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Abstract
EFFECT OF SUBSTRATE LIGAND PRESENTATION ON THE MOTILITY OF HUMAN T-
LYMPHOCYTES

George Aaron Dominguez

Daniel A. Hammer

T lymphocyte homing and migration is critical for host defense and immunity. T lymphocytes must be
captured from blood flow, tether and roll on the endothelial surface, engage chemokine receptors, and firmly
adhere and migrate to sites of inflammation or to secondary lymphoid organs. How adhesive ligands, soluble
factors such as chemokines, and fluid shear flow influence the motility of T lymphocytes is important for
understanding this dynamic cascade of events. In this thesis, primary human T lymphocyte motility was
quantified on various adhesive ligands (haptokinesis) in the presence of chemokines (chemokinesis) and in
response to fluid flow. Through the use of microcontact printing onto PDMS surfaces we created surfaces that
presented ligand at controlled densities either alone or in combination. The adhesive ligands ICAM-1,
VCAM-1, and fibronectin were used to quantify cell migration in the absence of chemokine revealing different
modes of T lymphocyte motility with ICAM-1 having an overall greater contribution. Using the homeostatic
chemokines CCL19, CCL21, and CXCL12, we demonstrated that motility is biphasic and is dependent upon
ICAM-1 concentration, and by presenting chemokines in combination, we can drive motility to higher levels
than what was seen with each chemokine individually. Finally we demonstrated that directed migration either
upstream or downstream of fluid flow is dependent upon the presence of ICAM-1, VCAM-1, or a
combination of the two and the shear rate used. We have been able to show that adhesive ligands, chemokines,
and shear flow all work in concert to promote robust primary human T lymphocyte adhesion and migration
on microcontact printed PDMS surfaces. This research further elucidates how T lymphocytes interpret these
signals for controlling homing to and motility within secondary lymphoid organs and the mechanisms of their
migration.
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ABSTRACT 

 

EFFECT OF SUBSTRATE LIGAND PRESENTATION ON THE MOTILITY OF 

HUMAN T-LYMPHOCYTES 

George Aaron Dominguez 

Daniel A. Hammer 

T lymphocyte homing and migration is critical for host defense and immunity.  T 

lymphocytes must be captured from blood flow, tether and roll on the endothelial surface, 

engage chemokine receptors, and firmly adhere and migrate to sites of inflammation or to 

secondary lymphoid organs.  How adhesive ligands, soluble factors such as chemokines, 

and fluid shear flow influence the motility of T lymphocytes is important for understanding 

this dynamic cascade of events.  In this thesis, primary human T lymphocyte motility was 

quantified on various adhesive ligands (haptokinesis) in the presence of chemokines 

(chemokinesis) and in response to fluid flow.  Through the use of microcontact printing 

onto PDMS surfaces we created surfaces that presented ligand at controlled densities either 

alone or in combination.  The adhesive ligands ICAM-1, VCAM-1, and fibronectin were 

used to quantify cell migration in the absence of chemokine revealing different modes of 

T lymphocyte motility with ICAM-1 having an overall greater contribution.  Using the 

homeostatic chemokines CCL19, CCL21, and CXCL12, we demonstrated that motility is 

biphasic and is dependent upon ICAM-1 concentration, and by presenting chemokines in 

combination, we can drive motility to higher levels than what was seen with each 

chemokine individually.  Finally we demonstrated that directed migration either upstream 

or downstream of fluid flow is dependent upon the presence of ICAM-1, VCAM-1, or a 
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combination of the two and the shear rate used.  We have been able to show that adhesive 

ligands, chemokines, and shear flow all work in concert to promote robust primary human 

T lymphocyte adhesion and migration on microcontact printed PDMS surfaces.  This 

research further elucidates how T lymphocytes interpret these signals for controlling 

homing to and motility within secondary lymphoid organs and the mechanisms of their 

migration. 
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CHAPTER 1: INTRODUCTION  

“Though many lay unburied, birds and beasts would not touch them, or died after tasting 

them…The bodies of dying men lay one upon the other…[But] those who had recovered 

from the disease…had now no fear for themselves; for the same man was never attacked 

twice -  never at least fatally.” 

 Thucydides, History of the Peloponnesian War, 431-428 B.C. 

MOTIVATION 

 The immune system relies upon the ability of leukocytes to home and migrate to 

sites of inflammation or to tissues that facilitate further cell activation [1, 2].  T-

lymphocytes are a class of leukocytes that naturally circulate throughout the body in search 

of antigen presenting cells (APCs) within secondary lymphoid organs (SLOs) that trigger 

their activation.  This behavior, known as immune surveillance, is controlled by various 

adhesion ligands and chemokines that permit access to these SLOs [3].  In order for this to 

occur, T-lymphocytes must exit blood flow, firmly adhere to the blood endothelium, resist 

large hemodynamic forces, and migrate in response to gradients of adhesion ligands and/or 

chemokines [4].  Defects in T lymphocyte function, motility, and homing can lead various 

pathologies that impair immune function and health; therefore, it is critical to understand 

how these factors contribute to T lymphocyte motility and what extent adhesive ligands, 

chemokines, and fluid flow modulate them. 

Integrins expressed on the T lymphocyte surface are critical for cell activation and 

facilitating interactions with other leukocytes.  Particularly, Lymphocyte Function 
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Associated-antigen 1 (LFA-1) and Very Late Antigen-4 (VLA-4) are necessary to mediate 

transient and firm adhesions for migration (haptokinesis) to the blood endothelium during 

leukocyte extravasation [5].  Ligation of chemokine receptors with their cognate 

chemokine(s) provides intracellular signals that increase integrin activation and drive 

motility in response to a gradient (chemotaxis) or a local uniform concentration 

(chemokinesis) [6, 7].  Furthermore, in order for T lymphocytes to migrate on the blood 

endothelium, resistance to shear caused by fluid flow must be established via LFA-1- and 

VLA-4-mediated interactions (mechanotaxis).  Elucidating how these factors contribute to 

T lymphocyte adhesion and motility is critical in understanding their function.  Thus, the 

objective of this thesis, as outlined in the specific aims below, is to determine how adhesive 

ligands, chemokines, and shear flow work together in driving T lymphocyte adhesion and 

motility. 

Specific Aim 1a: Characterize the motility of primary human T-lymphocytes on 

microcontact printed PDMS surfaces. 

Integrin-ligand interactions are critical for T-lymphocyte trafficking and motility in the 

body.  In this aim, we quantify the haptokinetic responses of T-lymphocytes to ICAM-1 

and VCAM-1 on microcontact printed (µCP) PDMS substrates.  T-lymphocytes will be 

seeded onto these integrin-binding proteins and their displacements will be tracked over 

time to calculate the differences in the random motility coefficients as a function of ligand 

composition and concentration.  We hypothesize that biphasic motility will be observed 

for both ligands. 



3 

 

Specific Aim 1b: Characterize the chemokinetic behavior of primary human T-

lymphocytes in response to the homeostatic chemokines CCL19 and CCL21. 

It is well known that CCL19 and CCL21 are required for T-lymphocyte homing to 

secondary lymphoid organs (SLOs) through binding of the CCR7 chemokine receptor.  In 

this aim, we quantify the chemokinetic responses of T-lymphocytes to CCL19 and CCL21 

individually and in a combinatorial fashion to further elucidate the motility observed within 

SLOs.  We hypothesize that there will be a peak in motility at a specific concentration of 

chemokine that will be near the KD of the CCR7 receptor and, through combinatorial 

chemokine signaling, we will observe synergistic effects in migration through dual CCR7 

ligation. 

Specific Aim 2: Quantify the motility of primary human T-lymphocytes on ICAM-1, 

VCAM-1 and combined ICAM-1/VCAM-1 PDMS surfaces under shear flow. 

During the homing of T lymphocytes to SLOs, cells must be captured from blood flow and 

migrate before diapedesis through the blood endothelium.  The hemodynamic forces 

experienced by cells can be large and vary in magnitude throughout the body.  In this aim, 

we quantify the ability of T-lymphocytes to migrate on ICAM-1, VCAM-1, and combined 

ICAM-1/VCAM-1 µCP PDMS surfaces as a function of shear rate and ligand density.  We 

expect T-lymphocytes to elicit different modes of migration specifically in the direction of 

motility (mechanotaxis).  Furthermore, it is also known that VCAM-1 engagement is 

capable of increasing β2-dependent adhesion leading to changes migration.  By presenting 

cells with various combinations of both ICAM-1 and VCAM-1, a synergetic response in 

adhesion should be observed further modulating directional migration under fluid flow 
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further elucidating the contributions of ICAM-1 and VCAM-1 to T-lymphocyte motility 

specifically under fluid flow. 
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CHAPTER 2: BACKGROUND 

IMMUNITY 

Immunity is the ability to avoid infection and disease through sufficient biological 

defenses.  This concept dates back to the 5th century BC when Thucydides wrote of 

individuals who recovered from illness during the Plague of Athens but were then able to 

nurse the sick without contracting it a second time.  Along with Thucydides, scientists such 

as Edward Jenner, Robert Koch and Louis Pasteur led to the evolution of a field of medicine 

known as immunology.  This is the study of the immune system and all the physical, 

chemical, and physiological components involved in its formation and function. 

 The immune system can be further separated into two forms of distinct yet 

interconnected kinds of immunity: innate and adaptive.  At the heart of them are leukocytes 

- cells that defend the body against pathogens and foreign material by eliciting their 

immune functions.  These dynamic and diverse groups of cells are capable of, but not 

limited to, recognizing and engulfing foreign pathogens, eliciting an allergic reaction, 

targeting cells for destruction, and providing immunity against a variety of diseases.  These 

functions are all critical for the ability of the cells to “get to where they need to be”; in 

other words, they must migrate to their target sites rapidly, efficiently, and effectively.  

Defects in this process lead to complications in the immune response and increase the risk 

of death from infection. 
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OVERVIEW OF T-LYMPHOCYTES 

Beginnings of T-Lymphocyte Biology 

 Although the concept of immunity has been recognized for over 2500 years, it was 

not until the early 1900’s that lymphocytes were first implicated in allograft rejection of a 

foreign tissue.  James Murphy recognized that tumor cells were difficult to inject and grow 

in adult organisms but could be grown in chick embryos.  Upon injection of adult lymphoid 

tissue near the site of tumor cell implantation, rapid destruction of the cells occurred 

illustrating protection and graft rejection [1-3].  In 1964, it was first demonstrated that small 

lymphocytes continuously re-circulate from the thoracic duct, to blood, through secondary 

lymphoid tissue, and back to the thoracic duct [4].  Jacques Francis Albert Pierre Miller 

was the first to identify the essential role of the thymus in immune function and proposed 

the existence of the two major subsets of lymphocytes in mammals: T and B [5-7].  In 

1975, the phenotypic and functional separation of CD8+ and CD4+ cells was established 

[8-10].  In the years that have past, we have seen a flurry of research and understanding in 

T lymphocyte biology that has led to novel technologies and therapeutics used to improve 

health and fight disease.  Masopust et al. provides a thorough review of the history in the 

discovery of T lymphocytes [11]. 

The Career of a T-Lymphocyte 

T lymphocytes develop from progenitors that are derived from the pluripotent 

hematopoietic stem cells in the bone marrow and migrate through the blood to the thymus, 

where they mature; for this reason they are called thymus-dependent (T) lymphocytes.  

Once cells leave the thymus, they are known as naïve and must determine whether antigen 

present poses a threat to the body.  This is achieved through interactions with dendritic 
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cells found in secondary lymphoid organs [8].  Encounter with an antigen induces 

proliferation of T lymphocyte clones, yielding approximately 1000 times more descendants 

having identical antigenic specificity.  After acquiring effector functions, they home to sites 

of inflammation where they interact with other leukocytes and parenchymal cells to elicit 

their immune functions [9].  Most effector cells die after antigen clearance but some remain 

for long-term protection against a re-exposure to antigen (TMEM).  A variety of molecules, 

such as integrins, adhesive ligands, and chemokines, are involved and work in concert to 

promote proper T lymphocyte homing, migration, and activation [12]. 

LEUKOCYTE HOMING AND MIGRATION 

Leukocyte Homing 

A successful immune response is critically dependent on the ability of leukocytes 

to leave blood circulation and enter the tissue space.  This process involves a series of well-

defined adhesive events involving primary adhesion molecules permitting the cell to be 

captured from flow and slow down (tethering/rolling), exposure to a chemoattractant 

stimulus through binding of a G-protein-coupled receptor, and then firm adhesion and 

arrest mediated by increased integrin activation [12-16].  These steps are necessary for 

migration and eventual leukocyte diapedesis through the blood endothelium permitting 

access to sites of inflammation or entrance to lymphoid tissue.  This process is illustrated 

in Figure 2.1 and is known as leukocyte adhesion cascade and extravasation. 
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Figure 2.1.  Overview of the leukocyte adhesion cascade and extravasation.  Cells are 

captured from flow and undergo tethering/rolling via selectin molecules as well as 

integrins.  Upon chemokine activation, cells arrest and undergo adhesion strengthening to 

support intravascular crawling and transmigration.  Illustration redrawn from [16]. 
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T-lymphocytes in circulation are covered in short microvilli containing bundles of 

actin filaments with low-affinity adhesion molecules such as L-selectin and the α4β1 (VLA-

4) integrin concentrated at the tips [17].  These molecules foster the tethering and rolling 

events upon the blood endothelium.  Other adhesion molecules are involved in firm 

adhesion events, such as the αLβ2 (LFA-1) integrin, and are either distributed randomly on 

the cell surface or completely excluded from the tips [18].  Upon chemokine engagement, 

the microvilli collapse exposing firm adhesion molecules converting previous transient 

rolling interactions into stable, firm adhesions thus supporting subsequent transmigration 

through the endothelium [19]. 

T-Lymphocyte Motility 

Leukocytes demonstrate rapid movement and flexibility in migrating through their 

environment compared to slower moving cells such as fibroblasts and endothelial cells.  

These frequent shape changes and dynamic cytoskeletal rearrangements have therefore led 

to their mode of migration being described as amoeboid.  It has been demonstrated that 

some leukocytes migrate three-dimensionally through tissue without the need for integrins 

while in two-dimensions they are required [20].  This has led to questions as to what are 

the molecular requirements that promote leukocyte motility. 

Migrating T-lymphocytes exhibit “hand mirror” morphology with a large cell body 

comprised of the nucleus followed by a narrow trailing uropod which projects above the 

surface [21].  Their mode of migration is driven by protrusion of actin-rich pseudopodia at 

the leading edge with contractile forces at the rear all controlled by members of the Rho 

GTPase famly of proteins, including RhoA, Rac1, and Cdc42 [22, 23].  Integrins mediate 

adhesion through interactions with their ligands via signals transmitted from inside the cell 
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termed “inside-out” signaling in response to chemoattractant binding to Gi-protein-coupled 

receptors.  These signals elicit the transition from rolling to firm adhesion specifically 

through increased avidity and affinity of integrins [8, 9]. 

T-Lymphocyte Integrins: LFA-1 and VLA-4 

Integrins are heterodimeric, transmembrane receptors that consist of an α and β 

chain linking the extracellular environment to the cell via adhesions ligands [24].  

Adhesions are crucial for both the development and homeostasis of multicellular organisms 

[25].  Within the immune system, integrins participate in leukocyte attachment to blood 

endothelium and antigen presenting cells (APCs), cytotoxic killing, and extravasation of 

cells into lymph nodes or target tissues.  Integrins predominantly expressed by leukocytes 

consist of a β2 subunit coupled with one of several α subunits (αLβ2, αMβ2), or the α4 subunit 

with its β1 subunit counterpart (α4β1 and α4β7), and are capable of binding several adhesive 

ligands (Figure 2.2).  Particularly, the integrins known as Lymphocyte Function-

Associated Antigen-1 (LFA-1; αLβ2) and Very Late Antigen-4 (VLA-4; α4β1) are critical 

for T lymphocyte activation and for facilitating interactions with other leukocytes, such as 

dendritic cells and B-lymphocytes, in order to elicit effector functions [12, 13, 26, 27].  In 

this thesis, we will focus on LFA-1- and VLA-4-mediated adhesion and motility in 

response to the engineered microenvironment. 
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Figure 2.2.  Leukocyte integrins and their ligands.  Leukocyte integrins bind to liagnds 

found on the vascular endothelium as well as to components of the extracellular matrix 

(ECM).  ICAM-1, intracellular adhesion molecule-1.  ICAM-2, intracellular adhesion 

molecule-2.  VCAM-1, vascular adhesion molecule-1. CS-1, connecting segment-1 of 

fibronectin.  FN, fibronectin.  VN, vitronectin.  LN, laminin. 
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 LFA-1 is expressed exclusively by leukocytes and is known to be involved in 

recruitment to inflammatory sites and lymphoid tissues as well as adhesions to other 

leukocytes [13].  Patients with leukocyte adhesion deficiency (LAD) lack the β2 subunit 

and thus the ability to clear pathogens leading to recurrent infections and death at an early 

age.  LFA-1 binds to a family of cell adhesion molecules known as intercellular adhesion 

molecules (ICAMs) which include ICAM-1, ICAM-2, ICAM-3, ICAM-4, and ICAM-5 

[28-32].  The principal adhesion molecules used for migration are ICAM-1 and ICAM-2 

and are involved in regulating LFA-1 function through outside-in signaling.  ICAM-1 is 

expressed constitutively only at low levels on vascular endothelial cells and on some 

leukocytes [33].  Increase in ICAM-1 expression on multiple cell types has been shown to 

be induced by stimulation with inflammatory cytokines such as interleukin (IL)-1, tumor 

necrosis factor (TNF) α, interferon (IFN) γ or with lipopolysaccharide (LPS) [34-36].  

Interactions between LFA-1 and ICAM-1 is accomplished through binding of the D1 

domain of ICAM-1’s five immunoglobulin (Ig)-like domains and requires LFA-1 

activation [37]..  The affinity and avidity of LFA-1 can be regulated through inside-out 

signaling, as well, by upstream regulators such as Rap-1 [38].  Calcium and diacylglycerol-

regulated guanine nucleotide exchange factor I (CalDAG-GEFI) regulates Rap-1 activity 

and is known to be directly involved in LFA-1 activation induced by chemokines and PMA 

activation [39, 40].  Regulator of adhesion and polarization enrich in lymphocytes (RAPL), 

an effector molecule associated with Rap-1, is also involved in integrin activation triggered 

through chemokine engagement promoting LFA-1 dependent adhesion [41, 42]. 

 VLA-4 is expressed by most resting lymphocytes, eosinophils, and monocytes, and 

plays a role in the development and differentiation of several tissue and cell types [43-45].  
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VLA-4 is expressed by bone marrow CD34+ hematopoietic stem cells and is required for 

mobilization and homing of peripheral blood progenitors [93].  VLA-4 is capable of 

binding to fibronectin through the connecting segment-1 (CS-1) domain and to vascular 

cell adhesion molecule-1 (VCAM-1).  This integrin is vital for competent immune function 

and has a tightly regulated multi-step function during rolling and arrest of leukocytes on 

the endothelium [46, 47].  VLA-4 is also involved in formation of the immunological 

synapse and cytoskeletal adaptor molecules, such as Rap-1, paxillin, and talin, regulate the 

adhesiveness [48].  As with LFA-1, Rap-1 also participates in the inside-out triggering of 

increased VLA-4 activation allowing for ligand binding and cell adhesion [49].  VLA-4 is 

known to be implicated in numerous autoimmune diseases and chronic inflammation such 

as multiple sclerosis, Crohn’s disease, asthma, stroke, rheumatoid arthritis, and 

inflammatory bowel disease and is commonly a target for therapeutics of these diseases 

[50-55]. 

VLA-4’s principal ligand, VCAM-1, contains 7 Ig-like domains and has been 

shown to be expressed in lymph nodes and the bone marrow to be used for the regulation 

of leukocyte homing [56].  Within the lymph nodes, VCAM-1 is expressed by postcapillary 

high endothelial venule (HEV) cells and follicular dendritic cells with increased expression 

induced by cytokines, high levels of reactive oxygen species (ROS), oxidized low density 

lipoprotein (oxLDL), high glucose, and turbulent shear stress [57].  Unlike LFA-1/ICAM-

1 interactions, VLA-4 is capable of binding to two different domains (D1 or D4) depending 

upon the level of integrin activation; low affinity VLA-4 readily binds to the D1 domain 

of VCAM-1 while increased integrin activation is required for binding to the D4 domain 
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[58].  Thus, the binding of T lymphocytes to VCAM-1 domains is regulated by the 

activation state of VLA-4. 

These integrins are critical for recruitment of leukocytes into sites of inflammation 

and lymphoid tissues through interactions with the blood endothelium under shear flow.  It 

is known that cells respond to mechanical forces and are able to sense shear flow 

deformation (mechanoresponsive) [59].  Other cells types are known to respond to 

mechanical forces such as endothelial cells which align themselves along the direction of 

fluid flow [60, 61].  Under flow, VLA-4 participates in transient adhesion events, such as 

tethering and rolling, allowing for the capture of T-lymphocytes from fluid flow leading to 

firm arrest on VCAM-1 [46, 47].  Shear flow is known to stabilize and strengthen adhesion 

contacts mediated through LFA-1 and VLA-4 interactions [62-65].  These firm adhesions 

have been shown to be mandatory for T-lymphocyte migration on the endothelium and 

transendothelial migration (TEM) [66-69]. 

In this thesis, all T-lymphocytes were activated using phytohemagglutinin-M 

(PHA-M) leading to T-cell receptor (TCR) stimulation [70].  It has also been shown that 

upon activation, expression levels of LFA-1 and VLA-4 do not change but the activation 

level does increase to support cognate ligand binding [24, 71, 72].  Under such activation, 

T-lymphocytes migrate on adhesive ligand without chemokine, which we employ in this 

work. 

T-Lymphocyte Polarity and Motility 

In order for T-lymphocytes to respond to cues from the environment, cells must 

polarize and organize their intracellular machinery required for migration.  This 

polarization is generally considered in terms of two distinct regions: the “front” and the 
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“rear.”  The front leading edge, or lamellipodium, is an F-actin rich region of the cell that 

is broad and flat driving the cell forward through actin polymerization and formation of 

new adhesions to the substratum independent of myosin II crosslinking [73, 74].  

Projections from the lamellipodium, known as filopodia, are thin, finger-like protrusions 

that assist in leading edge attachment and migration.  The real trailing edge, or uropod, is 

generally characterized by the retraction of old adhesions from the substratum and is much 

smaller than its leading edge counterpart.  These two regions of the cell are believed to be 

governed by distinct signaling molecules and pathways.  Molecules typically found near 

the leading edge of a migrating cell are PI3K, Rac, Cdc42, and most molecules associated 

with actin polymerization such as ARP 2/3 and WASP [75-77].  WASP has also been found 

to be required for optimal chemotaxis in vitro and in vivo [78-80]. Within the rear of the 

cell, molecules such as PTEN, Rho, ROCK, and myosin II are found contributing to 

actomyosin contraction allowing for cell forward propulsion [81].  Since Rho is 

downstream of chemokine GPCRs and is required for increased integrin affinity, it is 

believed that Rho is located near the site of GPCR signaling that then activates ROCK to 

result in actomyosin contraction necessary to generate forward thrust (Figure 2.3) [82-84].  

