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Aspects of Galileons

Abstract
Galileons are a class of scalar field theories which have been found to arise in a disparate variety of contexts
and exhibit a host of interesting properties by themselves, both classical and quantum. They obey non-trivial
shift symmetries which restrict their self-interactions to be of higher derivative form, yet their equations of
motion remain second order so that they are free of ghost instabilities. Further, when used as a force mediator
between massive objects, galileons provide a natural realization of the Vainshtein screening mechanism which
shuts off the fifth force at distances close to massive sources. As such, they are well suited for cosmology and
are naturally incorporated into theories of modified gravity such as the Dvali-Gabadadze-Porrati braneworld
model and the de Rham-Gabadadze-Tolley theory of massive gravity. Treated as a quantum field theory,
galileons obey a non-trivial non-renormalization theorem which proves that they are not renormalized to any
numbers of loops. In this thesis, we explore the properties of galileon theories and their generalizations
through a combination of geometric and algebraic means. On the geometry side, we demonstrate that generic
galileon theories are naturally thought of as the description of branes moving in higher dimensional
spacetimes. On the algebraic side, we show that there exists a precise interpretation in which galileons can be
thought of as Goldstone modes which arise when spacetime symmetries are spontaneously broken. In
particular, when viewed in this light the galileons are the analogue of the Wess-Zumino-Witten term of the
chiral lagrangian and thus represent interactions which are technically special. These methods provide both
new technical tools for analyzing galileon-like theories and offer conceptual changes for how these theories
can be viewed.
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ABSTRACT

ASPECTS OF GALILEONS

Garrett Goon

Mark Trodden

Galileons are a class of scalar field theories which have been found to arise in

a disparate variety of contexts and exhibit a host of interesting properties by

themselves, both classical and quantum. They obey non-trivial shift symme-

tries which restrict their self-interactions to be of higher derivative form, yet

their equations of motion remain second order so that they are free of ghost

instabilities. Further, when used as a force mediator between massive objects,

galileons provide a natural realization of the Vainshtein screening mechanism

which shuts off the fifth force at distances close to massive sources. As such,

they are well suited for cosmology and are naturally incorporated into theo-

ries of modified gravity such as the Dvali-Gabadadze-Porrati braneworld model

and the de Rham-Gabadadze-Tolley theory of massive gravity. Treated as a

quantum field theory, galileons obey a non-trivial non-renormalization theorem

which proves that they are not renormalized to any numbers of loops. In this

thesis, we explore the properties of galileon theories and their generalizations

through a combination of geometric and algebraic means. On the geometry

side, we demonstrate that generic galileon theories are naturally thought of as

the description of branes moving in higher dimensional spacetimes. On the alge-

braic side, we show that there exists a precise interpretation in which galileons

can be thought of as Goldstone modes which arise when spacetime symmetries

are spontaneously broken. In particular, when viewed in this light the galileons

are the analogue of the Wess-Zumino-Witten term of the chiral lagrangian and

v
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thus represent interactions which are technically special. These methods provide

both new technical tools for analyzing galileon-like theories and offer conceptual

changes for how these theories can be viewed.
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Chapter 1

Introduction

1.1 Motivations and Overview

It has been known for more than fifteen years that the universe is accelerating [100], yet

the source of the phenomenon remains elusive. Commonly proposed explanations consist of

positing yet undetected forms of matter, altering the dynamics of gravity itself or admixtures

of the two ideas. There are many proposals for modifying gravitational dynamics [30] and

they all fall under the broad title of “modified gravity.” Generically these proposals require

the introduction of additional degrees of freedom. In this thesis we present work pertaining

to particular classes of scalar field theory, collectively called Galileon models, which appear

in a variety of modifications of gravity, and we analyze them from a variety of approaches.

Galileons originate from higher dimensional models. It is an old idea that the universe

may contain more spatial dimensions beyond the three we commonly perceive and it has

also proven to be a fruitful one, as many contemporary lines of research still draw their

inspiration from these methods. The precise manner in which the dynamics of the higher-

dimensional space manifests itself in the four dimensional world depends on the geometry

and topology of the extra-dimensional manifold, and the matter content and action chosen.

At low enough energies, the important physics is then captured by a four-dimensional

2



1.1 Motivations and Overview

effective field theory with properties inherited from the specific higher-dimensional model

under consideration. The most relevant model at hand is the Dvali-Gabadadze-Porrati

(DGP) model [51] in which the 3-brane we inhabit is floating in an ambient, five dimensional

space. The gravitational action simply consists of two separate Einstein Hilbert terms –

one in 5D, and the other only on the brane, constructed from the induced metric. At

short distances, gravity behaves just as it would in everyday General Relativity (GR), but

becomes modified at large distances. In an appropriate limit, the physics is described by a

four-dimensional effective field theory which describes gravity plus a scalar degree of freedom

which captures the brane bending mode [82, 90]. The scalar represents a modification of

gravity and comes equipped with a screening mechanism which ensures that its fifth force

turns off at short distances where the theory is expected to be equivalent to GR. The specific

type of scalar interactions, whose explicit form we will describe in detail soon, was named

the galileon due to a Galilean shift symmetry they enjoy [91].

While galileons originated in higher dimensional theories, they were later found to nat-

urally arise in other, non-braneworld modifications of gravity. Namely, galileon interactions

appear to be essential in the construction of four-dimensional massive gravity. Fierz and

Pauli led the first attempt to give the graviton a mass and were the first to derive the

appropriate form of the mass term [58], which was later shown to be unique [111]. Things

are not as simple as one may have thought, however, and the basic, linear theory already

displays fundamental problems. Primarily, when coupling the massive graviton to matter,

one finds that the physics of the m → 0 limit does not coincide with that of linearized

GR [110, 121], a problem known as the van Dam-Veltman-Zakharov (vDVZ) discontinuity.

In particular, the deflection of light by heavy sources is minimized by a factor of 3
4 and

observations of light bent by the sun are enough to rule out this simple massive theory on

phenomenological grounds. A natural solution is to posit the existence of non-linear interac-

tions which become important in the regime of the discrepancy and render the conclusions

of the simple linear theory invalid [108]. Again, this line of research turned out to be highly

3



1. INTRODUCTION

non-trivial as generic interactions were found to develop the so-called Boulware-Deser (BD)

ghost instability [13] which manifests itself as an extra, sixth, unstable degree of freedom for

the massive graviton. Only in the last handful of years has it been discovered [36, 37] how

to construct the appropriate non-linear interactions which sidestep the BD ghost. The very

specific interactions of this de Rham-Gabadadze-Tolley (dRGT) massive gravity describe

the appropriate five degrees of freedom and it was found that galileon interactions arise in

the description of the longitudinal mode.

Therefore, a proper understanding of galileon interactions in their own right can shed

light on multiple well motivated modifications of gravity. In particular, any potential

pathologies or interesting phenomena displayed in galileon theories are likely to also be

manifested in the modified theories of gravity in which they appear. These motivations

provided the bulk of the impetus for the work performed in this thesis.

Further inspiration comes from the study of pure galileon theories themselves, as they

were found to be quite non-trivial and interesting in their own right. At face value, they

are simply theories of scalar fields which employ derivative interactions, but a deeper search

reveals that they are connected to a diverse variety of concepts familiar throughout theo-

retical physics. For instance, a proper understanding of the properties of galileons requires

considerations of strong coupling, intricacies of non-linear derivative interactions, ghost

instabilities and the generic properties of UV completions. There are also a variety of view-

points on the means through which galileons arise and thesis will primarily be focused on

these varied interpretations. In particular, we will cover in detail how galileons appear in

the study of probe branes inhabiting higher dimensional spaces and also their interpreta-

tion as the Goldstone modes resulting from spontaneous spacetime symmetry breaking. It

is this eclectic mix of concepts and viewpoints which arise in the study of these theories

that makes them so fascinating and the focus of this thesis is on the inherent properties of

galileons and their connections to other aspects of physics.

4



1.1 Motivations and Overview

In the remainder of this chapter we recall the history of galileons, their various properties

and the relevant physical problems to which they have applications. After reviewing the

canonical issues pertaining to cosmic acceleration and various relevant models and ideas

in Sec. 1.2, we move on to the origins of galileons in the DGP model of modified gravity

in Sec. 1.3. Abstracting the galileon theories away from their higher dimensional origins,

we study them in their own right, define and categorize them in Sec. 1.4 and review the

non-renormalization theorem they obey and study their use as a natural realization of the

Vainshtein mechanism in Sec. 1.5. Later, we review how galileons arise in theories of

modified gravity different from DGP in Sec. 1.6, in particular the manner in which they

arise in the dRGT theory of massive gravity in Sec. 1.6.2. At the end of the introduction

in Sec. 1.7 we briefly discuss common generalizations of the original galileon theory.

Part II of this thesis covers the geometry of galileons. In Chapter 2 we develop a

geometrical interpretation of galileon theories as the description of a 3-brane living in an

ambient 5D bulk. We review the construction of general brane actions and symmetries, and

the ways in which these symmetries may be inherited by a four-dimensional effective field

theory. In Sec. 2.3 we categorize the unique actions which lead to second order equations of

motion. Then, in Chapter 3 we apply these methods to six separate examples, exhausting

all the maximally symmetric possibilities: a 4D Minkowski brane embedded in a Minkowski

bulk; a 4D Minkowski brane embedded in AdS5; a 4D de Sitter brane embedded in a

Minkowski bulk; a 4D de Sitter brane embedded in dS5; a 4D de Sitter brane embedded

in AdS5; and a 4D Anti-de Sitter brane embedded in AdS5. In each case, we describe the

resulting 4D effective field theories and comment on their structure. In Sec. 3.4 we take

small field limits to obtain galileon-like theories, discuss their stability and compare and

contrast these theories with the special case of the original galileon. In Sec. 3.5 we study

the phenomenology of one of these generalized classes of galileons, focusing on spherical

symmetric solutions about a massive source. We demonstrate that the superluminalities

displayed by the original galileons persist in the generalized model. Finally, in Chapter 4
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1. INTRODUCTION

we apply the brane construction to cosmological FRW spacetimes and construct the natural

galileon theory inhabiting this spacetime.

Part III of this thesis covers the interpretation of galileons as the Goldstone modes re-

sulting from the spontaneous breaking of spacetime symmetries. We re-derive the galileon

interactions starting from the standard standard tools of spontaneous symmetry breaking:

the coset methods of Callan, Coleman, Wess and Zumino [22, 31] and Volkov [112]. After

reviewing the general coset construction in Sec. 6.2, we derive the algebra non-linearly real-

ized by the galileons—the “galileon algebra.” We show in Sec. 6.4, inspired by brane-world

models, this is a contraction of a higher-dimensional Poincaré algebra only along particular

auxiliary directions. That is, it can be thought of as the Poincaré algebra of a brane embed-

ded in higher dimensions, where the speed of light in the directions transverse to the brane

is sent to infinity, while the speed of light along the brane is kept constant. We show in Sec.

6.7 that, like the familiar Wess-Zumino-Witten term of the chiral Lagrangian [116, 118], the

galileon terms in d-dimensions are not captured by the naive d-dimensional coset construc-

tion and a higher dimensional construction is required, making the galileons technically

special. Additionally, we consider the conformal galileons in Sec. 6.11 and demonstrate

that only one of the conformal galileons, the cubic term, appears as a Wess–Zumino term

for spontaneously broken conformal symmetry. Finally, in Sec. 6.12 we demonstrate that,

although the original galileons are Wess-Zumino terms for spontaneously broken space-time

symmetries, this is not the case for the generalized relativistic DBI galileons [39] (covered

in Sec. 3.3.1), which—aside from the tadpole term—are obtainable from the coset con-

struction and hence are not Wess-Zumino terms. Finally, we explicitly construct the DBI

galileons using the techniques of non-linear realizations.

1.2 Cosmic Acceleration and Modified Gravity

Before delving into the galileons, we review in greater detail the issues of cosmic acceleration,

the cosmological constant problem and various proposals for explaining the source of the
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1.2 Cosmic Acceleration and Modified Gravity

acceleration and for modifying gravitational dynamics

1.2.1 The Cosmological Constant

In this section we review the conundrums that arise when studying cosmic acceleration.

There are many possible explanations for the acceleration and they are collectively called

“dark energy.” We will later briefly review dynamical models of dark energy, but since even

these models demand a separate explanation for the smallness of the cosmological constant

(CC), an extended discussion of the CC is appropriate. There exist many excellent, detailed

reviews of the subject, see for example [24, 84, 99, 115], and we only cover the essentials

here.

1.2.1.1 Basics: Dynamics and Forms of Matter

The simplest explanation for the acceleration of the universe is a cosmological constant, Λ,

which enters the gravitational action as

S =
M2

pl

2

∫

d4x
√−g [R− 2Λ] . (1.1)

A cosmology which is only driven by positive Λ captures the qualitative properties of our

current universe, namely it accelerates. The standard Einstein equations following from

(1.1) are

Rµν −
1

2
Rgµν + Λgµν = 0 (1.2)

and writing the flat Friedmann-Robertson-Walker (FRW) metric in its standard form

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz3) , (1.3)

where a(t) is the scale factor, (1.1) reduces to

H2 = Λ/3 ,
ä

a
=

2

3
Λ . (1.4)
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Above, H ≡ ȧ/a is the Hubble parameter and (1.4) are nothing but the standard Friedmann

equations applied to matter with equation of state w ≡ p/ρ = −1. As claimed, we see

that positive Λ generates positive acceleration, ä > 0, and the first Friedmann equation

determines the scale factor to be a(t) = eHt with H =
√

Λ/3.

While a positive cosmological constant certainly suits the task for generating an acceler-

ating cosmology, it is a quite odd form of matter. If the universe were instead dominated by

a more general form of matter with energy density ρ and pressure p, the cosmology would

be governed by the Friedmann equations

H2 =
1

3M2
pl

ρ ,
ä

a
= − 1

6M2
pl

(ρ+ 3p) . (1.5)

Hence, the requirement for an accelerating universe is that equation of state obey w < −1/3.

The everyday constituents of the world around us do not satisfy this requirement at all. For

instance, pressure-less matter and radiation (that is, relativistic matter) have equations of

state w = 0 and w = 1
3 , respectively and therefore no admixture of the matter most familiar

to us will generate cosmic acceleration. This is simply a reflection of the fact that matter

we’re used to is gravitationally attractive and will not provide the repulsive force needed

for an expanding universe.

1.2.1.2 Unnatural Λ: Classical and Quantum

Though unfamiliar, from an effective field theory viewpoint the cosmological constant is a

natural object that can and should appear in the lagrangian as it obeys the full diffeomor-

phism symmetry of general relativity, and so we should not reject it out of hand simply

because we haven’t see it in our daily lives. The truly unnatural aspect of Λ, however, is its

observed size. It is far smaller than one would a priori expect and the problem of explaining

its apparent magnitude is known as the “old cosmological constant problem.”
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1.2 Cosmic Acceleration and Modified Gravity

To be precise, the Planck mission determined the size of the current Hubble parameter

to be 67.3 (km/s)/Mpc[2]. If the universe were entirely CC dominated1, i.e. all other

matter negligible, then (1.4) determines Λ ∼ 10−84GeV2 corresponding to an energy scale
√
Λ ∼ 10−42GeV. Alternatively, the CC appears in the action (1.1) in the combination

∼M2
plΛ which defines an energy density ρ ∼M2

plΛ corresponding to an energy scale (ρ)1/4 ∼
10−12GeV.

First, from a classical perspective, these energy scales are absurdly small. The zero

point energy coming from potentials for all of the matter of the universe will behave as a

cosmological constant and there is no particular reason for this to contribute at observed

order of magnitude. That is, the matter fields {ψ} have some given potential energy V ({ψ})
and the {ψ} dynamics are unaffected by shifting V ({ψ}) → V ({ψ}) + V0, V0 = constant;

only energy differences matter for {ψ}. On the other hand, gravity is sensitive to the overall

size of V ({ψ}), as shifting V ({ψ}) corresponds to changing Λ → Λ + V0/2M
2
pl in (1.1). A

priori there is no compelling reason to choose one value of V0 over another and there are in

fact good reasons to expect that whatever its value is, it is unlikely that the contribution

to the CC will end up near 10−11GeV. The reason is that we expect that the universe went

through a series of phase transitions [24] throughout its history which generically cause large

jumps in the CC. For instance, if the Higgs potential were adjusted so that its potential

energy was strictly zero at higher energies (i.e. when the Higgs vacuum expectation value

vanishes), then we’d expect that after the electroweak phase transition the potential would

become of the size V ∼ −(250GeV)4 where 250GeV is the approximate electroweak scale.

Combined with the contribution stemming from the QCD transition and other unknown,

higher energy phase transitions, it appears horribly unnatural for these effects to nearly

exactly cancel and give a result of the order required.

1The Planck mission actually determined that the effective cosmological constant accounts for 69% of

the energy in the universe, but the approximations made here are adequate for illuminating the essence of

the problem.
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Next, the size of the required CC is unnatural from a quantum field theoretic viewpoint.

In order to see this, we first review the typical effective field theory (EFT) argument that

leads to the hierarchy problem, beginning with a simple statement of the general rules

for EFT’s and later justifying their origins. Then we apply the EFT reasoning to the

gravitational action (1.1) and discuss the hierarchy problem from which it suffers.

The mantra of effective field theory is to start by specifying the field content, symmetries

and high energy cutoff Λ̃ of the theory, below which the EFT is supposed to provide an

accurate description of the physics. One then builds the action by including in the theory

every operator compatible with the specified symmetries with O(1) coefficients and factors

of Λ̃ to fix the proper dimensions [98]. Occasionally, operators can have coefficients that are

much smaller than O(1). This is allowed if the relevant parameter is “technically natural” in

the sense that the number of symmetries enjoyed by the system increases as the parameter

is taken to zero [103].

The canonical example of such a natural parameter is the fermion mass m. A typical

EFT of Dirac fermions with cutoff Λ̃ might take the form

L = iψ̄∂µγ
µψ − cΛ̃ψ̄ψ + g2

ψ̄γµψψ̄γµψ

Λ̃2
+ . . . (1.6)

with g ∼ O(1) but c≪ 1 and hencem ≡ cΛ̃ ≪ Λ̃. This latter condition is technically natural

because as m→ 0 the lagrangian (1.6) gains chiral symmetry, ψ → eiθγ5ψ. Similarly, gauge

boson masses are technically natural since we recover gauge symmetry as the mass is taken

to zero.

However, the analogous scenario for scalar fields is generally unnatural. That is, given

a generic EFT for φ, say

L = −1

2
(∂φ)2 − cΛ̃2φ2 − λφ4 − g

φ6

Λ̃2
+ . . . , (1.7)

no symmetry is gained by taking c → 0 and hence by the rules of EFT’s we ought to take

c ∼ λ ∼ g ∼ O(1). This leads to a contradiction, however, since the theory (1.7) describes a
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1.2 Cosmic Acceleration and Modified Gravity

scalar of mass mφ ∼ Λ̃, but by assumption the EFT is only a good description of physics at

energies much below the scale Λ̃ and hence should not accurately describe the physics of φ

[98]. While we wish that our EFT could describe a light scalar of mass m ≪ λ̃, this desire

typically contradicts the general rules of EFT’s. The unnaturalness of the gap m ≪ Λ̃ is

called the “Hierarchy Problem” and it is a well-known problem of the Higgs sector for the

electroweak theory in which the Higgs mass m ∼ 125GeV is much smaller than the scale at

which we know new physics must appear, Mpl ∼ 1019GeV. As another example, a similar

issue exists for QCD in which there are two possible interactions which are quadratic in the

field strength tensor, i.e. L ∼ aTrF ∧ ⋆F + bTrF ∧ F . The a term is familiar kinetic term

and is a ∼ O(1). The b term on the other hand contributes to the electric dipole moment of

the neutron and observations determine b≪ 10−9 [48]. This discrepancy from O(1) known

as the “strong CP problem.”

The above rules for effective field theories originate from the Wilsonian viewpoint in

which we generate EFT’s by “integrating out” the heavy degrees of freedom. That is, the

full microscopic theory may consist of heavy particles of mass M and light particles of mass

m ≪ M and if we are only interested in physics at energy scales E with m ≪ E ≪ M ,

then there is not much sense in keeping detailed track of the heavy particles. In particular,

we can capture the effects of the heavy fields on the physics by simply introducing effective

interactions that only entail factors of the light fields. For instance, we can imagine that

the fermionic EFT of (1.6) arises as a low energy description of fermions coupled to massive

gauge fields, say Aµ with mass M . The full theory would have cubic interactions of the

form ∼ gψ̄γµAµψ which can be combined to describe, say, ψ̄ψ → ψ̄ψ scattering which in

the tree approximation would have amplitude M ∼ g2 i
−p2−M2 . However, if we are only

interested in scales much smaller than M , to a good approximation the amplitude is simply

M ∼ g2

M2 . Therefore, ψ̄ψ → ψ̄ψ scattering would be described perfectly well to the order we

care about by instead considering an effective theory in which we remove the massive gauge

bosons from the theory altogether and add in its place an interaction ∼ g2ψ̄γµψψ̄γµψ/M
2.
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This is precisely the case described in (1.6) with the identification Λ̃ ∼ M and this is the

generic expectation; the cutoff of the effective field theory is the energy scale where new

physics (i.e. the emergence of heavier particles in this context) becomes important.

The naturalness of fermion masses and unnaturalness of scalar masses in EFT’s then

becomes apparent by considering the roles of the two fields in their full, microscopic theories.

In the full theory, the fermion interacts with much heavier particles and direct calculations in

such scenarios typically demonstrate that loop corrections to the bare fermion mass, m, are

proportional to m themselves δm ∝ m. As discussed, this must be the case since as m→ 0

the theory gains a chiral symmetry which is expected to be preserved by loop corrections.

Therefore, the fermion mass is not very sensitive to the masses of heavy particles in the full

theory and a small bare mass in the fundamental theory will generically translate into a

small fermion mass in the effective theory since the final result is ∝ m. On the other hand,

repeating the same exercise for scalars typically results in corrections to the bare mass

squared of a scalar, m2, which are not proportional to m2, but instead to the squared mass

of the heavy particles, δm2 ∼M2. As no symmetry is gained by setting m→ 0, corrections

need not be proportional to m. Hence, the mass squared of the scalar appearing in the

effective theory is typically highly sensitive to the masses of heavy particles and is generally

insensitive to the initial base mass. In particular, the effective mass will typically be pushed

up to the scale ∼ M . From the previous paragraph, this corresponds to pushing the mass

of the scalar to energies approaching the cutoff of the EFT (i.e. we should be choosing the

mass to be ∼ cΛ̃2 with c ∼ O(1)) and we find ourselves in the unnatural position of (1.7).

While it is possible to precisely tune the scalar bare mass so that the resulting effective

theory enjoys a wide hierarchy between the effective scalar mass and the cutoff, such a

scenario is a highly optimistic assumption about the nature of high energy physics and is

considered a contrived and unappealing possibility, hence the hierarchy problem.

The relevance of the hierarchy problem to general relativity is that the role played by

the cosmological constant is analogous to the scalar mass in (1.7). Viewed as an effective
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field theory with cutoff Mpl, gravitational physics should be described by a lagrangian of

the schematic form

L ∼ √−g
[
aM4

pl + bM2
plR+ cR2 + dR4/M2

pl + . . .
]
. (1.8)

No symmetry is gained in the limit a→ 0 and hence a is not a technically natural parameter

and should be expected to be O(1). Indeed, direct calculation [84] demonstrates that a bare

Λ receives loop corrections from heavy particles, say of mass M , in the form δΛ ∼M4/M2
pl

and so the CC has the same naturalness issues as the scalar was found to have. The

cosmological constant then has a natural size2 Λnatural ∼M2
pl ∼ (1019GeV)2. This is hugely

at odds with our observationally derived value Λderived ∼ (10−42GeV)2 and, understandably,

is considered to be quite an embarrassing as there is no compelling explanation for the

disparity.

1.2.2 The Coincidence Problem

A less dramatic conundrum is the observation that current energy density coming from

the apparent cosmological constant is the same order of magnitude as the energy density

arising from matter and only relatively recently (i.e. around redshift z ∼ 1) has the universe

begun to accelerate. In particular, the Planck mission [2] found that energy budget of the

universe is 31% matter and 69% dark energy. Such a configuration is surprising in light

of the differing rates at which the two energy components dilute. While dark energy is

approximately constant, matter dilutes along with the expansion of the universe as ∝ a−3

and therefore in the far past the matter density hugely dominated over dark energy and it

is only at relatively recent times that rough equivalence between the two was established. It

is possible that there exists a dynamical origin for this fact. If dark energy were not simply

a cosmological constant, but instead arose from some unknown degree of freedom, then it

2Other, more conservative estimates might put the natural size at the assumed SUSY breaking scale of,

say O((1TeV)4) [5, 49], but the discrepancy is still enormous.
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could be that our observations are not simply a coincidence, but the generic expectation

for the evolution of the universe.

1.2.3 Removing Λ: Adjustment Mechanisms

A natural first instinct when attempting to solve the cosmological constant problem is to

play with the idea that there exists some set of fields {φi} whose dynamics will generically

drive Λ → 0. As Weinberg says, this idea has been “tried by virtually everyone” [115], but

without much success.

There are quite general arguments that indicate that this route is a difficult one, in

particular the “no-go” theorem of Weinberg himself [115], which we review here. The key

idea is that a natural solution of the CC problem would require the fact Λ ≈ 0 to follow

entirely from the equations of motion for the fields {φi}. For instance, an unnatural solution

would be to simply assume that the potential for these additional fields V ({φi}) simply takes

on exactly the right value to cancel off the true value of Λ. Such a solution would be nothing

but a reshuffling of where the fine tuning is taking place. Rather than small Λ originating

from a fine tuning in the fundamental UV physics, it would originate from fine tuning within

V ({φi}), rendering the idea unpalatable.

Instead, it would be much more natural if the equations of motion for the fields {φi}
were proportional to T µµ. If this were the case, then the dynamics of {φi} drive T µµ → 0

and hence drive spacetime to be approximately flat, as Einsteins equations tell us R ∝ T µµ.

Let us attempt to construct such a scenario in the restricted case where the fields {φi} and

are constant throughout spacetime, i.e. they preserve Poincaré invariance, and we want the

{φi} to drive us to a scenario in which the metric gµν is also spacetime independent. In

terms of the lagrangian L, we are in effect requiring the statement

∑

i

fi
∂L

∂φi
∝ T µµ , (1.9)
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where {fi} are generic functions of the {φi}. If we can find a system which obeys a form of

(1.9), then T µµ vanishes as the fields {φi} settle into their minima and we have accomplished

our goal.

The condition (1.9) turns out to be a quite severe restriction, however. From the as-

sumption that gµν is spacetime independent, we can write write T µµ = 2√−ggµν
∂L
∂gµν

and so

(1.9) becomes

∑

i

fi
∂L

∂φi
= gµν

∂L

∂gµν
. (1.10)

This (1.10) is actually a statement of the symmetries of the fields; it expresses that the

lagrangian must be symmetric under the combined transformations

δφi = −ǫfi , δgµν = ǫgµν . (1.11)

In order to see why this is problematic, it is useful to redefine our fields to a new diagonal

basis, {φi} → {ϕ, σa}, which is chosen such that the symmetry in terms of {ϕ, σa} is

δϕ = −ǫ , δσa = 0 , δgµν = ǫgµν . (1.12)

Any non-derivative interaction which obeys this symmetry must then be built from the in-

variant effective metric eϕgµν and general coordinate invariance further dictates that the in-

teraction must be ∝
√

− det eϕgµν = e2ϕ
√−g. The most general, symmetric, non-derivative

interaction that will involve all the fields {gµν , ϕ, σa} is then L =
√−g e2φL′({σa}) where

L′({σa}) only involves the fields {σa} and would generally include a cosmological constant

piece L′({σa}) ⊃M2
plΛ.

The problem we will find is that while we were explicitly looking for interactions which

would naturally set T µµ → 0, the lagrangian L =
√−g e2φL′({σa}) will only set T µµ → 0

for a precise tuning of the parameters in L′({σa}), which is exactly what we were trying to

avoid. Specifically, the equations of motion for ϕ and σa are

∂L

∂ϕ
= 2

√−g e2φL′({σa}) ,
∂L

∂σa
=

√−g e2φ∂L
′({σa})
∂σa

. (1.13)
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The σa equations simply define the equilibrium values of {σa} through the conditions
∂L′({σa})

∂σb
= 0. On the other hand, it is the ϕ equation which sets the trace of the en-

ergy momentum tensor,

∂L

∂ϕ
= 2

√−g e2ϕL′({σa}) = gµν
∂L

∂gµν
=

1

2

√−gT µµ . (1.14)

The only way to get a stationary configuration for ϕ, and hence set T µµ → 0, is to then

enforce that the {σa} equilibrium additionally sets L′({σa}) = 0, a condition which can only

arise through fine tuning. That is, to satisfy this condition we must balance all couplings

in L′({σa}) against one another, and against the cosmological constant that might appear

in L′({σa}), so that they precisely cancel.

Therefore, the simplest attempts at adjustment mechanisms will generically suffer from

fine tuning issues themselves and do not represent improvements of the problem. It is

possible to evade this conclusion by bypassing the assumptions made above, for example

by exploring scenarios in which the {φi} are not spacetime independent. These are active

lines of research [26, 27], but we will not discuss them in detail here.

1.2.4 Shielding Λ: Degravitation

An entirely different approach supposes that Λ really does exist and is in fact enormous,

but it just doesn’t curve the universe as much as we assume it will. We derived that in

our universe Λ must be quite small through the use of the Einstein equations, but if at

long distances Einstein’s equations are not an accurate description of the physics then our

conclusion would be rendered faulty. That is, a modification of the dynamics of gravity at

large distance would modify our interpretation of the size of Λ. In particular, we review

here concepts which fall under the umbrella of “degravitation” and, as stated in [5], such

approaches do not try to explain the size of Λ, but rather answer the question “Why does

the vacuum energy gravitate so little?”
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Quite generally, models of degravitation consist of regarding gravity as a high pass filter.

Essentially they represent modifications of Einstein’s equation of the form

M2
plGµν = Tµν →M2

pl(L
2�)Gµν = Tµν , (1.15)

that is they promote the Planck mass to be a scale dependent function and introduce an

additional length scale L. In Fourier space, the functional dependence should be chosen

so that at short distance scales, kL ≫ 1, Mpl(L
2�) should take on its familiar value ∼

1019GeV, but at long scales, kL ≪ 1, Mpl(L
2�) diverges. Since curvature is sourced

by Tµν/M
2
pl(L

2�) gravity would ostensibly be unchanged at shorter distances, but would

become entirely insensitive to long wavelength sources such as Λ.

Though the introduced scale dependence ofMpl may appear contrived, it can arise quite

naturally in reasonable modifications of gravity. In particular, the physics of a massive

graviton should be expected to resemble the degravitation mechanism. The reasoning is

that since a boson of mass m only have characteristic range m−1 it will never know about

sources which are homogeneous on scales larger than m−1 and is therefore insensitive to

them.

The analysis for massive gravitons is long and detailed, see [50], and to demonstrate the

main concepts it is sufficient for our purposes to consider the case of an analogue model of

a massive U(1) gauge bosons. We follow [50] and begin with the standard massive gauge

boson lagrangian coupled to an external source which is assumed to be conserved, ∂µJ
µ = 0,

L = −1

4
F [A]2 − 1

2
m2A2

µ + JµA
µ . (1.16)

A massive gauge boson in d = 4 carries three independent degrees of freedom, one zero

helicity longitudinal mode and two transverse modes of helicity h = ±1. A particularly

clear way of separating different degrees of freedom in (1.16) is to rewrite the lagrangian

by using the Stückelberg trick by making the replacement Aµ → Ãµ + 1
m∂µφ everywhere,

under which (1.16) becomes

L = −1

2
F 2[Ã]− 1

2
m2Ã2

µ −
1

2
(∂φ)2 −mÃµ∂µφ+ JµÃ

µ . (1.17)
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While the mass term in (1.16) ruins gauge invariance and leads to the three independent

degrees of freedom in Aµ, the lagrangian (1.17) enjoys the gauge invariance

δÃµ = ∂µΛ(x) , δφ = −Λ(x) (1.18)

which implies that Ãµ only carries the two helicity ±1 degrees of freedom. The two la-

grangians (1.16) and (1.17) are entirely equivalent. This can be seen explicitly by going to

“unitary gauge” in (1.17) where the gauge invariance (1.18) is used to set φ̃ = 0 so that the

two lagrangians coincide.

We can then demonstrate explicitly that the effect of the mass is to generate a de-

electrifying effect (the analogue of degravitation) for the helicity ±1 modes of Ãµ. This

simply follows from integrating out φ via its equations of motion. Explicitly, they read

�φ = −m∂µÃµ (1.19)

and we simply replace φ → −m
� ∂µÃ

µ everywhere in (1.17) to generate the effective action

for Ãµ. The result is

L = −1

4
F [Ã]2 − 1

2
m2Ã2

µ +
m2

2
∂µÃ

µ 1

�
∂νÃ

ν +m2Ãµ
�

�
Ãµ + JµÃ

µ

= −1

4
F [Ã]2 − m2

2

[

∂µÃ
ν 1

�
∂µÃν − ∂µÃ

µ 1

�
∂νÃ

ν

]

+ JµÃ
µ . (1.20)

The two transverse modes then obey the effective equation of motion

(

1− m2

�

)

∂µF
µν + Jν = 0 (1.21)

which is precisely what is needed for de-electrification. As the m2/� term becomes large

at long wavelengths and Ãµ decouples from long wavelength sources. The analogous story

hold for Fierz-Pauli massive gravity [50].

Therefore, it’s possible that long wavelength modifications of gravity can alleviate the

old cosmological constant problem. The simplest modification of gravity that can behave
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as a high pass filter is the addition of a hard mass, but it is not the only way. In particular,

braneworld models of gravity where matter is confined to live on a 4D brane, but where

gravity can propagate through a large 5D bulk space in which the brane is embedded, will

also lead to equations of the form (1.15) [5, 49]. For instance, the momentum dependence

of the graviton in the brane-world Dvali-Gabadadze-Porrati model (see Sec. 1.3) is D(p) ∼
−i

p2+2r−1
c

√
p2

for some length scale rc, corresponding to a resonance graviton, and hence the

DGP model employs a high pass filter ∼
(

1− 1
rc
√
�

)

. In practice, it is often difficult for

specific models to degravitate efficiently enough to reproduce our own universe without

fine tuning and while leaving other gravitational physics unmodified, but research is still

progressing along these directions.

1.2.5 Alternatives to Λ: Other Sources of Dark Energy

A final field of study we briefly review are attempts to explain cosmic acceleration via

other means than a cosmological constant. Such approaches assume the existence of some

symmetry or unknown mechanism which separately solves the old cosmological constant

problem and sets Λ → 0 and focus instead on types of dynamical matter or modifications

of gravity that generate the late-time acceleration. There are an enormous variety of such

proposals [30] and we only cover two here, briefly.

On the dynamical matter front, the use of scalar fields as a candidate source of dark

energy is the most common tactic and these are known as “quintessence models” [19]. They

typically consist of a standard kinetic term3 and potential V (φ)

L = −1

2
(∂φ)2 − V (φ) . (1.22)

Assuming negligible spatial gradients, the pressure, density and equation of state are given

3Other models such as k-essence [7] employ derivative interactions.
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by

p =
1

2
φ̇2 + V (φ) , ρ =

1

2
φ̇2 − V (φ) , wφ =

1
2 φ̇

2 + V (φ)
1
2 φ̇

2 − V (φ)
(1.23)

and hence if the potential is such that the scalar is slowly rolling, φ̇2 ≪ V (φ), the quintessence

field describes a fluid with equation of state similar to that of a cosmological constant,

w ≈ −1.

Typically, quintessence models fall into one of two categories: thawing or freezing [20].

The equation of state obeyed by the (assumed to be homogeneous) background φ is

φ̈+ 3Hφ̇+ ∂φV (φ) = 0 (1.24)

and in the thawing models, the potential is such that at early times (large H) the Hubble

parameter dominates and the field is frozen by Hubble friction and thus acts identically

to a CC. At late times, when H has diminished substantially, the scalar unfreezes and

the fluid’s equation of state deviates from wφ = −1, leaving cosmological signatures. In

freezing models, the quintessence field starts out rolling down the potential. The potential

eventually flattens out and as the field slows its roll it approaches equation of state w =

−1. In particular, there are “tracker solutions” in which the equation of state tracks the

dominant form of matter in the universe. In such scenarios, the quintessence field begins

by tracking radiation at early times with wφ < 1/3, then begins to track matter during

the matter domination era with wφ < 0 and eventually as the matter density dilutes away

the quintessence field comes to dominate and wφ approaches −1, generating the observed

acceleration. The quintessence field needs to roll over a large distance and hence these

models often suffer from the standard fine tuning and naturalness issues which afflict typical

scalar field theories. For reviews on quintessence fields with varying levels of detail, consult

[83, 102, 107].

A different tack is to invoke new dynamics as the root of the acceleration. In particular,

by positing that the gravitational action is not simply ∼ √−gR[g] but instead a complicated
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1.3 History: DGP and the Galileon

function of the Ricci scalar (as may be expected from an effective field theory viewpoint),

it’s possible to produce dynamics by which the universe begins to accelerate at late times,

even in the absence of a cosmological constant or other matter. Such models take on the

form

S =

∫

d4x
√−gf(R) (1.25)

and are hence known as f(R) theories [30]. Among other possible uses, judicious choices of

f(R) will lead to cosmologies which self-accelerate at late times, again even in the absence

of a cosmological constant or other matter [4, 25, 74, 101].

1.3 History: DGP and the Galileon

In this section we review the historical discovery and development of galileon theories in

the context of the Dvali-Gabadadze-Porrati (DGP) model [51]. DGP begins by assuming

that the 3-brane which we inhabit is embedded in a flat, five dimensional space where

the extra dimension is infinitely large. This is a departure from more common theories

in which extra dimensions are posited to be quite small, such as Kaluza-Klein models,

because the motivations are different. Models with small extra dimensions modify the high

energy, short distance physics and since we are interested in modifying the low energy, long

distance behavior of gravity the large extra dimension scenario is the appropriate one. Both

the higher dimensional space and the brane are given Einstein-Hilbert terms, so that gravity

propagates in both spaces, while matter is confined to the brane.

We let M be our 3-brane with coordinates xµ, µ ∈ {0, 1, 2, 3} and N be the five di-

mensional space with coordinates XA, A ∈ {0, 1, 2, 3, 5}. The brane’s position is given by

embedding functions XA(xµ) and the bulk metric, GAB , induces a metric on the brane,
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gµν ≡ ∂XA

∂xµ
∂XB

∂xν GAB . The DGP action is defined to be

SDGP =
1

2
M3

5

∫

N

d5X
√
−GR(5)[G] +

∫

M

d4x
√−g

[

−M3
5K[g] +

1

2
M2

plR
(4)[g] + LM (ψ)

]

.

(1.26)

where R(5)[G] is the 5D Ricci scalar generated from GAB , R
(4)[g] is the 4D Ricci scalar

generated from gµν , K(g) is the extrinsic curvature of the 3-brane and LM (ψ) is the matter

action. The masses M5 and Mpl are the five and four dimensional Planck masses, respec-

tively. The dynamical variables of the theory are the bulk metric (GAB), coordinates of

the brane in the bulk (XA(xµ)) and matter fields (ψ); the induced metric does not contain

independent degrees of freedom as it is derived from GAB and the XA’s.

DGP is a rich model with robust phenomenology and features and a detailed analysis is

outside of the realm of this thesis. Instead, we concentrate on the basic features of the model

and a sketch of how the galileon interactions arise. Of primary importance is the transition

in the behavior of gravity as we progress to larger and larger distances. This transition is

reflected in the graviton propagator derived from (1.26) whose momentum dependence goes

as [71]

D(p) ∼ −i
p2 + 2

M3
5

M2
4

√

p2
. (1.27)

The propagator defines a “crossover distance” rc ≡
M2

pl

M3
5
≡ m−1 below which gravity appears

four dimensional and above which gravity appear five dimensional, that is

D(p) ∼
{−i
p2

p≪ r−1
c

−i
|p| p≫ r−1

c

. (1.28)

In order to set rc to be of order the Hubble radius, we must have M5 ∼ 10MeV.

In addition to the tensor mode of the graviton, there is also a vector and a scalar mode

which descend fromGµ5 and h55 respectively. A long and detailed analysis [82] demonstrates
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1.3 History: DGP and the Galileon

that the scalar sector of the effective 4D lagrangian is a derivatively self-coupled

Leff ⊃ 3M2
plm

2π�π −M2
plm(∂π)2�π +

1

2
mπT . (1.29)

The full action depends on tensor, vector and scalar fields {h′µν , N ′
µ, π}, which are intricate

field redefinitions of the bulk metric perturbations about flat space, {Hµν ,Hµ5,H55}, needed
to diagonalize the action, but in the decoupling limit we can focus our attention on the scalar

lagrangian (1.29).

