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ABSTRACT

MECHANOCHEMICAL CONTROL OF STEM CELL BIOLOGY

IN DEVELOPMENT AND DISEASE: EXPERIMENTAL AND

THEORETICAL MODELS

Polimyr Caesar Dave P. Dingal

Dennis E. Discher

Whether a stem cell remains or egresses away from its physiological niche is a function of

mechanical and soluble factors in a time-dependent manner, which implicates a ‘memory’

of prior mechanochemical conditioning. Virtually every organ in the body contains resident

stem or progenitor cells that contribute to organ homeostasis or repair. The wound healing

process in higher vertebrate animals is spatiotemporally complex and usually leads to scarring.

Limitations for the use of stem cells as regenerative therapy include the lack of expansion

capabilities in vitro as well as materials issues that complicate traditional biochemical protocols.

A minimal ‘scar in a dish’ model is developed to clarify the kinetics of tension-sensitive proteins

in mesenchymal stem cells (MSCs), which possess plasticity to mechanochemical changes

of the microenvironment that are typical of scars. The organization and expression of such

proteins implicates transcription factors that ultimately steer cell fate. In contrast to classic

mechano-transducers of matrix mechanics such as actin assembly-dependent serum response

factor (SRF) signaling, a novel mechano-repressive role of NKX2.5 is implicated in maintaining

intracellular tension in long-term stem cell cultures on stiff matrices via nucleo-cytoplasmic

shuttling – ultimately setting up a ’mechanical memory’. Core gene circuits with known roles

in stem cell mechanobiology are modeled based on the ’use it or lose it’ concept: tension

inhibits turnover of structural proteins such as extracellular collagens, cytoskeletal myosins and

nucleoskeletal lamins. This theoretical approach is tested in a variety of processes in vitro and

in vivo that involve forces including cardiac development, osteogenic commitment of MSCs, and

fibrosis therapy. With the sophistication of the science and technology of biomaterials relevant
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to stem cell biology and medicine, matrix mechanics can thus be rigorously combined with

biochemical instructions in order to maximize therapeutic utility of stem cells.
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Chapter 1

Matrix mechanics and soluble factors
combine to steer stem cell fate

This chapter appears in Nature Materials 13, 532-537 (2014) as a Commentary piece in a
focus issue on Cell Culture.
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1.1 Introduction

The broad promise of stem cells for regenerative medicine is founded on decades of clinical

success already achieved with bone marrow transplantation of hematopoietic stem cells.

Current capabilities to induce pluripotency with any person’s terminally differentiated cells could

also revolutionize therapies for repairing or replacing many other damaged tissues. Yet direct

implantation of such cells causes teratomas — that is, tumors with regions of disorganized

fat, bone, epithelium or other tissues. Expansion of stem cells with at least partial lineage

specification in vitro through optimal control of the physicochemical milieu is therefore essential

to success in therapeutic applications. We highlight some key aspects of the interplay between

mechanical factors and soluble factors (Table 1.1) in both the physiological and in vitro milieu

of stem cells. We provide examples of how soluble-factor control of stem cell fate is modulated

by the physical microenvironment, and we discuss aspects of mechanobiological mechanisms

and potential research avenues requiring more attention and rigor.

1.2 Lessons from the niche

Stem and progenitor cells in adult organisms can maintain their multipotent state because of

‘signals’ that they receive in the protected, tissue-specific environment that is the stem cell niche

(Figure 1.1; Schofield, 1983). Signaling factors include soluble cytokines, cell–cell contacts,

and insoluble extracellular matrices with characteristic structure and physicochemical properties

(such as stiffness and softness) that define a cell orientation (O’Brien, 2013). Apical–basal

polarity is common, and seems to poise a stem cell for asymmetric division — that is, the

generation of one differentiated cell with the stem cell remaining in its niche. Otherwise, niches

vary with tissue type, as discussed below for soluble and insoluble microenvironments of four

distinct adult stem cells.
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1.2.1 Hematopoietic stem cell niche

Haematopoietic stem cells (HSCs) remain the best described somatic stem cells, but how they

are maintained in their adult niche(s) within the bone marrow or otherwise how they egress

into the circulation remains an active area of research. Embryonic niches for these cells are

distinct and precede establishment of bone. One niche for adult HSCs comprises nestin-positive

mesenchymal stem cells (MSCs) and endothelial cells that are spatially associated near the

perivascular microenvironment (Mendez-Ferrer et al., 2010); yet proximity to trabecular bone

and bone cells also seems important in another HSC niche (Morrison and Scadden, 2014).

All of these bone marrow cells, as well as factors present near the bone surface, could help

to promote HSC quiescence, with key niche cytokines including stem cell factor (SCF) and

stromal cell-derived factor 1 (SDF-1) (Morrison and Scadden, 2014; Peled et al., 2000). MSCs

and other stromal cells play an important role in the homing of HSCs to the niche – especially

after myeloablative therapy, that is, the depletion of bone marrow cells by means of chemo- or

radiotherapy before transplantation — perhaps chemoctactically driven via SDF-1. For example,

SDF-1-induced expression of matrix metalloproteinase-9 (MMP9) in bone marrow cells can

enzymatically release matrix-bound SCF, which can then permit the recruitment of repopulating

cells and also promote the proliferation of normally quiescent HSCs (Heissig et al., 2002).

The ability of stem cells to divide asymmetrically is a characteristic niche process that

maintains stemness under homeostatic or inflammatory conditions to replenish blood cells. The

mobilization of HSCs through the induction of granulocyte colony-stimulating factor (G-CSF;

another soluble niche factor) was first demonstrated in the early 1990s, yet little is known about

HSC trafficking within the bone marrow before egress into the bloodstream, particularly towards

lineage specification and possibly to other sub-niches. Physiologically, HSC mobilization follows

circadian oscillations (Mendez-Ferrer et al., 2008), yet relations to local pressure, flow and other

circulating factors remain obscure; oxygen certainly regulates the behavior of stem cells (Keith

and Simon, 2007).

The expansion of haematopoietic stem and progenitor cells is also biophysically regulated
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(as suggested by Lichtman and Kearney in the 1970s, who anticipated key roles for “contracting-

relaxing [. . . ] macromolecules in motile cells”). In blood cells, a major impediment to migration is

the nucleus, and regulation of its deformability probably modulates hematopoietic cell trafficking

and lineage. Indeed, nucleoskeletal-lamin (Shin et al., 2013) and cytoskeletal-myosin (Shin

et al., 2014) isoforms differentially regulate egress and lineage maturation of HSCs. In

particular, myosin IIB promotes cell polarization to generate more blood progenitors, whereas

myosin IIA supports a more symmetric division. Interestingly, reversible inhibition of myosin

II, and soft matrices that mimic the compliance of marrow (and also tend to suppress myosin

II), both favor long-term HSC reconstitution (Shin et al., 2014). Tropoelastin, which is also

highly compliant, has an additive effect with serum-free cytokine cocktails (of IL-3, IL-6 and

SCF) in supporting repopulating HSCs in vitro; yet stiffening of tropoelastin by glutaraldehyde

crosslinking abrogated the effect (Holst et al., 2010). The myosin-II inhibition strategy also

enriches for megakaryocytes of high ploidy (Shin et al., 2013) and pro-platelet generation (Shin

et al., 2011), and thus seems to be key in directing at least some lineage programs. On the

whole, the tight regulation of HSC niche components plays a crucial role in stem cell quiescence,

with feedback and feed-forward mechanisms between cells and soluble and insoluble factors.

1.2.2 Muscle stem cell niche

Host muscle fibre, interstitial cells, basal lamina and a nearby blood circulation seem to be

the main components of the niche for muscle stem cells (also known as satellite cells) (Kuang

et al., 2007). In satellite-cell homing during development, canonical Notch signals that occur

asymmetrically at cell–cell contacts — which control multiple cell differentiation processes —

stimulate emerging satellite cells to assemble their own basal-lamina matrix (Brohl et al., 2012).

Integrin binding to laminin in this extracellular matrix localizes to the basal side of satellite

cells, whereas M-cadherin localizes to the apical side for attachment to the host muscle fibre

(Kuang et al., 2007). It has been hypothesized that the basal adhesion regulates stem cell

quiescence through inhibition of caveolin-mediated endocytosis of soluble factors, and that the
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polarized distribution of adhesion molecules determines the asymmetric fate of daughter cells

after division (Kuang and Rudnicki, 2008). The one daughter cell that maintains contact with

the basal lamina maintains a self-renewal capacity, whereas the other is pushed into the host

myofibre and presumably differentiates (Kuang and Rudnicki, 2008).

On injury, activated satellite cells remodel their niche through autologous expression

of fibronectin, feeding back to Wnt7a signaling (a pathway known to be implicated in

developmental processes), which in turn induces symmetric expansion of satellite cells

(Bentzinger et al., 2013). Collagen VI is also produced by satellite cells, with collagen-VI

knockout mice showing impaired muscle regeneration with decreased muscle stiffness (from

12 kPa to 7 kPa) (Urciuolo et al., 2013). Consistent with this, in vitro satellite cell maintenance

and subsequent muscle engraftment is maximal when culturing on substrates that match normal

muscle tissue stiffness (∼12 kPa; Engler et al., 2004a; Gilbert et al., 2010). Nonetheless, such

cell cultures exhibited lower regenerative capacity in vivo than cells freshly isolated from muscle,

which suggests that some combination of biophysical and biochemical elements of the muscle

stem cell niche have yet to be identified for optimal cell culture.

1.2.3 Neurogenic niche

The relatively recent discovery of adult neural stem cells (NSCs) and of the signals regulating

adult neurogenesis illustrates differences with the early development of the brain. In embryonic

neurogenesis, all cells derive from neuroepithelial cells that divide symmetrically at first

(Chenn and McConnell, 1995). In adults, however, the NSC niche is restricted to the

ventricular–subventricular zone of the lateral ventricle and to the subgranular zone at the

interface of the hilus and dentate gyrus in the hippocampus (Alvarez-Buylla and Lim, 2004).

As with satellite cells, canonical Notch signaling is highly active and regulates maintenance of

both developing and adult brains (Imayoshi et al., 2010). More importantly, the neocortical

niche architecture is maintained by integrin-based adhesion of NSCs to laminin along the

apical (ventricular) surface (Loulier et al., 2009). Similar to the HSC niche, SDF-1 secretion by
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ependymal cells at the apical surface maintains NSC quiescence, whereas SDF-1 secreted by

endothelial cells of the vascular basal region results in chemotaxis by both activated NSCs and

progenitors in an integrin-α6β1-dependent manner. Transition from progenitors to neuroblasts

is marked by β1-integrin downregulation, enabling egress from the niche (Kokovay et al., 2010).

The process seems to prompt asymmetric cell division, with the NSC staying in its niche and

the resulting daughter cell moving into more differentiated basal regions of the niche. The

highly polarized NSC niche thus allows for compartmentalization of multiple signals derived

from cell–cell and/or cell–matrix adhesions as well as of soluble factor gradients that combine

to maintain NSC polarity and stemness (Fuentealba et al., 2012).

1.2.4 Multifunctional mesenchymal stem cells

MSCs can take on lineage characteristics of various soft- and hard-tissue cell types (such as

neurons, adipocytes, chondrocytes, osteoblasts, skeletal myoblasts and smooth muscle cells),

and thus they are an attractive choice for autologous transplantation (Pittenger et al., 1999).

Among the various types of adult stem cell, MSCs (from the bone marrow or other sources)

that have been isolated through strong adhesion to plastic seem to have the broadest lineage

potential (Colter et al., 2000); also, they expand for prolonged periods on tissue-culture plastic

while maintaining some degree of multipotency (Abdallah and Kassem, 2009). Other materials

might do better, but traditional plastic has allowed MSCs to be used in additional in vitro systems

to identify soluble and insoluble cues that induce differentiation.

By mimicking the characteristic stiffnesses of different tissues (for instance, brain tissue is

always soft; bone tissue is rigid) with inert hydrogels functionalized with collagen I, it was shown

that matrix elasticity can direct MSC lineage specification from soft brain to stiff bone and that

myosin II has a key role in pulling on and feeling matrix elasticity (Engler et al., 2006). Microarray

analyses also indicated significant increases in some key factors of the transforming growth

factor beta (TGF-β) superfamily such as bone morphogenetic proteins (BMP) and myostatin

(also known as growth differentiation factor 8; GDF8) (Engler et al., 2006). MSCs respond
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to such TGF-β-family growth factors (Wang et al., 2004), as expected of mesenchymal cells,

which means that growth factors could have key autocrine/paracrine signaling roles and that

these are triggered by matrix elasticity. For example, MSC injection into scars (which tend to

be stiff) such as those resulting from myocardial infarcts has sometimes led to bone formation

in the scar; in this case, matrix stiffness may trigger an increase in BMP, which is likely to be

the proximal cause for osteogenesis (Breitbach et al., 2007). Such potent growth factors may

thus contribute to lineage-inducing signals, even if differences in their expression or activation

imparted by physical features of the microenvironment such as matrix elasticity are small (say,

at the picomolar level). With respect to three-dimensional culture models (Khetan et al., 2013;

Huebsch et al., 2010), many questions arise that should be rigorously addressed, including how

cell-secreted growth factors and extracellular matrix binds or not to the surrounding scaffold or

gel, whether the various soluble serum or induction factors added to cultures permeate the gel

(including oxygen gradients studied decades ago in three-dimensional cultures; Colton, 1995),

and also how far the cells reside above a rigid substrate that they might feel. Understanding

the various triggering mechanisms in two dimensions as well as three dimensions is likely to be

important in physiological conditions, yet it is also possible that adding a growth factor such as

BMP to cultures of cells in microenvironments with different stiffnesses will yield different cell

phenotypes.

1.3 Soluble factors with contrasting function

The main TGF-β reservoir in serum resides in platelets, and TGF-β is secreted on platelet

activation in a matrix-binding, latent complex form (Ahamed et al., 2008), from which it can be

released by high fluid shear. Evidence for TGF-β release resulting from cell tension was first

obtained with contractile myofibroblasts, the characteristic cell type in stiff, fibrotic tissue (Wipff

et al., 2007). Following release, TGF-β1 binds membrane receptors that activate ubiquitous

transcription factors (such as SMADs), which enter the nucleus to promote matrix synthesis

and the expression of contractility proteins such as α-smooth muscle actin during fibrotic
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wound healing by myofibroblasts. Although intracellular processes are probably modulated

by the microenvironment, an interplay with TGF-β1 release mechanisms seems likely to occur

in vivo. For example, in patients with coronary artery disease an increase in active, but not

total, TGF-β1 in plasma correlates with the number of constricted vessels in the patient (Wang

et al., 1997); hence, constricted or stenotic vessels have higher shear stresses and thus higher

concentrations of active TGF-β (the release kinetics of active TGF-β with shear stress and time

characterizes the forced unfolding of a protein, and the unfolding seems to be roughly linear

with shear stress and lacks a threshold; Tenney and Discher, 2009). Given its subnanomolar

concentrations in serum, however, TGF-β activation at low stress would take a long time. In

the marrow niche where flow is minimal, glial cells of the autonomic nervous system (known as

non-myelinating Schwann cells) produce TGF-β and activate it via integrin β8 to help maintain

HSC dormancy (Yamazaki et al., 2011).

Unlike most protein-based growth factors, which cannot cross cell membranes, retinoic

acid (RA) is a much smaller molecule that readily permeates cell membranes and regulates

ubiquitous transcription factors that shuttle between the cytoplasm and the nucleus (oxygen is

another example). In adults, RA is converted in the liver from ingested vitamin A and circulates

in serum (∼10 nM). RA signaling seems somehow primed in adult HSCs in part by the niche

stroma (Ghiaur et al., 2013), and it is essential for the generation of early embryonic HSCs from

the haemogenic endothelium (Chanda et al., 2013). In HSCs, RA receptor-γ (RARγ) regulates

the balance of HSC self-renewal and differentiation (Purton et al., 2006), with RARα promoting

granulocyte commitment. Indeed, RA suppresses erythropoiesis (Labbaye et al., 1994) and

enhances neutrophil differentiation (Shin et al., 2013). Although RARs regulate expression of

many genes (up or down), its downregulation of at least the nuclear structure protein lamin A

proved revealing: neutrophils have soft, floppy nuclei with low levels of lamin A, which allow

these cells to easily crawl through endothelial pores from marrow into blood, and also to enter

distal tissues. In contrast, erythroblasts normally maintain high levels of lamin A in their stiff,

condensed nuclei; these nuclei are easily ejected in final differentiation and retained in the

marrow, with the enucleated cell entering circulation as a red blood cell.
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Lamin A is an intermediate filament protein related to keratins in nails, hair, beaks and

horns. In addition to controlling nuclear deformability, lamin A has a role in maintaining DNA

stability, and is also mechanoresponsive, as we have recently shown (Swift et al., 2013b). Its

levels scale with the stiffness of primary tissue (0.1–40 kPa), and in cultured MSCs the levels

increase with the stiffness of hydrogel substrates. Lamin-A levels in MSCs on stiff matrix are

also modulated by RA levels, with more RARγ entering the nucleus in cells on stiff matrices

than in cells on soft substrates (Figure 1.2). Brain is low in RARγ, but has other RARs (Swift

et al., 2013b); in serum-free NSC cultures adhering to a narrow range of flexible substrates

(10–1,000 Pa) and even under strong pro-neuronal conditions (1 µM RA), commitment to

specific lineages is stiffness-dependent (Saha et al., 2008). Similar observations were made

with NSCs encapsulated within alginate hydrogels of stiffness matching that of brain tissue

(Banerjee et al., 2009).

The regulation of the nuclear entry of transcription factors by matrix elasticity might actually

be general. Other transcription factors whose nuclear entry is also known to be regulated by

matrix stiffness include the YAP/TAZ co-activators (Swift et al., 2013b; Dupont et al., 2011;

Yang et al., 2014) and key lineage-specific factors for muscle (MyoD) and bone (core-binding

factor alpha 1; CBFA1) (Engler et al., 2006). Some of these participate in signaling pathways

(such as the Hippo pathway for YAP/TAZ) that are also regulated by soluble factors (such as

lipopolysaccharide). Nucleo-cytoplasmic shuttling of glucocorticoid receptors for natural and

synthetic glucocorticoids such as dexamethasone need to be studied thoroughly as a function

of matrix properties because glucocorticoids are frequently used in differentiation cocktails

(Grigoriadis et al., 1988). Target genes in these pathways that are differentially expressed as a

function of matrix properties and soluble-factor levels provide key evidence of functional nuclear

entry or exit of a transcription factor. Epigenetic memory is also key to stem cell responses. For

example, if MSCs are grown for one to three weeks on soft matrices (1 kPa) that tend to induce

expression of a neurogenic marker, and then an osteoinduction cocktail is added, one finds that

the neurogenic expression is largely reversed in the one-week cultures but not in the three-week

cultures (Engler et al., 2006) (Figure 1.3). A lineage choice can be likened to a fork in a road
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going downhill that does not require much steering to choose, but the further down a chosen

fork, the more difficult it is to reverse the fate/choice. Recent studies of the nuclear localization

of YAP/TAZ in MSCs cultured on stiffness-switchable hydrogels confirm the idea of a matrix

memory (Yang et al., 2014). How such transcriptional regulators are preferentially sequestered

in the cytoplasm rather than the nucleus is generally unknown, but immunoprecipitation of

the factors followed by mass spectrometry can help identify validatable binding partners in

the cytoplasm and nucleus, as recently shown for RARγ (Swift et al., 2013b). Far better

characterized in this respect is the actin-regulated serum response factor pathway (Miralles

et al., 2003; Swift et al., 2013b), which couples directly to the mechanosensitive assembly of

the actin–myosin cytoskeleton.

1.4 Harnessing pluripotency

Responses of embryonic stem cells (ESCs) to mechanical stress and stiffness are beginning

to be clarified. The softness of embryos (∼400 Pa) results from a relative lack of extracellular

matrix even when compared with the earliest beating heart (Majkut et al., 2013). The softness of

ESCs dictates the threshold for stress-driven, myosin-II dependent spreading and differentiation

of mouse ESCs, but not of ESC-differentiated cells that are ten times stiffer (Chowdhury et al.,

2010b). Similar to the matrix-modulated differentiation of MSCs, soft substrates that match

the intrinsic softness of ESCs (600 Pa) suppress cell–matrix tractions and maintain the ESCs’

self-renewal potential (Chowdhury et al., 2010a).

Inhibition of Rho-associated protein kinase (ROCK), an effector of myosin contractility,

dramatically enhances survival of dissociated human ESCs (hESCs), with no effects on ESC

differentiation (Watanabe et al., 2007). Decreased cell–cell contact has also been shown to

reduce survival of dissociated hESCs (Chen et al., 2010) because of irreparably disrupted E-

cadherin signaling (Xu et al., 2010). Enhancing cell attachment immediately after dissociation

greatly improves survival, and is suggested to be partly a consequence of the synergy between

integrin signaling and growth-factor signaling (Xu et al., 2010). Mechanical straining of hESCs
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on stiff substrates synergizes with soluble factors to inhibit the differentiation of pluripotent cells

and to enhance their self-renewal (Saha et al., 2006; the physiological relevance of the strain

needed, about 10%, is however unclear). Soft substrates might nonetheless be combined

with externally imposed strains and suitable biochemical signals to maximize pluripotent cell

numbers. For therapeutic applications, ESC expansion should be done without the usual

underlying feeder cells (commonly, fibroblasts), which introduce biological variation and sources

of immune rejection. The standard for ESC culture involves mouse tumor-derived Matrigel (∼1

kPa) to increase cell adhesion, and high concentrations of TGF-β and basic fibroblast growth

factor to antagonize differentiation (Rao and Zandstra, 2005). Current research is however

focused on synthetic surface-engineered surfaces for xeno-free human pluripotent stem cell

(hPSC) culture under chemically defined conditions, which should allow for scalability without

the risks of cellular or pathogenic contamination. Examples include ultraviolet-treated spatial

patterns (Saha et al., 2011) and peptide-decorated acrylate surfaces (Melkoumian et al., 2010).