Although the molecular players in polarity and migration have been identified, there is still 

much debate about the precise combination of molecules and signaling pathways that 

govern overall migration [85]. 
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Figure 2.3.  Adherent contractile zone found in migrating T lymphocytes along the cell 

and substratum interface. Rho may be used downstream from chemokine receptors and 

integrins to activate ROCK promoting myosin II contractility.  MLC, myosin light chain.  

CAM, cell adhesion molecule.  Illustration redrawn from [84]. 
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Amoeboid Cell Motility 

Although many molecules and signaling pathways such as PI3K, Rac, Cdc42, and 

Rho are conserved across numerous cell types, there are important distinctions to be made 

between amoeboid and mesenchymal migration.  Amoeboid migration can be considered 

as a primitive mode of cell migration as even prokaryotes and lower level eukaryotes are 

able to display this mode of fast migration.  Unlike cells displaying mesenchymal 

migration, these cells to do not use long-lasting, highly stable focal adhesions and typically 

lack stress fibers.  This is not surprising seeing as these cells are highly dynamic and must 

be able to manipulate their body shape and cytoskeleton to alter their migration paths.  They 

are capable of squeezing through small spaces such as tight junctions and pores within 

three-dimensional matrices where cells displaying mesenchymal migration typically 

require extracellular matrix remodeling through proteolysis and matrix metalloprotease 

(MMP) activity. 

Classical models of amoeboid migration are typically done in the slime-mold 

Dictyostelium discoideum [77, 86, 87] and fish keratocytes [88, 89].  The most classic and 

heavily studied model for amoeboid motility in immune cells has been neutrophils [90, 91], 

and most recently, dendritic cells [92-95]. 

Dynamics of Migration 

The coordinated motion of a cell plays a key role in development, angiogenesis, 

wound healing, cancer metastasis, immunity, and many other physiological processes.  

Often times, this motion is directed by external cues such as adhesion molecules (e.g. 

ICAM-1, VCAM-1), attractants (e.g. chemokines) and/or mechanical force (e.g. shear 

flow).  Coordinated cell movement and migration is generally believed to have a purpose 
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(such as in the immune response) thus irregularities in this dynamic process can lead to 

pathologies [96, 97].  The random motility of cells can be used to quantify the conditions 

necessary to efficiently perform a search to locate randomly distributed target items such 

as a pathogen or antigen presenting cell. 

A normal cell’s trajectory resembles those of normal Brownian particles and is 

characterized by the mean-squared displacement, MSD, defined as  

𝑀𝑆𝐷(𝑡) = 〈[𝑥(𝑡 + 𝑡0) − 𝑥(𝑡0)]2 + [𝑦(𝑡 + 𝑡0) − 𝑦(𝑡0)]2〉 

where 〈… 〉 denotes the combined average over all starting times 𝑡0 and cell paths for a 

population [98].  Random walk theories have long been used to model animal 

displacements such as foraging behavior, predator-prey relationships, etc.; furthermore, 

these theories have also been used to model mammalian cell migration as uncorrelated 

random walks assuming that cells maintain no memory of previously taken steps [99, 100].  

In theory, cells will move ‘nowhere’ on average, and their expected mean-squared 

displacement is linear with time.  This is often used to convey the difference between a 

random walk versus directed motion such as chemotaxis where the root mean-squared 

displacement is linear with time [101].  Random walk is also known as Brownian motion 

which can be characterized by a mean-squared displacement proportional to ~tα for long 

time (t) intervals with α = 1 indicating random diffusion.  Anomalous diffusion arises when 

α ≠ 1 with subdiffusive behavior observed when α  < 1, superdiffusive with α > 1, and 

ballistic motion when α = 2.  Recent evidence has demonstrated that Madin-Darby canine 

kidney (MDCK) cells, mammary epithelial cells (MCF-10A), human neutrophils, and D. 

discoideum move spontaneously in random directions and exhibit superdiffusive motion 

[90, 102-104].  Work shown in Harris et al. discusses that murine CD8+ T lymphocytes 
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undergo Lévy walks (a form of superdiffusive motion) to control the pathogen Toxoplasma 

gondii [105].  They propose that this type of motion occurs in order to increase the 

frequency of finding rare targets with more than an order of magnitude increase in 

efficiency compared to Brownian motion walkers by covering more territory.  This strategy 

is used by a number of animals including monkeys and marine life to increase foraging 

efficiency [106-108].  In contrast, Miller et al. demonstrated that naïve murine T-

lymphocytes undergo random walks within SLOs [109].  Here, in this thesis, we 

characterize the motility of activated human T-lymphocytes in vitro on engineered surfaces 

presenting ICAM-1 and VCAM-1 

 

CHEMOTACTIC CYTOKINES (CHEMOKINES) 

Chemokine Signaling 

Lymphocytes express a variety of chemokine receptors (CCRs) that allow them to 

navigate throughout the body.  The unique combination of CCRs expressed on a cell is 

thought to provide direction toward, retention within, and egress from a specific organ.  As 

previously noted, T-lymphocytes are capable of binding to CCL19 and CCL21 via the 

CCR7 receptor as well as CXCL12 via the CXCR4 receptor which are required for entry 

into SLOs. 

Chemokines themselves are small (approximately 8 – 14 kDa) and structurally 

related chemotactic cytokines that direct cell migration for a variety of leukocytes via their 

cognate binding interactions with G-protein coupled receptors (GPCRs) [110, 111].  

Chemokines can be subdivided into 4 distinct groups (CXC, CX3C, CC, and C) according 

to the positioning of the first two closely paired and highly conserved cysteines of the 
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amino acid sequence [112].  Currently, over 40 chemokines are known in the human 

genome, most having homologues in mice.  The main cell types directed by chemokines 

are neutrophils, dendritic cells, monocytes, macrophages, and lymphocytes, all of which 

have a role in host defense.  In addition to providing directional cues, it has been suggested 

that chemokines also play fundamental roles in the development, homeostasis, and function 

of the immune system [110, 111, 113].  Furthermore, chemokines are also used outside of 

the immune system in a variety of cell types, including cells of the central nervous system 

or endothelial cells, where they can produce either angiogenic or angiostatic effects [114, 

115].  This thesis will focus on the chemokines involved in the homing of T lymphocytes 

to SLOs specifically CCL19 and CCL21 with a less emphasis on CXCL12. 

Chemokine receptors are a family of 7-transmembrane GPCRs found 

predominantly on leukocytes [112, 116].  Chemokine receptors are generally composed of 

approximately 350 amino acids, and have conserved structural motifs.  The N-terminus 

generally has a short section of acidic residues oriented into the extracellular space binding 

to specific chemokines.  The seven helical transmembrane domains orient into a barrel 

shape butted by three intracellular and three extracellular hydrophilic loops; the 

intracellular C-terminus contains hydroxyl groups (serine and threonine) providing sites 

for phosphorylation which in turn regulate receptor signaling [116].  Although chemokine 

receptors bear significant homology in their primary sequences, they typically bind only a 

small number of ligands, often only a single one.  The chemokine receptor is named for the 

subtype of chemokine it binds, and is numbered according to an agreed-upon standard 

[110].  Our focus is on the CCR7 and, to a lesser extent, CXCR4 receptors for our 

investigation into T-lymphocyte adhesion and chemokinesis. 
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Chemokines and T-lymphocytes 

CCR7 is a typical member of the 7-transmembrane domain GPCR family.  Its two 

known ligands CCL19 and CCL21 exhibit similar affinities for receptor binding (~10 nM) 

[92, 117].  Signaling is thought to proceed by activation of a G-protein of the Gαi subfamily 

which may or may not be precoupled to the receptor.  CCR7 binds the α-subunit of the G-

protein and releases the βγ-subunit potentially activating both for downstream signaling.  

It has not been established which of CCR7's effects are downstream of the α and βγ subunits 

though preliminary evidence points to PI3K activity downstream of the βγ subunit [118].  

Following activation, GPCRs eventually become desensitized and ultimately 

downregulated through a series of events occurring near the cytoplasmic carboxyl 

terminus.  In one of the few studies of CCR7 phosphorylation, CCL19 was shown to induce 

significantly more phosphorylation than CCL21 in a human T cell lymphoma cell line [119, 

120].  Once the GPCR is phosphorylated, arrestins are recruited to then induce clathrin-

mediated endocytosis.  CCL19 has been shown to induce a lower steady-state level of 

CCR7 surface expression by higher rates of endocytosis in a human T cell lymphoma cell 

line [120].  Also, it has been shown that CCL19 is able to desensitize a T lymphocyte’s 

responsiveness to CCL21, but not vice versa [117].  In vivo, this may allow cells to respond 

first to CCL21 expressed on afferent lymphatic vessels, then subsequently to CCL19 to 

drive homing and migration to SLOs [121-123].  Cumulatively, significant evidence 

suggests that although CCL19 and CCL21 have similar affinities for CCR7, their 

downstream regulation has the potential to activate distinct physiological responses. 

Furthermore, deletion of CCR7 or its ligands, CCL19 and CCL21, in the plt/plt 

mouse does not fully impair dendritic cell migration to lymph nodes (although it is 
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abnormal), implying that the process is complex and that additional chemokine-receptor 

pairs are likely to be involved.  Within this same model, T lymphocytes show a delayed 

yet still intact immune response that is markedly prolonged [124].  For T lymphocytes, it 

is known that these chemokines are required for homing to the lymph node although the 

relative contributions of CCR7/CCL21 and CXCR4/CXCL12 signaling to T lymphocyte 

migration are not well studied.  Recent research has shown that dendritic cells respond 

CCL19, CCL21, and CXCL12 differently during chemotaxis [92].  Other studies have 

shown that T lymphocytes are capable of chemotaxing to CCL19 and CCL21 in a 

microfluidic device eliciting different responses to chemokine concentration [125, 126].  

In one study, the effects of the two chemokines were shown to not be additive [127].  

Although these chemokine–receptor pairs may function independently of one another, 

combinatorial signaling is most likely required for effective homing and migration.  These 

ideas are investigated in this thesis in the context of CCR7-mediated chemokinesis. 

RECEPTOR-LIGAND KINETICS FOR CHEMOKINESIS 

Monovalent Ligands Binding to a Monovalent Receptor 

Receptor-ligand kinetics can be used to describe how a chemokine interacts with 

its cognate receptor, and thus, how the cells respond to that chemokine in solution.  For 

equilibrium binding for the simple reversible reaction scheme between a monovalent free 

receptor R and a monovalent free ligand L to form a receptor/ligand complex C, the 

reaction can be written as 

𝑅 + 𝐿 ↔ 𝐶 

where the relevant rate constants are the association rate constant k𝑓 and the dissociation 

rate constant k𝑟.  We can solve for the time rate of change for receptor/ligand complex C 
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as a function of free receptor number R and the ligand concentration L using principles of 

mass action kinetics described as 

𝑑𝐶

𝑑𝑡
= 𝑘𝑓𝑅𝐿 − 𝑘𝑟𝐶 

Assuming steady state conditions (
𝑑𝐶

𝑑𝑡
= 0), the receptor-ligand binding kinetic equation 

can be solved as  

𝐶 =
𝑅𝐿

𝐾𝐷
 

where 𝐾𝐷 =
𝑘𝑟

𝑘𝑓
 which is known as the equilibrium dissociation constant.  A small value of 

𝐾𝐷 indicates a high affinity of the receptor for the ligand; the avidin/biotin bond is one of 

the highest affinity bonds in nature with a 𝐾𝐷 = 10−15𝑀 [128].  If we then assume that 

ligand concentration is constant, we can solve for receptor/ligand complexes at 

equilibrium, 𝐶𝑒𝑞, and is described as 

𝐶𝑒𝑞 =
𝑅𝑇𝐿

𝐾𝐷 + 𝐿
 

where 𝑅𝑇 is the total number of receptors on the cell surface [98]. 

Differential Receptor Occupancy and the 𝑲𝑫: The Driving Force for Chemokinesis 

The theory of differential receptor occupancy tells us that there is an ideal number 

of bound receptor complexes in a system that can achieve ideal chemokinesis [129].  If 

[𝐿] ≪ 𝐾𝐷 then 𝐶𝑒𝑞 ≈ 0 and the cell will not be able to sense the presence of the chemokine.  

On the contrary, if [𝐿] ≫ 𝐾𝐷 then 𝐶𝑒𝑞 ≈ 𝑅𝑇 meaning all available receptors are occupied 

preventing the cell from sensing the chemokine.  When the concentration of chemokine is 

near the 𝐾𝐷 then 𝐶𝑒𝑞 ≈ 0.5𝑅𝑇 and only half the receptors are bound.  This provides enough 
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ligand around the cell to engage the receptors allowing for intracellular signaling to drive 

chemokines and/or chemotaxis. 

 The random motility coefficient for cells undergoing migration in a uniform field 

of chemokine (chemokinesis) has been shown to induce migration in a typical bell-shaped 

does-response curve with increasing chemokine concentration [92, 130].  This means that 

the random motility coefficient will increase with chemokine concentration until a peak is 

reached followed by a decline.  For chemotaxis studies, values of the mean concentration 

near the 𝐾𝐷 of the receptor are known to enhance directed migration [92, 131, 132]. 

 These principles have been applied to experimentally determine the concentration 

of chemokine to support optimal migration of cells in both chemokinesis and chemotaxis 

assays; for instance, recent evidence has shown that CCR7 expressed by dendritic cells 

have a 𝐾𝐷 ranging between 1 to 10 nM which is near the 𝐾𝐷 previously observed for 

CCL19/CCL21/CCR7 interactions [92, 117].  Since T-lymphocytes express the same 

receptor, CCR7, it is of interest to determine if T lymphocytes respond in the same way as 

dendritic cells or if the same chemokine-receptor interactions govern their motility 

differently. 

 

LITHOGRAPHY FOR CELL MIGRATION 

PDMS 

Polydimethylsiloxane (PDMS) is part of a family of organic silicon polymers referred to 

as silicones.  PDMS is the most widely used silicone for biological applications, and its 

rheological properties allow it to be cast against three-dimensional structures whose 
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features are permanently maintained after curing.  PDMS is ideal for microscopy because 

it is optically clear and is stiff enough to withstand large amounts of pressure permitting it 

to be used for microfluidics [133].  The shear modulus of PDMS is also easily varied from 

~100 kPa to ~10 MPa by varying the ratio of elastomer to curing agent [134]. 

While PDMS is not fully biocompatible, it is inert, non-toxic, and non-flammable.  

After curing, the PDMS is both hydrophobic and methyl-terminated.  The predominant –

Si surface chemistry makes it difficult for polar solvents like water to wet the surface; this 

makes it attractive for binding hydrophobic compounds such as proteins.  Plasma or UV 

ozone treatments can be used to oxidize the surface creating silanol (Si – OH) groups which 

increase its affinity for binding hydrophobic compounds.  The oxidized surfaces are only 

stable for approximately 30 minutes due to hydrophobic recovery. 

Overall, PDMS is an ideal candidate to be used for microcontact printing (µCP) 

due to (1) it can be readily made to generate micron-scale features on a substrate of a large 

area, (2) PDMS has low surface energy allowing to be separated from the template during 

fabrication and after stamping, and (3) it is relatively inert so it does not react with many 

chemicals [135]. 

Photolithography and Soft Lithography 

Photolithography was developed in the 1950’s and involves patterns of arbitrary 

complexity to be etched into very flat surfaces.  A thin layer of photoresist is deposited on 

a flat silicon wafer via spin-coating.  The desired pattern is then created in the photoresist 

by shining collimated light though a high resolution photomask.  There are two types of 

photoresist; negative photoresists cure when exposed to light while positive photoresists 

degrade upon exposure to light [136].  Once a master is created, a negative replica can be 
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cast with PDMS by pouring degassed PDMS over the master and then curing at 25 – 150 

ºC to fully crosslink the polymer.  Soft lithography builds upon this and was invented by 

George Whitesides in the late 1990’s using photomasks, polymer-based stamps and molds 

in various combinations to fabricate or replicate patterns [137].  There are two main steps 

involved.  First, the fabrication of a pattern onto a substrate creating a ‘master’, and second, 

the use of that pattern to produce features negatively defined by the pattern’s relief structure 

in an elastomeric substrate.  The master is created using photolithography on silicon 

substrates.  The term “soft” comes from the use of elastomeric materials, especially PDMS.  

This platform is commonly used to create features on the micron scale but can be scaled 

down to the nanometer scale [138, 139]. 

Microcontact Printing 

Most classical adhesion and motility assays involve preparing two-dimensional 

surfaces by adsorbing an adhesive ligand onto glass or polystyrene with subsequent 

blocking with a solution of bovine serum albumin (BSA).  The BSA is meant to block bare 

regions of the substrate that would otherwise encourage non-specific cell-substrate 

interactions.  It has been demonstrated that some leukocytes are capable of interacting with 

BSA-blocked surfaces; specifically, it has been shown that human neutrophils bind to BSA 

through the use of the integrin Mac-1 (αMβ2) [90].  Microcontact printing allows for the 

creation of surfaces that do not support these type of non-specific interactions.  Over the 

past decade, interests have increased in further understanding of the cell and how it 

interacts with its external environment.  There have been rapid advances in the ability to 

engineer surfaces with geometrically patterned regions of adhesive ligand surround by non-
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adhesive regions to provide insight into how the structure of the cell, surrounding 

extracellular matrix, and cell-cell interactions drive specific cell functions [140-143]. 

Methods to pattern adhesive ligand has proliferated greatly over the past decade 

[144].  The most commonly used technique is known as microcontact printing which was 

originally developed by George Whitesides and colleagues over two decades ago [137].  

For this technique, flat PDMS stamps are used to transfer “inked” material onto a substrate.  

This technique has been used to pattern PDMS spin-coated substrates with various 

geometric patterns of ligand [142, 143]. 

The use of microcontact printing is extensively employed in this work to create 

surfaces that present adhesive ligand with or without chemokine in order to study the 

haptokinesis and chemokinesis of human primary T-lymphocytes.  Furthermore, we 

demonstrate that these surfaces can be combined with a parallel flow chamber assay to 

investigate how shear flow dictates their migration in response to varying shear rates or 

ligand concentrations. 
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CHAPTER 3: T CELL HAPTOKINESIS AND CHEMOKINESIS ON 

MICROCONTACT PRINTED PDMS SUBSTRATES 

Adapted from: Dominguez GA and DA Hammer.  “Effect of adhesion and chemokine 

presentation on T-lymphocyte haptokinesis.”  Integrative Biology.  2014, 6 (9), 862 – 873. 

ABSTRACT 

 Motility is critical for the function of T-lymphocytes.  Motility in T-lymphocytes 

is driven by the occupancy of chemokine receptors by chemokines, and modulated by 

adhesive interactions.  However, it is not well understood how the combination of adhesion 

and chemokine binding affects T-lymphocyte migration.  We used microcontact printing 

on polymeric substrates to measure how T lymphocyte migration is quantitatively 

controlled by adhesion and chemokine ligation.  Focusing only on random motion, we 

found that T-lymphocytes exhibit biphasic motility in response to the substrate 

concentration of either ICAM-1 or VCAM-1, and generally display more active motion on 

ICAM-1 surfaces.  Furthermore, we examined how the combination of the homeostatic 

chemokines CCL19 and CCL21 contribute to motility.  By themselves, CCL19 and 

CCL21, ligands for CCR7, elicit biphasic motility, but their combination synergistically 

increases CCR7 mediated chemokinesis on ICAM-1.  By presenting CCL21 with ICAM-

1 on the surface with soluble CCL19, we observed random motion that is greater than what 

is observed with soluble chemokines alone.  These data suggest that ICAM-1 has a greater 

contribution to motility than VCAM-1 and that both adhesive interactions and chemokine 

ligation work in concert to control T-lymphocyte motility. 
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INTRODUCTION 

Recruitment of T lymphocytes into lymphoid organs and peripheral tissues during 

immune surveillance and inflammation is critical for their function.  T lymphocytes make 

use of the integrins Lymphocyte Function Associated Antigen-1 (LFA-1; αLβ2) and Very 

Late Antigen-4 (VLA-4; α4β1) in cell trafficking, TCR formation and maturation, cell-to-

cell binding, and motility within secondary lymphoid organs (SLOs) and tissues [1-4]. 

Within SLOs, T lymphocytes are exposed to adhesion ligands and chemokines that 

coordinate interactions between T lymphocytes and antigen presenting cells [5-8].  In vivo 

it is thought that in order for T lymphocytes to reach their destination, migrating cells must 

sense a gradient of soluble or surface immobilized chemokine(s) released from a distant 

source providing them with a chemotactic cue for directed migration [6, 9].  Within the 

SLO, homeostatic chemokines such as CCL19 and CCL21 are thought to play a key role 

in controlling migration and regulating the dynamics of motility by binding to the CCR7 

receptor.  It has been shown in vitro that T cells undergo chemotaxis in response to CCL19 

and CCL21 within microfluidic devices [10].  However, the role that adhesion molecules 

play in regulating the response to chemokines is under appreciated. 

Although it is commonly thought that directional migration in chemokine gradients 

is needed for lymphocyte positioning in the SLOs, it is possible that chemokinesis plays a 

strong role in lymphocyte exploration within the SLOs.  There is no convincing evidence 

for directional trafficking of T lymphocytes under steady-state conditions as observed 

within explanted lymph nodes, but adhesive ligands and chemokines expressed by 

fibroblastic reticular cells have been shown to guide migration within the lymph nodes to 

facilitate T-lymphocyte activation [10-16].  It has been shown in vivo that T cells are 
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capable of migrating at speeds up to 40 µm/min with frequent changes in direction [11].  

At uniform concentrations, chemokines are capable of modulating cell speeds, and the 

observed random migration of T lymphocytes observed within lymph nodes may be due to 

a chemokinetic response to near-uniform levels of chemokines in the tissue [5, 17].  

Additionally, binding of these chemokines to their Gi-protein-coupled receptor, CCR7, are 

capable of altering motility by modulating integrin activity through inside-out signaling 

pathways that indirectly modulate T cell homing to SLOs [5, 18, 19].  Recent work has 

elucidated the importance of how chemokines coordinate with adhesive ligands to support 

adhesion and migration, but the exact interplay between the two is still not fully understood 

[5, 20-22]. 