In order to justify this focus, we compare the strong coupling scale of scalar interactions

and demonstrate that is is parametrically lower than all other interaction scales appearing

in the effective DGP lagrangian. More precisely, when we canonically normalize by using

the field π̂ ∼ Mplmπ, we see that the scale suppressing the cubic derivative term in (1.29)

is Λ3 ≡M2
5 /Mpl =

(
m2Mpl

)1/3
and π̂ couples to matter with gravitational strength, ∼ π̂T

Mpl
.

One can deduce that a typical interaction appearing in Leff is of the form [90]

∼ mM2
pl∂

(

N̂µ

m1/2Mpl

)p(
∂π̂

mMpl

)q

(h′µν)
s (1.30)

with p + q + s ≥ 3 and where ĥµν and N̂µ are the canonically normalized4 tensor and

vector fields. Then if we want to study modifications of gravity well outside of a source’s

Schwarzschild radius, i.e. where we can take ĥµν → 0, we need only concern ourselves with

interaction of the form (1.30) with q = 0. Inspection of (1.30) shows that the interaction

of the type (p, q) is suppressed by the scale

Λ(p,q) ∼
(

mq+p/2−1Mp+q−2
pl

) 1
3p/2+2q−3

=
(

Λq3M
3/2p+q−3
5

) 1
3p/2+2q−3

(1.31)

and since m ≪ Mpl we see, as claimed, that the smallest this scale can ever be is Λ3,

corresponding to p = 0, q = 3. Thus, the π self interactions are the least suppressed and

4As indicated in (1.30), the normalization for Nµ is not the standard one for vector fields. Rather, the

kinetic term for Nµ arises from ∼ Nµ △ Nµ where △=
√
−�, and so the canonical normalization sets the

dimension of Nµ to be [Nµ] = E3/2.
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most important. A formal limit makes this statement more precise. By takingM5,Mpl, T →
∞ with Λ3 and T/Mpl held constant, it is clear from (1.31) that only the cubic scalar

interaction survives and in this so-called decoupling limit the lagrangian becomes

Lπ̂ =
1

2
π̂�π̂ − 1

63/2Λ3
3

(∂π̂)2�π̂ +
1

2
√
6Mpl

π̂T . (1.32)

This scalar degree of freedom is known as the “galileon” and we continue its history in the

next section.

1.4 The Original Galileons

As we’ve seen, in the decoupling limit the physics of the DGP model [51] is well described

by a scalar field π which couples to the trace of the energy momentum tensor ∼ πT and

has derivative self-interactions ∼ �π(∂π)2 [82]. In this section we review the properties of

this theory and its generalizations.

Though the self-interaction is higher-derivative, it nevertheless has second order equa-

tions of motion, δ
δπ�π(∂π)

2 = 2∂µ∂νπ∂
µ∂νπ−2(�π)2. This guarantees that the theory does

not propagate a ghost, which is the usual pathology associated with many higher-derivative

scalar theories. For instance, consider a scalar field φ whose quadratic lagrangian is higher

derivative

L =
1

2
φ�φ+

λ

Λ̃2
(�φ)2 . (1.33)

The equations of motion are fourth order and hence more initial data is required to solve

the resulting system. Generically, this scenario will lead to instabilities [119] due to the

fact that the associated Hamiltonian will be unbounded from below. Such instabilities are

known as Ostrogradski ghosts and we can explicitly demonstrate the connection between

the higher derivatives stemming from (1.33) and the familiar notion of ghosts as degrees of
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freedom with wrong sign kinetic terms. Inserting an auxiliary variable ψ, the lagrangian

(1.33) can be rewritten as

L =
1

2
φ�φ+

λ

Λ̃2

(
2ψ�φ− ψ2

)
. (1.34)

A field redefinition φ = φ′ − 2λ
Λ̃2
ψ turns this into

L =
1

2
φ′�φ′ − 2

λ2

Λ̃4
ψ�ψ − λ

Λ̃2
ψ2 (1.35)

and canonical normalization demonstrates that (1.33) describes a healthy mode and a ghost

of mass Λ̃/
√
λ (which may also be tachyonic, depending on the sign of λ). Typically,

higher derivative theories either display this pathology in the fundamental action or these

instabilities can arise for perturbations about non-trivial background solutions and we wish

to avoid these scenarios.

From the higher-dimensional viewpoint of DGP, the π field is the brane-bending mode—

the Goldstone field associated with spontaneously broken five-dimensional Poincaré invari-

ance, as we will see later. The broken symmetries manifest themselves as non-linearly

realized symmetries for π, a type of “galilean” shift

π(x) −→ π(x) + c+ bµx
µ , c, bµ = constant (1.36)

under which the cubic galileon and kinetic term shift by total derivatives.

One can abstract these two properties, that the theory be symmetric under (1.36) and

have at most second order equations of motion, and search for all terms obeying these

requirements. Such theories describe the “galileon” degree of freedom π(x) and it was in

[91] where this line of research was first carried out (for a review of later developments,

see [106]). This class of models, and its generalizations, was found to be quite interesting

in its own right, as we shall see.

25



1. INTRODUCTION

1.4.1 Definition and Fundamentals

A fundamental characteristic of galileon theories is that there are only a finite number of

interactions which are both shift symmetric and have second order equations of motion.

The issue is the second requirement; the first is easily satisfied by considering terms with

many derivatives per π field.

The number of desired interactions is highly dimension dependent and in d-dimensions

there exist d + 1 satisfactory terms. There exists a concise method of writing down the

relevant terms in terms of Levi-Civita symbols. Namely, in d-dimensions the interaction

with n+ 1, 0 ≤ n ≤ d, factors of π takes on the following form

L
(d)
n+1 = ǫµ1...µnαn+1...αdǫν1...νnαn+1...αd

∂µ1π∂ν1π∂µ2∂ν2π . . . ∂µn∂νnπ

∼= −ǫµ1...µnαn+1...αdǫν1...νnαn+1...αd
π∂µ1∂ν1π∂µ2∂ν2π . . . ∂µn∂νnπ (1.37)

where, here and elsewhere, ∼= signifies equivalence up to total derivatives. For instance the

cubic term in d = 4 arises from

L
(4)
3 = ǫµ1µ2αβǫν1ν2αβ∂µ1π∂ν1π∂µ1∂ν2π

= −2 (ηµ1ν1ηµ2ν2 − ηµ1ν2ηµ2ν1) ∂µ1π∂ν1π∂µ1∂ν2π

∼= −3

2
�π(∂π)2 . (1.38)

The use of the Levi-Civita symbol helps to illuminate many of the interesting properties

of galileons. The key is to note that whenever two µi or two νi derivatives act on a π the

term vanishes due to the µi ↔ µj and νi ↔ νj anti-symmetry of the ǫ tensors.

First, their invariance under (1.36) is easily seen. Under the shift we have δ∂µπ = bµ

and δ∂µ∂νπ and therefore L
(d)
n+1 changes by a total derivative

δL
(d)
n+1 = 2ǫµ1...µnαn+1...αdǫν1...νnαn+1...αd

bµ1∂ν1π∂µ2∂ν2π . . . ∂µn∂νnπ

= 2∂ν1
[
ǫµ1...µnαn+1...αdǫν1...νnαn+1...αd

bµ1π∂µ2∂ν2π . . . ∂µn∂νnπ
]
. (1.39)
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The property that the equations of motion stemming from (1.37) are second order also

follows rather simply. We get that E
(d)
n+1 ≡

δL
(d)
n+1

δπ is

E
(d)
n+1 = −(n+ 1)ǫµ1...µnαn+1...αdǫν1...νnαn+1...αd

∂µ1∂ν1π∂µ2∂ν2π . . . ∂µn∂νnπ

= ∂µ
[
−(n+ 1)ǫµ...µnαn+1...αdǫν1...νnαn+1...αd

∂ν1π∂µ2∂ν2π . . . ∂µn∂νnπ
]

≡ ∂µJ
µ(d)
n+1 . (1.40)

Therefore we see that the equations are second order, as claimed, and further that the

equations of motion take the form of the divergence of a current, a fact that will be useful

later.

We also note that the construction in (1.37) demonstrates the finite number of terms

in the action which fit out criteria. Namely, in d-dimensions once we try to create an

interaction with d + 2 π’s we find that we’ve run out of indices in the Levi-Civita symbol

with which to contract and so there can only be d + 1 interactions of the form (1.37). All

other interactions which obey (1.36) will be built from polynomials of ∂2+kπ, k ≥ 0 and

will inevitably lead to higher derivative equations of motion. The fact that an interaction

of the class (1.37) with n π’s will only have 2n − 2 derivatives while all other symmetric

interactions with n π’s will have at least 2n derivatives (think of a term like ∼ ∂m(∂2π)k)

is of crucial importance and lies at the core of what makes the galileons interesting.

Finally, as we are primarily interested in d = 4 we provide here explicit expressions for

the five relevant lagrangians. After many integrations by parts and an overall rescaling of

the lagrangians, they can be brought into the form [71]

L1 = −1

2
π

L2 = −1

2
(∂π)2

L3 = −1

2
(∂π)2 [Π]

L4 = −1

2
(∂π)2

(

[Π]2 −
[
Π2
])
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L5 = −1

2
(∂π)2

(

[Π]2 − 3 [Π]
[
Π2
]
+ 2

[
Π3
])

(1.41)

where the bracketed trace notation is defined in Appendix A.

1.5 Galileon Field Theory

Much of the interest in galileons is due to their attractive field-theoretic properties. The

fact that they have fewer derivatives than other terms invariant under the shift symmetry

makes it possible to find regimes in which the galileons can be consistently treated as the

only important interactions [90]. Furthermore, around sources, galileon theories exhibit the

Vainshtein screening mechanism [44, 108] at short distances from the source, potentially

allowing them to evade fifth force constraints, such as those provided by measurements

within the solar system. Finally, the galileon terms are not renormalized to any loop order

in perturbation theory [73, 82], which allows them to be treated classically for certain

purposes. We cover these properties in the following sections.

1.5.1 The Non-Renormalization Theorem

Here we review the well-known non-renormalization theorem obeyed by the galileons. As

shown in [73], there exists a beautiful diagrammatic proof of the fact that loops generated

from interactions invariant under (1.36) will only generate interactions with at least two

derivatives per external leg and which are therefore not of the form (1.37). In other words,

loops do not renormalize the interactions (1.37). We provide a sketch of the argument now.

Consider a generic 1PI diagram with n external legs which would contribute to quantum

effective action. In particular, focus on a vertex within the diagram at which m legs meet,

at least one of which is an external line. Every power of external momenta generated by

the diagram corresponds to a derivative operator in the term we are generating. If we can

demonstrate that to each external line at this generic vertex the Feynman rules associate

at least two powers of external momentum, then we have demonstrated that the term
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generated by the Feynman diagram is not of the type (1.37), as these have fewer than two

derivatives per π.

We can trivially cover the case where the vertex is generated by terms symmetric under

(1.36) but not of the form (1.37) since, as discussed, these terms will always have at least two

derivatives per π. For such vertices, the π associated to the external leg under consideration

will always have at least two derivatives acting on it and will lead to at least two powers of

the momenta along this external leg.

When the interaction is of the type (1.37), schematically denoted here by ǫǫπ(∂2π)m−1

we need to examine the situation in greater detail. Let mext of the legs at the vertex under

consideration be external legs and the remainingmint = m−mext be internal. The Feynman

rule for this vertex comes from assigning the π’s in ǫǫπ(∂2π)m−1 to the mext and mint legs in

all possible combinations. In some of these combinations, all of the π’s with two derivatives

will be assigned to external legs, which we denote by ǫǫπint(∂
2πint)

mint−1(∂2πext)
mext , and

therefore this contraction associates two powers of external momentum to each external

line.

The slightly more subtle case is when a bare π in the interaction is assigned to the

external leg, denoted as ǫǫπext(∂
2πext)

mext−1(∂2πint)
mint . At first glance, it might appear

that there are then only 2(mext − 1) powers of external momenta generated in this case,

corresponding to the (∂2πext)
mext−1 factor, but this is not the case. Due to the ǫǫ tensor

structure of (1.37), the final (∂2πint)
mint can be written as a double total derivative, i.e.

ǫǫπext(∂
2πext)

mext−1
[
∂2
(
πint(∂

2πint)
mint−2

)]
. Therefore, each of the two outside derivatives

in ∂2
(
πint(∂

2πint)
mint−2

)
will hit every factor of πint once and will contribute a factor of

the sum of all momenta associated to internal lines, schematically ∂µ →
∑mint

i=1 piµ. Since

momenta is conserved at each vertex we can trade the sum of all internal momenta for the

sum of all external momenta and this brings the total up to 2mext powers of the external

momenta for this contraction. Therefore, we see that only higher order interactions of the
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schematic form ∼ ∂k(∂2π)j are generated and no terms of the form (1.37), proving the

theorem.

1.5.2 Coupling to Massive Sources

1.5.2.1 The Vainshtein Mechanism: Generalities

One of the most interesting facets of galileon theories is that they provide an explicit, natural

realization of the Vainshtein screening mechanism [108] which allows the galileon field to

mediate a force between a massive object and a far away target, but not a nearby one.

The effect was first proposed as a possible solution to the vDVZ discontinuity of massive

gravity [110, 121] in which GR is not recovered as the limit m → 0 is taken in Fierz-Pauli

massive gravity. The assumption is that the continuity could be restored if there existed a

host of non-linear interactions which also became important in this m→ 0 limit and which

would restore the expected behavior. The effect fundamentally follows from the non-linear

interactions and the general idea is well captured by the following sketch.

Consider a canonical scalar field φ which couples to the trace of the stress tensor and

has some set of complicated, derivative self-interactions, V (φ, ∂φ),

L = −1

2
(∂φ)2 + V (φ, ∂φ) +

φT

M
. (1.42)

Taking the source of T to be a point mass of mass m, at far distances we assume that

V (φ, ∂φ) can be neglected and φ acquires the familiar profile φ0 ∼ m
M

1
r , leading to a 1/r

potential for far away test particles. The Vainshtein screening mechanism relies on the

assumption that there exists a distance rnl below which V (φ, ∂φ) becomes large and can

no longer be ignored. If we expand about the background profile for φ in this regime, say

φ = φ0 + δφ, then the quadratic lagrangian for fluctuations takes on the form

L =
1

2
(∂δφ)2 − 1

2
Zµν(φ0, ∂φ0)∂µδφ∂νδφ +

δφT

M
, (1.43)
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for some function Zµν(φ0, ∂φ0) which depends on the background profile. Making the sim-

plifying assumption that Zµν takes on the form Zµν = Zηµν , we find that if the interactions

are such that Z ≫ 1 then in the region at hand the coupling of δφ to matter is highly sup-

pressed. In order to see this explicitly, we canonically normalize the quadratic lagrangian

by letting δφ ≡ δφ̂/
√
1 + Z ≈ δφ̂/

√
Z we get

L ≈ −1

2
(∂δφ̂)2 +

δφ̂T√
ZM

. (1.44)

Therefore, in the region r ≫ rnl the coupling between fluctuations of the field and matter

is 1
M , but in the non-linear region r ≪ rnl they are coupled with strength 1

M
√
Z

≪ 1
M , by

assumption, and so the force mediated by φ is highly screened for r ≪ rnl.

The Vainshtein mechanism is a lovely concept, but it turns out to be quite hard to

realize the idea in practice without running into major obstacles. First, it is difficult to

generate a model which displays the non-linear effect in a regime where one can consistently

neglect quantum corrections. Typically, quantum effects become important at the same

distance scale (or at even larger distances) than classical non-linear effects do and hence

one cannot calculate with control in the Vainshtein region. Next, even if quantum effects

are ignored, the non-linear nature of the mechanism makes explicit, analytic calculations

difficult. Almost the only non-trivial case that can be solved in an analytic manner is that

of a single, pointlike mass source. Finally, since we are relying on non-linear, derivative

operators there is also the constant worry that such terms will lead to ghost instability or

superluminal propagation.

1.5.2.2 The Vainshtein Mechanisms: Specifics

In this section we will explore in greater detail various attempts to realize the Vainshtein

mechanism by using scalar fields. We will see the various difficulties which are inherent

in the construction of such theories. These failures will provide a good illustration of why
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galileon theories are special and ideally suited for realizations of Vainshtein screening. Many

of the concepts and ideas in what follow draw from the arguments of [6, 71].

Ideal Non-linearities: General Relativity

Before analyzing scalar models, it is useful to first consider general relativity (with zero

cosmological constant) as it shares many features which are analogous to the ones we wish to

capture in our own model. Namely, at long distances from a source GR is well approximated

by a linear model which takes on the schematic form

L ∼ (∂h)2 +
hT

Mpl
. (1.45)

The field h stands for the metric perturbation about flat space and we ignore all indices

here as we will only require general ideas. Far away from the source, taken to be pointlike

and of mass M ≫ Mpl, the gravitational potential takes on the familiar Newtonian form

which we approximate as h ∼ M
Mpl

1
r . However, as we approach the Schwarzschild radius

of the source, non-linear GR effects become important, of course. Due to diffeomorphism

symmetry, the gravitational self-interactions are packaged into the Ricci scalar R[g] and the

full non-linear lagrangian takes on the rough form

L ∼ (∂h)2 +
∑

i

ci

(
h

Mpl

)i

(∂h)2 +
hT

Mpl
, (1.46)

with ci ∼ O(1). We can estimate where the non-linear terms become important by evalu-

ating the higher order terms in (1.46) on the background h ∼ M
Mpl

1
r and determining when

they become the same size as the quadratic term. Inspection shows that this occurs when
h
Mpl

∼ O(1) and hence the problem is fully non-linear around rnl ∼ M
M2

pl
which is nothing

but the usual Schwarzschild radius. Therefore, this simple estimate accurately determines

when the non-linear corrections need to be taken into account.

One may worry that quantum corrections to (1.46) could affect the conclusion, but it is

simple enough to demonstrate that this is not the case. In effect, the potential problem is
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that in writing down (1.46) we are ignoring a host of unknown operators which are expected

to arise from quantum effects and a priori these operators could dominate the physics of

the regime under consideration. We need to justify our implicit assumption that these

interactions are negligible.

Quantum generated terms are still diffeomorphism invariant and hence also come pack-

aged in the schematic form ∼ ∇mRn. In terms of h, this means that a typical correction to

(1.46) will be of the form

∼ ∂mhl(∂h)2n/M l+m+4n−4
pl , n > 0 .

It is of crucial importance that this term has more derivatives than the Ricci scalar does.

Comparing this to the quadratic term (∂h)2, an analysis similar to that of the previous

paragraph demonstrates that this non-linear term becomes important at the distance scale

rq ∼M−1
pl

(
M

Mpl

) 2n+m−2
4n+l+m−4

. (1.47)

This should be concerning since in the m→ ∞ limit rq approaches its maximum which

is the size of the Schwarzschild radius, limm→∞ rq ∼ M
M2

pl
and so it naively would appear

that this is the distance scale where quantum effects are becoming important. If indeed the

quantum generated terms turned out to be just as important as the Ricci scalar term at

this distance, then we could not trust the usual Schwarzschild metric solution as we would

be dropping terms which should not be neglected. Of course, this does not turn out to be

the case.

Since both the non-linear Ricci interactions and the quantum corrections are naively

becoming important at the same scale, the next level of analysis is to compare the two

directly. The expansion of Ricci entails an infinite series in h with only two derivatives

appearing in each term, i.e. ∼ ∂2hm/Mm−2
pl , while the quantum corrections also have arbi-

trary powers of h but involve strictly more factors of derivatives, i.e. ∼ ∂2+khm/Mm+k−2
pl .

Therefore the quantum corrections are suppressed with respect to the non-linear Ricci term
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by factors of ∂
Mpl

and hence we can ignore them until the distance scale rpl ∼M−1
pl . Said an-

other way, gravitational quantum corrections only becomes important at the Planck scale.

In summary, both the non-linear classical interaction and the quantum correction start to

dominate over the quadratic term around rnl, but the non-linear classical terms dominate

the quantum corrections until rpl ≪ rnl and thus we are justified in ignoring the infinite

number of quantum generated operators as long as we are only interested in distance scales

larger than the Planck length.

Scalar Vainshtein Screening: Initial Failures

Now we attempt to create a realization of Vainshtein screening using scalar fields. The

goals are similar to those we had for GR. That is, we wish to construct a theory of φ in

which the physics is linear at distances larger than a non-linear distance scale rnl (rnl is

alternatively known as the Vainshtein scale), dominated by non-linear classical effects in

a regime rq ≪ r ≪ rnl and only dominated by quantum effects for r ≪ rq, with a wide

separation between rq and rnl.

Start with the simplest possible attempt, a scalar field φ with cubic interaction φ(∂φ)2/Λ

which couples to the trace of matter with gravitational strength,

L = −1

2
(∂φ)2 +

λ

Λ
φ(∂φ)2 +

φT

Mpl
, (1.48)

where λ is an O(1) parameter. We follow our analysis of GR and find that when we

evaluate the cubic term on the long distance background φ ∼ M
Mpl

1
r this interaction becomes

comparable to the quadratic term at a distance rnl ∼ Λ−1 M
Mpl

. In the asymptotic regimes,

the field behaves as

φ ∼







M
Mpl

1
r r ≫ rnl

M
Mpl

1
r

√
r
rnl

r ≪ rnl
(1.49)

and so if this result holds, then the potential felt by a test particle in the Vainshtein region

r ≪ rnl is suppressed relative to the usual r−1 potential by a factor of roughly
√

r/rnl ≪ 1.

34



1.5 Galileon Field Theory

However, the conclusion is found to be inaccurate once quantum corrections are taken

into account. The scalar sector of (1.48) has no symmetries and the action should be sup-

plemented by an infinite tower of unknown quantum corrections whose form is unrestricted.

A generated interaction of the form ∼ ∂mφn/Λm+n−4, n > 2 becomes comparable to the

quadratic term at the scale r
(n,m)
q ∼ Λ−1

(
M
Mpl

) n−2
m+n−2

and therefore terms with m = 0 also

become important at the distance r
(n,0)
q ∼ Λ−1 M

Mpl
∼ rnl. In particular, one expects a gen-

erated term of the form ∼ Λφ3 and comparing this to the cubic term in (1.48) we see that

the quantum effect dominates by a factor of Λ2/∂2 ≫ 1 (for r ≫ λ−1). Therefore, in the

non-linear region r ≪ rnl, unknown quantum corrections dominate the physics, rendering

the classical conclusion (1.49) invalid.

Since the main problem of the theory (1.48) was that quantum corrections produced

interactions with fewer derivatives per φ, relative to the original cubic interaction, a natural

next step is to consider a theory whose classical interactions are solely built from ∂φ. The

scalar sector of this theory will respect a φ→ φ+ c, c = constant symmetry which ensures

that quantum corrections are also symmetric under this shift and therefore built from ∂nφ,

n > 0 and are thus not expected to dominate with the same Λ/∂ enhancement that was

found in (1.48).

In order to be specific, consider the theory

L = −1

2
(∂φ)2 +

λ

Λ4
(∂φ)4 +

φT

Mpl
. (1.50)

A repetition of our previous analyses demonstrates that the theory becomes non-linear at

rnl ∼ Λ−1
√

M
Mpl

and a generic quantum generated interaction of the form ∂m(∂φ)n/Λ2n+m−4,

n > 2 becomes comparable to the quadratic term at the distance scale

r(m,n)q ∼ Λ−1 ×
(
M

Mpl

) n−2
m+2n−4

. (1.51)

As n → ∞, the quantum scale asymptotes to the classical scale, r
(m,n)
q ∼ rnl and we see

that an infinite number of operators are becoming important at rnl. We therefore need
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to compare the size of the classical and quantum interactions in this limit. In particular,

examining quantum corrections of the form (∂φ)n/Λ2n−4, we see that there are many im-

portant quantum operators which will not generically be enhanced or suppressed relative

to the classical quartic term in (1.50) and thus must be taken into account, nullifying any

conclusions reached with the purely classical lagrangian (1.50).

Ideally, one could add interactions to (1.50) which have fewer than one derivative per

field and still obey the shift symmetry φ→ φ+ c. Such terms would be the analogue of the

Ricci scalar in GR and if this were possible, then these classical terms would dominate over

quantum corrections by factors of Λ/∂ and improve the validity of their use. Unfortunately,

such terms do not exist; there are no interactions with fewer derivatives per field which are

also symmetric under the shift symmetry. Adding any terms with fewer derivatives will

generically lead us back to the scenario of (1.48) and the problems found within. However,

as we will see in the next section, the desired story will hold true when we consider a theory

with even more derivatives and the galileons will play the special role of terms which respect

all symmetries and have fewer derivatives per field than generic interactions do.

Scalar Vainshtein Screening: A Galileon Improvement

We will find that things are quite different when we consider theories which interact via

terms with more than one derivative per field. We motivate such theories by positing a

shift symmetry φ→ φ+ c+ bµx
µ, with c, bµ constants. Naively, the only interactions which

obey the symmetry will be of the form ∼ ∂m(∂2φ)n/Λ3n+m−4, but a theory constructed

from such interactions will suffer from similar problems to (1.48) and (1.50). To be precise,

if we consider the theory5

L = −1

2
(∂φ)2 +

λ

Λ5
(∂2φ)3 +

φT

Mpl
. (1.52)

5This theory naturally arises in the Stückelberg analysis of Fierz-Pauli massive gravity, see Sec. 1.6.2, as

was masterfully demonstrated in [6]. As mentioned, much of our analysis follows their lead.
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The derived Vainshtein scale is rnl ∼ Λ−1
(
M
Mpl

)1/5
and a quantum generated interac-

tion of the form ∼ ∂m(∂2φ)n/Λ3n+m−4 will be become important at the scale r
(m,n)
q ∼

Λ−1
(
M
Mpl

) n−2
3n+m−4

. Here we see that the problem is even worse than it was in (1.48) or

(1.50). As n → ∞ we find that rq →∼ Λ−1
(
M
Mp

)1/3
≫ rnl and hence there exist quantum

corrections to (1.52) which dominate the physics long before the classical cubic interaction

becomes relevant.

This problem was already presaged by the higher derivative interactions [71]. In partic-

ular, if we were to expand about the classical background φ0 ∼ M
Mpl

1
r then the interaction

term in (1.52) would lead to a higher derivative kinetic term for the fluctuation δφ = φ−φ0
of the form ∼ ∂2φ0

Λ5 (∂2δφ)2, corresponding to a ghost of mass m2
ghost ∼ Λ5

∂2φ0
. Treating (1.52)

as an effective field theory with cutoff Λ, the theory is only then valid when mghost > Λ.

One then finds that at distances shorter than rghost ∼ Λ−1
(
M
Mpl

)1/3
the ghost mass drops

below the cutoff and the theory can no longer be trusted.

Galileon interactions now come to the rescue. Rather than solely building interactions

from ∂2φ we have the five galileon galileon interactions (1.41) at our disposal. In particular,

consider the cubic theory

L = −1

2
(∂φ)2 +

λ

Λ3
�φ(∂φ)2 +

φT

Mpl
. (1.53)

Now the classical non-linear scale is found to be rnl ∼ Λ−1
(
M
Mpl

)1/3
. Due to the non-

renormalization theorem in Sec.1.5.1, we know that generic quantum corrections are still of

the form generated from (1.52), i.e. ∼ ∂m(∂2φ)n/Λ3n+m−4, and so the quantum distance

scale is still at most rq ∼ Λ−1
(
M
Mpl

)1/3
. However the crucial point is that the cubic galileon

has fewer derivatives per field and hence dominates over a generic quantum correction

due to the factor of Λ/∂. Much like general relativity then, a classical theory of galileons

(1.52) is linear above the scale rnl ∼ Λ−1
(
M
Mpl

)1/3
, dominated by classical non-linearities
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in the distance range Λ−1 . r . Λ−1
(
M
Mpl

)1/3
and swamped by quantum corrections

only below r . Λ−1. Qualitatively similar results hold when any of the other galileon

interactions are included in the classical action. Therefore, we see that galileons are special

in that they provide the simplest example of a classical Vainshtein mechanism whose classical

interactions will also be generically enhanced in size relative to quantum corrections.

There is no need to consider extending this program to even higher derivative mecha-

nisms. That is, the next natural step would be to consider scalar field theories symmetric

under, φ→ φ+ c+ bµx
µ+ aµνx

µxν , but such theories will built from even higher derivative

order building blocks and will inevitably be ghostly. Therefore, the galileons represent the

unique, natural way to implement the Vainshtein mechanism using scalars in a Lorentz

invariant, ghost-free theory.

While in the case of galileons we have found a similar conclusion to the one we saw in GR,

there is one important difference. Because the classical GR action contained an infinite series

of terms ∼ hn(∂h)2/Mn
pl, we were always able to compare a quantum generated interaction

with, say, m powers of h to a classical interaction which also employs m powers of h.

Then for every quantum interaction, there was a corresponding classical interaction which

dominated by factors of Λ/∂. Because there are only a finite number of galileon interactions,

d + 1 in d-dimensions, the analogue does not hold. Instead, in say the example of (1.52),

one will have to compare a classical interaction with 3 powers of the field to quantum terms

with n powers of φ. As n increases, the domination of the cubic term diminishes and to

retain theoretic control optimistic assumptions regarding the UV completion of the theory

[90] must be made. Nevertheless, the galileon represent a concrete improvement over generic

attempts to construct a viable Vainshtein screening mechanism.

1.5.2.3 The Cubic Galileon: Cutoffs, Scales and Superluminality

In this section, we further explore the details of the cubic galileon model (1.52). Though

this is a truncation of the most general galileon model it will already capture the relevant
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effects we wish to demonstrate. Restoring the proper form of all index contractions and

using the canonical galileon field π(x), we study the lagrangian

L = −1

2
(∂π)2 − λ

Λ3
�π(∂π)2 +

πT

Mpl
(1.54)

with T = −Mδ3(~r) = −M~∇ · r̂
4πr2

. Because the galileon equations of motion take the form

of a divergence equation (1.40) the system defined by (1.54) admits a first integral and

becomes

π′

r
+

4λ

Λ3

(
π′

r

)2

=
M

Mpl

1

4πr3
. (1.55)

Because the right hand side is strictly positive, the left hand must be, too, which leads to

the requirement λ > 0. An examination of (1.54) shows that this is clearly the appropriate

sign for obtaining a Vainshtein mechanism as this choice is needed for the cubic term to

combine correctly with the quadratic kinetic term when expanded about an r-dependent

solution. In the asymptotic regimes, the π profile becomes

π(r) =







− M
Mpl

1
4πr r ≫ rnl

− 1√
64πλ

M
Mpl

1
r ×

(
r
rnl

)3/2
r ≪ rnl

(1.56)

where rnl ≡ Λ−1 (M/Mpl)
1/3 and we once again see the characteristic r/rnl suppression in

the Vainshtein regime.

Exploring perturbations about the non-trivial π(r) configuration demonstrates that with

λ > 0 the system (1.54) is free from ghost and gradient instabilities, but also reveals a

problem with radial modes: they propagate superluminally. Specifically, the speed of sound

at large distances from the source behaves as

c2r ≈ 1 +
8λ

Λ3

π′

r
+ O

((
π′

r

)2
)

(1.57)

which is superluminal given our requirement λ > 0 and observation π′/r > 0.
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The presence of superluminalities is generic. As demonstrated in [91], a general galileon

theory coupled to a pointlike mass will exhibit the same type of superluminal perturbations.

More precisely, requiring the existence of stable, spherical solutions one finds that angular

excitations remain subluminal, but far from the source these two requirements force radial

perturbations to become superluminal. Another demonstration of this general fact will be

seen in Sec.3.5 for the case of a closely related model. Whether the presence of superlumi-

nality is truly a physical inconsistency of galileon theories is still a matter of active research

[18, 32, 38].

Finally, in order to get a sense of the scales involved and levels of Vainshtein suppression,

we consider the effect of the cubic theory applied to the solar system. The typical natural

scale for Λ is Λ−1 ∼ 1000km, or equivalently Λ ∼ 10−13eV, as derived from requiring that

the DGP model only modify gravity on distances comparable to the Hubble length, i.e.

rc =
M2

pl

M3
5
∼ H−1. Then considering the sun to be the source of the galileon field, one finds

that the corresponding Vainshtein radius below which the galileon field is screened is r⊙nl ∼
1000km ×

(
M⊙

Mpl

)

∼ 200pc while the size of the solar system is only rSolar System ∼ 10−4pc

and hence the Earth lies well within the screened region. As seen from (1.56), within the

Vainshtein regime the fifth force potential is suppressed by a factor of ∼ (r/rnl)
3/2 which

comes out to ∼ 10−12 evaluated at the Earth’s orbital radius and hence the galileon force

on the Earth due to the Sun would be hugely suppressed.

1.6 Galileons And Other Modifications of Gravity

Galileons appear in other, non-braneworld modifications of gravity and we cover two such

scenarios here.
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1.6.1 Kinetically Mixed Galileons

In the original work which defined, classified and generalized galileons [91], the authors

divorced the scalar from its higher dimensional origins and instead considered a scenario

where π is kinetically mixed with gravity via a πR coupling. We assume that in this frame π

has self interactions, but no direct coupling to the matter lagrangian, LM . We can return to

Einstein frame by performing a field redefinition (more specifically a Weyl transformation)

on the metric perturbation hµν = gµν − ηµν via hµν ≡ ĥµν + 2πηµν . To quadratic order in

ĥ, the redefined action takes on the form [91]

L =
M2

pl

2

√

−ĝR̂+
1

2
ĥµνT

µν + Lπ + πT µµ , (1.58)

where Lπ contains the d = 4 galileon interactions of (1.41) and Tµν is the stress tensor

derived only from LM .

A key feature of this model is that it can lead to an accelerating universe even if LM = 0.

The idea is that even no matter the π self-interactions can support non-trivial π(x) profiles

and these generate a non-trivial hµν since hµν = ĥµν + 2π(x)ηµν . In particular, one can

write the 4D de Sitter metric as [91]

ds2 =
(
1−H2xµx

µ
)
ηµνdx

µdxν (1.59)

and hence if Lπ can generate a π(x) ∝ xµx
µ configuration then this modification of gravity

can lead to self-acceleration. Indeed this is the case for appropriate choices of Lπ. Further,

this profile is Lorentz invariant and it can be shown that the equations of motion for per-

turbations about the profile also obey galileon equations of motion and hence perturbations

on top of the self-accelerating solution enjoy all the benefits and suffer the same pathologies

of galileons that we encountered in Sec.1.5.2.
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1.6.2 Massive Gravity

A perhaps more natural setting in which galileons play a prominent role is in dRGT theory

of massive gravity [36, 37]. First, we briefly describe the quadratic Fierz-Pauli theory and

its failings before covering how dRGT heals the issues of Fierz-Pauli and the manner in

which galileon interactions arise. Both [6] and [71] do a masterful job of illuminating the

physics behind massive gravity and we follow both references extensively.

1.6.2.1 Fierz-Pauli Massive Gravity

Consider building a simple quadratic theory of massive gravity. In terms of the metric

perturbation hµν = gµν − ηµν , quadratic general relativity takes on the form

S =

∫

d4x
1

2
hµνE

µν,αβhαβ + hµνT
µν ≡

∫

d4xLGR(hµν) + hµνT
µν (1.60)

where Eµν,αβ is the quadratic differential operator which stems from the expanding out

the Ricci scalar whose exact form we will not need. If we were to attempt to add a mass

term to (1.60), we would add it in some combination ah2 + bhµνh
µν where h = hµµ and all

indices are raised and lowered with ηµν . However, a priori there is no obvious reasoning for

choosing particular values of a or b.

Fierz and Pauli first demonstrated that the only stable combination combination is

∝ h2 −h2µν [58] and [6] presented a wonderfully clear explanation for why this is the proper

choice and we reproduce the argument here. The GR lagrangian (1.60) enjoys linearized

diffeomorphism symmetry, hµν → hµν + ∂(µξν), but any mass term Lm(hµν) we add will

generically ruin this. A useful trick is to reintroduce diffeomorphism invariance to the

massive theory by introducing Stückelbeg fields which restore gauge invariance at the cost

of introducing more fields into the theory. Though more fields are added, the total number of

degrees of freedom are unchanged as the restored gauge invariance simultaneously removes

degrees of freedom.
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One patterns the introduction of Stückelberg fields after the gauge transformation. That

is, everywhere in LGR(hµν)+Lm(hµν) we make the replacement hµν → hµν +∂(µAν). Since

LGR descends from a curvature invariant, the factors of Aµ in LGR(hµν + ∂(µAν)) will

disappear, but Lm(hµν + ∂(µAν)) will depend on Aµ. The theory will now contain two

different fields hµν and Aµ, but also gains the gauge symmetry

hµν → hµν + ∂(µξν) , Aµ → Aµ − ξµ . (1.61)

Similarly, it is fruitful to make the replacement Aµ → Aµ+∂µπ. A new field π(x) is added,

but again we gain a U(1) gauge invariance

hµν → hµν + ∂µ∂νφ , Aµ → Aµ − ∂µφ , π → π + φ . (1.62)

We now explore the physics contained within Lm(hµν+∂(µAν)+∂µ∂νπ). The physics in the

Stückelberg language is equivalent to the physics we started with and so any pathologies of

the Stückelberged theory also afflict the original theory LGR(hµν) + Lm(hµν).

In particular, consider our generic mass term from before, Lm ≡ ah2 + bh2µν . Making

the Stückelberg replacement, we find that Lm contains

Lm ⊃ ah�π + bhµν∂
µ∂νπ + a(�π)2 + b∂µ∂νπ∂

µ∂νπ . (1.63)

Integrating by parts, we find that Lm ⊃ (a+ b)(�π)2 which corresponds to a ghost in the

theory of mass m2
ghost ∼ 1

(a+b)2 . Removing the ghost entirely corresponds to taking a = −b
and we see that this enforces the mass term to be of the Fierz-Pauli form Lm ∝ h2 − h2µν .

In order to determine the overall sign, we need to look at the vectors. Focusing on the

quadratic vector terms that arise from the Stückelberg replacement in Lm = a(h2 − h2µν),

we get

Lm ⊃ a
(
(∂µA

µ)2 − (∂µAν)
2
)
= −1

2
aF 2

µν (1.64)
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where Fµν = ∂µAν − ∂νAµ is the usual field strength tensor. In order to avoid ghost

instabilities for the vectors we then must have a > 0. Finally, the dispersion relation for

hµν determines that we must normalize to a = 1
2M

2
plm

2 if the graviton is to have mass m.

Therefore, the basic requirement that our theory be free from ghosts determines that the

mass term take on the Fierz-Pauli form Lm = 1
2M

2
plm

2(h2 − hµν)
2.

We’ve figured out the correct mass term, but additionally (1.63) exhibits kinetic mix-

ing, which ought be removed. Performing integrations by parts we have that Lm ⊃
M2

plm
2

2 (�h− ∂µ∂νh
µν) π and we can diagonalize by defining hµν = h′µν +

m2

4 πηµν (a Weyl

rescaling). In particular, we have the relation [71]

LGR(hµν) ∼= LGR(h
′
µν)−

M2
plm

2

2
π
(
�h′ − ∂µ∂νh

′µν)+
3

16
M2

plm
4(∂π)2 . (1.65)

and so in terms of h′µν and π we end up with

L ⊃ LGR(h
′
µν)−

3

16
M2

plm
4(∂π)2 +

m2

4
πT µµ . (1.66)

Importantly, the field redefinition has generated a coupling between the scalar and the trace

of matter. The relative powers of m appearing in the kinetic term for π and in π’s coupling

to matter are what underly the vDVZ discontinuity in which the limitm→ 0 fails to recover

general relativity. To be precise, when we canonically normalize by sending π ∼ π̂/Mplm
2

we see that m drops out entirely, i.e. schematically L ∼ −(∂π̂)2 + π̂T/Mpl and so the

coupling of the scalar to matter persists even as m→ 0, which is the root of the problem.

Finally we can consider higher order interactions that arise from the Fierz-Pauli mass

term. Before we were working with linearized diffeomorphisms to make the Stückelberg

replacement, but in order to find the interesting interactions arising from the mass term

we need to use the full diffeomorphisms. That is, we insert the vector Stückelbergs via

gµν → ∂µ(x
α + Aα/2)∂ν(x

β + Aβ/2)gµν and then insert the scalar via Aµ → Aµ + ∂µπ, as

before. For our purposes we are primarily interested in the scalar sector and focusing on

44



1.6 Galileons And Other Modifications of Gravity

these, the procedure amounts to making the replacement

hµν → hµν + ∂µ∂νπ +
1

4
∂µ∂απ∂

α∂νπ (1.67)

everywhere in the Fierz-Pauli mass term.

