is significant (p = 
0.004).  Likewise, co-treatment with 390 scFv/TM and Mec13 scFv/EPCR results 
in significantly greater APC generation (p < 0.001 compared to all other groups) 

and is demonstrated to be EPCR-dependent via the use of an anti-EPCR 
monoclonal antibody.  All experiments were done in triplicate.  Data shown are 

mean ± SD. 
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Dual Targeting on Mouse Endothelial Cells 

Mec13 scFv/EPCR enhances protein C activation by 390 scFv/TM on MS1 cells 

 Using the anti-mTM antibody blockade technique described in Chapter 2, 

we measured protein C activation by 390 scFv/TM anchored to MS1 cells, with  

and without addition of Mec13 scFv/EPCR.  Similar to what had been seen on 

REN-PECAM cells, Mec13 scFv/EPCR increased protein C activation by 390 

scFv/TM.  Likewise, use of Mec13 scFv and EPCR blocking mAb revealed a 

similar contribution of two distinct mechanisms by which the EPCR fusion protein 

exerts its effect: collaborative enhancement of binding and enzymatic partnering 

(Figure 4.7). 

 

Construction and characterization of YN1 scFv/EPCR 

 We next sought to determine if anchoring TM and EPCR to different 

surface molecules would achieve effects similar to what was seen with Mec13 

scFv/EPCR and 390 scFv/TM.  To test this, we designed and synthesized an 

anti-ICAM YN1 scFv/EPCR fusion protein (Figure 4.8a).  We confirmed its 

binding to ICAM-expressing cells and its effect on APC generation by TM in a 

series of experiments similar to those described above.  In this case we utilized 

REN-ICAM-TM cells, instead of REN-PECAM-TM cells (Figure 4.8b).  Anti-ICAM 

scFv/EPCR bound REN-ICAM-TM cells, but not REN-TM cells (Figure 4.8c), and 

enhanced protein C activation by membrane TM (Figure 4.8d).  Therefore, anti-

ICAM scFv/EPCR displayed binding and functional activity, including TM 

partnering, similar to Mec13 scFv/EPCR. 

 

YN1 scFv/EPCR does not enhance protein C activation by 390 scFv/TM 

 We utilized YN1 scFv/EPCR and 390 scFv/TM fusion proteins to test 

anchoring TM and EPCR to different surface molecules.  In contrast to Mec13 

scFv/EPCR, no enhancement of protein C activation was seen with YN1 

scFv/EPCR fusion protein, nor was there any effect of the EPCR blockade  
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Figure 4.7. Mec13 scFv/EPCR enhances APC generation  by 390 scFv/TM 
on antibody blocked MS1 cells 

(a) APC generation by 390 scFv/TM was assayed on anti-mTM blocked MS1 
cells.  The residual activity of endogenous TM is indicated by the dotted line.  
Mec13 scFv/EPCR (100 nM) enhances APC generation by cell bound 390 

scFv/TM.  As seen in REN-PECAM cell experiments, two independent 
mechanisms can be discerned: a binding effect (p < 0.001 compared to 390 

scFv/TM alone) and an EPCR-dependent effect (p < 0.001 compared to all other 
groups).  Of note, EPCR blockade slightly reduces the residual activity of 

endogenous TM, as indicated by the lower dotted line.  Experiments were done 
in triplicate.  Data shown are mean ± SD. 
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Figure 4.8. Construction and characterization of YN 1 scFv/EPCR 
(a) Molecular design of YN1 scFv/EPCR  (b) Western blot of REN-ICAM-TM cells 

demonstrates expression of mouse ICAM-1 and TM. (c) Cell-based ELISA 
confirms binding of anti-ICAM/TM to REN-ICAM-TM but not REN-TM cells. (d) 
YN1 scFv/EPCR enhances activation of protein C by surface expressed TM 

when bound to REN-ICAM-TM cells.  ELISA and APC generation experiments 
done in triplicate, data shown are mean ± SD. 
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Figure 4.9. YN1 scFv/EPCR does not enhance protein C activation by 390 

scFv/TM on MS1 cells 
Anchoring TM and EPCR to different endothelial surface determinants on MS1 