A high-throughput study on biomaterials development also found acrylate surfaces to be optimal

for clonal growth of hPSCs (Mei et al., 2010). Materials that can accelerate hPSC expansion

(Celiz et al., 2014) are needed for regenerative-medicine applications.

The discovery and development of human induced pluripotent stem cells (hiPSCs;

Takahashi et al., 2007) was immediately followed by a flurry of research into therapeutic

applications, in particular neurological diseases. A recent kinome-wide study of iPSCs

highlighted the role of actomyosin polymerization through kinase-mediated phosphorylation

of cofilin (a protein that disassembles actin filaments) as one major barrier to efficient

reprogramming to iPSCs (Sakurai et al., 2014). It is then not surprising that NSC profiles are

more similar to ESCs than to NSC-derived differentiated cells (Ramalho-Santos et al., 2002),

not only because of default neurulation tendencies of ESCs (brain development is very early;

Tropepe et al., 2001) but also perhaps because of the similarity in softness of embryos and

the neural microenvironment relative to other tissues such as embryonic heart (Majkut et al.,

2013). Indeed, hPSCs integrate readily into the motor cortex and undergo cortical neurogenesis

without added morphogens (Espuny-Camacho et al., 2013). However, direct implantation of
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hESCs into various other tissue sites produces heterogeneous teratomas (Prokhorova et al.,

2009). Reprogramming in vivo also produces teratomas as well as iPSCs with totipotency

features that are not possible in standard in vitro reprogramming (Abad et al., 2013).

Since the first bone marrow reconstitution after myeloablative therapy decades ago,

functional tissue regeneration with other types of stem cell has been the vision of many.

Enabling technologies include cell phenotyping by flow cytometry with antibodies against

lineage-distinctive arrays of cell-surface receptors. However, HSC transplantation is successful

because of the intrinsic ability of HSCs to ‘home’ to the bone marrow and find their niche(s). The

promise of iPSC technology to produce all diverse cell types in a given solid tissue is tempered

by a poor understanding of microenvironmental factors that direct stem cell fate, as well as of

lineage phenotyping and uncertainty over how to control the mobility and engraftment of cells

(Yu et al., 2013). Commitment to a lineage in vitro before implantation seems essential and

necessarily brings culture materials into a protocol, but also complicates the various efforts.

Yamanaka and Gurdon’s 2012 Nobel prize in Physiology or Medicine has largely fixed

the trajectory of most of the currently envisaged stem cell-based therapies into using iPSCs

generated from suitably matched donors. Yet high-efficiency reprogramming and tissue

specification remains a major challenge, as does delivery and survival in vivo. Therapies with

any type of stem cell should eventually be compared to normal tissue, but technologies to

ascertain cell integration and contributions to diseased tissue require more rigor than is typical

with decades-old histological methods. For example, putting human cells in immunodeficient

mice is the current standard in the HSC field; however, for similar studies with solid tissues,

human versus mouse proteomics (Swift et al., 2013b) and RNA-sequencing can be used to

reveal the contributions of stem-cell-derived xenografts to obtain systems-level views of the

myriad of factors that come into play for fully functional transplants. With the wide range of

material and analytical technologies emerging to help the translation from in vitro to in vivo,

challenges in concepts and applications seem increasingly addressable with suitable rigor and

reproducibility for translation into humans.
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Table 1.1. Glossary of factors and proteins most relevant to stem cell mechanobiology

Growth Factors

SCF, stem cell factor
transmembrane or soluble cytokine produced by fibroblasts and
endothelial cells that binds to the c-Kit receptor (CD117) to help
HSC in homing to and maintenance of the niche

SDF-1, stromal cell-derived
factor

soluble chemotactic cytokine for HSC homing to the marrow

G-CSF, granulocyte
colony-stimulating factor

soluble glycoprotein that promotes stem cell granulopoiesis

TGF-β/BMP, Transforming
growth factor-β / Bone
morphogenetic protein

soluble or matrix-bound growth factors that promote cell growth,
differentiation and matrix synthesis

bFGF, basic Fibroblast
growth factor

soluble or matrix-bound factor, used as supplement in culture
medium for ESC maintenance

RA, Retinoic acid
membrane-permeable vitamin-A metabolite with roles in neutrophil
differentiation; implicated in nucleus deformability

IL, Interleukin
membrane-bound or matrix-bound cytokines produced mostly by
the immune system to regulate production, differentiation and
function of blood cells

Transcription factors

RAR, Retinoic acid receptor
on binding of RA, RAR heterodimerizes with retinoid X receptor
(RXR) to bind to a retinoic acid response element (RARE) on a
target gene, such as LMNA

SRF, Serum response factor
binds to serum response element (SRE) of genes responsible for
controlling cytoskeletal structures involved in, for example, cell
spreading, adhesion and contractility

SMAD, Sma and Mad
related family

TGF-β/BMP family of ligands bind to their receptors, which in
turn activate SMAD signaling and bind to SMAD-binding elements
(SBE) in target genes, such as COL1A1

YAP/TAZ, Yes-associated
protein / Transcriptional
co-activator of PDZ-binding
motif

involved in the Hippo signaling pathway, responsible for cell-size
control; recently shown to be crucial in transducing mechanical
signals from ECM to nucleus, in an actomyosin and Rho-
dependent manner and independent of the Hippo pathway

Matrix, adhesion, and cyto-/nucleoskeletal proteins

Collagen
the most abundant protein in animals; it confers the majority of
tissue structure and stiffness

Fibronectin
usually found as a provisional matrix component in embryonic
development and wound healing
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Table 1.1. (continued)

Matrix, adhesion, and cyto-/nucleoskeletal proteins

Laminin
basement membrane protein that helps maintain the apical–basal
polarity of stem cell niches

Integrin
transmembrane heterodimeric protein that binds to the extracellular
matrix

Cadherin transmembrane protein that mediates cell–cell adhesion

Actin
highly abundant protein that forms microfilaments (a major
cytoskeletal structure); essential for migration, contractility, and cell
division

Myosin
provides the basis for cell contraction by binding to actin filaments
in an ATP-dependent manner

Lamin
a class of intermediate filaments (a major cytoskeletal structure)
found in the nuclear envelope; provides structural function and
transcriptional regulation

Nestin
a class of intermediate filaments expressed mostly in nerve
cells; also found in mesenchymal stem cells and newly formed
endothelial cells

Examples of synergy between soluble and insoluble factors

Tropoelastin & serum-free
cytokine cocktail (IL-3, IL-6
and SCF)

HSCs repopulate on soft tropoelastin but not on stiff, crosslinked
tropoelastin even with the presence of cocktail

Matrix-bound SCF and
SDF-1 induced MMP9
expression

MMP9 releases SCF and permit HSC repopulation and
proliferation of quiescent HSCs

Matrix-bound TGF-β
activated with shear flow or cell-derived force; implicated in
progressive fibrosis

Mechanosensitive lamin A
and retinoic acid signaling

lamin A increases with tissue stiffness, and primes RARγ to enter
nucleus and to promote RA signaling

Soft substrate and retinoic
acid in NSC cultures

NSCs commit to neurons only on very soft substrates even under
strong pro-neuronal conditions

Matrigel, TGF-β and bFGF maintains ESC pluripotent state
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Maintenance & Polarization  Division & Di�erentiation   Mobilization & Regeneration

Figure 1.1. Lessons from the niche. A, The insoluble and soluble milieus in a stem cell niche
specify apical–basal polarity and help maintain stemness. Signaling factors include cell–cell
(segmented rods) and cell–matrix contacts (wiggly lines represent the matrix; rod-shaped
dimers at the cell boundary represent membrane-bound integrins), membrane-permeable
molecules (green hexagons; green, purple and red circles) and matrix-bound factors (blue
ovals). B, Asymmetric cell division results in differentiating daughter cells. C, Migration out of
the niche is affected by both extrinsic barriers (such as other cells or the matrix in, for example,
endothelial pores; green and brown semi-circular structures, right) and intrinsic factors, such
as the nuclear lamina (orange line encircling cell nuclei). For example, neutrophils have very
low lamin-A (that is, softer nuclei) and can thus easily enter the circulatory system (red region,
lower right).
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Figure 1.2. Matrix and soluble factors converge to control lamin-A levels. Left, in soft
tissues, collagen is low, cells do not contract, and the nucleus is not tensed. Lamin A is
turned over and RARγ is mostly cytoplasmic, with no appreciable soluble agonist effects.
Right, as collagen content increases (as in stiffer tissues or in fibrosis), a cell forms stable
focal adhesions, a stable actomyosin cytoskeleton, and a tension-stabilized nucleus. Tension-
mediated activation of matrix-bound TGF-β leads to collagen and lamin-A production, and to
RARγ nuclear localization. This primes the stem cell to respond to RA, which in turn represses
lamin-A transcription.
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Figure 1.3. Stem cells have a time-dependent ‘memory’ of prior conditioning. MSCs
grown on soft, neurogenic matrix in standard media are induced towards neurogenic lineage
(green), yet can be challenged by osteoinduction media that redirects them towards an
osteogenic lineage (red) during the first 1-2 weeks after initial induction by the matrix. Figure
adapted from Engler et al. (2006).
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Chapter 2

A minimal ‘scar in a dish’ model
reveals mechano-temporal effects of
matrix stiffness on stem cell fate

Portions of this work are under peer-review in Nature Materials.

3D decellularized heart models were performed by Dr. Matthew Raab.
Proteomics analyses of mouse tissue were performed by Dr. Joe Swift.
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Abstract

Scarring in higher animals compromises tissue function and is highly complex, which motivates

the development of culture systems that clarify cellular mechanisms and that might also

help identify therapeutics. Co-polymerization of collagen-I with polyacrylamide produced

scar-like, crosslinked fiber bundles that segregated heterogenously atop the hydrogel and

directed the fate of multiple cell types towards scar-like phenotypes. As with scars, the gels

stain non-uniformly with Sirius Red dye and are regionally stiff. Cardiomyocytes derived

from pluripotent stem cells do not beat on scar-like gels, consistent with defective beating

of scarred hearts. Mesenchymal stem cells (MSCs), which traffic to injured sites, ‘durotax’

towards mimetic scars, undergo osteogenesis consistent with ossification of some scars,

and upregulate tension-sensitive proteins. Within hours, myosin IIB polarized rearward in

stress fibers and nucleoskeletal lamin-A levels increased as cells and nuclei spread, but 1-

2 days were required to upregulate the ‘scar marker’ α-smooth muscle actin. Agonists to

one pathway involving retinoic acid receptors inhibited scar-induced differentiation, with similar

effects evident in the mechano-regulated fates of progenitor-derived macrophages that remodel

scars. Mechanobiological gene circuits are modeled mathematically, illustrating how key

features of scars in soft tissues can be usefully studied in culture.

2.1 Introduction

Scarring is an unavoidable consequence in mature higher vertebrates of survivable injuries that

range from external trauma to acute events such as myocardial infarction and various chronic

diseases (Gurtner et al., 2008). Fibrotic, heterogeneous matrix is the defining feature of a scar

and consists predominantly of excessive, crosslinked collagen-I bundles, which displace cells

and less oriented matrix and thereby limit tissue function (Martin, 1997). Across striated muscle

diseases, for example, collagen-I expression increases up to ten-fold or more relative to normal

levels (Bakay et al., 2002), and scarred tissue also tends to be stiffer (Engler et al., 2004b;
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Tomita et al., 1999). An increase in tissue stiffness is predictable because collagen-I, being the

most abundant protein in animals, makes key structural networks (Munster et al., 2013), and

this is seen in most fibrotic tissues (Figure 2.1). However, many additional changes in scarred

tissue can be detected, including proportional increases in the nuclear structure protein lamin A

versus collagen-I (Figure 2.1B,C). For normal tissues, we have shown recently that lamin-A

levels scale with collagen-I and are mechanosensitive in vitro (Swift et al., 2013b), but given the

complexity of scars in vivo in terms of diverse cell types, matrix, and soluble factors, it is unclear

whether lamin A and the transcription factors it regulates are responsive in any given cell type

to a heterogeneous scarring microenvironment.

Cell therapies for many types of scarred tissues are being pursued with a wide range of

cell types, and the list will no doubt grow with the emergence of various stem cells, including

pluripotent cells (Boiani and Scholer, 2005) and adult mesenchymal stem cells (MSCs; Pittenger

et al., 1999). Whether stem cell-derived lineages are plastic and change phenotype when

engrafted into scars is a critical question for cell therapy, particularly for MSCs that are

multipotent as well as immunomodulatory. A mechanochemical gradient is also likely wherever

normal tissue transitions to scar (Tomita et al., 1999; Pfeffer and Braunwald, 1990), and an

impact on cell trafficking into scars will likely affect cell and tissue fate (Orlic et al., 2001).

Matrix ligand type and density provide signals complementary to matrix mechanics (Engler

et al., 2004b) in influencing cell behavior such as MSC differentiation (Engler et al., 2006;

Huebsch et al., 2010; Trappmann et al., 2012; Khetan et al., 2013), but recent studies of matrix

tethering (Trappmann et al., 2012), topography (McNamara et al., 2010), crosslinking, and in

three-dimensional (3D) models (Huebsch et al., 2010; Khetan et al., 2013; Liu et al., 2012; Ulrich

et al., 2009; Levental et al., 2009) have stirred debate on the influence of matrix mechanical

properties in cell-fate decisions. Stiffness of scars (e.g. in skin) measured in the macroscopic

(in MPa; Corr et al., 2009) versus microscopic (in kPa; Achterberg et al., 2014) scales yield

vastly different numbers. A clear relationship to specific tissue parameters is an important goal

of new cell-culture material systems (MacQueen et al., 2013). Here we focused on microscale

elasticity of tissues (and gels) since cells sense on the same scale. With heterogeneous scar-
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like culture platforms here, we make a range of comparisons to scarred tissue (Figure 2.1) and

ultimately show that the effective stiffness of a scar is key to cell fate signals.

2.2 Results and Discussion

2.2.1 Hydrogels with scar-like collagen fiber heterogeneity and
regional rigidity

Starting with an allylsilane-modified ‘bottom’ coverslip that anchors polyacrylamide (PA) chains,

we discovered that mixing collagen-I (Col1) heterotrimers into the PA precursor solution

promotes Col1 fibril formation with segregation to within ∼10 microns of the gel interface

during free-radical polymerization (Figure 2.2A,B). Importantly, the embedded Col1 gels stain

positively but heterogeneously for the histochemical dye, Sirius Red (Figure 2.2C), which is

widely used to assess tissue fibrosis (Turgeman et al., 2008; Mann et al., 2011; Georges et al.,

2007). Sirius Red staining was not observed, in contrast, with Col1 coated (CC) conventionally

on the PA gel surface (Figure 2.2C) via a standard sulfo-SANPAH-mediated covalent reaction

widely used for culture substrates (Dembo and Wang, 1999). The embedded Col1 was varied to

approximate the Sirius Red area fraction visible in typical sections of scarred tissue (20–30%,

Figure 2.1). Surprisingly, initial studies of cells cultured on the embedded Col1 gels showed

that ligand density on fiber bundles was below the threshold needed for cell adhesion, and so

the conventional ‘CC’ modification was used to obtain cell-adhesive scar-like0.3kP a gels with

bundles of collagen that were stable for at least 7 days in cell culture (Figure 2.3). This minimal

matrix model of a scar provides separate control over matrix elasticity and ligand density,

which is not possible in pure collagen gels where ligand density changes with collagen density.

Furthermore, collagen gels exhibit non-linear elasticity (Storm et al., 2005) and stiffen under

strain induced by incorporating cells (Vader et al., 2009), which complicate matrix-mechanical

effects on cell responses.

Consistent with interfacial formation of fibril bundles, the embedding of Col1 (0.04%
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w/v) showed no significant effect on the gel’s bulk modulus (E ≈ 2.9G′ = 0.3 kPa; 3%

acrylamide, 0.07% bis-acrylamide w/v), and for all gels, the elastic modulus dominated the

viscous modulus (Figure 2.4A). Unlike PA gels, collagen fiber networks typically show non-

linear strain stiffening independent of crosslinking (Munster et al., 2013), which becomes

insignificant in the embedded system here that is predominantly elastomeric. However, because

a surface-adherent cell feels only a few microns deep into a gel (Buxboim et al., 2010), the

surface microelasticity Esurf seemed critical to measure. We started with conventional micro-

indentation by atomic force microscopy (AFM; Engler et al., 2007), with results for pristine or CC

gels identical to bulk rheology (Figure 2.4Bi). Microelasticity maps of scar-like0.3kP a gel surfaces

proved to be far more heterogeneous than those of CC gels, consistent with Sirius Red imaging,

and the scar-like0.3kP a gels also appeared 2–3-fold stiffer than the same gels without collagen

fibers (Figure 2.4Bii). However, such a nominal shift for a stratified material is indicative of a

stiffer material on top of a softer bulk. We calculated therefore a suitable thin-film correction and

also measured gel tackiness for a second estimation of Esurf (see section A.1, Appendix A).

Both measurements suggested Esurf ∼10 kPa, which is far stiffer than the bulk gel. A recent

report showed that extracellular matrix tethering, by varying sulfo-SANPAH concentration, could

influence stem cell fate regardless of hydrogel stiffness (Trappmann et al., 2012). However,

we found that reducing Sulfo-SANPAH reduced Col1 coating density (Figure 2.4C), which may

complicate the reported matrix-tethering effects as they may also be attributed to cell responses

to ligand-density variation (Engler et al., 2004a).

Cells apply tractions predominantly along the matrix surface (Dembo and Wang, 1999),

whereas the AFM probes primarily normal to the substrate. Lateral pulling of the gel surface

with a glass microprobe at constant displacement was therefore used to apply a constant

force on scar-like0.3kP a gels (Figure 2.5). Displacements of microbeads embedded in the

gels exhibited the expected Boussinesq-like profiles (Figure 2.5B,C; also see section A.2,

Appendix A). Displacement profiles far from a fiber bundle were strikingly similar to those

for homogeneous 0.3-kPa gels, whereas profiles closer to fiber bundles appeared similar to

those for homogeneous 10 kPa gels (Figure 2.5Cii). We estimated therefore that Esurf ∼ 0.3
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to 10 kPa for scar-like0.3kP a gels, which highlights the regional rigidity near the fiber bundles.

The imaging and physical measurements therefore suggest that the scar-like matrix is a stiff

fibrous meshwork within a background of otherwise soft, tissue-like matrix. Whether cells would

respond in a scar-like manner, despite matrix heterogeneity, was the next critical question.

2.2.2 ‘Scar in a dish’ impairs cardiomyocyte beating consistent
with heart failure

Following a heart attack, regions of necrotic myocardium that result from acute ischemic injury

are replaced by scars that are too rigid for the heart to contract, causing large decreases in

cardiac output and eventual heart failure. This is a major clinical problem today, and there is

great interest in using cardiomyocytes differentiated from pluripotent stem cells to help replace

damaged myocardium (Laflamme et al., 2007). However, how such cells respond to a scar-

like matrix when engrafting is crucial to understand. Stem cell-derived cardiomyocytes were

therefore seeded onto CC3kP a or scar-like3kP a gels, with 3 kPa chosen as the nominal stiffness

because embryonic heart is mostly collagenous matrix and is ∼1–6 kPa in stiffness (Majkut

et al., 2013; Engler et al., 2008). Collagen-coated tissue culture polystyrene (CC-TCP) was

used as a standard control. After 10 days of culture, the number of beating cells was minimal

on scar-like3kP a gels compared to CC3kP a gels (28% vs 100%) with large differences likewise

in beating frequencies (0.24 ± 0.03 Hz vs. 0.61 ± 0.06 Hz) (Figure 2.6A). Results for CC-TCP

were the same as scar-like3kP a gels, consistent with expectations that heart cells simply cannot

contract rigid matrices and will eventually stop beating.

The handful of cardiomyocytes that beat at high rates on the stiff scar-like3kP a and CC-

TCP substrates exhibited informative beating patterns. TCP is too rigid to contract, but local

regions of some cells did appear to twitch at the normal rate. Likewise, on scar-like3kP a gels,

any cardiomyocyte that was half-attached to a scar-like fiber bundle showed no measurable

contraction on the fibers, while the other half of the same cell beat normally on the CC part

of the substrate (Figure 2.6Bi-iii). Given the sensitivity of beating to substrates, the evident
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nuclear beating (Figure 2.6Biv) suggested that nuclear phenotypes could also emerge in scar-

like cultures. Ultimately, individual cardiomyocytes could not beat when the matrix was too rigid.

These initial findings with cells confirm our physical measurements showing scar-like gels are

regionally soft or rigid, but they also suggest that the overall cell response is dominated by the

rigid regions.