Given the discussions in Sec. 1.5.2, the problems now become clear. Schematically, the

Fierz-Pauli term gives rise to π self couplings of the form

Lm ∼M2
plm

2
[
(∂2π)3 + (∂2π)4

]
(1.68)

which when canonically normalized as π̂ ∼Mplm
2π read

Lm ∼ 1

Λ5
5

(∂2π)3 +
1

Λ8
4

(∂2π)4 (1.69)

where we define the set of scales Λn ≡
(
Mplm

n−1
)1/n

which are monotonically decreasing

with n. For applications to our current universe, the graviton mass should be of order the

Hubble scale, m ∼ H ∼ 10−42GeV, which would make Λ5 ∼ 10−30Gev and Λ3 ∼ 10−22GeV.

Note that Λ3 is the same order as the strong coupling scale that arises in DGP (1.32).

We then recognize that we are back to the situation found in Sec. 1.5.2 where we saw

that classically interactions of the form (1.69) appear to provide a realization of the Vain-

shtein mechanism, which in this context would provide a potential solution for the vDVZ

discontinuity, but in reality the calculation is swamped by unknown quantum corrections

and we cannot actually calculate within the non-linear regime with any control.

1.6.2.2 Galileons and dRGT

Since the fatal flaw we found in the Fierz-Pauli theory was the presence of scalar self-

interactions built from ∂2π, we can attempt to do the natural thing and cure the theory by

removing these terms. Specifically, we can add higher order interactions of hµν in specific

combinations such that when we Stückelberg, all of the pure scalar self-interactions become

total derivatives and can be dropped.
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de Rham, Gabadadze and Tolley were the first to successfully carry out this program

and demonstrated that the infinite number of hµν interactions required can further be nicely

resummed into a closed form [36, 37]. The construction itself is quite interesting, but for

the purposes of this brief survey of the uses of galileons we only need the schematic picture

of what the resulting lagrangian looks like. In terms of canonically normalized fields ĥµν

and π̂, the surviving relevant, lowest order terms in the dRGT lagrangian are schematically

[71]

L ⊃ 1

2
ĥµνE

µν,αβ ĥαβ + ĥµν
[

X(1)
µν (π̂) +

1

Λ3
3

X(2)
µν (π̂) +

1

Λ6
3

X(3)
µν (π̂)

]

+ hµνT
µν (1.70)

where the X
(i)
µν (π̂) are of the form

X(1)
µν (π̂) ∼ ǫµ

α1ρσǫν
β1
ρσ∂α1∂β1 π̂

X(2)
µν (π̂) ∼ ǫµ

α1α2ρǫν
β1β2

ρ∂α1∂β1π̂∂α2∂β2π̂

X(3)
µν (π̂) ∼ ǫµ

α1α2α3ǫν
β1β2β3∂α1∂β1π̂∂α2∂β2π̂∂α3∂β3π̂ . (1.71)

Note that the smallest strong coupling scale is now Λ3 instead of Λ5; the dRGT construction

removes interactions which have strong coupling scale Λn with n > 3, thereby raising the

cutoff of the theory. The X
(i)
µν (π̂) are conserved in each index, i.e. ∂µX

(i)
µν (π̂) = 0 and

∂νX
(i)
µν (π̂) = 0, and more importantly they are related to the galileon lagrangians (1.37)

L
(4)
i+1(π̂) by L

(4)
i+1(π̂) ∝ π̂ηµνX

(i)
µν (π̂).

The lagrangian (1.70) has not yet had its kinetic mixing removed and hence when we

send ĥµν → h′µν + π̂ηµν the dRGT action will contain, among other interactions, a π̂T

coupling and galileon self-interactions. As discussed in Sec. 1.5.2, the galileon interactions

represent the terms necessary to have regimes in which classical non-linearities which are

important and also not swamped by quantum corrections and hence represent the natural

candidate for solving the problem of the vDVZ discontinuity. The presence of galileon

interactions in massive gravity could potentially have been expected. A massive graviton
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1.7 Generalized Galileons

has five degrees of freedom, one of which corresponds to the longitudinal, scalar mode

whose associated force must be screened in the regime close to massive sources and for this

screening mechanism to be healthy and reliable, it must use the galileons, as seen in Sec.

1.5.2.

1.7 Generalized Galileons

The development of the original galileons inspired a myriad of generalizations. Each gener-

alization is interesting in its own right and we briefly cover some of the models here.

1.7.1 Multi-Galileon Theories

A natural extension to the galileons is the inclusion of multiple galileon fields. In particular,

it’s possible to construct SO(N) symmetric multi-galileon theories, where the fields πI each

have the shift symmetry (1.36) and also rotate in the fundamental representation of an

internal SO(N) [73, 96]. In this case, in d dimensions there are d/2 possible galileon terms

if d is even, and (d + 1)/2 if d is odd and the terms only contain an even number of πI ’s

(thus, there is no tadpole). These are obtained by simply contracting indices with δIJ ,

Ln ∼ δI1J1δI2J2 · · · δIn/2Jn/2
ηµ1ν1µ2ν2···µn−1νn−1 (1.72)

×
(
πI1∂µ1∂ν1π

J1∂µ2∂ν2π
I2∂µ3∂ν3π

J2 · · · ∂µn−2∂νn−2π
In/2∂µn−1∂νn−1π

Jn/2
)
. (1.73)

In Sec.6.8 we will explore these theories from an algebraic perspective and demonstrate the

uniqueness of (1.73).

1.7.2 Conformal Galileons

The original galileons non-linearly realize a version of Galilean symmetry and a natural

extension is to develop theories which non-linearly realize other symmetry groups. One

such possibility is to non-linearly realize the conformal group, SO(3, 2). The relevant theory,
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1. INTRODUCTION

known as the conformal galileons [91], can be built from the effective metric e2πηµν and its

derived curvature invariants, for instance
√−g = e4π or

√−gR ∼= 6e2π(∂π)2. Any theory

thus constructed will enjoy the non-linear symmetries [91]

π(xµ) → π(λxµ) + lnλ , π(xµ) → π
(
xµ + bµx2 − 2bνx

νxµ
)
− 2bνx

ν . (1.74)

An interesting facet of d = 4 is that there is only a single independent interaction

stemming from terms quadratic in the Riemann curvature. That is after, integrating by

parts, the interactions generated by
√−gR2,

√−gR2
µν and

√−gR2
µνρσ with g = e2πη are all

proportional to one another. In generic dimensions, two linearly independent combinations

can be formed from the quadratic curvatures, but the presence of the d = 4 Gauss-Bonnet

term forces one of these to be a total derivative only for this precise dimension. Working in

d dimensions and taking a d → 4 limit at the end, [91] demonstrated that it is possible to

recover a form of the lost, independent interaction ∼ (∂π)4 + 2(∂π)2�π which transforms

by a total derivative under (1.74). In Sec.6.11 we will provide an algebraic analysis of the

conformal galileons and discuss in what sense this additional d = 4 interaction is special.

1.7.3 DBI Galileons

A different symmetry pattern that can be non-linearly realized by scalar fields is simply the

5D Poincaré group, ISO(4, 1). As the galileons non-linearly realize a Galilean group, the

generalization to ISO(4, 1) can be viewed a relativistic extension. First derived in [39], the

“DBI galileon” π(x) non-linearly realizes the symmetries

π(x) → π(x) + vνx
ν + π(x)vν∂νπ(x) (1.75)

and, similar to the case of the conformal galileon, its interactions are derived from the

effective metric ηµν + ∂µπ(x)∂νπ(x) ≡ gµν and derived volume elements and curvatures, for

instance
√−g =

√

1 + (∂π)2.
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1.7 Generalized Galileons

However, different from the case of the conformal galileon, gµν has a natural interpre-

tation as the metric induced on a Minkowski 3-brane living in an ambient 5D Minkowski

spacetime. Given this interpretation, one can additionally use the extrinsic brane curvature

Kµν to generate actions. All actions built from {gµν ,Kµν , Rµνρσ} which lead to second

order equations of motion for π(x) were classified in [39] and were found to be in one-to-

one correspondence with the Lovelock terms and the corresponding Gibbons-Hawking-York

boundary terms. We will cover this geometric perspective in detail in Sec.3.3.1 and develop

the more general framework which encompasses all probe brane generalizations of galileons

throughout Chapter 2.

1.7.4 Covariant Galileons

A final generalization concerns the coupling of galileons to gravity. As shown in [42], the

minimal coupling of galileons via ∂ → ∇ introduces the unwelcome feature of ghosts. Specif-

ically, in d = 4 the equations of motion for the fourth and fifth order galileon interactions

leads to derivatives of the Riemann tensor and hence generate exactly the type of higher

order equations of motion that galileons were constructed to avoid. Non-minimal couplings

can be included which precisely cancel off the offending higher order pieces, see [42] for

the full expressions, but once this is done all traces of the galileon symmetry are gone. In

Sec.3.2.2, we demonstrate how these non-minimal couplings naturally arise from geometric

constructions of galileon theories.
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Galileons and Geometry
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Chapter 2

General Construction of Probe

Brane Galileons6

2.1 Overview

In this chapter, we present the general procedure for constructing four-dimensional effective

field theories generated through the description of a 3-brane probing a higher dimensional

bulk. As we will see, the galileons and their generalizations are special cases of this con-

struction. This extends the construction of [39] to its most general form. We observe that

the symmetries inherited by scalar fields in the 4D theory descend from isometries of the

bulk metric. The precise manner in which the symmetries are realized is determined by

the choice of gauge, or foliation, against which brane fluctuations are measured. Actions

are built from curvature invariants, but only judicious choices will avoid higher derivative

equations of motion and hence ghost instabilities. We discuss the limited set of terms which

avoid this potential catastrophe. The result of the chapter is a highly general prescription

for deriving 4D actions for scalar fields which enjoy many non-linearly realized symmetries

6The work in this chapter was performed in collaboration with Kurt Hinterbichler and Mark Trodden.
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2. GENERAL CONSTRUCTION OF PROBE BRANE GALILEONS

and utilize intricate derivative interactions while carefully avoiding ghost instabilities. In

subsequent chapters, we apply the prescription first to the scenario in which the bulk space

and brane ground state are both maximally symmetric and later to the case where the bulk

is flat and brane state is a Friedmann-Robertson-Walker (FRW) spacetime.

2.2 General Brane Actions and Symmetries

We begin with a completely general case - the theory of a dynamical 3-brane moving in a

fixed but arbitrary (4+1)-dimensional background. The dynamical variables are the brane

embedding XA(x), five functions of the world-volume coordinates xµ.

The bulk has a fixed background metric GAB(X). From this and the XA, we may

construct the induced metric ḡµν(x) and the extrinsic curvature Kµν(x), via

ḡµν = eAµe
B
νGAB(X), (2.1)

Kµν = eAµe
B
ν∇AnB . (2.2)

Here eAµ = ∂XA

∂xµ are the tangent vectors to the brane, and nA is the normal vector, de-

fined uniquely (up to a sign) by the properties that it is orthogonal to the tangent vectors

eAµn
BGAB = 0, and normalized to unity nAnBGAB = 1. (Note that the extrinsic curva-

ture can be written Kµν = eBν∂µnB − eAµe
B
νΓ

C
ABnC , demonstrating that it depends only on

quantities defined directly on the brane and their tangential derivatives.)

We require the world-volume action to be gauge invariant under reparametrizations of

the brane,

δgX
A = ξµ∂µX

A , (2.3)

where ξµ(x) is the gauge parameter. This requires that the action be written as a diffeo-

morphism scalar, F , of ḡµν and Kµν as well as the covariant derivative ∇̄µ and curvature
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2.2 General Brane Actions and Symmetries

R̄αβµν constructed from ḡµν ,

S =

∫

d4x
√−ḡ F

(
ḡµν , ∇̄µ, R̄

α
βµν ,Kµν

)
. (2.4)

This action will have global symmetries only if the bulk metric has Killing symmetries.

If the bulk metric has a Killing vector KA(X), i.e. a vector satisfying the Killing equation

KC∂CGAB + ∂AK
CGCB + ∂BK

CGAC = 0 , (2.5)

then the action will have the following global symmetry under which the XA shift,

δKX
A = KA(X) . (2.6)

It is straightforward to see that the induced metric and extrinsic curvature, and hence the

action (2.4), are invariant under (2.6).

We are interested in creating non-gauge theories with global symmetries from the trans-

verse fluctuations of the brane, so we now fix all the gauge symmetry of the action. We

accomplish this by first choosing a foliation of the bulk by time-like slices. We then choose

bulk coordinates such that the foliation is given by the surfaces X5 = constant. The remain-

ing coordinates Xµ can be chosen arbitrarily and parametrize the leaves of the foliation.

The gauge we choose is

Xµ(x) = xµ, X5(x) ≡ π(x) . (2.7)

In this gauge, the world-volume coordinates of the brane are fixed to the bulk coordinates of

the foliation. We call the remaining unfixed coordinate π(x), which measures the transverse

position of the brane relative to the foliation (see Figure 2.1). This completely fixes the

gauge freedom. The resulting gauge fixed action is then an action solely for π,

S =

∫

d4x
√−ḡ F

(
ḡµν , ∇̄µ, R̄

α
βµν ,Kµν

)∣
∣
Xµ=xµ, X5=π

. (2.8)
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2. GENERAL CONSTRUCTION OF PROBE BRANE GALILEONS

Note that the only invariant data that go into constructing a brane theory are the back-

ground metric and the action. Theories with the same background metric and the same

action are isomorphic, regardless of the choice of foliation (which is merely a choice of

gauge).

Figure 2.1: The field π measures the brane position with respect to some chosen foliation.

Thin, black lines represent leaves of the foliation. The red, dotted line represents the ground

state in which π(x) = 0, i.e. the leaf is unperturbed. The solid blue line represents a possible

generic configuration, π(x).

Global symmetries are physical symmetries that cannot be altered by the unphysical

act of gauge fixing. Thus, if the original action (2.4) possesses a global symmetry (2.6),

generated by a Killing vector KA, then the gauge fixed action (2.8) must also have this

symmetry. However, the form of the symmetry will be different because the gauge choice
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2.2 General Brane Actions and Symmetries

will not generally be preserved by the global symmetry. The change induced by KA is

δKx
µ = Kµ(x, π), δKπ = K5(x, π) . (2.9)

To re-fix the gauge to (2.7), it is necessary to simultaneously perform a compensating gauge

transformation with gauge parameter

ξµcomp = −Kµ(x, π) . (2.10)

The combined symmetry acting on π,

(δK + δg,comp)π = −Kµ(x, π)∂µπ +K5(x, π) , (2.11)

is then a symmetry of the gauge fixed action (2.8).

2.2.1 Induced Metrics and Extrinsic Curvatures

We now specialize to the cases which we will need to consider for later chapter. First, we

simply derive the induced metric and extrinsic curvature for the case where the bulk metric

is written in Gaussian normal form,

GABdx
AdXB = fµν(x, ρ)dx

µdxν + dρ2 . (2.12)

Here X5 = ρ denotes the Gaussian normal transverse coordinate and the leaves of the

foliation are defined by ρ = constant. Recall that in the physical gauge (2.7), the transverse

coordinate of the brane is set equal to the scalar field, ρ(x) = π(x). After this, we further

specialize to the case where the bulk metric is Gaussian normal and the extrinsic curvature

of each leaf of the foliation is proportional to the induced metric on that leaf,

GABdX
AdXB = dρ2 + f(ρ)2gµν(x)dx

µdxν . (2.13)

The former case will be required for the galileon theory derived on an FRW space, while

the latter can cover every maximally symmetric space.
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2. GENERAL CONSTRUCTION OF PROBE BRANE GALILEONS

2.2.1.1 Gaussian Normal

We now proceed with the calculation of the induced metric and extrinsic curvature for the

Gaussian normal metric (2.12). The induced metric is

ḡµν = fµν + ∂µπ∂νπ, (2.14)

and its inverse is

ḡµν = fµν − γ̃2∂µπ∂νπ , (2.15)

where

γ̃ ≡ 1/
√

1 + (∂π)2 , (2.16)

and the indices on the derivatives are raised with fµν , the inverse of fµν .

To calculate the extrinsic curvature we need to find the normal vector nA, which satisfies

nAeBν GAB = 0 ,

nAnBGAB = 1 , (2.17)

where eBν = ∂XB

∂xν are the tangent vectors to the brane. Solving these equations in the gauge

(2.7) where

eAµ =
∂XA

∂xµ
=

{

δνµ A = ν

∇µπ A = 5
. (2.18)

yields

nA = γ̃(−∂µπ, 1). (2.19)

The extrinsic curvature is given by

Kµν = eAµ e
B
ν ∇AnB , (2.20)
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2.2 General Brane Actions and Symmetries

which can be written as Kµν = eBν ∂µnB − eAµ e
B
ν Γ

C
ABnC .

The ∇A is a covariant derivative of the bulk metric and so the Christoffel ΓCAB must

be calculated with X5 = w. The replacement w → π(x) is then made at the end of the

calculation. Using the bulk coordinates in the form (4.4), the non-zero 5D Christoffels,

ΓABC , are

Γλµν = Γλµν(f),

Γ5
µν = −1

2
f ′µν ,

Γµ5ν =
1

2
fµλf ′λν , (2.21)

where primes denote derivatives with respect to π. Note that on the right-hand side of the

first line, the Christoffels of fµν are to be calculated with the π dependence held fixed. The

extrinsic curvature then reads

Kµν = −γ̃∇µ∇νπ +
1

2
γ̃f ′µν + γ̃∂λπ∂(µπf

′
ν)λ , (2.22)

where ∇µ is the covariant derivative calculated from fµν at fixed π.

2.2.1.2 Gaussian Normal and Kµν ∝ ḡµν

We now specialize further to the case of the metric (2.13), where the foliation is Gaussian

normal with respect to the metric GAB , and the extrinsic curvature on each of the leaves

of the foliation is proportional to the induced metric. While we could read off these results

from the previous section, they would not be in the optimal form for later use.

Working in the gauge (2.7), the induced metric is

ḡµν = f(π)2gµν +∇µπ∇νπ . (2.23)

It is useful to define the quantity

γ =
1

√

1 + 1
f2
(∇π)2

(2.24)
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where indices are raised and lowered with gµν and gµν . the square root of the determinant

and the inverse metric may then be expressed as

√−ḡ =
√−gf4

√

1 +
1

f2
(∇π)2 = √−gf4 1

γ
, (2.25)

and

ḡµν =
1

f2

(

gµν − γ2
∇µπ∇νπ

f2

)

. (2.26)

Again, in our gauge (2.7) the tangent vectors are

eAµ =
∂XA

∂xµ
=

{

δνµ A = ν

∇µπ A = 5
(2.27)

and to find the normal vector nA we solve the two equations

0 = eAµn
BGAB = f2nνgµν + n5∂µπ, (2.28)

1 = nAnBGAB =
1

f2
gµν∂µπ∂νπ(n

5)2 + (n5)2 , (2.29)

to obtain

nA =

{

− 1
f2
γ∇µπ A = µ

γ A = 5
, nA =

{

−γ∇µπ A = µ

γ A = 5
. (2.30)

Using the non-vanishing Christoffel symbols Γλµν = Γλµν(g), Γ
5
µν = −ff ′gµν , Γµν5 = δµν

f ′

f ,

the extrinsic curvature is then

Kµν = γ

(

−∇µ∇νπ + ff ′gµν + 2
f ′

f
∇µπ∇νπ

)

. (2.31)

Note that when the 4D coordinates have dimensions of length, π has mass dimension −1

and f is dimensionless.
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2.3 Actions with second order equations of motion

2.3 Actions with second order equations of motion

Up until now we have discussed the degrees of freedom and their symmetries, but it is the

choice of action that defines the dynamics. A general choice for the function F in (2.8) will

lead to scalar field equations for π which are higher than second order in derivatives. When

this is the case, the scalar will generally propagate extra degrees of freedom which are ghost-

like [40, 95]. The presence of such ghosts signifies that either the theory is unstable, or the

cutoff must be lowered so as to exclude the ghosts. Neither of these options is particularly

attractive, and so it is desirable to avoid ghosts altogether. It is the Galileon terms which are

special because they lead to equations of at most second order. Furthermore, as mentioned

in the introduction, there can exist regimes in which the Galileon terms dominate over all

others, so we will be interested only in these terms.

A key insight of de Rham and Tolley [39] is that there are a finite number of actions

of the type (2.8), the Lovelock terms and their boundary terms, that do in fact lead to

second order equations for π and become the Galileon terms (Galileon-like terms can also

be obtained from Lovelock terms via a Kaluza-Klein dimensional reduction rather than a

brane embedding [109]). The possible extensions of Einstein gravity which remain second

order are given by Lovelock terms [80]. These terms are specific combinations of powers

of the Riemann tensor which are topological (i.e. total derivatives) in some specific home

dimension, but in lower dimensions have the property that equations of motions derived

from them are second order. (For a short summary of some properties of these terms, see

Appendix B of [73].) The Lovelock terms come with boundary terms. It is well known that,

when a brane is present, bulk gravity described by the Einstein-Hilbert Lagrangian should

be supplemented by the Gibbons-Hawking-York boundary term [63, 120]

S =

∫

M
d5X

√
−GR[G] + 2

∫

d4x
√−ḡK . (2.32)

Similarly, Lovelock gravity in the bulk must be supplemented by brane terms which depend

on the intrinsic and extrinsic curvature of the brane (the so-called Myers terms [86, 87]),
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which are needed in order to make the variational problem for the brane/bulk system well

posed [52]. Of course we are not considering bulk gravity to be dynamical, but the point

here is that these boundary terms also yield second order equations of motion for π in the

construction leading to (2.8).

The prescription of [39] is then as follows: on the 4-dimensional brane, we may add the

first two Lovelock terms, namely the cosmological constant term ∼ √−ḡ and the Einstein-

Hilbert term ∼ √−ḡR[ḡ]. (The higher Lovelock terms are total derivatives in 4-dimensions.)

We may also add the boundary term corresponding to a bulk Einstein-Hilbert term,
√−ḡK,

and the boundary term KGB corresponding to the Gauss-Bonnet Lovelock invariant R2 −
4RµνR

µν +RµναβR
µναβ in the bulk,

KGB = −1

3
K3 +K2

µνK − 2

3
K3
µν − 2

(

R̄µν −
1

2
R̄ḡµν

)

Kµν . (2.33)

The zero order cosmological constant Lovelock term in the bulk has no boundary term

(although as we will see, we may construct a fifth term, the tadpole term, from it) and the

higher order bulk Lovelock terms vanish identically.

While the above discussion captures all of the desired terms with derivative interactions,

there is one term that contains no derivatives of π and is not of the form (2.8). This

Lagrangian is called the tadpole term, denoted by A(π). The value of the tadpole action is

the proper 5-volume between some ρ = constant surface and the position of the brane,

S1 =

∫

d4x

∫ π

dπ′
√

−G(xµ, π′) , (2.34)

where G(xµ, π′) = detGAB(x
µ, π′). This tadpole term (2.34) obeys all of the non-linear

symmetries of the theory. Under the π symmetry (2.11), the shift of the tadpole term is

δS1 =

∫

d4x
√

−G(x, π)
[
K5(x, π) −Kµ(x, π)∂µπ

]
, (2.35)

where G(x, π) ≡ detGAB(x, π). We will show that the integrand of (2.35) is a total deriva-

tive by showing that its Euler-Lagrange variation vanishes. Taking a general variation of
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the right hand side gives

∫

d4x
√

−G(π, x)
{1

2
GAB∂πGAB δπ

[
K5(x, π)−Kµ(x, π)∂µπ

]

+
[
∂πK

5(x, π)δπ − ∂πK
µ(x, π)δπ∂µπ −Kµ(x, π)∂µδπ

] }

=

∫

d4x
√

−G(π, x)
{1

2
GAB∂πGAB

[
K5(x, π)−Kµ(x, π)∂µπ

]

+ ∂πK
5(x, π)− ∂πK

µ(x, π)∂µπ + ∂µK
µ(x, π)

+ ∂πK
µ(x, π)∂µπ +

1

2
KµGAB∂µGAB +

1

2
KµGAB∂πGAB∂µπ

}

δπ

=

∫

d4x
1

2

√

−G(π, x)
{

GAB∂πGABK
5(x, π) +KµGAB∂µGAB

+ 2∂πK
5(x, π) + 2∂µK

µ(x, π)
}

δπ . (2.36)

Contracting the Killing equation (2.5) with GAB gives

GAB∂5GABK
5(x, π) +KµGAB∂µGAB + 2∂5K

5(x, π) + 2∂µK
µ(x, π) = 0 , (2.37)

and so (2.36) vanishes, indicating that (2.35) is a total derivative and that, as claimed, the

tadpole obeys all of the required symmetries.

In summary, the five ghost free lagrangians which we will use to define our generalized

galileon actions are

L1 =

∫ π

dπ′
√

−G(xµ, π′)

L2 = −√−ḡ ,

L3 =
√−ḡK ,

L4 = −√−ḡR̄ ,

L5 =
3

2

√−ḡKGB . (2.38)
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Chapter 3

Maximally Symmetric Cases7

3.1 Overview

In this chapter we will apply our methods of the previous chapter to the case in which the

5D background metric has 15 global symmetries, i.e. the maximal number. Thus, the bulk

is either 5D anti-de Sitter space AdS5 with isometry algebra SO(4, 2), 5D de-Sitter space

dS5 with isometry algebra SO(5, 1), or flat 5D Minkowski space M5 with isometry algebra

the five dimensional Poincare algebra ISO(4, 1). In addition, we focus on the case where the

brane metric gµν , and hence the extrinsic curvature, are maximally symmetric, so that the

unbroken subalgebra has the maximal number of generators, 10. This means that the leaves

of the foliation are either 4D anti-de Sitter space AdS4 with isometry algebra SO(3, 2), 4D

de-Sitter space dS4 with isometry algebra SO(4, 1), or flat 4D Minkowski space M4 with

isometry algebra the four dimensional Poincare algebra ISO(3, 1). In fact, there are only

6 such possible foliations of 5D maximally symmetric spaces by 4D maximally symmetric

time-like slices, such that the metric takes the form (2.13). Flat M5 can be foliated by

flat M4 slices or by dS4 slices; dS5 can be foliated by flat M4 slices, dS4 slices, or AdS4

7The work in this chapter was performed in collaboration with Kurt Hinterbichler and Mark Trodden.
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slices; and AdS5 can only be foliated by AdS4 slices. Each of these 6 foliations, through

the construction leading to (2.8), will generate a class of theories living on an AdS4, M4 or

dS4 background and having 15 global symmetries broken to the 10 isometries of the brane.

These possibilities are summarized in Figure 3.1.

Figure 3.1: Types of maximally symmetric embedded brane effective field theories, their

symmetry breaking patterns, and functions f(π). The relationships to the Galileon and DBI

theories are also noted.

It should be noted that the missing squares in Figure 3.1 may be filled in if we are willing

to consider a bulk which has more than one time direction8. For example, it is possible to

embed AdS4 into a five-dimensional Minkowski space with two times (indeed, this is the

8We thank Sergei Dubovsky for pointing this out.
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3. MAXIMALLY SYMMETRIC CASES

standard way of constructing AdS spaces). From the point of view that the bulk is physical,

and hence should be thought of as dynamical, these possibilities may be unacceptable on

physical grounds. However, if one thinks of the bulk as merely a mathematical device for

constructing novel four-dimensional effective theories, then there is nothing a priori to rule

out these possibilities. In this paper, we focus on those cases in which the bulk has only one

time dimension. The construction in the other cases will, however, follow the same pattern.

We first exhaust all the maximally symmetric possibilities in Figure 3.1, providing ex-

plicit expressions for ghost free actions of Sec.2.3 and for the non-linear π symmetries. As

we will see, these generalized galileon theories have their own unique properties. For ex-

ample, in curved space the field acquires a potential which is fixed by the symmetries –

something that is not allowed for the flat space galileons. In particular, the scalars acquire

a mass of order the inverse radius of the background, and the value of the mass is fixed

by the nonlinear symmetries. Although not addressed in detail here, allowing for de Sitter

solutions on the brane opens up the possibility of adapting these new effective field theories

to cosmological applications such as inflation or late time cosmic acceleration in such a way

that their symmetries ensure technical naturalness.

In Sec.3.4 we take the small field limits to obtain Galileon-like theories, discuss their

stability, and compare and contrast these theories with the special case of the original

galileon. Finally, in Sec.3.5 we explore whether or not the DBI galileon theory, arising from

a Minkowski probe brane in a Minkowski bulk, are free of the issues that plague the original

galileons, namely the superluminal propagation of perturbations when the field is sourced

by a heavy object. For conventions, refer to Appendix A.

3.2 General Construction

We now proceed to construct explicitly the maximally symmetric examples catalogued in

Section 3 and Figure 3.1. Since the bulk metric can be put in the same form (2.13) in every
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case considered here, it is efficient derive the form of the π symmetries and lagrangians for

the generic metric (2.13) and then simply plug in to get the explicit result for each of the

cases in Figure 3.1.

3.2.1 Symmetries

The algebra of Killing vectors of GAB contains a natural subalgebra consisting of the Killing

vectors for which K5 = 0. This is the subalgebra of Killing vectors that are parallel to the

foliation of constant ρ surfaces, and it generates the subgroup of isometries which preserve

the foliation. We choose a basis of this subalgebra and index the basis elements by i,

KA
i (X) =

{

Kµ
i (x) A = µ

0 A = 5
, (3.1)

where we have written Kµ
i (x) for the A = µ components, indicating that these components

are independent of ρ. To see that this is the case, note that, for those vectors with K5 = 0,

the µ5 Killing equations (2.5) tell us that Kµ
i (x) is independent of ρ. Furthermore, the µν

Killing equations tell us that Kµ
i (x) is a Killing vector of gµν .

We now extend our basis of this subalgebra to a basis of the algebra of all Killing

vectors by appending a suitably chosen set of linearly independent Killing vectors with

non-vanishing K5. We index these with I, so that (Ki,KI) is a basis of the full algebra

of Killing vectors. From the 55 component of Killing’s equation, we see that K5 must be

independent of ρ, so we may write K5(x).

A general global symmetry transformation thus reads

δKX
A = aiKA

i (X) + aIKA
I (X) , (3.2)

where ai and aI are arbitrary constant coefficients of the transformation. In the gauge (2.7),

the transformations become, from (2.11),

(δK + δg,comp)π = −aiKµ
i (x)∂µπ + aIK5

I (x)− aIKµ
I (x, π)∂µπ . (3.3)
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3. MAXIMALLY SYMMETRIC CASES

From this, we see that the Ki symmetries are linearly realized, whereas the KI are real-

ized nonlinearly. Thus, the algebra of all Killing vectors is spontaneously broken to the

subalgebra of Killing vectors preserving the foliation.

3.2.2 Explicit expressions for the terms

From (2.38), the five terms that lead to second order equations for π are

L1 =
√−g

∫ π

dπ′f(π′)4,

L2 = −√−ḡ ,

L3 =
√−ḡK ,

L4 = −√−ḡR̄ ,

L5 =
3

2

√−ḡKGB , (3.4)

where the expression for the tadpole term follows from the form of the metric (2.13) and

the explicit form of the Gauss-Bonnet boundary term is given in (2.33).

En route to presenting specific examples of our new theories, we now evaluate these

terms on the special case metric (2.13)

GABdX
AdXB = dρ2 + f(ρ)2gµν(x)dx

µdxν . (3.5)

We make use of formulae catalogued in Appendix B. Our strategy is to collect coefficients

of f ′′, f ′, f ′2 and f ′3, eliminate everywhere (∂π)2 in favor of γ = 1
√

1+ 1
f2

(∂π)2
, and then to

group like terms by powers of γ. A lengthy calculation yields

L1 =
√−g

∫ π

dπ′f(π′)4,

L2 = −√−gf4
√

1 +
1

f2
(∂π)2,

L3 =
√−g

[
f3f ′(5− γ2)− f2[Π] + γ2[π3]

]
,
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L4 = −√−g
{
1

γ
f2R− 2γRµν∇µπ∇νπ

+ γ

[

[Π]2 − [Π2] + 2
γ2

f2
(
−[Π][π3] + [π4]

)
]

+ 6
f3f ′′

γ

(
−1 + γ2

)

+2γff ′
[

−4[Π] +
γ2

f2
(
f2[Π] + 4[π3]

)
]

− 6
f2f ′2

γ

(
1− 2γ2 + γ4

)
}

,

L5 =
3

2

√−g
{

R

[

3ff ′ − [Π] +
γ2

f2
(
−f3f ′ + [π3]

)
]

− 2
γ2

f2
Rµναβ∇µπ∇απΠνβ

+ 2Rµν
[

Πµν +
γ2

f2
(
(−3ff ′ + [Π])∇µπ∇νπ − 2Πα(µ∇ν)π∇απ

)
]

− γ2

f2

[
2

3

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
+ 2

γ2

f2
(
−[π3]([Π]2 − [Π2]) + 2[Π][π4]− 2[π5]

)
]

+ 4ff ′′
[

−3ff ′ + [Π] +
γ2

f2
(
3f3f ′ − f2[Π]− [π3]

)
]

− 2ff ′3
(
9− 11γ2 + 6γ4

)

+ 2f ′2
[

[Π]− γ2

f2
(
8f2[Π] + [π3]

)
+ 2

γ4

f2
(
2f2[Π] + 5[π3]

)
]

+2γ2
f ′

f

[

3
(
[Π]2 − [Π2]

)
− γ2

f2
(
f2([Π]2 − [Π2]) + 6([Π][π3]− [π4])

)
]}

.

(3.6)

The quantities [Πn] and [πn] are various contractions of derivatives of the π field as is

explained in the conventions Appendix A. In these expressions, all curvatures are those of

the metric gµν , and all derivatives are covariant derivatives with respect to gµν . We point

out that no integrations by parts have been performed in obtaining these expressions.

The equations of motion derived from any of these five terms will contain no more

than two derivatives on each field, ensuring that no extra degrees of freedom propagate

around any background. After suitable integrations by parts, these actions should therefore

conform to the general structure presented in [43] for actions of a single scalar with second

order equations (see also the Euler hierarchy constructions [54, 55, 56, 57]). In the above

construction, however, we can immediately identify the nonlinear symmetries by reading

them off from the isometries of the bulk.
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Finally, we note that by keeping the metric gµν in (2.13) arbitrary rather than fixing it

to the foliation, we can automatically obtain the covariantizaton of these various Galileon

actions, including the non-minimal curvature terms required to keep the equations of motion

second order, the same terms obtained by purely 4-d methods in [41, 42, 43]. Of course,

this in general ruins the symmetries we are interested in considering. But from this point of

view, we can see exactly when such symmetries will be present. The symmetries will only

be present if the gµν which is used to covariantly couple is such that the full metric (2.13)

has isometries.

3.3 All Examples of Maximal Symmetry

We now apply the work of Sec.3.2.1 and Sec.3.2.2 to each of the cases in Figure 3.1. The

construction starts by finding coordinates which are adapted to the desired foliation, so

that the metric in the bulk takes the form (2.13), allowing us to read off the function f(π).

Plugging into (3.6) then gives us the explicit Lagrangians. To find the form of the global

symmetries, we must write the explicit Killing vectors in the bulk, and identify those which

are parallel and not parallel to the foliation. We may then read off the symmetries from

(3.3).

The construction for each case is similar, and some of the results are related by analytic

continuation, but there are enough differences in the forms of the embeddings and the

Killing vectors that we thought it worthwhile to display each case explicitly. The reader

interested only in a given case may skip directly to it.

3.3.1 A Minkowski brane in a Minkowski bulk: M4 in M5 – DBI Galileons

Choosing cartesian coordinates (xµ, ρ) on M5, the foliation of M5 by M4 is simply given by

ρ = constant slices, and the metric takes the form

ds2 = (dρ)2 + ηµνdx
µdxν . (3.7)
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Comparing this to (2.13), we obtain

f(π) = 1, gµν = ηµν , (3.8)

and the terms (3.6) become (again, without integration by parts)

L1 = π,

L2 = −
√

1 + (∂π)2 ,

L3 = − [Π] + γ2
[
π3
]
,

L4 = −γ
(

[Π]2 −
[
Π2
])

− 2γ3
([
π4
]
− [Π]

[
π3
])

,

L5 = −γ2
(

[Π]3 + 2
[
Π3
]
− 3 [Π]

[
Π2
])

− γ4
(

6 [Π]
[
π4
]
− 6

[
π5
]
− 3

(

[Π]2 −
[
Π2
]) [

π3
])

,

(3.9)

where γ = 1√
1+(∂π)2

. These are the DBI Galileon terms, first written down in [39] and

further studied in [67].

3.3.1.1 Killing vectors and symmetries

The Killing vectors of 5D Minkowski space are the 10 boosts LAB = XA∂B − XB∂A, and

the 5 translations PA = −∂A. The 6 boosts Jµν and the 4 translations Pµ are parallel to

the foliation and form the unbroken ISO(3, 1) symmetries of M4. The 5 broken generators

are

K ≡ −P5 = ∂ρ, (3.10)

Kµ ≡ Lµ5 = xµ∂ρ − ρ∂µ . (3.11)

Using the relation δKπ = K5(x) − Kµ(x, π)∂µπ from (3.3), we obtain the transformation

rules

δπ = 1,
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δµπ = xµ + π∂µπ , (3.12)

under which the terms (3.9) are each invariant up to a total derivative. The symmetry

breaking pattern is

ISO(4, 1) → ISO(3, 1) . (3.13)

3.3.2 A Minkowski brane in an anti-de Sitter bulk: M4 in AdS5 – Confor-

mal Galileons

In this section, indices A,B, · · · run over six values 0, 1, 2, 3, 4, 5 and Y A are cartesian coordi-

nates in an ambient 6d two-time Minkowski space with metric ηAB = diag(−1,−1, 1, 1, 1, 1),

which we call M4,2.

Five dimensional anti-de Sitter space AdS5 (more precisely, a quotient thereof) can be

described as the subset of points (Y 0, Y 1, Y 2 . . . , Y 5) ∈ M4,2 in the hyperbola of one sheet

satisfying

ηABY
AY B = −(Y 0)2 − (Y 1)2 + (Y 2)2 + · · ·+ (Y 5)2 = −R2 , (3.14)

with R > 0 the radius of curvature of AdS5, and where the metric is induced from the flat

metric on M4,2. This space is not simply connected, but its universal cover is AdS5. The

scalar curvature R and cosmological constant Λ are given by R = − 20
R2 , Λ = − 6

R2 .

We use Poincare coordinates (ρ, xµ) on AdS5 which cover the region Y 0 + Y 2 > 0,

Y 0 = R cosh
( ρ

R

)

+
1

2R
e−ρ/Rx2 ,

Y 1 = e−ρ/Rx0 ,

Y 2 = −R sinh
( ρ

R

)

− 1

2R
e−ρ/Rx2 , (3.15)

Y i+2 = e−ρ/Rxi , i = 1, 2, 3 , (3.16)

where x2 ≡ ηµνx
µxν , and ηµν = diag(−1, 1, 1, 1) is the Minkowski 4-metric. The coordinates

u and xµ all take the range (−∞,∞). Lines of constant ρ foliate the Poincare patch of AdS5
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with Minkowski M4 time-like slices, given by intersecting the planes Y 0 + Y 2 = constant

with the hyperbola.

The induced metric is

ds2 = dρ2 + e−2ρ/Rηµνdx
µdxν . (3.17)

Comparing this with (2.13) we obtain

f(π) = e−π/R, gµν = ηµν , (3.18)

and the terms (3.6) become (without integration by parts)

L1 = −R

4
e−4π/R ,

L2 = −e−4π/R
√

1 + e2π/R(∂π)2 ,

L3 = γ2[π3]− e−2π/R[Π] +
1

R
e−4π/R(γ2 − 5) ,

L4 = −γ([Π]2 − [Π2])− 2γ3e2π/R([π4]− [Π][π3])

+
6

R2
e−4π/R 1

γ

(
2− 3γ2 + γ4

)
+

8

R
γ3[π3]− 2

R
e−2π/Rγ

(
4− γ2

)
[Π] ,

L5 = −γ2e2π/R
(
[Π]3 − 3[Π][Π2] + 2[Π3]

)

− 3γ4e4π/R
[
2([Π][π4]− [π5])− ([Π]2 − [Π2])[π3]

]

+
18

R
e2π/Rγ4([Π][π3]− [π4])− 3

R
γ2(3− γ2)([Π]2 − [Π2])

− 3

R2
γ2(3− 10γ2)[π3]− 3

R2
e−2π/R(−3 + 10γ2 − 4γ4)[Π]

+
3

R3
e−4π/R(15− 17γ2 + 6γ4) , (3.19)

where

γ =
1

√

1 + e2π/R(∂π)2
. (3.20)

These are the conformal DBI Galileons, first written down in [39].
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3.3.2.1 Killing vectors and symmetries

The 15 Lorentz generators of M4,2; MAB = YA∂̄B − YB∂̄A (here ∂̄A are the coordinate basis

vectors in the ambient space M4,2, and indices are lowered with the M4,2 flat metric ηAB)

are all tangent to the AdS5 hyperboloid, and become the 15 isometries of the SO(4, 2)

isometry algebra of AdS5. Of these, 10 have no ∂ρ components and are parallel to the M4

foliation. These form the unbroken ISO(3, 1) isometry algebra of the M4 slices.