cells (PECAM-1 and ICAM-1, respectively), does not enhance APC generation (p 
= 0.75).  Antibody blockade of EPCR has no effect, other than a small reduction 
in the residual activity of endogenous TM. Experiments were done in triplicate; 

data shown are mean ± SD. 
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Figure 4.10. Dual targeting of Mec13 scFv/EPCR and 390 scFv/TM reduces 

pulmonary edema in a mouse model of lung injury 
(a) Timeline of intratracheal LPS lung injury model.  (b) Pulmonary edema, as 

determined by leakage of 125I-labeled albumin from the blood into lung 
interstitium and/or alveolar space, is reduced by pre-treatment with 390 scFv/TM.  

Co-administration of Mec13 scFv/EPCR, but not anti-ICAM scFv/EPCR, 
significantly enhances protection.  Pre-treatment with Mec13 scFv/EPCR alone 
and co-administration of Mec13 and 390 scFvs have no effect. Data shown are 

mean ± SD, with n=4-5 mice in each group.  Dotted line indicates level of albumin 
leakage seen in control animals that did not receive LPS. 
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antibody (Figure 4.9). 

 

In vivo Experiments 

Dual targeting of fusion proteins in a mouse model of acute lung injury 

 Dual targeting of Mec13 scFv/EPCR and 390 scFv/TM was then tested in 

a mouse model of lung inflammation/injury and compared to treatment with the 

TM fusion protein alone.  Pulmonary edema induced by LPS endotoxin challenge 

was measured by uptake of IV injected 125I-labeled albumin. Fusion proteins, or 

PBS vehicle, were injected IV 30 minutes prior to LPS challenge (Figure 4.10a). 

Dual targeting of Mec13 scFv/EPCR and 390 scFv/TM maximally effectively 

reduced pulmonary edema, with a significant improvement compared to 

treatment with the TM fusion protein alone.  Administration of Mec13 scFv/EPCR 

alone had no effect, nor did sequential injection of Mec13 and 390 scFvs.  The 

latter was done as a control to ensure that the effects on barrier function were not 

simply the result of the two antibody fragments binding to PECAM-1.  Finally, co-

treatment with 390 scFv/TM and YN1 scFv/EPCR resulted in no additional 

protection, consistent with our observations on MS1 cells (Figure 4.10b). 

 

III. CONCLUSIONS 

 This chapter describes an alternate strategy for replicating the enzymatic 

partnering seen with endogenous TM and EPCR, namely dual targeting of both 

recombinant molecules to the same endothelial surface determinant. As 

hypothesized, our in vitro experiments indicate two distinct mechanisms by which 

the Mec13 scFv/EPCR enhances the activity of 390 scFv/TM: 1. increased 

binding and 2. enzymatic partnering (Figure 4.11). 

 Interestingly, we find that anchoring TM and EPCR to different endothelial 

determinants has no effect.  This result is consistent with the experiments 

described in Chapter 1, in which TM and EPCR were co-immobilized on 

polyurethane.  In those studies, EPCR was found to have an effect only when  
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Figure 4.11. Schematic model of dual targeting of s cFv/TM and scFv/EPCR 
to increase APC production  

(a) Normal function of thrombin, TM, EPCR, and PC on the endothelial cell 
membrane.  Endothelial TM binds thrombin (Factor IIa) and activates protein C.  

This process is accelerated by the key co-factor, EPCR, which optimally 
positions PC for cleavage.  APC can signal to endothelial cells while bound to 
EPCR or can bind to protein S and exert anti-coagulant effects, such as the 

cleavage of Factor Va. (b) APC generation by surface bound 390 scFv/TM fusion 
protein. TM fusion protein anchored to PECAM-1 generates APC, but is unable 

to partner with endogenous EPCR. (c) Mec13 scFv increases binding of 390 
scFv/TM to PECAM-1 via “collaborative enhancement” mechanism. Increased 
binding results in an ~2 fold increase in APC production.  (d) Dual targeting of 

390 scFv/TM and Mec13 scFv/EPCR.  The combination of enhanced binding and 
enzymatic partnering between TM and EPCR further increases APC production, 

to levels roughly equal to endogenous TM/EPCR.  
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the two recombinant proteins were kept in close proximity (< 10 nm)133, and 

not with a random, unordered distribution.  Although our experiments on 

mouse ECs do not establish a clear cutoff value, it seems likely that some 

critical distance exists, beyond which endothelial-anchored TM and EPCR are 

no longer sufficiently close to partner efficiently.  These results also support 

the notion that PECAM-anchored TM may be unable to partner with 

endogenous EPCR due to insufficient proximity along the membrane surface. 