2.2.3 MSCs durotax to the ‘scar in a dish’

MSCs show some therapeutic utility in heart repair (Berry et al., 2006; Hare et al., 2009), and

although mechanisms remain unclear, there is also evidence of homing to the injury site (Orlic

et al., 2001). MSC migration towards a site of injury within tissue will typically involve a large

gradient in stiffness, such as in an infarct border zone (∼9 kPa/mm; Berry et al., 2006; Tse and

Engler, 2011). In several other homogeneous gel systems, various cell types including MSCs

have been reported to ‘durotax’ from soft to stiff matrix (Tse and Engler, 2011; Isenberg et al.,

2009; Raab et al., 2012; Lo et al., 2004). A gradient of increasing scar-like fiber bundles was

therefore made here to resemble a transition from homogeneous soft tissue to a heterogeneous

scar (Figure 2.7A). A PA gel precursor solution was mixed with or without Col1, and drops of

each solution were deposited next to each other; Sirius Red staining confirmed such a gradient

of scar-like fibers over a length scale ( 2–4 mm) that ultimately saturates to a 20–30% area

fraction (Figure 2.7B), similar to that seen in diseased tissue (Pfeffer and Braunwald, 1990;

Turgeman et al., 2008; Mann et al., 2011).

Live cell imaging allowed us to track cells on either side of the transition zone (Figure 2.8A).

Net displacements of cell centroids every 15 min towards either the CC half or scar-like half

were used to calculate a Durotaxis Index (Raab et al., 2012), by counting the net number of

steps a cell takes to move towards the scar-like region. Strikingly, only MSCs migrating in the

transition region exhibited strongly positive net displacements (Figure 2.8B) and Durotaxis Index

(Figure 2.8C) towards the scar-like0.3kP a region. Far from the gradient and in both CC0.3kP a

and scar-like0.3kP a regions, MSCs showed no observable migration bias. A monotonic increase
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in Durotaxis Index with the underlying elasticity contrast (∆E) was previously documented for

vascular smooth muscle cells (Isenberg et al., 2009), and a very similar relationship for MSCs

implies that scar-like0.3kP a gels have an effective Esurf ∼ 10–14 kPa (Figure 2.8Ciii). This

Esurf estimated from cell motility agrees with the maximum Esurf obtained from our physical

measurements (Figure 2.5). Heterogeneity of our matrices did not obscure durotaxis probably

because the turnover and hysteresis of cytoskeletal structures (e.g. myosin IIB) takes hours

(Raab et al., 2012), suggesting a short-term memory (rather than long-term memory; Yang

et al., 2014) in the crawling cells as they average over matrix heterogeneities and ‘remember’

only the stiffer fiber bundles. Moreover, the minimum area fraction of ‘scar’ for imparting a

memory seems low since MSCs durotax into an increasingly heterogeneous scar-like region

with migration results that fit well to findings for homogeneous gels.

Knockdown of myosin IIB (MIIB) in MSCs eliminated durotaxis (Figure 2.8Ci,ii), consistent

with our recent demonstration that MIIB polarizes rearward only on stiff matrices and is

needed for durotaxis where persistent migration increases from soft to stiff (Raab et al., 2012).

Immunostaining and imaging of MSCs on both ends of the soft-to-scar gradient confirmed

the expected MIIB polarization differences as well as increasing expression of α-smooth

muscle actin expression (SMA; Figure 2.9A), which is a myogenic marker for intracellular

tension that is commonly elevated in scarred tissue (Hinz, 2007). However, results for day-

1 versus day-2 showed that MIIB polarization preceded SMA upregulation on the scar-like

matrix (Figure 2.9Aii). Thus, the ‘scar marker’ SMA is not required for early stiffness sensing,

consistent with studies of chemically induced liver fibrosis (Georges et al., 2007). Rearward

nucleus polarization during cell migration on stiffer matrices (Figure 2.9Ai) is also suggestive of

higher contractility in the rear, consistent with MIIB polarization seen recently (Raab et al., 2012).

Among myosin-II isoforms (A, B and C), MIIB accounts for only 5–10% of total myosin-II in MSCs

(Raab et al., 2012), and cell traction forces do not change drastically with MIIB knockdown (Cai

et al., 2006). Interestingly, a cell size-dependent ‘attraction’ to the underlying scar-like fibers was

evident (Figure 2.9B), consistent with a local, myosin-dependent durotaxis in which well-spread

cells exert higher, myosin-IIA-dominated traction forces. Haptotaxis did not contribute because
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MSCs did not spread on scar-like fibers without the additional collagen coating (Figure 2.3A).

To confirm and extend these findings, an additional model for scarred heart matrix was

made. Ventricular myocardium was decellularized and half of the collagen-I-dominated matrix

(Majkut et al., 2013; Figure 2.10) was stiffened by chemical crosslinking (Figure 2.9C). The

apparent E of this 3D matrix determined by AFM (Figure 2.9Cii) approximates the results

above from AFM for CC0.3kP a and scar-like0.3kP a gels (0.3–1 kPa; Figure 2.4Bii). Seeding

of MSCs (transduced with GFP for visualization) showed a uniform distribution along the entire

heart matrix, as verified 4 hrs post-seeding. After 1–2 days, cell numbers were depleted in the

gradient region as a wave of MSCs accumulated in the crosslinked, stiff region (Figure 2.9Ciii).

The findings are consistent with the net effect of durotaxis-based accumulation as illustrated

with the simpler ‘scar in a dish’.

2.2.4 Effective stiffness of ‘scar in a dish’ can be deduced from
cell shape and cytoskeleton

Systematic analyses of cell morphologies and key markers of cytoskeleton uniformly indicate

the scar-like matrix is ∼10–14 kPa with respect to the cell. Most cells spread more on stiffer

substrates (Engler et al., 2006; Rehfeldt et al., 2012), and by fitting a characteristic hyperbola

in response to matrix E (Rehfeldt et al., 2012; Zemel et al., 2010), the scar-like0.3kP a gel has

an effective elasticity (Eeff ) of ∼12 kPa (R2 = 0.98), which is similar to the estimate obtained

from analyses of cell aspect ratio (Figure 2.11Ai,ii). The latter also proved sensitive to myosin-II

inhibition, even on the scar-like matrix. Nuclear shapes also respond similarly to matrix rigidity-

induced contraction (Figure 2.11Aii). Localization of MIIB to the rear of the cell (Raab et al.,

2012) and the expression of SMA are both hyperbolic with E (R2 ≥ 0.97), and once again

indicate that the scar-like0.3kP a gel has an Eeff ∼ 12 kPa (Figure 2.11B,C). SMA incorporation

into stress fibers as well as its increased expression is sustained up to 7 days on stiff matrices

(Figure 2.11Cii,iii), suggestive of commitment to a scar-like phenotype (Tomita et al., 1999).

26



2.2.5 Stiffness of ‘scar in a dish’ increases lamin A and MSC
osteo-commitment

Our analyses of striated muscle diseases prone to scarring revealed an increase in lamin A

(Figure 2.1), which is a nucleoskeletal protein implicated in various differentiation and

maturation processes (Swift et al., 2013b; Majkut et al., 2013; Shin et al., 2013). Measurements

of lamin A here likewise showed an increase on stiffer matrices (Figure 2.12A) as early

as 24 hours (Figure 2.12B), which is also consistent with our recent report that lamin A is

mechanosensitive to matrix stiffness (Swift et al., 2013b), likely through cytoskeletal stress

exerted on the nucleus (Swift et al., 2013b; Liu et al., 2014). Knockdown of lamin A followed by

in situ hybridization shows that lamin-A protein levels increase with LMNA transcript numbers

(Figure 2.12C). Lamin A is highly expressed in bone (Swift et al., 2013b), and MSCs injected into

infarcted hearts have sometimes been found to form ossified structures (Breitbach et al., 2007)

that would be detrimental for the beating heart. Lamin A regulates nuclear entry of a retinoic acid

(RA) receptor (RARγ) transcription factor (Swift et al., 2013b) that is known to promote bone

formation (Shimono et al., 2011), while SMA is a product of the serum response factor (SRF)

pathway that also contributes to osteogenesis (Chen et al., 2012). Studies of osteogenesis on

the scar-like matrix were thus strongly motivated. A mechanobiological gene circuit (MGC) is

proposed to formalize the various pathways in Chapter 4 (Figure 2.12D), starting with matrix

stiffness that induces cytoskeletal tension (e.g. myosin II or SMA) that is, in turn, applied to the

nucleus, specifically regulating the stability of lamin A. RARγ-dependent lamin-A expression is

upstream of SMA via SRF (Swift et al., 2013b), while positive mechanical feedback by SMA-rich

stress fibers on lamin A leads to fold changes of both proteins in response to matrix E –– as

modeled by the MGC (Figure 2.12A).

Compared to MSCs on CC0.3kP a gel, culturing MSCs for a week on both scar-like0.3kP a and

CC40kP a gels with osteogenic induction media (OIM) increased Alkaline Phosphatase (ALP)

activity, which is an early marker of osteogenic commitment (Figure 2.13A). Calcification was

also evident on the stiffer matrices based on staining with Alizarin Red (Figure 2.13B). The lack
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of significant Alizarin-Red staining on scar-like0.3kP a gels conforms to the observations that its

Eeff is well below what is needed for MSC osteogenesis either in vitro (Engler et al., 2006) or

in vivo (Berry et al., 2006; Breitbach et al., 2007). In all cases, RA treatment inhibited both ALP

activity and Alizarin-Red staining that is likely due to reduction of stress-stabilized lamin A (Swift

et al., 2013b). The results indicate that the scar-like matrix tends to be osteogenic, and that even

though the vitamin-A derivative RA is normally nM in serum, higher doses of RA agonists show

therapeutic promise for inhibiting calcification of scar tissue.

2.2.6 Lamin-A & MMP9 in progenitor-derived macrophages also
increase with matrix stiffness

Monocyte-derived macrophages are essential in solid tissue remodeling, as exemplified by

regeneration of salamander limbs (Godwin et al., 2013), liver (Ramachandran et al., 2012)

and, to a more limited extent, skeletal muscle (Tidball and Wehling-Henricks, 2007). Distinct

macrophage subtypes and plasticity complicate our understanding of repair (Ramachandran

et al., 2012; Tidball and Wehling-Henricks, 2007; Nahrendorf et al., 2007), and specialized

resident macrophages in various tissue compartments exhibit a spectrum of activation states

(Mosser and Edwards, 2008) that seem, in part, mechanically regulated (Yang et al., 2000;

McWhorter et al., 2013). We hypothesized therefore a differentiation circuit for macrophages

that depends on matrix stiffness and RA (Figure 2.14A) and affects not only lamin-A levels but

also proteases known for roles in liver repair (Ramachandran et al., 2012).

Monocytes differentiate to surface-adherent macrophages by addition of phorbol esters

(PMA) that induce expression of lamin A (Olins et al., 2001) and matrix metalloproteinases

(MMP; Worley et al., 2003), which RA inhibits (Olins et al., 2001; Worley et al., 2003;

Figure 2.14B). As a function of increasing matrix stiffness, PMA increased protein levels of

lamin A and MMP9 (but not of lamin B or MMP2), and subsequent RA treatment generally

suppressed expression (Figs. 2.15 and 2.16). Chromatin immunoprecipitation followed by

sequencing (ChIP-Seq) for the relevant transcription factors (Figure 2.17) confirms binding of
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RA-regulated transcription factors to the LMNA and MMP9 promoters but not to LMNB1/2 nor

MMP2 genes (Allenby et al., 1993). Interestingly, the protein changes versus matrix stiffness

are well-fit by the same hyperbolic responses as those for MSCs (Figure 2.11). This not only

implicates the same underlying gene circuit with respect to matrix sensitivity but also that the

scar-like0.3kP a matrix exhibits — for a cell type distinct from an MSC — an effective stiffness of

Eeff = 10–14 kPa.

2.3 Conclusion

All three cell systems studied here (striated myocytes, MSCs, and macrophages) are not

only relevant to scarring of at least one major human tissue type, striated muscle, but more

importantly all three cell types respond to our heterogeneous scar-like gels as if they are on

much stiffer matrix. The 3D ex vivo decellularized heart matrices developed here exhibit similar

rheological profiles as 2D scar-like gels (Figs. 2.5 and 2.9C), and MSCs durotax on both,

reminiscent of MSC accumulation into scarred tissues (Orlic et al., 2001). MSC migration,

morphology, and protein responses to matrix E indeed reveal a high effective E of the scar-

like0.3kP a gel (Figs. 2.8, 2.9 and 2.11), consistent with the maximum E determined in suitably

analyzed micromechanical measurements (Figure 2.5). ECM micro-architecture is thereby

important to the mechanochemical control of cell fate.

Heterotopic ossification occurs in many tissue contexts, including muscle disease (Mu et al.,

2013) and hip replacement surgery where it is problematic (Kocic et al., 2010). MSC injection

into infarcts (but not normal muscle) can cause calcification (Figure 2.13; Breitbach et al., 2007),

but MSC injection can also improve cardiac performance due to direct repression of fibrosis

(Berry et al., 2006) or indirect immunomodulation (Tomita et al., 1999). MMP secretion by MSCs

is far below that of macrophages, but the changes in phenotype of engrafted MSCs could help

to recruit and modulate reparative macrophages that effectively repress fibrosis. Therapeutic

utility has indeed been shown with macrophages activated ex vivo and injected into infarcted
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hearts (Leor et al., 2006), and MMP9 is specifically implicated in blood stem cell recruitment

for muscle repair (Lolmede et al., 2009). MMP-mediated softening of stiff, fibrotic matrix seems

likely, and co-cultures of MSCs and macrophages in scar-like gel systems and gradients made

here could help clarify mechanistic aspects of the interplay of such important cells.

The fact that scarring occurs only in mature stages of higher animals (Gurtner et al.,

2008), such as Homo sapiens, likely reflects an evolved need to generate a sufficiently

stiff tissue that sustains the large stresses in mature tissues. Tissue injuries initiate broad

chemical and mechanical changes that also serve as homing cues for highly plastic MSCs and

monocytes/macrophages, among other cell types. Lamin-A changes in scarred tissues and

scar-like gels (Figs. 2.1, 2.12 and 2.15) illustrate the plasticity of at least one nuclear protein

that regulates several transcription factors in normal differentiation. For example, lamin-A’s

positive regulation of actomyosin proteins via SRF (Swift et al., 2013b) should help MSCs

contract wounds that myofibroblasts usually close (Hinz, 2007) and also make macrophages

more phagocytic (Tsai and Discher, 2008), which is conducive to resolving fibrosis at least in

liver (Ramachandran et al., 2012). In MSCs, lamin-A levels regulate nuclear entry of RARG,

promoting osteogenesis (Swift et al., 2013b). However, monocytes express RARA as the

major RAR isoform (Hashimoto et al., 1990; Zhu et al., 2001), and so a panel of RAR specific

drugs was tested, revealing that PMA-induced levels of lamin A and MMP9 were significantly

repressed via RARA (Figure 2.18). Such findings can guide novel application of specific

compounds to limit calcification and matrix remodeling in scars.
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2.4 Materials and Methods

2.4.1 Synthesis and functionalization of conventional and scar-
like hydrogels for cell culture

Circular glass coverslips (18-mm diameter, Fisher Scientific) were pre-treated in boiling

ethanol, then RCA solution at 70°C (1:1:3 of 30% H2O2:15N NH4OH:distilled H2O) for 10

minutes each, and functionalized in chloroform solution with 0.1% allyltrichlorosilane and 0.1%

triethylamine for 30 minutes. Varying ratios of N,N’-methylene-bis-acrylamide (Sigma) and

acrylamide solution (40%, Sigma) in distilled H2O were formulated to tune polyacrylamide (PA)

hydrogel stiffness. The PA precursor solution (20 µL) was pipetted on allylsilanated coverslips

with 0.1% ammonium persulfate and 0.1% N,N,N’,N’-tetramethylethylenediamine to initiate

polymerization. To make a 0.3-kPa PA gel, precursor solution consists of 3% acrylamide and

0.07% bis-acrylamide; a 40-kPa PA gel comprises 10% acrylamide and 0.3% bis-acrylamide

(for other formulations, see Table C.1, Appendix C). To create PA gels with embedded collagen

(e.g. scar-like0.3kP a), type I rat-tail collagen (BD Biosciences) was diluted in the PA precursor

solution to a final concentration of 0.4 mg/mL in 50 mM HEPES buffer (pH 8). Gradient gels

were prepared by juxtaposing 2 drops (10 µL) of different precursor solutions on a coverslip.

For MSC durotaxis on CC0.3kP a/scar-like0.3kP a hybrid gel (Figure 2.7), the formulation for

0.3-kPa PA gel was used on both sides, but with pre-mixed collagen-I on the scar-like side

as described above. In order to delineate the regions under the microscope, fluospheres

(1-µm diameter, Invitrogen) were supplemented 0.005% by weight in the soft side, while

collagen fibers in the embedded collagen region were fluorescently immunolabeled. During

polymerization, the gel precursor drop(s) was sandwiched with another pretreated coverslip until

the gel polymerizes. To functionalize the polymerized PA gel, 300 µL of sulfo-SANPAH (Thermo

Scientific, 0.5 mg/mL in HEPES), was added to the gel and exposed for 7 min under 365-nm UV

light (0.7 A, Spectroline Model XX-15A), and was washed twice in distilled H2O. Collagen-I was

diluted to 0.1 mg/mL in HEPES and incubated with the functionalized PA gel at 37°C overnight

on a shaker. Excess collagen was removed and the gel was equilibrated in PBS. Cells were
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plated onto the gels within 24 hours of collagen attachment. Preliminary studies on the efficacy

of sulfo-SANPAH as a collagen-PA gel crosslinker reveal that the collagen-1 concentration (0.1

mg/mL) used in all experiments here, as suggested by previous studies (Engler et al., 2004a; Lo

et al., 2004), saturates all available reactive moieties on the PA gel and are covalently tethered

to the PA gel (Figure 2.4C). These studies altogether indicate saturation of matrix ligands for

cells, thus eliminating the possibility of cell rounding due to low ligand density.

2.4.2 Surface characterization and microrheology of hydrogels

Sirius Red dye (0.1% in H2O, Direct Red 80, Sigma) was stained (for 1 h, rinsed twice in 0.5%

acetic acid) on embedded collagen fibers in the gel to determine their scar-mimesis. Elasticity

of the gel surface, Esurf , was quantified with an Asylum MFP-3D Atomic Force Microscope

(Asylum Research, Santa Barbara), equipped with a microscope stage micromanipulator to

move across the gel during AFM probing. The spatial AFM resolution used here is 1 µm,

which emulates cellular length scales in matrix sensing. A silicon nitride cantilever probe with

pyramidal tip and spring constant of 30–100 pN/nm (MCST, Veeco) was used to indent the

gels. To determine Esurf , the Hertz cone model was used to fit probe deflection curves (up to

1 µm indentation; Domke and Radmacher, 1998). In lateral pulling experiments (Figure 2.5),

glass micropipettes were formed from glass capillaries (1-mm inner diameter, World Precision

Instruments, Sarasota, FL) using a Flaming-Brown Micropipette Puller (Sutter Instrument,

Novato, CA). Pulled micropipettes were tapered at the base, were reopened to a final inner

diameter of 10 µm, and were used to probe the surface of gels, embedded with microbeads

(1-µm diameter FluoSpheres, Invitrogen) as fiduciary markers. The glass probe was constantly

displaced 20 µm parallel to the gel surface, and fluorescent bead displacements were acquired

with a Nikon Eclipse TE300 inverted microscope equipped with Cascade Photometric CCD

camera. Particle Image Velocimetry, an ImageJ plugin, was used to quantify fiduciary bead

displacements after probe pulls. Analysis of displacement profiles is detailed in section A.2 of

Appendix A.
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2.4.3 Cell culture, manipulation, and treatments

R1 mouse embryonic stem cells (mESCs) with cardiac-specific puromycin resistance were

kindly provided by Dr. Rong (University of Pennsylvania, Philadelphia). Fetal bovine serum

(FBS) used in ESC growth and differentiation media was purchased from Hyclone. The

mESCs were cultured on mitomycin-treated mouse embryonic fibroblast (MEF) feeder layers in

supplemented Dulbecco Modified Eagle Medium (DMEM with 4.5 g/L glucose, 100 mM sodium

pyruvate, 100 mM non-essential amino acids; 0.1 beta-mercaptoethanol; 15% Hyclone FBS;

Leukemia Inhibitory Factor, LIF, 1000 u/L). Stem cells were spontaneously differentiated in

embryoid bodies (EB) made from hanging drops of 600 cells per 20 µL in the same DMEM

without LIF. After 2 days in hanging drops, EBs were transferred to rotating cultures for five

days and were then seen to beat spontaneously. To isolate single cardiomyocytes (CMs) from

EBs, 0.05% trypsin-EDTA (Gibco) was used to enzymatically dissociate EBs; the resulting cell

suspension was quenched with differentiation media, pelleted, resuspended, plated on PA gels.

After 24 hr, mESC-derived CMs were further purified by addition of 2.5 µg/mL puromycin in

differentiation media for 7 days.

Racemic blebbistatin (EMD Biosciences) was used at 50 µM for 30 min. For knockdown

experiments, Lipofectamine 2000 (Invitrogen) with 30 nM siRNA was used according to

manufacturer’s instructions. The level of knockdown was assessed by Western blotting after

48 hrs. Myosin-IIB siRNA duplex sequences were obtained from Raab et al. (2012) and

were synthesized by Dharmacon, Inc. Scrambled siRNA was siGENOME Non-Targeting

siRNA #1 (Dharmacon). To minimize experimental variability in durotaxis experiments, both

scrambled and MIIB siRNA-treated MSCs were simultaneously seeded on the hybrid gels and

their migrations were visually discriminated by prior minimal labeling with hydrophobic PKH26

and PKH67 dyes, respectively, according to manufacturer’s (Sigma-Aldrich) instructions. Prior

to plating into decellularized heart matrices, MSCs were transduced at passage 2 (50%

confluency) with 300 PFU of lentivirus per cell for 24 hrs to stably express GFP. For

osteogenesis experiments, sparsely-seeded MSCs (∼2000 cells/cm2) were allowed to reach
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∼70% confluency in normal media prior to addition of osteogenic induction media (OIM,

StemXVivo Osteogenic/Adipogenic Base Media and Supplement, R&D Systems). Osteogenic

cultures, with fresh media every 3–4 days, were done for 1 week or 4 weeks and evaluated

for Alkaline-Phosphatase activity or Alizarin-Red staining, respectively (further details in

Section 2.4.9).