Presentation of the ligands Intracellular Adhesion Molecule-1 (ICAM-1) and 

Vascular Cell Adhesion Molecule-1 (VCAM-1) to their corresponding cognate receptors 

LFA-1 and VLA-4 in the absence of chemokine is capable of inducing polarization critical 

for adhesion and motility via reorganization of the actin and microtubule cytoskeletons [19, 

23-25].  Studies have shown that CCL21 is capable of synergizing with adhesion ligands 

to increase adhesion, speed, and random motility in vitro [5].  However, to our knowledge, 

there has not been a quantitative analysis of the contributions of ICAM-1 and VCAM-1 on 

random motility in the absence of chemokines (haptokinesis) and the effect of varying 

chemokine concentrations (chemokinesis). 

For this chapter, we measured the motility of primary human T lymphocytes on 

different densities of the cell adhesion molecules ICAM-1 and VCAM-1 on microcontact 

printed PDMS substrates.  This technology allows for the precise control of the density and 

type of adhesion molecule present on the surface; for example, we recently used 
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microcontact printing to show how different densities of fibronectin can elicit a phenotypic 

switch in neutrophil motility [26].  Specifically, we investigated how the random motility 

of T lymphocytes is controlled by varying concentrations of adhesion ligands, first in the 

absence and then in the presence of chemokine.  We found that T lymphocytes exhibit 

biphasic motility when either ICAM-1 or VCAM-1 is presented alone in the absence of 

chemokine, with an overall greater motility on ICAM-1 substrates than VCAM-1.  Then, 

we measured the effects of CCL19 and CCL21 on the motility of T lymphocytes and how 

combinations of the two chemokines modulate their motility.  We found that individually, 

CCL19 and CCL21 also elicit similar biphasic motility with a peak in the random motility 

coefficient near an intermediate concentration of chemokine, and when combined, 

synergize to increase random motility.  Furthermore, this synergistic effect is maintained 

when CCL21 is presented on the surface with soluble CCL19 on ICAM-1 surfaces.  These 

results provide insight to how adhesive ligands and chemokines control the random 

migration of T lymphocytes in the absence of chemokine gradients. 
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MATERIALS AND METHODS 

Cell culture and reagents 

Human blood was obtained via venipuncture from healthy adult donors and 

collected into sterile tubes containing sodium heparin (BD Biosciences, San Jose, CA).  

Samples were collected with University of Pennsylvania Institutional Review Board 

approval from consenting adult volunteers.  Blood samples were carefully layered in a 1:1 

ratio of whole blood to 1-Step™ Polymorphprep (Axis-Shield, Oslo, Norway).  Vials were 

then centrifuged at 1500 rpm for 35 minutes and the mononuclear band was collected into 

a fresh vial.  Figure 3.1 depicts resulting buffy coat after centrifugation and band isolated 

for culture.  Cells were cultured in RPMI-1640 supplemented with 10% FBS and 1 μg/ml 

of phytohemagglutinin-M (PHA-M; Sigma-Aldrich, St. Louis, MO) overnight.  After 24 

hours, the lymphocyte suspension in the PHA medium was transferred into a new flask 

leaving behind adherent cells.  After an additional 48 hours, the cells were then cultured in 

RPMI-1640 with 10% FBS and 1% penicillin-streptomycin supplemented with 20 ng/ml 

of interleukin-2 (IL-2; Roche, Mannheim, Germany).  Cells were used for experimentation 

following an additional 72 hours in culture.  Flow cytometry was employed to verify 

population of T-lymphocytes through identifying cells labeled with FITC conjugated anti-

CD3+ (clone OKT3) (Affymetrix eBioscience, San Diego, CA) and population was 

determined to be 98.69% CD3+ (Figure 3.2).  Other biological reagents included: protein 

A/G (Thermo Scientific, Rockford, IL), human ICAM-1/Fc and VCAM-1/Fc (R&D 

Systems, Minneapolis, MN), human IgG1 (Abcam, Kendall Square, MA), human anti-αL 

(clone 38) and human anti-β2 (clone IB4) (Calbiochem, San Diego, CA), human anti-αM 

(Clone M1/70.15.1) (Millipore, Temecula, CA), human anti-β1 (clone Mab13) and rat 
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isotype IgG2a (BD Pharmingen, San Jose, CA), human CCL19/CCL21 (PreproTech, 

Rocky Hill, NJ), Pluronics F127 (Sigma-Aldrich, St. Louis, MO), Alexa 568-labeled 

phalloidin and Alexa488-labeled mouse anti-α tubulin (Invitrogen, Grand Island, NY). 
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Figure 3.1.  Separation of whole blood for cell isolation.  Image of resulting buffy coat 

after centrifiguation of whole blood layered over 1-Step™ Polymorphprep.  The layer 

containing platelets, monocytes, and lymphocytes was collected. 
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Figure 3.2.  Flow cytometry results of T-lymphocytes to verify CD3+ population.  (A)  

Plot of side scatter versus forward scatter of population of cells isolated from whole blood 

after 7 days of activation and culture.  Heat map shows majority of cells to be mostly 

mononuclear indicating population of T-lymphocytes.  (B)  Isotype control and (C) anti-

CD3 FITC antibody labeling showing high number of CD3+ positive cells in tested 

population after culturing.  Population was determined to be 98.69% CD3+.  These are 

representative plots from one of three separate experiments. 
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Substrate preparation 

Poly(dimethylsiloxane) (PDMS) (Sylgard 184 Silicone Elastomer, Dow Corning, 

Midland, MI) coated coverslips were prepared from number one thickness glass coverslips 

(Fisher Scientific, Hampton, NH) of 25 mm diameter spin coated with degassed PDMS 

(10:1 base:cure by weight) and cured overnight at 65 ºC.  PDMS-coated coverslips were 

affixed to the bottom of six-well tissue culture plates which has been laser-cut to generate 

a 22 mm diameter opening in the bottom of the wells.  Coverslip bonding was performed 

using a small amount of PDMS (10:1 base:cure by weight) and baked at 65 ºC for 30 

minutes for curing. 

Protein printing and blocking 

Flat stamps for printing were prepared by pouring degassed PDMS mixed at 10:1 

base:cure by weight over an unpatterned silicon wafer.  The polymer was cured for 2 hours 

or longer at 65 ºC.  Stamps were trimmed, sonicated in 200 proof ethanol for 10 minutes, 

rinsed with dH2O, and dried in a stream of N2(g).  For motility studies, stamps were 1 cm2 

and were inked with 200 µl of 2 µg/ml of protein A/G in PBS for 2 hours at room 

temperature.  The stamps were then thoroughly rinsed in H2O and blown dry with a stream 

of N2.  In parallel, the six-well PDMS coverslip substrate was treated with ultraviolet ozone 

for 7 minutes (UVO Cleaner Model 342, Jelight Company, Irvine, CA) to render the 

surface hydrophilic.  The stamp was then placed in conformal contact with the substrate 

for ~10 seconds and removed.  A 0.2% (w/v) solution of Pluronics F127 was immediately 

adsorbed to the PDMS substrates for 30 minutes at room temperature to prevent protein 

adsorption to non-functionalized portions of the PDMS.  The cell culture substrate was 

then rinsed with PBS 3X without dewetting the functionalized surface before deposition of 
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200 µl of either ICAM-1/Fc or VCAM-1/Fc in PBS for 2 hours at room temperature.  The 

surfaces were then rinsed with PBS 3X without dewetting before incubation with cells.  We 

tested whether saturation points of ICAM-1/Fc were different upon physisorption to glass 

or printed onto PDMS.  Using Alexa Fluor-555 conjugated Protein A/G, we prepared 

substrates for adhesion that were either glass and blocked with 1% BSA in PBS or stamped 

onto PDMS and blocked with 0.2% F127 Pluronics.  Figure 3.3 demonstrates that there is 

increased non-specific adhesion of T lymphocytes to glass substrates; PDMS substrates 

appear to have more uniformity in ligand deposition as indicated by a more uniform signal 

in fluorescence. 
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Figure 3.3.  Physisorption and printing of fluorescent protein A/G.  Scale bar = 100 µm; 

10X magnification 
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ELISA to determine protein deposition on PDMS substrates 

For substrate preparation, 45X50 mm glass coverslips (No. 1, Fisher Scientific 

Pittsburgh PA) were spin coated with PDMS and cured as described previously.  Flat 

stamps were inked with Protein A/G solution as described previously followed by coverslip 

activation and printing.  Coverslips (PDMS spin coated or glass) were then adhered via 

PDMS to the bottom of a 24 well plate whose bottoms had been cut out.  0.2% F-127 

Pluronics solutions was deposited into each well for 30 minutes at room temperature.  Each 

well was then rinsed with PBS 3X followed by deposition of 200 µl of ICAM-1/Fc protein 

solution into each well for 2 hours at room temperature.  For the glass substrates, protein 

A/G was physisorbed to the surface for 2 hours at room temperature followed by surface 

blocking with 5% milk in PBS solution for 1 hour at room temperature.  After wells were 

rinsed with PBS 3X, solutions of ICAM-1/Fc were deposited into each well for 2 hours at 

room temperature followed by rinses of PBS 3X.  A dilution of 1:5000 of polyclonal anti-

human ICAM1 antibody (Biotin) (ab7815, Abcam, Cambridge, MA) in PBS + 1% BSA 

and 200 µl was deposited into each well for one hour at room temperature.  The plate was 

washed with PBS + 1% BSA 3X to remove excess primary antibody and 200 µl of 1:5000 

HRP-avidin in PBS + 1% BSA was deposited into each well.  The plate was then washed 

3X with PBS + 1% BSA to remove excess secondary antibody followed by ensuring that 

the wells were completely dry. 

400 µl of 1-Step™ Turbo TMB-ELISA reagent (Pierce Biotechnology), per well of 

a 24 well plate was added to each well, to visualize the amount of HRP on each substrate.  

The plate was incubated in the dark, at room temperature, for 15 minutes, to allow for the 

reaction to occur.  The reagent will turn blue in the presence of HRP and the reaction is 
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quenched with the addition of 400 µl of 2N H2SO4.  Quenching the reaction changes the 

color of the liquid in each well from blue to yellow.  Finally, the ELISA was quantified by 

measuring the absorbance of the liquid in each well at 450 nm on the Tecan Infinite 200 

PRO plate reader (Tecan Group Ltd., Switzerland) to determine the amount of HRP in each 

well.  This colorimetric assay was then used to qualitatively asses the amount of ICAM-

1/Fc present on each substrate and each conditions was done in triplicate on two separate 

occasions. 

As shown in Figure 3.4, absorbance increases as the ICAM-1 concentration 

increases in solution indicating differences in protein presentation across the 

concentrations tested on both glass and PDMS substrates.  All values are normalized by 

the background absorbance from the control wells with zero ICAM-1/Fc present.  Since 

protein A/G is used and only capable of binding 6 Fc-chimera molecules at a time, we 

assume these results apply to surfaces with VCAM-1/Fc ligand as well [27]. 
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Figure 3.4.  Results of an HRP ELISA for ICAM-1.  Results show that varying bulk 

ICAM-1/Fc concentration incubated on protein A/G printed PDMS substrates results in 

varying concentration of protein adsorbed to the surface.  Averages were calculated from 

replicates of three with error bars representing the standard error of the mean (s.e.m.). 
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Haptokinesis and chemokinesis assay 

PDMS substrates were prepared as described above.  For printed CCL21 studies, 

20 nM of CCL21 was inked with Protein A/G followed by stamping onto PDMS substrates.  

Before use, all substrates were washed 3X with phosphate-buffered saline.  Each well was 

plated at 5 x 105 cells/ml in serum-free RPMI-1640 supplemented with 0.1% BSA and 2 

mg/ml glucose.  The substrate was then placed in a 37°C humidified atmosphere containing 

5% CO2 in air incubator for 15 minutes to allow for cell attachment.  The wells were then 

gently washed 3X with PBS to remove non-adherent cells followed by imaging in a 5% 

CO2 and 37°C environment for at least 1 hour.  Cells were placed into a motorized stage 

and observed using a Nikon Eclipse TE300 phase contrast microscope.  A 10X objective 

was used to capture images during the course of the time lapse.  For chemokinesis assays, 

a CCL19 and/or CCL21 chemokine solution was dispensed into each well before imaging 

and performed on ICAM-1 substrates at a concentration of 0.05 µg/ml.  For surface 

presentation of CCL21, stamps were inked with 2 µg/ml of Protein A/G and 250 ng/ml of 

CCL21 and printed onto the PDMS substrates before blocking and application of the Fc 

protein solution. 

Measurement of cell trajectories and mean-squared displacements 

Cell movement was tracked using the ImageJ plugin Manual Tracking.  ImageJ and 

the plugin are both freely available through the NIH website (http://rsbweb.nih.gov/ij/).  

The centroid of the cell was considered to represent the cell position.  Time lapse 

microscopy was used and images were taken every 1.5 minutes.  The result was a series of 

(x,y) positions with time for each cell.  The net displacement during the 𝑖th 1.5 minute 

increment, 𝐷𝑖, was calculated by the difference of the position at the beginning and end of 
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that time step.  The mean-squared displacement, 〈𝐷2(𝑡)〉, over time was calculated using 

the method of non-overlapping intervals [28].  Speed, S, can be considered as the total path 

length over time and persistence time, P, is the time a cell remains moving without 

changing direction.  S and P were obtained by fitting these to the persistent random walk 

equation (Dunn, 1983 〈𝐷2(𝑡)〉 = 2𝑆2[𝑡 − 𝑃(1 − 𝑒−𝑡 𝑃⁄ )] where t is the time interval, using 

a non-linear least squares regression analysis [29, 30].  The mean-free path length (PL) and 

random motility coefficient (µ) are then calculated as 𝑃𝐿 = 𝑃𝑆 and µ =  
1

2
𝑆2𝑃 [31, 32]. 

Antibody Blocking 

Functional blocking antibodies against the β1 integrin subunit (clone Mab13), β2 

integrin subunit (clone IB4), αL integrin subunit (clone 38), and IgG2a isotype control 

(clone R35-95) were used at a final concentration of 50 µg/ml.  5 x 105 T-lymphocytes in 

500 µl of running buffer were incubated for 30 minutes with the blocking antibodies at 

37ºC and 5% CO2.  Cells were then plated and allowed to adhere for 15 minutes followed 

by rinsing with PBS 3X and subsequent imaging in media containing blocking antibody. 

Immunofluorescence 

Primary human T lymphocytes were plated on 5.0 µg/ml ICAM-1/Fc and VCAM-

1/Fc surfaces with or without 250 ng/ml of stamped CCL21 at 5 x 105 cells/ml for 1 h in a 

37°C humidified atmosphere containing 5% CO2.  The cells were then fixed with 4% 

paraformaldehyde in PBS for 7 minutes.  Cells were permeabilized with 0.2% Triton X-

100 for 5 minutes and blocked with 1% BSA in PBS for 30 minutes at room temperature.  

Cells were incubated with 1:200 Alexa 568-labeled phalloidin and Alexa 488-labeled 

mouse anti-α tubulin (Invitrogen) for 30 minutes at room temperature.  Cells were mounted 
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in Fluoromount-G mounting medium (SouthernBiotech, Birmingham, Alabama) and 

examined by confocal microscopy (Leica SP5). 
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RESULTS AND DISCUSSION 

Microcontact printing of Protein A/G and T lymphocyte adhesion 

Protein A/G is a molecule produced through the fusion of the Fc-binding domains 

of Protein A and Protein G.  Use of this molecule in conjunction with Fc-chimera ligands, 

such as ICAM-1/Fc and VCAM-1/Fc, has proven effective to immobilize chimeric proteins 

bearing the Fc domain [27].  We used microcontact printing of Protein A/G to prepare 

surfaces with controlled ratios of adhesion ligands linked to the Fc chimeras while keeping 

total protein concentration constant.  This is achieved by varying the ratios of ICAM-1/Fc 

and VCAM-1/Fc molecules and human IgG1.  The steps for microcontact printing for our 

experimental system are illustrated in Figure 3.5.   

Primary human T lymphocytes do not polarize and migrate on microcontact printed 

Protein A/G alone or on Protein A/G surfaces incubated with human IgG1 as indicated by 

a rounded morphology (Fig. 3.6A).  Figure 3.6B demonstrates the fidelity of microcontact 

printing and the binding selectivity of primary human T lymphocytes to ICAM-1/Fc 

surfaces. 
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Figure 3.5.  Microcontact printing of PDMS substrates.  Illustration for microcontact 

printing of protein A/G followed by subsequent binding of either ICAM-1/Fc or VCAM-

1/Fc with IgG1. 
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Figure 3.6.  T lymphocytes adhere to microcontact printed PDMS substrates.  (A)  Phase 

contrast images showing rounded morphologies for T lymphocytes indicating no polarity 

and adhesion  to Protein A/G or human IgG1 alone.  Scale bars, 100 µm (B)  Phase contrast, 

fluorescence, and overlay images showing the fidelity of microcontact printed protein A/G-

Alex Fluor 555 conjugate on PDMS surfaces and binding selectivity of T lymphocytes to 

ICAM-1/Fc.  Scale bars, 100 µm. 
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Either ICAM-1 and VCAM-1 alone trigger T lymphocyte haptokinesis 

Primary human T lymphocytes adhere and migrate on PDMS surfaces printed with 

ICAM-1 and VCAM-1.  We measured haptokinesis on these ligands by quantifying the 

mean-squared displacements over a range of ligand concentrations in the absence of 

chemokine.  From the mean-squared displacements over time, we could determine the 

speed, persistence time, and random motility coefficient for each condition.  T lymphocytes 

plated on ICAM-1 or VCAM-1 surfaces were tracked for 30 minutes.  As illustrated by 

representative single-cell migration tracks (Fig. 3.7), T lymphocytes migrated substantial 

distances on both 0.5 and 5.0 µg/ml of ICAM-1 or VCAM-1 with no preferred direction.  

This remained true for all other concentrations of ligand tested. 
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Figure 3.7.  T lymphocytes are more migratory on ICAM-1 than VCAM-1.  Representative 

single-cell migration tracks for T lymphocytes on 0.5 and 5.0 µg/ml of ICAM-1 and 

VCAM-1 showing no preferred direction in migration. 
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It is known that through LFA-1 (αLβ2) and VLA-4 (α4β1) integrin interactions T 

lymphocytes are capable of migrating on ICAM-1 and VCAM-1 surfaces, respectively; we 

verified this through functional integrin blocking (Fig. 3.8, A and B).  Blocking of the αL 

and β2 integrin chains resulted in a significant decrease in cell adhesion on ICAM-1 relative 

to the positive control without antibody present (p < 0.01) (Fig. 3.8C).  By targeting the β1 

integrin, a significant decrease in cell adhesion on VCAM-1 relative to the positive control 

without antibody present was observed (p < 0.01) (Fig. 3.8C).  These data led us to attribute 

the observed ICAM-1 and VCAM-1-induced adhesion and resulting motility to the specific 

ligation of αLβ2 and α4β1 with their cognate ligands on these microcontact printed surfaces. 
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Figure 3.8.  Antibody blocking against LFA-1 and VLA-4 reveal discrete integrin/ligand 

interactions on printed PDMS surfaces.  (A) Phase contrast images of T lymphocytes 

blocked against β1or αLβ2 integrins on ICAM-1 surfaces.  (B)  Phase contrast images of T 

lymphocytes blocked against β1or αLβ2 integrins on VCAM-1 surfaces.  Quantification of 

antibody blocking against (C) αLβ2 and (D) β1 integrins show decreased cell adhesion to 

ICAM-1 and VCAM-1 substrates, respectively; *p < 0.05, compared to isotype; one-

sample t test, error bars represent standard error of the mean (s.e.m.). 
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Using the mean-squared displacements (MSD), we found that migrating T 

lymphocytes on ICAM-1 surfaces traveled greater distances than on VCAM-1 surfaces as 

suggested by larger MSDs with increasing time for all concentrations (Fig. 3.9, A and B).  

This demonstrates that the dynamics of T lymphocyte motility on ICAM-1 and VCAM-1 

are distinct.  The use of random walk theories is common to quantify mammalian cell 

migration.  The MSDs of migration can be scaled as x2(t) ∝ tα during 0 < t < 90 minutes 

where fitting can be used to determine the exponent α to classify the type of motion for 

each type and concentration of ligand.  Random or Brownian motion is observed for the 

value of α = 1 and ballistic motion is observed for α = 2, while values between the two are 

categorized as superdiffusive motion.  Cells migrating on ICAM-1 surfaces display an 

average α over all concentrations of 1.57, indicating that T lymphocytes on ICAM-1 

migrate superdiffusively through LFA-1 mediated interactions.  Similarly on VCAM-1, T 

lymphocytes display superdiffusive motion with an average α of 1.38 (Fig. 3.9C).  Table 

3.1 shows all values of fitted α’s for all concentrations of ligand tested.  This data is 

consistent with the recent observation that neither effector CD8+ T cells in vivo nor 

neutrophils on microcontact printed fibronectin PDMS surfaces display pure diffusive 

motion [26, 33]. 
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Figure 3.9.  The mean-squared displacements versus time are linear on ICAM-1 and 

VCAM-1.  (A)  MSD versus time showing linear trends on all concentrations of ICAM-1 

tested.  (B) MSD versus time showing linear trends on all concentrations of VCAM-1 

tested.  MSD can be scaled as x
2
(t) ∝ t

α
 indicating that T lymphocytes acquire displacement 

superdiffusively (α > 1) on representative concentrations of (C) ICAM-1 and (D) VCAM-

1 surfaces.  Numbers on line represent approximate values of α over all concentrations of 

ligand tested. 

A 

B 

C D 
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Table 3.1.  Average fitted α ± standard deviation on ICAM-1 and VCAM-1 surfaces.  

Values of fitted α’s indicate superdiffusive for almost all concentration conditions on 

ICAM-1 and VCAM-1 surfaces. 

 By scaling the mean squared displacements to tα and plotting them as slopes over 

time, we see that all T lymphocyte motility lies between a slope of 1 (pure diffusion motion) 

and a slope of 2 (pure ballistic motion) lying in the superdiffusive region (Fig. 3.10).  This 

is the first indication, to our knowledge, that T lymphocytes exhibit superdiffusive motion 

on ICAM-1 and VCAM-1 ligands in vitro. 
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Figure 3.10.  Fitted mean-squared displacements versus time on ICAM-1 and VCAM-1 

surfaces.  The slopes of lines indicate the α’s determined by scaling the MSD previously 

to tα.  Red lines are values on ICAM-1 surfaces and blue lines are values on VCAM-1 

surfaces.  Slopes of the lines fall between values of 1 (pure diffusive motion) and 2 (pure 

ballistic motion). 
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To further characterize the motility of T cells on ICAM-1 and VCAM-1 surfaces, 

we used the experimental mean-squared displacements of each cell population with the 

persistent random walk model to fit for speed and persistence time.  T lymphocytes were 

shown to have larger cell speeds on varying concentrations of ICAM-1 when compared to 

VCAM-1 (Fig. 3.11A); migrating T lymphocytes had average peak speeds (S) of 11.9 ± 

1.12 µm/min and 4.3 ± 0.83 µm/min on 1.0 µg/ml of ICAM-1 and VCAM-1, respectively.  