First we have

Y i+2∂̄1 + Y 1∂̄i+2 → xi∂0 + x0∂i, i = 1, 2, 3, (3.21)

Y i+2∂̄j+2 − Y j+2∂̄i+2 → xi∂j − xj∂i, i, j = 1, 2, 3, (3.22)

which taken together are the 6 Lorentz transformations Lµν = xµ∂ν − xν∂µ of the xµ.

For the remaining 4, we focus on

−Y 1∂̄0 + Y 0∂̄1 → x0∂ρ +

[
R

2

(

1 + e
2ρ
R

)

+
1

2R
x2
]

∂0 +
1

R
x0xµ∂µ ,

−Y i+2∂̄0 − Y 0∂̄i+2 → xi∂ρ +

[

−R

2

(

1 + e
2ρ
R

)

− 1

2R
x2
]

∂i +
1

R
xixµ∂µ , i = 1, 2, 3 ,

−Y 2∂̄1 − Y 1∂̄2 → x0∂ρ +

[

−R

2

(

1− e
2ρ
R

)

+
1

2R
x2
]

∂0 +
1

R
x0xµ∂µ ,

−Y i+2∂̄2 + Y 2∂̄i+2 → xi∂ρ +

[
R

2

(

1− e
2ρ
R

)

− 1

2R
x2
]

∂i +
1

R
xixµ∂µ , i = 1, 2, 3 , (3.23)

which may be grouped as

Vµ = xµ∂ρ +

[

−R

2

(

1 + e
2ρ
R

)

− 1

2R
x2
]

∂µ +
1

R
xµx

ν∂ν , µ = 0, 1, 2, 3

V ′
µ = xµ∂ρ +

[
R

2

(

1− e
2ρ
R

)

− 1

2R
x2
]

∂µ +
1

R
xµx

ν∂ν , µ = 0, 1, 2, 3 .

(3.24)

If we now take the following linear combinations,

Pµ =
1

R
(Vµ − V ′

µ) = −∂µ , (3.25)
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Kµ = (Vµ + V ′
µ) = 2xµ∂ρ −

[

Re
2ρ
R +

1

R
x2
]

∂µ +
2

R
xµx

ν∂ν , (3.26)

the Pµ are the translations on the xµ, the remaining 4 unbroken vectors.

The Kµ are broken generators and, in addition, there is one more broken vector,

−Y 2∂̄0 − Y 0∂̄2 = R∂ρ + xµ∂µ . (3.27)

Using the relation δKπ = K5(x) − Kµ(x, π)∂µπ from (3.3), we obtain the transformation

rules for the π field from this and from the Kµ as

δπ = R− xµ∂µπ,

δµπ = 2xµ +

[

Re
2π
R +

1

R
x2
]

∂µπ − 2

R
xµx

ν∂νπ . (3.28)

The terms (3.19) are each invariant up to a total derivative under these transformations,

and the symmetry breaking pattern is

SO(4, 2) → ISO(3, 1) . (3.29)

3.3.3 A de Sitter brane in a Minkowski bulk: dS4 in M5

We describe the Minkowski bulk with the usual metric in cartesian coordinates

ds2 = ηABdX
AdXB = −(dX0)2 + (dX1)2 + (dX2)2 + (dX3)2 + (dX4)2 . (3.30)

The region ηABX
AXB > 0 (i.e. outside the lightcone) can be foliated by de Sitter slices.

To see this, we use Rindler coordinates which cover this region,

X0 = r sinh τ,

X1 = ρ cosh τ cos θ1 ,

X2 = ρ cosh τ sin θ1 cos θ2 ,

X3 = ρ cosh τ sin θ1 sin θ2 cos θ3 , (3.31)
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X4 = ρ cosh τ sin θ1 sin θ2 sin θ3 , (3.32)

where ρ ∈ (0,∞), τ ∈ (−∞,∞), and the θi (i = 1, 2, 3) parametrize a 3 sphere. The metric

in Rindler coordinates is then

ds2 = dρ2 + ρ2
[

−dτ2 + cosh2 τ dΩ2
(3)

]

. (3.33)

This metric is ds2 = dρ2 + ρ2ds2dS4
, where ds2dS4

is the global metric on a unit radius 4D

de Sitter space. The foliation by ds4 thus corresponds to ρ = constant surfaces (or to

−(X0)2 + (Xi)2 = constant > 0 in cartesian coordinates).

Comparing this with (2.13), we obtain

f(π) = π, gµν = g(dS4)
µν , (3.34)

and the terms (3.6) become (without any integrations by parts)

L1 =
1

5

√−gπ5 ,

L2 = −√−gπ4
√

1 +
1

π2
(∂π)2 ,

L3 =
√−g

[
π3(5− γ2)− π2[Π] + γ2[π3]

]
,

L4 =
√−g γ

[

−[Π]2+[Π2]+8π[Π]−18π2−2
γ2

π2
(
[π4]+4π[π3]−3π4−[Π][π3]+π3[Π]

)
]

,

L5 =
√−g γ

2

π2

[

− [Π]3 + 3[Π][Π2]− 2[Π3] + 9π([Π]2 − [Π2]) + 42π3 − 30π2[Π]

+ 3
γ2

π2
(
([Π]2 − [Π2])[π3] + 2[π5] + 6π[π4] + 10π2[π3]− π3([Π]2 − [Π2])

−6π5 − 2[Π]([π4] + 3π[π3]− 2π4)]
)

]

, (3.35)

where the background metric and covariant derivatives are those of unit-radius 4D de Sitter

space, and

γ =
1

√

1 + 1
π2 (∂π)2

. (3.36)
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Note that, since we have chosen the 4D space to be a unit-radius dS4 with dimension-

less coordinates, π and f have mass dimension −1. In evaluating (3.35), we have used

that the scalar curvature and cosmological constant of this space are R = 12 and Λ = 3

respectively, and used the relations Rµναβ = R
12 (gµαgνβ − gµβgνα), and Rµν = R

4 gµν , valid

for a maximally symmetric space. It is possible, of course, to rescale the coordinates,

canonically normalize the field, and/or rescale f to bring these quantities to their usual

dimensions. Given a suitable combinations of these Lagrangians so that a constant field

π(x) = π0 = constant is a solution to the equations of motion, π0 sets the radius of the de

Sitter brane in its ground state.

We call these Type II de Sitter DBI Galileons (see Figure 3.1), and they are our first

example of a Galileon that lives on curved space yet still retains the same number of shift-like

symmetries as their flat space counterparts.

3.3.3.1 Killing vectors and symmetries

The 10 Lorentz transformations ofM5 are parallel to the de Sitter slices and become the un-

broken SO(4, 1) isometries of dS4. The 5 translations are not parallel and will be nonlinearly

realized.

With a future application to cosmology in mind, we will calculate the transformation

laws explicitly using conformal inflationary coordinates (u, yi) on the de Sitter slices, even

though these coordinates only cover half of each de Sitter slice. The embedding becomes

X0 =
ρ

2u

(
1− u2 + y2

)
,

X1 =
ρ

2u

(
1 + u2 − y2

)
,

Xi+1 =
ρyi

u
, i = 1, 2, 3 , (3.37)

where y2 ≡ δijy
iyj, and the coordinate ranges are ρ ∈ (0,∞), u ∈ (0,∞), yi ∈ (−∞,∞).
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The metric takes the form

ds2 = dρ2 + ρ2
[
1

u2
(
−du2 + dy2

)
]

, (3.38)

so that the dS4 slices have conformal inflationary coordinates, with u the conformal time.

We are interested in the form of the nonlinear symmetries stemming from the broken

translation generators of M5. In the coordinates (3.37), the broken Killing vectors ∂̄A are

∂̄0 =
1

2u

(
−1 + u2 − y2

)
∂ρ −

1

2ρ

(
1 + u2 + y2

)
∂u −

u

ρ
yi∂i , (3.39)

∂̄1 =
1

2u

(
1 + u2 − y2

)
∂ρ −

1

2ρ

(
−1 + u2 + y2

)
∂u −

u

ρ
yi∂i , (3.40)

∂̄i =
yi
u
∂ρ +

yi
ρ
∂u +

u

r
∂i, i = 1, 2, 3 . (3.41)

Taking the following linear combinations

K+ = ∂̄0 + ∂̄1 =
1

u

(
u2 − y2

)
∂ρ −

1

ρ

(
u2 + y2

)
∂u −

2u

ρ
yi∂i , (3.42)

K− = ∂̄0 − ∂̄1 = −1

u
∂ρ −

1

ρ
∂u , (3.43)

Ki = ∂̄i =
yi
u
∂ρ +

yi
ρ
∂u +

u

ρ
∂i , (3.44)

and using the relation δKπ = K5(x) −Kµ(x, π)∂µπ from (3.3), we then obtain the trans-

formation rules

δ+π =
1

u

(
u2 − y2

)
+

1

π

(
u2 + y2

)
π′ +

2u

π
yi∂iπ ,

δ−π = −1

u
+

1

π
π′ ,

δiπ =
yi
u

− yi
π
π′ − u

π
∂iπ , (3.45)

where π′ ≡ ∂uπ.

The terms (3.35) are each invariant up to a total derivative under these transformations,

and the symmetry breaking pattern is

ISO(4, 1) → SO(4, 1) . (3.46)
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3.3.4 A de Sitter brane in a de Sitter bulk: dS4 in dS5

In this section, indices A,B, · · · run over six values 0, 1, 2, 3, 4, 5 and Y A are coordinates in

an ambient 6d Minkowski space with metric ηAB = diag(−1, 1, 1, 1, 1, 1), which we call M6.

Five-dimensional de Sitter space dS5 can be described as the subset of points

(Y 0, Y 1, Y 2 . . . , Y 5) ∈M6 in the hyperbola of one sheet satisfying

ηABY
AY B = −(Y 0)2 + (Y 1)2 + (Y 2)2 + · · ·+ (Y 5)2 = R2 , (3.47)

with the metric induced from the metric on M6, for some constant R > 0, the radius of

curvature of the dS5. The scalar curvature R and cosmological constant Λ are given by

R = 20/R2 and Λ = 6/R2, respectively.

We use coordinates in which the constant ρ surfaces are the intersections of the planes

Y 1 = constant with the hyperbola, and are themselves four-dimensional de Sitter spaces

ds4,

Y 0 = R sin ρ sinh τ , (3.48)

Y 1 = R cos ρ , (3.49)

Y 2 = R cosh τ sin ρ cos θ1 , (3.50)

Y 3 = R cosh τ sin ρ sin θ1 cos θ2 , (3.51)

Y 4 = R cosh τ sin ρ sin θ1 sin θ2 cos θ3 , (3.52)

Y 5 = R cosh τ sin ρ sin θ1 sin θ2 sin θ3 . (3.53)

(3.54)

Here τ ∈ (−∞,∞), ρ ∈ (0, π) and θi, i = 1, 2, 3 parametrize a 3-sphere. These coordinates

cover the region 0 < Y 1 < R, 0 < Y 2 < R.

The metric is

ds2 = R2
[
dρ2 + sin2 ρ

(
−dτ2 + cosh2 τ dΩ(3)

)]
. (3.55)
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Scaling ρ so that it lies in the range (0, πR), the metric becomes ds2 = dρ2+R2 sin2
( ρ
R

)
ds2dS4

,

where ds2dS4
is the global metric on a four-dimensional de Sitter space dS4 of unit radius.

The foliation by ds4 thus corresponds to ρ = constant surfaces. These slices are given by

intersecting the planes Y 1 = constant with the hyperbola, for values 0 < Y 1 < R. (By

taking ρ < 0 we cover instead −R < Y 2 < 0. This is the maximum extent to which we may

extend the foliation.)

Comparing this with (2.13), we obtain

f(π) = R sin(π/R), gµν = g(dS4)
µν , (3.56)

and the terms (3.6) become (using no integrations by parts)

L1 =
√−gR

4

32

(

12 π − 8R sin

(
2π

R

)

+ R sin

(
4π

R

))

, (3.57)

L2 = −√−gR
4

γ
sin4

(π

R

)

, (3.58)

L3 =
√
−g
[

γ2[π3]− R2[Π] sin2
(π

R

)

+ R3(5− γ2) sin3
( π

R

)

cos
( π

R

)]

, (3.59)

L4 =
√−g

[

2γ3

R2

(
[Π][π3]− [π4]

)
csc2

( π

R

)

− γ

(

[Π]2 − [Π2] +
8γ2

R
[π3] cot

(π

R

))

(3.60)

+ Rγ(4− γ2)[Π] sin

(
2π

R

)

+
3R2

γ
sin2

( π

R

)(

−2−3γ2+γ4+(2−3γ2+γ4) cos

(
2π

R

))]

,

L5 =
√−g

[

3γ4

R4

(
2([π5]− [Π][π4]) + [π3]([Π]2 − [Π2])

)
csc4

(π

R

)

(3.61)

− 18γ4

R3

(
[Π][π3]− [π4]

)
csc2

( π

R

)

cot
( π

R

)

− γ2

R2
csc2

(π

R

)(

[Π]3 − 3[Π][Π2] + 2[Π3]− 3

2
(3+10γ2)[π3]

+
3

2
(3−10γ2)[π3] cos

(
2π

R

))

+
3γ2

R
(3−γ2)([Π]2−[Π2]) cot

(π

R

)
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+
3

2
[Π]

(

−3−10γ2+4γ4 + (3−10γ2+4γ4) cos

(
2π

R

))

− 3R

4

(

−15− 11γ2 + 6γ4 + (15− 17γ2 + 6γ4) cos

(
2π

R

))

sin

(
2π

R

)]

, (3.62)

where the background metric and covariant derivatives are those of the unit-radius 4D de

Sitter space, and

γ =
1

√

1 + (∂π)2

R2 sin2( π
R
)

. (3.63)

Since we have chosen the 4D space to have unit radius in dimensionless coordinates,

π and f have mass dimension −1. In evaluating (3.35), we have used that fact that the

scalar curvature and cosmological constant of this space are R = 12 and Λ = 3 respectively,

and the relations Rµναβ = R
12 (gµαgνβ − gµβgνα) and Rµν = R

4 gµν valid for a maximally

symmetric space. Given a suitable combination of these Lagrangians so that a constant

field π(x) = π0 = const. is a solution to the equations of motion, f(π0) = R sin
(
π0
R

)
sets

the radius of the de Sitter brane. We call these Type I de Sitter DBI Galileons (see Figure

3.1).

3.3.4.1 Killing vectors and symmetries

Once again, we calculate the transformation laws using conformal inflationary coordinates

(u, yi) on the de Sitter slices, even though they only cover half of each de Sitter slice. The

embedding becomes

Y 0 = R sin
( ρ

R

) 1

2u

(
1− u2 + y2

)
, (3.64)

Y 1 = R cos
( ρ

R

)

, (3.65)

Y 2 = R sin
( ρ

R

) 1

2u

(
1 + u2 − y2

)
, (3.66)

Y i+2 = R sin
( ρ

R

) yi

u
, i = 1, 2, 3 . (3.67)
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The coordinate ranges are ρ ∈ (0, πR), u ∈ (0,∞) and yi ∈ (−∞,∞), and the induced

metric then becomes

ds2 = dρ2 + R2 sin2
( ρ

R

) [ 1

u2
(
−du2 + dy2

)
]

. (3.68)

The 15 Lorentz generators of M6 are all tangent to the dS5 hyperboloid, and become

the 15 isometries of its SO(5, 1) isometry algebra. Of these, 10 have no ∂ρ components and

are parallel to the dS4 foliation: these form the SO(4, 1) isometry algebra of the dS4 slices,

−Y 2∂̄0 − Y 0∂̄2 → d = u∂u + yi∂i , (3.69)

−Y i+2∂̄0 − Y 0∂̄i+2 → j+i = uyi∂u +
1

2

(
−1 + u2 − y2

)
∂i + yiy

j∂j , i = 1, 2, 3, (3.70)

−Y i+2∂̄2 + Y 2∂̄i+2 → j−i = uyi∂u +
1

2

(
1 + u2 − y2

)
∂i + yiy

j∂j, i = 1, 2, 3, (3.71)

Y i+2∂̄j+2 − Y j+2∂̄i+2 → jij = yi∂j − yj∂i, i, j = 1, 2, 3. (3.72)

Taking the combinations

pi = j+i − j−i = −∂i , (3.73)

ki = j+i + j−i = 2uyi∂u + (u2 − y2)∂i + 2yiy
j∂j , (3.74)

we then recognize pi and jij as translations and rotations on the y plane, while d and ki fill

out the SO(4, 1) algebra.

The remaining 5 Killing vectors do have a ∂ρ component,

−Y 1∂̄0−Y 0∂̄1 → K =
R

2u

(
1−u2+y2

)
∂ρ+

1

2

(
1+u2+y2

)
cot
( ρ

R

)

∂u+u cot
( ρ

R

)

yi∂i ,

−Y 2∂̄1+Y
1∂̄2 → K ′ =

R

2u

(
1+u2−y2

)
∂ρ+

1

2

(
1−u2−y2

)
cot
( ρ

R

)

∂u−u cot
( ρ

R

)

yi∂i ,

−Y i+2∂̄1+Y
1∂̄i+2 → Ki =

R

u
yi∂ρ+yi cot

( ρ

R

)

∂u+u cot
( ρ

R

)

∂i, i = 1, 2, 3. (3.75)

Defining the following linear combinations,

K+ = K +K ′ =
R

u
∂ρ + cot

( ρ

R

)

∂u ,
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K− = K −K ′ =
R

u

(
−u2 + y2

)
∂ρ +

(
u2 + y2

)
cot
( ρ

R

)

∂u + 2u cot
( ρ

R

)

yi∂i ,

Ki =
R

u
yi∂ρ + yi cot

( ρ

R

)

∂u + u cot
( ρ

R

)

∂i , (3.76)

and using the relation δKπ = K5(x)−Kµ(x, π)∂µπ from (3.3), we obtain the transformation

rules

δ+π =
R

u
− cot

(π

R

)

π′ ,

δ−π =
R

u

(
−u2 + y2

)
−
(
u2 + y2

)
cot
( π

R

)

π′ − 2u cot
(π

R

)

yi∂iπ ,

δiπ =
R

u
yi − yi cot

( π

R

)

π′ − u cot
(π

R

)

∂iπ , (3.77)

where π′ ≡ ∂uπ. The terms (3.62) are each invariant up to a total derivative under these

transformations, and the symmetry breaking pattern is

SO(5, 1) → SO(4, 1) . (3.78)

3.3.5 A de Sitter brane in an anti-de Sitter bulk: dS4 in AdS5

Using the description and notation for the AdS5 embedding in section 3.3.2, the following

coordinates cover the intersection of the AdS5 hyperbola with the region Y 0 > R,

Y 0 = R cosh ρ ,

Y 1 = R sinh ρ sinh τ ,

Y 2 = R sinh ρ cosh τ cos θ1 ,

Y 3 = R sinh ρ cosh τ sin θ1 cos θ2 , (3.79)

Y 4 = R sinh ρ cosh τ sin θ1 sin θ2 cos θ3 , (3.80)

Y 5 = R sinh ρ cosh τ sin θ1 sin θ2 sin θ3 , (3.81)

(3.82)
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where τ ∈ (−∞,∞), ρ ∈ (0,∞), and θi, i = 1, 2, 3 parametrize a 3-sphere.

The metric reads

ds2 = R2
[

dρ2 + sinh2 ρ
(

−dτ2 + cosh2 τ dΩ2
(3)

)]

. (3.83)

Scaling ρ, the metric becomes ds2 = dρ2 +R2 sinh2
( ρ
R

)
ds2dS4

, where ds2dS4
is the global

metric on a four-dimensional de Sitter space dS4 of unit radius. The foliation by dS4 thus

corresponds to ρ = constant surfaces. These slices are given by intersecting the planes

Y 0 = constant with the hyperbola in the region Y 0 > R. (If we map Y 0 → −Y 0 then the

coordinates cover the region Y 0 < −R, and the metric remains identical to (3.83), and this

is the maximum extent to which we can extend the foliation.)

Comparing this with (2.13), we obtain

f(π) = R sinh(π/R), gµν = g(dS4)
µν , (3.84)

and the terms (3.6) become (without integration by parts)

L1 =
√−gR

4

32

(

12 π − 8R sinh

(
2π

R

)

+ R sinh

(
4π

R

))

, (3.85)

L2 = −√−gR
4

γ
sinh4

( π

R

)

, (3.86)

L3 =
√−g

[

γ2[π3]− R2[Π] sinh2
(π

R

)

+ R3(5− γ2) sinh3
( π

R

)

cosh
(π

R

)]

, (3.87)

L4 =
√−g

[

2γ3

R2

(
[Π][π3]− [π4]

)
csch2

( π

R

)

− γ

(

[Π]2 − [Π2] +
8γ2

R
[π3] coth

( π

R

))

(3.88)

+ Rγ(4− γ2)[Π] sinh

(
2π

R

)

+
3R2

γ
sinh2

( π

R

)(

−2− 3γ2 + γ4 + (2− 3γ2 + γ4) cosh

(
2π

R

))]

,

L5 =
√−g

[

3γ4

R4

(
2([π5]− [Π][π4]) + [π3]([Π]2 − [Π2])

)
csch4

( π

R

)
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− 18γ4

R3

(
[Π][π3]− [π4]

)
csch2

( π

R

)

coth
( π

R

)

− γ2

R2
csch2

( π

R

)(

[Π]3 − 3[Π][Π2] + 2[Π3]− 3

2
(3 + 10γ2)[π3]

+
3

2
(3− 10γ2)[π3] cosh

(
2π

R

))

+
3γ2

R
(3− γ2)([Π]2 − [Π2]) coth

( π

R

)

+
3

2
[Π]

(

−3− 10γ2 + 4γ4 + (3− 10γ2 + 4γ4) cosh

(
2π

R

))

− 3R

4

(

−15− 11γ2 + 6γ4 + (15− 17γ2 + 6γ4) cosh

(
2π

R

))

sinh

(
2π

R

)]

, (3.89)

where the background metric and covariant derivatives are those of the unit-radius 4D de

Sitter space, and

γ =
1

√

1 + (∂π)2

R2 sinh2( π
R
)

. (3.90)

Given suitable combinations of these Lagrangians so that a constant field π(x) = π0 =

constant is a solution to the equations of motion, f(π0) = R sinh
(
π0
R

)
sets the radius of the

de Sitter brane. We call these Type III de Sitter DBI Galileons (see Figure 3.1).

3.3.5.1 Killing vectors and symmetries

Once again we use conformal inflationary coordinates on the dS4 slices. The embedding

becomes,

Y 0 = R cosh
( ρ

R

)

, (3.91)

Y 1 = R sinh
( ρ

R

) 1

2u

(
1− u2 + y2

)
, (3.92)

Y 2 = R sinh
( ρ

R

) 1

2u

(
1 + u2 − y2

)
, (3.93)

Y i+2 = R sinh
( ρ

R

) yi

u
, i = 1, 2, 3 , (3.94)

83



3. MAXIMALLY SYMMETRIC CASES

where ρ ∈ (0,∞) and u ∈ (0,∞). The coordinate ranges are ρ ∈ (0,∞), u ∈ (0,∞),

yi ∈ (−∞,∞), and the induced metric is

ds2 = dρ2 + R2 sinh2
( ρ

R

)[ 1

u2
(
−du2 + dy2

)
]

. (3.95)

The 15 Lorentz generators of M4,2, MAB = YA∂̄B − YB ∂̄A, are all tangent to the AdS5

hyperboloid, and become the 15 isometries of the SO(4, 2) isometry algebra of AdS5. Of

these, 10 have no ∂ρ components and are parallel to the dS4 foliation. These form the

SO(4, 1) isometry algebra of the dS4 slices

−Y 2∂̄1 − Y 1∂̄2 → d = u∂u + yi∂i , (3.96)

−Y i+2∂̄1 − Y 1∂̄i+2 → j+i = uyi∂u +
1

2

(
−1 + u2 − y2

)
∂i + yiy

j∂j , i = 1, 2, 3, (3.97)

−Y i+2∂̄2 + Y 2∂̄i+2 → j−i = uyi∂u +
1

2

(
1 + u2 − y2

)
∂i + yiy

j∂j, i = 1, 2, 3, (3.98)

Y i+2∂̄j+2 − Y j+2∂̄i+2 → jij = yi∂j − yj∂i, i, j = 1, 2, 3. (3.99)

Taking the combinations

pi = j+i − j−i = −∂i , (3.100)

ki = j+i + j−i = 2uyi∂u + (u2 − y2)∂i + 2yiy
j∂j , (3.101)

we recognize pi and jij as translations and rotations on the y plane, with d and ki filling

out the rest of the SO(4, 1) algebra.

The remaining 5 Killing vectors do have a ∂ρ component,

Y 1∂̄0 − Y 0∂̄1 → K =
R

2u

(
1− u2 + y2

)
∂ρ +

1

2

(
1 + u2 + y2

)
coth

( ρ

R

)

∂u

+ u coth
( ρ

R

)

yi∂i ,

Y 2∂̄0 + Y 0∂̄2 → K ′ =
R

2u

(
1 + u2 − y2

)
∂ρ +

1

2

(
1− u2 − y2

)
coth

( ρ

R

)

∂u

− u coth
( ρ

R

)

yi∂i ,
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Y i+2∂̄0 + Y 0∂̄i+2 → Ki =
R

u
yi∂ρ + yi coth

( ρ

R

)

∂u + u coth
( ρ

R

)

∂i, i = 1, 2, 3.

(3.102)

Taking the following linear combinations

K+ = K +K ′ =
R

u
∂ρ + coth

( ρ

R

)

∂u ,

K− = K −K ′ =
R

u

(
−u2 + y2

)
∂ρ +

(
u2 + y2

)
coth

( ρ

R

)

∂u + 2u coth
( ρ

R

)

yi∂i ,

Ki =
R

u
yi∂ρ + yi coth

( ρ

R

)

∂u + u coth
( ρ

R

)

∂i , (3.103)

and using the relation δKπ = K5(x)−Kµ(x, π)∂µπ from (3.3), we obtain the transformation

rules

δ+π =
R

u
− coth

(π

R

)

π′ ,

δ−π =
R

u

(
−u2 + y2

)
−
(
u2 + y2

)
coth

( π

R

)

π′ − 2u coth
( π

R

)

yi∂iπ ,

δiπ =
R

u
yi − yi coth

( π

R

)

π′ − u coth
( π

R

)

∂iπ ,

(3.104)

where π′ ≡ ∂uπ.

The terms (3.89) are each invariant up to a total derivative under these transformations,

and the symmetry breaking pattern is

SO(4, 2) → SO(4, 1) . (3.105)

3.3.6 An anti-de Sitter brane in an anti-de Sitter bulk: AdS4 in AdS5

Using the description and notation for the AdS5 embedding from section 3.3.2, hyperbolic

coordinates on AdS5 are
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Y 0 = R cos τ cosh ρ coshψ ,

Y 1 = R sin τ cosh ρ coshψ ,

Y 2 = R sinh ρ ,

Y 3 = R cosh ρ sinhψ cos θ1 ,

Y 4 = R cosh ρ sinhψ sin θ1 cos θ2 , (3.106)

Y 5 = R cosh ρ sinhψ sin θ1 sin θ2 , (3.107)

where τ ∈ (−π, π) (the universal cover is obtained by extending this to τ ∈ (−∞,∞)),

ρ ∈ (−∞,∞), ψ ∈ (0,∞), and θ1, θ2 parametrize a 2-sphere. These coordinates cover the

entire AdS5 hyperbola, and after extending τ , the whole of AdS5.

The metric reads

ds2 = R2
[

dρ2 + cosh2 ρ
(

− cosh2 ψ dτ2 + dψ2 + sinh2 ψ dΩ2
(2)

)]

, (3.108)

and after scaling ρ, this becomes ds2 = dρ2 + R2 cosh2
( ρ
R

)
ds2AdS4

, where ds2AdS4
is the

global metric on an anti-de Sitter space AdS4 of unit radius. The foliation by AdS4 thus

corresponds to ρ = constant surfaces, and these slices are given by intersecting the planes

Y 2 = constant with the hyperbola. This foliation covers the entire AdS5 space.

Comparing this with (2.13), we obtain

f(π) = R cosh(π/R), gµν = g(AdS4)
µν , (3.109)

and the terms (3.6) become (without any integrations by parts)

L1 =
√−gR

4

32

(

12 π + 8R sinh

(
2π

R

)

+R sinh

(
4π

R

))

, (3.110)

L2 = −
√
−gR

4

γ
cosh4

(π

R

)

, (3.111)

L3 =
√−g

[

γ2[π3]− R2[Π] cosh2
( π

R

)

+ R3(5− γ2) cosh3
(π

R

)

sinh
( π

R

)]

, (3.112)

86



3.3 All Examples of Maximal Symmetry

L4 =
√−g

[

2γ3

R2

(
[Π][π3]− [π4]

)
sech2

(π

R

)

− γ

(

[Π]2 − [Π2] +
8γ2

R
[π3] tanh

(π

R

))

+ Rγ(4− γ2)[Π] sinh

(
2π

R

)

+
3R2

γ
cosh2

( π

R

)(

2 + 3γ2 − γ4 + (2− 3γ2 + γ4) cosh

(
2π

R

))]

, (3.113)

L5 =
√−g

[

3γ4

R4

(
2([π5]− [Π][π4]) + [π3]([Π]2 − [Π2])

)
sech4

( π

R

)

− 18γ4

R3

(
[Π][π3]− [π4]

)
sech2

(π

R

)

tanh
( π

R

)

− γ2

R2
sech2

(π

R

)(

[Π]3 − 3[Π][Π2] + 2[Π3] +
3

2
(3 + 10γ2)[π3]

+
3

2
(3− 10γ2)[π3] cosh

(
2π

R

))

+
3γ2

R
(3− γ2)([Π]2 − [Π2]) tanh

( π

R

)

+
3

2
[Π]

(

3 + 10γ2 − 4γ4 + (3− 10γ2 + 4γ4) cosh

(
2π

R

))

− 3R

4

(

15 + 11γ2 − 6γ4 + (15− 17γ2 + 6γ4) cosh

(
2π

R

))

sinh

(
2π

R

)]

, (3.114)

where the background metric and covariant derivatives are those of a unit-radius AdS4, and

γ =
1

√

1 + (∂π)2

R2 cosh2( π
R
)

. (3.115)

In evaluating (3.35), we have used that fact that the scalar curvature and cosmological

constant of the unit-radius AdS4 are R = −12 and Λ = −3 respectively, as well as the

relations Rµναβ = R
12 (gµαgνβ − gµβgνα), Rµν = R

4 gµν valid for a maximally symmetric

space. Given suitable combinations of these Lagrangians so that a constant field π(x) =

π0 = constant is a solution to the equations of motion, f(π0) = R cosh
(
π0
R

)
sets the radius

of the anti-de Sitter brane. We call these anti-de Sitter DBI Galileons (see Figure 3.1).
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3.3.6.1 Killing vectors and symmetries

We use Poincare coordinates (u, x0, x1, x2) on the AdS4 slices. The embedding becomes,

Y 0 = R cosh
( ρ

R

) 1

2u

(
1 + u2 + x2

)
, (3.116)

Y 1 = R cosh
( ρ

R

) x0

u
, (3.117)

Y 2 = R sinh
( ρ

R

)

, (3.118)

Y 3 = R cosh
( ρ

R

) 1

2u

(
1− u2 − x2

)
, (3.119)

Y i+3 = R cosh
( ρ

R

) xi

u
, i = 1, 2 . (3.120)

Here x2 ≡ ηijx
ixj, where ηij = diag(−1, 1, 1) is the Minkowski 3-metric. The coordinate

ranges are ρ ∈ (0,∞), u ∈ (0,∞) and xi ∈ (−∞,∞), and the induced metric is

ds2 = dρ2 + R2 cosh2
( ρ

R

) [ 1

u2
(
du2 + ηijdx

idxj
)
]

. (3.121)

The 15 Lorentz generators of M4,2 are all tangent to the AdS5 hyperboloid, and become

the 15 isometries of the SO(4, 2) isometry algebra of AdS5. Of these, 10 have no ∂ρ com-

ponents and are parallel to the AdS4 foliation - these form the SO(3, 2) isometry algebra

of the AdS4 slices,

−Y 3∂̄0 − Y 0∂̄3 → u∂u + xi∂i ,

−Y 1∂̄0 + Y 0∂̄1 → ux0∂u +
1

2

(
1 + u2 + x2

)
∂0 + x0xj∂j ,

−Y i+3∂̄0 − Y 0∂̄i+3 → uxi∂u −
1

2

(
1 + u2 + x2

)
∂i + xix

j∂j , i = 1, 2

−Y 3∂̄1 − Y 1∂̄3 → ux0∂u +
1

2

(
−1 + u2 + x2

)
∂0 + x0xj∂j ,

−Y i+3∂̄3 + Y 3∂̄i+3 → uxi∂u −
1

2

(
−1 + u2 + x2

)
∂i + xix

j∂j , i = 1, 2

Y i+3∂̄1 + Y 1∂̄i+3 → xi∂0 + x0∂i, i = 1, 2
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Y 5∂̄4 + Y 4∂̄5 → x2∂1 − x1∂2 , (3.122)

where the sums are over j = 0, 1, 2, and indices are raised and lowered with ηij . These may

be grouped as

d = u∂u + xi∂i , (3.123)

j+i = uxi∂u −
1

2

(
1 + u2 + x2

)
∂i + xix

j∂j , i = 0, 1, 2 (3.124)

j−i = uxi∂u −
1

2

(
−1 + u2 + x2

)
∂i + xix

j∂j , i = 0, 1, 2 (3.125)

jij = xi∂j − xj∂i, i, j = 0, 1, 2 , (3.126)

and by taking the combinations

pi = j+i − j−i = −∂i , (3.127)

ki = j+i + j−i = 2uxi∂u − (u2 + x2)∂i + 2xix
j∂j , (3.128)

we recognize pi and jij as translations and rotations on the x-space, with d and ki filling

out the rest of the SO(3, 2) algebra.

The remaining 5 Killing vectors do have a ∂ρ component,

Y 2∂̄0 + Y 0∂̄2 → K =
R

2u

(
1 + u2 + x2

)
∂ρ +

1

2

(
1− u2 + x2

)
tanh

( ρ

R

)

∂u

− u tanh
( ρ

R

)

xi∂i ,

Y 3∂̄2 − Y 2∂̄3 → K ′ =
R

2u

(
1− u2 − x2

)
∂ρ +

1

2

(
1 + u2 − x2

)
tanh

( ρ

R

)

∂u

+ u tanh
( ρ

R

)

xi∂i ,

Y 2∂̄1 + Y 1∂̄2 →
R

u
x0∂ρ + x0 tanh

( ρ

R

)

∂u + u tanh
( ρ

R

)

∂0 ,

Y i+3∂̄2 − Y 2∂̄i+3 →
R

u
xi∂ρ + xi tanh

( ρ

R

)

∂u − u tanh
( ρ

R

)

∂i, i = 1, 2 ,

(3.129)
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which may be combined to form

K+ = K +K ′ =
R

u
∂ρ + tanh

( ρ

R

)

∂u ,

K− = K −K ′ =
R

u

(
u2 + x2

)
∂ρ +

(
−u2 + x2

)
tanh

( ρ

R

)

∂u − 2u tanh
( ρ

R

)

xi∂i ,

Ki =
R

u
xi∂ρ + xi tanh

( ρ

R

)

∂u − u tanh
( ρ

R

)

∂i, i = 0, 1, 2. (3.130)

Using the relation δKπ = K5(x) − Kµ(x, π)∂µπ from (3.3), we obtain the transformation

rules

δ+π =
R

u
− tanh

( π

R

)

π′ , (3.131)

δ−π =
R

u

(
u2 + x2

)
−
(
−u2 + x2

)
tanh

( π

R

)

π′ + 2u tanh
(π

R

)

xi∂iπ , (3.132)

δiπ =
R

u
xi − xi tanh

(π

R

)

π′ + u tanh
(π

R

)

∂iπ, i = 0, 1, 2 , (3.133)

where π′ ≡ ∂uπ.

The terms (3.114) are each invariant up to a total derivative under these transformations,

and the symmetry breaking pattern is

SO(4, 2) → SO(3, 2) . (3.134)

3.4 Small field limits: the analogues of Galileons

The Lagrangians we have uncovered have a fairly complicated, non-polynomial form. We

know in the Minkowski case that the special case of the Galileon symmetry arises in a

particular limit [39], and that this limit greatly simplifies the actions. In this section, we

consider similar limits for the general theories we have constructed.

Consider a Lagrangian L that may be expanded in some formal series in a parameter λ

as

L = λn
(
L(0) + λL(1) + λ2L(2) + · · ·

)
, (3.135)
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where n is an integer, indicating that the series need not start at order λ0. Suppose L

possesses a symmetry that may also be expanded in such a series

δπ = λm
(
δ(0)π + λδ(1)π + λ2δ(2)π + · · ·

)
, (3.136)

where m is another integer, again indicating that this series also need not start at order λ0.

The statement that δπ is a symmetry of L is

δELL

δπ
δπ ≃ 0 , (3.137)

where δELL
δπ is the Euler-Lagrange derivative and ≃ indicates equality up to a total deriva-

tive.

Expanding (3.137) in powers of λ yields a series of equations

δELL(0)

δπ
δ(0)π ≃ 0 , (3.138)

δELL(1)

δπ
δ(0)π +

δELL(0)

δπ
δ(1)π ≃ 0 ,

... (3.139)

with the first of these indicating that δ(0) is a symmetry of L(0). Our goal in this section is

to seek expansions of this form for the various examples we have constructed, in order to

find simpler, but still non-trivial, theories with the same number of symmetries.

The expansion we choose is one in powers of the field π around some background. We

expand π around a constant background value π0 and let λ count powers of the deviation

from this background; i.e. we make the replacement

π → π0 + λπ , (3.140)

and then expand the Lagrangians and symmetries in powers of λ.
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Applying this small field limit to the DBI Galileons (3.9) gives rise to the original

Galileons first studied in [91]. These are, up to total derivatives,

L2 = π ,

L2 = −1

2
(∂π)2 ,

L3 = −1

2
(∂π)2[Π] ,

L4 = −1

2
(∂π)2

(
[Π]2 − [Π2]

)
,

L5 = −1

2
(∂π)2

(
[Π]3 − 3[Π][Π2] + 2[Π3]

)
. (3.141)

Note that lower order terms in the expansion are total derivatives. For example, in the

expansion of L4 there exists an O
(
π2
)
piece, but this is a total derivative in Minkowski

space, and the first non-trivial term is the O
(
π4
)
piece shown above.

Applying the small field limit to the transformation laws (3.12) yields

δπ = 1 ,

δµπ = xµ , (3.142)

under which the terms (3.141) are invariant. This is the original Galilean symmetry consid-

ered in [91]. The small field limit can also be applied to the case of a flat brane embedded

in an AdS5 bulk (3.19), but the resulting actions and transformation laws are identical to

those of (3.141), (3.142).

Applying this technique to a de Sitter brane embedded in a flat bulk, we expand (3.35)

around some constant background. The following linear combinations allow us to succes-

sively cancel the lowest order terms in λ up to total derivatives on dS4, yielding terms which

start at order λ, λ2, etc.

L̄1 =
1

π40
L1 =

√
−gπ ,
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L̄2 =
1

π20

(

L2 +
4

π0
L1

)

= −1

2

√−g
(
(∂π)2 − 4π2

)
,

L̄3 = L3 +
6

π0
L2 +

12

π20
L1 =

√−g
(

−1

2
(∂π)2[Π]− 3(∂π)2π + 4π3

)

,

L̄4 = π20

(

L4 +
6

π0
L3 +

18

π20
L2 +

24

π30
L1

)

=
√−g

[

−1

2
(∂π)2

(

[Π]2 − [Π2] +
1

2
(∂π)2 + 6π[Π] + 18π2

)

+ 6π4
]

,

L̄5 = π40

(

L5 +
4

π0
L4 +

12

π20
L3 +

24

π30
L2 +

24

π40
L1

)

=
√−g

[

−1

2

(

(∂π)2 +
1

5
π2
)
(
[Π]3 − 3[Π][Π2] + 2[Π3]

)

−12

5
π(∂π)2

(

[Π]2 − [Π2] +
27

12
[Π]π + 5π2

)

+
24

5
π5
]

. (3.143)

Scaling the coordinates to (û, ŷi) ≡ (Lu,Lyi), carrying dimensions of length, the dS4 cur-

vature becomes R = 12
L2 , and canonically normalizing the field to π̂ = 1

L2π, we then obtain

L̂1 =
√−gπ̂ ,

L̂2 = −1

2

√−g
(

(∂π̂)2 − 4

L2
π̂2
)

,

L̂3 =
√−g

(

−1

2
(∂π̂)2[Π̂]− 3

L2
(∂π̂)2π̂ +

4

L4
π̂3
)

,

L̂4 =
√−g

[

−1

2
(∂π̂)2

(

[Π̂]2 − [Π̂2] +
1

2L2
(∂π̂)2 +

6

L2
π̂[Π̂] +

18

L4
π̂2
)

+
6

L6
π̂4
]

,

L̂5 =
√−g

[

−1

2

(

(∂π̂)2 +
1

5L2
π̂2
)(

[Π̂]3 − 3[Π̂][Π̂2] + 2[Π̂3]
)

− 12

5L2
π̂(∂π̂)2

(

[Π̂]2 − [Π̂2] +
27

12L2
[Π̂]π̂ +

5

L4
π̂2
)

+
24

5L8
π̂5
]

, (3.144)

where L̂n = 1
L4n+2 L̄n.