Human THP-1 monocyte suspensions were maintained between 3×105–1.5×106 cells/mL

in RPMI 1640 Medium (Gibco) with 10% FBS and 1% P/S. Differentiation of THP-1 cells into

adherent macrophages was induced by addition of 100 ng/mL phorbol 12-myristate 13-acetate

(PMA) for 2 days. Culture medium (without PMA) is freshly replaced every 2–3 days. Transition

from suspended to surface-adhesive phenotype was concomitant with upregulation of nuclear

lamins and matrix metalloproteinases (Figs. 2.15, 2.16 and 2.18).

Retinoic Acid Receptor (RAR) isoform-selective drugs used for cell treatment were:

Adapalene and CD2665 (Santa Cruz Biotechnology), respective agonist and antagonist drugs

for RARβ and γ isoforms only. All-trans retinoic acid (RA, Fisher Scientific) is a pan-RAR

agonist; AGN-193109 (AGN, Santa Cruz Biotechnology) is a pan-RAR antagonist. Cell-on-

gel cultures were treated with either control solution (0.15% ethanol, 0.15% DMSO in culture

media), or with solution with 1 µM drug.

2.4.4 Proteomics analyses of mouse tissue

Mouse tissue was prepared for analysis as described by Swift et al. (2013b). Approximately 1

mm3 of frozen muscle tissue was ground on dry ice and solubilized in 100 µL 1× NuPAGE

LDS sample buffer (Invitrogen); samples were sonicated on ice before addition of 1% β-

mercaptoethanol, followed by heating to 80 °C for 10 min. SDS-PAGE gels (NuPAGE 4-12%

Bis-Tris, Invitrogen) were loaded with matched quantities of protein (determined by Coomassie

densitometry), with separations run at 100 V for 10 min. followed by 160 V for 25 min. Gel bands

were excised for mass spectrometry (MS) analysis between 60–150 kDa. Details of protein

quantification by label-free MS are described by Swift et al. (2013a), with Elucidator software
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(Rosetta Biosystems) set to search for the hydroxylation modifications that are common in

matrix proteins (proline, asparagine, aspartic acid and lysine, ∆ = +15.995 Da).

2.4.5 Bulk rheology

A cone-and-plate Bohlin rheometer (Malvern Instruments, Worcestershire, UK) was used to

measure the viscoelastic spectrum (elastic modulus, G′ and viscous modulus, G′′) of the

hydrogels as a function of frequency. In order to confirm polymerization had come to completion,

a time sweep test was also performed for 20 minutes with a controlled absolute strain of 1%

at an angular frequency of 1 rad/s. PBS was then added to allow complete swelling of the gel

before a frequency test was conducted from 8 Hz down to 0.0008 Hz at 1.0% strain.

2.4.6 3D reconstruction & photobleaching in confocal microscopy

To visualize both PA gel and collagen-1 (Figure 2.2A), the gel precursor was doped with 0.02%

w/v allylamine (Sigma) for subsequent fluorescein isothiocyanate (FITC, Thermo Scientific)

conjugation, while collagen-1 coating covalently crosslinked with sulfo-SANPAH on the gel

surface is indirectly immunolabeled (Alexa-647 fluorophore, Life Technologies). To delineate

registration of collagen coating on polyacrylamide gels, a confocal microscope (FV1000,

Olympus) equipped with a 40× objective (UPLFLN40XO, N.A. 1.3) was used. Pinhole size

was set at 125 µm to generate an optimal slice thickness of 0.76 µm. Collagen coat is ∼5 µm

on a fully hydrated hydrogel of ∼60–80-µm thickness as determined by 3D confocal stack

reconstruction.

Fluorescence photobleaching was also performed (Figure 2.4Cii) to determine the extent of

immobilization of the collagen-I coating on the gel surface. Fluorescence of the gel surface

was imaged prior to bleaching. The confocal plane was localized on the gel surface as

determined by collagen-I immunofluorescence, and the laser power was increased to maximum

possible amount to photobleach a circular region of interest (ROI) for 60 seconds. Gel

surface with the photobleached ROI was re-acquired for another 5 minutes. Even without
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sulfo-SANPAH crosslinking, photobleached collagen-1 remains relatively stable perhaps due

to interpenetration into the porous gel surface.

2.4.7 Decellularized Embryonic Heart Matrix

Hearts were removed from chicken embryos at embryonic-day 14 (E14) and the left ventricle

wall was isolated and immersed in 1% SDS in deionized water for decellularization. After

shaking overnight at room temperature (RT), the decellularized tissue was placed into 1%

Triton-X in deionized water for 30 min and then equilibrated in PBS with 100 µg/mL penicillin

and 100 µM streptomycin until used for experiments. To make a gradient of crosslinks in the

matrix, the decellularized tissue was fixed on a coverslip and then placed into a chamber such

that approximately one half is immersed in 100% glycerol. After allowing glycerol to penetrate

into the matrix for 30 min, 3 mM of genipin (a fluorescent crosslinker, Sigma) in PBS was added

on top of the glycerol to immerse the other half of the matrix, and was then incubated in the

dark at 37°C for 2 hours. Glycerol was then added to replace the top genipin solution, and the

resulting matrix with a crosslink gradient was washed and stored in PBS with antibiotics prior to

use.

2.4.8 Time-lapse Microscopy

Beating cardiomyocytes were quickly imaged (< 1 h) under HEPES-buffered (10 mM) phenol-

red free DMEM (with 10% FBS and 1% P/S, Gibco) on a temperature-controlled (37 °C)

microscope stage with an inverted microscope (IX-71, Olympus) equipped with a 20× LCACh

objective (N.A. 0.40) and a Cascade CCD camera (Photometrics). Image sequences were

acquired every 0.2 s.

Imaging of MSC migration was done using an inverted Olympus IX-71 microscope with

a 10× objective enclosed in a humidified chamber at 37 °C and 5% CO2, 300 W xenon

lamp illumination, and a high-resolution CCD camera (Photometrics CoolSnap HQ). Deltavision

Softworx software was used for image acquisition at 10-min intervals. ImageJ was used to

36



track the center of MSC nuclei in movie sequences, and the summed contour distance traveled

divided by the time was used as our measurement of mean speed. This measurement only

reflects total distance traversed but does not reflect cell persistence. We quantified the bias of

the time-dependent number of steps to the left (L, soft CC0.3kP a region) and to the right (R,

scar-like0.3kP a region) by using the equation adapted from Isenberg et al. (2009):

Durotaxis Index = (R− L)/(R+ L).

If Durotaxis Index = 0, there is no bias to cell migration. If Durotaxis Index = 1, all of the steps are

toward the stiff side. Cells that underwent mitosis and those that migrated out of the trackable

region were included only prior to such events.

To verify the hypothesis that MSCs with spread areas greater than 5000 µm2 (i.e. high

myosin content) sense and track the underlying scar-like fibers (Figure 2.9B), the angle

difference between fitted ellipses that best approximate MSC and collagen fiber shape was

calculated in ImageJ. In time-lapse sequences where MSCs overlap with an immunolabeled

fiber, cells were discriminated based on average spread area during period of overlap and the

respective angles were measured and tracked over time.

2.4.9 Histological analyses of osteogenic commitment

After 1 or 4 weeks in culture with osteogenic induction media (OIM), MSCs on gels were fixed

at RT with 3.7% paraformaldehyde for 20 min and washed thrice in 10 mM Tris buffer (pH

7.2). For 1-week cultures, Alkaline Phosphatase (ALP, early osteogenic biomarker) activity

was visualized by Fast Blue staining. While cells were being fixed, 2 mL of naphthol-AS-

MX phosphate and one pre-weighed capsule of Fast Blue RR Salt (Sigma) were dissolved

with stirring in 48 mL distilled water in the dark (Fast Blue Solution). Fixed cultures were then

immersed in Fast Blue Solution for 30 min, subsequently washed in distilled water twice, and

imaged immediately or mounted in aqueous mounting media for storage.

For 4-week cultures with OIM, Alizarin Red (late osteogenic biomarker) staining was

performed. Cultures were fixed with 10% paraformaldehyde for 10 min, washed with PBS twice,
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and stained with 2% Alizarin Red S (Sigma) solution for 15 min, all at RT. Staining-solution pH

was pre-adjusted to ∼4.1–4.3 with 0.5% ammonium hydroxide. Samples were then washed

with distilled water and imaged immediately (or stored accordingly). Samples were imaged

using an inverted microscope (IX-71, Olympus) with a 4× objective and a USB-compatible

digital color camera (DC2000M; World Precision Instruments, Inc.) attached to the microscope

c-mount tube. Color images were acquired using ScopePhoto software (ScopeTek) and were

processed in ImageJ by converting to 32-bit black and white images, inverting, and measuring

raw intensities. Osteogenic indices for images from both ALP and Alizarin Red-stained samples

were calculated from these raw intensities, and normalized to cell cultures under serum-only

conditions.

2.4.10 Combined Fluorescence In Situ Hybridization (FISH) and
Immunofluorescence Microscopy

This method was developed with multiple singly-labeled fluorescent RNA probes by Dr. Arjun

Raj (University of Pennsylvania) adapted here to simultaneously detect lamin-A expression in

the mRNA and protein levels in situ. Reagents were kindly provided by Dr. Raj. Detailed probe-

synthesis and hybridization protocols were developed by Raj et al. (2008). Labeled samples

were visualized in the same setup as time-lapse microscopy movie sequences, but with a

100× objective with high numerical aperture to achieve a narrow depth of field and discriminate

diffraction-limited mRNA spots during image processing. Roughly 40 z-stack images per cell

were obtained to fully encompass cell height. Spot counting was performed in ImageJ, by

manually thresholding spot intensities and counting speckles that are in the expected diffraction

limited range of 0.2–0.5 microns in diameter. Counts of mRNA spots reported here may be an

overestimate due to the choice of imaging and image processing. Nonetheless, good mRNA-

protein correlations in LMNA-knockdown experiments (Figure 2.12B) validated the technique.

LMNA siRNA was obtained from Harada et al. (2014) and transfected into MSC cultures with

Lipofectamine as per manufacturer’s instructions.
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2.4.11 Gelatin Zymography

To detect matrix metalloproteinase (MMP) secretion during PMA-induced THP-1 differentiation,

gelatin zymogram gels (Life Technologies) were loaded with conditioned media samples

harvested from THP-1 cultures at desired time points and treatments. Prior to loading

conditioned medium was diluted 1:1 with Tris-Glycine loading buffer (Life Technologies), and

immediately loaded into a well. Loaded gels were run in Tris-Glycine running buffer (Life

Technologies) for 120 min. Cell number was used as normalization.

To visualize MMPs, samples in gels were renatured and developed according to

manufacturer’s instructions (Life Technologies). Finally, gels were stained with SimplyBlue

SafeStain (Life Technologies) and scanned for image processing in ImageJ software. MMP

bands on the gels appeared light on a blue background, where enzymatic degradation of

embedded gelatin occurred.
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Figure 2.1. Mechanics, transcriptional and proteomic profiling of muscular dystrophy
tissue. A, Fibrosis-associated stiffening and heterogeneity is consistently seen across tissues
with abundant collagen such as liver (Georges et al., 2007), lung (Liu et al., 2010) and striated
muscle (Berry et al., 2006; Engler et al., 2007). B, Consistent with earlier findings in adult mouse
tissue (Swift et al., 2013b) and developing chick embryo (Majkut et al., 2013), correlations were
observed between lamin A in the nucleus and the composition of the ECM. Quantification of
matrix proteins in mouse muscle tissue by label-free mass spectrometry (MS). i) The signal
strength of each ECM protein was normalized by lamin B1 to account for cell-density variations
between samples; mdx mouse tissue is shown relative to a control of C57 mouse tissue (y-
axis shows fold-change). A Kruskal-Wallis location equivalence test showed the mdx mouse to
have significantly more lumican, collagen-1 and collagen-3 than the control (p < 0.01; n = 4).
ii) MS measurements also suggested that mdx mice had correspondingly higher lamin A,C
and iii) lamin A-to-B stoichiometry (n = 4, not significant). C, At the transcript level, tissue
samples from patients with muscular dystrophy and mouse muscular dystrophy models showed
higher mean COL1 and (Top) correspondingly higher LMNA, even when normalized to LMNB1,
another nuclear envelope gene; ACTA2, a cytoskeleton gene, is expectedly upregulated in
response to stiffening. Bottom, Transcription factors relevant in mechanotransduction pathways
either scale with (RARG), scale against (NKX2-5), or does not scale (SRF ) with COL1.
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Figure 2.4. Bulk and surface rheology, and functionalization of PA gel. A, i) Time-sweep
measurements of bulk elastic moduli of various PA gels; embedding collagen-1 (0.4 mg/mL;
scar-like0.3kP a, green) did not augment the nominal elastic modulus of 0.3 kPa (blue). ii)
Bulk elastic (G′) and viscous (G′′) moduli of PA gels measured via cone-plate rheometry at
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et al., 2004a). B, Atomic force microscopy (AFM) measurements of i) E of bare PA (green)
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Figure 2.6. Stem cell-derived cardiomyocytes beat less on scar-like gel. A, Decreased
beating rate of embryonic stem cell-derived cardiomyocytes (SCD-CM) on scar-like3kP a and
CC-Tissue Culture Plastic versus CC3kP a PA gel (n = 13–40 cells, ∗p < 0.05 when compared
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scar-like fibers (yellow). Scale bar, 20 µm. ii) Kymographs along solid lines drawn on beating
(blue) and non-beating (black) halves of the cell. iii) Cell edge displacement cycles over time on
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Figure 2.8. MSC durotaxis on a gradient of scar-like fibers. A, Normalized migration
trajectories and final positions (squares) of scrambled or myosin IIB-siRNA–treated MSCs on
CC0.3kP a/scar-like0.3kP a hybrid gel after 20 hrs of imaging. Durotaxis occurs if more cells move
to scar-like0.3kP a side (right) more than the CC0.3kP a side (left). B, Net positive displacement
(mean ± s.e.m.) of MSC migration in the transition region toward scar-like0.3kP a region over
time. Statistical difference between scrambled (green) and myosin-IIB knockdown (red) was
determined by two-way analysis of variance with Tukey’s HSD test at α = 0.05 significance
level. C, i) Durotaxis index over time of MSCs treated with either scrambled (red) or nonmuscle
myosin-IIB siRNA (siMIIB, green) on the ‘Transition’ region of the hybrid gel. No significant
change in mean speed was seen in both scrambled (0.38 µm/min) and siMIIB-treated MSCs
(0.40 µm/min). ii) Average durotaxis indices (mean ± s.e.m.) of scrambled and siMIIB-treated
MSCs on various regions of the hybrid gel (∗p < 0.05, when compared to siMIIB). Inset:
Western blot of siRNA-treated cells indicating 75% reduction of myosin IIB. iii) Durotaxis index
versus effective elasticity change ∆E on the different hybrid hydrogel systems. The monotonic
increase of Durotaxis Index with increasing gradient strength has been found previously for
vascular smooth muscle cells (VSMC, Isenberg et al., 2009); thus, ∆E for CC0.3kP a/scar-
like0.3kP a hybrid gel fits around ∼10–14 kPa.
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Figure 2.9. Human MSCs home toward a ‘scar in a dish’ and crosslinked heart matrix ex
vivo. A, i) Immunofluorescence images of myosin IIB (MIIB, green) and α-smooth muscle actin
(SMA, red) at 1 and 2 days after seeding MSCs on the hybrid gel. DNA, blue. ii) Kinetics of SMA
(red) and MIIB rearward polarization (green) of MSCs on CC0.3kP a (circle) or scar-like0.3kP a

(square) side of the transition region (n = 34–89 cells). ∗∗p < 0.01, when compared to CC0.3kP a

side of the gradient. B, i) Alignment between a migrating MSC and an EC fiber based on the
angle difference, θ, of their respective major axes. ii) Real-time tracking of θ in small MSCs
(mean cell/nuclear spread area <5000/<400 µm2, n = 8 cells) and iii) big MSCs (>5000/>400
µm2, n = 8 cells). C, i) (Left) Decellularized strip of a chick embryonic day-13 left ventricular
wall supported on a coverslip, is half-dipped in a solution of a fluorescent protein-crosslinker,
Genipin. (Right) MSCs expressing GFP (green) migrate within the matrix. Scale bar, 50 µm.
ii) Gradient in Genipin-fluorescence intensity for the indicated region matches the measured
gradient in apparent matrix elasticity measured by AFM. iii) MSCs in the ex vivo matrix are
plated homogeneously, but after 1–2 days, cells accumulate on the highly cross-linked side of
the matrix.
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Figure 2.10. Matrix composition of decellularized embryonic chick heart. Decellularized
day-13 embryonic chick heart that was trypsin-digested and sequenced in Mass Spectrometry
revealed the compositional breakdown of extracellular matrix proteins, which was dominated by
Collagen-1 based on total peptide ion current. Scale bar, 2 mm.
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Figure 2.11. Scar-like0.3kP a gel exceeds the threshold for matrix stiffness-dependent
MSC response despite heterogeneity. Morphological and cytoskeletal effects of matrix
elasticity, E, are fitted with a hyperbolic equation: A + BE/(Em + E) using a characteristic
elasticity constant, Em = 9.2 kPa (Rehfeldt et al., 2012). A, i) Matrix elasticity-dependent cell
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ratio are quantified (mean ± s.e.m.) from myosin-IIA immunofluorescence staining of MSCs
cultured for 2 days on gels. Nucleus shapes (top) are derived from DNA-stained nuclei. Myosin-
II ATPase activity was inhibited with blebbistatin (50 µM, red) for 30 minutes prior to fixation.
B, i) Quantification of rear/front immunofluorescence intensity (mean ± s.e.m.) of myosin IIB
(MIIB; A = 1.29, B = 0.96) and F-actin. ii) MIIB polarizes toward the rear of a migrating MSC on
both scar-like0.3kP a and CC40kP a gels, while F-actin (red) remains ubiquitous and non-polarized.
C, i) Quantification of immunofluorescence staining (mean ± s.e.m.) of α-smooth muscle actin
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blot of SMA in MSCs cultured for 7 days on the gels. Goodness of fits, R2 ≥ 0.95. Scale bars,
100 µm.
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Figure 2.12. Local matrix stiffening couples lamin-A and α-smooth muscle actin
(SMA) upregulation, as modeled in the Mechanobiological Gene Circuit. A, Quantitative
immunofluorescence of SMA and lamin-A expression in MSCs cultured for 7 days on gels
(mean ± s.e.m.) revealed tight coupling of cytoskeletal and nucleoskeletal tension as predicted
by the Mechanobiological Gene Circuit (MGC) model (dashed line, see Chapter 4). Inset:
Representative immunofluorescence images of lamin A. B, Kinetics of i) total lamin-A and
ii) serine-22 phosphorylation levels (pSer22/Lamin-A) on soft vs stiff gels. C, Combined
fluorescence in situ hybridization (FISH) and immunofluorescence (inset image) of MSCs
showed lamin-A mRNA (LMNA, red) spot counts correlate with protein expression (green).
(Inset plot) LMNA normalized to GAPDH mRNA spots (blue) indicate extent of knockdown.
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receptor-γ (RARG) (Swift et al., 2013b; Figure 2.13).
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Figure 2.13. Matrix stiffness, but not retinoic acid (RA), induces MSC osteogenesis. A,
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Chapter 3

Role of a matrix stiffness-sensitive
repressor, NKX2.5, in stem cell
plasticity

Portions of this work are under peer-review in Nature Materials.

Proteomics analyses of cell lysates were performed by Sangkyun Cho.
Microarray analyses of cell-on-gel cultures were performed by Dr. Amnon Buxboim.
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Abstract

An adherent cell responds to matrix stiffness by activating mechanotransduction pathways to

turn on genes that support mechanical stress. Here, we show a novel role of NKX2.5 as a

mechanosensitive repressor of α-smooth muscle actin (SMA), a common fibrosis and cell-

tension marker. A repressor of SMA transcription, NKX2.5, translocates slowly from nucleus

to cytoplasm in response to matrix rigidity, but nuclear-localized mutants of NKX2.5 override

matrix-stiffness sensing with suppression of SMA and cell spreading. MSCs cultured for weeks

or longer on rigid substrate reinforce a ‘mechanical memory’ by decreasing NKX2.5, thus

stabilizing an SMA-high, scar-like phenotype. Interestingly, matrix stiffness also downregulated

collagen-1 synthesis as it upregulated contractility in MSCs. This phenytopic response was

also observed by inhibiting the TGF-β signaling pathway, which is known to modulate matrix

synthesis. TGF-β inhibition accelerated NKX2.5 nuclear exit and degradation, illustrating how

matrix synthesis and contractility is decoupled and how mechanical memory is developed in

MSCs.