 Apart from its mechanistic significance, dual targeting of TM and EPCR 

fusion proteins to paired PECAM-1 epitopes demonstrates enhanced protection 

in vivo and could represent a plausible strategy for mitigating acute endothelial 

dysfunction in a variety of settings. 

 

IV. MATERIALS AND METHODS 

Cell lines 

 Lysate from the Mec13.3 hybridoma (herein referred to as Mec13) was a 

generous gift of Dr. Annunciata Vecchi.  MS1 cells were purchased from ATCC 

(Manassas, VA) and maintained in DMEM with 10% FBS and 1% antibiotic-

antimycotic (Life technologies, Grand Island, NY). 

 

Antibodies and other reagents 

 Anti-TM polyclonal antibody (AF3894) was purchased from R&D systems 

(Minneapolis, MN).  A second anti-TM polyclonal antibody, used in Western 

blotting (sc-7097) was purchased from Santa Cruz Biotechnology (Santa Cruz, 

CA).  The anti-EPCR blocking mAb 1560, was supplied by the Esmon laboratory.  

HRP-conjugated Anti-FLAG (M2-HRP) antibody was obtained from Sigma 

Aldrich (St Louis, MO).  HRP-conjugated anti-goat secondary antibody (sc-2056) 

was from Santa Cruz Biotechnology.  Purified recombinant human protein C was 

a generous gift of Dr. Sriram Krishnaswamy.  Bovine thrombin and 

lipopolysaccharide (LPS, serotype B4) were purchased from Sigma. APC 

substrate, S-2366, was purchased from Diapharma (West Chester, OH). 
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Cloning of Mec13 VL and VH cDNAs 

 Mec13.3 cell lysate in Trizol was extracted with chloroform and phases 

were separated by centrifugation.  The aqueous phase was removed, mixed with 

ethanol, and total RNA was purified using the RNeasy kit (Qiagen, Valencia, CA).  

Combined reverse transcription and PCR was performed using SuperScript One 

Step RT-PCR kit (Life Technologies, Grand Island, NY).  Mec13 light chain was 

purified on reducing SDS PAGE and sent for N-terminal (Edman) sequencing at 

the UC Davis Proteomics Core Facility.  The 7 amino acids identified were used 

to design degenerate PCR primers. 

 

Assembly and expression of Mec13 scFv, sEPCR, and Mec13/EPCR constructs 

 Completed Mec13 VL and VH cDNAs were assembled into a scFv 

construct, with VH and VL sequences separated by a (GGGGS)3 linker and a 

triple FLAG tag appended to the 3’ end (C-terminus) for purposes of purification 

and detection.  The extracellular domain of mouse EPCR (sEPCR) was cloned 

by PCR from the full-length cDNA described in Chapter 2, and a C-terminal triple 

FLAG tag appended.  Finally, the Mec13 scFv/EPCR fusion protein was 

constructed with mEPCR on the 5’ end (N-terminus), separated from the Mec13 

scFv by an (SSSSG)2AAA linker.  All proteins were expressed in S2 cells and 

purified using an anti-FLAG affinity column (Sigma Aldrich, St Louis, MO). 

 

Generation of REN-derived stable cell lines 

 REN-PECAM-TM and REN-ICAM-TM cells.  To make cells expressing 

both PECAM/TM and ICAM/TM, a mouse TM (mTM) cDNA (containing the entire 

coding sequence of mTM and a portion of the 5’ and 3’ UTRs, nt 87-3482) was 

purchased from Origene and cloned into the pcDNA3.1/Zeo(-) vector (Life 

Technologies, Grand Island, NY).  Since REN-PECAM and REN-ICAM cells 

already stably express the Geneticin resistance gene, this expression vector 

(which confers resistance to the antibiotic Zeocin) was utilized.  Each cell type 
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was transfected with Lipofectamine 2000 and selected in media with 250 µg/mL 

of Zeocin and 200 µg/mL of Geneticin. 