These expressions are invariant under the lowest order symmetry transformations ob-
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tained by taking the small field limit of (3.45),

δ+π̂ =
1

u

(
u2 − y2

)
,

δ−π̂ = −1

u
,

δiπ̂ =
yi
u
. (3.145)

The terms (3.144) are Galileons which naturally live in de Sitter space, and become the

original Galileons in the limit where the dS4 radius goes to infinity. They have the same

number of nonlinear shift-like symmetries as the original flat space Galileons, despite the

fact that they live on a curved space. As such, we anticipate them being naturally suited

to models of inflation and dark energy.

Another fascinating new feature that is not shared by the original Galileons is the

existence of a potential. In particular, the quadratic term L̂2 comes with a mass term of

order the 4D de Sitter radius. The symmetries (3.145) fix the value of the mass (in fact,

each of the symmetries in (3.145) is alone sufficient to fix the mass). If the coefficient of L̂2

is chosen to be positive, so that the scalar field is not a ghost, then this mass is tachyonic.

However, this instability is not necessarily worrisome because its timescale is of order the de

Sitter time. Furthermore, this small mass should not be renormalized, because its value is

protected by symmetry. The higher terms also come with cubic, quartic, and quintic terms

in the potential, with values tied to the kinetic structure by the symmetries.

The small field limit may also be applied to the examples of a de Sitter brane embed-

ded in either a de Sitter (3.62) or anti-de Sitter (3.89) bulk. The resulting actions and

transformation laws are identical to those of (3.144) and (3.145).

Finally, we apply the small field expansion to the case of an anti-de Sitter brane embed-

ded in an anti-de Sitter bulk, by expanding the terms (3.114) around a constant background

π0. In a similar manner to the previous case, the following linear combinations yield terms
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which start at order λ, λ2, etc. up to total derivatives.

L̄1 =
1

L4
L1 =

√−gπ ,

L̄2 =
1

L2

[

L2 +
4

R
tanh

(π0
R

)

L1

]

= −1

2

√−g
(
(∂π)2 + 4π2

)
,

L̄3 = L3 +
6

R
tanh

(π0
R

)

L2 +
4

R2

(

2− 3 sech2
(π0
R

))

L1

=
√−g

(

−1

2
(∂π)2[Π] + 3(∂π)2π + 4π3

)

,

L̄4 = L2

[

L4+
6

R
tanh

(π0
R

)

L3+
6

R2

(

4−3 sech2
(π0
R

))

L2−
24

R3
sech2

(π0
R

)

tanh
(π0
R

)

L1

]

=
√−g

[

−1

2
(∂π)2

(

[Π]2 − [Π2]− 1

2
(∂π)2 − 6π[Π] + 18π2

)

− 6π4
]

,

L̄5 = L4

[

L5 +
4

R
tanh

(π0
R

)

L4 +
3

R2

(

5− 4 sech2
(π0
R

))

L3

+
12

R3
sech3

(π0
R

)(

sinh

(
3π0
R

)

− sinh
(π0
R

))

L2 +
24

R4
sech4

(π0
R

)

L1

]

=
√−g

[

−1

2

(

(∂π)2 − 1

5
π2
)
(
[Π]3 − 3[Π][Π2] + 2[Π3]

)

+
12

5
π(∂π)2

(

[Π]2 − [Π2]− 27

12
[Π]π + 5π2

)

+
24

5
π5
]

, (3.146)

where L = R cosh4
(
π0
R

)
is the AdS3,1 radius.

Scaling the coordinates to (û, x̂i) ≡ (Lu,Lyi) so that they carry dimensions of length,

the AdS4 curvature becomes R = − 12
L2 , and canonically normalizing the field to π̂ = 1

L2π,

we then obtain

L̂1 =
√−gπ̂ ,

L̂2 = −1

2

√−g
(

(∂π̂)2 +
4

L2
π̂2
)

,

L̂3 =
√−g

(

−1

2
(∂π̂)2[Π̂] +

3

L2
(∂π̂)2π̂ +

4

L4
π̂3
)

,
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L̂4 =
√−g

[

−1

2
(∂π̂)2

(

[Π̂]2 − [Π̂2]− 1

2L2
(∂π̂)2 − 6

L2
π̂[Π̂] +

18

L4
π̂2
)

− 6

L6
π̂4
]

,

L̂5 =
√−g

[

−1

2

(

(∂π̂)2 − 1

5L2
π̂2
)(

[Π̂]3 − 3[Π̂][Π̂2] + 2[Π̂3]
)

+
12

5L2
π̂(∂π̂)2

(

[Π̂]2 − [Π̂2]− 27

12L2
[Π̂]π̂ +

5

L4
π̂2
)

+
24

5L8
π̂5
]

, (3.147)

where L̂n = 1
L4n+2 L̄n.

These terms are invariant under the lowest order symmetry transformations obtained

by taking the small field limit of (3.133)

δ+(0)π̂ =
R

u
,

δ−(0)π̂ =
R

u

(
u2 + x2

)
,

δi(0)π̂ =
R

u
xi, i = 0, 1, 2 .

(3.148)

These are Galileons that live on anti-de Sitter space. In this case, the quadratic term comes

with a non-tachyonic mass of order the AdS4 radius.

While we have focused on the construction of new effective field theories through the

small field expansion of embedded brane models, it is important to note that there may

well exist other expansions that lead to different theories in the limit. For the example of

a flat brane embedded in an anti-de Sitter bulk (3.19), the theory admits an expansion in

powers of derivatives. Up to total derivatives, the derivative expansion yields

L̄1 =
1

R
L1 = −1

4
e−4π̂ ,

L̄2 =
1

R2

(

L2 −
4

R
L1

)

= −1

2
e−2π̂(∂π̂)2 ,

L̄3 =
1

R3

(

L3 −
6

R
L2 +

8

R2
L1

)

= −1

2
(∂π̂)22π̂ +

1

4
(∂π̂)4 ,
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L̄4 =
1

R4

(

L4 −
6

R
L3 +

24

R2
L2

)

= −1

2
e2π̂(∂π̂)2

(

[Π̂]2 − [Π̂2] +
2

5
((∂π̂)22π̂ − [π̂3]) +

3

10
(∂π̂)4

)

,

L̄5 =
1

R5

(

L5 −
4

R
L4 +

15

R2
L3 −

48

R3
L2

)

= −1

2
e4π̂(∂π̂)2

[

[Π̂]3 − 3[Π̂][Π̂2] + 2[Π̂3] + 3(∂π̂)2([Π̂]2 − [Π̂2])

+
30

7
(∂π̂)2((∂π̂)2[Π̂]− [π̂3])− 3

28
(∂π̂)6

]

, (3.149)

where π̂ ≡ π/R. These are the conformal Galileons [39, 77, 91]. Their transformation laws

come from applying the derivative expansion to the transformation laws (3.28),

δπ̂ = 1− xµ∂µπ̂,

δµπ̂ = 2xµ + x2∂µπ̂ − 2xµx
ν∂ν π̂ . (3.150)

In taking the limit in powers of derivatives, we must remember that the explicit factors of

the coordinates in the transformation laws are assigned a power of inverse derivatives. The

terms (3.149) are each invariant up to a total derivative under (3.150). As mentioned in [39],

it is remarkable that this limit does not alter the commutation relations of the symmetries,

so that the algebra remains SO(4, 2).

The derivative expansion can also be applied to the DBI Galileons (3.9). The result is

identical to the small field limit, since the powers of π and powers of ∂ within each limiting

Lagrangian are identical.

A derivative expansion does not, however, seem applicable in general. To see the prob-

lem, attempt to construct an order four derivative term from the general Lagrangians in

(3.6). It is necessary to find a constant A such that the two derivative part in the expression

L3 +AL2 is a total derivative. The two derivative part reads
√−g

(
3ff ′ − A

2 f
2
)
(∂π)2, up

to a total derivative, and for this to vanish we must have f ∝ eAπ/6. The only cases of

ours that conform to this are the conformal DBI Galileons (A 6= 0) and the ordinary DBI

Galileons (A = 0).
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3.4.1 Symmetry breaking and ghosts

By writing the actions of the previous section in terms of the scalar curvature, R = 12
L2 for

dS4, R = − 12
L2 for AdS4, and R = 0 for M4, it is possible to combine the dS4 Galileons

(3.144), the AdS4 Galileons (3.147) and the flat space Galileons (3.141) into the single set

of expressions

L̂1 =
√−gπ̂ ,

L̂2 = −1

2

√−g
(

(∂π̂)2 − R

3
π̂2
)

,

L̂3 =
√−g

(

−1

2
(∂π̂)2[Π̂]− R

4
(∂π̂)2π̂ +

R2

36
π̂3
)

,

L̂4 =
√−g

[

−1

2
(∂π̂)2

(

[Π̂]2 − [Π̂2] +
R

24
(∂π̂)2 +

R

2
π̂[Π̂] +

R2

8
π̂2
)

+
R3

288
π̂4
]

,

L̂5 =
√−g

[

−1

2

(

(∂π̂)2 +
R

60
π̂2
)(

[Π̂]3 − 3[Π̂][Π̂2] + 2[Π̂3]
)

−R
5
π̂(∂π̂)2

(

[Π̂]2 − [Π̂2] +
3R

16
[Π̂]π̂ +

5R2

144
π̂2
)

+
R4

4320
π̂5
]

. (3.151)

Focusing on L̂2, we note that the non-linear symmetries fix the sign of the mass term relative

to that of the kinetic term. Therefore, in de Sitter space, where R is positive, the scalar

is either a tachyon or a ghost, depending on the overall sign of L̂2. In AdS on the other

hand, where R < 0, the scalar can be stable and ghost free if the sign of L̂2 is chosen to be

positive9.

The presence of a tachyon suggests spontaneous symmetry breaking, as there may be

higher order terms in the potential which stabilize it. In this section, we explore the pos-

sibility of using the tachyon of the de Sitter Galileons to induce spontaneous symmetry

9A scalar in AdS can tolerate a slightly negative mass without instability. Any mass squared larger than

the Breitenhloer Friedman bound m2 ≥ − 9
4L2

= 3
16
R is stable [14]. However, we cannot make use of this in

any way, since the AdS scalar is ghostlike whenever its mass squared is negative.
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breaking. More specifically, consider imposing a Z2 symmetry π → −π, which forbids the

odd terms L̂3 and L̂5.
10 In the dS case and AdS case respectively, a symmetry breaking

potential can be achieved by choosing

L̂2 − aL̂4, dS , (3.152)

−L̂2 + aL̂4, AdS , (3.153)

with coupling constant a > 0. In both cases, the potential is

V (π) =
|R|
288

(
−48π2 + aR2π4

)
. (3.154)

This has a Z2 preserving vacuum at π = 0 and Z2 breaking vacua at π = ±
√

24
a

1
|R| .

None of these vacua alter any of the Galilean symmetries of these models. Thus, ex-

panding around one of the minima (the positive one, say), we obtain a Lagrangian which

is also a combination of the terms (3.151), with coefficients depending only on the original

coefficient a,

−2L̂2 −
√
6aL̂3 − aL̂4, dS , (3.155)

2L̂2 −
√
6aL̂3 + aL̂4, AdS . (3.156)

In the dS case, the field has a normal sign kinetic term around the tachyonic π = 0 solution,

and a ghostly kinetic term around the symmetry breaking vacuum. In the AdS case, the

field is a ghost around the tachyonic π = 0 solution, and is ghost-free around the symmetry

breaking vacuum. In this case we see a version of ghost condensation along with the usual

tachyon condensation. See figure 3.2.

10This is interesting in its own right. Imposing this symmetry on the original Galileons gives an interacting

scalar field theory which in suitable regimes has only one possible interaction term L̂4, which furthermore

is not renormalized. This is the co-dimension one version of introducing an internal SO(N) symmetry in a

theory with a multiplet of N Galileons, which also yields a single possible interaction term [73].
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Normal Kinetic Term (dS)

Ghost Kinetic Term (AdS)

Ghost Kinetic Term (dS)

Normal Kinetic Term (AdS)

Figure 3.2: Z2 symmetry breaking for the dS/AdS Galileons.

100



3.5 Stability and Subluminality for DBI Galileons

3.5 Stability and Subluminality for DBI Galileons

In this section we find static, spherically symmetric solutions of DBI galileon theory of

Sec. 3.3.1, and explore their stability. Such an analysis was performed for the ordinary

galileons in [91], and for multi-galileon theories in [3, 97]. For the original galileon model

[91], it was found that for some choices of parameters, stable solutions exists but always

contain superluminal signal propagation. We follow the same approach here, extending the

results to the DBI galileons, and reach similar conclusions. The analysis is only valid in

the Mp → ∞ limit. As shown in [45], the stability of these theories depends on terms

suppressed by the square of the Planck mass.

3.5.1 Equations of Motion

The first task is to derive the equations of motion for DBI galileons coupled to matter.

From (3.9), the lagrangians under consideration are

L2 = −
√

1 + (∂π)2 ,

L3 = − [Π] + γ2
[
π3
]
,

L4 = −γ
(

[Π]2 −
[
Π2
])

− 2γ3
([
π4
]
− [Π]

[
π3
])

,

L5 = −γ2
(

[Π]3 + 2
[
Π3
]
− 3 [Π]

[
Π2
])

− γ4
(

6 [Π]
[
π4
]
− 6

[
π5
]
− 3

(

[Π]2 −
[
Π2
]) [

π3
])

,

(3.157)

where we have explicitly retained all total derivatives and we neglect the tadpole term.

The resulting equations of motion take the form En = 0, with n = 2, 3, 4, 5, and

E2 = γ [Π]− γ3
[
π3
]
, (3.158)

E3 = γ2
(

[Π]2 −
[
Π2
])

+ 2γ4
([
π4
]
− [Π]

[
π3
])

, (3.159)

E4 = γ3
(

[Π]3 + 2
[
Π3
]
− 3 [Π]

[
Π2
])

+ γ5
(

6 [Π]
[
π4
]
− 6

[
π5
]
− 3

(

[Π]2 −
[
Π2
]) [

π3
])

,

(3.160)
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E5 = γ6
(

[Π]4 − 6
[
Π2
]
[Π]2 + 8 [Π]

[
Π3
]
+ 3

[
Π2
]2 − 6

[
Π4
])

. (3.161)

These satisfy the following interesting recursion relation noticed in [39],

δ

δπ

(√−g
)
= K , (3.162)

δ

δπ

(√−g K
)
= R , (3.163)

δ

δπ

(√−g R
)
=

3

2
KGB , (3.164)

δ

δπ

(√−gKGB

)
=

2

3
LGB4 , (3.165)

where LGB4 = R2 − 4R2
µν +R2

µναβ is the second order Lovelock invariant.

In this paper we consider a theory containing these terms with arbitrary coefficients dn,

and which is linearly coupled to the trace T of the energy momentum tensor of matter, so

that the complete Lagrangian density is

L =

5∑

n=2

dnLn + πT , (3.166)

with equation of motion E = 0, where

E ≡
5∑

n=2

dnEn + T . (3.167)

The linear coupling is not invariant under the symmetry operation (3.12). Rather, it

was chosen for simplicity and for comparison with the results of [91] where the same choice

was made. It is also the coupling that arises if the scalar is considered as a modification

to gravity that conformally mixes with the graviton, as happens in the DGP model. In

like of the probe brane procedure, a perhaps more natural coupling between the galileon

and matter which respects (3.12) could come from ḡµνT
µν ⊃ ∂µπ∂νπT

µν , but this gives no

contribution to the equations of motion for static sources and is hence uninteresting for our

purposes.
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Our goal is to derive constraints on this model from the requirements of stability and

subluminality of mode propagation around spherically symmetric backgrounds. We shall

begin this analysis in the next section, but it is important to note that one constraint can

be seen immediately;

d2 > 0 , (3.168)

since otherwise the kinetic term will yield a ghost (or will be absent, indicating strong

coupling, if we set d2 = 0).

3.5.2 Spherical solutions

We search for static spherically symmetric solutions to the equations of motion in spherical

polar coordinates (r, θ, φ), in the presence of a positive mass delta function source at the

origin

T = −Mδ3(r), M > 0 . (3.169)

To evaluate the equations of motion we need find only the non-vanishing elements of Πµν =

∂µ∂νπ − Γαµν∂απ. These are Πrr = π,rr, Πθθ = rπ,r, and Πφφ = r sin2 θπ,r. Since the flat

metric is diagonal we then have

[Πn] = (Πrrη
rr)n +

(

Πθθη
θθ
)n

+
(

Πφφη
φφ
)n

= πn,rr +
2πn,r
rn

, (3.170)
[
πn+2

]
= π2,r (Πrr)

n (ηrr)n+1 = π2,rπ
n
,rr . (3.171)

Using these, the equations of motion (3.167) become

E2 =
1

r2
d

dr

[
r3y
]
, (3.172)

E3 =
2

r2
d

dr

[
r3y2

]
, (3.173)

E4 =
2

r2
d

dr

[
r3y3

]
, (3.174)

103



3. MAXIMALLY SYMMETRIC CASES

E5 = 0 , (3.175)

where we have defined

y ≡ γπ′

r
. (3.176)

The fifth order term vanishes because our focus on static solutions causes the problem to

effectively reduce to a three dimensional one, and the fifth order term is trivial in three

dimensions. The remaining equations of motion can be written as a polynomial in y as

1

r2
d

dr

[
r3P (y)

]
=Mδ3(r) , (3.177)

with

P (y) ≡ d2y + 2d3y
2 + 2d4y

3 . (3.178)

Note that the equations of motion are a total r-derivative. This is a consequence of the

shift invariance π → π + c of the Lagrangian, which has an associated Noether current Jµ,

in terms of which the equations of motion take the form ∂µ(−Jµ) = 0. We may therefore

integrate the equations of motion once to obtain

P (y) =
M

4πr3
. (3.179)

We now study the existence of spherically symmetric solutions, and the resulting con-

straints on the coefficients d2, d3, d4. Our boundary condition is that π approaches a con-

stant as r → ∞. The other boundary condition is fixed by the delta function at the origin.

Focusing on small r, (3.179) yields

π′3

(1 + π′2)3/2
d4 =

M

8π
. (3.180)
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This determines a finite value for π′ at the origin, and therefore implies that π must also

be finite there. Since the absolute value of the prefactor in front of d4 on the left hand side

is always less than unity, we then obtain the constraint

|d4| >
M

8π
. (3.181)

This constraint is unique to the DBI action - no such constraint arises in the usual galileon

theories. The fourth-order term dominates at short distances, and its non-linearities render

π finite at the origin. In particular therefore, note that there are no spherically symmetric

static solutions in the pure DBI model, for which d3 = d4 = 0.

As we have demonstrated, π′(r) ranges from some finite non-zero value at r = 0, to

zero as r → ∞ (since π itself goes to a constant). Thus, the variable y = γπ′/r ranges

from infinity to zero as r ranges from zero to infinity (we will see shortly that it does so

monotonically).

As r varies from the origin to infinity, the right hand side of (3.179) ranges from zero to

infinity, so the cubic polynomial on the left must do so as well. Looking at small y, along

with the requirement d2 > 0 for a healthy kinetic term, tells us that P (y) intersects the

origin and is monotonically increasing near the origin, and hence that y as a function of r

is monotonically decreasing in the same region. As y gets larger (r smaller, P (y) larger),

the solution for y(r) must continue to exist and be smooth, which means that P (y) must

not have any of its critical points in the region y > 0. Thus P (y) monotonically increases

for y > 0, and hence y(r) is monotonically decreasing for r > 0. Looking at the form of

y, this implies in turn that π′(r) is monotonic, ranging from some finite value to zero as r

goes from zero to infinity. Integrating, we see that π(r) is monotonic as well.

The condition we have then is

P ′(y) = d2 + 4d3y + 6d4y
2 > 0, for y > 0 . (3.182)

Focusing on large y implies that d4 ≥ 0, so that we can now remove the absolute value sign

in (3.181). We already know that d2 > 0, from the requirement of a healthy kinetic term,
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but it is worth pointing out that a direct implication of (3.182), applied at small y, is that

spherical solutions do not exist for a ghost-like theory with d2 < 0. Furthermore, we are

safe if the minimum of P ′(y) occurs above zero, which happens if

|d3| <
√

3

2
d2d4 . (3.183)

Otherwise, the largest root of P ′(y) must occur for y ≤ 0, which happens if d3 ≥ 0.

In summary, the flat space theory is ghost-free and spherical solutions exist if and only

if

d2 > 0, d4 >
M

8π
, d3 > −

√

3

2
d2d4 . (3.184)

3.5.3 Stability

The existence of spherically symmetric solutions is, of course, not sufficient to guarantee

viability of the theories in question. The next test is to examine the stability of these

solutions. To do this, we expand the action in perturbations around the spherical solutions

π(x) = π0(r) + ϕ(x) , (3.185)

and isolate the terms quadratic in ϕ. These terms take the form

Sϕ =
1

2

∫

dt

∫

d2Ω

∫ ∞

0
r2dr

[
Kt(r)ϕ̇

2 −Kr(r)(∂rϕ)
2 −KΩ(r)(∂Ωϕ)

2
]
, (3.186)

where overdots denote time derivatives, (∂Ωϕ)
2 = (∂θϕ)

2 + 1
sin2 θ

(∂φϕ)
2 is the angular part

of (~∇ϕ)2, and the kinetic coefficients K depend on r through the background radial solution

π0(r) and its derivatives. Note that the quadratic action contains only second derivatives

acting on the perturbations. This is because the field equations are second order, despite

the fact that the lagrangian is higher derivative, as we mentioned earlier.

In order for the solution to be stable, each Ki(r) (i = t, r, Ω) must be positive for all

r > 0. If Kt is negative in some region, then localized excitations will be ghostlike and will
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carry negative energy. If either of Kr, KΩ are negative in some region, then it is possible

to find localized perturbations for which gradients lower the energy of the background

solution. This kind of instability, associated with negative gradient energy for certain

classes of fluctuations, is more troublesome than a tachyon-like instability associated with

a negative mass squared term or upside down potential. A tachyon-like instability is, like

the Jeans instability, dominated by modes with momenta of order the tachyonic mass scale,

which can be parametrically smaller than the UV cutoff, and thus computable within the

effective theory. By contrast, the gradient instability can be due to very short wavelength

wave-packets with high momentum. Thus, this instability also plagues fluctuations right

down to the UV cutoff of the theory, so that quantities such as decay rates are dominated

by the shortest distances in the theory, and cannot be reliably computed within the effective

theory.

To obtain explicit expressions for the functionsKi(r), we expand the equations of motion

to linear order in ϕ

E[π0 + ϕ] → δSϕ
δϕ

= −Kt(r) ϕ̈+
1

r2
∂r
(
r2Kr(r) ∂rϕ

)
+KΩ(r) ∂

2
Ωϕ , (3.187)

where ∂2Ω = 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂φ2 is the angular part of the laplacian.

We begin with the radial perturbations, and find Kr simply by perturbing the radial

equation (3.177), using a perturbation that depends only on r

δE =
1

r2
d

dr

[
r3P ′(y)δy

]
=

1

r2
d

dr

[
r2P ′(y)γ3ϕ′] . (3.188)

From this we read off

Kr(r) = γ3P ′(y) . (3.189)

From (3.182), we then see that if the solution exists, then K(r) is automatically positive,

since γ > 0.
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Now turn to the angular perturbations. To find KΩ, we vary the full equations (3.167),

allowing the perturbation to depend only on angular variables, and keeping in mind that

the background depends only on r. Using the following useful expressions

δ [Πn] =
nπ′n−1

rn−1
∂2Ωϕ , δ [πn] = 0 , δγ = 0 , (3.190)

it is simple to show that

KΩ(r) =
γ

2r

d

dr

[
r2P ′(y)

]
. (3.191)

Recall that the coefficient d5 does not enter in either Kr or KΩ, because we are still con-

sidering static configurations, for which the fifth DBI term vanishes.

Lastly, we consider the temporal perturbations. We find Kt by varying the full equa-

tions (3.167), this time allowing the perturbation to depend only on time. Once again, some

useful expressions

δ [Π] = −ϕ̈ , δ [Πn] = 0 (n > 1) , δ [πn] = 0 , δγ = 0 , (3.192)

allow us to show that

Kt(r) =
γ

3r2
d

dr

[
r3
(
d2 + 6d3y + 18d4y

2 + 24d5y
3
)]

. (3.193)

We see that d5 enters here for the first time, since we have deviated, at last, from static

equations.

As we have written them, the functions Ki(r) depend on γ, r,
dy

dr
and y. However,

we may eliminate
dy

dr
in favor of y by using the implicit function theorem on the function

F (y, r) = P (y)− M

4πr3
= 0. This yields

dy

dr
= −∂rF

∂yF
= −3

r

P (y)

P ′(y)
. (3.194)
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Substituting this into our expressions for the Ki(r) we obtain

Kr = γ3
[
d2 + 4d3y + 6d4y

2
]
,

KΩ = γ

[

d22 + 2d2d3y +
(
4d23 − 6d2d4

)
y2

d2 + 4d3y + 6d4y2

]

,

Kt = γ

[

d22+(4d2d3) y+12
(
d23−d2d4

)
y2+24 (d3d4−2d5d2) y

3+12
(
3d24−4d3d5

)
y4

d2+4d3y+6d4y2

]

.

(3.195)

Note that the explicit r dependence has canceled out.

Since the solution spans all positive values of y as r varies from zero to infinity, we require

Kt and KΩ to be positive for all y > 0. The denominators in (3.195) are automatically

positive, from (3.182). Given the constraints (3.184), The numerator in KΩ is positive for

d3 ≥
√

3
2 d2 d4 which also ensures that the numerator in Kt is positive provided d5 ≤ 3

4
d24
d3
.

The radial solution therefore exists and is stable if and only if

d2 > 0 , d4 >
M

8π
, d3 ≥

√

3

2
d2d4 , d5 ≤

3

4

d24
d3

. (3.196)

3.5.4 Propagation speed of fluctuations

As a final test of the viability of the DBI galileon theories, we consider the propagation

speeds of small fluctuations around the stable spherical solutions. For radially propagating

fluctuations this speed is

c2r =
Kr

Kt
. (3.197)

At large distances from the source (small y), this becomes

c2r = 1 + 4
d3
d2
y + O(y4/3) > 1 , (3.198)
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where here and in what follows we express γ in terms of y via

γ =
√

1− r2y2 =

√

1−
(

M

4πP (y)

)2/3

y2 . (3.199)

Therefore, given the constraints implied by existence and stability of the solutions, this is

always superluminal.

At smaller distances (larger y), the speed is

c2r =
3d24

3d24 − 4d3d5

[

1−
(

M

8πd4

)2/3
]

+ O

(
1

y

)

, (3.200)

so the propagation speed is subluminal in this region if

d5 <
3d24
4d3

(
M

8πd4

)2/3

. (3.201)

The speed of angular excitations is

c2Ω =
KΩ

Kt
. (3.202)

The difference between the numerator and the denominator is, apart from an overall positive

factor,

KΩ −Kt ∼ −2d2d3y −
(
8d23 − 6d2d4

)
y2 − 24 (d3d4 − 2d2d5) y

3 − 12
(
3d24 − 4d3d5

)
y4 .
(3.203)

Given the constraints (3.196), this is always negative, so the speed of angular excitations is

always subluminal. Also, the angular speed goes to zero as r goes to zero. The radial and

angular speeds for a sample solution are shown in figure 3.3.

Certainly the existence of superluminally propagating modes raises questions about

the viability of galileon DBI theories. Whether such a feature is really a problem that

conclusively rules out a low-energy effective theory is still being debated [9, 16, 60], but it

has been argued that, at the least, it may preclude the possibility of embedding the theory

into a local, Lorentz invariant UV completion [1].
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Figure 3.3: Speed of fluctuations c2r and c2
Ω
, in the radial and angular directions respectively,

for a sample solution satisfying the existence and stability constraints (3.196), as well as (3.201).

The values chosen are d2 = 1, d3 = 2, d4 = 1, d5 = −1, M = 1.

3.5.5 Discussion

In this section we have studied spherically symmetric solutions to the DBI galileon models,

demonstrating that there exists a range of parameters in which such solutions exist. We

have also examined the stability of these solutions and computed the propagation speeds

of perturbations around the solutions. While we have found that there exists a region

of parameter space in which our solutions are stable, we have shown that these solutions

always exhibit superluminal propagation. Such behavior is familiar from that of the ordinary

galileon theories. Thus, although one might have thought that the γ factors appearing for

DBI galileons could cure the superluminality issues, the results we find here indicate that

they do not.

We have worked in dimensionless units, which corresponds to setting to unity a scale,
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Λ, suppressing all the non-linearities in the Lagrangian. In addition, we have absorbed into

the stress tensor a scale, Mp, representing the coupling strength. Restoring these scales,

the condition (3.181) tells us d4 & M/Mp, so in gravitational applications, where M is the

mass of the Sun and Mp the Planck mass, this tells us that d4 must be huge, of order the

solar mass in Planck units. One might worry that this necessitates strong coupling, but

this is not the case because the coefficient d2, which multiplies the kinetic term, may also

be chosen to be very large, so that after canonical normalization the true couplings are still

small.

To see the consequences of this, consider expanding the action with the scale Λ restored.

The DBI term reads schematically d2Λ
4
√

1 + (∂π)2

Λ4 ∼ (∂π̂)2 + 1
d2Λ4 (∂π̂)

4 + · · · , with the

canonically normalized field π̂ = d
1/2
2 π. The scale suppressing the non-linear terms here is

d
1/4
2 Λ. Similarly, the quartic galileon term is, schematically,

∼ d4

[

1 +
(∂π)2

Λ4
+ · · ·

]
1

Λ6
(∂2π)2(∂π)2

=
d4
d2Λ2

1

d2Λ4
(∂2π̂)2(∂π̂)2 +

d4
d2Λ2

1

d22Λ
8
(∂2π̂)2(∂π̂)4 + · · · , (3.204)

which means that the strong coupling scales are
(
d22
d4

)1/6
Λ,
(
d32
d4

)1/10
Λ, · · · . Since d4 is so

large, keeping the lowest strong coupling scale reasonably high requires choosing d2 large,

say d22 ∼ d4, in which case all the higher order DBI scales are much higher (corresponding to

small coupling), and the theory becomes very similar to the ordinary galileons, explaining

why we find conclusions similar to the conclusions in that case. In addition, note that the

coupling to the stress tensor, in terms of the canonically normalized field, is ∼ 1

d
1/2
2 Mp

π̂T ,

so that the true Planck mass is actually ∼ d
1/2
2 Mp, and the necessary size of d4 is actually

larger than the solar mass in physical Planck units.

On the other hand, in some situations, it may be too much to demand that the spherical

solutions exist for all r. For example, if π represents the fifth coordinate of a brane embed-

ding, we should not expect that the brane configuration should be everywhere expressible
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as a single valued function of the four coordinates xµ (the solutions of [21, 61, 62, 88] are

examples of this). In this case, the restrictions on the coefficient d4 may be relaxed.

DBI galileon theories therefore, like the ordinary galileons, face a challenge from the

superluminal propagation of perturbations around simple spherically symmetric solutions.

Whether these theories are viable depends on the development of an argument that this

superluminality does not lead to the pathologies that are traditionally associated with this

behavior, or whether a modification to the theory or its couplings to matter or gravity can

eliminate this behavior. It should be mentioned that the coupling of galileons to gravity is

non-trivial if one wishes to keep the equations of motion second order [41, 42], and the issue

of superluminality should in principle be re-examined in the full covariant context, though

the effects should be Planck suppressed.
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Chapter 4

Cosmological Galileons 11

4.1 Overview

In this chapter we use the brane construction methods of Sec.2.2 in order to construct a

galileon-like theory on cosmological FRW spacetimes, and to identify the non-linear symme-

tries of the resulting theories (this possibility was commented on in [17]). The construction

begins with an embedding of FRW in a flat 5D bulk, so that the symmetry group will be

the 15-dimensional Poincare group of 5D flat space, of which the 6 symmetries of FRW

(spatial translations and rotations) will be linearly realized. The resulting theory of “FRW

galileons” turns out to be much more complicated and cumbersome than the scenarios of

Sec.3 and after deriving the curvature terms necessary to generate the generic brane action

(2.4) we restrict ourselves and only derive explicit lagrangians in the minisuperspace ap-

proximation as we mainly have in mind cosmological applications. Additionally, we discuss

the small π limits and explore the existence and stability of simple solutions for π.

11The work in this chapter was performed in collaboration with Kurt Hinterbichler and Mark Trodden.
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4.2 Embedding 4D FRW in 5D Minkowski

We consider the case of a spatially flat FRW 3-brane embedded in 5D Minkowski space.

In order to begin the brane construction, we need to derive a convenient form of the bulk

Minkowski metric in which we foliate the bulk by leaves which are themselves 4D FRW

spacetimes. Starting from the bulk Minkowski metric with coordinates Y A

ds2 = −
(
dY 0

)2
+
(
dY 1

)2
+
(
dY 2

)2
+
(
dY 3

)2
+
(
dY 5

)2
, (4.1)

we make a change to coordinates to t, xi, ρ, where i = 1, 2, 3 runs over the spatial indices

on the brane12,

Y 0 = S(t, ρ)

(
x2

4
+ 1− 1

4H2a2

)

− 1

2

∫

dt
Ḣ

H3a
,

Y i = S(t, ρ)xi,

Y 5 = S(t, ρ)

(
x2

4
− 1− 1

4H2a2

)

− 1

2

∫

dt
Ḣ

H3a
. (4.2)

Here, a(t) is an arbitrary function of t which will become the scale factor of the 4D space,

and overdots denote derivatives with respect to t. We have defined x2 ≡ xixjδij, H ≡ ȧ/a,

and

S(t, ρ) ≡ a− ȧρ. (4.3)

The lower limits on the integrals in (4.2) are arbitrary, and different choices merely shift

the embedding. In the case of power law expansions a(t) ∼ tα, α > 0, taking the lower limit

to be zero puts the big bang at the origin of the embedding space.

In these new coordinates, the Minkowski metric reads

ds2 = −n2(t, ρ)dt2 + S2(t, ρ)δijdx
idxj + dρ2 , (4.4)

12This is the transformation used in [46], except that we have not imposed a Z2 symmetry.
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4. COSMOLOGICAL GALILEONS

Figure 4.1: The embedding of an FRW brane in 5D Minkowski space for the case a(t) = t1/2.

where

n(t, w) ≡ 1− ä

ȧ
ρ . (4.5)

On any ρ = const. slice, the induced metric is

ds̃2 = −n2(t, ρ)dt2 + S2(t, ρ)δijdx
idxj, (4.6)

and so after a slice by slice time redefinition n(t, ρ)dt = dt′ we verify that we have indeed

foliated M5 with spatially flat FRW slices. Furthermore, the coordinates are Gaussian

normal with respect to this foliation. A plot of the embedding in the case a ∼ t1/2 is shown

in Fig.(4.1).
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4.3 Symmetries

4.3 Symmetries

Before building lagrangians, we discuss and derive the symmetries that they will obey. The

general analysis exactly mirrors that of Sec.3.2.1. The algebra of Killing vectors of GAB

contains a subalgebra consisting of those Killing vectors for which K5 = 0 and we choose a

basis of this subalgebra with elements indexed by I,

KA
I (X) =

{

Kµ
I
(x) A = µ

0 A = 5
. (4.7)

We then extend this to a basis for the algebra of all Killing vectors by adding a suitably

chosen set of linearly independent Killing vectors with non-vanishing K5. We index these

with I, so that (KI,KI) is a basis of the full algebra of Killing vectors. We work in our

preferred gauge (2.7) and the gauge preserving symmetries take the form

(δK + δg,comp)π = −aIKµ
I
(x)∂µπ + aIK5

I (x)− aIKµ
I (x, π)∂µπ , (4.8)

where {aI, aI} are constants, demonstrating that the KI symmetries are linearly realized,

whereas the KI symmetries are non-linearly realized. This pattern corresponds to the

spontaneous breaking of the bulk symmetry algebra down to the subalgebra which preserves

the leaves of the foliation.

In order to derive the basis of Killing vectors appropriate for the scenario under consid-

eration, we start with be the cartesian coordinates used in (4.1), the Y A’s, whose associated

basis vectors are ∂̄A. In these coordinates, the Killing vectors take the familiar form of the

ten rotations and boosts, LAB, and the five translations PA,

LAB = YA∂̄B − YB∂̄A, PA = −∂̄A. (4.9)

After rewriting these Killing vectors in terms of the brane-adapted coordinates {t, xi, ρ}
and the associated basis vectors {∂t, ∂i, ∂ρ}, we find the following combinations which con-

tain no K5 component,

Lij = xi∂j − xj∂i, −1

2
[Li0 + Li5] = −∂i . (4.10)
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These generate the three rotations and three spatial translations of the FRW leaves and

thus represent the KA
I
’s.

The remaining vectors form the KA
I ’s, which we take in the following combinations,

vi =
1

2
[Li0 − Li5] =

1

2
xiȧ

[
∫

dt
Ḣ

H3a

]

∂ρ +
xi
(
a− ȧπ + ȧ2

∫
dt Ḣ

H3a

)

2ȧ− 2πä
∂t

−
[

xixiȧ2 + 1

4ȧ2
+

∫
dt Ḣ

H3a

2a− 2πȧ

]

∂i +
∑

j 6=i

[

−x
ixj

2
∂j +

xjxj

4
∂i

]

,

ki = −Pi =
1

a− πȧ
∂i + xiȧ

( ȧ

πä− ȧ
∂t − ∂ρ

)
,

q = −1

2
[P0 + P5] = ȧ

(
∂ρ +

ȧ

ȧ− πä
∂t
)
,

u = −1

2
[P0 − P5] =

x2ȧ2 − 1

4ȧ
∂ρ +

x2ȧ2 + 1

4ȧ− 4πä
∂t −

1

2a− 2πȧ

∑

i

xi∂i,

s = L50 =

[

a− πȧ+ ȧ2
∫
dt Ḣ

H3a

πä− ȧ

]

∂t − ȧ

[
∫

dt
Ḣ

H3a

]

∂ρ +
∑

i

xi∂i , (4.11)

where H = ȧ/a, x2 = δijx
ixj , the summation convention has been suspended and we’ve

replaced ρ→ pi. The lower limits on the integrals should be the same as those in (4.2).

The non-linear symmetries of the π field are then obtained from (4.8),

δviπ =
1

2
xiȧ

∫

dt
Ḣ

H3a
−
xi
(
a− ȧπ + ȧ2

∫
dt Ḣ

H3a

)

2ȧ− 2πä
π̇

+

[

xixiȧ2 + 1

4ȧ2
+

∫
dt Ḣ

H3a

2a− 2πȧ

]

∂iπ −
∑

j 6=i

[

−x
ixj

2
∂jπ +

xjxj

4
∂iπ

]

,

δkiπ = xiȧ

(
ȧπ̇

ȧ− πä
− 1

)

− ∂iπ

a− πȧ
,

δqπ =
π̇ȧ2

πä− ȧ
+ ȧ,

δuπ =
x2ȧ2 − 1

4ȧ
− x2ȧ2 + 1

4ȧ− 4πä
π̇ +

1

2a− 2πȧ

∑

i

xi∂iπ,
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4.4 Lagrangians

δsπ = −ȧ
∫

dt
Ḣ

H3a
+

(

a− ȧπ + ȧ2
∫
dt Ḣ

H3a

)

π̇

ȧ− πä
−
∑

xi∂iπ, (4.12)

where now, of course, π = π(x) is the galileon-like field. These are clearly complicated

and highly non-linear transformations, and without the brane formalism it would be nearly

impossible to guess their form.