3.1 Introduction

Morphological tissue changes during development are often accompanied, if not because of,

mechanical changes. Living cells that comprise tissue are capable of actively sensing and

responding to forces from its microenvironment, by which mechanotransduction of these signals

into the cell ultimately affects cell and tissue fate. Tracking the transcriptomic changes from

pluripotent stem cells (embryonic or induced) to terminally differentiated fibroblasts indicates

systemic increases in structural genes of the extracellular matrix, cytoskeleton, and the nuclear

lamina (Figure 3.1). The multilineage plasticity of stem cells, even after in vitro culture

(Pittenger et al., 1999), has provided a platform to elucidate a milieu of factors that control

differentiation. For example, MSCs can be directed to a specific lineage on matrix-functionalized

hydrogels that mimic the typical stiffness of a mature tissue (Engler et al., 2006). Induced
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pluripotent stem cells have gained increasing utility over embryonic counterparts not only in

tissue regeneration efforts – particularly for soft tissues like brain (Karumbayaram et al., 2009;

Wang et al., 2011) and liver (Sullivan et al., 2010; Liu et al., 2011b) – but also in elucidating the

pathogenesis of aging disorders (Liu et al., 2011a).

Cell-based therapies, such as injecting autologous MSCs into myocardial infarcts (Tomita

et al., 1999; Orlic et al., 2001; Berry et al., 2006), are promising perhaps in their

immunomodulatory properties, but they also pose some risks (Breitbach et al., 2007) due to a

lack of understanding in their unique response to the mechanochemical milieu of a fibrotic scar.

In contrast to embryonic healing, TGF-β signaling is dysregulated in adult tissue injury (Leask

and Abraham, 2004). Resident fibroblasts are activated to myofibroblasts upon TGF-β-induced

nuclear translocation of SMAD2/3, which binds to collagen and SMA genes (among many

others) to generate a highly tensed cellular phenotype (Heldin et al., 1997). Cellular tension

and a stiff matrix synergize to activate TGF-β from its latent, matrix-bound complex (Wipff

et al., 2007), creating a positive feedback loop of matrix hypersecretion and hypercontractility –

ultimately leading to a stiff, fibrotic scar. Therapeutic interventions that inhibit TGF-β signaling

via neutralizing antibodies (Hinz et al., 2001; Biswas et al., 2007) or pharmacological treatments

(Leask and Abraham, 2004) lead to decreases in SMA and collagen production by fibroblasts.

Ubiquitous (SRF, YAP/TAZ, RARG) and tissue-specific (MYOD, NKX2-5, CBFA1)

transcription factors known to potentiate mechanotransduction did not significantly change

mRNA levels during development (Figure 3.1) or with matrix stiffness, at least in MSCs

(Figure 3.2A). SRF (Miralles et al., 2003) and YAP/TAZ (Dupont et al., 2011) has been shown

to modulate cell spreading and adhesion on stiffer matrices, while NKX2.5 is largely implicated

in the specification of the contractile machinery in cardiac tissue (Kasahara and Izumo, 1999).

TGF-β-dependent signaling has also been implicated in enhancing cardiac-specific activity of

NKX2.5 (Lien et al., 2002). A transcription factor that does not change its expression levels,

while its downstream targets do in response to matrix stiffness, hints at intracellular processes

such as posttranslational or structural modifications that affect its function. For example, nuclear

SRF binds effectively on its DNA target only when MAL/MKL1 is released upon actin assembly
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and translocates into the nucleus to associate with SRF (Miralles et al., 2003). More recently,

nuclear entry of RARG in MSCs on stiff matrices has been implicated to modulate levels of the

mechanosensitive nucleoskeletal lamin A protein (Swift et al., 2013b).

In both disease and development, mechanical changes feed back into cell fate. But cells

can also remodel their immediate microenvironment, which complicate various in vitro efforts,

especially three-dimensional models where factors that cells secrete are hard to characterize.

Here, we used hydrogel substrates with a well-defined adhesive matrix to elucidate the effects of

matrix stiffness on the matrix-synthetic and contractile abilities of MSCs. Through bioinformatics

analysis of matrix versus cytoskeletal genes, we uncovered a novel role of NKX2.5 as a

mechanosensitive repressor of matrix stiffness-directed stem-cell response, especially in long-

term mechanical memory induction.

3.2 Results and Discussion

3.2.1 MSCs downregulate collagen-1 synthesis as they become
more contractile

First, systems-level profiling of the effects of matrix stiffness on contractility and matrix-

synthetic ability of MSCs was performed. Transcriptomic analyses of MSCs cultured on stiff

(40 kPa) versus soft (0.3 kPa) collagen-1-coated gels revealed a negative correlation between

cytoskeleton and matrix genes. Genes that are relevant to cytoskeletal contractility are generally

more abundant than the extracellular matrix genes (Figure 3.2A, left column). Furthermore,

intracellular tension markers such as ACTA2 and CALD1 (for proteins, SMA and caldesmon,

respectively) are upregulated 2-fold on stiffer gels, while matrix genes for collagens type 1

and type 6 decreased (Figure 3.2A, right column). The observation that collagen synthesis

is downregulated as MSCs become contractile on stiff gels was then confirmed with mass

spectrometry analysis in the 110-160 kDa range (Figure 3.2B) as well as with Western blot

(Figure 3.3A) and immunofluorescence (Figure 3.3B). This was also observed independent of
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matrix type (Figure 3.4). Contractile proteins detected in MS (e.g. actinins) that fall within

the 110–160 kDa range were also found to be upregulated (Figure 3.2B), consistent with

transcriptome profiling (Figure 3.2A).

Consistent with the role of stem cells in tissue homeostasis, a less matrix-synthetic yet

contractile phenotype might be beneficial, particularly in wound healing, as mimicked by the

scar-like0.3kP a gel described in Chapter 2. In contrast, fibrosis is principally due to activated

fibroblasts (i.e. myofibroblasts) that concomitantly increase SMA expression and collagen matrix

deposition, both of which can be downregulated by inhibition of TGF-β signaling (Kapoun

et al., 2006). Indeed, MSCs treated with TGF-β1 increased in SMA and collagen-1; yet

unlike myofibroblasts, MSCs treated with a TGF-β receptor inhibitor (SB505124, 10 µM) almost

completely abrogated collagen-1 but did not affect SMA (Figure 3.5) –– a phenotypic equivalent

to the response of MSCs to matrix stiffness (Figs. 3.2 and 3.3). Therefore, TGF-β is sufficient

but not necessary for SMA expression in MSCs. This response is also seen in hepatic stellate

cells (Olsen et al., 2011), which also possess stem-cell characteristics.

3.2.2 Matrix stiffness modulates NKX2.5 localization

We looked into transcription factors that bind differentially to contractility- and matrix-related

genes that could explain this decoupling response. Through bioinformatics-based comparative

promoter analysis of representative genes for cytoskeleton (ACTA2) and matrix (COL1A2)

(Table 3.1A), we found transcription-factor families with the highest binding to ACTA2 promoter

(but not to COL1A2 promoter) that contained homeodomains and POU domains; SMADs of

the TGF-β pathway and SRF are common to both promoters (Table 3.1B). Homeodomain-

containing NKX2.5 ranked highest among transcription factors that bind only on ACTA2 but

not on COL1A2 promoter. In the first ∼1200 base-pairs upstream of ACTA2 transcription

start site, there are at least 4 predicted binding sites for the NKX family, and 5 sites for the

SRF family (Figure 3.6A). Among the NKX family of transcription factors, NKX2.5 is also

the most abundantly expressed in the body (Kasahara et al., 1998) and particularly in MSCs
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(Figure 3.6B); it is also moderately expressed relative to other genes (Figure 3.2A).

To determine whether NKX2.5 plays a role in the matrix-stiffness response of cells,

embryonic chick cardiomyocytes beating on soft or stiff gels were immunostained and imaged

for Nkx2.5, which was predominantly nuclear (Figure 3.7). However, total Nkx2.5 increased in

highly striated cardiomyocytes found on stiff-gel cultures, largely due to increased cytoplasmic

levels (Figure 3.7B). We looked into the predicted abundance of NKX2.5 in human MSCs

(Figure 3.6) and observed post-translational modifications as evidenced by band shifts from

the expected 35 kDa band (Figure 3.8A). To confirm that this was not an artifactual effect of a

polyclonal antibody that detects mouse, chick and human versions, we overexpressed Nkx2.5

(mouse) in an A549 human cell line and detected highly abundant peptides unique to Nkx2.5

(Figure 3.8B,C). As with endogenous NKX2.5 in MSCs, overexpressed Nkx2.5 was also post-

translationally modified (Figure 3.8B).

NKX2.5 was likewise nuclear-localized in MSCs on soft gels, but unlike cardiomyocytes,

it was predominantly cytoplasmic on stiff gels (Figure 3.9). We have also uncovered an

interesting matrix-stiffness response of NKX2.5 that spans several days. Unlike myosin IIB

(Figure 2.9Aii) and lamin A (Figure 2.12B) that respond in <1 day to matrix stiffness, SMA

only increased significantly (by 2-fold) in two-day MSC cultures on stiff matrix compared to

soft matrix (Fig. 2.9Ai and Fig. 2.11C), while prolonged 7-day cultures led to further SMA

upregulation (up to 8-fold) on stiff matrix, which was not observed on soft matrix (Figure 2.12A,

Figure 3.10). Nuclear exit of NKX2.5 in MSCs appeared slower than typical SRF mechano-

activation, which can respond within minutes (Esnault et al., 2014), suggesting that SRF could

drive initial expression of SMA while NKX2.5 is involved in the maintenance of SMA expression

for longer cultures. Transcript profiling of MSCs cultured for 1 day (Figure 3.2A) revealed

stiffness-driven increases in ACTA2 and CALD1 but not NKX2-5 or SRF (which also promotes

its own expression). Total NKX2.5 protein levels also did not change with matrix stiffness up

to 7 days (Figure 3.10, inset), highlighting an important role for transcription-factor localization

rather than its abundance.
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3.2.3 A long-term rigid-matrix phenotype: nuclear exit of NKX2.5

Given the decreases in NKX2-5 levels in chronic diseases such as muscular dystrophies

(Figure 2.1C), we hypothesized that cytoplasmic enrichment of NKX2.5 in MSCs on

rigid substrates would be followed by its degradation (Figure 3.11A). First, to determine

whether NKX2.5 is functionally sufficient to repress SMA’s response to matrix stiffness, we

overexpressed wild-type or mutant forms of Nkx2.5. Shuttling of Nkx2.5 to the nucleus has

been shown to be controlled by a putative nuclear localization sequence (NLS) near the

homeodomain region of the protein (Kasahara and Izumo, 1999); mutations to the NLS of

Nkx2.5 determine its subcellular localization (Figure 3.11B). We overexpressed wild-type and

NLS-mutant NKX2.5 in A549 cells and observed that only the NLS3 mutant, with alanine

replacement of all residues, prevented nuclear localization (Figure 3.11C). More importantly,

overexpression of the nuclear-localized wild-type, NLS1, or NLS2 mutants in MSCs repressed

SMA, reduced stress fibers, and ultimately reduced cell and nuclear spread areas on rigid

substrate (Figure 3.12). In clear contrast, the cytoplasmic NLS3 mutant maintained the rigid-

substrate phenotype.

An endogenous NLS sequence in NKX2.5 implies that its nuclear exit on rigid matrix must be

an active process. NKX2.5 in stress fibers (Figure 3.13A) and in lamellipodia co-localized with

myosin phosphatase-1 (MYPT1; Figure 3.13B) supports recent evidence of MYPT1-dependent

nuclear exit of NKX2.5 in embryonic stem cells (Ryan et al., 2013). It has been suggested that

nuclear exit of Nkx2.5 requires ROCK-induced phosphorylation of MYPT1 (Ryan et al., 2013),

which prevents myosin-IIA filament disassembly (Eto et al., 2005) that is induced, for example,

by matrix stiffness (Raab et al., 2012). Thus, direct binding of phosphorylated MYPT1 to

NKX2.5 may account for the observed nuclear exit and subsequent stress-fiber localization. The

effect of cytoskeletal tension in NKX2.5 translocation from nucleus to cytoplasm was tested by

inhibiting myosin-generated cytoskeletal forces with blebbistatin. Within several hours, nuclear

levels of NKX2.5 increased and SMA subsequently decreased (Figure 3.14A). Transcript

profiles following 24-h blebbistatin treatment of MSCs on rigid substrates (CC11kP a and tissue
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culture plastic, TCP) further showed the expected repression of ACTA2 but in the absence of

reproducible changes in cardiac-specific transcripts downstream of NKX2.5 (Figure 3.14B). As

expected (Swift et al., 2013b; Dupont et al., 2011), blebbistatin also decreased YAP1 and SRF

target genes (slightly), with the latter likely to also contribute to the >50% decrease in SMA at

both protein and transcript levels.

Finally, on rigid substrates where drugs such as blebbistatin rescue nuclear depletion of

NKX2.5, the long-term trend is a major decrease in NKX2.5, as observed in high-passage MSCs

(Figure 3.15). SMA might increase slightly, but it certainly does not decrease (Figure 3.15B,

rightmost bar). One other study that has described NKX2.5 in MSCs focused on the cardiogenic

potential of MSCs grown on either TCP or gel-bound matrix derived from healthy or infarcted

hearts (Sullivan et al., 2014), and the authors described a tendency in immunoblots (that show

an atypical high molecular weight band) for decreased NKX2.5 in MSCs on stiffer substrates

(25 kPa > 40 kPa > TCP). Functional significance of NKX2.5 in MSCs has not been examined

previously, and any possible relation to NKX2.5 to SMA in MSCs has not been suggested

– especially since SMA is not part of the cardiogenic program. Because we show that

translocation of NKX2.5 out of the nucleus can be modulated by cytoskeletal interactions,

including stress fibers, the long-term effects of matrix stiffness (e.g. fibrosis) ultimately favor

degradation of NKX2.5 and maintenance of an SMA-high phenotype as a form of ’mechanical

memory’.

3.2.4 Crosstalk of NKX2.5 and SRF with TGF-β pathway decouples
SMA & collagen-1 expression

Inhibiting TGF-β with SB505124 for 1 day also reduced nuclear-NKX2.5 levels on both soft and

stiff gels (Figure 3.16A). Plotting SMA intensity with nuclear localization of NKX2.5 suggested

a universal repressor-inhibition curve (Figure 3.16B). Interestingly, sustained TGF-β inhibition

(3 days) decreased total NKX2.5 levels, concomitant with an increased SMA expression

(Figure 3.16C), which further demonstrated the equivalent effects of matrix stiffness and TGF-β
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inhibition.

Tissue stiffening is typically accompanied by elevated TGF-β signaling, as in fibrosis. It has

been suggested that serum-induced SRF is a nuclear repressor of TGF-β signaling, by inhibiting

the DNA binding of Smad3/Smad4 complex (Lee et al., 2007). Matrix stiffness-induced actin

polymerization also increases SRF activity (Swift et al., 2013b; Miralles et al., 2003), with SRF

upregulating contractility genes like ACTA2 (Esnault et al., 2014). Here, cell-on-gel cultures

have basal serum-derived TGF-β and SRF activity; on stiffer matrices, however, a higher SRF

activity (Swift et al., 2013b) coupled to a cytoplasmic NKX2.5 (Figure 3.9) may have inhibited

TGF-β-induced expression of collagen-1 (Figure 3.3), whilst promoting SMA transcription and

translation (Figure 3.17A). TGF-β has also been shown to modulate NKX2.5 expression

in MSCs via SMAD (Li et al., 2008). Indeed, inhibiting TGF-β signaling reduced nuclear

levels (Figure 3.9) and when sustained, total NKX2.5 levels as well (Figure 3.10) – effectively

promoting a highly contractile, yet low matrix-synthetic phenotype in MSCs (Figure 3.17B).

3.2.5 Other modifications of NKX2.5

We have also observed NKX2.5 in the Golgi apparatus (via co-localization with fluorescent

wheat germ agglutinin, WGA), but not in the endoplasmic reticulum (via co-localization

with procollagen-1) (Figure 3.18A). WGA stains for proteins modified with O-linked N-

acetylglucosamine (O-GlcNAc, 203 Da) typically seen in the Golgi apparatus. O-GlcNAc

modifications, in general, have been implicated as a rapid stress sensor (Hart et al., 2007). O-

GlcNAcylation of Nkx2.5 could affect its function and turnover and was recently linked to diabetic

cardiomyopathy (Kim et al., 2012), which is characterized by excessive O-GlcNAcylation (Clark

et al., 2003). This modification, however, does not account for the multiple molecular weight

shifts observed in Western blots (Figure 3.8).

Other studies have suggested that Nkx2.5 activity can be regulated by the attachment of

small ubiquitin-like modifier-1 (SUMO-1, ∼11.5 kDa) on lysine residue-51 (Wang et al., 2008),

whereas preventing such leads to congenital heart defects during development (Kim et al.,

66



2011). In MSCs, cells that had smaller spread area (and hence, nuclear-localized NKX2.5)

also had higher nuclear SUMO-1 intensities (Figure 3.18B). Whether localization mutants

of NKX2.5 have varying SUMO-1 levels and whether nucleocytoplasmic shuttling of Nkx2.5

involves SUMOylation pathway warrant further investigation.

3.3 Conclusion

Matrix stiffness and TGF-β inhibition induced similar phenotypes in MSCs, in terms of

contractility and matrix synthesis. Through comparative promoter analysis, the decoupled

contractility/synthesis response uncovered NKX2.5 as a mechanosensitive transcription factor

with slow-acting repressive effects on cell tension, particularly on SMA expression. As

discussed in Chapter 2, Lamin-A is known to regulate SRF, while SRF regulates ACTA2;

however, a 60% knockdown of LMNA only led to 40% reduction of ACTA2 (Figure 3.19A).

Furthermore, while retinoic acid treatment greatly reduced lamin A levels (Swift et al., 2013b), it

did not completely abrogate SMA expression on long-term stiff-matrix cultures (Figure 3.19B).

These suggest that the NKX2.5 mechanorepressor pathway is largely independent of the

RA/Lamin-A/SRF signaling axis (Figure 3.19C).

As with activators like SRF (Miralles et al., 2003), YAP/TAZ (Dupont et al., 2011) and RARG

(Swift et al., 2013b), nuclear entry/exit seems to be the last step in converting mechanical

signals to an effective cellular response. Posttranslational modifications should also shed light

into the details of the nucleocytoplasmic shuttling of NKX2.5, with initial correlations shown

here with SUMO-1 (Figure 3.18). In classical signal transduction pathways, kinases (unlike

phosphatases) are evolutionarily optimized to react on short timescales. A striking parallel is

observed here with NKX2.5 (much like a phosphatase) slowly acting on longer timescales than,

say, SRF (much like a kinase) in response to matrix stiffness. These findings may benefit novel

applications of specific compounds that target such factors to optimize stem cell therapy in

fibrotic diseases.
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3.4 Materials and Methods

3.4.1 Transcriptional profiling by DNA microarrays

Total RNA was extracted from cells using Trizol and purified by RNeasy (Qiagen) with on-

column DNase digestion according to manufacturer’s protocol. Adherent cells were gently

scraped in Trizol. Total RNA was amplified and converted to cDNA using WT-Ovation Pico

kit (NuGen). Fragmented and biotin-labeled ST-cDNA was generated using WT-Ovation Exon

Module (NuGen). Samples were tested with Human Gene 1.0 ST DNA microarrays (Affymetrix),

used according to the manufacturer’s instructions. Expression data sets were analyzed by

standard Robust Multi-array Averaging (RMA) methods.

3.4.2 Promoter binding analyses

The Genomatix software suite (www.genomatix.de) curates a library of transcription factor

binding site matrices and DNA sequences of promoter regions such as of ACTA2 (IDs:

GXP_236533, GXP_236534) and COL1A2 (GXP_94473). The MatInspector algorithm

(Cartharius et al., 2005) was used to scan promoter sequences for potential transcription-factor

binding sites based on weighted matrix patterns specific to a transcription factor. Core similarity

and matrix similarity scores that range from 0–1 were calculated (Cartharius et al., 2005), and

reach a value of 1 only if the test sequence matches to the most conserved nucleotide at each

position of the matrix. Transcription factor families, with core and matrix similarity scores ≥

0.80, that differentially bind to ACTA2 and COL1A2 were compiled in Table 3.1.

3.4.3 Isolation of embryonic cardiomyocytes

White Leghorn chicken eggs (Charles River Laboratories) were incubated at 37°C, rotated once

per day, until the desired developmental stage was reached. Embryos were extracted at room

temperature by windowing eggs, removing extraembryonic membranes with forceps and cutting

major blood vessels to the embryonic disc tissue to free the embryo. The embryo was placed
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in a dish containing PBS and quickly decapitated. For E2–E5 embryos, whole heart tubes

(HTs) were extracted by severing the conotruncus and sino venosus. All tissues were incubated

at 37°C in pre-warmed chick heart media (alpha-MEM supplemented with 10% FBS and 1%

Penicillin/Streptomycin, Gibco, 12571-063) until ready for use.