These values correspond to observations of speed as seen previously in vivo and in vitro 

by other groups [9, 13, 14, 34, 35].  Persistence times (P) ranged from 1.9 ± 0.3 to 5.1 ± 

0.7 minutes on ICAM-1 and 4.5 ± 0.7 to 8.9 ± 0.6 minutes on VCAM-1 (Fig. 3.11B).  In 

our system, higher cell speeds were observed on ICAM-1 compared to VCAM-1 (SICAM-1 

> SVCAM-1) while generally cells were more persistent on VCAM-1 than ICAM-1 (PICAM-1 

< PVCAM-1).  Previous empirical observations have showed that speed and persistence times 

are inversely correlated across a variety of cells types with high speeds correlating to short 

persistence times and vice versa [36].  By plotting the speeds and persistence times across 

all concentrations of ICAM-1 and VCAM-1, we observed that this inverse correlation holds 

true for primary human T lymphocytes with a coefficient of determination (R2) of 0.7699 

(Fig. 3.11C).  Overall, on ICAM-1 surfaces, T- lymphocytes have higher speeds with lower 

persistence times (↑ SICAM-1, ↓ PICAM-1) and on VCAM-1 surfaces, T lymphocytes have 

lower speeds with higher persistence times (↓ SVCAM-1, ↑ PVCAM-1).  These data suggests 

that each ligand stimulates different adhesion signaling pathways. 
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Figure 3.11.  T lymphocytes elicit biphasic responses in speed and an inverse correlation 

with persistence time on ICAM-1 and VCAM-1.  T lymphocyte (A) speeds and (B) 

persistence times determined from using the persistent random walk model; cells have 

faster speeds and shorter persistence times on ICAM-1 with lower speeds and longer 

persistence times on VCAM-1.  (C) Across all concentrations of ligand an inverse 

correlation is maintained between persistence time and cell speed.  The error bars represent 

the standard error of the mean (s.e.m.). 
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The random motility coefficient (µ) is a metric that is commonly used to quantify 

migration in response to ligands or cytokines in a population of cells and is the product of 

the average cell speed (S) and mean-free path length (SP) divided by the dimensionality of 

the system; therefore, it depends on the square of the speed and the first power of the 

persistence time.  Figure 3.12 demonstrates that the random motility coefficient increases 

with increasing concentration of either ligand before reaching a maximum and then 

decreases; in other words, the behavior is biphasic.  On ICAM-1, the highest random 

motility coefficient (µICAM-1) is 160 µm2/min, observed over a range of ICAM-1 

concentrations between 0.5 to 10.0 µg/ml.  T lymphocytes display a maximum µVCAM-1 of 

103 ± 16.1 µm2/min at 0.5 µg/ml VCAM-1.  The biphasic response of random motility 

with ligand density has been observed in other systems, and is often explained by the ratio 

of cell-substratum adhesiveness to cell contractility that would promote the highest level 

of motility [37-39].  Overall, we found that cells exhibit greater motility on ICAM-1 than 

VCAM-1 (µICAM-1 > µVCAM-1) for all concentrations tested. 

Our data demonstrates that primary human T lymphocytes adhere and migrate 

differently on ICAM-1 and VCAM-1 microcontact printed PDMS substrates.  It is known 

that T lymphocytes are capable of robust migration on ICAM-1 surfaces in the absence of 

chemokine predominantly driven by outside-in signaling triggering full LFA-1 activation 

[40, 41].  VLA-4, on the other hand, has been classically known to require chemokine 

engagement to achieve full integrin activation and induce cell polarization; this may 

explain why we observed decreased motility on VCAM-1 in the absence of chemokine 

albeit the cells were previously activated.  In Hyun et al., cells were similarly isolated and 

activated in the same manner as we did yet they did not observe competent cell migration 
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on VCAM-1 surfaces alone in the absence of chemokine [42].  Furthermore, experiments 

conducted in Stachowiak et al. showed that unactivated (or naïve) murine T-lymphocytes 

are not motile on adhesive ligand alone (ICAM-1, VCAM-1, fibronectin) and require 

chemokine to exhibit robust migration [5].  In the next section, we further expand upon the 

requirements of chemokine engagement to induce polarization and migration of human T-

lymphocytes on ICAM-1 and VCAM-1 surfaces. 
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Figure 3.12.  Response in the random motility coefficient for all ligand concentrations on 

ICAM-1 and VCAM-1 surfaces is biphasic.  Comparison of the random motility 

coefficients (µ) show biphasic motility as a function of ligand concentration with ICAM-1 

(peak µ
ICAM-1

 = 172.77 ± 45.45 µm
2
/min) promoting increased haptokinesis than VCAM-

1 (peak µ
VCAM-1

 = 103.58 ± 16.06 µm
2
/min).  The error bars represent the standard error of 

the mean (s.e.m.).  
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Phenotypes of motility on the two ligands 

Cell polarization and motility require the dynamic rearrangement of the actin and 

microtubule cytoskeletons through signaling pathways involving the Rho family GTPases 

[43-45].  For T lymphocytes, lamellipodium extension requires Rac-induced actin 

polymerization while uropod detachment is mediated through Rho-ROCK signaling and 

actomyosin contractility [40, 46, 47].  Studies have also demonstrated that chemokines 

regulate integrin adhesive activity by modulating avidity and affinity and induce distinct 

polarized cell morphology [48-50]. 

In order to investigate the mechanisms of motility of T lymphocytes on ICAM-1 

and VCAM-1, we plated cells on 5.0 µg/ml of either ICAM-1 or VCAM-1.  We found no 

difference in cell area between ICAM-1 (189.6 ± 36.3 µm2; n = 281) and VCAM-1 (173.4 

± 55.9 µm2; n = 127), (Fig. 3.13A).  After plating T lymphocytes on 5.0 µg/ml of ICAM-

1 and VCAM-1, we fixed and permeabilized the cells, and fluorescently labeled their actin 

and microtubule cytoskeletons.  Based upon our observations, we observed the following 

T lymphocyte phenotypes (Fig. 3.13C): 

 Polarized, Motile – cells which migrated several cell diameters with a polarized 

morphology involving a clearly identifiable lamellipod, cell body, and uropod; 

 Polarized, Tethered – lymphocytes with a polarized morphology but tethered and 

unable to move; 

 Non-polarized, Motile – migrating several cell diameters with protrusions but lacking 

a clear polarized morphology; 

 Non-polarized, Non-motile – spherical cells which do not have protrusions and are not 

migrating. 
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ICAM-1 surfaces induce increased lamellipod formation and greater cell adhesion when 

compared to VCAM-1 surfaces (Fig. 3.13B, left column).  There are higher percentages of 

polarized and motile T lymphocytes on ICAM-1 than VCAM-1 surfaces (37% versus 12%; 

Fig. 3.13D and 3.13E).  Also, ICAM-1 surfaces have fewer non-polarized and non-motile 

lymphocytes compared to VCAM-1 surfaces (23% versus 69%). 
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Figure 3.13.  T lymphocytes are more polarized on ICAM-1 than VCAM-1.  (A)  

Measurements found no difference in cell area for ICAM-1 (189.6 ± 36.3 µm
2
; n = 281 ) 

versus VCAM-1 (173.4 ± 55.9 µm
2
; n = 127 )  (B)  Fluorescence images showing T 

lymphocytes on either ICAM-1 or VCAM-1 with or without hCCL21 on the surface.  T 

lymphocytes visibly exhibit greater polarity (lamellipod, cell body, and uropod) on ICAM-

1 surfaces with or without hCCL21 (top row) than compared to VCAM-1 surfaces (bottom 

row). Cells were stained with Alexa568 phalloidin (red) and Alexa488 anti-α-tubulin 

antibody (green).  Scale bars, 10 µm. (C)  Phase contrast and fluorescence images of the 

four classifications for T lymphocyte migration: polarized and motile, polarized and 

tethered, non-polarized and motile, and non-polarized and non-motile.  (D)  T lymphocytes 

were classified based upon their migratory phenotype on ICAM-1 (n = 281) with or without 

hCCL21.  Around 37% of cells plated exhibited a polarized, motile phenotype.  There was 

no observable differences with the addition of hCCL21 (n = 127).  (E) On VCAM-1 (n = 

244) surfaces, cells are less polarized and motile (12% of cells) and the addition of hCCL21 

(n = 267 for VCAM-1 increases the number of polarized, motile lymphocytes while 

decreasing the number of non-polarized, non-motile cells on VCAM-1; *p < 0.05, 

compared to no CCL21; one-sample t test. 
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Effect of chemokines on T-lymphocyte motility 

It is known that chemokines are capable of modulating T lymphocyte migration by 

promoting integrin activation and Rho GTPase signaling and synergize with adhesion 

ligands to alter adhesion, polarity, and motility [5].  The chemokine CCL21 is known to 

adhere to surfaces and affect leukocyte motion [22, 51, 52].  We investigated whether 

printing the chemokine CCL21 would increase the number of polarized and motile 

lymphocytes in tandem with either ICAM-1 or VCAM-1.  We found that hCCL21 does not 

significantly change lamellipod formation of T lymphocytes on ICAM-1 (n = 244; Fig. 

3.13B, top row) while it increases lamellipod formation on VCAM-1 surfaces (n = 267; 

Fig. 3.13B, bottom row).  The fraction of polarized and motile lymphocytes on ICAM-1 

with or without hCCL21 did not change (37% versus 40%; Fig. 3.13D).  However, hCCL21 

increased the fraction of polarized and migratory cells significantly on VCAM-1 surfaces 

(12% versus 22%) leading to a decrease in the percentage of non-polarized and non-motile 

cells (69% versus 52%; Fig. 3.13E) (p < 0.05). 

Our data demonstrates that T lymphocytes are capable of spontaneous adhesion and 

migration to ICAM-1 and VCAM-1 surfaces in the absence of chemokine.  We also 

demonstrated that by the addition of CCL21 to the surface, T lymphocytes significantly 

increase cell polarity and migration on VCAM-1 but not on ICAM-1 surfaces. 

CCL19 and CCL21 individually induce T lymphocyte chemokinesis that is dependent 

on ICAM-1 concentration 

The chemokines CCL19 and CCL21 bind to the CCR7 receptor and are capable of 

driving chemokinesis and chemotaxis [53-56]. Previous studies have predominantly used 
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transwell assays to demonstrate chemokinesis and chemotaxis, but these three dimensional 

assays provided limited ability to directly observe cells [20, 21, 57].  After having 

determined the effect of ligand composition and densities on the motility of primary human 

T lymphocytes, we investigated how soluble CCL19 (sCCL19) and CCL21 (sCCL21) 

drive CCR7-mediated chemokinesis on ICAM-1 microcontact printed PDMS surfaces and, 

specifically, how ligand concentration plays a role in the cell’s ability to respond to 

chemokine concentration.  We designated ICAM-1 concentrations of 5.0 µg/ml as high and 

0.05 µg/ml as low; these two concentrations support spontaneous and robust T lymphocyte 

migration, as shown above.  We measured the random motility coefficient for a range of 

CCL19 and CCL21 chemokine concentrations on both high and low concentrations of 

ICAM-1.  We observed no significant differences in the random motility coefficients as a 

function of chemokine concentration on the high ICAM-1 surface with random motility 

coefficients (µHIGH) ranging between 164 ± 14.4 to 226 ± 40.6 µm2/min (Fig. 3.14A).  We 

have shown that T lymphocytes are capable of sustained motility on ICAM-1 alone without 

the need for chemokines, leading us to believe that sustained signaling through LFA-

1/ICAM-1 interactions at this high ligand concentration was overwhelming the signals that 

resulted from CCR7 receptor engagement (outside-in versus inside-out signaling).  On the 

low ICAM-1 surface, we observed a biphasic response in motility to chemokine 

concentrations.  Statistically significant peaks in the random motility coefficients (µLOW) 

were observed at 20 nM for both sCCL19 (114.83 ± 4.76 µm2/min) and sCCL21 (109.37 

± 8.77 µm2/min) when compared to the random motility coefficient observed on low 

ICAM-1 alone (p < 0.05; Fig. 3.14A; Fig. 3.15).  Empirical observations in other cell 

systems, such as in murine dendritic cells, have estimated the KD of the CCR7 receptor to 
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be near 10 nM, which is close to the value of 20 nM that corresponds to our observed peaks 

in the random motility coefficients for both CCR7 ligands [58, 59].  Furthermore, Fig. 

3.14B shows that T cell persistence times and speeds change with the addition of 

chemokines while still maintaining an inverse correlation as seen in the absence of 

chemokine.  Almost all chemokine concentrations led to decreased speeds with increased 

persistence times except at our maximum motility coefficient seen at sCCL21 and sCCL19 

= 20 nM which had increased speeds and shorter persistence times (Fig. 3.14B; right panel). 
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Figure 3.14.  sCCL19 and sCCL21 individually induce chemokinesis on low ICAM-1 

surfaces.  (A)  Comparison of the random motility coefficients (µ) for sCCL19 and sCCL21 

show biphasic motility on low but not high ICAM-1 surfaces.  Peak in chemokinesis 

observed at 20 nM (µCCL19 = 174.13 ± 4.76 µm2/min and µCCL21 = 146.52 ± 8.77 µm2/min); 

*p < 0.05, compared to all concentrations; one-sample t test.  (B)  T lymphocyte speeds 

and persistence times during chemokinesis for sCCL19 and sCCL21 (left two panels); cells 

maintain near same speeds and persistence times for each concentration of chemokine.  The 

right graph shows that across all concentrations of chemokine an inverse correlation is 

maintained between persistence time and cell speed with an increased speed and decreased 

persistence time for 20 nM. The error bars represent the standard error of the mean (s.e.m.). 
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Figure 3.15.  Cell traces for sCCL19 and sCCL21 chemokinesis.   Single cell migration 

tracks showing random motility at (A) 20 nM CCL19 and (B) 20 nM CCL21 with no 

preferred direction in migration. 

  

A B 20 nM sCCL19 20 nM sCCL21 
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Combinatorial chemokine signaling on ICAM-1 surfaces increases chemokinesis 

We have demonstrated that varying ligand concentration (haptokinesis) and 

chemokine concentration (chemokinesis) can affect T lymphocyte motility.  We next 

examined how T lymphocyte motility can be modulated by combining soluble CCL19 and 

CCL21 together, which both bind to the CCR7 receptor.  Previous studies have shown that 

these ligands elicit different responses upon binding to CCR7 owing to receptor 

internalization and desensitization and signal attenuation [55, 60-62].  It has also been 

shown that murine dendritic cells and human T lymphocytes are capable of differential 

responses during chemotaxis to gradients of CCL19 and CCL21 [10, 59].  It is thought that 

within the lymph node, T lymphocytes encounter antigen presenting cells, such as dendritic 

cells, through random, autonomous motility within chemokine fields [11].  This led us to 

believe that by exposing primary human T lymphocytes to varying uniform fields of both 

sCCL19 and sCCL21, we would observe a difference in motility than what was seen with 

sCCL19 or sCCL21 alone.   Interestingly, we found that the chemokines act together to 

increase motility greater than what was observed with the chemokines individually.  A 

peak in motility was observed when T lymphocytes were exposed to 1 nM of both sCCL19 

and sCCL21 with a random motility coefficient of 203.00 ± 11.45 µm2/min (Fig. 3.16, Fig. 

3.17B).   For all equivalent concentrations of chemokines tested, the effect is superadditive 

producing random motility coefficients that are greater than the sum of the values observed 

individually with each chemokine except for the 20 nM condition.  Our previous data has 

shown that for 100 nM and 200 nM of sCCL19 and sCCL21 individually, the motility 

coefficients are much lower than the maximum observed random motility coefficients 

found at 20 nM for each chemokine.  Surprisingly, when 100 nM sCCL19 and 100 nM 
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sCCL21 were combined, the random motility coefficient increased significantly implying 

a synergistic effect (172.87 ± 16.12 µm2/min).  Furthermore, this effect was also observed 

when 200 nM sCCL19 and 200 nM sCCL21 were combined (146.23 ± 36.45 µm2/min).  

The combination of both 20 nM of sCCL19 and sCCL21 produced no significant changes 

in the motility coefficient when compared to that of the chemokines individually, with a 

random motility coefficient of 129.28 ± 4.82 µm2/min.  We then tested the effects of 

combining a high concentration of one chemokine with another that is near where observed 

peaks with chemokines alone.  For cells exposed to 20 nM of sCCL19 and 200 nM of 

sCCL21, we observed a random motility coefficient that is between what was observed on 

the two surfaces alone, 148.71 ± 12.41 µm2/min.  Furthermore, when we exposed cells to 

200 nM of sCCL19 and 20 nM of sCCL21, we again observed an intermediate random 

motility coefficient equal to 114.30 ± 11.92 µm2/min.  Table 3.2 lists all random motility 

coefficients for all combined chemokinesis values tested. 

It is known that CCL19 and CCL21 elicit different responses upon CCR7 

engagement, and the synergy we observed in our combined chemokinesis experiments is 

most likely a direct result of this.  The CCR7 receptor is recycled upon chemokine binding 

with CCL19 eliciting rapid internalization when compared to CCL21; furthermore, once 

internalized, CCL19 is targeted for degradation while CCL21 is not [60-62].  We suspect 

that larger quantities of free CCL21 is capable of binding to CCR7 since it is not targeted 

for degradation.  This would lead to increased unbound CCR7 on the cell surface that can 

then be engaged to promote increased chemokinesis through CCL21 engagement.  To test 

this hypothesis, we could employ using a CCR7-GFP construct to quantify internalization 

upon simultaneous engagement of CCL19 and CCL21 in our experimental system.  
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Furthermore, we could verify whether the CCR7 receptor co-localizes with endosomes for 

recycling or lysosomes for degradation and how the concentration of each chemokine 

dictates this.  These data would provide further insight into how T lymphocytes respond to 

combinatorial chemokine signaling and the effect on their motility in conditions possibly 

similar to what is seen in SLOs. 
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Figure. 3.16.  sCCL19 and sCCL21 synergize for combinatorial chemokinesis on low 

ICAM-1 surfaces.  Combined chemokinesis of sCCL19 and sCCL21 show that motility is 

increased to levels greater than what is observed with each chemokine individually.  Peak 

in chemokinesis observed at 1 nM sCCL19 and sCCL21 (µ = 203.00 ± 11.45 µm2/min).  

Each average value is calculated from at least three independent experiments. 
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Table 3.2.  Random motility coefficient values for combined chemokinesis with sCCL19 

and sCCL21 on low ICAM-1 surfaces.  Values of the random motility coefficients for all 

chemokine variations tested.  SEM = standard error of the mean. 
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Figure. 3.17.  Single cell traces for combinatorial chemokinesis.   Single cell migration 

tracks showing random motility on (A) 0.05 µg/ml of ICAM-1 alone (B) 1nM soluble 

CCL19 and 1 nM soluble CCL21 (C) 20 nM of printed CCL21 and (D) 20 nM of printed 

CCL21 with 100 nM soluble CCL19 with no preferred direction in migration. 
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Printed CCL21 and soluble CCL19 promote robust chemokinesis on ICAM-1 

surfaces 

We have demonstrated that soluble CCL19 and CCL21 can lead to combinatorial 

chemokine signaling with enhanced levels of motility.  It is well understood that CCL21 is 

capable of triggering integrin-dependent adhesion of peripheral blood T lymphocytes under 

shear flow in vitro, and is displayed to flowing lymphocytes at the surface of high 

endothelial venules (HEVs) and within the T cell zones of the SLOs [63, 64].  CCL19, on 

the other hand, is not presented on a surface in large enough quantities but rather expressed 

in soluble form to act upon their common receptor, CCR7 [6, 65].  Furthermore, it is not 

well understood why two chemokine ligands capable of binding the same receptor are 

expressed in the same regions, but it can be thought that one, CCL21, promotes T 

lymphocyte binding to the HEVs while soluble CCL19, in concert with CCL21, is needed 

for recruitment of T lymphocytes to the T cell zones of the SLOs.  To further understand 

the contribution of ligand presentation to T lymphocyte motility, we performed 

chemokinesis experiments that mimic the expression pattern of these chemokines in vitro 

by exposing primary human T lymphocytes to microcontact printed CCL21 (hCCL21) 

along with varying concentrations of soluble CCL19 (sCCL19) on low ICAM-1 surfaces. 

We observed with the addition of varying sCCL19 concentrations to ICAM-1 with 

hCCL21 there were no significant differences in speed with values ranging between 8.57 

± 0.55 to 10.27 ± 0.41 µm/min (Figure 3.18A; left panel).  For persistence times, there was 

no significant differences with varying sCCL19 concentrations but a peak was observed at 

100 nM with a P of 7.02 ± 2.43 minutes (Figure 3.18A; middle panel).  This value is 

essentially half of what was observed at 100 nM sCCL19 on low ICAM-1 without hCCL21.  
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The previous observed inverse correlation between speed and persistence time was lost 

with the addition of sCCL19 to hCCL21; the speed remains constant while persistence 

times shift (Figure 3.18A; right panel).  However, these speeds do correlate to our previous 

observations at 20 nM of sCCL19 and sCCL21 alone. 

The addition of hCCL21 to low ICAM-1 surfaces in the absence of sCCL19 more 

than doubles the random motility coefficient of cells compared to values observed on low 

ICAM-1 alone (195.55 ± 14.1 versus 83.37 ± 26.7 µm2/min; Fig. 3.17A, Fig. 3.17C).  When 

sCCL19 concentrations were varied, a peak in motility was observed at 100 nM of sCCL19 

with a random motility coefficient value of 275.63 ± 31.3 µm2/min (Figure 3.18B; p < 

0.05).  This is the largest random motility coefficient recorded in all sets of experiments 

indicating the importance of the difference in presentation patterns for CCL19 and CCL21.  

Due to CCL19 and CCL21 both being constitutively expressed by stromal cells within the 

T cell zones and CCL21 expressed by the HEVs, these data may represent what is seen 

physiologically and further indicates possible requirements for T lymphocyte recruitment. 