 

Live cell ELISA assays 

 ELISAs were performed on live cells as described in Chapters 2 and 3.  In 

ELISA experiments involving more than one recombinant protein, however, such 

as those aimed at measuring collaborative enhancement of binding, anti-FLAG-

HRP could not be used, as each fusion protein carries a C-terminal triple FLAG 

tag.  In these cases, detection was via either goat anti-mTM or goat anti-mEPCR 

polyclonal antibody, with an anti-goat-HRP secondary antibody.  ELISA binding 

data was analyzed using PRISM 6.0 software (GraphPad, San Diego, CA). 

 

Protein C ELISA 

 ELISAs were performed using the same protocol as above, except that 

instead of live cells, fusion proteins were bound to protein C immobilized on high-

binding plastic wells.  Briefly, wells were incubated overnight at 4°C with a 

solution of 4 µg/mL recombinant human protein C in Tris buffered saline (TBS).  

Protein C solution was removed and the plate was blocked with 3% BSA solution 

for 2 hours.  BSA-coated wells with no protein C were used as a control for non-

specific binding.  

 

Protein C activation assays 

 Generation of APC by scFv/TM fusion was assayed as described in 

Chapters 2 and 3.  Briefly, cell monolayers were incubated with various 

combinations of TM and EPCR fusion proteins and washed three times with 

media prior to the addition of 1nM thrombin and 100nM protein C.  In all cases, 

protein C activation occurred at 37 °C in assay buf fer (20 mM Tris, 100 mM NaCl, 

1 mM CaCl2, 0.1% (w/v) BSA, pH 7.5), and the reaction was stopped by addition 

of an excess of hirudin.  Anti-mTM antibody blockade and EPCR blockade using 

mAb 1560 were performed as described in Chapter 2. 
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IT LPS model 

 Animal studies were carried out in accordance with the Guide for the Care 

and Use of Laboratory Animals as adopted by the NIH, under protocols (803320 

and 804349) approved by University of Pennsylvania IACUC.  The IT LPS model 

was performed as described in Chapter 3, with several exceptions.  First, in 

some experiments, animals received more than one fusion protein, e.g., scFv/TM 

and scFv/EPCR.  Proteins were injected IV in rapid succession, not mixed.  

Likewise, bronchoalveolar lavage was not performed in these experiments. 

 

Data analysis and statistics 

 Results are expressed as mean ± SD unless otherwise noted. Significant 

differences between means were determined using Students t-test or one-way 

ANOVA followed by appropriate multiple comparison (Tukey) test.  P<0.05 was 

considered statistically significant. 
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CHAPTER FIVE: DISCUSSION AND FUTURE DIRECTIONS 
 
 
I. LIMITATIONS 

The body of work described here is not without limitations.  Of greatest 

concern is the issue touched upon in Chapter 1, namely that the 390 and YN1 

scFv/TM fusion proteins are constructed with the N-terminal lectin domain of TM 

adjacent to the scFv moiety (Figure 1.2b).  Although the data presented in 

subsequent chapters indicates that this “inverted” conformation does not entirely 

preclude the partnering of scFv/TM fusion proteins with endogenous surface 

partners (e.g., EPCR) or co-delivered fusion proteins (e.g., scFv/EPCR), it is 

likely to have some significant impact on the function of TM, and we have yet to 

investigate this possibility in detail.  For example, we have only examined the 

functional activity of endothelial targeted TM fusion proteins with respect to APC 

generation.  TM is well known to have numerous other functions, including the 

direct neutralization of cytokines via its N-terminal lectin domain and the 

activation of TAFI122,161.  These activities may be altered or completely absent 

given the unnatural conformation of the TM moiety in the current generation of 

fusion proteins. 