4.4 Lagrangians

Given our desired bulk metric (4.4) we can begin to derive the appropriate lagrangians and

their symmetries and we do so in this section. The building blocks for the action are the

induced metric (already derived in (4.6)), the extrinsic curvature and induced Riemann

curvature. Since the bulk metric is Gaussian normal, we can use the results of Sec.2.2.1.2

to read off the extrinsic curvature. As for the induced Riemann curvature, we find that

because the bulk metric is flat (and hence RABCD = 0) it can be expressed solely in terms

of the extrinsic curvature tensor and induced metric via the Gauss-Codazzi equations,

R
(5)
ABCDe

A
µe
B
νe
C
ρe
D
σ = 0 = R̄µνρσ −KµρKνσ +KµσKνρ . (4.13)

In particular, this simplifies the expressions for L4 and L5 in (2.38) as they reduce to

L4 = −√−ḡ
[
K2 −K2

µν

]
, (4.14)

L5 =
√−ḡ

[
K3 − 3K2

µνK + 2K3
µν

]
. (4.15)

Therefore, only the knowledge of ḡµν and Kµν is necessary to construct the desired la-

grangians.

Similar to the procedure of Sec.3.2.2, one can derive an explicit form of the Li’s for flat

(i.e. RABCD = 0) bulk metrics written in Gaussian normal form. It is again a quite lengthy

calculation and the result is given in Appendix C. Using the general formulas (C.0.4), the
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first two FRW galileon lagrangians are found to be

L1 = a3π −
a2
(

3ȧ2 + aä
)

π2

2ȧ
+ a
(

ȧ2 + aä
)

π3 − 1

4
ȧ
(

ȧ2 + 3aä
)

π4 +
1

5
äȧ2π5,

L2 = −(1− ä

ȧ
π)(a− ȧπ)3

√

1−
(

1− ä

ȧ
π

)−2

π̇2 + (a− ȧπ)−2(~∇π)2. (4.16)

where no integrations by parts have been made. Higher order lagrangians become unfortu-

nately complicated. We relegate the expression for L3 to Appendix D, due to its complexity,

and opt not to write out explicit expressions for L4 and L5 due to their even more unman-

ageable length.

4.4.1 Minisuperspace Lagrangians

In their full form, the higher order FRW galileon lagrangians are nearly impossible to use

due to the sheer number of terms they carry. However, for cosmological applications where

we are not considering fluctuations, we may be most interested in the limiting case in which

spatial gradients are set to zero, so that π = π(t). In this minisuperspace approximation,

the lagrangians simplify significantly, and we display their full forms here. We present these

lagrangians with their numerators ordered by increasing powers of π and then by patterns

of derivatives on the π fields. No integrations by parts have been made.

L1 = a3π −
a2
(

3ȧ2 + aä
)

π2

2ȧ
+ a
(

ȧ2 + aä
)

π3 − 1

4
ȧ
(

ȧ2 + 3aä
)

π4 +
1

5
äȧ2π5,

L2 = −
(

a− πȧ
)3
√
(

1− πä

ȧ

)2
− π̇2,

L3 =
[

3a2ȧ4 + a3äȧ2 +
(
−6aȧ5 − 12a2äȧ3 − 2a3ä2ȧ

)
π − 3a2ȧ4π̇ − a3ȧ3π̈

+
(
3ȧ6 + 21aäȧ4 + 15a2ä2ȧ2 + a3ä3

)
π2 + (6aȧ5 + 6a2äȧ3

− a3
...
a ȧ2 + a3ä2ȧ)ππ̇ + (−3a2ȧ4 − 2a3äȧ2)π̇2 + (3a2ȧ4 + a3äȧ2)ππ̈

+ (−10äȧ5 − 24aä2ȧ3 − 6a2ä3ȧ)π3 + (−3ȧ6 − 12aäȧ4 + 3a2
...
a ȧ3
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− 6a2ä2ȧ2)π2π̇ + (6aȧ5 + 9a2äȧ3)ππ̇2 + (−3aȧ5 − 3a2äȧ3)π2π̈

+ 3a2ȧ4π̇3 + (9aȧ2ä3 + 11ȧ4ä2)π4 + (6äȧ5 − 3a
...
a ȧ4 + 9aä2ȧ3)π3π̇

+ (−3ȧ6 − 12aäȧ4)π2π̇2 + (ȧ6 + 3aäȧ4)π3π̈ − 6aȧ5ππ̇3 − 4ȧ3ä3π5

+ (ȧ5
...
a − 4ȧ4ä2)π4π̇ + 5ȧ5äπ3π̇2 − ȧ5äπ̈π4

+ 3ȧ6π̇3π2
]

/
[

ȧ
((
π̇2 − 1

)
ȧ2 + 2πäȧ− π2ä2

) ]

,

L4 =
[

− 6aȧ4 − 6a2äȧ2 + (6ȧ5 + 30aäȧ3 + 12a2ä2ȧ)π + 6aȧ4π̇ + 6a2ȧ3π̈

+ (−24äȧ4 − 42aä2ȧ2 − 6a2ä3)π2 + (−6ȧ5 − 12aäȧ3 + 6a2
...
a ȧ2

− 6a2ä2ȧ)ππ̇ + (6aȧ4 + 12a2äȧ2)π̇2 + (−12aȧ4 − 6a2äȧ2)ππ̈

+ (30ä2ȧ3 + 18aä3ȧ)π3 + (12äȧ4 − 12a
...
a ȧ3 + 18aä2ȧ2)π2π̇

+ (−6ȧ5 − 30aäȧ3)ππ̇2 + (6ȧ5 + 12aäȧ3)π2π̈ − 6aȧ4π̇3 − 12ȧ2ä3π4

+ (6ȧ4
...
a − 12ȧ3ä2)π3π̇ + 18ȧ4äπ2π̇2 − 6ȧ4äπ̈π3

+ 6ȧ5ππ̇3
]

/
[

ȧ (ȧ (π̇ + 1)− πä)

√
(

1− πä

ȧ

)2

− π̇2
]

,

L5 =
[

− 6ȧ5 − 18aäȧ3 + (36äȧ4 + 36aä2ȧ2)π + 6ȧ5π̇

+ 18aȧ4π̈ + (−54ä2ȧ3 − 18aä3ȧ)π2 + (−12äȧ4 + 18a
...
a ȧ3

− 18aä2ȧ2)ππ̇ + (6ȧ5 + 36aäȧ3)π̇2 + (−18ȧ5 − 18aäȧ3)ππ̈

+ 24ȧ2ä3π3 + (24ȧ3ä2 − 18ȧ4
...
a )π2π̇ + 18ȧ4äπ2π̈

− 42ȧ4äππ̇2 − 6ȧ5π̇3
]

/
[

ȧ (π̇ + 1)− πä
]2
. (4.17)

The π equations of motion derived from these are second order in time derivatives. As

before, the scale factor a(t) describes the fixed background cosmological evolution, and
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does not represent a dynamical degree of freedom. Out of all the symmetries in (4.12), only

δqπ,

δqπ =
π̇ȧ2

πä− ȧ
+ ȧ. (4.18)

is free of explicit dependence on the spatial coordinates and hence it is the only symmetry

of the lagrangians (4.17),

4.5 Solutions, fluctuations, and small field limits

In this section, we explore the existence and stability of simple solutions for π. In particular,

we focus on the properties of the possible π = 0 solutions.

4.5.1 Simple solutions and stability

Retaining all temporal and spatial derivatives, we expand the lagrangians to second order

in π, and find, after much integration by parts,

L1 = a3π − 1

2

( äa3

ȧ
+ 3ȧa2

)

π2 + O
(
π3
)
,

L2 =

(

3a2ȧ+
a3ä

ȧ

)

π +
1

2
a3π̇2 − 1

2
a
(

~∇π
)2

− 3
(
äa2 + ȧ2a

)
π2 + O

(
π3
)
,

L3 = 6
(
aȧ2 + a2ä

)
π + 3ȧa2π̇2 −

(

2ȧ+
aä

ȧ

)(

~∇π
)2

− 3
(
3ȧäa+ ȧ3

)
π2 + O

(
π3
)
,

L4 = 6
(
ȧ3 + 3aȧä

)
π + 9ȧ2aπ̇2 − 3

(
ȧ2

a
+ 2ä

)(

~∇π
)2

− 12ȧ2äπ2 + O
(
π3
)
,

L5 = 24ȧ2ä π + 12ȧ3π̇2 − 12
ä2ȧ

a

(

~∇π
)2

+ O
(
π3
)
. (4.19)

Note that at quadratic order all the higher derivative terms have canceled out up to total

derivative, a consequence of the fact that the equations of motion are second order.
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Consider a theory which is an arbitrary linear combination of the five lagrangians,

L =
5∑

n=1

cnLn, (4.20)

where the cn are (dimensionful) constants. If π = 0 is to be a solution to the full equations

of motion, the linear terms in L must vanish, which gives the condition

c1a
3 + c2

(

3a2ȧ+
a3ä

ȧ

)

+ 6c3
(
aȧ2 + a2ä

)
+ 6c4

(
ȧ3 + 3aȧä

)
+ 24c5ȧ

2ä = 0. (4.21)

For generic values of the cn, this is a non-linear second order equation for a(t) which can

be solved to yield a background for which π = 0 is a solution. If we look for standard

power-law solutions, a(t) = (t/t0)
α, the condition (4.21) becomes

[
24c5(α− 1)α3 + 6c4(4α− 3)α2t+ 6c3α(2α − 1)t2 + c2(4α − 1)t3 + c1t

4
]
(
t

t0

)3α

= 0 .

(4.22)

Each power of t must vanish independently, so we see that the only non-trivial power-law

solutions are for α = 1, 3/4, 1/2, 1/4. For these solutions, the corresponding cn must be

non-zero and the others must be set to zero.

To test the stability around a given solution, we look at the quadratic part of the

lagrangian, which has the following form,

L =
1

2
A(a(t), cn)π̇

2 − 1

2
B(a(t), cn)(~∇π)2 −

1

2
C(a(t), cn)π

2 , (4.23)

where

A(a(t), cn) = c2a
3 + 6c3ȧa

2 + 18c4ȧ
2a+ 24c5ȧ

3,

B(a(t), cn) = c2a+ 2c3

(

2ȧ+
aä

ȧ

)

+ 6c4

(
ȧ2

a
+ 2ä

)

+ 24c5
äȧ

a
ä,

C(a(t), cn) = c1

(
äa3

ȧ
+ 3ȧa2

)

+ 6c2
(
äa2 + ȧ2a

)
+ 6c3

(
3ȧäa+ ȧ3

)
+ 24c4ȧ

2ä . (4.24)
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α c1 c2 c3 c4 c5 A B C Hτ

1 0 0 0 0 c5 24 c5
t30

0 0 0
3
4

0 0 0 c4 0 81
8t2

c4 (t/t0)
9/4 9

8t2
c4 (t/t0)

3/4 − 81
32t4

c4 (t/t0)
9/4 3/2

1
2

0 0 c3 0 0 3
t
c3 (t/t0)

3/2 1
t
c3 (t/t0)

1/2 − 3
2t3

c3 (t/t0)
3/2 1√

2
1
4

0 c2 0 0 0 c2 (t/t0)
3/4 c2 (t/t0)

1/4 − 3
4t2

c2 (t/t0)
3/4 1

2
√
3

Table 4.1: Lagrangian coefficients, stability coefficients, and time scale comparisons for fluc-

tuations about π = 0 for all possible non-trivial power law solutions a(t) = (t/t0)
n
.

The stability of the theory against ghost and gradient instability, which is catastrophic

at the shortest length scales, requires A > 0 and B ≥ 0. Freedom from tachyon-like

instabilities requires C ≥ 0. However a tachyonic instability where C < 0 only affects the

large-scale stability of the field, and may be tolerable as long as the time scale associated

with the tachyonic mass is of the same order or larger than the Hubble time. The equations

of motion take the form of a damped harmonic oscillator, Aπ̈ + Ȧπ̇ − B∇2π + Cπ = 0.

Thus, the time scale τ associated with a tachyonic mass term is given by τ =
√

A/|C| and
the tachyonic instability is tolerable if Hτ & 1.

In Table 4.1, we display the coefficients (4.24) for the four possible power-law solutions.

For the solution a(t) ∼ t, the choice c5 > 0 leads to a stable solution, albeit marginally so,

since there is no mass or gradient energy. For each of the other three cases, choosing the

relevant coefficient to be positive ensures that A > 0, B > 0, at which point we necessarily

have C < 0 and hence a tachyonic instability. The tachyon time scale is however τH ∼ 1

(and happens to be independent of time). Therefore, each of the four power law solutions

are stable to fluctuations over time scales shorter than the age of the universe.

Repeating the analysis in the case of a de-Sitter universe, the condition (4.21) for a

π = 0 solution becomes

c1 + 4Hc2 + 12c3H
2 + 24c4H

3 + 24c5H
4 = 0, (4.25)
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and the coefficients (4.24) of the quadratic part are

A(a(t), ci) = a30e
3Ht
(
c2 + 6c3H + 18c4H

2 + 24c5H
3
)
,

B(a(t), ci) = a0e
Ht
(
c2 + 6c3H + 18c4H

2 + 24c5H
3
)
,

C(a(t), ci) = −4a30e
3HtH2

(
c2 + 6c3H + 18c4H

2 + 24c5H
3
)
. (4.26)

All the coefficients share a common factor, so the field is either a ghost or a tachyon, in

agreement with the findings in Sec.3.4.1. Comparing the tachyon time scale against 1/H

gives Hτ = 1/2, so the tachyon time scale is approximately the Hubble time. This would

be disastrous for inflation, since the instability would manifest itself after one e-fold, but it

may be tolerable for late-time cosmic acceleration.

4.5.2 Small π symmetries

The small π limits of the symmetries (4.12) expanded to lowest order in π, are

δviπ =
1

2
xi
∫

dt
Ḣ

H3a
ȧ,

δkiπ = −xiȧ,

δqπ = ȧ,

δuπ =
x2ȧ2 − 1

4ȧ
,

δsπ = −ȧ
∫

dt
Ḣ

H3a
. (4.27)

In the case where π = 0 is a solution, these are symmetries of the quadratic action for

π. Otherwise, they are symmetries of the action linear in π.

4.5.3 Galileon-like limits

When we generate galileon theories by foliating a maximally symmetric bulk by maximally

symmetric branes, as in [65], there exist small field limits which greatly simplify the la-

grangians (C.0.5). To take these limits, we form linear combinations L̄n =
∑n

m=1 cn,mLm

125



4. COSMOLOGICAL GALILEONS

of the original lagrangians, with constant coefficients cn,m chosen such that a perturbative

expansion of Ln around a constant background π → π0+δπ begins at O(δπn). In particular,

as first shown in [39], when applied to the case of a flat brane in a flat bulk, this procedure

reproduces the flat space galileons of [91].

The ability to carry out such an expansion appears to be an artifact of maximal sym-

metry. The small π limit in the present case of a flat bulk and an FRW brane does not, for

general a(t), admit a choice of cn,m with the above mentioned properties.

One case which does work is a(t) ∼ eHt, corresponding to a de Sitter brane, which has

maximal symmetry. The induced metric on any w = const hypersurface is

ds2 = (1−Hw)2
[
−dt2 + e2Htd~x2

]

= (1−Hw)2 g (dS)
µν dxµdxν , (4.28)

where g
(dS)
µν is the 4D de Sitter metric in inflationary coordinates, and so we are simply

foliating 5D Minkowski by dS4, returning to the setup of a maximally symmetric brane in

a maximally symmetric bulk. In the gauge (2.7), the induced metric becomes

ḡµν = (−1 +Hπ)2 g (dS)
µν + ∂µπ∂νπ . (4.29)

If we then make the field redefinition π̃ = −1 +Hπ and switch to coordinates x̂µ = Hxµ,

the lagrangians calculated from the induced metric (4.29) and associated extrinsic curvature

take the forms of those in Sec.3.3.3, from which small π̃ limits can be constructed.
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Chapter 5

Summary of Part II

In Part II of this thesis, we have shown that the galileon theory is a special case of a class

of effective field theories that may be identified as the description of a brane embedded in

a bulk space. The theories obtained in this way may be interesting as examples of higher

dimensional gravitating theories, or may merely provide new nontrivial examples of 4D

effective field theories.

In Chapter 2, we explicitly laid out the general construction for galileon-like probe brane

theories. In particular, we discussed the conditions necessary for generating well-behaved

brane constructions and the methods used in deriving the symmetries of the resulting la-

grangians.

In Chapter 3 we applied this construction to all possible special cases in which both

the bulk and relaxed brane state are maximally symmetric spaces (with the bulk metric

having only a single time direction). The results are new classes of effective field theories

which share important properties of the galileons while exhibiting distinctive new features

such as the existence of potentials with masses fixed by symmetries. These potentials open

up the possibility of new, natural implementations of accelerating cosmological solutions in

theories naturally having a de Sitter solution. Furthermore, in some cases the potentials
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5. SUMMARY OF PART II

allow both spontaneous symmetry breaking and ghost condensation at the same time. This

may allow for other new consequences of these theories, including the possibility of novel

topological defects in these theories.

One of the most interesting features of the original galileon model is that it provides

a relatively simple realization of the Vainshtein mechanism [108] whereby a galileon field

sourced by a heavy object exerts a fifth force at large distances from the object, but not at

short distances. This screening mechanism is required if there’s any hope for galileons to

be in concert with solar system tests of gravity. However, the mechanism comes at a price:

in the original galileon model, perturbations about the screening profile propagate superlu-

minally. A natural hope would be that some version of the probe brane galileons derived

in the previous sections could retain the Vainshtein mechanism yet avoid superluminally

propagating perturbations. In Sec.3.5, we explored this possibility for the DBI galileons of

Sec.3.3.1. While the screening mechanism was preserved, it was, unfortunately, found that

superluminal propagation persisted, too.

In Chapter 4 we used the brane methods to construct a theory of a galileon-like scalar

on FRW spacetime. We have derived the relevant operators allowed in the lagrangians,

and identified the highly nontrivial symmetry transformations under which they are in-

variant. These general expressions are much longer for FRW spacetimes than they are for

maximally symmetric ones. By specializing to the minisuperspace approximation, in which

the galileons depend only on cosmic time, we are able to provide somewhat more compact

versions suitable for understanding the effects of galileons on the background cosmology.

However, more complicated questions, such as those involving spatially dependent galileon

perturbations, will require the full expressions. It is possible that integrations by parts

would greatly simplify the expressions, but we have not attempted these here. Though the

higher order lagrangians are a bit impractical to use, their complexity also serves as an

illustration of the power of brane methods as they provide a tool through which to generate
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lagrangians which can nearly be arbitrarily complicated, yet which obey still an enormous

number of symmetries.

We then sought interesting small-field limits of the FRW lagrangians and their sym-

metry transformations, as was done for galileons propagating on maximally symmetric

backgrounds. Due to the fewer isometries of FRW, the analogous expressions do not seem

to exist, except in the special cases in which the FRW space coincides with de Sitter.

Finally, we studied the stability of simple solutions, namely π = 0 with a(t) = (t/t0)
n,

and found that given a correct sign for coefficients in the lagrangians, all four possible

solutions are stable, at least on the time scales of the background. One of the four cases

leads to a massless field without any gradient energy and the remaining three cases lead to

scalar fields with tachyonic masses but the associated time scales are large enough to avoid

the potential instability. For exponential scale factor growth, the π = 0 solution also leads

to a tachyon whose time scale is again large enough to stabilize the theory for one e-fold.
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Part III

Galileons and Spontaneous

Symmetry Breaking
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Chapter 6

Galileons As Wess-Zumino Terms13

6.1 Overview

In this chapter we present a different method of deriving the galileon terms—an algebraic

method, treating them as Goldstone modes of spontaneously broken space-time symmetries.

The inspiration for such a viewpoint comes from the general concepts outlined in Part II

of this thesis. Indeed, this line of research was foreshadowed in various previous sections

and, conversely, some of the language in the following sections will echo the ideas of the

proceeding chapters. The main idea is that if we consider a bulk which enjoys some set of

isometries, the placement of a probe brane within the bulk will generically spontaneously

break some of these symmetries and a Goldstone mode will correspondingly arise.

The spontaneous nature of the breaking is perhaps most evident in the DBI galileon

case of Sec.3.3.1 in which the probe brane’s ground state is M4 and the bulk is M5. There

are many inequivalent ways to embed M4 in M5, none of which is preferred. That is,

given one acceptable placement of the brane there are many related setups which are just

Lorentz rotations of the initial configuration, each of which would correspond to an equally

13The work in Part III was performed in collaboration with Kurt Hinterbichler, Austin Joyce and Mark

Trodden.
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acceptable ground state. Therefore, in placing the probe brane we are effectively choosing

one out of many equivalent possible vacua which is the essential nature of spontaneous

symmetry breaking (SSB). As evidence of this interpretation, we already saw in Part II

that the bulk symmetries which are broken by the presence of the brane end up manifesting

themselves as non-linear symmetries for the π field and it is well known that the non-linear

realization of broken symmetries is one of the hallmarks of SSB.

There are standard tools in the literature for analyzing systems which display SSB, both

in the case of internal and spacetime symmetries. Namely, there are the classic techniques of

non-linear realizations developed by Callan, Coleman, Wess and Zumino [22, 31] and Volkov

[112] and we adapt these “coset constructions” to the case of galileon theories. We show that,

like the familiar Wess–Zumino–Witten term of the chiral Lagrangian [116, 118], the galileon

terms in d dimensions are not captured by the naive d-dimensional coset construction.

Instead, they require a higher dimensional construction and arise from invariant (d + 1)-

forms created via the coset construction which are then pulled back to our d-dimensional

space-time in order to create galileon invariant actions. The relevant (d + 1)-forms, and

hence the galileons, are associated with non-trivial co-cycles in an appropriate Lie algebra

cohomology [28, 33, 34], which is a cohomology theory on forms which are left-invariant

under vector fields that generate the symmetry algebra.14 This is related to the internal

symmetry case, where it was shown in [47] that Wess–Zumino terms are counted by de

Rham cohomology. Indeed, for compact groups, de Rham and Lie algebra cohomology are

isomorphic [35].

After reviewing the general coset construction, we describe the algebra non-linearly

realized by the galileons—the “galileon algebra.” We show that, inspired by brane-world

models of Part II, this is a contraction of a higher-dimensional Poincaré algebra only along

particular auxiliary directions, that is, it can be thought of as the Poincaré algebra of a

14A similar viewpoint was conveyed in [15], where the low-energy effective actions for non-relativistic

strings and branes were obtained as Wess–Zumino terms.
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brane embedded in higher dimensions, where the speed of light in the directions transverse

to the brane is sent to infinity, while the speed of light along the brane is kept constant.

The most familiar example of a galileon theory is the non-relativistic free point particle,

which can be thought of as a (0 + 1)-dimensional field theory invariant under the galilean

group. We review the construction of the kinetic term for the free particle as a Wess–Zumino

term before applying our arguments to the most physically relevant situation of galileons

in four dimensions. As the galileons are Wess–Zumino terms, we argue that the number of

such terms for both single and multi-galileon situations is bounded by the dimension of the

appropriate Lie algebra cohomology groups.

Additionally, we consider the conformal galileons of (3.149). In this case, only one of the

conformal galileons, the cubic term, appears as a Wess–Zumino term for spontaneously bro-

ken conformal symmetry. We construct this Wess–Zumino term explicitly and comment on

its relation to the curvature invariant technique employed in [91] to construct the conformal

galileons.

Finally, we demonstrate that, although the original galileons are Wess–Zumino terms

for spontaneously broken space-time symmetries, this is not the case for the relativistic

DBI galileons of Sec.3.3.1, first derived in [39], which—aside from the tadpole term—are

obtainable from the coset construction and hence are not Wess–Zumino terms. We show

how to construct the DBI galileons using the techniques of non-linear realizations.

6.2 Nonlinear realizations and the coset construction

Broken symmetries and effective field theory have historically been extremely profitable

viewpoints from which to study the low-energy dynamics of physical systems. Motivated

by the successes of phenomenological Lagrangians in describing low energy pion scattering

[114], Callan, Coleman, Wess and Zumino [22, 31], as well as Volkov [112], developed a

powerful formalism for constructing the most general effective action for a given symmetry
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breaking pattern. This is the now well-known technique of non-linear realizations, or coset

construction, which we review briefly here. More comprehensive reviews are given in [94,

122].

6.2.1 Spontaneously broken internal symmetries

We begin by reviewing the problem of constructing a Lagrangian for Goldstone fields corre-

sponding to the breaking of an internal (i.e., commuting with the Poincaré group) symmetry

group G down to a subgroup H; that is, we seek the most general Lagrangian which is in-

variant under G transformations, where the H transformations act linearly on the fields

and those not in H act non-linearly. As is well known [22, 31], there will be dim(G/H)

Goldstone bosons, which parametrize the space of (left) cosets G/H .

However, to start with, we use fields V (x) that take values in the group G, V (x) ∈ G,

so that there are dim(G) fields. We then count as equivalent fields that differ by an element

of the subgroup, so V (x) ∼ V (x)h(x), where h(x) ∈ H. To implement this equivalence,

we demand that the theory be gauge invariant under local h(x) transformations V (x) →
V (x)h(x). There are dim(H) gauge transformations, so the number of physical Goldstone

bosons will be dim(G) − dim(H) = dim(G/H), the expected number.

The global G transformations act on the left as V (x) → gV (x), where g ∈ G. The

theory should therefore be invariant under the symmetries

V (x) 7−→ gV (x)h−1(x), (6.2.1)

where g is a global G transformation, and h−1(x) (written as an inverse for later convenience)

is a local H transformation.

A Lie group, G, possesses a distinguished left-invariant Lie algebra-valued 1-form, the

so-called Maurer–Cartan form, given by V −1dV . Since this is Lie algebra-valued we may

expand over a basis {VI , Za} where {VI}, I = 1, . . . ,dim(H) is a basis of the Lie algebra
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h of H, and {Za}, a = 1, . . . ,dim(G/H) is any completion to a basis of g. We expand the

Maurer–Cartan form over this basis,

V −1dV = ωIV VI + ωaZZa , (6.2.2)

where ωIV and ωaZ are the coefficients, which depend on the fields and their derivatives. The

Maurer–Cartan form (6.2.2), and hence the coefficients in the expansion on the right hand

side, are invariant under global G transformations.

Under the local h(x) transformation, the pieces ωV ≡ ωIV VI and ωZ ≡ ωIZZI transform

as

ωZ 7−→ hωZh
−1,

ωV 7−→ hωV h
−1 + hdh−1 . (6.2.3)

We see that ωZ transforms covariantly as the adjoint representation of the subgroup, and

we use it as the basic ingredient to construct invariant Lagrangians [22, 31, 94, 112]. On

the other had, ωV transforms as a gauge connection.15 If we have additional matter fields

ψ(x) which transform under some linear representation D of the local group H (and do not

change under global G transformations),

ψ −→ D (h)ψ , (6.2.4)

we may construct a covariant derivative using ωV via

Dψ ≡ dψ +D(ωV )ψ, Dψ → D (h)Dψ . (6.2.5)

Thus, the most general Lagrangian is any Lorentz and globally H-invariant scalar con-

structed from the components of ωZ , ψ, and the covariant derivative,

L
(
ωZ

I
µ, ψ,Dµ

)
. (6.2.6)

15This is a reflection of the well-known fact that the pullback of the Maurer–Cartan form defines a natural

H-connection on G/H [23, 34, 93].
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To obtain a theory with global G symmetry, we fix the h(x) gauge symmetry by imposing

some canonical choice for V (x), which we call Ṽ (x). This canonical choice should smoothly

pick out one representative element from each coset, so Ṽ (x) contains dim(G/H) fields.

In general, a global g transformation will not preserve this choice, so a compensating h

transformation—depending on g and Ṽ—will have to be made at the same time to restore

the gauge choice. The gauge fixed theory will then have the global symmetry

Ṽ (x) 7−→ gṼ (x)h−1(g, Ṽ (x)). (6.2.7)

If we can choose the parametrization such that the transformation (6.2.7) is linear in the

fields Ṽ only when g ∈ H, then we will have realized the symmetry breaking pattern G→ H.

When the commutation relations of the algebra are such that the commutator of a broken

generator with a subgroup generator is again a subgroup generator [VI , Z] ∼ Z, (which is

true if G is a compact group), one way to accomplish this is to choose the parametrization

Ṽ (x) = eξ(x)·Z . (6.2.8)

Here the real scalar fields ξa(x) are the dim(G/H) = dimG − dimH different Goldstone

fields associated with the symmetry breaking pattern. Under left action by some g ∈ G,

(6.2.7) gives the transformation law for the ξa(x) as,

eξ·Z → eξ
′·Z = geξ·Zh−1(g, ξ) , (6.2.9)

As can be seen using the Baker–Campbell–Hausdorff formula and the commutation condi-

tion [VI , Z] ∼ Z, the action on ξ is linear when g ∈ H.

6.2.2 Spontaneously broken space-time symmetries

In the preceding subsection we reviewed the case of spontaneously broken internal sym-

metries. Galileons, however, arise as Goldstone modes of spontaneously broken space-time

symmetries (the non-linear symmetry π → π+c+bµx
µ does not commute with the Poincaré
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generators). Consequently, we must extend the coset procedure to account for subtleties

involved in non-linear realizations of symmetries which do not commute with the Poincaré

group. This was worked out comprehensively by Volkov [112] and is reviewed nicely in [94].

While the construction is generally similar to the internal symmetry case, the main subtlety

is that now we must explicitly keep track of the generators of space-time symmetries in the

coset construction.

Following [94], we assume that our full symmetry group G contains the unbroken gener-

ators of space-time translations Pα, unbroken Lorentz rotations Jαβ , an unbroken symmetry

subgroup H generated by VI (which all together form a subgroup), and finally the broken

generators denoted by Za. The broken generators may in general be a mix of internal and

space-time symmetry generators. As before, we want to parameterize the coset G/H, but

the parametrization now takes the form [81, 94, 112]

Ṽ = ex·P eξ(x)·Z . (6.2.10)

Note that we treat the unbroken translation generators on the same footing as the broken

generators, with the coefficients simply the space-time coordinates.16 As in the case of the

internal symmetries, under left action by some g ∈ G, (6.2.10) transforms non-linearly

ex·P eξ(x)·Z 7−→ ex
′·P eξ

′(x′)·Z = g ex·P eξ(x)·Zh−1(g, ξ(x)) , (6.2.11)

where h(g, ξ(x)) belongs to the unbroken group spanned by VI and Jµν , but has dependence

on ξ.

As in the internal symmetry case, the object in which we are interested is the Maurer–

Cartan form

Ṽ −1dṼ = ωαPPα + ωaZZa + ωIV VI +
1

2
ωαβJ Jαβ , (6.2.12)

16This is little more than bookkeeping, as the coordinates formally transform non-linearly under a trans-

lation xµ → xµ + ǫµ. One intuitive way to understand this is to think of Minkowski space as the coset

Poincaré/Lorentz, as is pointed out in [81].
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where we have again expanded in the basis of the Lie algebra g. We may act with the

transformation (6.2.11) to determine that the components, ωP ≡ ωαPPα, ωZ ≡ ωaZZa, ωV ≡
ωIV VI , ωJ ≡ 1

2ω
αβ
J Jαβ of the Maurer–Cartan 1-form transform as [94]

ωP → h ωP h−1,

ωZ → h ωZ h−1,

ωV + ωJ → h (ωV + ωJ)h
−1 + hdh−1 . (6.2.13)

The covariant transformation rule for ωP and ωZ tells us that these are the ingredients to use

in constructing invariant Lagrangians [81, 94, 112]. The form ωP , expanded in components

is

ωP = dxν(ωP )
α
ν Pα, (6.2.14)

Here the components (ωP )
α
ν should be thought of as an invariant vielbein, with α a Lorentz

index, from which we can construct an invariant metric

gµν = (ωP )
α
µ (ωP )

β
ν ηαβ , (6.2.15)

and an invariant measure

− 1

4!
ǫαβγδω

α
P ∧ ωβP ∧ ωγP ∧ ωδP = d4x

√−g . (6.2.16)

The form ωZ , expanded in components

ωZ = dxµ(ωZ)
a
µ Za, (6.2.17)

yields the basic ingredient Dαξ
a, the covariant derivative of the Goldstones, through

(ωZ)
a
µ = (ωP )

α
µ Dαξ

a. (6.2.18)
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We can construct covariant derivatives D for matter fields ψ, transforming as some

combined Lorentz and H representation, which we call D, by using ωV +ωJ as a connection,

ωαPDαψ = dψ +D(ωV )ψ +D(ωJ)ψ . (6.2.19)

This can also be used to take higher covariant derivatives of the Goldstones. From these

pieces, e αµ , Dαξ
a, ψ and Dα, we can build the most general invariant Lagrangian by com-

bining them in a Lorentz and H invariant way, and then multiplying against the invariant

measure (6.2.16).

6.2.3 Inverse Higgs constraint

There is another subtlety that arises in extending the coset construction to the case of space-

time symmetries—there can be non-trivial relations between different Goldstone modes

leading to fewer degrees of freedom than naive counting would suggest. This is the well-

known statement that the counting of massless degrees of freedom in Goldstone’s theorem

fails in the case of broken space-time symmetries [11, 70, 76, 81, 85, 92, 112, 113]; that is, the

number of Goldstone modes will not in general be equal to dim(G/H). This phenomenon

is sometimes referred to as the inverse Higgs effect [76].

Accounting for this is simple—if the commutator of an unbroken translation generator

with a broken symmetry generator, say Z1, contains a component along some linearly

independent broken generator, say Z2,

[P,Z1] ∼ Z2 + · · · , (6.2.20)

(where the dots represent a component along the broken directions), it is possible to elimi-

nate the Goldstone field corresponding to the generator Z1 [76, 81, 85]. The relation between

the Goldstone modes is obtained by setting the coefficient of Z2 in the Maurer–Cartan form

to zero.

139



6. GALILEONS AS WESS-ZUMINO TERMS

This is a covariant constraint; i.e., it is invariant under G because the Maurer–Cartan

form itself is invariant (often, the inverse Higgs constraint is imposed automatically in a

constructed Lagrangian because it is equivalent to integrating out the redundant Goldstone

field via its equation of motion [85]). We will need to use the inverse Higgs constraint in

constructing the galileons.

6.3 Cohomology

As we shall see, the galileon terms are in fact not captured by the coset construction of the

previous section. This is essentially due to the fact that the coset construction produces

Lagrangians which are strictly invariant under the desired symmetries, but the galileon

Lagrangians are not strictly invariant—they change by a total derivative (so the action

is still invariant). As we shall also see, it will turn out that they can be thought of and

categorized as non-trivial elements of Lie algebra cohomology.

In this section, we introduce the necessary concepts and definitions of Lie algebra co-

homology and relative Lie algebra cohomology needed for classifying the galileons. For a

more comprehensive introduction, including applications, see [33].

6.3.1 Lie algebra cohomology

Given a Lie algebra g, an n-co-chain, n = 0, 1, 2, . . ., is a totally anti-symmetric multi-linear

mapping ωn :
∧n

g → R, taking values in the reals.17 The space of n-co-chains is denoted

Ωn(g). One then forms a co-boundary operator δn : Ωn(g) → Ωn+1(g) whose action is

defined by [33]

δω(X1,X2, . . . ,Xn+1) =

n+1∑

j,k=1
j<k

(−1)j+kω([Xj ,Xk],X1, . . . , X̂j , . . . , X̂k, . . . ,Xn+1), (6.3.1)

17In general, one can consider the case in which the co-chains take values in an arbitrary vector space on

which acts a non-trivial representation of g, but we do not need that here.
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for X1,X2, . . . ∈ g and where X̂ means the argument is omitted, and [ , ] is the Lie algebra

commutator. The first few instances are

δω0(X1) = 0,

δω1(X1,X2) = −ω1([X1,X2]),

δω2(X1,X2,X3) = −ω2([X1,X2],X3) + ω2([X1,X3],X2)− ω2([X2,X3],X1),

... (6.3.2)

One can show, using the Jacobi identity [X1, [X2,X3]] + [X2, [X3,X1]] + [X3, [X1,X2]] = 0,

that the co-boundary operator is nilpotent

δ2 = 0 . (6.3.3)

Thus we have Imδn−1

(
Ωn−1

)
⊂ Kerδn (Ω

n), and we can define the cohomology spaces

Hn(g) =
Kerδn (Ω

n(g))

Imδn−1 (Ω
n−1(g))

. (6.3.4)

There is another way to represent the co-boundary operator that is often more convenient

when we have an explicit basis. Let {ei}, i = 1, · · · ,dim(g), be a basis for the Lie algebra

g. The structure constants c k
ij are given by

[ei, ej ] = c k
ij ek . (6.3.5)

They are anti-symmetric in their first indices, c k
ij = −c k

ji . The Jacobi identity becomes

c m
il c l

jk + c m
jl c l

ki + c m
kl c l

ij = 0. Let {ωi} be a basis of the dual space g∗, dual to the basis

{ei}, so that ωi(ej) = δij. Then we can write any n-co-chain ωn as sums of wedge products

of the ωi,

ωn =
1

n!
Ωi1i2···inω

i1 ∧ ωi2 ∧ · · · ∧ ωin , (6.3.6)
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where Ωi1i2···in is the totally anti-symmetric tensor of coefficients. The action of the co-

boundary operator on a single ωi is given by

δωi = −1

2
c i
jk ω

j ∧ ωk , (6.3.7)

and is extended to wedge products of multiple ω’s by using linearity and the Leibniz product

rule, where we are careful to include the addition of a minus sign every time δ has to pass

through an ω.18 For example, we have δ
(
ωi ∧ ωj

)
= −1

2c
i

kl ω
k ∧ωl ∧ωj + 1

2c
j

kl ω
i ∧ωk ∧ωl.

In terms of components, we have

(δΩ)i1···in+1
= −n(n+ 1)

2
c j
[i1i2

Ω|j|i3···in+1]. (6.3.8)

Lie algebra cohomology also has a geometric interpretation.19 Consider the simply

connected Lie group G associated to the Lie algebra g. The space of p-forms on G which are

invariant under the left action ofG on itself can be identified with the co-chains of Lie algebra

cohomology. In fact, there is one left invariant 1-form for each generator of the Lie algebra,

and wedging them together in all ways generates all the invariant p-forms. The usual

exterior derivative operator on G, dp : Ωp(G) → Ωp+1(G) satisfies dωi = −1
2cjk

iωj ∧ ωk,
and can be identified with the operator δ of Lie algebra cohomology. Thus, Lie algebra

cohomology counts the number of left-invariant forms on G which cannot be written as the

exterior derivative of a form which is also left-invariant.

6.3.2 Relative Lie algebra cohomology

For characterizing symmetry breaking to a subalgebra, we will need a slightly more refined

notion of Lie algebra cohomology, known as relative Lie algebra cohomology. Consider a

subalgebra h ⊂ g. We define the space of relative co-chains Ωn(g, h), as the subspace of

co-chains satisfying the following two conditions,

Ωn(V,X2, . . . ,Xn) = 0 , (6.3.9)

18The co-boundary operator, δ, is an anti-derivation on the algebra of co-chains.
19In this geometric context, Lie algebra cohomology is known as Chevalley–Eilenberg Cohomology [28].
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Ωn([V,X1],X2, . . . ,Xn) + Ωn(X1, [V,X2], . . . ,Xn) + · · ·+Ωn(X1,X2, . . . , [V,Xn]) = 0 ,

for all V ∈ h, and X2, · · · ,Xn ∈ g . (6.3.10)

The first requirement says that if any of the arguments lie completely in h, then we get zero.

This means that the form is well defined on the quotient g/h. Equivalently, the n-co-chains

are only constructed from wedging together one-forms which annihilate h. To see what this

means in terms of components, choose a basis {hI , fa} for g, where {hI}, I = 1, . . . ,dim(h)

is a basis of h and {fa}, a = 1, . . . ,dim(g/h) completes to a basis of g. Let the dual basis

be {ηI , ωa}. To satisfy (6.3.9), forms are constructed by wedging together only the forms

ωa, so the components Ωi1···in of (6.3.6) are zero if any of the indices are in the h directions.