By printing CCL21, we have shown that T lymphocytes are capable of robust 

migration on ICAM-1 with high speeds, and with the addition of 100 nM sCCL19, T 

lymphocytes have an increased persistence time which may assist in increased directional 

migration required for recruitment to the SLOs. 
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Figure. 3.18.  hCCL21 and sCCL19 induce chemokinesis on low ICAM-1 surfaces. (A)  T 

lymphocyte speeds and persistence times on hCCL21 and varying sCCL19 concentrations 

(left two panels); speed remains constant with a peak in persistence time at 100 nM 

sCCL19.  The right graph indicates a loss of the inverse correlation between speed and 

persistence time.  (B)  Peak in hCCL21 and sCL19 chemokinesis at 100 nM sCCL19 with 

the highest observed µ = 275.63 ± 31.3 µm2/min; *p < 0.05, compared to no CCL21; one-

sample t test  The error bars represent the standard error of the mean ± (s.e.m.). 
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CONCLUSIONS 

In this chapter, we measured the migration of primary human T lymphocytes on 

ICAM-1 and VCAM-1 microcontact printed PDMS surfaces.  Our results show that ligand 

composition and concentration are essential in controlling spontaneous and robust T 

lymphocyte motility by modulating their speed, persistence time, and thus their random 

motility.  These haptokinesis studies also demonstrated that through non-Brownian motion 

T lymphocytes are more active on ICAM-1 than VCAM-1 surfaces.  From chemokinesis 

studies on low ICAM-1 surfaces, we have demonstrated that chemokine signaling elicits 

biphasic motility with peaks in the random motility coefficient near 20 nM for both of the 

CCR7 ligands CCL19 and CCL21 and is dependent on ligand concentration.  By 

combining both soluble CCL19 and CCL21, T lymphocyte motility was increased to levels 

above what was observed by each chemokine individually through synergistic effects.  We 

also demonstrated that by microcontact printing CCL21, we can double the motility of T 

lymphocytes on ICAM-1, and with the addition of soluble CCL19, we can further increase 

motility to levels that are higher than exposure to both soluble CCL19 and CCL21, 

combined or individually.  These data provides insight into the dynamic behavior of T 

lymphocytes and the roles of ligand, chemokines, and combinatorial signaling in an effort 

for controlling motility to and within the SLOs.  Furthermore, our finding that the motility 

of T lymphocytes is not diffusive is consistent with measurements of made of the migration 

of murine CD8+ T lymphocytes in vivo which undergo Levy walks in response to 

CXCL10; this is believed to enhance the ability of T lymphocytes to encounter rare targets 

with more efficiency than Brownian motion walkers [33]. 
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Our work in this chapter follows upon work from the Irvine laboratory on the 

motility of murine T lymphocytes on surfaces coated with ICAM-1, VCAM-1, and 

fibronectin. In contrast to what we showed here on microcontact printed surfaces, they did 

not observe significant random motility on any adhesive ligand by itself [5].  We attribute 

this difference to the exquisite control over non-specific interactions that can be achieved 

on microcontact printed surfaces. However, consistent with what was shown here, the 

chemokine CCL21 enhanced motion, and that enhancement was dependent on the presence 

of an adhesive ligand.  They did not investigate the effects of printing hCCL21 on surfaces, 

quantify the random motility coefficient under any conditions, or identify the synergy of 

motility from two different chemokine molecules [5].  As we previously showed with 

neutrophils, our ability to print molecules on substrates allows us to identify modes of 

motility that cannot be observed on traditional surfaces [26].   
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CHAPTER 4: LFA-1 and VLA-4 MEDIATED MIGRATION UNDER SHEAR 

FLOW 

Adapted from:  Dominguez GA, Anderson NR, and DA Hammer.  “The direction of 

migration of T-lymphocytes under flow depends upon which adhesion receptors are 

engaged.”  Intergrative Biology.  Under revision. 

 NR Anderson contributed to the integrin profiling via flow cytometry. 

ABSTRACT 

T-lymphocyte migration is important for homing, cell trafficking, and immune 

surveillance.  T-lymphocytes express lymphocyte function-associated antigen-1 (LFA-1; 

αLβ2) and very late antigen-4 (VLA-4; α4β1), which bind to their cognate ligands, 

intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 

(VCAM-1).  These adhesive interactions provide T-lymphocytes with the ability to 

withstand hemodynamic shear forces to facilitate adhesion and migration along the blood 

endothelium.  Recently, work has been shown that T-lymphocytes will crawl upstream 

against the direction of flow on surfaces functionalized with ICAM-1.  Here, we have 

investigated whether the identity of the receptor and the magnitude of its engagement 

affects the direction of T-lymphocyte migration under flow.  We used microcontact printed 

ICAM-1 and VCAM-1 PDMS surfaces on which density and type of adhesion molecule 

can be tightly controlled and non-specific adhesion adequately blocked.  Using a laminar 

flow chamber, we demonstrate that T-lymphocytes migrate either upstream or downstream 

dependent upon ligand type, ligand concentration and shear rate.  We found that T-

lymphocytes migrate upstream on ICAM-1 but downstream on VCAM-1 surfaces – a 

behavior unique to T-lymphocytes.  By varying concentrations of ICAM-1 and VCAM-1, 
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we observe directed migration under flow that is dependent upon the type and 

concentration of ligand.  At high shear rates (800 s-1), T-lymphocytes favor upstream 

migration when any ICAM-1 is present, even in the presence of substantial VCAM-1.  

These results indicate that T-lymphocytes exhibit two different modes of motility – 

upstream or downstream – depending on ligand composition and the shear rate. 
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INTRODUCTION 

For efficient homing, T-lymphocytes must withstand the hemodynamic forces 

caused by fluid flow to effectively adhere and migrate along the endothelium [1, 2].  T-

lymphocytes express the integrins lymphocyte function-associated antigen-1 (LFA-1; 

αLβ2) and very late antigen-4 (VLA-4; α4β1), which bind to the ligands intercellular 

adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), 

respectively.  These integrins are known to be crucial for cell activation and to facilitate 

interactions with other leukocytes in order to elicit effector functions [3-5].  LFA-1 and 

VLA-4 are also required for firm adhesion to the blood endothelium under shear flow to 

permit migration into lymph nodes or inflamed tissues [6-8].   

Previous work has shown the rather fascinating phenomenon that murine T-

lymphocytes crawl efficiently against the direction of flow on immobilized ICAM-1 and 

ICAM-2 surfaces while undergoing recurrent downstream arrest on VCAM-1 [9].  Valignat 

et al. demonstrated that both freshly isolated and effector human T-lymphocytes increase 

their upstream migration against flow as shear rate increases on ICAM-1 surfaces [10].  

Furthermore, T-lymphocytes undergo adhesion strengthening on ICAM-1 surfaces upon 

spontaneous LFA-1-mediated adhesion under shear flow that is dependent upon 

calcium/calmodulin signaling and the assembly of the actin cytoskeleton [11]. 

Often, multiple integrins are engaged, and a question that has not been fully 

addressed is how the engagement of multiple integrins controls T-lymphocyte motility 

under shear flow [12-15].  It is known that chemokine engagement leads to increased 

integrin activation through heterologous modulation (inside-out signaling) [16-18]; on the 

other hand, homologous modulation, when one integrin binds its specific ligand activating 
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a signaling pathway that then activates a different integrin, can also occur.  For example, 

VCAM-1 engagement of VLA-4 is known to regulate β2-dependent adhesion under flow 

on ICAM-1 surfaces [5, 19, 20].  Previous studies have also shown a synergistic response 

in adhesion strengthening and resistance to shear upon plating human T-lymphocytes on 

surfaces that have been co-immbolized with ICAM-1 and VCAM-1 [19].  However, it is 

not well understood how the simultaneous engagement of LFA-1 and VLA-4 with their 

cognate ligands controls the directional migration of T-lymphocytes under fluid flow, 

which is especially interesting given the dichotomous response of T-lymphocytes on each 

ligand alone. 

In Chapter 3, we demonstrated that human primary T-lymphocytes are capable of 

spontaneous and robust migration under static conditions on microcontact printed ICAM-

1 and VCAM-1 PDMS surfaces, but it is not well understood how the application of shear 

modulates this behavior.  Here, we used the same surfaces, presenting ICAM-1 and 

VCAM-1 in a controllable ratio, to measure how ligand presentation affects directional 

migration under fluid flow.  We quantified T-lymphocyte migration under shear flow using 

a parallel plate laminar flow assay [10, 11, 21-23].  We show that under conditions of shear 

flow, T-lymphocytes can crawl either upstream or downstream, and the motility is 

dependent upon ligand concentration, type, and shear rate, over a range of physiological 

shear rates mimicking conditions encountered in the postcapillary venules where leukocyte 

extravasation predominantly takes place [24, 25].  Furthermore, we show that presentation 

of both ICAM-1 and VCAM-1 at different densities orients T-lymphocyte migration either 

upstream or downstream of fluid flow at low shear rates while at high shear rates 

preferential migration is observed upstream provided there is any ICAM-1 present.  These 
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results suggest that β2 integrins play a dominant role in dictating the direction of migration 

under fluid flow.  Our current observations correspond well to the previous studies showing 

that VCAM-1 mediated motility exhibits lower migration speeds and, overall, less motility 

than on ICAM-1 surfaces and provides new insight into their behavior on surfaces 

containing both ligands under shear flow [26]. 

  



110 

 

MATERIALS AND METHODs 

Cell Culture and Reagents 

Human blood was obtained via venipuncture from healthy adult donors and 

collected into sterile tubes containing sodium heparin (BD Biosciences, San Jose, CA).  

These experiments involved human T-lymphocytes which were obtained by fractionation 

of whole blood.  Whole blood was obtained by phlebotomy, in compliance with relevant 

laws and institutional guidelines for the University of Pennsylvania.  The institutional 

review board (IRB) of the University of Pennsylvania reviewed and approved the 

protocols.  Donations were made voluntarily and in all cases, informed consent was 

obtained.  Blood samples were carefully layered in a 1:1 ratio of whole blood to 1-Step 

Polymorphprep (Axis-Shield, Oslo, Norway).  Vials were then centrifuged at 1500 rpm for 

35 minutes and the mononuclear band was collected into a fresh vial.  Cells were cultured 

in RPMI-1640 supplemented with 10% FBS and 1 μg/ml of phytohemagglutinin (PHA-M; 

Sigma-Aldrich, St. Louis, MO) overnight.  After 24 hours, the lymphocyte suspension in 

the PHA medium was transferred into a new flask leaving behind adherent cells.  After an 

additional 48 hours, the cells were then cultured in RPMI-1640 with 10% FBS and 1% 

penicillin-streptomycin supplemented with 20 ng/ml of interleukin-2 (IL-2; Roche, 

Mannheim, Germany).  Cells were used for experimentation following an additional 72 

hours in culture.  Other biological reagents included: protein A/G (Thermo Scientific, 

Rockford, IL), human ICAM-1/Fc and VCAM-1/Fc (R&D Systems, Minneapolis, MN), 

human IgG1 (Abcam, Kendall Square, MA), human anti-β2 (clone IB4) (Calbiochem, San 

Diego, CA), human anti-β1 (clone Mab13) and rat isotype IgG2a (BD Pharmingen, San 

Jose, CA), and Pluronics F127 (Sigma-Aldrich, St. Louis, MO).  Fluorescent conjugates of 
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anti-αL (clone HI111), anti-αM (clone ICRF44), anti- α4 (clone 9F10), anti- β1 (clone 

TS2/16), and anti- β2 (clone 6.7) as well as the isotype controls were obtained from 

eBioscience (San Diego, CA). 

Substrate preparation 

Poly(dimethylsiloxane) (PDMS) (Sylgard 184 Silicone Elastomer, Dow Corning, 

Midland, MI) coated slides were prepared from 1 mm thick precleaned microscope slides  

(Fisher Scientific, Hampton, NH) with 25 X 75 mm dimensions spin coated with degassed 

PDMS (10:1 base:cure by weight) and cured overnight at 65 ºC. 

Protein printing and blocking 

Flat stamps for printing were prepared by pouring degassed PDMS mixed at 10:1 

base:cure by weight over an unpatterned silicon wafer.  The polymer was cured for 2 hours 

or longer at 65 ºC.  Stamps were trimmed, sonicated in 200 proof ethanol for 10 minutes, 

rinsed with dH2O, and dried in a stream of N2(g).  For motility studies, stamps were 1 cm2 

and were inked with 200 µl of 2 µg/ml of protein A/G in PBS for 2 hours at room 

temperature.  The stamps were then thoroughly rinsed in H2O and blown dry with a stream 

of N2.  In parallel, the PDMS spincoated microscope slide was treated with ultraviolet 

ozone for 7 minutes (UVO Cleaner Model 342, Jelight Company, Irvine, CA) to render the 

surface hydrophilic.  The stamp was then placed in conformal contact with the substrate 

for ~10 seconds and removed.  A 0.2% (w/v) solution of Pluronics F127 was immediately 

adsorbed to the PDMS substrates for 30 minutes at room temperature to prevent protein 

adsorption to non-functionalized portions of the PDMS.  The cell culture substrate was 

then rinsed with PBS 3X without dewetting the functionalized surface before deposition of 

200 µl of either ICAM-1/Fc, VCAM-1/Fc, or ICAM-1/Fc and VCAM-1/Fc in PBS for 2 
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hours at room temperature.  Ligand concentrations of the substrates were controlled by 

varying ratios of ICAM-1/Fc and VCAM-1/Fc to human IgG1.  For all experiments (unless 

otherwise noted), effective total protein concentration remained constant at 10.0 µg/ml.  

Lack of unspecific T-lymphocyte interactions with the PDMS substrates was tested in 

control experiments using protein A/G surfaces blocked with 0.2% Pluronics or protein 

A/G overlaid with a saturating concentration of human IgG1. 

Flow Cytometry 

 Cells were prepared at 5 X 106 cells/ml in 1 ml total volume of flow cytometry 

buffer (5% FBS in PBS).  100 μl of cells were incubated with 5 μl of either FITC anti-αL 

(clone HI111), FITC anti-αM (clone ICRF44), PE anti- α4 (clone 9F10), FITC anti- β1 

(clone TS2/16), and FITC anti- β2 (clone 6.7) as well as the isotype controls for 30 minutes 

at 4ºC.  Cells were then washed 3X with flow cytometry buffer via centrifugation at 1500 

rpm for 5 minutes each.  Cells were then resuspended into a final volume of 750 μl of flow 

cytometry buffer.  Cells were analyzed using a BD FACSCalibur (Franklin Lakes, NJ) 

instrument followed by data processing using FlowJo (Ashland, OR). 

Flow Chamber Assembly and Assay 

A parallel-plate flow chamber (GlycoTech, Gaithersburg, MD) was used with the 

prepared PDMS substrate.  The channel template was cut from 0.01-inch-thick Duralastic 

sheeting (Allied Biomedical, Goose Creek, SC).  For each flow experiment, the template 

was placed over the prepared PDMS coated slide.  The template and slide were placed in 

the bottom well of the flow chamber, and the top was secured with screws.  The chamber 

was assembled under water to minimize the introduction of air.  It was then mounted on 

the microscope in a 5% CO2 and 37°C environment for 10 minutes to allow for 
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equilibration.  Before introduction of T-lymphocytes, the chamber was flushed with 

running media consisting of RPMI-1640 supplemented with 0.1% BSA and 2 mg/ml 

glucose.  A volume of 1.5 ml containing 1 X 106 cells in running media was introduced 

into the chamber and cells were allowed to attach for 15 minutes.  Fluid flow was initiated 

using a syringe pump (11 Plus, Harvard Apparatus, Holliston, MA) and volumetric flow 

rates were adjusted accordingly to correspond to desired shear rates.  Shear rate was 

calculated using 𝜏𝑤 =
6𝜇𝑄

ℎ
2

𝑤
  where µ is the fluid viscosity, Q is the volumetric flow rate, h 

is the channel height and w is the channel width.  For this chamber, h = 0.023 cm, w = 0.1 

cm.  Images were captured every minute on a motorized stage and observed using a Nikon 

Eclipse TE300 phase contrast microscope.  Images were captured using a 10X objective.  

Migrating cells had a polarized morphology consisting of a lamellipod at the front and a 

uropod at the rear; spherical and non-adherent cells were either washed away upon 

application of flow or demonstrated no motility and were not included in analysis. 

Antibody Blocking 

Functional blocking antibodies against the β1 integrin subunit (clone Mab13), β2 

integrin subunit (clone IB4), and IgG2a isotype control (clone R35-95) were used at a final 

concentration of 50 µg/ml.  1.5 X 106 T-lymphocytes in 500 µl of running media were 

incubated for 30 minutes with antibodies at 37C and 5% CO2.  Cells were then injected 

into flow chamber apparatus and allowed to adhere in the absence of flow for 15 minutes.  

Running buffer consisted of RPMI-1640 supplemented with 0.01% BSA, 2 mg/ml glucose, 

and 1/10 final antibody blocking concentration.  Cells were exposed to flow for 30 minutes 

before quantification of speed and MI. 

Measurement of Cell Trajectories, Speed, and Migration Index 
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Cell movement was tracked using the ImageJ plugin Manual Tracking.  ImageJ and 

the plugin are both freely available through the NIH website (http://rsbweb.nih.gov/ij/).  

The centroid of the cell was considered to represent the cell position.  Time lapse 

microscopy was used and images were taken every minute.  The result was a series of (xi,yi) 

positions with time for each cell.  The net displacement during the 𝑖th 1.0 minute 

increment, 𝐷𝑖, was calculated by the difference of the position at the beginning and end of 

that time step.  The sum of total displacements (Di,accum) was used to calculate the cell speed 

over the entire experimental time course of 30 minutes.  The migration index (MI) was 

defined as the ratio of the difference between the initial and final x-displacement to total 

displacement where 𝑀𝐼 =
𝑥𝑖,𝑒𝑛𝑑−𝑥𝑖,𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐷𝑖,𝑎𝑐𝑐𝑢𝑚
.  Values of the migration index near +1, indicate 

that cells migrate in a straight trajectory against the direction of flow while values near -1, 

indicate a preference of migration in a straight trajectory along the direction of flow.  When 

the MI is near 0, there is no preferred direction in migration indicating random motility. 

Surface quantification 

Protein A/G stamped surfaces were prepared as described above.  Fluorescently 

labeled human IgG1 was prepared using 1 mg of human IgG1 and the Alexa Fluor® 555 

Protein Labeling Kit (Life Technologies, Grand Island, NY).  Concentration and degree of 

labeling of the sample was calculated as described in the provided procedure.  Solutions of 

fluorescently labeled and unlabeled human IgG1 were mixed together in varying 

combinations and deposited onto stamped protein A/G surfaces for 2 hours.  Surfaces were 

then rinsed with PBS 3X without dewetting the functionalized surface before mounting on 

the microscope.  A 20X objective was used to image..  Pixel intensities were calculated 

using ImageJ by averaging over four distinct areas in the field of view across a minimum 
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of four different locations on each surface.  A solution of unlabeled human IgG1 was used 

as a control. 

Immunofluorescence 

Parallel flow chamber assays were performed as described above.  Upon 

completion of experiments, the cells were fixed with 4% paraformaldehyde in PBS for 7 

minutes that was flowed through at the experimental shear rate.  The substrate was removed 

from the flow chamber apparatus and then permeabilized with 0.2% Triton X-100 for 5 

minutes and blocked with 1% BSA in PBS for 30 minutes at room temperature.  Cells were 

incubated with 1:200 Alexa Fluor 568-labeled phalloidin and Alexa Fluor 488-labeled 

mouse anti-α tubulin (Invitrogen) for 30 minutes at room temperature.  Cells were mounted 

in Fluoromount-G mounting medium (SouthernBiotech, Birmingham, Alabama) and 

examined by confocal microscopy (Leica SP5). 

Data analysis 

Data are presented as mean ± SEM.  Statistical significance was computed using 

one-way ANOVA and pairwise comparisons were performed with the student t test.  

Values of p are indicated in the figures or figure legends. 
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RESULTS AND DISCUSSION 

Microcontact printing of Protein A/G and Surface Quantification 

We verified the relative composition of our surfaces using fluorescently tagged 

human IgG1 molecules that bind to microcontact printed protein A/G.  Briefly, Alexa Fluor-

555 tagged IgG1 (IgG1-555) was mixed with unlabeled human IgG1 in different ratios to 

maintain a total protein solution concentration of 20 μg/ml.  Figure 1A-F shows the 

fluorescence intensities of surfaces with increasing concentrations of IgG1-555.  By 

quantifying the pixel intensities for each condition, we found a linear correlation (R2 = 

0.991) between IgG1-555 concentration and pixel intensity (Fig. 4.1G).  These data allows 

us to conclude that as we increase ligand concentration within solution, we are 

proportionately increasing the amount of ligand on our surfaces, up to a solution 

concentration of 20 μg/ml IgG1.  This range of concentrations cover what was used to 

prepare our surfaces. 
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Figure 4.1.  Increasing solution concentrations of Fc-containing ligand correlates to 

increasing surface ligand concentrations.  Fluorescent images of surfaces prepared with 

increasing concentrations of Alexa Fluor-555 tagged human IgG1 (IgG1-555).  Solution 

concentrations of IgG1-555 depicted are as follows: A) 0 μg/ml, B) 1 μg/ml, C) 5 μg/ml, 

D) 7.5 μg/ml, E) 10 μg/ml, and F) 15 μg/ml.  G)  The pixel intensities were calculated for 

each concentration and plotted.  Data reveals a linear correlation between soluble IgG1-

555 concentration and fluorescent signal present on the surface (R2 = 0.991).  Data are 

mean ± SE.  Scale bar = 50 μm. 
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ICAM-1, but not VCAM-1, supports T-lymphocyte migration against the direction of 

flow as a function of shear rate 

Intraluminal crawling under shear flow is required for T-lymphocyte extravasation 

and is dependent upon engagement of integrins to support adhesion and migration [27].  

Recently, Valignat et al. showed that primary human T-lymphocytes crawl against fluid 

flow in a shear dependent manner on ICAM-1 surfaces [10].  In this study, we extend upon 

this recent work and report upon the effect of substrate chemistry on the directionality of 

primary human T-lymphocyte migration under fluid flow.  T-lymphocytes express the 

integrin heterodimers VLA-4 and LFA-1, and we employed flow cytometry to confirm the 

expression of αL, α4, β1, and β2 on primary human T-lymphocytes (Fig. 4.2).  We also 

verified that our cells do not express the MAC-1 integrin heterodimer (αMβ2) which is 

capable of binding to ICAM-1, allowing us to conclude that the interactions observed on 

ICAM-1 are solely due to LFA-1 engagement. 
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Figure 4.2.  Expression of LFA-1, VLA-4, and MAC-1 on primary human T-lymphocytes.  

(A) The expression levels of the three integrin α subunits αL (red), αM (blue), and α4 (green).  

(B)  The expression levels of the two integrin beta subunits β2 (red) and β1 (blue).  All 

negative controls are depicted in gray.  Plots represent one set of data from three separate 

experiments. 
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Through the use of a parallel flow chamber, we quantified cell motility under fluid 

flow on substrates with different adhesive ligands in the absence of chemokine.  The 

motility of cells at different shear rates was measured on surfaces prepared by incubating 

either 5 µg/ml of ICAM-1 or VCAM-1 onto surfaces stamped with protein A/G.  After 

injection and a resting time of 15 minutes to allow for adhesion, cells were exposed to shear 

rates of 100, 200, 400, or 800 s-1.  As illustrated by representative cell traces (Fig. 4.3. A 

and F), T-lymphocytes migrated substantial distances under static conditions on ICAM-1 

or VCAM-1 surfaces, and upon application of flow, directional responses were observed.  