Cell isolation from heart tissue was performed by dicing it to sub-millimeter pieces and then

digesting them with trypsin/EDTA (Gibco, 25200-072). To digest, we incubated tissue pieces

at 37°C in approximately 1 mL trypsin per HT for 13 min with rotation, then for another 2 min

upright to let large tissue pieces settle before carefully removing supernatant and replacing with

an equal volume of fresh trypsin for a final 15-min shake. We stopped digestion by adding an

equal volume of chick heart media. Cells were plated at concentrations of approximately 2×105

cells/cm3 directly on collagen-1-coated PA gels of varying stiffness.
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Table 3.1. Promoter analysis of transcription factor binding to ACTA2 and COL1A2

A. Promoter sequences for comparative transcription factor binding analysis

Gene (Promoter ID) Gene Position Transcription Start Site Promoter Position

ACTA2
(GXP_236533,
GXP_236534)

Chr10:90694831-
90712530
(-)

Chr10:90712580/-30/-
29/-04

Chr10:90707633-
90708233,
Chr10:90712404-
90713080

COL1A2
(GXP_94473)

Chr7:94023873-94060544
(+)

Chr7:94023873
Chr7:94022989-
94024379

B. Top transcription factor binding sites

Matrix
Family

Transcription Factor Strand
Core
Sim.

Matrix
Sim.

Binding Motif

Binding to ACTA2 promoter

V$SMAD Sma- and Mad-related proteins + 1.00 0.97 tctGTCTgaat

V$CEBP CCAAT/enhancer binding protein beta + 1.00 0.97 tttattagGAAAtgg

V$SRFF Serum response factor - 1.00 0.87 gccctgTATGgttaa

V$NKXH Homeodomain factor Nkx-2.5/Csx + 1.00 1.00 cctcaAGTGgttattt

V$NKX6 NK6 homeobox 1 + 1.00 1.00 tcttTTAAttacccg

V$NKXH Homeodomain protein Nkx-3.2 + 1.00 0.99 gggtaAGTGgcgc

V$NKX1 NK1 homeobox 2, Sax1-like - 1.00 0.91 cgggtAATTaaaag

V$NKXH NK2 homeobox 4, NKX 2 DELTA + 1.00 0.88 attccAGTGgctcttt

V$HOMF Homeobox protein HMX3/Nkx5.1 + 1.00 0.97 gaagcAAGTggga

V$HOXF Homeobox C8 / Hox-3alpha + 1.00 0.99 cttttaATTAcccggt

V$HOXF Hox-1.3, vertebrate homeobox protein + 1.00 0.87 ctgacTAATttaggc

V$HOXC Meis homeobox 1 + 1.00 0.98 aacttGATTtataaa

V$ABDB Homeobox B9 - 1.00 0.96 gacccaTAAAatag

V$OCT1 Octamer-binding factor 1 (OCT1) - 1.00 0.95 agcATGCaaagaa

V$STEM Octamer-binding factor 3/4 (OCT3/4) + 1.00 0.93 ttctttGCATgctacc

V$BRN5 POU class 6 homeobox 1 (POU6F1) - 1.00 0.86 aaatcATTAaggtg

Binding to COL1A2 promoter

V$SMAD Sma- and Mad-related proteins - 1.00 1.00 cttGTCTggat

V$SRFF Serum response factor - 1.00 0.82 ccgacATGGgcag

V$NKXH Homeodomain protein Nkx-3.2 + 1.00 0.91 gtctAAGTgctagac

V$HOMF Homeobox protein HMX3/Nkx5.1 + 1.00 0.93 cctacAAGTggcct

V$HOXF Hox-1.3, vertebrate homeobox protein - 1.00 0.85 aaaTAATaaagccc

V$HOXC Meis homeobox 1 - 1.00 0.88 gtctgGATTtaccag

V$ABDB Homeobox B9 + 1.00 0.89 aactggTAAAtcca

V$OCT1 Octamer-binding factor 1 (OCT1) + 0.75 0.85 gatCTGCaaattct

V$STEM Octamer-binding factor 3/4 (OCT3/4) + 1.00 0.97 gagtctGCATgtcta
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Figure 3.1. Genes relevant to mechanobiology in development. Relative expression
levels of genes relevant to mechanobiology in development, from extracellular matrix proteins
to transcription factors, in embryonic stem cells (ESC), adult fibroblasts, and fibroblast-
derived induced-pluripotent stem cells (iPSC). Dataset is curated from the submission by
Liu et al. (2011a) to the public Gene Expression Omnibus (GEO) repository (GDS3892,
http://www.ncbi.nlm.nih.gov/sites/GDSbrowser). Arrows indicate the interactions of
outside-in signaling components from matrix to nucleus.
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Protein names (Gene) Total Peptides Sti�/Soft
Alpha-actinin-1 (ACTN1) 35
Alpha-actinin-4 (ACTN4) 55
Palladin (PALLD) 11
Myosin light chain kinase, smooth muscle (MYLK) 18
Myosin Phosphatase-Targeting Subunit (MYPT1) 25
Collagen alpha-1(I) chain (COL1A1) 16
Collagen alpha-2(I) chain (COL1A2) 20
Collagen alpha-1(VI) chain (COL6A1) 27
Collagen alpha-2(VI) chain (COL6A2) 22
Collagen alpha-3(VI) chain (COL6A3) 9

5.2
2.3
1.1
0.9
0.9
0.9
0.8
1.0
0.9
0.4

A B
STIFF
SOFT

ACTA2 1.88 ± 0.07
CALD1 1.40 ± 0.07
ROCK1 1.23 ± 0.02
ROCK2 1.23 ± 0.02
MYPT1 1.15 ± 0.06
MYLK4 1.07 ± 0.04
MYH9 1.07 ± 0.02
ACTN1 1.05 ± 0.04
ACTN4 1.02 ± 0.01
PALLD 1.04 ± 0.05
NKX2-5 0.98 ± 0.11
SRF 0.94 ± 0.05
YAP1 1.01 ± 0.09
ACTA1 0.97 ± 0.06
COL1A1 0.89 ± 0.02
COL1A2 0.86 ± 0.02
COL6A1 0.76 ± 0.04
COL6A2 0.79 ± 0.02
COL6A3 0.74 ± 0.02

Gene Symbol

Low

High

Figure 3.2. Transcriptomic and proteomic profiles of MSCs on gels. A, Microarray profiling
of contractility- and matrix-relevant mRNA expression levels from MSCs cultured for 1 day on
soft (0.3 kPa) or stiff (40 kPa) collagen-1 coated PA gels. B, Proteomic profiling of 2-day MSC
cultures on PA gels. Cell lysates were run on SDS-PAGE and gel bands in the range of ∼110–
160 kDa were run on the mass spectrometer. Colors of gene/protein symbols indicate gene
abundance, while those of ratios indicate up- or downregulation relative to soft-gel cultures.
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Figure 3.3. Matrix stiffness downregulates collagen-I matrix synthesis in MSCs.
A, Immunofluorescence staining of α-smooth muscle actin (red) and procollagen-1 (green) in
MSCs cultured for 2 days on soft, scar-like (0.3 kPa, with embedded collagen), and stiff gels.
Hoechst 33342 for DNA stain, blue. Scale bar, 50 µm. B, Western blot of procollagen-1 levels
of MSCs cultured for 7 days on gels; HSP70 was used as normalization control.
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Figure 3.4. Stiff gels coated with collagen-2 reduced collagen-1 in MSCs. A, Mesenchymal
stem cells cultured on collagen-2 coated PA gels for 7 days, labeled for collagen-1 (red), F-actin
(green) and DNA (blue). B, Quantification of collagen-1 production on gels showed decrease
with gel stiffness. Scale bar, 50 µm.
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Figure 3.5. TGF-β is sufficient but not necessary for α-smooth muscle actin expression.
A, Immunofluorescence staining of procollagen-1 (green) and α-smooth muscle actin (red)
in mesenchymal stem cells cultured on soft (0.3 kPa), scar-like, and stiff (40 kPa) gel for
2 days (top panel), with TGF-β1 (10 ng/mL) (middle), or with TGF-β receptor inhibitor (10 µM
SB505124, bottom). Hoechst 33342 for DNA, blue. B, Western analysis of the abovementioned
conditions with Hsp-70 as normalization control.
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Figure 3.6. NKX family of transcription factors: promoter binding and gene abundance.
A, Analyses of promoter binding by NKX and Serum Response Factors families using the
MatInspector tool (www.genomatix.de; Cartharius et al., 2005) on ∼1200 base-pairs upstream
of transcription start sites (red arrows) of ACTA2 (also see Table 3.1). B, Relative abundances
within the NKX family transcriptome derived from human MSCs revealed NKX2-5 to be the most
abundant.
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Figure 3.7. Matrix stiffness modulates Nkx2.5 expression in embryonic cardiomyocytes.
A, Immunofluorescence staining of Nkx2.5 (left) and sarcomeric α-actinin (right, red) in
embryonic day-5 (E5) chick cardiomyocytes plated on 6 kPa PA gels for 3 days. Hoechst 33342
for DNA, blue. Scale bar, 50 µm. B, Quantification of i) total Nkx2.5 intensity and ii) nuclear-to-
total Nkx2.5 intensity in E5 chick cardiomyocytes cultured on soft (0.3 kPa) and stiff (40 kPa)
gels for 3 days. ∗p < 0.05.
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MFPSPALTPTPFSVKDILNLEQQQRSLASGDLSARLEATLAP
ASCMLAAFKPEAYSGPEAAASGLAELRAEMGPAPSPPKCSP
AFPAAPTFYPGAYGDPDPAKDPRADKKELCALQKAVELDKA
ETDGAERPRARRRRKPRVLFSQAQVYELERRFKQQRYLSPA
ERDQLASVLKLTSTQVKIWFQNRRYKCKRQRQDQTLELLGP
PPPPARRIAVPVLVRDGKPCLGDPAAYAPAYGVGLNAYGYN
AYPYPSYGGAACSPGYSCAAYPAAPPAAHAPAASANSNFVN
FGVGDLNTVQSPGMPQGNSGVSTLHGIRAW

Figure 3.8. MSCs express NKX2.5 with some modifications. A, Western analysis of NKX2.5
in MSCs revealed multiple band shifts. B, Western analysis of wild-type Nkx2.5 overexpressed
in A549 cells, with the expected molecular weight of 35 kDa, as well as bands that may be post-
translationally modified. C, Mass spectrometry analysis of proteins in the 30–40-kDa range
from Nkx2.5-overexpressing A549s confirmed Nkx2.5-antibody specificity with the detection of
7 peptides unique to Nkx2.5 and their abundance ranking relative to other proteins in that range.
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Figure 3.9. Matrix stiffness modulates NKX2.5 localization in MSCs., Immunofluorescence
staining of NKX2.5 (top) and α-smooth muscle actin (bottom, red) in MSCs on soft (0.3 kPa,
left) and stiff (40 kPa, right) PA gels for 7 days. Scale bar, 50 µm. Insets: Magnified images of
nuclei; scale bars, 20 µm. Hoechst 33342 for DNA, blue.
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Figure 3.10. NKX2.5 is a slow-acting mechanorepressor of α-smooth muscle actin. MSCs
cultured for 1 (left), 2 (middle) or 7 days (right) on soft (0.3 kPa, blue) or stiff (40 kPa, red) gels
differed in their dynamic range of SMA expression. NKX2.5 depletion from the nucleus took
several days and led to ∼8-fold upregulation of SMA in stiff-gel cultures. Inset: Western blot of
NKX2.5 from soft- and stiff-gel cultures. HSP90 as loading control.
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Figure 3.11. Subcellular localization of Nkx2.5 by mutating its nuclear localization signal
(NLS). A, MSCs on rigid substrates leads to nuclear export of NKX2.5, which can interact
with stress fibers or otherwise degrades. B, Amino acid sequence of mouse Nkx2.5 with
highlighted alanine- and proline- (A/P) rich regions (gray) and DNA-binding homeodomain
region (green). The NLS sequence (red) is mutated in NLS1, NLS2 and NLS3 versions of
Nkx2.5 as indicated. C, A549 cells were transfected with wild-type and NLS-mutated Nkx2.5
plasmids and immunolabeled 2 days after transfection with anti-Nkx2.5 antibody (green). Only
NLS3 mutant localized in the cytoplasm. Hoechst 33342 for DNA, blue. Scale bar, 10 µm.
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Figure 3.12. NKX2.5 can reprogram the stiff phenotype of MSCs. A, Overexpression of
wild-type and NLS-mutated Nkx2.5 (green) in MSCs (white arrows) cultured on rigid plastic.
Insets: Magnified nuclei with overexpressed NKX2.5. DNA-edge (white) is superimposed.
Scale bars, 50 µm. B, i) Fold-changes in Nkx2.5 intensity upon overexpression; ii) Nuclear/total
ratio of Nkx2.5 was increased in NLS1 and NLS2, but reduced in NLS3; iii) SMA expression is
abrogated with overexpressed nuclear-localized Nkx2.5 iv) with concomitant reduction of stress
fiber count, v) cell and vi) nuclear areas. Mean ± s.e.m. ∗p < 0.05, ∗∗p < 0.01 when compared
to untreated control.
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Figure 3.13. Extranuclear localization of NKX2.5. A, Immunofluorescence of NKX2.5 (red)
in MSCs showed localization to stress fibers as visualized by α-smooth muscle actin (green).
B, NKX2.5 was found to localize in lamellipodia with myosin phosphatase-1 (MYPT1) in A549
cells. Scale bars, 10 µm.

83



A NKX2.5

SMA
DNA

0.0

1.0

2.0

0 5 20 30
Blebbistatin Treatment Time (h)

 

NKX2.5
Nuclear/Total

NKX2.5
Nuclear

SMA

** **
**

*

B
NKX2-5 1.0 1.2
EGR1 2.4 1.4
MYPT1 1.1 0.8
ACTA2 0.4 0.5
MEF2C 1.3 1.4
GATA4 1.0 1.1
NPPA 0.9 1.0
GJA5 0.9 1.1
CALR 0.8 1.0
ECE1 0.9 1.1
ADORA1 1.0 1.0
ACTC1 1.0 0.1
MYOCD 1.0 0.1
LMNA 0.8 0.9
SRF 0.8 0.6
MYH9 0.7 0.7
YAP1 1.1 0.9
ANKRD1 0.3 0.1
HSP90AB1 1.0 1.0

TCP Bleb
TCP Ctrl

11 kPa Bleb
11 kPa Ctrl

NKX2.5
Repressor
Pathway

NKX2.5
Cardiac

Pathway

SRF

YAP

House-
keeping Low High

Figure 3.14. Blebbistatin rescues NKX2.5 depletion from the nucleus in stiff-gel cultures.
A, Kinetics of NKX2.5 expression and localization in MSCs cultured on rigid plastic and treated
with blebbistatin for 4—27 h revealed loss of SMA (red) and nuclear enrichment of NKX2.5
(gray). Hoechst 33342 for DNA, blue. Scale bar, 50 µm. Mean ± s.e.m. ∗p < 0.05,
∗∗p < 0.01 when compared to untreated control. B, Transcriptomic profiling of MSCs treated
with blebbistatin on 11 kPa gels or rigid plastic (TCP) for 24 h revealed decreased SRF and
SRF-target levels (e.g. ACTA2). Downstream targets of NKX2.5 related to cardiac specification
were downregulated and/or lowly-expressed.
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Figure 3.16. TGF-β inhibition recapitulates matrix stiffness-induced nuclear exit of
NKX2.5. A, Inhibition of TGF-β pathway (1-day treatment with SB505124, 10 µM; 7-day culture)
depleted NKX2.5 (top) from nuclei of MSCs cultured on both soft (0.3 kPa, left) and stiff (40 kPa,
right) gels, and increased SMA (bottom). Hoechst 33342 for DNA, blue. Scale bar, 50 µm. B
Scatterplots of SMA intensity vs nuclear/total NKX2.5 in MSCs on soft vs stiff matrices with or
without TGF-β inhibition (1-day treatment, 7-day culture). C, Sustained treatment (3 days) of
SB505124 reduced NKX2.5 but increased SMA levels in MSCs.
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Figure 3.17. Crosstalk of NKX2.5 and Serum Response Factor (SRF) with TGF-β
signaling. A, At basal TGF-β and SRF activity, soft matrix-induced nuclear localization of
NKX2.5 represses ACTA2, while stiff matrix induces high SRF activity (Swift et al., 2013b)
that could then inhibit TGF-β induction of collagen-1 (Lee et al., 2007). B, Inhibiting TGF-β
(i.e. with SB505124 treatment) prevents collagen-1 but not SMA, due to basal SRF activity on
soft matrix, or to enhanced SRF activity and nuclear exit of NKX2.5 on stiff matrix. Sustained
TGF-β inhibition also reduces total NKX2.5 expression leading to further SMA expression.
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Figure 3.18. Post-translational modifications of NKX2.5. A, NKX2.5 was also found in
the Golgi apparatus, as visualized by fluorescein-labeled wheat germ agglutinin (WGA; right,
green). In contrast, procollagen-I staining (left, green) is predominantly in the endoplasmic
reticulum. DNA, blue. Scale bar, 10 µm. B, Colocalization of NKX2.5 and SUMO-1 in
MSC nuclei. (Top) MSCs with small spread areas had nuclear NKX2.5 (left) and enhanced
nuclear SUMO-1 intensities (middle), but not in highly spread MSCs with NKX2.5-depleted
nuclei (bottom). Hoechst 33342 staining for DNA (right). Scale bar, 50 µm.
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Figure 3.19. NKX2.5 de-repression on stiff matrix, which couples SMA and Lamin-A
upregulation, is independent of retinoic acid/Lamin-A/SRF axis. A, Effect of LMNA
knockdown to ACTA2 levels in MSCs. B, Quantitative immunofluorescence of lamin A and
α-smooth muscle actin (SMA) levels in MSCs cultured on gels with or without Retinoic Acid
(RA, 1 µM) treatment for 7 days (mean ± s.e.m.). C, Retinoic acid (RA) disrupts stress-
stabilized lamin-A assembly (but only partially disrupts downstream SMA) through retinoic acid
receptor-γ (RARG) (Swift et al., 2013b), as NKX2.5 functions independently as a slow-acting,
mechanosensitive repressor of SMA.
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Chapter 4

Systems Mechanobiology:
Tension-inhibited protein turnover
is sufficient to physically control
gene circuits

Portions of this work appear in Science 341:1240104, 2013 and Current Biology 24:R1-R7,
2014.
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Abstract

Mechanotransduction pathways convert forces that stress and strain structures within cells into

gene expression levels that impact development, homeostasis, and disease. The levels of

some key structural proteins in the nucleus, cytoskeleton, or extracellular matrix have been

recently reported to scale with tissue- and cell-level forces or mechanical properties, and so the

mathematics of mechanotransduction becomes important to understand. Here, we show that if

a given structural protein positively regulates its own gene expression, then stresses need only

inhibit degradation of that protein in order to achieve stable, mechanosensitive gene expression.

This basic ‘use it or lose it’ module is illustrated by application to meshworks of nuclear lamin

A, mini-filaments of myosin II, and extracellular matrix collagen fibers – all of which possess

filamentous coiled-coil/supercoiled structures. Past experiments not only suggest that tension

suppresses protein degradation mediated and/or initiated by an enzyme, but also that transcript

levels vary with protein levels as key transcription factors are regulated indirectly by these

structural proteins. Coupling between modules occurs within single cells and between cells

in tissue, as illustrated during embryonic heart development where cardiac fibroblasts make

collagen that cardiomyocytes contract. With few additional assumptions, the basic module has

sufficient physics to control key structural genes in both development and disease.

4.1 Introduction

Polymer physics provides fundamental explanations for how elasticity and viscosity of diverse

polymer systems often scale as power laws with polymer concentration (Rouse, 1953), even

when the polymers interact or assemble (Doi and Edwards, 1978). Living organisms are of

course built from biopolymers (Figure 4.1A), and assembling proteins such as extracellular

matrix (ECM) collagens, which are the most abundant proteins in metazoans, exhibit gel

elasticities that indeed scale with concentration when purified and reconstituted (Yang et al.,

2009). Not surprisingly perhaps, tissue stiffness not only scales with collagen levels, but is
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actually dictated by the amount of collagen with soft tissues such as brain having much less

collagen than stiffer tissues such as muscle (Swift et al., 2013b). However, biopolymers that

include many other key structural proteins within cells and tissues are subject to a variety of

enzymatic processes of degradation and synthesis on time scales that can be only hours or

days (Schwanhausser et al., 2011; Eden et al., 2011). How the mechanics of a tissue or cell

reaches or maintains a steady state is therefore a fundamental question of biopolymer physics

that impacts the form, function, and dysfunction of cells and tissues in general.

Some of the earliest examples of tension-mediated protein stability were demonstrated

in cyclically beating neonatal rat heart cells, where components of the contractile myofibril

assembly such as cardiac actin (Sharp et al., 1993) and myosin heavy chain (Byron et al.,

1996) were found degraded when contractile activity was reduced. For collagen, recent

evidence suggests mechanical strain stabilizes against enzymatic degradation (Flynn et al.,

2010). High matrix stiffness is further associated with an increased stress or tension in the cell

(Discher et al., 2005), and the key contractile protein, myosin II, responds to matrix stiffness by

assembling into stress fibers and increasing in amount (Rehfeldt et al., 2012; Engler et al.,

2006). More recently, we have shown that nucleoskeletal lamin-A level scales with tissue

microelasticity E, with higher lamin A levels giving physically stiffer nuclei in stiffer tissues (Swift

et al., 2013b). Lamin A and myosin II thus seem to mechanically couple to the collagenous

matrix (Figure 4.1A) in ways that are prescribed by polymer physics. These coiled-coil proteins

that assemble into structural networks are prime candidates as biological tension sensors,

transducing similar mechanical signals from the ECM to the nucleus (Wang et al., 2009).