The second condition, in terms of components (6.3.6), reads c j
Ii1

Ωji2···in + c j
Ii2

Ωi1j···in +

· · · + c j
Iin

Ωi1i2···j = 0. The combination of the two conditions (6.3.9) and (6.3.10) on the

components, along with the fact that c a
IJ = 0 since h is a subgroup, gives our final conditions

in terms of components for a co-chain to be a relative co-chain,

ΩIi2···in = 0 , (6.3.11)

c b
Ia1Ωba2···an + c b

Ia2Ωa1b···an + · · ·+ c b
IanΩa1a2···b = 0 . (6.3.12)

Given our basis, the matrices

φ(hI)
b
a = −c b

Ia (6.3.13)

form a representation of the subalgebra h,

φ(hI)φ(hJ )− φ(hJ )φ(hI) = c K
IJ φ(hK) , (6.3.14)

as can be straightforwardly shown using the Jacobi identity, as well as the condition c a
IJ = 0

which follows from the fact that h is a subalgebra. Thus, the indices a, b, . . . of the space

g/h furnish a representation of the subgroup h, and the condition (6.3.12) says that the

co-chain coefficients must be invariant tensors under the action of h in this space.
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The δ operator preserves the two conditions (6.3.9) and (6.3.10), so δn (Ω
n(g, h)) ⊂

Ωn+1(g, h). Thus we may think of δ as acting on the spaces Ωn(g, h). The cohomology

classes of this action are denoted by Hp(g, h) and the construction is known as relative Lie

algebra cohomology [33],

Hn(g, h) =
Kerδn (Ω

n(g, h))

Imδn−1 (Ω
n−1(g, h))

. (6.3.15)

Each non-trivial element ofHd+1(g, h) corresponds to aWess–Zumino term for a d-dimensional

space-time [33, 34].

Relative Lie algebra cohomology also has a geometric interpretation. Consider the

connected Lie group G and subgroup H, corresponding to the algebra g and subalgebra

h. We can think of the group G as a fiber bundle, consisting of spaces H fibered over the

base space G/H. The group G acts naturally on G/H (which is a homogeneous space with

isotropy subgroup H). The relative co-chains can be thought of as left invariant form on

G which are projectable to G/H, i.e., can be written as a pullback through the projection

G → G/H of a unique form on G/H. Thus they can be identified with invariant forms

on G/H. The operator δ can be identified with the usual exterior derivative d, so relative

Lie algebra cohomology counts the number of left-invariant forms on G/H which cannot be

written as the exterior derivative of a form which is also left-invariant.

6.4 The galileon algebra

Having briefly introduced the standard techniques of non-linear realizations and made our

acquaintance with Lie algebra cohomology, we now move on to the problem of principal

interest—the construction of galileons using this machinery. In order to do this, however,

we must first describe the symmetry algebra which the galileons non-linearly realize. We

will call this algebra the galileon algebra.
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A theory of N galileons, πI , I = 1, . . . , N , in d space-time dimensions has the usual

Poincaré invariance iso(d− 1, 1), of a relativistic field theory, under which all the galileons

are scalars,

δPµπ
I = −∂µπI ,

δJµνπ
I = (xµ∂ν − xν∂µ)π

I . (6.4.1)

These satisfy the usual commutation relations

[Pµ, Pν ] = 0 ,

[Jµν , Pσ] = ηµσPν − ηνσPµ ,

[Jµν , Jσρ] = ηµσJνρ − ηνσJµρ + ηνρJµσ − ηµρJνσ . (6.4.2)

There is also a linearly realized internal so(N) symmetry under which the πI rotate in the

fundamental representation,

δJIJπ
K = (δKI δJL − δKJ δIL)π

L , (6.4.3)

satisfying

[JIJ , JKL] = δIKJJL − δJKJIL + δJLJIK − δILJJK . (6.4.4)

Finally, there are the non-linear shift symmetries20,

δCIπJ = δIJ , δBI
µ
πJ = xµδ

IJ . (6.4.5)

These shift symmetries commute amongst themselves, but have the following non-trivial

commutation relations with the linearly realized symmetries,

[
Pµ, B

I
ν

]
= ηµνC

I ,
[
JIJ , C

K
]
= δKI CJ − δKJ CI ,[

Jµν , B
I
σ

]
= ηµσB

I
ν − ηνσB

I
µ,

[
JIJ , B

K
µ

]
= δKI BJµ − δKJ BIµ .

(6.4.6)

20For an interpretation of the conserved charges associated with these symmetries, see [89].
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We will call the algebra satisfying these commutation relations the galileon algebra in d

space-time dimensions, co-dimension N , and denote it by

Gal((d− 1) + 1, N) , (6.4.7)

where the first argument indicates that there are d − 1 space dimensions, and 1 time di-

mension. Correspondingly, we will denote the galileon group by Gal((d − 1) + 1, N).

Consider first the special case when d = 1, i.e., a 0 + 1 dimensional space-time. The

algebra Gal(0 + 1, N) is the algebra of galilean transformations, the symmetries of a free

non-relativistic point particle moving in N dimensions. The 0 + 1 dimensional space-time

is the particle world-line, and the N co-dimensions are the dimensions in which the particle

moves. The case N = 1 gives the symmetries of the single field galileons (1.37), and the

case N ≥ 2 gives the symmetries of the so(N) symmetric multi-field galileons (1.73).

6.4.1 Geometric interpretation of the galileon algebra

The galileon algebras can readily be given a geometric interpretation. Recall that the

Poincaré transformations can be thought of as the algebra of infinitesimal transformations

that preserve the metric tensor ηµν = diag (−1, 1, 1, . . . , 1). The galileon algebra Gal((d −
1)+1, N) is the algebra of infinitesimal transformations of Rd+N that preserves two different

tensors, one covariant and one contravariant,

fµν = diag(−1, 1, . . . , 1
︸ ︷︷ ︸

d slots

, 0, . . . 0), (6.4.8)

f̃µν = diag(0, 0, . . . , 0, 1, . . . 1
︸ ︷︷ ︸

N slots

) . (6.4.9)

The finite form of this transformation can be given most easily by grouping the coordinates

(xµ, yI) of Rd+N into a column vector with the addition of a 1 in the last slot, and then
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6.4 The galileon algebra

giving the transformation in matrix form as





yI

xµ

1



 7−→





RIJ bIν cI

0 Λµ ν pµ

0 0 1









yJ

xν

1



 . (6.4.10)

Here RIJ is a rotation matrix, Λµ ν is a Lorentz transformation, and bIµ, c
I and pµ are any

real numbers.

6.4.2 The galileon algebra as a contraction

Yet another way to think of the galileon algebras as a Wigner–İnönü contraction [75] of

the (d+N)-dimensional Poincaré algebra along N of the spatial directions. Physically, we

can think of the galileons as describing a co-dimension N brane, where the speed of light

has been sent to infinity in the directions transverse to the brane, but remains finite in the

directions along the brane.

To see this, begin with the (d+N) dimensional Poincaré algebra iso(d− 1+N, 1), with

non-zero commutators

[JBC , PA] = ηBAPC − ηCAPB ,

[JAB , JCD] = ηACJBD − ηBCJAD + ηBDJAC − ηADJBC , (6.4.11)

where A,B · · · = 0, 1, 2, . . . , d + N and ηAB = diag(−1, 1, 1, . . . , 1). Now break apart the

indices, using Greek letters for the first d directions and Latin letters for the N co-dimension

directions,

[Jνρ, Pµ] = ηνµPρ − ηρµPν ,

[Jµν , Jρσ ] = ηµρJνσ − ηνρJµσ + ηνσJµρ − ηµσJνρ,

[JIJ , JKL] = δIKJJL − δJKJIL + δJLJIK − δILJJK ,

[JJK , PI ] = δJIPK − δKIPJ ,
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[Pµ, JIν ] = ηνµPI ,

[PI , JJρ] = −δIJPρ,

[JIν , JKσ] = δIKJνσ + ηνσJIK ,

[JKL, JIν ] = δIKJLν − δILJKν ,

[Jρσ, JIν ] = ηρνJIσ − ησνJIρ . (6.4.12)

The contraction is performed by introducing a parameter, v, which will be sent to infinity

and which is inserted into the algebra by changing co-dimensional entries of ηAB to v, so

that ηAB → diag (−1, 1, . . . , 1, v, v, . . . , v) and making the following re-scalings

PI −→ vCI , JIν −→ vBIν , JIJ −→ vJIJ . (6.4.13)

After sending v → ∞, the surviving non-trivial commutation relations are

[Jνρ, Pµ] = ηνµPρ − ηρµPν ,

[Jµν , Jρσ] = ηµρJνσ − ηνρJµσ + ηνσJµρ − ηµσJνρ ,

[JIJ , JKL] = δIKJJL − δJKJIL + δJLJIK − δILJJK ,

[JJK , CI ] = δJICK − δKICJ ,

[Pµ, BIν ] = ηνµCI ,

[JKL, BIν ] = δIKBLν − δILBKν ,

[Jρσ, BIν ] = ηρνBIσ − ησνBIρ . (6.4.14)

These are exactly the commutations relations of Gal((d− 1) + 1, N).
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6.5 Non-relativistic point particle moving in one dimension

6.5 Non-relativistic point particle moving in one dimension

We now proceed with the coset construction, first considering the simplest case of a galileon:

the one-dimensional non-relativistic free point particle. We can think of this as a 0 + 1

dimensional brane probing a non-relativistic 1 + 1 dimensional bulk. The Wess–Zumino

nature of the kinetic term was pointed out in [59] and is elegantly treated using jet bundles

in [35]. Here, instead, we will derive equivalent results from the coset perspective.

We denote the single degree of freedom as q(t), where t is the one and only space-

time coordinate. We want to construct Lagrangians which are invariant under the algebra

Gal(0 + 1, 1), which is three dimensional and whose generators act on q(t) as follows

δCq = 1, δBq = −t, δP q = −q̇ . (6.5.1)

Here δC is the shift symmetry on the field, δB is the analogue of the “galilean” shift sym-

metry (the galilean boost of the non-relativistic particle) and δP is time translation of the

field. The algebra has only a single non-zero commutator21

[B,P ] = C . (6.5.2)

The only transformation among (6.5.1) which is linear is δP , the rigid translations of the

line, so the breaking pattern is

Gal(0 + 1, 1) −→ iso(1). (6.5.3)

To construct the most general Lagrangian which realizes these symmetries (6.5.1), we

employ the coset construction for space-time symmetries reviewed in Section (6.2.2). The

parametrization of the coset (6.2.10) is given by

Ṽ = etP eqC+ξB , (6.5.4)

21In relation to the d-dimensional algebra, we are defining P ≡ P0, B ≡ B0.
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where q is the Goldstone field that will become the physical field associated with the shift

symmetry, and ξ is the Goldstone field associated with the galilean boost symmetry. Since

the momentum P is to be included in the coset, there is no subgroup H to be linearly

realized. Thus the coset is the galilean group itself,

Gal(0 + 1, 1) . (6.5.5)

Next we compute the Maurer–Cartan form (6.2.12),

ω = Ṽ −1dṼ = dtP + (dq − ξdt)C + dξB , (6.5.6)

and the component 1-forms used to build Lagrangians can then be read off as

ωP = dt , ωC = dq − ξdt , ωB = dξ . (6.5.7)

Now, it is important to note that there is an inverse Higgs constraint. Inspection of the

only commutator of the algebra (6.5.2) shows that we can eliminate the ξ field in favor of

q by setting ωC = 0, implying the relation

ξ = q̇ . (6.5.8)

Substitution into (6.5.7) then provides simplified expressions for the basis 1-forms

ωP = dt , ωB = q̈ dt . (6.5.9)

Thus, all the ingredients available for constructing invariant Lagrangians involve at least

two derivatives on each q. There is also the covariant derivative, but this turns out to be just
d
dt , so taking higher covariant derivatives will only add more time derivatives. Lagrangians

constructed in this way are all strictly invariant under the shift symmetries δB and δC .

This presents a puzzle, since we know that the free particle kinetic term, L = 1
2 q̇

2,

is also galilean invariant. Although it is not invariant under δB , it is invariant up to a

total derivative, so it represents a perfectly good Lagrangian which is missed by the coset
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construction since it contains fewer than two derivatives per q. Another missed example is

the tadpole term L = q, which changes up to a total derivative under both δB and δC . How

do we construct these missing terms?

The answer is that these terms will appear as particular shift and boost invariant 2-forms

which are themselves constructible from the Maurer–Cartan form (6.5.7). These terms will

live on the coset space, that is, the space in which q and ξ are considered as new coordinates

in addition to the t direction of space-time. These 2-forms will also be total derivatives in

this higher dimensional space, writable as d of a 1-form. The Lagrangian will be obtained

by integrating this 1-form on the 1 dimensional subspace where q = q(t) and ξ = ξ(t).

The symmetries on this space in our case are generated by the vector fields [35]22

C = ∂q , B = ∂ξ + t∂q , P = ∂t . (6.5.10)

The components of the Maurer–Cartan form (6.5.7), where we treat q and ξ as independent

coordinates, are the (left) invariant 1-forms on the coset space parametrized by {q, ξ, t};
that is we have £Xω = 0 where X is any of the vector fields (6.5.10) and ω is any of the

forms (6.5.7).

Consider the invariant 2-forms, which are all obtained by wedging together all combi-

nations of the invariant one-forms (6.5.7). There are three of these, with the first being

ωwz
1 = ωB ∧ ωC = dξ ∧ (dq − ξdt) . (6.5.11)

We note that this can be written as the exterior derivative of a 1-form,

ωwz
1 = dβwz

1 , βwz
1 = ξdq − 1

2
ξ2dt . (6.5.12)

This 1-form can be used to construct an invariant action by pulling back to the surface

space-time manifold M , defined by q = q(t), ξ = ξ(t), and then integrating,

Swz
1 =

∫

M
βwz
1 =

∫

dt ξq̇ − 1

2
ξ2 . (6.5.13)

22Note that the Lie bracket of left-invariant vector fields is minus the commutator of the algebra.
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Imposing the inverse Higgs constraint ξ = q̇ (or, equivalently, integrating out ξ), we recover

the well-known kinetic term for the non-relativistic free point particle which was missed in

the coset construction,

Swz
1 =

∫

M
βwz =

∫

dt
1

2
q̇2 . (6.5.14)

The tadpole term may be constructed similarly from the two form

ωwz
2 = ωC ∧ ωP = dq ∧ dt = dβwz

2 , βwz
2 = qdt . (6.5.15)

Swz
2 =

∫

M
βwz =

∫

dt q . (6.5.16)

The final possible invariant 2-form constructible from the invariant one forms (6.5.7) is

ωwz
3 = ωB ∧ ωP = dξ ∧ dt = d(ξdt). This leads to an action which is a total derivative

once the Higgs constraint is imposed, and so nothing new results. (This illustrates that

the dimension of the relevant cohomology groups may not in general count the number of

galileons exactly, but will only put an upper bound on the possible number.)

In all cases, the 2-form ωwz is closed since it can be written as d of a one form βwz (so

that we may use it to construct an action). Furthermore, the 2-form ωwz is by construction

(left) invariant under the vector fields that generate the symmetries we are interested in

(6.5.1). However, the 1-form βwz is not invariant—it shifts by a total d (as it must since

ωwz is invariant, ωwz = dβwz, and de Rham cohomology is trivial on all the spaces we’re

considering), but this still leaves the action invariant.

The interesting 2-forms are therefore those which are invariant under the action of the

vector fields (6.5.10) but which cannot be written as the exterior derivative of a 1-form which

is itself invariant [35] (since otherwise the corresponding 1-form on the boundary would be

strictly invariant and would have already been captured by the coset construction). They

can thus be identified with non-trivial elements of the Lie algebra cohomology

H2 (Gal(0 + 1, 1)) . (6.5.17)
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Lagrangians constructed in this manner are what we call Wess–Zumino terms. For a

d-dimensional space-time, they are terms that correspond to non-trivial d + 1 co-cycles in

the cohomology of d acting on invariant vector fields on the coset space (we will review this

more carefully in the next section) [28].

6.6 Non-relativistic point particle moving in higher dimen-

sions

Now that we have understood a familiar system as the simplest example of a galileon theory,

we are ready to apply the same techniques to the next most complicated case. We consider

the point particle in higher co-dimensions, where in addition to space-time transformations,

the fields can also rotate into each other in field space. This describes a non-relativistic

particle moving in the plane R
N .

The fields qI now have an extra index, I = 1, · · · , N , the shift symmetries and time

translation symmetry act as

δCJ
qI = δIJ , δBJ

qI = −tδIJ , δP q
I = −q̇I , (6.6.1)

and there is now an internal so(N) symmetry,

δJIJ q
K = (δKI δJL − δKJ δIL)q

L . (6.6.2)

The non-trivial commutation relations are

[BI , P ] = CI ,

[JJK , CI ] = δJICK − δKICJ ,

[JKL, BI ] = δIKBL − δILBK ,

[JIJ , JKL] = δIKJJL − δJKJIL + δJLJIK − δILJJK , (6.6.3)
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and the symmetry breaking pattern is

Gal(0 + 1, N) −→ iso(1)⊕ so(N) . (6.6.4)

The coset we are interested in is then

Gal(0 + 1, N)/SO(N) , (6.6.5)

which is parametrized by (6.2.10),

Ṽ = etP eq
ICI+ξ

IBI . (6.6.6)

(Recall that the unbroken generators, in this case the internal rotation generators, are not

included in the coset, but the unbroken translations are). The Maurer–Cartan form (6.2.12)

is nearly the same as in the point particle case (6.5.7), except that some of the components

now carry an extra internal index

ωP = dt , ωIC = dqI − ξIdt , ωIB = dξI . (6.6.7)

Similarly, the inverse Higgs constraint is now given by

ξI = q̇I . (6.6.8)

As before, the only invariant form left for constructing actions is q̈Idt, so all coset con-

structible actions contain at least two derivatives per field.

To construct the Wess–Zumino terms, we again create 2-forms by wedging together the

1-forms (6.6.7), but now we must be sure that the forms are so(N)-invariant so that they are

well defined on the coset. This means that the so(N) indices in (6.6.7) must be contracted

using so(N) invariant tensors, and the only such tensors are δIJ and ǫI1···IN . These forms

will therefore be identified with the relative Lie algebra cohomology

H2 (Gal(0 + 1, N), so(N)) . (6.6.9)
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We construct the kinetic terms of the fields by considering

ωwz
1 = δIJω

I
B ∧ ωJC = δIJdξ

I ∧
(
dqJ − ξJdt

)
, (6.6.10)

which can be written as the exterior derivative of a 1-form,

ωwz
1 = dβwz

1 , βwz
1 = δIJ

(

ξIdqJ − 1

2
ξIξJdt

)

. (6.6.11)

Pulling back to the surface space-time manifold M , defined by qI = qI(t), ξI = ξI(t), and

then integrating, we have

Swz
1 =

∫

M
βwz
1 =

∫

dt δIJ

(

ξI q̇J − 1

2
ξIξJ

)

, (6.6.12)

and then imposing the inverse Higgs constraint ξI = q̇I (or equivalently, integrating out

ξI), we recover

Swz
1 =

∫

M
βwz
1 =

∫

dt
1

2
δIJ q̇

I q̇J . (6.6.13)

For N ≥ 2 there is no longer a tadpole term, since the Lagrangian must be invariant

under an SO(N) rotation of the fields qI . There are also no more non-trivial Wess–Zumino

terms beyond the kinetic term (once the inverse Higgs constraints are imposed), with one

exception: for N = 2 a novel Lagrangian appears involving the ǫIJ tensor,

ωwz = ǫIJω
I
B ∧ ωJB = ǫIJdξ

I ∧ dξJ = dβwz
2 , βwz

2 = ǫIJξ
IdξJ , (6.6.14)

S2 =

∫

M
βwz
2 =

∫

dt ǫIJξ
I ξ̇J , (6.6.15)

which upon imposing the inverse Higgs constraint becomes

S2 =

∫

M
βwz
2 =

∫

dt ǫIJ q̇
I q̈J . (6.6.16)
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Note that this is an example in which the imposition of the inverse Higgs constraint is not

equivalent to integrating out redundant fields from the action.

Thus, in the bi-galileon case there is the extra Lagrangian L = ǫIJ q̇
J q̈J which has third-

order equations of motion, unlike the other galileons, so the relation between second order

equations of motion and Wess–Zumino terms is not a perfectly tight one, though it holds

in all other cases. Even so, this term still describes fewer degrees of freedom (there are

two fields each with third order equations, indicating six phase space degrees of freedom, or

three real degrees of freedom) than the non-galileon terms, though it describes more than

the kinetic term.

6.7 Galileons

We now perform the coset construction for galileons in four dimensions. This is the situation

of greatest physical interest. We will consider the case which is inspired by a co-dimension

1 braneworld model, in which the galileons are related to the brane-bending mode into the

bulk.

The galileons non-linearly realize the shift symmetries

δCπ = 1 , δBµπ = xµ , (6.7.1)

and we have the non-trivial commutators

[Pµ, Bν ] = ηµνC , [Jρσ, Bν ] = ηρνBσ − ησνBρ , (6.7.2)

which, along with the commutators of Poincaré transformations, fill out the galileon algebra

Gal(3 + 1, 1). The 4d galileons non-linearly realize the symmetry breaking pattern

Gal(3 + 1, 1) −→ iso(3, 1) , (6.7.3)

and the coset is parametrized by (6.2.10)

Ṽ = ex·P eπC+ξ·B . (6.7.4)
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Note that the linearly realized generators consists of only the Lorentz transformations, so

we are working with the coset

Gal(3 + 1, 1)/SO(3, 1) . (6.7.5)

The coefficients of the components of the Maurer–Cartan form (6.2.12) are

ωµP = dxµ , ωC = dπ + ξµdx
µ , ωµB = dξµ , ωµνJ = 0 .

(6.7.6)

As is the norm when breaking space-time symmetries, there are fewer Goldstone modes

than naive counting would lead us to believe. We have broken generators, Vµ and C, but we

only have a single Goldstone mode π, and this can be seen from the presence of an inverse

Higgs constraint—the commutator [Pµ, Bν ] = ηµνC tells us that we may eliminate the ξµ

field in favor of π by setting ωC = 0, which leads to the relation

ξµ = −∂µπ . (6.7.7)

This allows us to write the components of the Maurer–Cartan form as

ωµP = dxµ , ωµB = −dxν∂ν∂
µπ . (6.7.8)

Since we can only build Lagrangians by using these ingredients (along with the higher

covariant derivatives on π, which in this case are the same as ordinary derivatives), the

field π will only ever appear with at least 2 derivatives per field. Thus we can never obtain

the galileons from this construction, since the galileon terms (1.37) all have fewer than two

derivatives per field (the galileon Lagrangians with n π’s have 2n − 2 derivatives).

The fact that they cannot be built by the coset construction is suggestive of the fact

that the 4D galileons are Wess–Zumino terms in the same sense as the free particle kinetic

term—they are 4-form potentials for non-trivial 5-co-cycles in Lie algebra cohomology. The

construction proceeds similarly to the 1d case.
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We work on the coset space, the space in which π and ξµ are considered as new coor-

dinates in addition to the xµ directions of space-time. The Lagrangian will be obtained by

integrating a Wess–Zumino form on the subspace where π = π(x) and ξµ = ξµ(x). The

symmetries on the coset space are generated by the vector fields

C = ∂π , Bµ = ∂ξµ − xµ∂π , Pµ = ∂µ . (6.7.9)

The components of the Maurer–Cartan form (6.7.6), where we treat π and ξµ as independent

coordinates, are the (left) invariant 1-forms on the coset space parametrized by {π, ξµ, xµ},
so that we have £Xω = 0 where X is any of the vector fields (6.7.9) and ω is any of the

forms (6.7.6).

To construct the Wess–Zumino terms, we create invariant 5-forms by wedging together

the 1-forms (6.7.6). However, we must ensure that the forms are invariant under the Lorentz

transformations so(3, 1) so that they are well defined on the coset. This means that the

Lorentz indices in (6.7.6) must be contracted using Lorentz invariant tensors, and the only

such tensors are ηµν and ǫµνρσ . From the cohomology perspective, this means that the

galileon terms are members of the relative Lie algebra cohomology group

H5 (Gal(3 + 1, 1), so(3, 1)) . (6.7.10)

Start by considering the invariant 5-form

ωwz
1 = ǫµνρσ ωC ∧ ωµP ∧ ωνP ∧ ωρP ∧ ωσP = ǫµνρσdπ ∧ dxµ ∧ dxν ∧ dxρ ∧ dxσ , (6.7.11)

which can be written as the exterior derivative of a 4-form,

ωwz
1 = dβwz

1 , βwz
1 = ǫµνρσπdx

µ ∧ dxν ∧ dxρ ∧ dxσ . (6.7.12)

Pulling back to the space-time manifold M , defined by π = π(x), ξ = ξ(x), and then

integrating,

Swz
1 =

∫

M
βwz
1 =

∫

M
πǫµνρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ ∼
∫

d4x π , (6.7.13)
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we recover the tadpole term, which is the first galileon. Just as in the free particle case, the

tadpole term appears as a 4-form which shifts by a total derivative under the symmetries

and whose exterior derivative is a strictly invariant 5-form.

Next consider

ωwz
2 = ǫµνρσ ωC ∧ ωµB ∧ ωνP ∧ ωρP ∧ ωσP = ǫµνρσ

(

dπ + ξλdx
λ
)

∧ dξµ ∧ dxν ∧ dxρ ∧ dxσ ,

(6.7.14)

which can be written as the exterior derivative of a 4-form,23

ωwz
2 = dβwz

2 , βwz
2 = ǫµνρσ

(

πdξµ − 1

8
ξ2dxµ

)

∧ dxν ∧ dxρ ∧ dxσ . (6.7.16)

Pulling back to the space-time manifold M and integrating, we obtain

Swz
2 =

∫

M
βwz
2 = 3!

∫

d4x

(

π∂µξ
µ − 1

2
ξ2
)

. (6.7.17)

Imposing the Higgs constraint ξµ = −∂µπ (or equivalently, integrating out ξµ), we recover

the kinetic term, which is the second galileon,

Swz
2 ∼

∫

d4x (∂π)2 . (6.7.18)

The construction of L3 is similar. We consider

ωwz
3 = ǫµνρσ ωC ∧ ωµB ∧ ωνB ∧ ωρP ∧ ωσP = ǫµνρσ

(

dπ + ξλdx
λ
)

∧ dξµ ∧ dξν ∧ dxρ ∧ dxσ ,

(6.7.19)

23In showing this, it is helpful to use the identity

ǫµνρσξλdξ
µ ∧ dxλ ∧ dxν ∧ dxρ ∧ dxσ

=
1

4
ǫµνρσξλdξ

λ ∧ dxµ ∧ dxν ∧ dxρ ∧ dxσ = 3!ξµdξ
µ ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (6.7.15)
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which can be written as the exterior derivative of a 4-form24

ωwz
3 = dβwz

3 , βwz
3 = ǫµνρσ

(

πdξµ ∧ dξν ∧ dxρ ∧ dxσ − 1

3
ξ2dξµ ∧ dxν ∧ dxρ ∧ dxσ

)

.

(6.7.21)

Pulling back to the space-time manifold M and integrating yields

Swz
3 =

∫

M
βwz
3 =

∫

M
d4x

[

− 2π
[
(∂µξ

µ)2 − ∂µξ
ν∂νξ

µ
]
+ 2ξαξ

α∂µξ
µ
]

. (6.7.22)

Imposing the Higgs constraint ξµ = −∂µπ, and performing a 4D integration by parts, we

recover the cubic galileon,

Swz
3 ∼

∫

M
d4x�π(∂π)2 . (6.7.23)

The pattern in now clear. The expressions for L4 and L5 will be given by the forms

ωwz
4 = ǫµνρσωC ∧ ωµB ∧ ωνB ∧ ωρB ∧ ωσP ,

ωwz
5 = ǫµνρσωC ∧ ωµB ∧ ωνB ∧ ωρB ∧ ωσB , (6.7.24)

respectively. From the cohomology perspective, the galileon terms are members of the

relative Lie algebra cohomology group H5 (Gal(3 + 1, 1), so(3, 1)).

6.7.1 d dimensional galileons

This procedure is easily generalized to d space-time dimensions, in which case the breaking

pattern is

Gal((d− 1) + 1, 1) → iso(d− 1, 1), (6.7.25)

24In showing this, it is helpful to use the identity

−
2

3
ǫµνρσξλdξ

λ ∧ dξµ ∧ dxν ∧ dxρ ∧ dxσ = ǫµνρσξλdξ
µ ∧ dξν ∧ dxλ ∧ dxρ ∧ dxσ = −4ξλdξ

λ ∧ dξµ ∧ (∗4dxµ),

(6.7.20)

where ∗4 is the Hodge star on the space of xµ’s.
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6.7 Galileons

and the coset is

Gal((d− 1) + 1, 1)/SO(d− 1, 1). (6.7.26)

The n-th single field galileon term descends from the (d+ 1)-form

ωwz
n = ǫµ1···µdωC ∧ ωµ1B ∧ · · · ∧ ωµn−1

B ∧ ωµnP ∧ · · · ∧ ωµdP ,

= ǫµ1···µd

(

dπ + ξλdx
λ
)

∧ dξµ1 ∧ · · · ∧ dξµn−1 ∧ dxµn ∧ · · · ∧ dxµd , (6.7.27)

where the basis 1-forms are the d-dimensional versions of (6.7.6). This is the total derivative

of the non-invariant Wess–Zumino d-form25 (in the following expressions n ≥ 2, the tadpole

is easily treated as before),

ωwz
n = dβwz

n ,

βwz
n = ǫµ1···µd

(

πdξµ1 ∧ · · · ∧ dξµn−1 ∧ dxµn ∧ · · · ∧ dxµd

− (n− 1)

2(d− n+ 2)
ξ2dξµ1 ∧ · · · ∧ dξµn−2 ∧ dxµn−1 ∧ · · · ∧ dxµd

)

. (6.7.29)

Pulling back to the space-time manifold M and integrating yields

Swz
n =

∫

M
βwz
n =

∫

M
ddx (d− n+ 1)!(n − 1)!πδ[ν1µ1 · · · δνn−1]

µn−1
∂ν1ξ

µ1 · · · ∂νn−1ξ
µn−1

− n− 1

2
(d− n+ 1)!(n − 2)!ξ2δ[ν1µ1 · · · δνn−2]

µn−2
∂ν1ξ

µ1 · · · ∂νn−2ξ
µn−2 .

(6.7.30)

25We use the identity,

1

(d− n+ 2)!
ξλdξ

λ ∧ dξµ1 ∧ · · · ∧ dξµn−2 ∧ dxµn−1 ∧ · · · ∧ dxµdǫµ1···µd

= −
1

(n− 1)(d− n+ 1)!
ξλdx

λ ∧ dξµ1 ∧ · · · ∧ dξµn−1 ∧ dxµn ∧ · · · ∧ dxµdǫµ1···µd

= ξλdξ
λ ∧ dξµ1

∧ · · · ∧ dξµn−2
∧ ∗d (dxµ1 ∧ · · · ∧ dxµn−2) , (6.7.28)

where ∗d is the Hodge star on the space of xµ’s.
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Imposing the Higgs constraint ξµ = −∂µπ, and integrating the last term by parts, we recover

the general galileon (1.37),

Swz
n ∼

∫

M
ddx πδ[ν1µ1 · · · δνn−1]

µn−1
∂ν1∂

µ1π · · · ∂νn−1∂
µn−1π. (6.7.31)

The d dimensional galileon terms are members of the relative Lie algebra cohomology

group

Hd+1 (Gal((d− 1) + 1, 1), so(d− 1, 1)) . (6.7.32)

6.8 Multi-galileons

It is straightforward to extend the analysis to the multi-galileon case. The action and

commutation relations are those of the algebra Gal(3 + 1, N) described in Section 6.4, and

the galileons realize the symmetry breaking pattern

Gal(3 + 1, N) −→ iso(3, 1) ⊕ so(N) . (6.8.1)

The coset is parametrized by (6.2.10)

Ṽ = ex·P eπ
I ·CI+ξ

I ·BI , (6.8.2)

and the linearly realized subgroup consists of the Lorentz transformations and the so(N)

rotations, so we are working with the coset

Gal(3 + 1, N)/ (SO(3, 1) × SO(N)) . (6.8.3)

The coefficients of the components of the Maurer–Cartan form (6.2.12) are

ωµP = dxµ , ωIC = dπI + ξIµdx
µ , ωIµB = dξIµ , ωµνJ = ωIJJ = 0 , (6.8.4)

and the inverse Higgs constraint is

ξIµ = −∂µπI , (6.8.5)

162



6.8 Multi-galileons

so that we again find that we cannot construct any terms with fewer than two derivatives

per πI .

To construct the Wess–Zumino terms, we create invariant 5-forms by wedging together

the 1-forms (6.8.4), making sure that the forms are invariant under both the Lorentz trans-

formations so(3, 1) and the internal so(N) transformations so that they are well defined on

the coset. The two possible 5-forms that lead to non-trivial Lagrangians for N ≥ 2 are

ωwz
2 = δIJ ǫµνρσ ω

I
C ∧ ωJµB ∧ ωνP ∧ ωρP ∧ ωσP ,

ωwz
4 = δIJδKLǫµνρσ ω

I
C ∧ ωJµB ∧ ωKνB ∧ ωLρB ∧ ωσP , (6.8.6)

leading to the kinetic term, and the quartic term studied in [73].

From the cohomology perspective, the multi-galileon terms are members of the relative

Lie algebra cohomology group

H5 (Gal(3 + 1, N), so(3, 1) ⊕ so(N)) . (6.8.7)

Generalizing to d-dimensions, there are d/2 possible terms for d even, and (d + 1)/2

possible terms for d odd. The Wess–Zumino (d+ 1)-forms are

ωwz
2n = δI1J1 · · · δInJnǫµ1···µd ωI1C ∧ ωJ1µ1B ∧ · · · ∧ ωInµ2n−2

B ∧ ωJnµ2n−1

B ∧ ωµ2nP ∧ · · · ∧ ωµdP ,
(6.8.8)

which lead to the Lagrangian (1.73). They are members of the relative Lie algebra coho-

mology group

Hd+1 (Gal((d− 1) + 1, N), so(d− 1, 1) ⊕ so(N)) . (6.8.9)

Note that using ǫI1···IN to contract indices gives nothing new, leading only to Lagrangians

which are total derivatives (with the exception of d = 1, N = 1 in (6.6.14)).

163



6. GALILEONS AS WESS-ZUMINO TERMS

6.9 Speculations on Quantum Properties of Galileons

The fact that galileons arise due to local algebraic properties is somewhat tantalizing—it is

well-known that there is a non-renormalization theorem for galileons; they are not renor-

malized to any loop order in perturbation theory [73, 82]. It may be possible that this

non-renormalization is tied to the algebraic properties of the galileon terms. A possibly

instructive example is that of anomalies—whose existence is similarly forecast by alge-

braic properties á la BRST—which also have a non-renormalization theorem, although of a

slightly different type (anomalies are not renormalized past 1-loop). This raises the possi-

bility that the non-renormalization of galileons may be understood in terms of some deeper

topological or algebraic context based upon their construction as Wess–Zumino terms, but

unlike the Wess–Zumino–Witten term of the chiral Lagrangian (which are not renormalized

due to a quantization condition on their coefficients), there does not appear to be an obvious

global topological condition requiring the coefficients of the galileon terms to be quantized.

6.10 Counting the galileons

While the construction of the four dimensional single field galileons makes it hard to imagine

any other possible galileon invariant Lagrangians (and it has been shown by other methods

that there aren’t any [91]), it is good to have a formal check that we have indeed found

every possible Wess–Zumino term. After all, every Lagrangian that is compatible with the

symmetries of the theory should be included when constructing an effective field theory,

and so proper bookkeeping and accounting of terms is a worthwhile endeavor.

In order to verify that we have found all possible Wess–Zumino terms, we want to

compute the relative Lie algebra cohomology H5 (Gal(3 + 1, 1), so(3, 1)). Noting that (6.7.6)

is a basis for left-invariant forms, we determine the action of the exterior derivative, d, on

these forms

dωµP = 0 , dωµB = 0 , dωC = ηµνω
µ
B ∧ ωνP . (6.10.1)
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To meet the requirement of SO(3, 1) invariance, all Greek indices must be contracted with

ηµν or ǫµνρσ . Then, the SO(3, 1) invariant 5-co-cycles can be explicitly constructed and are

given by

ω1 = ǫµνρσωC ∧ ωµP ∧ ωνP ∧ ωρP ∧ ωσP ,

ω2 = ǫµνρσωC ∧ ωµP ∧ ωνP ∧ ωρP ∧ ωσB ,

ω3 = ǫµνρσωC ∧ ωµP ∧ ωνP ∧ ωρB ∧ ωσB , (6.10.2)

ω4 = ǫµνρσωC ∧ ωµP ∧ ωνB ∧ ωρB ∧ ωσB ,

ω5 = ǫµνρσωC ∧ ωµB ∧ ωνB ∧ ωρB ∧ ωσB .

It is clear that each of these forms are closed, dω = 0. Furthermore, due to the presence

of a factor of ωC in each form, none of these are expressible as the exterior derivative of a

4-form. In order to not vanish there must have been exactly one factor of ωC in the 4-co-

chain, but such a form is not Lorentz invariant; therefore all of the 5-co-cycles in (6.10.2)

are non-trivial elements of H5(gal(1 + 3, 1), so(3, 1)).

This provides a formal check that there only exist the five galileon Lagrangians and we

have not missed any other Wess–Zumino terms in our construction. Similar remarks apply

to all other dimensions and co-dimensions.

6.11 Conformal galileons

The conformal galileon is a higher derivative theory of a single scalar field, with second order

equations of motion, and which non-linearly realizes the conformal group. The relevant

Lagrangians are those of (3.149) (with the replacement π̂ → −π) and were first constructed

in Sec. 3.1 of [91],

L1 = −1

4
e4π ,

L2 = −1

2
e2π(∂π)2 ,
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L3 =
1

2
(∂π)22π +

1

4
(∂π)4 ,

L4 = −1

2
e−2π(∂π)2

(

[Π]2 − [Π2] +
2

5
(−(∂π)22π + [π3]) +

3

10
(∂π)4

)

,

L5 = −1

2
e−4π(∂π)2

[

− [Π]3 + 3[Π][Π2]− 2[Π3] + 3(∂π)2([Π]2 − [Π2])

+
30

7
(∂π)2(−(∂π)2[Π] + [π3])− 3

28
(∂π)6

]

. (6.11.1)

where we’ve used the bracket shorthand for traces as explained in the conventions in Ap-

pendix A. Indices are raised and lowered with ηµν .

The conformal galileons linearly realize Poincaré symmetry,

δPµπ = −∂µπ ,

δJµνπ = (xµ∂ν − xν∂µ)π , (6.11.2)

while the conformal symmetry is non-linearly realized

δDπ = −1− xµ∂µπ ,

δKµπ = −2xµ − (2xµx
ν∂ν − x2∂µ)π . (6.11.3)

Taken together, the transformations satisfy the commutators of the conformal algebra

so(4, 2),

[Pµ,D] = Pµ , [D,Kµ] = Kµ ,
[Jµν ,Kσ] = ηµσKν − ηνσKµ , [Jµν , Pσ] = ηµσPν − ηνσPµ ,
[Kµ, Pν ] = 2Jµν − 2ηµνD , [Jµν , Jρσ] = ηµρJνσ − ηνρJµσ + ηνσJµρ − ηµσJνρ .

(6.11.4)

The conformal galileons may be interpreted as the Goldstone field associated with the

symmetry breaking pattern

so(4, 2) −→ iso(3, 1) . (6.11.5)
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As we shall see, it is possible to obtain the conformal galileon terms via the coset con-

struction, with the exception of the term quartic in derivatives, L3, which appears as a

Wess–Zumino term.

The coset space is

SO(4, 2)/SO(3, 1), (6.11.6)

which we parametrize as26

Ṽ = ex·P eπDeξ·K . (6.11.7)

Calculating the Maurer–Cartan form (6.2.12),

ω = Ṽ −1dṼ = ωµPPµ + ωDD + ωµKKµ +
1

2
ωµνJ Jµν , (6.11.8)

the components are found to be [11, 72, 85, 112]

ωµP = eπdxµ,

ωD = dπ + 2eπξµdx
µ,

ωµK = dξµ + ξµdπ + eπ
(
2ξµξνdx

ν − ξ2dxµ
)
,

ωµνJ = −4eπ (ξµdxν − ξνdxµ) . (6.11.9)

where indices have been raised and lowered with ηµν .

Due to the commutator [Kµ, Pν ] = 2Jµν − 2ηµνD, there is an inverse Higgs constraint,

ωD = 0 yielding the relation

ξµ = −1

2
e−π∂µπ . (6.11.10)

Plugging back into the Maurer–Cartan form, we have

26This differs slightly from our general expression (6.2.10) since we write a product of exponentials for

the broken generators rather than the exponential of a sum. This just amounts to a different choice of

parametrization for the coset.
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ωµP = eπdxµ,
ωµK = e−π

(
1
2∂νπ∂

µπdxν − 1
2∂ν∂

µπdxν − 1
4 (∂π)

2dxν
)
,

ωµνJ = 2 (∂µπdxν − ∂νπdxµ) .
(6.11.11)

The vielbein (6.2.14) can be extracted from ωP ,

e α
ν = eπδαν , (6.11.12)

giving the invariant metric

gµν = e α
µ e

β
ν ηαβ = e2πηµν . (6.11.13)

The invariant measure (6.2.16) is

√−g = e4π. (6.11.14)

The derivative (6.2.18) associated to ξβ (here another Lorentz index β plays the role of the

index a in Section 6.2.2) is given by the expression (ωK)
β
µ = e αµ Dαξ

β . By contracting with

the vielbein, we can instead work with the object Dµξν ≡ e αµ Dαξ
βe γ
ν ηβγ = (ωK)

β
µ e α

ν ηβα,

Dµξν =
1

2
∂νπ∂µπ − 1

2
∂ν∂µπ − 1

4
(∂π)2ηµν . (6.11.15)

We construct invariant Lagrangians by using Dµξν , contracting up indices with the metric

(6.11.13) and multiplying by the measure (6.2.16).