Blue traces indicate cells that traveled upstream in fluid flow while red traces indicate cells 

that traveled downstream.  At a low shear rate of 100 s-1, cells on ICAM-1 surfaces showed 

a slight preference for migrating upstream, and with increasing shear rates, cells on ICAM-

1 surfaces showed an increasing preference to migrate upstream (Fig. 3, B-E).  In contrast, 

cells on VCAM-1 surfaces preferred to migrate downstream with little to no migration 

upstream at any shear rate (Fig. 4.3, G-J).  To quantify the directional motion, we calculated 

the migration index (MI) for all cells, defined as the ratio of total x-displacement to total 

overall displacement, with positive values indicating motion upstream and negative values 

indicating motion downstream.  Under static conditions, the MIs for cells on ICAM-1 and 

VCAM-1 were near 0, indicating random migration with no preference in direction.  Upon 

exposure to flow, cells on ICAM-1 migrated upstream with increasing MIs as a function 

of increasing shear rate with values ranging from 0.21 to 0.38 (Fig. 4.3K).  On VCAM-1 

substrates, migration was downstream with MIs having no dependence on shear rate with 

values between -0.69 and -0.77 (Fig. 4.3K).  Furthermore, T-lymphocytes exposed to 

surfaces of protein A/G alone did not adhere allowing us to assume that the observed 
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directional migration on ICAM-1 and VCAM-1 surfaces is specifically due to the ligation 

of adhesion receptors, and not due to non-specific interactions. 

As shear rates increased, we observed a decrease in migration speed on both ligands 

(Fig. 3L).  We observe higher migration speeds on ICAM-1 than VCAM-1 under flow, 

which corresponds to previous observations under static conditions [26].  On ICAM-1 

surfaces, a significant decrease in speed was seen at larger shear rates (400 s-1 and 800 s-1) 

compared to under static conditions.  The peak speed was observed at 100 s-1 (11.47 ± 0.93 

µm/min) with the lowest speed observed at 800 s-1 (7.97 ± 0.30 µm/min).  For VCAM-1 

surfaces, application of 100 s-1 of fluid flow doubled the migration speed (5.93 ± 0.52 

µm/min) compared to what was observed under static conditions (3.44 ± 0.33 µm/min).  

Furthermore, when shear rates were increased further on VCAM-1 substrates, the 

migration speeds decreased with increasing shear rate with the lowest speed being observed 

at 800 s-1 (4.08 ± 0.33 µm/min). 

The integrins LFA-1 and VLA-4 are known to be mechanoresponsive to force, 

leading to increased activation and adhesion stabilization [2, 11, 21, 23, 28].  We expect 

that as shear rate is increased the integrin-ligand bonds strengthen to promote adhesion and 

migration.  Overall, increasing shear rates led to an increase in the orientation of migration 

upstream of fluid flow on ICAM-1 surfaces but not VCAM-1 surfaces.  These unique 

responses are likely caused by the inherent differences between these two integrins and 

their roles physiologically.  The integrin LFA-1 binds to ICAM-1 and is required for firm 

adhesion and extravasation under fluid flow after transient adhesion events and chemokine 

exposure.  Therefore, it appears that LFA-1/ICAM-1 interactions secure adhesion and 

promote lamellipodial extension upstream.  VLA-4, on the other hand, is capable of 
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supporting both tethering and rolling (in the absence of other adhesion ligands) through 

engagements with VCAM-1 and is required for capture of T-lymphocytes from fluid flow.  

Furthermore, after chemokine exposure, VLA-4 increases its affinity to promote firm 

adhesion and, along with LFA-1, mediates migration along the blood endothelium 

supporting diapedesis through the endothelium [4, 27, 29, 30].  Although VLA-4 

participates in transient as well as firm adhesion events, we hypothesize that this integrin 

facilitates weaker adhesions compared to LFA-1 and cannot stabilize upstream 

interactions.  Under flow, VLA-4 most likely supports a passive form of adhesion that can 

support downstream migration and prevent T-lymphocytes from being swept away but not 

facilitate migration upstream.  This has been proposed in other cell types, such as 

neutrophils, and is hypothesized to be due to lack of a mechanosensing mechanism through 

this receptor [10, 31].   

An alternate hypothesis for T-lymphocytes migrating either upstream or 

downstream of flow may lie in the integrin expression patterns and their specific 

interactions with cytoskeletal proteins.  Integrin molecules and cytoskeletal linker proteins 

support bidirectional transmission of force by linking the extracellular matrix (ECM) and 

the actin cytoskeleton [32, 33].  Application of force is known to strengthen this linkage 

preventing slippage between the actin cytoskeleton and integrin molecules allowing them 

to sustain much larger forces [34-36].  Talin, a cytoskeletal linker protein, is known to 

associate with high affinity conformation states of LFA-1 and VLA-4 on migrating T-

lymphocytes [37-39].  These higher affinity forms of VLA-4 are expressed at the leading 

edge while the higher affinity forms of LFA-1 are expressed in the mid-cell to rear regions 

of migrating T-lymphocytes [14, 38].  Recent traction force microscopy (TFM) studies 
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have shown that actomyosin contraction occurs in the rear region of neutrophils thus 

generating the traction stresses required for cell translocation and motility [31, 40].  The 

activated LFA-1 found in the mid-cell to rear regions of a migrating T-lymphocyte might 

support the traction necessary for the actomyosin contractility in the rear to generate the 

upstream migration against shear.  VLA-4, on the hand, may not generate enough traction 

- given its localization at the front of cell - to support upstream motion but rather permits 

the more passive form that is dictated by the fluid flow.  We would expect to observe large 

traction stresses generated on ICAM-1 in the rear while more forces would be found in the 

front on VCAM-1.  Furthermore, unlike previous studies, we observed decreased speeds 

with increasing shear rate on both ICAM-1 and VCAM-1 surfaces [10].  A possible 

explanation for the increased speed of upstream migration is the increase in the modulation 

of integrin-ligand affinity that leads to greater adhesive interactions [41, 42].   
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Figure 4.3.  T-lymphocytes crawl against the direction of flow on immobilized ICAM-1 

but not on VCAM-1 to an extent that depends on shear rate.  A-E) Cell traces of T-

lymphocytes under shear flow (right to left) on ICAM-1 (5.0 µg/ml) and F-J) VCAM-1 

(5.0 µg/ml) coated PDMS surfaces under varying shear rates.  The traces depicted under 

flow are for one representative experiment in each group.  Blue traces indicate cells that 

traveled upstream of flow while red traces indicate cells that traveled downstream.  Black 

arrow indicates direction of shear flow for all conditions.  Traces are in µm.  K)  The 

direction of T-lymphocytes under shear flow as expressed as the migration index (MI).  A 

positive MI indicates migration against the flow (upstream) while a negative MI indicates 

migration in the direction of flow (downstream).  T-lymphocytes on ICAM-1 migrate 

upstream to an increasing extent with increasing shear rate while cells on VCAM-1 migrate 

downstream.  The MI was calculated from T-lymphocyte tracks from three independent 

experiments.  *p < 0.05.  L)  T-lymphocytes on ICAM-1 migrate faster than cells on 

VCAM-1 and is decreased at higher shear rates.  Migration speeds were calculated from 

three independent experiments each.  *p < 0.05. 
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Downstream migration of T-lymphocytes is dependent upon VCAM-1 concentration 

We have previously demonstrated that the concentration of ICAM-1 and VCAM-1 

controls cell speed and the random motility of primary human T-lymphocytes [26].  We 

investigated whether this is also true under shear flow.  We exposed cells to shear rates of 

100 s-1 and 800 s-1 on ICAM-1 surfaces coated with 0.5, 1.0, 5.0, and 10.0 µg/ml of ICAM-

1 Fc chimera.  Representative cell traces shows that T-lymphocytes preferred to migrate 

upstream on ICAM-1 for both shear rates (Fig. 4.4, A-D, E-H).  We calculated the 

migration index for each condition to ascertain whether ligand concentration affects the 

directionality of migration along with shear rate.  At a shear rate of 100 s-1, the MIs ranged 

between 0.14 to 0.21, and upon application of 800 s-1, these values increased significantly 

and ranged from 0.33 to 0.46 (Fig. 4.4I) with no dependence on ligand concentration for 

both shear conditions.  For the lower concentrations of 0.5 and 1.0 µg/ml of ICAM-1, there 

were no differences in the speed of T-lymphocytes between shear rates of 100 s-1 and 800 

s-1 (Fig. 4.4J).  On surfaces prepared with concentrations of 5.0 and 10.0 µg/ml of ligand, 

speeds significantly decreased when shear rate increased from 100 s-1 to 800 s-1. 
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Figure 4.4.  T-lymphocytes crawl upstream on different concentrations of immobilized 

ICAM-1.  A-D). Cell traces of T-lymphocytes crawling at a shear rate of 100 s-1 on varying 

concentrations of ICAM-1 PDMS surfaces.  E-H)  Cell traces of T-lymphocytes under 800 

s-1 of shear flow on varying concentrations of ICAM-1 PDMS surfaces.  Black arrow 

indicates direction of shear flow for all conditions.  The traces depicted under flow are for 

one representative experiment under the stated conditions.  I)  The direction of T-

lymphocyte migration under shear flow expressed as the migration index (MI).  T-

lymphocytes on ICAM-1 surfaces migrate upstream and directionality depends on shear 

rate.  The MI was calculated from T-lymphocyte tracks from three independent 

experiments.  *p < 0.05. J) T-lymphocytes on varying concentrations of ICAM-1 migrate 

with the same speed at each shear rate tested .  Migrations speeds were calculated from 

three independent experiments each.  *p < 0.05 
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We also measured the motility of T-lymphocytes on VCAM-1 surfaces prepared at 

0.5, 1.0, 5.0, and 10.0 µg/ml of the VCAM-1 Fc chimera.  The representative cell traces 

show that at shear rates of 100 s-1 (Fig. 5, A-D) and 800 s-1 (Fig. 5, E-H) cells crawl 

downstream for all VCAM-1 concentrations.  Unlike ICAM-1 surfaces, the MIs for cells 

on VCAM-1 surfaces strongly depend upon ligand concentration.  Under 100 s-1 of flow, 

the MIs became more negative as VCAM-1 concentration increased, ranging from -0.33 

(at 0.5 µg/ml) to -0.83 (at 10 µg/ml)  (Fig. 5I).  At a shear rate of 800 s-1, the effect of 

ligand density is more moderate with the two lower concentrations having similar MIs (-

.75 and -.77) and the two larger concentrations having significantly larger values (-.88 and 

-.91).  On VCAM-1 surfaces exposed to a shear rate of 100 s-1, crawling speeds ranged 

between 5.93 to 6.43 µm/min and were largely independent of ligand concentrations.  

However, at a shear rate of 800 s-1, cells exhibited lower migration speeds at lower ligand 

concentrations that doubled on surfaces made with higher ligand concentrations (3.12 

versus 6.26 µm/min; Fig. 5J).  Overall, upon varying ligand concentration, we observed 

increased upstream migration on ICAM-1 surfaces that is dependent upon shear rate not 

ligand density.  On the other hand, cells migrating on increasing VCAM-1 concentrations 

showed increased downstream migration as ligand density increased but only during 

exposure to 100 s-1 of fluid flow.   
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Figure 4.5.  The migration index of T-lymphocytes crawling in the direction of flow 

increases with concentration of immobilized VCAM-1.  A-D)  Cell traces of T-

lymphocytes at a shear rate of 100 s-1 on different concentrations of ICAM-1 on PDMS 

surfaces.  E-H)  Cell traces of T-lymphocytes at a shear rate of 800 s-1 on varying 

concentrations of ICAM-1 PDMS surfaces.  The traces depicted under flow are for one 

representative experiment in each group.  Black arrow indicates direction of shear flow for 

all conditions.  I) The direction of T-lymphocytes under shear flow expressed as the 

migration index (MI).  T-lymphocytes on VCAM-1 migrate downstream and the migration 

index is dependent upon ligand concentration.  The MI was calculated from T-lymphocyte 

tracks from three independent experiments.  *p < 0.05.  J)  T-lymphocytes on varying 

concentrations of VCAM-1 migrate with the same speed at a shear rate of 100 s-1 but 

increases speed on higher concentrations of VCAM-1 at a shear rate of 800 s-1.  Migrations 

speeds were calculated from three independent experiments each.  *p < 0.05. 
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Directional migration of T-lymphocytes under fluid flow can be controlled through 

combinations of ICAM-1 and VCAM-1 under shear flow 

Under homeostatic conditions, endothelial cells express basal levels of ICAM-1 

and VCAM-1, and upon activation by inflammatory stimuli, expression of these molecules 

is upregulated to facilitate increased cell arrest and migration [43].  It has also been shown 

on murine endothelial cells that baseline expression levels of ICAM-1 are greater than 

VCAM-1, and upon stimulation via known inflammatory stimuli, upregulation of these 

adhesive ligands varies depending upon the tissue [44].  This motivated us to create 

surfaces that present both ICAM-1 and VCAM-1 together at various densities to elucidate 

how simultaneous ligation of LFA-1 and VLA-4 controls migration under fluid flow.  Upon 

presentation of both adhesion molecules, we expected to observe motility that was 

intermediate between the behaviors of each ligand alone.  Because VCAM-1 engagement 

can regulate β2-dependent adhesion on ICAM-1 surfaces, crosstalk between the two 

signaling pathways downstream of receptor engagement presents an additional layer of 

complexity in the regulation of T-lymphocyte motility [5, 19, 20, 45].  T-lymphocytes were 

plated on surfaces where the ratio of ICAM-1 and VCAM-1 was varied by changing the 

ratios of ICAM-1 and VCAM-1 within solution while maintaining a constant total protein 

concentration of 10 μg/ml.  For example, by mixing 3 μg/ml of ICAM-1 and 7 μg/ml of 

VCAM-1, equaling to a total protein concentration of 10 μg/ml, a surface called I3 + V7 

was created; this surface was 30% ICAM-1 and 70% VCAM-1.  On all surfaces, we 

measured the direction of migration either upstream or downstream as a function of the 

ratios of ICAM-1 and VCAM-1 present on the surface (Fig. 4.6).  At a shear rate of 100 s-

1, we observed directional responses that were dependent upon the concentrations of both 
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ligands with preferred upstream migration on surfaces with higher concentrations of 

ICAM-1 and preferred downstream migration on surfaces with higher concentrations of 

VCAM-1.  This behavior is consistent with the hypothesis that the phenotype of adhesion 

is consistent with the concentration of ligand.  The magnitude of the migration index for 

each condition on combined surfaces is less than what is observed for each ligand 

individually, again consistent with an intermediate response.  Upon exposure to 800 s-1, the 

presence of any ICAM-1 oriented the motion of cells upstream even when large amounts 

of VCAM-1 were present.  At this shear rate, only surfaces made purely of VCAM-1 (V10) 

favored downstream migration. 

On the other hand, upon application of 800 s-1 of fluid flow, we observe only 

upstream migration if any ICAM-1 is present, independent of the concentration of VCAM-

1 present on the surface.  It is known that adhesion strengthening occurs upon plating 

human T-lymphocytes on co-immbolized ICAM-1 and VCAM-1 surfaces [19].  Together, 

these observations lead us to believe that under conditions of high shear, T-lymphocytes 

utilize LFA-1-ICAM-1 engagements over VLA-4-VCAM-1 engagements to resist 

detachment due to shear stress.  These interactions stabilize adhesions supporting upstream 

migration when presented with both adhesion ligands.  This shear resistance is 

hypothesized to occur as a result of outside-in integrin signaling triggered upon application 

of shear stress across the body of the cell that is translated into applied tension across the 

ligated integrin bonds thus increasing integrin activation. 
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Figure 4.6.  T-lymphocytes elicit different responses on surfaces made with both 

immobilized ICAM-1 + VCAM-1 that are dependent upon shear rate.  (Abbreviations: I - 

ICAM-1; V - VCAM-1; 10 - 10 µg/ml; 7 - 7 µg/ml; 5 - 5 µg/ml; 3 - 3 µg/ml; 1 – 1 µg/ml)  

The direction of T-lymphocytes under shear flow expressed as the migration index (MI) 

under 100 s-1 (red bars) and 800 s-1 (blue bars).  The total protein concentration was fixed 

at 10 μg/ml and the ratios of ICAM-1 to VCAM-1 were varied.  Directional migration is 

dictated by ligand concentration at a shear rate of 100 s-1, with a substantial amount of 

ICAM-1 necessary for upstream migration. However, the presence of any ICAM-1 

supports upstream migration at a shear rate of 800 s-1.  The MI was calculated from T-

lymphocyte tracks from three independent experiments. 
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T-lymphocyte resistance to shear flow is mediated through LFA-1-ICAM-1 

interactions 

Antibodies were used to block either the β2 or β1 integrin subunits and cells were 

plated on surfaces of 5 μg/ml ICAM-1, 5 μg/ml VCAM-1, and 2.5 μg/ml ICAM-1 + 2.5 

μg/ml VCAM-1.  Upon blocking against the β2 integrin subunit on surfaces comprised of 

ICAM-1 alone, no cell adhesion was observed under flow meaning that the MI could not 

be calculated (Fig. 4.7A).  The same was observed on surfaces made from VCAM-1 

surfaces when the β1 integrin subunit was blocked.  When T-lymphocytes were blocked 

against the β2 integrin and exposed to a surface of combined ICAM-1 and VCAM-1 ligand, 

we observed downstream migration of cells with fluid flow mimicking the behavior of cells 

on surfaces of VCAM-1 alone.  Conversely, upon blocking against the β1 integrin, the MI 

was positive, indicating upstream migration - a result that was similar to what was observed 

on surfaces containing ICAM-1 alone.  These results show that the motility observed on 

ICAM-1 and VCAM-1 surfaces under fluid flow are due to the specific interactions of the 

ligand-integrin pairs. 

Next, we qualitatively assessed the adhesion strength of T-lymphocytes to printed 

surfaces of ICAM-1, VCAM-1, or ICAM-1 + VCAM-1, deduced by exposing cells to 

increasing shear rates which were increased every 5 minutes for a period of 40 minutes.  

Cells were initially injected and allowed to adhere under static conditions for 15 minutes 

on surfaces of 5 µg/ml of ICAM-1, VCAM-1, or a combined surface of the two before 

exposure to shear.  Fluid flow was then increased incrementally from 100 s-1 to 2000 s-1 

and the number of cells that remained bound from those that originally settled on the 

surface was determined.  Upon initial application of fluid flow at a shear rate of 100 s-1, 
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approximately 20 – 30% of the cells were detached, presumably due to little or no adhesion 

to any of the three ligand conditions (Fig. 4.7B).  For cells on ICAM-1, increasing the shear 

rate further did not decrease the number of remaining bound cells significantly (76 versus 

73%).  However, for cells on VCAM-1 surfaces, the number of bound cells significantly 

decreased as a function increasing shear rate from 68% to 41% bound.  For surfaces on 

which both ICAM-1 and VCAM-1 were combined, there was no significant decrease in 

number of cells bound with increasing shear rates, similar to what was found on ICAM-1 

surfaces. 

Flow cytometry revealed that there are larger quantities of the β2 integrin than β1 

present on the cell surface; by having more LFA-1 available to bind, smaller quantities of 

ICAM-1 may be capable of supporting upstream motion on the combined surfaces even in 

the presence of much larger quantities of VCAM-1.  Also, if there is a larger number of 

activated LFA-1 versus VLA-4, this could explain why we observe more upstream motion 

on combined surfaces of the two ligands especially at high shear rates.  This further 

supports our previous hypothesis that LFA-1 is supporting the majority of the traction 

allowing the cell to resist shear flow and migrate upstream.  If there are more activated 

LFA-1 molecules than VLA-4 present on the surface, then greater traction can be produced.  

Through a shear flow cell detachment assay we demonstrated that cells on surfaces of 

ICAM-1 or combined ICAM-1 and VCAM-1 have greater resistance to shear stress than 

on surfaces of VCAM-1 alone.  This further supports our claim that LFA-1-ICAM-1-

mediated interactions are necessary for robust upstream migration and dominate under high 

shear on surfaces that present both adhesive ligands.  This may also explain why T 

lymphocytes migrate more on ICAM-1 than VCAM-1 as seen in Chapter 3; if there is more 
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β2 than β1 integrin, then possibly more motility can be supported on ICAM-1 surfaces than 

compared to VCAM-1 given that there is more receptor to bind its cognate ligand. 
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Figure 4.7.  T-lymphocytes resist shear detachment through the β2 integrin.  A)  T-

lymphocytes pretreated with blocking antibodies against the β1 (red bar) or β2 (green bar) 

integrin subunits and were exposed to ICAM-1, VCAM-1, or ICAM-1 + VCAM-1 surfaces 

under 100 s-1 of fluid flow and the MI was determined.  Data are mean ±SE  B)  T-

lymphocytes were exposed to increasing shear rates and the percent of cells remaining 

bound after 5 minutes of exposure was calculated.  Shear rate was increased every 5 

minutes starting at 100 s-1 and ending at 2000 s-1. 
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Migration on ICAM-1 or VCAM-1 is robust and reversible but not on combined 

ligand surfaces 

We investigated whether the directional responses of T-lymphocytes on ICAM-1, 

VCAM-1, and ICAM-1 + VCAM-1 surfaces under high shear rates were reversible.  We 

allowed cells to migrate in periodic square waves of shear rate, alternating between no flow 

and a shear rate of 800 s-1, in increments of 10 minutes for a total time of 90 minutes.  This 

technique is similar to that employed recently by Valignat et al [10].  At shear rates of 800 

s-1, cells on ICAM-1 migrate upstream (MI ~ 0.4) while cells on VCAM-1 migrate 

downstream (MI ~ -0.6) (Fig. 4.8A).  Furthermore, upon application of alternating periods 

of no flow and shear rates of 800 s-1, the direction of migration is reversible with a return 

to a MI to nearly zero (random migration) demonstrating no memory of being exposed to 

shear flow.  However, for cells on the combined ligand surface (I5 + V5), this behavior was 

not reversible; the MI remained positive during all periods of flow and even when the flow 

was removed.  The exception was the absence of flow in the initial 10 minutes (Fig. 4.8A), 

when the cell had not been previously exposed to flow.  During these periods of alternating 

shear flow, we found no change in cell speed in the presence or absence of flow (Fig. 4.8B).  

However, the average cell speeds on ICAM-1 alone during the time course of the 

experiment were always greater than those observed on VCAM-1 alone.  Furthermore, cell 

speeds on surfaces with the combination of VCAM-1 and ICAM-1 remained between the 

speeds observed for ICAM-1 and VCAM-1 independently.  