The use of MS1 cells, a transformed pancreatic-derived endothelial cell 

line, represents another significant technical limitation of the current body of 

work.  Immortalized endothelial cells are likely to differ substantially from primary 

cultures and/or ECs in vivo, in particular with regard to the precise spatial 

relationships between endothelial surface molecules.  Moreover, it is plausible 

that we have masked some of the significance of these issues via the use of 

reagents from several different species -- i.e., bovine thrombin and human PC 

zymogen, alongside mouse TM and EPCR. 

Finally, the significance of our conclusions must be tempered by the 

preliminary nature of the work.  We have yet to investigate any cytoprotective 

signaling through PAR1 or other receptors, which might be generated by 

endothelial targeted TM and EPCR fusion proteins. Since PAR1 is thought to 
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localize to the same apical membrane microdomains as EPCR96, it is possible 

that PECAM-anchored TM will demonstrate weak cytoprotective signaling 

through this receptor.  Furthermore, dual targeting of scFv/EPCR fusion protein 

to PECAM, which has a significant effect on APC generation, may have little or 

no impact on PAR1 signaling.  On the other hand, it is possible that the 

requirement for molecular proximity may be less stringent in this case, as APC 

generated by TM and/or EPCR fusion proteins might diffuse along the endothelial 

surface, bind to endogenous EPCR, and signal through PAR1 in a paracrine 

manner.  This intriguing issue clearly merits further investigation.  Likewise, 

further characterization is warranted with regards to the in vivo protection offered 

by the fusion proteins.  IT administration of LPS does not faithfully reproduce all 

of the pathological aspects of human lung injury162.  Likewise, administration of 

fusion protein prior to LPS does not reflect a realistic clinical scenario.  A rigorous 

appraisal of the benefit/risk ratio of TM and EPCR fusion proteins will need to be 

conducted in relevant animal models of human disease, with administration after 

the onset of injury.  Moreover, we will need to directly test the importance of 

TM/EPCR partnering in vivo, before definitively concluding that this factor is 

responsible for any differences we observe in the therapeutic efficacy of various 

fusion proteins. 

 

II. FUTURE DIRECTIONS 
 

Design of Human PECAM and ICAM-targeted TM Fusion P roteins 

 To simultaneously address the various technical limitations discussed 

above, we have cloned two new scFvs, Ab62163 and R6.5164, which are specific 

for human PECAM-1 and ICAM-1, respectively (Figure 5.1a,b).  We are in the 

process of assembling these into fusion proteins with human TM (hTM).  Unlike 

the previous generation of mouse specific fusion proteins, we have designed the 

scFv/hTM fusion proteins in both available conformations (Figure 5.1c), including 

a more natural configuration with the lectin domain free at the N-terminus of the 
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molecule.  This will allow us to test the significance of the “natural” vs. “inverted” 

conformations, not only on the various functions of hTM, but also its partnering 

with endogenous surface molecules.  The widespread availability of high quality 

human primary ECs (e.g., HUVECs and human pulmonary microvascular 

endothelial cells, or HPMVECs), will resolve any artifacts related to the use of 

immortalized cells.  Finally, hTM fusion proteins will be tested using human PC 

and thrombin, thus eliminating any issues related to species variation of 

reagents. 

 The use of human ECs will enable testing of signaling pathways and cell 

responses not possible with MS1 cells.  In particular, HUVECs and HPMVECs 

both form tight monolayers and can be used for testing endothelial permeability.  

Since both thrombin and APC affect endothelial barrier function through PAR184, 

we plan to use permeability assays as an important means of testing the new 

hTM fusion proteins and their capacity to influence signaling through this 

receptor.  Other responses known to depend on APC mediated signaling, e.g., 

the expression of cell-adhesion molecules, will also be examined. 