Genome-wide measurements of the production and degradation dynamics of mRNA as

well as protein in mouse fibroblasts (NIH 3T3) in standard cultures (Schwanhausser et al.,

2011) have shown that mRNA and protein half-lives are fairly uniform within structural

groupings of collagens, integrins, and actomyosin components (Figure 4.1B). Collagen and

actomyosin modules differ significantly in half-lives, and the integrins exhibit intermediate

half-lives consistent perhaps with these membrane proteins serving as intermediary linkages

between ECM and the cytoskeleton. Even structural proteins on the nuclear envelope such as

92



lamins exhibit largely coordinated expression as a single module, with half-lives similar to those

for the actomyosin module. This seems consistent with mechanically coordinated responses

of the nuclear lamina to cytoskeletal stresses (Houben et al., 2007). Regardless, for a given

structural gene (S) and its corresponding protein (s) in a module, the typical rate equations are:

dS

dt
= α− β (4.1)

ds

dt
= γ − δ (4.2)

where α and γ are synthesis rates, and β and δ are degradation rates for mRNA and protein,

respectively. Any of these terms could in principle be functions of S, s and other factors such as

tension. The goal here is to identify a possible minimal model that fits the current understanding

of tension coupling to gene expression.

Tension on coiled-coil assemblies has been shown to suppress the affinity of a

phosphorylating kinase/protease that initiates enzymatic solubilization/degradation (Flynn et al.,

2010; Raab et al., 2012; Swift et al., 2013b; Buxboim et al., 2014). Like pulling on a wet

rope to wring out water, tension squeezes out free volume or sterically shields a binding site

via coiled-coil assembly to prevent enzyme access. Single-molecule studies of collagen have

suggested tension-enhanced degradation (Adhikari et al., 2011), but such short polymers tend

to unwind under tension, whereas rope-like polymers would tend to tighten their coils and

knots. Regardless of the mechanism, the rate of degradation can be generally represented

by Michaelis-Menten kinetics (Michaelis and Menten, 1913) as

δ(s) = δ0s
n

Kn
s + sn

(4.3)

where δ0 is the maximum degradation rate at saturating concentrations of substrate s, such as

a coiled-coil protein assembly. Ks is an enzyme affinity for the substrate and is also a surrogate

for tension; n is a cooperativity coefficient ≥ 2 that is typical of multimeric interactions. By

incorporating Equation (4.3) to Equation (4.2) and by including an experimentally supported
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mechanism for transcriptional control, we solve the system of differential equations at steady

state and arrive at a relationship between S, s and tension-surrogate Ks.

Starting with the model above applied to lamin A, we then extend the model to two structural

modules that couple the nucleoskeleton to the cytoskeleton. Dynamics on the tissue-level is

then illustrated with a ‘two-cell type’ model of embryonic heart development. Our parsimonious

models thus likely elaborate systems-level behavior of structural modules that respond to

mechanical stress. These results have implications for both the physiology and pathophysiology

of diseases involving structural proteins, from early cardiac development to stress-dependent

aging.

4.2 Results and Discussion

4.2.1 Tension-inhibited degradation of coiled-coil proteins

With lamin-A as a representative mechanosensitive protein, we predicted systems-level trends

by constructing a parsimonious model of its gene circuit that takes into account transcription

(α) to be regulated by its own protein and protein turnover (δ) to be tension-dependent

(Figure 4.2A). For simplicity, synthesis of messenger RNA (mRNA) and protein as well as

degradation of mRNA were all assumed to be linear with rate constants of order unity (to

eliminate bias on one biological process). Other variations for the reaction orders of α, β,

and γ in Equations (4.2) and (4.3) were explored further in Appendix B, and only first-order

rates can sufficiently recapitulate experimental observations. Kinetic measurements of lamin-

A changes with mechanical perturbations are clearly needed to further develop the model.

Nonetheless, Lamin-A protein is known to feed back on its own message as it positively

regulates it own transcription factor, retinoic acid receptor-γ (RARG) (Swift et al., 2013b), such
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that the respective rate equations for lamin-A mRNA (L) and protein (l) are:

dL

dt
= α̃ · l − β̃ · L (4.4)

dl

dt
= γ̃ · L− δ(l) (4.5)

where α̃ is a first-order protein-induced mRNA-production rate constant, β̃ is a first-order

mRNA-degradation rate constant, γ̃ is a first-order mRNA-translational rate constant, and δ

is a tension-dependent protein-degradation rate, as described in Equation (4.1).

Time evolution of protein (l) and mRNA (L) can be analytically solved with example

trajectories in Figure 4.2B as a phase plot of l(t) versus L(t) converging to {lss, Lss}. The

phase plot suggests a stable steady-state node, lending both mathematical consistency and

biophysical relevance to the parsimonious model. It also suggests that the initial protein and

mRNA levels dictate expression dynamics. For example, for lamin A and the nucleoskeletal

module, which have stable protein levels but unstable mRNA levels (Schwanhausser et al.,

2011), protein dynamics for a given tension set point (K) are predictably well-controlled and

stabilize linearly towards steady-state (Figure 4.2B, upper left quadrant). Lamin A is of course

known for tethering heterochromatin near the nuclear envelope, and thus, may need a relatively

stable protein expression. Other gene groups with unstable mRNAs include RNA-binding

proteins (Schwanhausser et al., 2011). On the other hand, the ECM module has the opposite

trend (Figure 4.1B); the kinetics of the model predicts that for highly stable mRNA but short-lived

protein levels, the dynamics are nonlinear (Figure 4.2B, lower right quadrant). That is, protein

levels would overshoot prior to stabilizing at a steady-state level. The kinetics of this regime

was verified by tracking collagen protein expression in mesenchymal stem cells over time from

suspension to attachment, starting at low collagen protein levels but with COL1 mRNA levels

remaining relatively stable among structural genes (Figure 4.1B). With an initially high mRNA

level (Figure 4.2B, lower right quadrant), collagen protein tended to overshoot prior to stabilizing

at a lower steady-state concentration, as was observed experimentally over 7 days (Figure 4.3).

Other gene groups in this regime include those involved in defense response and homeostasis
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(Schwanhausser et al., 2011).

Ultimately, tension dictates lamin-A (and LMNA) levels regardless of initial conditions, such

that at steady state,

dl

dt
= 0, dL

dt
= 0 (4.6)

Equations (4.4) and (4.5) can be analytically solved for n = 2 to yield nonzero steady-state

values for l and L,

{lss, Lss} =

1
2

(
β̃δ0
γ̃α̃

)
− 1

2

√√√√( β̃δ0
γ̃α̃

)2

− 4Kl,
α̃lss

β̃

 (4.7)

Based on the steady-state analysis above, a solution only exists if

(
β̃δ0
γ̃α̃

)2

− 4Kl > 0 (4.8)

Although steady-state values depend on the various rate constants, we assumed all to be

important and of order ∼1 as we focus on Kl: at high stresses where lamin-A assembly is

favored, Kl increases so that phosphorylation-mediated lamin-A degradation (Buxboim et al.,

2014) decreases. Plotting steady-state lamin-A levels lss against different values for Kl fit

a power-law lss ∼ K2
l (for n = 2). As a test of whether such a model could capture

key experimental trends, computational results showed that if Kl = (Tension)0.3, then lss ∼

(Tension)0.7 (Figure 4.2C), which parallels the scaling of lamin A with tissue microelasticity E

(noting that Tension∼ E; Swift et al., 2013b). The set of equations and trends delineated above

also applies obviously to collagen as it defines tissue E itself, and it was found to scale more

strongly experimentally (E1.5; Swift et al., 2013b).

4.2.2 Mechanical coupling of coiled-coil modules in series

We further developed our model by coupling two coiled-coil modules, e.g. cytoskeleton and

nucleoskeleton, with nonmuscle myosin (e.g. MYH9) and lamin A as representatives in their
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respective modules. Lamin-A {L, l} and nonmuscle-myosin {M,m} message and protein

circuitry is schematically presented in Figure 4.4A. In particular, expression kinetics were

described as coupled rate equations for the respective transcripts {L,M} and proteins {l,m}:

dL

dt
= α̃1 · l − β̃1 · L (4.9)

dl

dt
= γ̃1 · L− δ1 ·

lnl

Knl
l + lnl︸ ︷︷ ︸

coupled to myosin

(4.10)

dM

dt
= α̃2 ·m− β̃2 ·M (4.11)

dm

dt
= γ̃2 ·M − δ2 ·

mnm

Knm
m +mnm︸ ︷︷ ︸

coupled to matrix E

(4.12)

Again for simplicity, mRNA degradation and translation rates were assumed of first order.

Lamin-A protein positively regulates one of its transcription factors (RARG; Swift et al., 2013b)

as does MYH9 with one of its transcription factors (SRF ; Miralles et al., 2003) so that each

enhances its own transcription (with rate constants, α̃1 and α̃2, respectively). Mechanical

regulation of protein phosphorylation and turnover has been demonstrated in recent studies

(Raab et al., 2012; Swift et al., 2013b; Buxboim et al., 2014), and so we described lamin-A

and myosin turnover with suitable Hill functions (rate constants δ1, δ2). Specifically, lamin-A

turnover is dictated by Kl = mx/nl for some x that dictates sensitivity of lamin-A degradation

to myosin-generated stress. Myosin protein turnover depends on matrix elasticity as simply

Km = Ey/nm for some y that represents the affinity for myosin degradation. Both Km

and Kl effectively couple matrix mechanics to cytoskeletal stress, which in turn tenses the

nucleoskeleton (Figure 4.1A; Wang et al., 2009).

Equations (4.9) to (4.12) above were solved numerically at steady state (all derivatives = 0;

see Appendix B.3). Rate constants and free parameters were adjusted collectively within an

order of magnitude of each other (Appendix B.1.2) to reflect the observed similar half-lives of

the modules (Figure 4.1B). In the simplest case, we first assumed synthesis and degradation

rate constants to be equal (α̃1 = α̃2; β̃1 = β̃2; γ̃1 = γ̃2;nm = nl;x = y) and observed
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that, for any given E, the range of expression for myosin is larger than that for lamin A

(Figure 4.4B). This likely reflects the matrix-cytoskeleton-nucleoskeleton assembly in series

(Figure 4.1A). Nonetheless, as matrix and cell tension suppresses protein phosphorylation

and turnover, steady-state levels monotonically increase with matrix E, consistent with coupled

mechanoregulation of lamin A and myosin (Buxboim et al., 2014), just as with SMA and lamin A

(Figure 2.12A).

If we consider a first-order effect of lamin-A protein on MYH9 transcription via SRF pathway

(Swift et al., 2013b), then we can modify Equation (4.11) as:

dM

dt
= α̃2 ·m+ α̃3 · l − β̃2 ·M (4.13)

In this case, numerical analysis showed that the dynamic range of myosin increased further due

to matrixE and lamin-A contributions, but not the relative slope of the myosin–lamin-A response

to matrix E (Figure 4.4C). The relative sensitivity of each module is instead dependent on

x and y. If sensitivity of lamin A to degradation (x) is increased (or decreased), then more

(lesser) myosin protein is required to generate the same stress that maintains the original

lamin-A protein level (Figure 4.5A). Reducing x is similar to decoupling nucleoskeletal and

cytoskeletal modules, as was done experimentally by ectopic expression of SUN2, a nuclear

membrane protein that connects the nucleoskeleton to the cytoskeleton, which led to reduced

lamin-A levels (Swift et al., 2013b). On the other hand, if sensitivity of myosin to degradation (y)

is increased, then at low E the steady-state levels of myosin (and indirectly, lamin A) is much

lower; at sufficiently high matrix E, myosin (and lamin) levels remain relatively unperturbed

(Figure 4.5B). Experiments that observed this prediction include phosphomimetic mutants of

nonmuscle myosin IIA that enrich myosin in the soluble pool, and nonphosphorylatable mutants

that promote myosin-rich stress fibers (Raab et al., 2012).
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4.2.3 Logistic coupling between collagen and myosin in cardiac
development

Systems biology can potentially build an integrated understanding of the electrophysiological

and physical processes involved in cardiac physiology and pathophysiology. It might also help

identify therapeutic targets. Understanding how the balance between mechanical stiffness and

contractile ability of the myocardium is achieved with age and pathological changes ultimately

requires a systems-level model to guide hypotheses. The expression of actomyosin contractility

proteins and collagen, among hundreds of abundant proteins, parallel myocardial stiffening in

development (Majkut et al., 2013). Both static/cyclic and uniaxial/biaxial strains encourage

collagen matrix deposition by cardiac fibroblasts (MacKenna et al., 2000), as passive and

active contraction increase throughout cardiac development. However, as contractility (or

myosin levels) increasingly strains the developing heart tissue, we postulate that fibroblast

proliferation is ultimately limited by the stiffness of their environment, which correlates strongly

with collagen-1 levels (Majkut et al., 2013; Swift et al., 2013b). The various components of

the developing heart matrix and cytoskeleton, and any other functionally relevant signaling

proteins must be integrated into a realistic physical model of the observed mechanics.

Thus, we considered using our simplified model that focuses on the mechanical interaction

between the collagenous matrix deposited by cardiac fibroblasts and the contractile activity of

cardiomyocytes.

To explore possible general mechanisms, a coupled network of myosin {M,m} and

collagen {C, c} mRNAs and proteins can be modeled within the developing myocardium

(Figure 4.6A). With collagen produced primarily by cardiac fibroblasts, the rate of collagen

mRNA production is assumed to be proportional to the fibroblast population, which is in turn

limited by tissue stiffness imparted by collagen matrix density, such that:

dC

dt
= α̃1 ·

cnf−1

k
nf

f + cnf︸ ︷︷ ︸
fibroblast crowding

−β̃1 · C (4.14)
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The collagen mRNA production rate of fibroblasts increases at low collagen matrix densities up

to a critical collagen concentration (and hence matrix stiffness), then it decreases thereafter; the

amplitude and critical point of this biphasic behavior are modulated by nf and kf , respectively

(Figure 4.6B).

The concept of tension-mediated degradation is again applied here for collagen protein.

Collagen matrices have been shown to be stabilized (against degradation) by applied tension

(Flynn et al., 2010), such that:

dc

dt
= γ̃1 · C − δ̃1 ·

cnc

Knc
c + cnc︸ ︷︷ ︸

coupled to myosin

(4.15)

Cardiomyocytes are of course the primary contributors of myosin-mediated tension in cardiac

tissue, such that Kc = mx/nc for some x that dictates the extent of myosin-mediated

collagen degradation. Additionally, myosin-II molecules under tension remain assembled and

abundant (Majkut et al., 2013; Swift et al., 2013b), with some evidence of tension-suppressed

phosphorylation of nonmuscle myosin-II suggesting an intermediate step (Raab et al., 2012).

Striated muscle myosin-II is certainly turned-over in vivo (Ball et al., 1987), and its disuse

probably favors degradation and muscle atrophy. Thus, the transcript (M ) and protein (m)

rate equations for myosin are coupled to collagen such that:

dM

dt
= α2 ·m− β2 ·M (4.16)

dm

dt
= γ2 ·M − δ2 ·

mnm

Knm
m +mnm︸ ︷︷ ︸

coupled to collagen

(4.17)

where Km = cy/nm , for some y.

With rate constants and free parameters adjusted within an order of magnitude of each other

Appendix B.1.3, Equations (4.14) to (4.17) were solved numerically Appendix B.4 and obtained

best agreement with the reported experimental results. By representing the basic assumptions

on fibroblast population crowding (Equation 4.14) and tension-stabilized proteins (Eqs. 4.15
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and 4.17), the model was able to recapitulate the logistic growth kinetics (Figure 4.6C) observed

experimentally for myosin and collagen protein levels in a developing heart (Majkut et al., 2013).

The model also predicted, perhaps not surprisingly, that mRNA levels should exhibit the same

trends as the protein counterparts (Figure 4.6C).

4.3 Conclusion

The detailed molecular mechanism for tension-mediated stabilization of rope-like coiled-coil

polymers is not yet known, but tension in polymer fibers and a polymer network is thought to

sterically or conformationally prevent protease binding to collagen fibers (Flynn et al., 2010) or

kinase binding to myosin minifilaments (Raab et al., 2012) and lamin-A meshwork (Swift et al.,

2013b). Regardless of mechanism, turnover of key structural proteins appears to be mechano-

regulated.

In the models presented here, membrane-bound integrins were implicitly overlooked.

Overexpressing integrin receptors does not change the ability of a cell to spread, as observed

experimentally (Engler et al., 2004b). On the other hand, perturbations to the Linker of

Nucleoskeleton and Cytoskeleton (LINC) complex are understandably more complicated with

observed cellular genotypic effects as it influences chromatin architecture. Nonetheless,

the LINC complex is implicitly included in the x coefficient, as it couples cytoskeletal and

nucleoskeletal responses. Indeed by applying force to nesprin-1, an isolated nucleus with an

intact nuclear lamina stiffens (Guilluy et al., 2014).

To date, most experimental techniques in developmental biology come short of

characterizing a systems-level landscape. Our modeling analysis of collagen and myosin

levels in cardiac tissue development (Figure 4.6) demonstrates that coupled structural modules

are sufficient to recapitulate the dynamics of tissue-level architecture. Given the highly

interconnected signaling pathways in mammalian biology, our work distills the essential

mechanobiological circuits that govern not just intracellular but also tissue-level observations.
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The inherent difficulty of detailing these circuits with accurate rate constants and functional

forms will be addressed by developing more sophisticated “-omic” approaches.

4.4 Methods

The sets of ordinary differential equations (ODEs) that describe the various mechanobiological

systems modeled here are explicitly written in Appendix B. The analytical results were

also derived where applicable. Numerical integration of systems of ODE were performed in

Mathematica (version 8, Wolfram Research). The values of the various rate constants, initial

conditions, etc. used in each model are also included in Appendix B.

Steady-state measurements were obtained by allowing the system to run until the levels of

each species stabilize.
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Chapter 5

Future challenges in characterization
and mechanochemical control of
stem cell fate

Portions of this work appear in Current Opinion of Biotechnology 28:46-50, 2014 as the cover
article.
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Abstract

Recent experiments have revealed that stem cells respond to biophysical cues as well as

numerous biochemical factors. Nanoscale properties at the cell-matrix interface that appear to

affect adherent stem cells range from matrix elasticity to porosity-dependent matrix tethering

and geometry of adhesive linkages. Some stem cells can also remodel their immediate

environment to influence phenotype, but this depends also on matrix-material properties such

as covalent bonding and soft versus hard materials. Efforts to combine both matrix instructions

and active cell feedback are required to properly direct stem cell behavior.

5.1 Introduction

Within the last ten years, stem cell approaches have become conceivable or even realized

for each of the roughly 200 differentiated cell types in humans. Since most tissue cells are

anchorage dependent – meaning that adhesion to a solid is necessary for cell survival – it is only

sensible that the mechanochemical nature of the support can influence stem cell fate (Discher

et al., 2009). Substrate stiffness, geometry, porosity, and topography are now understood

to influence stem cells, perhaps as much as biochemical factors. Molecular pathways of

cellular mechanotransduction that ultimately affect both cell phenotype and genotype are

slowly becoming clear. Matrix stiffness-dependent lineage commitment of stem cells has been

suggested to involve YAP/TAZ, which are transcription factors previously known to influence

proliferation; newer evidence suggests they are also nuclear mechano-transducers regulated

by Rho GTPase and cytoskeletal tension independent of the canonical Hippo pathway (Dupont

et al., 2011). More recently, mass spectrometry-based scaling between tissue stiffness and the

nuclear envelope structural protein, lamin A, has been reported to co-regulate YAP and SRF,

among other transcription factors, suggesting that increased matrix rigidity leads to nuclear

stiffening as a homeostatic response in all tissue types, including stem cells (Swift et al.,

2013b; Pajerowski, 2007). In Chapter 3, a novel mechano-repressor NKX2.5 was identified via
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bioinformatics analysis and was found to maintain long-term maintenance of stem-cell response

to matrix stiffness . More pathways are likely to emerge as the field gains control over systems-

level technologies and precision design of micro/nano-environments for stem-cell culture in vitro

and in vivo.

Virtually every organ in the body contains resident stem cells or progenitors that contribute

to organ homeostasis or repair. Exploiting stem cells for regeneration of damaged tissue has

spurred research into their multipotentiality as well as immunocompatibility. Therapeutics is

limited in part by in vitro cell expansion as well as materials issues that include the design

of biocompatible scaffolds for co-transplantation. Since many stem cells are anchorage

dependent, injection in vivo should work best if the cells adhere quickly and adequately, but

it is clear in many trials with mesenchymal stem cells (MSCs) that the vast majority of injected

cells die rather than contribute to tissue (Berry et al., 2006). Recapitulating the various stem

cell niches ex vivo is extremely challenging as it involves spatiotemporal regulation of biostimuli

that extend to extracellular matrix architecture (Chapter 1). Nonetheless, understanding the

niche in vitro might help in translation to in vivo (Stevens and George, 2005). In a diseased

setting, engrafted stem cells encounter an inflammatory (early-stage) or fibrotic (late-stage)

environment; a minimal scar-like model described in Chapter 2 recapitulated the heterogeneity

and stiffness of fibrotic tissues, and how different cell types respond to it.

Recent advances as well as challenges in the material control of stem cell multipotency and

lineage commitment are described in this Chapter. By “stem cell”, we refer to cited studies on

MSCs (mesenchymal), NSCs (neural), ESCs (embryonic), iPSC (induced pluripotent), etc., but

we emphasize the generality merely with “stem cell” as mechanochemical rules seem to apply

for all types (see Chapter 1). We attempt to highlight in more detail how the field is beginning

to formulate materials design rules for stem cell cultures down to the nanoscale in terms of

fabrication and/or physical characterization. Approaches are crudely split into soft materials

such as hydrogels that are as soft as most tissues or else hard materials in which the softest

thing in culture is the cell. Remarkably, there seem to be ways – i.e. rules — to manipulate

‘boundary conditions’ in order to fool cells into responding to a hard material in a manner similar
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to that on a much softer material, and vice versa.