T-lymphocyte upstream migration on ICAM-1 surfaces has been previously shown 

to be robust and reversible with cells migrating upstream upon application of flow and 

returning to random motion once it is removed [10].  We showed that motility is reversible 
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on surfaces of VCAM-1 with downstream migration seen under fluid flow and random 

migration upon removal.  On surfaces with ICAM-1 and VCAM-1 together, the 

directionality of motility is not reversible with T-lymphocytes maintaining upstream 

motion during periods of no flow.  This suggests upstream motion is driven by signaling, 

not physical effects such as forces from shear stresses.  This implies that memory occurs 

upon the removal of flow and this memory of signaling requires simultaneous ligation of 

both LFA-1 and VLA-4 since it is not observed upon ligation of each integrin receptor 

individually.  An interesting question to ask is how long does this directional persistence 

last in the absence of flow and if it is dependent upon how long the cells are exposed to 

flow itself before its removal.  By exposing cells to flow for longer periods of time (greater 

than our tested time interval of 10 minutes), we could determine how long this persistence 

of migration upstream occurs upon removal of fluid flow. 
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Figure 4.8.  T-lymphocytes exhibit reversible directional responses to periodic shear flow 

on ICAM-1 and VCAM-1 but not on combined surfaces.  A) and B)  T-lymphocytes were 

exposed to periodic square waves of duration of 10 min and between shear rates of 0 s-1 

and  800 s-1 (shaded region) on 5 μg/ml ICAM-1, 5 μg/ml VCAM-1, and 2.5 μg/ml each of 

both ICAM-1 and VCAM-1.  The average MI and average speed over the 10 minute time 

interval were measured. 
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Shear flow leads to rearrangement of the T-lymphocyte cytoskeleton 

 To further investigate the mechanisms of motility of T-lymphocytes, we exposed 

cells to shear flow on surfaces of 5 μg/ml of ICAM-1, VCAM-1, or combinations of the 

two followed by cell fixation, permeabilization, and fluorescent labeling of the actin and 

microtubule cytoskeletons.  It has been previously shown that T-lymphocytes polarize on 

ICAM-1 and VCAM-1 surfaces alone in the absence of chemokine with an actin-rich 

lamellipod and an uropod containing the microtubule organizing center (MTOC) [26].  In 

the absence of flow for all three substrates, we observe distinct cytoskeletal polarity with 

actin predominantly located in the lamellipod and microtubules originating from the 

(MTOC) behind the nucleus (Fig. 4.9A a-c, 4.9B a-c, 4.9C a-c).  Upon the introduction of 

shear flow, we observe loss of cytoskeletal polarity with increasing co-localization of actin 

and tubulin on all three substrates; at both 100 s-1 and 800 s-1 shear rates, we observe this 

rearrangement of cytoskeletal proteins (Fig. 4.9A d-i, 4.9B d-i, 4.9C d-i). 

It has been speculated that shear stress may trigger signals or changes within the 

cytoskeletal machinery in T-lymphocytes.  T-lymphocyte polarity and motility is highly 

dependent upon the arrangement of the actin and microtubule cytoskeletons through 

signaling pathways involving the Rho family GTPases [46-48].  Upon fluorescent labeling 

of the cytoskeletal proteins after exposing cells to shear flow, we observed increased co-

localization of these cytoskeletal proteins, and the absence of a clearly defined lamellipod.  

We hypothesize that this increased co-localization of actin and tubulin occurs in order to 

withstand extracellular forces required to resist deformation caused by the shear stress.  

The cellular cytoskeleton is known to be involved with several signaling pathways thus 

possibly providing the signals required for adaptation to a new mechanical environment 
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[49].  This has been well established in other cells types, such as endothelial cells, which 

are capable of rearranging their cytoskeletons in response to fluid shear forces [50, 51]. 
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Figure 4.9.  T-lymphocytes undergo cytoskeletal rearrangement upon application of shear 

flow during migration.  A)  Fluorescent images of migrating T-lymphocytes on 5 μg/ml 

ICAM-1 under static (a-c), 100 s-1 (d-f), and 800 s-1 (g-i) shear rates.  B)  Fluorescent 

images of migrating T-lymphocytes on 2.5 μg/ml ICAM-1 and 2.5 μg/ml VCAM-1 under 

static (a-c), 100 s-1 (d-f), and 800 s-1 (g-i) shear rates.  C)  Fluorescent images of migrating 

T-lymphocytes on 5 μg/ml VCAM-1 under static (a-c), 100 s-1 (d-f), and 800 s-1 (g-i) shear 

rates.  The direction of flow is from right to left.  Scale bar = 5 μm. 
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CONCLUSIONS 

In this chapter, we measured the motility of human T-lymphocytes on surfaces 

comprised of ICAM-1, VCAM-1, or combinations of the two under varying shear rates.  

Confirming previous studies, we observed upstream migration against fluid flow on 

ICAM-1 surfaces.  We further investigated the effects of varying ligand concentrations and 

shear rates not only on ICAM-1 surfaces but also VCAM-1, as well as combinations of the 

two at various densities.  For cells on ICAM-1, upstream migration is not dependent upon 

ligand concentration but rather shear rate, with increasing shear rates resulting in an 

increase in the preferred upstream migration.  Contrary to the findings by Valignat et al., 

we found that migration speed decreases with increasing shear rate likely contributed to 

the increased strengthening of LFA-1-ICAM-1 interactions as a result of fluid flow [10].  

Steiner et al. also showed that T-lymphocytes do not crawl on VCAM-1 surfaces but rather 

undergo recurrent arrest with an absence in cell polarization.  We found the opposite - cells 

polarized and migrated downstream and were found to be dependent upon ligand density 

and, to a lesser extent, shear rate.  We then studied the effects of simultaneous engagement 

of both LFA-1 and VLA-4 on T-lymphocyte migration under fluid flow.  At low shear 

rates, we observed directed migration either upstream or downstream that is dependent 

upon the concentration of ICAM-1 and VCAM-1 present demonstrating synergy between 

engagement of the LFA-1 and VLA-4 integrin receptors.   In contrast, exposure to high 

shear rates caused a switch in motility that favors LFA-1-mediated migration over VLA-

4-mediated migration with an overall preference for upstream migration.  Through a shear 

flow detachment assay, we suggest that LFA-1 interactions lead to stronger adhesions thus 

providing the resistance for T-lymphocytes under fluid shear flow to support robust 
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upstream migration.  Furthermore, we show that the actin and tubulin cytoskeletons 

undergo rearrangement upon the application of shear flow perhaps in order to increase the 

cell tension required for migration under shear flow as well as to maintain structural 

integrity.  Together, these data suggests that the modes of T-lymphocyte motility are 

governed not only by the presence of adhesive ligand but also their presentation and 

activation in the presence of fluid flow.  This provides new insight into the role of integrins 

in mediating T-lymphocyte motility and understanding the critical role ligand composition 

can play in controlling the physiological response of T-lymphocytes to shear flow. 
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CHAPTER 5: ADDITIONAL LIGANDS TO STUDY T-LYMPHOCYTE 

HAPTOKINESIS AND CHEMOKINESIS 

ABSTRACT 

 Homing to and migration within secondary lymphoid organs (SLOs) is not only 

governed by the adhesive ligands ICAM-1 and VCAM-1 and the CCL19/CCL21/CCR7 

chemokine axis.  It is known that endothelial cells also express the chemokine CXCL12 on 

their apical surface that binds to CXCR4 allowing for arrest and migration to extravasate 

into inflamed tissues or the SLOs.  Furthermore, fibronectin is known to be expressed by 

fibroblastic reticular cells (FRCs) within SLOs and is a common ligand encountered by T 

lymphocytes as well as other leukocytes.  In this chapter we measured the migration of 

primary human T lymphocytes in response to varying fibronectin concentration 

(haptokinesis) and CXCL12 concentration (chemokinesis).  Through the use of 

microcontact printing we created uniform surfaces of fibronectin of varying densities.  

Furthermore, we exposed T lymphocytes to varying concentrations of soluble CXCL12 on 

ICAM-1 surfaces.  In the previous chapters, we demonstrated that exposing cells to varying 

concentrations of ICAM-1 and VCAM-1 as well as CCL19 and CCL21 elicits biphasic 

motility.  In this chapter, we show that fibronectin elicits a monotonic response in motility 

that leads to increases speeds and persistence times as ligand concentration increases.  

Furthermore, CXCL12 elicits biphasic motility only on low concentrations of ICAM-1 

similar to what is found with CCL19 and CCL21.  Overall, motion on fibronectin is lower 

than what was observed on ICAM-1 surfaces but similar to VCAM-1 further elucidating 

motility observed within the SLOs. 
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INTRODUCTION 

We have demonstrated in the previous chapters that human primary T lymphocytes 

are capable of spontaneous adhesion and robust migration on ICAM-1 and VCAM-1 

microcontact printed PDMS surfaces.  These ligands are known to be crucial for homing 

and migration to and within the secondary lymphoid organs (SLOs) [1-4].  Here within the 

organs, T lymphocytes are exposed to adhesive ligands and chemokines that facilitate the 

interactions between T lymphocytes and dendritic cells [5-8].  This allows for the transfer 

of information acquired by about foreign antigens by dendritic cells to T lymphocytes to 

elicit effector functions.  With this said, the cell adhesion molecules ICAM-1 and VCAM-

1 and the CCR7/CCL19/CCL21 chemokine signaling axis are not the only players involved 

this process [9-12]. 

Fibronectin is a ubiquitous protein found both in a soluble plasma form, and in an 

insoluble form that allows for cell adhesion and migration; both of these forms are from 

the same gene undergoing alternative splicing patterns [13].  Fibronectin is a common 

adhesive ligand used to study cell migration and motility.  Recent studies have 

demonstrated that it support robust murine dendritic cell migration and can even elicit a 

phenotypic switch in primary human neutrophils [14, 15].  We decided to study the motility 

of human T lymphocytes in response to varying concentrations of fibronectin and compare 

the findings to the motility observed on ICAM-1 and VCAM-1 substrates.  Furthermore, 

the chemokine CXCL12 binds to the chemokine receptor CXCR4 and is capable of 

inducing chemotaxis [16, 17].  It is also involved in T lymphocyte homing to SLOs and in 

numerous autoimmune diseases particularly those involved with the central nervous system 

(CNS) [12].  We performed chemokinesis studies on ICAM-1 surfaces with varying 
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concentrations of CXCL12 to determine if it elicits a biphasic response in motility similar 

to what was observed with CCR7-mediated chemokinesis.  This response had been 

previously observed in dendritic cells [14]. 

 In this chapter, we investigate the effects on primary human T lymphocyte motility 

by varying fibronectin concentrations (haptokinesis) and CXCL12 concentrations 

(chemokinesis).  We apply standard engineering approaches and the use of microcontact 

printing to measure cell speed, persistence time, and the random motility coefficient on 

these extracellular stimuli.  Our results show that T lymphocytes elicit a monotonic 

response in the random motility coefficient on varying fibronectin concentrations.  

Furthermore, we demonstrate that T lymphocytes respond biphasically to the homeostatic 

chemokine CXCL12 as function of ICAM-1 concentration similar to what was observed 

for CCR7-mediated chemokinesis. 
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MATERIALS AND METHODS 

Cell culture and reagents 

Human blood was obtained via venipuncture from healthy adult donors and 

collected into sterile tubes containing sodium heparin (BD Biosciences).  Samples were 

collected with University of Pennsylvania Institutional Review Board approval from 

consenting adult volunteers.  Blood samples were carefully layered in a 1:1 ratio of whole 

blood to 1-Step™ Polymorphprep (Axis-Shield).  Vials were then centrifuged at 1500 rpm 

for 35 minutes and the mononuclear band was collected into a fresh vial.  Cells were 

cultured in RPMI-1640 supplemented with 10% FBS and 1 μg/ml of phytohemagglutinin 

(PHA-M; Sigma-Aldrich) overnight.  After 24 hours, the lymphocyte suspension in the 

PHA medium was transferred into a new flask leaving behind adherent cells.  After an 

additional 48 hours, the cells were then cultured in RPMI-1640 with 10% FBS and 1% 

penicillin-streptomycin supplemented with 20 ng/ml of interleukin-2 (IL-2; Roche).  Cells 

were used for experimentation following an additional 72 hours in culture.  Other 

biological reagents included: protein A/G (Thermo Scientific), human ICAM-1/Fc (R&D 

Systems), human IgG1 (Abcam), human anti-beta2 (Calbiochem), , human anti-beta1 (BD 

Pharmingen), human CXCL12 (PreproTech), and Pluronics F127 (Sigma-Aldrich). 

Substrate preparation 

Poly(dimethylsiloxane) (PDMS) (Dow Corning,) coated coverslips were prepared 

from number one thickness glass coverslips (Fisher Scientific) of 25 mm diameter spin 

coated with degassed PDMS (10:1 base:cure by weight) and cured overnight at 65 ºC.  

PDMS-coated coverslips were affixed to the bottom of six-well tissue culture plates which 

has been laser-cut to generate a 22 mm diameter opening in the bottom of the wells.  
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Coverslip bonding was performed using a small amount of PDMS (10:1 base:cure by 

weight) and baked at 65 ºC for 30 minutes for curing. 

Protein printing and blocking 

Flat stamps for printing were prepared by pouring degassed PDMS mixed at 10:1 

base:cure by weight over an unpatterned silicon wafer.  The polymer was cured for 2 hours 

or longer at 65 ºC.  Stamps were trimmed, sonicated in 200 proof ethanol for 10 minutes, 

rinsed with dH2O, and dried in a stream of N2(g).  For fibronectin haptokinesis studies, 

stamps 1 cm2 were inked with 200 µl of varying concentrations of bovine fibronectin in 

PBS for 2 hours at room temperature.  For CXCL12 chemokinesis studies, stamps 1 cm2 

were inked with 200 µl of 2 µg/ml of protein A/G in PBS for 2 hours at room temperature.  

The stamps were then thoroughly rinsed in H2O and blown dry with a stream of N2.  In 

parallel, the six-well PDMS coverslip substrate was treated with ultraviolet ozone for 7 

minutes (UVO Cleaner Model 342) to render the surface hydrophilic.  The stamps were 

then placed in conformal contact with the substrate for ~10 seconds and removed.  A 0.2% 

(w/v) solution of Pluronics F127 was immediately adsorbed to the PDMS substrates for 30 

minutes at room temperature to prevent protein adsorption to non-functionalized portions 

of the PDMS.  The cell culture substrate was then rinsed with PBS 3X without dewetting 

the functionalized surface and either incubated with cells for fibronectin surfaces or 

followed by deposition of 200 µl of ICAM-1/Fc in PBS for 2 hours at room temperature.  

ICAM-1 functionalized surfaces were then rinsed with PBS 3X without dewetting before 

incubation with cells. 
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Haptokinesis and chemokinesis assay 

PDMS substrates were prepared as described above.  For printed CCL21 studies, 

20 nM of CCL21 was inked with Protein A/G followed by stamping onto PDMS substrates.  

Before use, all substrates were washed 3X with phosphate-buffered saline.  Each well was 

plated at 5 x 105 cells/ml in serum-free RPMI-1640 supplemented with 0.1% BSA and 2 

mg/ml glucose.  The substrate was then placed in a 37°C humidified atmosphere containing 

5% CO2 in air incubator for 15 minutes to allow for cell attachment.  The wells were then 

gently washed 3X with PBS to remove non-adherent cells followed by imaging in a 5% 

CO2 and 37°C environment for at least 1 hour.  Cells were placed into a motorized stage 

and observed using a Nikon Eclipse TE300 phase contrast microscope.  A 10X objective 

and 10X eyepiece were used for a final magnification of 100X.  For chemokinesis assays, 

a CCL19 and/or CCL21 chemokine solution was dispensed into each well before imaging 

and performed on ICAM-1 substrates at a concentration of 0.05 µg/ml.  For surface 

presentation of CCL21, stamps were inked with 2 µg/ml of Protein A/G and 250 ng/ml of 

CCL21 and printed onto the PDMS substrates before blocking and application of the Fc 

protein solution. 

Measurement of cell trajectories and mean-squared displacements 

Cell movement was tracked using the ImageJ plugin Manual Tracking.  ImageJ and 

the plugin are both freely available through the NIH website (http://rsbweb.nih.gov/ij/).  

The centroid of the cell was considered to represent the cell position.  Time lapse 

microscopy was used and images were taken every 1.5 minutes.  The result was a series of 

(x,y) positions with time for each cell.  The net displacement during the 𝑖th 1.5 minute 

increment, 𝐷𝑖, was calculated by the difference of the position at the beginning and end of 
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that time step.  The mean-squared displacement, 〈𝐷2(𝑡)〉, over time was calculated using 

the method of non-overlapping intervals [18].  Speed, S, can be considered as the total path 

length over time and persistence time, P, is the time a cell remains moving without 

changing direction.  S and P were obtained by fitting these to the persistent random walk 

equation (Dunn, 1983 〈𝐷2(𝑡)〉 = 2𝑆2[𝑡 − 𝑃(1 − 𝑒−𝑡 𝑃⁄ )] where t is the time interval, using 

a non-linear least squares regression analysis [19, 20].  The mean-free path length (PL) and 

random motility coefficient (µ) are then calculated as 𝑃𝐿 = 𝑃𝑆 and µ =  
1

2
𝑆2𝑃 [21, 22]. 

Antibody Blocking 

Functional blocking antibodies against the β1 integrin subunit (clone Mab13), β2 

integrin subunit (clone IB4), αL integrin subunit (clone 38), and IgG2a isotype control 

(clone R35-95) were used at a final concentration of 50 µg/ml.  5 x 105 T-lymphocytes in 

500 µl of running buffer were incubated for 30 minutes with the blocking antibodies at 

37ºC and 5% CO2.  Cells were then plated and allowed to adhere for 15 minutes followed 

by rinsing with PBS 3X and subsequent imaging in media containing blocking antibody. 
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RESULTS AND DISCUSSION 

Microcontact printing of fibronectin and T lymphocyte adhesion 

 Fibronectin is a common molecule that has been printed on PDMS surfaces to 

support adhesion and motility of various cell types [15, 23, 24].  We use microcontact 

printing to prepare surfaces of fibronectin of known concentrations as determined by initial 

inking concentrations.  The steps for microcontact printing for our experimental system are 

illustrated in Figure 5.1A.  Alexa Fluor-488 conjugated fibronectin was stamped onto a 

PDMS surface to demonstrate precision of the method (Fig. 5.1B). 
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Figure 5.1.  µCP fibronectin on PDMS substrates.  (A)  Illustration for printing fibronectin 

onto PDMS surfaces.  (B)  Alexa Fluor-488 conjugated fibronectin stamped onto a PDMS 

surfaces.  Scale bar = 50 µm (Image courtesy of Laurel Hind). 

  

A 

B 
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Integrins containing the β1 subunit are known to bind to fibronectin surfaces 

supporting adhesion and migration; we verified this through functional integrin blocking 

and quantifying adhesion (Fig. 5.2A).  Blocking of the β1 integrin chain resulted in a 

significant decrease in cell adhesion on fibronectin relative to the positive control without 

antibody present (p < 0.01) (Fig. 5.2B).  These data led us to attribute the observed adhesion 

and resulting motility to the specific ligation of β1 containing integrins binding to the 

fibronectin printed surfaces. 

Fibronectin alone triggers T lymphocyte haptokinesis 

 Primary human T lymphocytes adhere and migrate on PDMS surfaces printed with 

fibronectin.  We measured haptokinesis on fibronectin by quantifying the mean-squared 

displacements over a range of ligand concentration in the absence of chemokine.  From the 

mean-squared displacements over time, we could determine the speed, persistence time, 

and random motility coefficient for each ligand concentration.  T lymphocytes plated on 

fibronectin surfaces were tracked for 30 minutes.  As illustrated by representative single-

cell migration tracks (Fig. 5.3), T lymphocytes migrated substantial distances on both 0.5 

and 5.0 µg/ml of fibronectin with no preferred direction.  This remained true for all other 

concentrations of ligand tested. 
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Figure 5.2.  Antibody blocking against β1 reveals discrete integrin/ligand interactions on 

printed fibronectin surfaces.  (A) Phase contrast images of T lymphocytes blocked against 

β1or β2 integrins on fibronectin surfaces.  (B)  Quantification of antibody blocking against 

β1 and β2 integrins show decreased cell adhesion to fibronectin substrates; *p < 0.05, 

compared to isotype; one-sample t test. 

  

B 

A 
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Figure 5.3.  T lymphocyte cell traces on fibronectin surfaces.  Representative single-cell 

migration tracks for T lymphocytes on 1.0, 10.0, 50.0, and 100.0 µg/ml of fibronectin 

showing no preferred direction in migration (haptokinesis). 
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Using the mean-squared displacements (MSD), we found that migrating T 

lymphocytes on fibronectin surfaces migrated substantial distances as observed by the 

linear increase of the mean-squared displacement over time (Fig. 5.4, A and B).  As with 

LFA-1- and VLA-4-mediated motility, the use of random walk theories is common to 

quantify this migration.  The MSDs of migration can be scaled as x2(t) ∝ tα during 0 < t < 

30 minutes where fitting can be used to determine the exponent α to classify the type of 

motion for each type and concentration of ligand.  Random or Brownian motion is observed 

for the value of α = 1 and ballistic motion is observed for α = 2, while values between the 

two are categorized as superdiffusive motion.  Cells migrating on fibronectin surfaces 

display an average α over all concentrations of 1.40, indicating superdiffusive motility.  

This value is lower than what was found on ICAM-1 surfaces (α = 1.57) but similar to 

values observed on VCAM-1 surfaces (α = 1.38).  Table 3.1 shows all values of fitted α’s 

for all concentrations of ligand tested.  With this said, this data is consistent with data 

presented in previous chapters that T lymphocytes do not display pure diffusive motion on 

ICAM-1 or VCAM-1 printed substrates.  Furthermore, recently we have shown that 

neutrophils migrate superdiffusively with a keratocye-like phenotype on fibronectin 

printed substrates indicating similarities between possible migration mechanisms for these 

two types of leukocytes [15].   
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Figure 5.4.   Mean-squared displacements versus time of migrating human T-lymphocytes 

on varying fibronectin concentrations. 

 

 

Table 5.1.  Average fitted α ± standard deviation on fibronectin.  Values of fitted α’s 

indicate superdiffusive for almost all concentration conditions on fibronectin surfaces. 
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By scaling the mean squared displacements to tα and plotting them as slopes over 

time, we see that all T lymphocyte motility lies between a slope of 1 (pure diffusion motion) 

and a slope of 2 (pure ballistic motion) lying in the superdiffusive region on all three ligands 

(Fig. 5.5).  We also show that the superdiffusive motility exist in three different regimes 

for the three ligands.  T lymphocytes exhibit more diffusive-like motion on VCAM-1 

surfaces compared to ICAM-1 surfaces with cell exhibiting more ballistic-like motion on 

fibronectin surfaces.  This is the first indication, to our knowledge, that T lymphocytes 

exhibit superdiffusive motion on these ligands. 
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Figure 5.5.  Fitted mean-squared displacements versus time on ICAM-1, VCAM-1, and 

fibronectin surfaces.  The slopes of lines indicate the α’s determined by scaling the MSD 

previously to tα.  Red lines are values on ICAM-1 surfaces, blue lines are values on VCAM-

1, and green lines are on fibronectin surfaces.  Slopes of the lines fall between values of 1 

(pure diffusive motion) and 2 (pure ballistic motion). 