 Finally, the use of Ab62 scFv/hTM and R6.5 scFv/hTM fusion proteins 

should allow the study of other TM functions, including the potential neutralization 

of HMGB1, a damage-associated molecular pattern molecule (DAMP) and 

cytokine.  HMGB1 is bound and sequestered by the N-terminal lectin domain of 

TM and infusion of recombinant sTM has been shown to reduce its plasma 

concentration in animal models of systemic inflammation165,166.  The N-terminus 

of the lectin domain, which is exposed in both soluble and membrane-bound TM, 

may be inaccessible on the fusion proteins due to its positioning adjacent to the 

scFv moiety.  Most importantly, these new scFv/TM fusion proteins will allow pre-

clinical development in primates and, ultimately, testing in human clinical trials if 

warranted. 
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Figure 5.1. Human PECAM-1 Specific Ab62 scFv 
(a) Molecular design of Ab62 scFv, (b) Ab62 scFv binds to human PECAM-1, as 
demonstrated by live cell ELISA (done with REN cells transfected with human 
PECAM-1) and immunofluorescence of HUVECs.  Strong staining seen at cell-

cell junctions is typical for PECAM-1.  (c) Fusion of Ab62 scFv with human TM in 
both conformations, for testing of lectin and EGF domain function. 
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Strategies to Define and Improve Endothelial Target ing  

 One aspect of the endothelial targeted TM fusion proteins that remains 

poorly characterized is their ability to target the endothelium in vivo.  Although 

initial experiments indicated that 390 scFv/TM effectively targets the lung 

following intravenous injection127, subsequent efforts have failed to confirm 

thisresult.  Likewise, the biodistribution of YN1 scFv/TM, which has been more 

rigorously characterized, indicates very weak targeting to lung endothelium.  This 

result was somewhat unexpected, given the robust targeting of the parental mAb 

(Figure 5.2), and the fact that the scFv/TM fusion proteins are large enough to 

escape the rapid renal clearance seen with free scFvs. 

 There are multiple possible explanations for these findings.  First, the 

scFv/TM fusion proteins are monovalent, and the decreased avidity, as 

compared to mAbs, could have a drastic effect on their ability to anchor 

themselves to the endothelium under the flow conditions present in the 

vasculature.  Second, TM may mediate uptake or clearance of fusion proteins by 

the liver and spleen.  Third, scFv/TM fusion proteins lack Fc domains and 

therefore are incapable of recycling through the neonatal Fc receptor (FcRn), 

which markedly prolongs the circulation time of mAbs167.  Finally, there is some 

evidence that even bivalent engagement of ICAM-1 may induce internalization by 

ECs, meaning that some component of the lung biodistribution of YN1 mAb may 

reflect intracellular, rather than surface bound antibody168.  Of note, this latter 

possibility differs from the others in that it would be a potential negative for 

endothelial targeting of TM, which requires surface localization. 

 To investigate these possibilities, we are in the process of designing and 

testing several new constructs.  In particular, we are collaborating with the 

Tsourkas laboratory in the Department of Bioengineering to develop a means of 

site-specific conjugation of TM to anti-PECAM and anti-ICAM mAbs.  

Conventional mAb conjugation, which utilizes non-specific chemistry, is limited by 

poor efficiency, the possibility of impaired mAb or cargo (i.e. TM) function, and 

the inability to limit or precisely control conjugate size.  The introduction of site 
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specific modifications on the mAb and TM moieties, however, allows the use of 

highly efficient click chemistry, results in predictable orientation of the 

components, and enables the incorporation of only one mAb and TM into each 

conjugate (Figure 5.3).  Using this new technology, we plan to test the role of 

each of the above factors (avidity, TM clearance, FcRn recycling, and 

internalization) in determining biodistribution to the lung and other organs.  Better 

understanding of these variables should allow the eventual design of TM 

therapeutics with improved endothelial targeting. 
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Figure 5.2. Biodistribution of YN1 scFv/TM and YN1 mAb in vivo 
(a) Biodistribution of YN1 scFv/TM at 30 min post-injection shows weak, but 

specific targeting to the lung, based on comparison to sTM and testing in ICAM-/- 
mice.  (b) Lung targeting of YN1 scFv/TM is an order of magnitude weaker than 

parental mAb. 
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Figure 5.3. Design of site-specific mAb/sTM conjuga tes 
Conventional bioconjugation is limited by potential disruption of mAb and sTM 
function, as well as inability to control the size of the resulting conjugate.  Site-

specific conjugation, in contrast, allows 1:1 incorporation with defined orientation 
of the individual components. 
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