Another method is used in [91]27. The conformal galileons are constructed by forming

diffeomorphism scalars of the conformal metric gµν = e2πηµν . This method is in fact

completely equivalent to the coset construction, because we have for the Ricci tensor

Rµν(g) = 2∂µπ∂νπ − 2∂µ∂νπ −�πηµν − 2(∂π)2ηµν , (6.11.16)

27There is also a method called tractor calculus, which is designed for constructing realizations of conformal

symmetry [10, 12, 53, 68, 69, 104, 105].
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which can be expressed in terms of the covariant derivative (6.11.15),

Rµν(g) = 4Dµξν + 2Dρξ
ρgµν . (6.11.17)

The Ricci scalar for the conformal metric is R[g] = 12Dρξ
ρ, and the Riemann tensor gives

nothing beyond the Ricci tensor because the Weyl tensor vanishes for the conformally flat

metric (6.11.13). Furthermore, higher covariant derivatives D in the coset are equivalent

to higher covariant derivatives ∇(g) with respect to the metric (6.11.13). We therefore

see that the invariant actions constructible by the coset method correspond to all possible

diffeomorphism scalars constructed from the metric gµν = e2πηµν , its curvature tensors and

its covariant derivative.

The zero derivative term in (6.11.1) comes from the volume element

L1 ∼
√−g = e4π , (6.11.18)

while the kinetic term comes from the Ricci curvature, after an integration by parts

L2 ∼
√−gR = 6e2π(∂π)2 . (6.11.19)

The terms L4 and L5 are constructed from particular curvature invariants of order R3 and

R4, respectively [91].

The term L3, however, presents a problem. It should be constructible from curvature

invariants of order R2, but all three curvature invariants which are quadratic in the Ricci

curvature give the same contribution after integration by parts (and in fact, only two could

have been independent since the Gauss-Bonnet combination R2 − 4RµνRµν + RµνρσRµνρσ

is a total derivative) [91].

√−gR2
√−gRµνRµν√−gRµνρσRµνρσ






∝ (�π)2 + (∂π)4 + 2�π(∂π)2 , (6.11.20)
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which is not of the form L3 and gives rise to higher order equations of motion due to the

(�π)2 term. It would thus appear that it is impossible to create the conformal galileon L3

by the coset method.

However, one can create a linearly independent invariant Lagrangian by using a trick,

as is done in [91]. We go to d dimensions,28 and consider the following combination of

curvature invariants,
√−g
(d− 4)

(
R2
µν

(d− 1)
− R2

(d− 1)2

)

= e(d−4)π

(

(�π)2 +
(d− 2)(3d − 4)

2(d − 1)
�π(∂π)2 +

(d− 2)3

2(d − 1)
(∂π)4

)

. (6.11.21)

This combination is finite in the limit d→ 4 and leads to the Lagrangian

L ∼ 3

4
(�π)2 + (∂π)4 + 2�π(∂π)2 . (6.11.22)

This combination is linearly independent of (6.11.20), and can be used to subtract off the

offending (�π)2 term giving the cubic galileon

L3 ∼ (∂π)4 + 2�π(∂π)2 . (6.11.23)

The fact that we must do this dimensional continuation to construct L3 is a harbinger of the

fact that this is a Wess–Zumino term. The fact that Wess–Zumino terms are not captured

by the coset construction appears here through the fact that we have to move away from

four dimensions. In fact, it is easy to show that L3 changes by a total derivative under the

non-linear symmetries while the remaining Lagrangians are strictly invariant (modulo the

total derivative associated with changing the field coordinates), so we expect the necessity

of a Wess–Zumino type construction for L3.

Starting with the conformal algebra (6.11.4), we wish to compute the relative Lie algebra

cohomology

H5(so(4, 2), so(3, 1)), (6.11.24)

28The d-dimensional metric is e2π times the d-dimensional Minkowski metric.
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in order to catalog the possible Wess–Zumino terms. Recall from Section 6.3 that the basis

forms which are dual to the Lie algebra vectors are written with upper indices and the forms

which annihilate the vector subspace spanned by so(3, 1) are {D,Kµ, Pµ}. These are used

to create n-co-chains for computing the relative Lie algebra cohomology. The co-boundary

operator δ acts on the basis forms as

δD = 2ηµνK
µ ∧ P ν ,

δPµ = D ∧ Pµ + 2P β ∧ Jαµηαβ , (6.11.25)

δKµ = −D ∧Kµ + 2Kβ ∧ Jαµηαβ .

We can construct the following six so(3, 1) invariant 5-co-chains

ω1 = ǫµνρσD ∧ Pµ ∧ P ν ∧ P ρ ∧ P σ,

ω2 = ǫµνρσD ∧ Pµ ∧ P ν ∧ P ρ ∧Kσ,

ω3 = ǫµνρσD ∧ Pµ ∧ P ν ∧Kρ ∧Kσ,

ω4 = ǫµνρσD ∧ Pµ ∧Kν ∧Kρ ∧Kσ,

ω5 = ǫµνρσD ∧Kµ ∧Kν ∧Kρ ∧Kσ,

ω6 = ηµνηρσD ∧ Pµ ∧Kν ∧ P ρ ∧Kσ . (6.11.26)

The co-chains ω1 to ω5 are closed (δω = 0), and we therefore have five possible non-trivial

co-cycles. However, four of these turn out to be co-boundaries

ω1 =
1

4
δ
[

ǫµνρσP
µ ∧ P ν ∧ P ρ ∧ P σ

]

,

ω2 =
1

2
δ
[

ǫµνρσD ∧ Pµ ∧ P ν ∧ P ρ ∧Kσ
]

,

ω4 = −1

2
δ
[

ǫµνρσD ∧ Pµ ∧Kν ∧Kρ ∧Kσ
]

,

ω5 = −1

4
δ
[

ǫµνρσD ∧Kµ ∧Kν ∧Kρ ∧Kσ
]

. (6.11.27)
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6. GALILEONS AS WESS-ZUMINO TERMS

However, it turns out that ω3 is a non-trivial co-cycle. The only possible so(3, 1) invariant

potential for ω3 would be of the form α3 ∼ ǫµνρσP
µ ∧ P ν ∧Kρ ∧Kσ but, due to the sign

difference between δPµ and δKµ, the co-boundary operator annihilates this form, δα3 = 0.

Therefore, there is a single non-trivial element of H5(so(4, 2), so(3, 1)) and correspondingly,

a single Wess–Zumino term.

The 5-form corresponding to the non-trivial co-cycle ω3 is given by

ωwz
3 = ǫµνρσ ωD ∧ ωµP ∧ ωνP ∧ ωρK ∧ ωσK (6.11.28)

= ǫµνρσ

[

e4π
(

ξ4dπ ∧ dxµ ∧ dxν ∧ dxρ ∧ dxσ − 4ξ2ξλdx
λ ∧ dxµ ∧ dxν ∧ dxρ ∧ dxσ

)

+ e3π
(

−2ξ2dπ ∧ dxµ ∧ dxν ∧ dξρ ∧ dxσ + 2ξλdx
λ ∧ dxµ ∧ dxν ∧ dξρ ∧ dξσ

)

+ e2πdπ ∧ dxµ ∧ dxν ∧ dξρ ∧ dξσ
]

, (6.11.29)

and can be written as a total derivative,

ωwz
3 = dβwz

3 ,

βwz
3 = ǫµνρσ

[e4π

4
ξ4dxµ ∧ dxν ∧ dxρ ∧ dxσ − e3π

3
ξ2dxµ ∧ dxν ∧ dξρ ∧ dxσ

+
e2π

2
dxµ ∧ dxν ∧ dξρ ∧ dξσ

]

. (6.11.30)

Pulling back and imposing the inverse Higgs constraint (6.11.10), the final result is

Swz
3 =

∫

M
βwz
3 = −1

2

∫

d4x
[1

2
�π(∂π)2 +

1

4
(∂π)4

]

, (6.11.31)

which reproduces L3.

The extension to d space-time dimensions proceeds without too much trouble. When d

is even, there is a single Wess–Zumino galileon, the middle one L d
2
+1. The others are all

coset constructible. As an example, in d = 2 the kinetic term L2 is a Wess–Zumino term.

It is impossible to construct with the coset method, since the only possible curvature term

which could give it, R, is a total derivative in two dimensions. When d is odd, there is no

Wess–Zumino term, and all the conformal galileons are coset constructible.
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6.12 DBI galileons

It is worth noting that the 4-dimensional Wess–Zumino term

L3 ∼ (∂π)4 + 2�π(∂π)2 , (6.11.32)

has been of some interest recently in connection with the a-theorem in four dimensions

[78, 79]. This term for the 4 dimensional conformal group plays a similar role to that of the

more well-known 2 dimensional Wess–Zumino term in the trace anomaly. The extension

to d dimensions reflects the fact that there is no anomaly for odd d, and in even d it is

associated with terms of order d/2 in the curvature.

6.12 DBI galileons

Finally, we demonstrate that coset methods can reproduce the DBI galileons of Sec.3.3.1,

a 4D scalar field theory which non-linearly realized 5D Poincaré symmetries. Once again,

the DBI lagrangians are (3.9)

L1 = π,

L2 = −
√

1 + (∂π)2 ,

L3 = − [Π] + γ2
[
π3
]
,

L4 = −γ
(

[Π]2 −
[
Π2
])

− 2γ3
([
π4
]
− [Π]

[
π3
])

,

L5 = −γ2
(

[Π]3 + 2
[
Π3
]
− 3 [Π]

[
Π2
])

− γ4
(

6 [Π]
[
π4
]
− 6

[
π5
]
− 3

(

[Π]2 −
[
Π2
]) [

π3
])

,

(6.12.1)

where

γ ≡ 1
√

1 + (∂π)
. (6.12.2)

As we have seen, the last four DBI galileons are obtained from Lovelock invariants of the

induced brane metric for M4 in M5 and the boundary terms associated to 5D Lovelock

invariants. However, the first term, the tadpole, is not constructed from local terms on the
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6. GALILEONS AS WESS-ZUMINO TERMS

brane, but rather as the five-dimensional volume bounded by the brane (as discussed in

[66]), and is the only Wess–Zumino term, as we will see.

The DBI galileons realize spontaneous breaking of the 5D Poincaré algebra to its 4D

Poincaré subalgebra,

iso(4, 1) −→ iso(3, 1). (6.12.3)

The broken transformations are translations and rotations into the fifth direction [39, 66]

δP5π = 1 , δJµ5π = xµ + π∂µπ . (6.12.4)

The 5D Poincaré algebra has the commutation relations

[JMP , PQ] = ηMQPN − ηNQPM

[JMN , JPQ] = ηMPJNQ − ηNPJMQ + ηNQJMP − ηMQJNP , (6.12.5)

where ηAB = diag (−1, 1, 1, 1, 1). The preserved subalgebra is the Poincaré subalgebra

generated by (Jµν , Pρ), where Greek indices run from 0 to 3, acting as in (6.11.2).

The broken generators are P5 and Jµ5, and the coset space is

ISO(4, 2)/SO(3, 1), (6.12.6)

parametrized by29

Ṽ = ex·P eπP5eξ
αJα5 . (6.12.7)

From this, we can compute the Maurer–Cartan form (6.2.12)

ω = Ṽ −1dṼ = ωαPPα + ωP5P5 + ωαJJα5 +
1

2
ωαβJ Jαβ , (6.12.8)

29As in the conformal galileon example (6.11.7), this differs slightly from our general expression (6.2.10),

which just amounts to a different choice of parametrization of the coset.
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6.12 DBI galileons

where the needed components are

ωαP = dxα −
1
2ψ

αψν

1 + ψ2

4

dxν +
ψα

1 + ψ2

4

dπ , (6.12.9)

ωP5 =
1− ψ2

4

1 + ψ2

4

dπ − ψµ

1 + ψ2

4

dxµ , (6.12.10)

ωαJ =
dψα

1 + ψ2

4

. (6.12.11)

Here, inspired by [11], we have made the field redefinition

ψµ ≡ ξµ
tanh

√
−ξ2
4

√
−ξ2
4

, (6.12.12)

to make the field ψ appear quadratically, which simplifies the expressions. We will not

consider the coupling of π to matter fields, so the explicit form of ωµνJ will not be important.

There is an inverse Higgs constraint, since the commutator of Jµ5 with the unbroken

translations

[Pµ, Jν5] = −ηµνP5 , (6.12.13)

is proportional to the other unbroken generator P5, so the ψµ field is unphysical and may

be eliminated in favor of the π by setting ωP5 = 0, leading to the following relationship

between the π and ψµ fields

ψµ =
2∂µπ

1 +
√

1 + (∂π)2
. (6.12.14)

The choice of sign for the square root just leads to an overall sign in front of the Lagrangian,

and we will choose the + branch. Using this, we may simplify slightly the expressions for

the Maurer–Cartan forms

ωαP =

(

δαµ +
1
2ψµψ

α

1− ψ2

4

)

dxµ , (6.12.15)
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6. GALILEONS AS WESS-ZUMINO TERMS

ωαJ =
dψα

1 + ψ2

4

. (6.12.16)

The vielbein (6.2.14) and inverse vielbein can be extracted from ωP ,

e α
µ = δαµ +

1
2ψµψ

α

1− ψ2

4

, eµα = δµα −
1
2ψαψ

µ

1 + ψ2

4

. (6.12.17)

Here we see explicitly that the coset construction is exactly equivalent to the brane

construction of [39] and Sec.3.3.1 by noting that the induced metric associated to the vielbein

(6.12.15) is

gµν = ηαβe
α
µ e

β
ν = ηµν + ∂µπ∂νπ . (6.12.18)

Similarly, the covariant derivative (6.2.18) of ξ, written with spacetime rather than Lorentz

indices, is precisely the extrinsic curvature

Dµξν ≡ e αµ (ωJ)
β
ν ηαβ = γ∂µ∂νπ = −Kµν . (6.12.19)

From the Gauss–Codazzi relation for a flat bulk

Rµνρσ −KµρKνσ +KνρKµσ = 0 , (6.12.20)

we see that the coset procedure gives us all the ingredients we need for constructing the

generic brane action L(ḡµν ,Kµν , Rµνρσ) of (2.8) and hence we can construct the DBI galileon

terms L2 through L5 of Sec.3.3.1.30

30The DBI terms, save the tadpole L1, can also be constructed just by wedging the Maurer–Cartan

components together as

L2 = − 1

4!
ǫµνρσ ωµ

P ∧ ων
P ∧ ωρ

P ∧ ωσ
P ,

L3 =
1

3!
ǫµνρσ ωµ

J ∧ ων
P ∧ ωρ

P ∧ ωσ
P ,

L4 = −1

2
ǫµνρσω

µ
J ∧ ων

J ∧ ωρ
P ∧ ωσ

P ,

L5 = ǫµνρσ ωµ
J ∧ ων

J ∧ ωρ
J ∧ ωσ

P ,

and then integrating over the spacetime.
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6.12 DBI galileons

Note that—just as in the brane construction—we have failed to construct the tadpole

term, L1 = π, from the coset methods in four dimensions. However, it is possible to

construct this tadpole as a Wess–Zumino term by considering the 5-form

ωwz
1 = ǫµνρσωP5 ∧ ωµP ∧ ωνP ∧ ωρP ∧ ωσP . (6.12.21)

A fairly straightforward calculation reveals that this 5-form is exact,

ωwz
1 = dβwz

1 ,

βwz
1 = πǫµνρσdx

µ ∧ dxν ∧ dxρ ∧ dxσ . (6.12.22)

The action given by integrating this 4-form is then

S1 =

∫

M
βwz
1 =

∫

d4x π , (6.12.23)

which is the action corresponding to the tadpole Lagrangian L1. Therefore we see that

the tadpole term is a Wess–Zumino term for spontaneously broken Poincaré invariance, in

contrast to the other DBI galileon terms.

The DBI galileons are obtainable from the coset construction and so are not Wess–

Zumino terms (except for the tadpole term). Taking a small-field limit gives the ordinary

galileon terms, indicating that the procedure of contracting the algebra can change which

terms are Wess–Zumino. For concreteness, here we derived the DBI galileons in four di-

mensions, but similar remarks apply in all dimensions: none of the DBI galileons will be

Wess–Zumino except for the tadpole.

The case of higher co-dimensions is more subtle (the DBI galileons for higher co-

dimension are discussed in [73]), but the extension should not be too difficult. The coset

construction used here is not new—there are many examples of authors deriving low-

energy effective actions for membranes using non-linear realization techniques, for example

[29, 64, 117]—but to our knowledge the construction of the full set of DBI galileons from

this perspective has not appeared elsewhere in the literature.
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6. GALILEONS AS WESS-ZUMINO TERMS

Based on the expectation that the brane constructions used in [39, 65, 66, 73] are

equivalent to the coset construction, we can surmise that the DBI-like galileons living on

(A)dS and flat spaces and realizing higher dimensional (A)dS and Poincaré symmetries,

catalogued in [65, 66] (before taking any small field limits), have the same Wess–Zumino

properties as the original DBI galileons studied in this section, that is, the tadpole is Wess–

Zumino and the higher order galileons are not.
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Chapter 7

Summary of Part III

In Part III we demonstrated that galileons are naturally viewed as Goldstone modes borne

from the breaking of spacetime symmetries. In particular, the ghost free galileon interactions

are special in that they arise as Wess–Zumino terms for the appropriate spacetime SSB

pattern. Their existence is linked to the existence of non-trivial co-cycles in relative Lie

algebra cohomology. The galileon terms are the d-form potentials for the (d+1)-form non-

trivial co-cycles. The existence of the galileons is due to the local algebraic properties of

the relevant groups.

We also used the techniques of non-linear realizations to address multi-galileon the-

ories, showing that they too are Wess–Zumino terms. Finally, we considered the DBI

galileons, showing that they are not Wess–Zumino terms (except for the tadpole term), and

we considered the conformal galileons, showing that only the middle conformal galileon is

a Wess–Zumino term.
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Part IV

Conclusions
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Chapter 8

Conclusion

Galileon field theories are of great interest, both due to their natural appearance in well

motivated theories of modified gravity and in their own right, as they have fascinating field

theoretic properties. First discovered in the context of the DGP [51] higher dimensional

braneworld model, they were later incorporated into other modifications of gravity [91] and

found to appear in the first consistent theory of massive gravity [36, 37].

On the modified gravity side, galileon interactions are special because they provide the

unique natural realization of the Vainshtein screening mechanism for scalar fields. The

mechanism utilizes higher derivative interactions in order to generate non-linear regimes

which effectively shut off the scalar fifth force at distances close to massive sources. In

the context of massive gravity, this mechanism is essential in order to resolve the vDVZ

discontinuity in which them→ 0 limit of typical massive gravity theories does not reproduce

general relativity.

On the field theory side, galileons are quite interesting as they represent non-trivial

derivative interactions for which the equations of motion remain second order in time deriva-

tive (thereby evading ghostly modes) and which are technically distinct from other generic

actions which also obey the galileon symmetry π → π+c+bµx
µ. Further, the galileons enjoy
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8. CONCLUSION

a non-renormalization theorem which ensures that galileon interactions are not renormalized

to any order in loops.

Befitting their braneworld origins, there is an elegant geometric interpretation of galileons

in which they describe the bending mode of a probe brane living in a higher dimensional

space. This approach was first elucidated in [39] and the purpose of Part II of this thesis

was to extend and generalize the geometric construction. In Sec. 2.2 we gave the entirely

general construction for describing probe brane theories and discuss how the galileon-like

symmetries originate from isometries of the bulk. After identifying the unique actions

which lead to second order equations of motion, we explicitly built the appropriate theories

for maximally symmetric bulk spaces in Chapter 3. These are the natural generalizations

of galileons. They are higher derivative theories of scalar fields that retain second order

equations of motion and also exhibit a host of non-linear shift symmetries. They also ex-

hibit novel features such as the presence of masses and potentials whose values are fixed

by symmetries. We explored whether one class of these generalized lagrangians is free

of the pathology demonstrated by the original galileons in which perturbations on top of

non-trivial π(x) configurations propagate superluminally, but found they too are afflicted.

Finally, in Chapter 4 we derived the appropriate generalization of galileon theories which

live on FRW spacetimes.

While the specific models generated by these geometric methods are interesting, the

overall conceptual viewpoint they provide is important, too. These procedure starts by

specifying an arbitrary bulk spacetime with a given set of isometries and ends up generating

stable scalar field theories which can be nearly arbitrarily complicated and yet realize every

symmetry of the bulk space. This perspective inspired the work of Part III in which the

galileons were viewed as Goldstone modes arising from spontaneous symmetry breaking.

The non-linear realization of bulk isometries via the shift symmetries of the scalar field

and the resulting derivative interaction make the association between galileons and spon-

taneous symmetry breaking tempting and in Part III we make the identification explicit.
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The viewpoint is that the mere presence of the brane spontaneously breaks the spacetime

symmetries previously enjoyed by the bulk space, and hence there ought to be correspond-

ing Goldstone modes which describe the motion of the brane within the bulk space. Using

canonical techniques of SSB, we demonstrated that the construction of galileon field the-

ories can be performed entirely within the standard framework. In particular, within the

coset construction, the galileon interactions, which have fewer derivatives than their generic,

symmetric counterparts, are found to be technically special. They are the analogue of the

Wess-Zumino-Witten term from the chiral lagrangian of pion physics and require a higher

dimensional construction. More than anything, the methods presented provide a new way

of constructing and thinking about galileon field theories and their generalizations.

Galileons and their generalizations have turned up everywhere from theories of modified

gravity to proofs of the a-theorem in conformal field theory [78, 79] and studies of halo

biasing [8]. Studying them in their own right, we not only gain a greater understanding

of an interesting class of non-trivial field theories, but also a better understanding of these

other physical scenarios in which they appear. This thesis has provided a host of technical

methods and viewpoints for galileon field theories and represents significant progress in

understanding their underlying nature. Certainly, these field theories are not without their

flaws, as can be seen from their superluminal modes and the apparent inability to UV

complete them in a standard Wilsonian way [1], but this potentially makes them more

interesting as the pursuit for resolutions of these apparent shortcomings is likely to be

illuminating itself.
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Appendix A

Conventions

We use the mostly plus metric signature convention. The 3-brane worldvolume coordinates

are xµ, µ = 0, 1, 2, 3, bulk coordinates are XA, A = 0, 1, 2, 3, 5. Occasionally we use 6-

dimensional cartesian coordinates Y A, A = 0, 1, 2, 3, 4, 5, for constructing five dimensional

AdS5 and dS5 as embeddings. Tensors are symmetrized and anti-symmetrized with unit

weight, i.e T(µν) = 1
2 (Tµν + Tνµ), T[µν] = 1

2 (Tµν − Tνµ). Curvature tensors are defined

by [∇µ,∇ν ]V
ρ = RρσµνV

σ and Rµν = Rρµρν , R = Rµµ. The flat space epsilon tensor is

defined so that ǫ01···d = +1. n-dimensional Minkowski space, de Sitter space and Anti-

de Sitter space are abbreviated as Mn, dSn and AdSn, respectively. The Planck mass is

Mpl ≡ 1/
√
8πGN . Throughout the thesis, ∼= indicates equivalence up to total derivatives.

When writing actions for a scalar field π in curved space with metric gµν and covariant

derivative∇µ, we use the notation Π for the matrix of second derivatives Πµν ≡ ∇µ∇νπ. For

traces of powers of Π we write [Πn] ≡ Tr(Πn), e.g. [Π] = ∇µ∇µπ, [Π2] = ∇µ∇νπ∇µ∇νπ,

where all indices are raised with respect to gµν . We also define the contractions of powers

of Π with ∇π using the notation [πn] ≡ ∇π · Πn−2 · ∇π, e.g. [π2] = ∇µπ∇µπ, [π3] =

∇µπ∇µ∇νπ∇νπ, where again all indices are raised with ηµν .
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Appendix B

Some useful expressions

Here we collect some expressions useful in the calculation leading to (3.6).

First some transformations in which we set ḡµν = g̃µν + ∂µπ∂νπ. Define

γ =
1

√
1 + g̃µν∂µπ∂νπ

, Π̃µν = ∇̃µ∇̃νπ . (B.0.1)

Brackets with tildes denote a trace with respect to g̃µν , e.g. [Π̃] = g̃µν∇̃µ∇̃νπ, [Π̃2] =

g̃αµg̃βν∇̃µ∇̃νπ∇̃α∇̃βπ, etc. and
[
π̃2
]
= g̃µν∇̃µπ∇̃νπ,

[
π̃3
]
= g̃αµg̃βν∇̃απ∇̃µ∇̃νπ∇̃βπ, etc.

We have,

Γ̄λµν = Γλµν + γ2Π̃µν∇̃λπ , (B.0.2)

R̄αβµν = R̃αβµν − γ2R̃γβµν∇̃γπ∇̃απ + 2γ2
(

Π̃ α
[µ Π̃ν]β − γ2Π̃γ[µΠ̃ν]β∇̃απ∇̃γπ

)

, (B.0.3)

R̄µν = R̃µν − γ2R̃αµβν∇̃απ∇̃βπ

+ γ2
[(

[Π̃]− γ2[π̃3]
)

Π̃µν − Π̃2
µν + γ2Π̃µαΠ̃νβ∇̃απ∇̃βπ

]

, (B.0.4)

R̄ = R̃− 2γ2R̃µν∇̃µπ∇̃νπ + γ2
(

[Π̃]2 − [Π̃2]
)

+ 2γ4
(

[π̃4]− [π̃3][Π̃]
)

. (B.0.5)
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For performing the conformal transformation, g̃µν = f2gµν , we use

Γ̃ρµν = Γρµν + f−1
(
δρµ∂νf + δρν∂µf − gµνg

ρσ∂σf
)
, (B.0.6)

R̃ρσµν = Rρσµν + 2

(

−f
′′

f
+ 2

f ′2

f2

)

δρ[µ∇ν]π∇σπ − 2
f ′

f
δρ[µ∇ν]∇σπ

+ 2

(
f ′′

f
− 2

f ′2

f2

)

gσ[µ∇ν]π∇ρπ + 2
f ′

f
gσ[µ∇ν]∇ρπ + 2

f ′2

f2
gσ[µδ

ρ
ν](∇π)

2 , (B.0.7)

R̃µν = Rµν + 2

(

2
f ′2

f2
− f ′′

f

)

∇µπ∇νπ − 2
f ′

f
Πµν − gµν

(
f ′

f
[Π] +

(
f ′′

f
+
f ′2

f2

)

[π2]

)

,

R̃ =
1

f2
R− 6

f3
(
f ′′[π2] + f ′[Π]

)
. (B.0.8)

The transformation of the matrix of derivatives is

Π̃µν = Πµν − 2
f ′

f
∇µπ∇νπ + gµν

f ′

f
[π2] , (B.0.9)

and, finally, some useful relations for the contractions are

˜[Π] =
1

f2
[Π] + 2

f ′

f3
[π2] , (B.0.10)

˜[Π2] =
1

f4
[Π2] + 2

f ′

f5
(
[Π][π2]− 2[π3]

)
+ 4

f ′2

f6
[π2]2 , (B.0.11)

˜[π2] =
1

f2
[π2] , (B.0.12)

˜[π3] =
1

f4
[π3]− f ′

f5
[π2]2 , (B.0.13)

˜[π4] =
1

f6
[π4]− 2

f ′

f7
[π3][π2] +

f ′2

f8
[π2]3 . (B.0.14)
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Appendix C

Lagrangians for Gaussian Normal

Foliations of Flat Spaces

In this appendix, we present the general expressions for the Li’s for probe branes whose

bulk metric is both flat (so that RABCD = 0) and written in Gaussian normal form,

GABdX
AdXB = fµν(x

σ , ρ)dxµdxν + dρ2 . (C.0.1)

In all cases, we use the definition γ̃ = 1/
√

1 + (∂π)2 to replace (∂π)2 in favor of γ̃ (recall

that indices on the derivatives are raised with fµν). In addition, we employ a shorthand

notation. We define Πµν = ∇µ∇νπ, where the covariant derivative ∇µ is calculated from

fµν at fixed π. f ′µν denotes the derivative of fµν(x, π) with respect to π.

For this appendix, we also use a slightly different shorthand for contractions than we

do elsewhere in this thesis. This is needed as there is more ambiguity in the ordering of

contractions here than there is in the case of Sec.2.2.1.2 and we wish to differentiate the two

from each other. We use angular brackets 〈. . .〉 to denote traces of the enclosed product as

matrices, with all contractions performed using fµν . For example, we have

〈f ′〉 = fµν∂πfµν ,
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〈Πf ′〉 = Πµνf
νλ (∂πfλσ) f

σµ,

〈Π3〉 = Πµνf
νλΠλσf

σρΠρκf
κµ . (C.0.2)

In addition, when π appears within a angled bracket, it does so only at both ends, and

denotes contraction with ∇µπ, for example,

〈πf ′π〉 = ∇µπ f
µν (∂πfνλ) f

λσ∇σπ,

〈πΠf ′π〉 = ∇µπ f
µνΠνλf

λσ (∂πfσρ) f
ρκ∇κπ . (C.0.3)

Employing this notation, the lagrangians (2.38) are calculated to be (no integrations by

parts have been made in obtaining these expressions)

L1 =

∫ π(x)

dπ′
√

− det fµν(x, π′),

L2 = −
√

−f 1
γ̃
,

L3 =
√

−f
[

− 〈Π〉+ 1

2
〈f ′〉+ γ̃2

(

〈πΠπ〉 + 1

2
〈πf ′π〉

)]

,

L4 =
√

−f
[

− 1

2
〈πf ′π〉2γ̃3 − 〈f ′〉〈πΠπ〉γ̃3 − 2〈πΠ2π〉γ̃3 + 2〈πΠπ〉〈Π〉γ̃3

− 1

2
〈f ′〉〈πf ′π〉γ̃3 + 〈Π〉〈πf ′π〉γ̃3 − 〈f ′〉2γ̃

4
− 〈Π〉2γ̃ +

〈f ′2〉γ̃
4

− 〈Πf ′〉γ̃ + 〈f ′〉〈Π〉γ̃ + 〈Π2〉γ̃ +
〈πf ′2π〉γ̃

2

]

, (C.0.4)

L5 =
√

−f
[

3〈πΠπ〉〈Π〉2γ̃4 + 3

4
〈f ′〉〈πf ′π〉2γ̃4 − 3

2
〈Π〉〈πf ′π〉2γ̃4 + 3

4
〈f ′〉2〈πΠπ〉γ̃4

− 3

4
〈f ′2〉〈πΠπ〉γ̃4 + 3〈Πf ′〉〈πΠπ〉γ̃4 + 6〈πΠ3π〉γ̃4 + 3〈f ′〉〈πΠ2π〉γ̃4

− 3〈f ′〉〈πΠπ〉〈Π〉γ̃4 − 6〈πΠ2π〉〈Π〉γ̃4 − 3〈πΠπ〉〈Π2〉γ̃4 + 3

8
〈f ′〉2〈πf ′π〉γ̃4

+
3

2
〈Π〉2〈πf ′π〉γ̃4 − 3

8
〈f ′2〉〈πf ′π〉γ̃4 + 3

2
〈Πf ′〉〈πf ′π〉γ̃4
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SPACES

− 3

2
〈f ′〉〈Π〉〈πf ′π〉γ̃4 − 3

2
〈Π2〉〈πf ′π〉γ̃4 − 3

2
〈πΠπ〉〈πf ′2π〉γ̃4

− 3

4
〈πf ′π〉〈πf ′2π〉γ̃4 − 3〈πΠf ′Ππ〉γ̃4 + 3〈πf ′π〉〈πΠf ′π〉γ̃4

+
〈f ′〉3γ̃2

8
− 〈Π〉3γ̃2 + 3

2
〈f ′〉〈Π〉2γ̃2 − 3

8
〈f ′〉〈f ′2〉γ̃2 + 〈f ′3〉γ̃2

4

+
3

2
〈f ′〉〈Πf ′〉γ̃2 − 3〈Πf ′2〉γ̃2

2
− 3〈Πf ′Πf ′π〉γ̃2

2
− 3

4
〈f ′〉2〈Π〉γ̃2

+
3

4
〈f ′2〉〈Π〉γ̃2 − 3〈Πf ′〉〈Π〉γ̃2 − 2〈Π3〉γ̃2 − 3

2
〈f ′〉〈Π2〉γ̃2

+ 3〈Π〉〈Π2〉γ̃2 + 3〈πf ′π〉γ̃2 − 3

4
〈f ′〉〈πf ′2π〉γ̃2 + 3

2
〈Π〉〈πf ′2π〉γ̃2 + 3〈πf ′3π〉γ̃2

4

]

.

(C.0.5)
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Appendix D

Explicit expression for L3

Here we present the full expression for L3 in the FRW case. No integrations by parts have

been made.

L3 =
{

ȧ2äa5 + 3ȧ4a4 − 2πȧä2a5 − 14πȧ3äa4 − 12πȧ5a3 − 3π̇a4ȧ4 + (∇2π)a3ȧ3

− π̈a5ȧ3 + 18π2a2ȧ6 + 46π2a3äȧ4 + 19π2a4ä2ȧ2 + π2a5ä3 + ππ̇ȧä2a5

− ππ̇ȧ2a(3)a5 + 6ππ̇ȧ3äa4 + 12ππ̇ȧ5a3 − 2π̇2ȧ2äa5 + ππ̈ȧ2äa5 − 3π̇2ȧ4a4

+ 5ππ̈ȧ4a4 + (∇π)2ȧ2äa3 − 3(∇2π)πȧ2äa3 + 4(∇π)2ȧ4a2 − 3(∇2π)πȧ4a2

− 12π3aȧ7 − 64π3a2äȧ5 − 56π3a3ä2ȧ3 − 8π3a4ä3ȧ− 18π2π̇a2ȧ6

− 24π2π̇a3äȧ4 + 5π2π̇a4a(3)ȧ3 − 8π2π̇a4ä2ȧ2 + 12ππ̇2a3ȧ5 − 10π2π̈a3ȧ5

+ 3(∇2π)π2aȧ5 − 8(∇π)2πaȧ5 + 13ππ̇2a4äȧ3 − 5π2π̈a4äȧ3

+ 9(∇2π)π2a2äȧ3 − 15(∇π)2πa2äȧ3 + 3(∇2π)π2a3ä2ȧ− 2(∇π)2πa3ä2ȧ

+ 3π̇3a4ȧ4 − 4(∇π)2π̇a2ȧ4 − (∇2π)π̇2a3ȧ3 + 2∇π̇ · ∇ππ̇a3ȧ3

− (∇π)2π̈a3ȧ3 + (∇π)2(∇2π)aȧ3 − δijδkl∂iπ∂j∂kπ∂lπaȧ
3 + 3π4ȧ8

+ 41π4aäȧ6 + 74π4a2ä2ȧ4 + 22π4a3ä3ȧ2 + 12π3π̇aȧ7 + 36π3π̇a2äȧ5
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− 10π3π̇a3a(3)ȧ4 + 22π3π̇a3ä2ȧ3 − (∇2π)π3ȧ6 + 4(∇π)2π2ȧ6

− 18π2π̇2a2ȧ6 + 10π3π̈a2ȧ6 − 32π2π̇2a3äȧ4 + 10π3π̈a3äȧ4

− 9(∇2π)π3aäȧ4 + 27(∇π)2π2aäȧ4 − 9(∇2π)π3a2ä2ȧ2

+ 18(∇π)2π2a2ä2ȧ2 − (∇2π)π3a3ä3 + (∇π)2π2a3ä3 − 12ππ̇3a3ȧ5

+ 8(∇π)2ππ̇aȧ5 + 8(∇π)2ππ̇a2äȧ3 − (∇π)2ππ̇a3a(3)ȧ2 + (∇π)2ππ̇a3ä2ȧ

+ 3(∇2π)ππ̇2a2ȧ4 − 6∇π̇ · ∇πππ̇a2ȧ4 + 3(∇π)2ππ̈a2ȧ4 − (∇π)2(∇2π)πȧ4

+ πδijδkl∂iπ∂j∂kπ∂lπȧ
4 + (∇2π)ππ̇2a3äȧ2 − 2∇π̇ · ∇πππ̇a3äȧ2

+ (∇π)2ππ̈a3äȧ2 − 3(∇π)2(∇2π)πaäȧ2 + 3πδijδkl∂iπ∂j∂kπ∂lπaäȧ
2

− 10π5äȧ7 − 46π5aä2ȧ5 − 28π5a2ä3ȧ3 − 3π4π̇ȧ8 − 24π4π̇aäȧ6

+ 10π4π̇a2a(3)ȧ5 − 28π4π̇a2ä2ȧ4 + 12π3π̇2aȧ7 − 5π4π̈aȧ7 + 3(∇2π)π4äȧ5

− 13(∇π)2π3äȧ5 + 38π3π̇2a2äȧ5 − 10π4π̈a2äȧ5 + 9(∇2π)π4aä2ȧ3

− 30(∇π)2π3aä2ȧ3 + 3(∇2π)π4a2ä3ȧ− 7(∇π)2π3a2ä3ȧ+ 18π2π̇3a2ȧ6

− 4(∇π)2π2π̇ȧ6 − 16(∇π)2π2π̇aäȧ4 + 3(∇π)2π2π̇a2a(3)ȧ3 − 7(∇π)2π2π̇a2ä2ȧ2

− 3(∇2π)π2π̇2aȧ5 + 6∇π̇ · ∇ππ2π̇aȧ5 − 3(∇π)2π2π̈aȧ5 + 3(∇π)2(∇2π)π2äȧ3

− 3(∇2π)π2π̇2a2äȧ3 + 6∇π̇ · ∇ππ2π̇a2äȧ3 − 3(∇π)2π2π̈a2äȧ3

− 3π2δijδkl∂iπ∂j∂kπ∂lπäȧ
3 + 3(∇π)2(∇2π)π2aä2ȧ

− 3π2δijδkl∂iπ∂j∂kπ∂lπaä
2ȧ+ 17aȧ4ä3π6 + 11ȧ6ä2π6 + 6π5π̇äȧ7 − 5π5π̇aa(3)ȧ6

+ 17π5π̇aä2ȧ5 − 3π4π̇2ȧ8 + π5π̈ȧ8 − 22π4π̇2aäȧ6 + 5π5π̈aäȧ6 − 3(∇2π)π5ä2ȧ4

+ 14(∇π)2π4ä2ȧ4 − 3(∇2π)π5aä3ȧ2 + 11(∇π)2π4aä3ȧ2 − 12π3π̇3aȧ7

+ 8(∇π)2π3π̇äȧ5 − 3(∇π)2π3π̇aa(3)ȧ4 + 11(∇π)2π3π̇aä2ȧ3 + (∇2π)π3π̇2ȧ6

− 2∇π̇ · ∇ππ3π̇ȧ6 + (∇π)2π3π̈ȧ6 + 3(∇2π)π3π̇2aäȧ4 − 6∇π̇ · ∇ππ3π̇aäȧ4

+ 3(∇π)2π3π̈aäȧ4 − 3(∇π)2(∇2π)π3ä2ȧ2 + 3π3δijδkl∂iπ∂j∂kπ∂lπä
2ȧ2

− (∇π)2(∇2π)π3aä3 + π3δijδkl∂iπ∂j∂kπ∂lπaä
3 − 4π7ȧ5ä3 + π6π̇ȧ7a(3) − 4π6π̇ȧ6ä2
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+ 5π5π̇2äȧ7 − π6π̈äȧ7 + (∇2π)π6ä3ȧ3 − 5(∇π)2π5ä3ȧ3 + 3π4π̇3ȧ8

+ (∇π)2π4π̇a(3)ȧ5 − 5(∇π)2π4π̇ä2ȧ4 − (∇2π)π4π̇2äȧ5 + 2∇π̇ · ∇ππ4π̇äȧ5

− (∇π)2π4π̈äȧ5 + (∇π)2(∇2π)π4ä3ȧ− π4δijδkl∂iπ∂j∂kπ∂lπä
3ȧ
}

/
{

ȧ3(a− ȧπ)2π̇2 − ȧ(ȧ− äπ)2
(

(a− ȧπ)2 + (~∇π)2
)}

, (D.0.1)

where (~∇π)2 = δij∂iπ∂jπ, ~∇2π = δij∂i∂jπ and a(n) is the n-th time derivative of the scale

factor.
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