  



166 

 

To further characterize the motility of T cells on ICAM-1 and VCAM-1 surfaces, 

we used the experimental mean-squared displacements of each cell population with the 

persistent random walk model to fit for speed and persistence time.  Migrating T 

lymphocytes average cell speeds (S) ranging between 1.55 ± 0.69 and 5.5 ± 0.78 µm/min 

with peak speed reached on 50.0 µg/ml of fibronectin (Fig. 5.6).  These speeds were much 

lower than what was observed on ICAM-1 surfaces but similar to those observed on 

VCAM-1 (whose integrin contains the β1 subunit).  Persistence times (P) ranged from 1.25 

± 0.9 to 12.0 ± 1.5 minutes; these were much larger values that what was found on the 

previous two adhesion molecules. 

Overall, both responses for speed and persistence time as a function of fibronectin 

concentration were found to be monotonic.  This behavior has been observed previously 

on fibronectin using murine myoblasts and could be due to differences in bond strength, 

production of signals required for force generation, or organization of the receptors by the 

cytoskeleton [25, 26].  Furthermore, it is also known that fibronectin can be engaged 

through multiple integrin receptors: α4β1 (VLA-4) binds the CS-1 sequence and α5β1 (VLA-

5) binds the RGD sequence; both are expressed on T-lymphocytes [27, 28].  Engagement 

of these receptors may lead to different downstream signaling and/or different binding of 

adaptor proteins leading to different responses in motility.  This sort of behavior has been 

observed in murine epithelial cells where α5β1 and αvβ3 both bind to fibronectin resulting 

in the same level of adhesion but differ in cellular morphology and motility [29]. 
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Figure 5.6.  T lymphocytes elicit monotonic responses in speed and persistence time on 

fibronectin surfaces.  T lymphocyte (A) speeds and (B) persistence times determined from 

using the persistent random walk model; cells have faster speeds and longer persistence 

times as ligand concentration increases. 
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As with motility on ICAM-1 and VCAM-1 surfaces, we calculated the random 

motility coefficient (µ).  Figure 5.7 demonstrates that the random motility coefficient 

increases with increasing concentration of fibronectin reaching a maximum value of 141.85 

± 16.45 µm2/min (µFibro) on 10.0 µg/ml. 

 

Figure 5.7.  Fibronectin elicits a monotonic response in the random motility coefficient on 

fibronectin surfaces.  Comparison of the random motility coefficients (µ) show a 

monotonic response in motility as a function of ligand concentration (peak µFibro = 141.85 

± 16.45 µm2/min).  The error bars represent the standard error of the mean (s.e.m.) 
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Comparing the values of the random motility coefficient to our previous surfaces 

of ICAM-1 and VCAM-1, we observe distinct differences (Fig. 5.8).  On ICAM-1, the 

highest random motility coefficient (µICAM-1) is 160 µm2/min, observed over a range of 

ICAM-1 concentrations between 0.5 to 10.0 µg/ml.  T lymphocytes display a maximum 

µVCAM-1 of 103 ± 16.1 µm2/min at 0.5 µg/ml VCAM-1.  Overall, we generally found that 

cells exhibit greater motility on ICAM-1 followed by fibronectin and then VCAM-1 

(µICAM-1 > µFibro > µVCAM-1). 
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Figure 5.8.  The random motility coefficients for all ligand concentrations on ICAM-1, 

VCAM-1, and fibronectin surfaces.  Comparison of the random motility coefficients (µ) 

show biphasic motility as a function of ligand concentration with ICAM-1 (peak µ
ICAM-1

 = 

172.77 ± 45.45 µm
2
/min) promoting increased haptokinesis than VCAM-1 (peak µ

VCAM-1
 

= 103.58 ± 16.06 µm
2
/min) with a monotonic response on fibronectin surfaces (peak µFibro 

= 141.85 ± 16.45 µm2/min).  The error bars represent the standard error of the mean (s.e.m.) 
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In our system, higher cell speeds were observed on ICAM-1 compared to VCAM-

1 and fibronectin (SICAM-1 > SVCAM-1/SFibro) while generally cells were more persistent on 

fibronectin and VCAM-1 than ICAM-1 (PICAM-1 < PVCAM-1 < PFibro).  Previous empirical 

observations have showed that speed and persistence times are inversely correlated across 

a variety of cells types with high speeds correlating to short persistence times and vice 

versa [26].  Previously, we plotting the speeds and persistence times across all 

concentrations of ICAM-1 and VCAM-1 and observed that this inverse correlation holds 

true for primary human T lymphocytes.  On fibronectin surfaces, this inverse correlation 

does not hold since as speeds increase, persistence times increase as well (Fig. 5.9).  

Overall, on ICAM-1 surfaces, T- lymphocytes have higher speeds with lower persistence 

times (↑ SICAM-1, ↓ PICAM-1) and on VCAM-1 surfaces, T lymphocytes have lower speeds 

with higher persistence times (↓ SVCAM-1, ↑ PVCAM-1).  For cells on fibronectin, you have 

similar speeds to that on VCAM-1 but with much higher persistence times that trend 

together (↓ SFibro, ↑↑ PFibro).  These data suggests that each ligand stimulates different 

adhesion signaling pathways through engagement of different integrin adhesion receptors. 
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Figure 5.9.  T lymphocytes elicit biphasic responses in speed and an inverse correlation 

with persistence time on ICAM-1 and VCAM-1 but not on fibronectin.  T lymphocyte (A) 

speeds and (B) persistence times determined from using the persistent random walk model; 

cells have faster speeds and shorter persistence times on ICAM-1 with lower speeds and 

longer persistence times on VCAM-1 while cells on fibronectin elicit a monotonic 

response.  (C) Across all concentrations of ligand an inverse correlation is maintained 

between persistence time and cell speed on ICAM-1 and VCAM-1 but not on fibronectin. 
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CXCL12 induces T lymphocyte chemokinesis that is dependent on ICAM-1 

concentration 

The chemokine CXCL12 binds to the CXCR4 receptor and is capable of driving 

chemokinesis and chemotaxis [11, 14].  As with previous CCL19 and CCL21 studies, 

transwell assays have predominantly been used to demonstrate chemokinesis and 

chemotaxis, but these three dimensional assays provided limited ability to directly observe 

cells [30-32].  We decided to investigate CXCL12 mediated chemokinesis on ICAM-1 

surfaces to see if we can see a peak in the random motility coefficient as a result of CXCR4 

signaling.  We designated ICAM-1 concentrations of 5.0 µg/ml as high and 0.05 µg/ml as 

low; these two concentrations support spontaneous and robust T lymphocyte migration, as 

shown in Chapter 3 of this thesis.  We measured the random motility coefficient for a range 

of CXCL12 chemokine concentrations on both high and low concentrations of ICAM-1.  

We observed no significant differences in the random motility coefficients as a function of 

chemokine concentration on the high ICAM-1 surface with random motility coefficients 

(µHIGH) ranging between 208 ± 32.2 to 262 ± 52.5 µm2/min (Fig. 3.10).  We have showed 

that T lymphocytes are capable of sustained motility on ICAM-1 alone without the need 

for chemokines; this leads us to believe that sustained signaling through LFA-1/ICAM-1 

interactions at this high ligand concentration was overwhelming the signals that resulted 

from CXCR4 receptor engagement similar to what was observed for CCR7 mediated 

chemokinesis.  On the low ICAM-1 surface, we observed a biphasic response in motility 

to chemokine concentrations.  Statistically significant peaks in the random motility 

coefficients (µLOW) were observed at 100 nM for CXCL12 (43.44 ± 4.82 µm2/min) when 

compared to the random motility coefficient observed on low ICAM-1 alone (p < 0.05; Fig. 
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5.10).  The values of the random motility coefficients for CXCL12 chemokinesis on low 

ICAM-1 surfaces are much less than what was observed for CCR7-mediated chemokinesis.  

Empirical observations in other cell systems have estimated the KD of the CXCR4 receptor 

to be between 3 - 15 nM with observable peaks in motility which is significantly far less 

than what we show for the peak in the random motility coefficient [33, 34].  The observed 

peak of motility here with CXCR4 mediated chemokines may be a unique characteristic of 

T lymphocytes in our experimental system. 

 

Figure. 5.10.  sCXCL12 induces chemokinesis on low ICAM-1 surfaces.  Comparison of 

the random motility coefficients (µ) show biphasic responses on low but not high ICAM-1 

surfaces.  Peak in chemokinesis observed at 100 nM with a value of 43.44 μm2/min; *p < 

0.05, compared to all concentrations; one-sample t test. 
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CONCLUSIONS 

 In this chapter, we measured the migration of primary human T lymphocytes on 

microcontact printed fibronectin PDMS surfaces and the effect of CXCL12 on ICAM-1.  

Our results show that T lymphocytes are capable of spontaneous and robust adhesion and 

migration to fibronectin in the absence of chemokine.  By varying the fibronectin 

concentrations, we are able to modulate the speed, persistence times, and thus their random 

motility on these surfaces.  As seen with LFA-1- and VLA-4-mediated motility, their 

motion is non-Brownian with superdiffusive behavior similar to what is seen on VCAM-1 

surfaces.  Unlike their motion on ICAM-1 and VCAM-1 surfaces, their motion is not 

biphasic on fibronectin surfaces but rather monotonic with both speed and persistence time 

increasing with ligand concentration.  This leads us to believe that signaling through 

engagement of the three different integrins results in different modes of motility.  Overall, 

we conclude through haptokinesis studies that ICAM-1 contributes more to motility than 

either VCAM-1 or fibronectin. 

Furthermore, we explore chemokinesis to CXCL12 on ICAM-1 surfaces.  As seen 

with CCL19 and CCL21, this response is dependent upon ligand concentration with T 

lymphocytes eliciting biphasic motility as a function of chemokine concentration on low 

ICAM-1 surfaces.  We observe a peak in the random motility coefficient at a concentration 

of chemokine that is far greater than what has been observed before implying, perhaps, a 

unique response CXCL12-mediated chemokinesis in T lymphocytes. 
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

SPECIFIC AIMS 

 The research presented in this work shows that we were able to successfully 

characterize primary human T lymphocyte motility in response to three different adhesion 

ligands (haptokinesis), three different chemokines (chemokinesis), and fluid shear flow 

(mechanotaxis) on microcontact printed PDMS substrates. 

Aim 1a: Characterize the motility of primary human T-lymphocytes on microcontact 

printed PDMS surfaces. 

Aim 1b: Characterize the chemokinetic behavior of primary human T-lymphocytes in 

response to the homeostatic chemokines CCL19 and CCL21. 

Aim 2: Quantify the motility of primary human T-lymphocytes on ICAM-1, VCAM-1 and 

combined ICAM-1/VCAM-1 PDMS surfaces under shear flow. 

SPECIFIC FINDINGS 

T Lymphocyte haptokinesis on ICAM-1, VCAM-1, and fibronectin substrates 

 We have investigated the effects of ligand concentration on T lymphocyte motility 

through quantification of the speeds, persistence times, and random motility coefficients.  

Through the use of microcontact printing, we printed PDMS spin coated glass coverslips 

with either protein A/G for Fc-containing ligands or fibronectin.  All ligands were capable 

of supporting spontaneous adhesion and robust migration in the absence of chemokine.  

The use of ICAM-1/Fc and VCAM-1/Fc allows for quantification of motility elicited by 

engagement of their sole integrin binding partner LFA-1 (αLβ2) and VLA-4 (α4β1), 
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respectively [1].  The observed motility on these substrates was biphasic with peaks in the 

random motility coefficients that is dependent upon ligand concentration.  Furthermore, T 

lymphocytes maintained an inverse relationship between speed and persistence time that is 

typically seen in other cell types (Fig. 6.1) [2].  When cells were plated on varying 

concentrations of fibronectin, cells displayed a monotonic response with increasing speeds 

and persistence times with increasing ligand concentrations.  Observed speeds for cells on 

fibronectin were similar to those quantified on VCAM-1 substrates; these similarities may 

lie in the fact that the engaged integrins are both β1 containing.  We also determined that T 

lymphocytes exhibit superdiffusive motion on these substrates which has recently been 

observed in vivo and in human neutrophils [3, 4].  Overall, T lymphocytes are more active 

on ICAM-1 than VCAM-1 or fibronectin surfaces, and ligand composition and 

concentration are essential in controlling their motility.  Understanding how the three 

ligands affect T lymphocyte motility can provide insight into migration to and within 

secondary lymphoid organs (SLOs). 

Quantifying chemokinesis using the homeostatic chemokines CCL19, CCL21, and 

CXCL12 

 Along with varying ligand composition, T lymphocytes are exposed to various 

chemokines that are required for migration and entry to SLOs [5, 6].  These homeostatic 

chemokines are known as CCR7-binding CCL19 and CCL21 and CXCR4-binding 

CXCL12.  Initially, T lymphocytes were exposed to uniform concentrations of chemokine 

on ICAM-1 surfaces.  There was no observable peak in motility leading us to conclude that 

the ligand concentration was too high thus preventing a response to chemokine.  After 

repeating the experiments with a concentration that was two orders of magnitude lower, T 
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lymphocytes exhibited biphasic responses in the random motility coefficient to CCL19, 

CCL21, and CXCL12.  The peak in the random motility coefficient corresponds to the KD 

of each receptor [7].  CCR7 has a peak around 20 nM which is similar to what is found in 

literature [8, 9].  CXCR4, on the other hand, had a peak around 100 nM – a value that has 

not been previously observed. 

 Along the blood endothelium and within the SLOs, CCL19 and CCL21 are known 

to work together to drive homing and migration through simultaneous engagement of the 

CCR7 receptor [10].  This led us to ask whether combined chemokinesis of CCL19 and 

CCL21 would synergize and increase motility further.  By combining both in solution, T 

lymphocyte motility was increased to levels above what was observed by each chemokine 

individually.  However within the body, CCL21 is expressed on the blood endothelium and 

presented to cells on the surface rather than in soluble form [11, 12].  This led us to create 

surfaces of printed CCL21 with ICAM-1 and repeat the chemokinesis assay with varying 

concentrations of soluble CCL19.  This resulted in T lymphocytes exhibiting random 

motility greater than what was observed by exposing to both soluble chemokines, 

combined or individually.  Here, we demonstrated that CCL19 and CCL21 were capable 

of enhancing the motion of T lymphocytes and that enhancement was dependent upon the 

presence of an adhesive ligand. 
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T Lymphocyte migration under shear flow is dependent upon the presentation of 

ICAM-1 and VCAM-1 

 During T lymphocyte homing, cells must adhere and migrate along the blood 

endothelium to undergo diapedesis into the site of inflammation or SLO [13, 14].  These 

steps are mediated through the integrins LFA-1 and VLA-4.  Previously, it was shown that 

demonstrated that naïve and effector T lymphocytes orient their migration against the 

direction of flow on ICAM-1 surfaces [15].  This effect was shown to be dependent upon 

shear rate with higher shear leading to an increased bias in upstream migration.  We decided 

to investigate this further by quantifying T lymphocyte migration on ICAM-1 and VCAM-

1 surfaces alone and on combinations of the two under varying shear rates.  For T 

lymphocytes on ICAM-1 surfaces, upstream migration was found to not be dependent upon 

ligand concentration but rather shear rate with increasing shear rate resulting in an increase 

in preferred migration direction.  For cells on VCAM-1, migration was downstream with 

fluid flow and found to be dependent upon ligand concentration and, to a lesser extent, 

shear rate. 

 Since extravasation requires LFA-1 and VLA-4 for transient and firm adhesion and 

migration, we created surfaces that present varying densities of the ligands ICAM-1 and 

VCAM-1 [16, 17].  For cells exposed to low shear rates, the resulting migration showed 

varying preferences either upstream or downstream of fluid flow that appeared to be 

dependent upon the densities of the ligand used.  Upon exposure to high shear flow, a 

switch in migration was observed with cells orienting their migration upstream of fluid 

flow indicating a possible preference in utilizing LFA-1-ICAM-1 interactions to drive 

motility.  This was further supported upon qualitative assessment of adhesion strength 



185 

 

mediated through LFA-1, VLA-4, or LFA-1/VLA-4 engagements.  Increased shear 

resistance was observed on ICAM-1 containing surfaces when compared to VCAM-1.  

Furthermore, it is known that VLA-4 engagement can regulate β2-mediated adhesion, and 

our data further indicates synergy of these two integrins to facilitate migration under shear 

on two-dimensional substrata [18, 19]. 

FUTURE WORK 

Shear sensing: what is the intracellular signal? 

 Our flow chamber work has shown that T lymphocytes respond to shear in a ligand 

and shear rate specific manner.  We ask the question – what is allowing the cell to sense 

this mechanical stress?  There has been some exploration into what signaling molecules 

permit cell adhesion under flow but not specifically what controls the migration.  We have 

performed some preliminary experiments using small molecule inhibitors against known 

signaling molecules involved in cell motility and adhesion; the molecules targeted include 

actin (Cytochalasin D), myosin II (blebbistatin), ROCK (Y-27632), PI3K (LY294002), and 

Rac (NSC23766).  These molecules are known to be compartmentalized within T 

lymphocytes with ROCK and myosin II being concentrated at the rear of the cell and 

required for actomyosin contractility [20, 21].  Rac and PI3K are known to be in the front 

of the cell with Rac being required for stable actin polymerization while PI3K has been 

implicated in the sensing of the chemical gradients [22-24].  Upon disruption of actin 

filaments using Cytochalasin D, no cells adhered to the surface and thus no quantification 

of motility was permitted (data not shown).  Figure 6.1 shows that all the inhibitors caused 

decreased upstream migration under 100 s-1 but increased upstream migration on 800 s-1.  
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Furthermore, migration speeds were also not what we expected with increased speeds for 

some inhibitors under 100 s-1 compared to static (Fig. 6.2). These data is inconclusive and 

indicates that another signaling pathway is most likely involved in shear sensing leading to 

directional migration upstream of fluid flow.  It would also be advantageous to do 

fluorescent labeling of candidate molecules or western blots to measure their distribution 

and amount. 
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Figure 6.1.  Effect of pharmacological inhibitors on the orientation of T-lymphocyte 

migration under shear flow.  The effect of pharmacological inhibitors on the migration 

index for static, low, and high shear conditions. 
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Figure 6.2.  Effect of pharmacological inhibitors on the speed of T-lymphocyte migration 

under shear flow.  The effect of pharmacological inhibitors on the speed for static, low, 

and high shear conditions. 
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 Another possible target for inhibition in determining the mechanosensing in T 

lymphocytes is Vav1.  Evidence has shown that Vav1, a guanine exchange factor (GEF) 

for the Rho family GTPases Rac and Cdc42, is involved in mechanosensing in murine 

neutrophils under shear flow.  In Vav1 deficient murine neutrophils, cells lost the ability 

to migrate perpendicular to fluid flow [25].  A known Rac inhibitor, 6-Thio-GTP, is known 

to block the activity between Vav1 and Rac and could prove useful to study Vav1’s 

involvement in migration under shear flow.  The previously used Rac inhibitor NSC23766 

blocks the activity between Rac and another GEF known as Tiam1 which is know to be 

involved in other processes [26-28]. 

Geometric patterning substrates for migration 

 It is well known that ligand geometry affects cell behavior [29, 30].  We would like 

to quantify the effects of ligand geometry on T lymphocyte migration in the absence and 

presence of shear flow on ICAM-1, VCAM-1, and fibronectin surfaces.  Through the use 

of microcontact printing and the “stamp-off” method, we can create patterned lined 

substrates of varying widths ranging from 3 to 25 µm and larger (Fig. 6.3) [31-33]. 
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Figure 6.3.  Patterned substrates of protein A/G with varying line widths.  Surfaces were 

prepared using the stamp-off method with Alex Fluor-555 conjugated Protein A/G. 

  



191 

 

 Preliminary experiments show that T lymphocytes plated on these substrates 

exposed to 100 s-1 of fluid flow display a bias in migration depending upon line orientation 

– either orthogonal or parallel to fluid flow (Fig. 6.4). 

 

Figure 6.4.  Traces of cell migration paths on patterned substrates of ICAM-1.  T 

lymphocytes were allowed to crawl under 100 s-1 on ICAM-1 lined substrates. 
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 Use of the stamp off method for microcontact printing allows for surface 

functionalization with multiple ligands.  Cells have been shown to respond differently to 

patterned substrates with multiple ligands [32].  This technique would prove useful to study 

the effects of exposing T lymphocytes to ligand in alternating patterns.  In this thesis, we 

have discussed that T lymphocytes migrate differently in response to various ligands; we 

would thus like to quantify this migration on spatially segregated ligands.  Figure 6.5 shows 

that we can create alternating patterns of Alexa Fluor-488 conjugated fibronectin and Alexa 

Fluor-555 conjugated protein A/G at the smallest resolution of lines available (3 µm X 3 

µm).  Dual presentation of ligands in an ordered geometric pattern would provide further 

insight into how cell adhesion molecules control T lymphocyte migration under static 

conditions and under shear flow. 

 

Figure 6.5.  Alternating lines of fibronectin and protein A/G.  3 µm x 3 µm lines of 

alternating fibronectin (green) and protein A/G (red).  Scale bar = 25 µm @ 40X 

  



193 

 

Haptokinesis on combined surfaces of ICAM-1 and VCAM-1 and LifeAct GFP 

transfection 

 Finally, we would like to expand upon our work of combined ligand surfaces of 

both ICAM-1 and VCAM-1.  By repeating the experiments under static conditions, we 

could explore the signaling dynamics that occur upon engagement of both ligands allowing 

us to have increased insight about their migration under fluid flow.  By performing western 

blots, we could identify the level of integrin activation downstream of receptor engagement 

as a function of ligand concentration for all combinations of ICAM-1 + VCAM-1.  

Furthermore, we would like to virally transduce cells to express the LifeAct-GFP construct 

for actin visualization.  We believe this would allow us to better characterize the migration 

of T lymphocytes on ICAM-1 and VCAM-1 under fluid flow. 

FINAL THOUGHTS 

 Homing and migration of leukocytes is at the heart of the immune system.  

Specifically, T lymphocytes are required to adhere and migrate on adhesive ligands, 

respond to chemokines, and withstand the hemodynamic forces present in order for them 

to reach sites of inflammation and lymphoid tissue.  While we only focused on a specific 

aspect of controlling T lymphocyte migration, we believe this work contributes to the field 

of immunology and cell migration.  Through our work, we have gained further insight into 

the dynamics of T lymphocyte motility on three different physiological ligands, how 

homeostatic chemokines govern their motility, and the effects that shear flow has on their 

ability to adhere and migrate.  We hope this work will continue on engineered substrates 

to control migration and inspire future ideas and projects. 
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