5.2 Soft matter control

Tissue stiffness or elasticity is dictated by the extracellular matrix (ECM). Even a few minutes

of incubation with collagenase can soften a tissue dramatically (Majkut et al., 2013). ECM

is comprised of a network of fibrous proteins, such as collagens, that are crosslinked in a

homophilic or heterophilic manner. A hierarchical polymeric network of variable density allows

for a broad range of characteristic microelasticities for tissues: brain (Georges et al., 2006) and

fat (Patel et al., 2005) are hundreds of Pascals in stiffness whereas cartilage (Guilak et al.,

2005) and pre-calcified bone (Engler et al., 2006) are dozens of kiloPascals or even stiffer on

larger length scales. Precise regulation of physical properties of the ECM seems to match and

couple to the applied mechanical forces that contribute to specific cell differentiation programs

in adult tissue and likely in the embryo. A differential cell response to both ECM elasticity

and dimensionality (i.e. 2D vs 3D) – termed ECM mechanosensing — has been observed

in vitro through various materials approaches, particularly with natural (Rehfeldt et al., 2012)

and synthetic (Engler et al., 2006) hydrogels. Naturally derived polymers such as silk (Wang

et al., 2006), collagen and hyaluronic acid matrices (Nicodemus and Bryant, 2008) are currently

used as delivery vehicles for cell transplantation. Synthetic scaffolds are chosen based on

properties that range from biostability or biocompatibility to biodegradability and porosity. Inert

synthetic hydrogels are used in vitro for studying cell behavior such as migration, proliferation,

and differentiation. Indeed, due to the chemistry that can sometimes be very simple, physical

parameters such as elastic and viscous moduli can be precisely tuned to mimic biological

tissues.
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5.2.1 Synthesis, Functionalization and Characterization

The basic components for polymer hydrogel synthesis are a monomer, a crosslinker, and an

initiator of polymerization. The ratio and concentration of monomer and crosslinker are varied

to achieve desired viscoelastic properties, perhaps to mimic a normal or diseased tissue or

perhaps to be distinct from a tissue. For example, a myocardial infarct stiffens two- to three-

fold more than a normal heart tissue (∼20kPa; Berry et al., 2006). Rheological methods

provide measures of a material’s complex modulus or stiffness (G∗) composed of both an

elastic modulus (G′) and a viscous modulus (G′′). These can be measured as a function

of frequency of oscillatory shear with a rheometer, and one typically considers that the 1-Hz

beating of the heart is close to the high frequency limit of biological relevance. Solid tissues

are mostly elastic, with G′ values ranging from 0.1–100 kPa (Engler et al., 2006). Material-

dependent cell responses are thus strongly influenced by the elastic component of a hydrogel,

at least when G′′ is two orders of magnitude lower than G′. Viscous matrix effects on cell

morphology are nonetheless interesting based on recent examples in the literature (Murrell

et al., 2011; Cameron et al., 2011).

Control of hydrogel chemistry can extend to spatiotemporal control of polymerization (Kloxin

et al., 2009) and micropatterning (Marklein and Burdick, 2010). Non-uniform substrates might,

for example, mimic a heterogeneous cell microenvironment, but in such a case, rheological

measurements must be done at the cellular scale. One particularly attractive method is

atomic force microscopy (AFM): a cantilever probe reflects a laser onto a photodiode detector

that measures small variations in cantilever deflection as it indents a substrate. For such

heterogeneous substrates, an AFM cantilever can probe and create a viscoelastic map along

a preset path. For example, we examined “durotaxis” in Chapter 2, which is a phenomenon in

which a cell migrates toward increasing matrix stiffness (Lo et al., 2004), and so we and others

made hydrogels with stiffness gradients and used AFM to measure the steepness of those

gradients (Raab et al., 2012; Isenberg et al., 2009).

Most hydrogels require some form of functionalization to promote favorable cell-material
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interactions. This can be done by linking cell-adhesive moieties into the polymer backbone,

via functional side group chemistry. The well-known integrin-binding tripeptide RGD can

be incorporated into a methacrylated polymer backbone (e.g. methacrylated polyethylene

glycol) via a Michael-type addition reaction between thiol (from a cysteine moiety in the cell-

adhesive peptide) and methacrylate groups (Marklein and Burdick, 2010). Large matrix proteins

like fibronectin and collagen can also be covalently crosslinked into an amide-containing

hydrogel backbone via a heterobifunctional crosslinker that contains a primary amine-reactive

succinimidyl ester and a photoactivatable nucleophilic azide (e.g. Sulfo-SANPAH) (Pelham and

Wang, 1997). Conventional matrix functionalization of hydrogel systems involves copious

coverage of the cell-material interface with cell-adhesive molecules, to ensure that cell

attachment is not adhesion ligand-limited and that any differential cellular response is due to

physical properties of the matrix.

5.2.2 Advances in Soft Matter Research

Whereas past studies of the cell-material interface have focused on the effects of relatively

homogeneous and weakly varying materials on stem cells, recent efforts have begun to

address some aspects of matrix micro-/nano-heterogeneity. Tools that allow non-invasive

in situ measurements of cell-material interaction at the small scales could ultimately clarify

governing principles for cell-material interface design. Fabrication approaches are equally

important as they should allow for systematic nanoscale control of substrate topography and

functionalization. A great deal of effort is spent in (1) understanding how matrix ligand is

presented at the interface, (2) how a cell adheres and applies ligand- and stiffness-dependent

traction forces to a material, and (3) how a cell remodels or secretes adhesion-relevant

molecules or other factors presented at its interface.

Insight into the first two issues above has been obtained from integrin clustering that occurs

when a cell exerts traction forces in response to stiff matrix. Huebsch et al. (2010) found that

increasing matrix resistance to adhesion ligand displacement leads to a greater ability of a cell

114



to exert traction forces that allow for more stable integrin-ligand bonds (Kong et al., 2005) and

ultimately, greater propensity toward osteogenic commitment. They encapsulated stem cells in

3D non-degradable, RGD-modified alginate gels for which elastic modulus (2.5–110 kPa) was

varied by the extent of ionic crosslinking. In contrast to 2D studies where cells spread more

in response to increased matrix rigidity, encapsulation in 3D nanoporous hydrogels maintained

a rounded shape. The ability of encapsulated cells to rearrange integrin-RGD linkages in the

ionically crosslinked alginates is estimated by fluorescence resonance energy transfer (FRET)

of rhodamine- and fluorescein-labelled RGD peptides clustering near the cell membrane (Kong

et al., 2005) and appeared to depend on matrix stiffness and seemed optimal at an intermediate

stiffness (∼20–30 kPa), where integrin receptors were estimated to probe 50 nm into the

surrounding environment. In contrast, Khetan et al. (2013) made 3D, covalently crosslinked,

methacrylated hyaluronic acid (MeHA) hydrogels (G′ = 4–95kPa) and found a lack of matrix

elasticity dependence, with most cells driven toward adipogenic commitment. Differences

between the two systems start with the nature of crosslinking and could extend to how growth

factors in serum differentially bind the gels or permeate gel pores; differentiation-relevant factors

in serum include TGF-β, which is in a large latent complex that must immobilize near a cell in

order for traction forces to release the active growth factor (Buscemi et al., 2011). Determination

of traction-dependent stiffness sensing involves assumptions about matrix stiffness at the cell

interface and is difficult to assess when cells are embedded in 3D. Yet stiffness sensing seems

essential for osteogenic commitment and appears dysregulated in cells entrapped within overly

restrictive microenvironments. Moreover, dynamically fluctuating tractions in and around focal

adhesions are necessary for matrix rigidity sensing (Plotnikov et al., 2012).

The third issue mentioned above is how stem cells release their own matrix and other

factors or else modify pre-existing factors. Minimizing cell- or serum-derived matrix deposition

has been investigated to some extent on ultra-low fouling substrates that are zwitterionic in

nature (Jiang and Cao, 2010). In all such studies, proteomic scale analysis of substrates is

increasingly needed to define cell and serum responses to manufactured microenvironments;

using antibodies to assess whether serum fibronectin or vitronectin adsorbs or not is just a start.
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Once measurements are made, however, efforts to prevent adsorption of proteins either from

cells or serum can also point the way toward preventing foreign body reactions if materials are

to be taken in vivo (Zhang et al., 2013). In a study of 3D PEG hydrogels tethered with small-

molecule functional groups, stem cell fate had been found to be directed toward adipogenic or

osteogenic differentiation with respective functionalization of the gels by t-butyl or phosphate

(Benoit et al., 2008). The effects of such small functional moieties have been speculated to

reflect differences in cell-derived, lineage-specific matrix molecules which accumulate at the

cell-matrix interface and ultimately direct differentiation. In the RGD-modified MeHA hydrogels

cited above (Khetan et al., 2013), local matrix changes due to cell-derived matrix did not seem to

impede RGD-integrin signaling, but no measurements of matrix were pursued — obviously, 3D

microenvironments require deeper and more careful characterization than 2D, at least because

of the complexity of protein entrapment through the depth of a gel. When the ability of a cell

to probe its surrounding matrix is constrained by complexities of adsorption or encapsulation

within covalently crosslinked gels, matrix rigidity (or other physical property) effects on stem cell

fate might also be limited.

It must be noted that while promoting cell attachment with matrix-immobilized RGD peptides

ensures direct matrix sensing, there are subtle, yet still confounding differences with tethering

actual matrix proteins. For example, fibronectin contains an RGD motif, among other motifs,

that seems to activate other signaling pathways within the cell, and at least affect cell migration

differently from the minimal sequence (Maheshwari et al., 2000). Matrix tethering is an issue

raised recently by Trappmann et al. (2012). In contrast to utilizing RGD peptides, which do not

involve the tethering issues in 3D, collagen fibrils were functionalized on 2D polyacrylamide (PA)

gels or polydimethylsiloxane (PDMS) elastomers. While stem cells differentiated as expected

on soft versus stiff PA gels, the apparent stiffness of PDMS had no effect. Unfortunately, soft

PDMS is well-known to be difficult to make and requires careful nanoscale characterization;

it is often accompanied by increased viscosity (or even fluid-solid heterogeneity), which was

not characterized but could adversely affect stem cell differentiation (Cameron et al., 2011) as

well as epithelial cell sheet motion (Murrell et al., 2011). Additional studies by Trappmann
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et al. (2012) involved decreasing the collagen anchoring points on stiff gels by lowering

sulfo-SANPAH crosslinker concentration with the effect of inducing a soft gel phenotype that

prevented epidermal stem cell differentiation. Ligand density is likely decreased as sulfo-

SANPAH is lowered (see Figure 2.4C), and cells simply do not spread on stiff PA gels when

adhesive ligand is limiting (Engler et al., 2004a). Nonetheless, the idea of decoupling material

stiffness and cell-matrix interactions may have application, as was attempted in our ‘scar in a

dish’ model (see Chapter 2).

5.3 Hard matter approaches

The ligands, assembly, and overall architecture of ECM can all influence cell behavior.

Parsing some aspects of cell-matrix interaction at the molecular level might be addressed with

precision nano-fabrication of hard materials as used in the semiconductor industry. An array of

nanotechnology-driven in vitro cell culture platforms has been reviewed recently (Kshitiz et al.,

2011), and so we highlight here a couple of key advances in nanotopography design principles

that are inspired from ECM (Kim et al., 2010) and/or inspire precise control of ECM (Dalby et al.,

2007b; Kilian and Mrksich, 2012) in directing cell fate. Nanoscale patterning of cell adhesion

ligands is problematic with soft materials because many cell types generate sufficient traction

strain to rearrange any ligand pattern.

A minimal adhesive matrix unit required for cell attachment, spreading and migration is an

important research question that is addressed with nanopatterned RGD surfaces. Schvartzman

et al. (2011) varied RGD ligand spacing, density and cluster size, and found that a spacing

of 60 nm in a cluster with a minimum of 4 RGD ligands is sufficient to support cell spreading.

Although ligand surface density might have a role, they speculated that talin, an integrin-binding

scaffolding protein that has 4 potential binding sites, is involved in the integrin clustering-derived

cell response. Focal adhesion formation was indeed enhanced for a ligand spacing of ∼50 nm,

concomitant with increased cell attachment, migration (Maheshwari et al., 2000) and stiffening

(Selhuber-Unkel et al., 2010). In the alginate gel studies by Huebsch et al. (2010), the highest
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RGD density is roughly ∼1 RGD ligand per 70×70 nm2 surface patch on an entrapped stem

cell of 10-µm radius. This might explain why matrix rigidity-dependent traction forces enhance

clustering. In addition, highly ordered 120 nm ligand pits spaced 300 nm apart in a square

lattice have been shown for ‘best’ maintaining adult stem cell multipotency for several weeks,

whereas the exquisite sensitivity of stem cells to a pit placement offset of <50 nm leads to

differentiation (Dalby et al., 2007b; McMurray et al., 2011). Integrin clustering is thus likely to

be a key to some pathways that signal intracellular changes from cytoskeleton to nucleus (Swift

et al., 2013b; Dalby et al., 2007a). Epigenetic state and cell reprogramming can also be affected

by nanopatterns in recent studies by Downing et al. (2013), which indicate how much more we

need to learn about the cell-matrix interface.

5.4 Conclusion

In the heterogeneous microenvironments referred to as stem cell niches, various mechanical

and biomolecular cues are integrated to maintain pluripotency or induce differentiation.

Biological applications of both soft and hard matter systems to elucidate cell-material

interactions have certainly increased our understanding of the stem cell-matrix interface, but

there is much more to learn. Soft matter substrates are more tissue-mimetic than hard

substrates, but precise nanoscale control of the cell-matrix interface provides powerful tools

for understanding and directing a wide range of cell behaviors. Cell-derived molecules are

generally overlooked when designing and using many of these materials, whether hard or soft,

and 2D or 3D, although some stem cell types express lesser matrix than others. Controlling

endogenous expression of such factors by methods such as siRNA knockdown is one approach.

Ultimately, new design rules that are emerging for material control of stem cell fate could help

with in vitro cultures as well as implantable scaffolds for more stem cell-based therapies.
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Appendix A

Supplementary Information for
Chapter 2

A.1 Adhesion and Thin-film Corrections for
scar-like0.3kPa gel

In order to create 2D hydrogel substrates for cell culture, polyacrylamide (PA) gels were

sandwiched between an allysilanated bottom coverslip and a nonreactive top coverslip (18-

and 25-mm in diameter, respectively; Fisher). Embedding fibrous collagen in polyacrylamide

hydrogels exhibited tackiness to the gel surface post-polymerization. That is, removal of the top

coverslip required more force than without the fibers. This again provided evidence for interfacial

localization of the fibers. To correct for tackiness of scar-like0.3kP a gel, the force required

to remove the top coverslip was measured with a custom-made and calibrated polystyrene

cantilever (spring constant, ksp = 804.6 N/m), attached at one end to a syringe pump (RS-232,

Harvard Apparatus) and the other to a nylon string, which in turn was firmly attached to the

top coverslip of a stage-immobilized gel. Syringe pump was set to ‘pump mode’ pulling the

cantilever-string-coverslip setup at an effective velocity of 0.4 mm/s. The removal process was

observed with a side-view camera to determine when the pulling string should be stopped and

maintained at constant force (zero velocity). Maximal deflection of the cantilever (translated

to maximal force of the pulling string) was observed just before coverslip was fully detached

(or just before cantilever relaxes back to zero deflection) and used to calculate gel adhesion
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force. Adhesion force on scar-like0.3kP a gels was found to be 84 ± 20% higher than on pristine

0.3-kPa gels (n = 5).

The effective elasticity can be derived from rigid cylinder (i.e. coverslip of length a) pulling

from a soft elastic thin film by assuming non-uniform Boussinesq-type stress distribution at the

interface. The force per unit length F /a (along x) or P that propagates from the edge of the

coverslip can be derived as (Chung and Chaudhury, 2005):

P = D
∂3uz

∂x3 (A.1)

where uz is displacement field in the z-direction, D is bending stiffness of the coverslip. Since

coverslip bending is coupled to the deformation of the hydrogel below it, the characteristic stress

decay length, ε, from the edge of contact is (Ghatak et al., 2004):

ε ∼
(
Dh3

1
E1

)1/6

(A.2)

where h1 and E1 is the height and Young’s modulus of the thin film, respectively. By taking

uz ∼ δ2, where δ2 is the thin film extension length at the applied pull-off force, F , and x ∼ ε, we

can analyze equation (A.1) with (A.2) at the scaling level:

P ∼ F

a
∼ Dδ2

ε3 ∼
D1/2E

1/2
1 δ2

h
3/2
1

(A.3)

or simply (by removing material-property constants),

E1 ∼
(
F

δ2

)2
(A.4)

for which we can estimate elasticity increase with addition of embedded collagen. Assuming

adhesion work is constant (related to surface tension and interfacial area), δ2 is thus inversely

correlated to E1, which can be derived to scale as δ2 ∼ E
−1/3
1 (Chung and Chaudhury, 2005).

From equation (A.4), this leads simply to
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E1 ∼ F 6 (A.5)

Thus, surface elasticity of scar-like0.3kP a gels, with a first approximation due to tackiness, is

Escar−like0.3kP a
∼ E0.3kP a(1.84± 0.2)6 ∼ 5.8− 22 kPa (A.6)

AFM measurements of scar-like0.3kP a gel in Figure 2.4ii was corrected based on this adhesion

considerations.

A fluorescence microscopy-based elasticity approximation can also be used to correct for the

observed thin film (Figure 2.2B) of embedded collagen fibers near the gel interface. For

pure collagen gels, storage modulus G′ (Pa) is a function of temperature and concentration,

c (mg/mL). At 37°C, this was found to scale as (Yang et al., 2009)

G′ ≈ 22 c2.1 (A.7)

From confocal stack reconstruction, we found embedded collagen localization within 10

microns near the surface of scar-like0.3kP a PA gel of ∼80-micron thickness (Figure 2.2B). Since

the embedded fibers are putatively stiffer than the compliant PA around them, Equation (A.7)

was assumed to still apply at least in the regions near fiber bundles. For scar-like0.3kP a

gels, surface coverage is ∼30% based on Sirius red and/or collagen immunofluorescence

staining, which matches that of mdx and DMD skeletal muscle tissue cross-sections (∼20–30%;

Turgeman et al., 2008; Mann et al., 2011). This leads to a corrected collagen concentration

from the nominal value of 0.4 mg/mL to an effective c = 11.6 mg/mL. Plugging this value into

Equation (A.7), and assuming Young’s modulus (E) = 2.9G′, we predicted an effective EC fiber

stiffness of Eeff ∼ 11 kPa.
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A.2 Theoretical analysis of lateral pulling curves

For an elastic substrate medium bounded on one side by a plane (e.g. PA gel on coverslip)

with a point force F on applied on its free surface, the distribution of displacement, u, along the

surface (z = 0) has been determined in equilibrium by Landau and Lifshitz (1986) as:

ux = 1 + σ

E
· 1
r

{
−(1− 2σ)x

r
Fz + 2(1− σ)Fx + 2σx

r2 (xFx + yFy)
}

(A.8)

where E is Young’s modulus of the medium, σ is Poisson’s ratio, and r =
√
x2 + y2. A similar

formula for uy was also found. We assumed that the lateral pulling force was applied to a

small region and that the measured displacement profiles were obtained at large distances

away from the initial loading point to satisfy Equation (A.8). In the simplest case (of a

Boussinesq approximation) where x = r, (y = 0), displacement far enough from the loading

point scales as ur = aB/r, for some Boussinesq constant, aB . Since such scaling leads to

infinite displacement at x = r = 0, we also fit exponential scaling (ur = a0e
−br, for some

characteristic decay constant b; Figure 2.5ii) to set the approximate maximum displacement at

the initial loading point, a0. Both scalings agree well (R2 > 0.9), as evidenced by the fitted

scaling constants in Figure 2.5B.
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Appendix B

Supplementary Information for
Chapter 4

B.1 Mechanobiological gene circuits:
systems of ordinary differential equations

We consider tension-mediated stabilization of polymeric, structural proteins as the basis for

systems mechanobiology – as explored here mathematically for single, coupled and population-

coupled modules. To incorporate the stabilizing effect of tension (Ks) on protein (s) we define

degradation term δ as a Hill function as in Equation (4.3) in the main text:

δ(s) = δ0s
n

Kn
s + sn

Structural proteins of the extracellular matrix, cytoskeleton, or nucleoskeleton are

understandably polymeric, but in an effort to parsimoniously define a mechanobiological gene

circuit, tension-mediated turnover is assumed to depend simply on total protein level, as one

might assume for proteasomal degradation of monomeric proteins. This also assumes that

polymerization and depolymerization rates are relatively rapid compared to the rates defined

here.
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B.1.1 Single-module gene circuits: reaction-order stability

A single module refers to a particular gene and its corresponding protein and is described

by general rate equations that define what factors affects synthesis and turnover. The set of

ordinary differential equations (ODEs) for a single module is simply:

dS

dt
= α− β

ds

dt
= γ − δ

S and s represent the gene and protein, respectively, whose synthesis (α, γ) and degradation

(β, δ) rates describe their expression levels. Ultimately, the value of Kl (and hence, E) dictates

the steady state values, regardless of the initial condition; while the functional forms of the

various rates dictate the stability and dynamics of the system. For the given Hill-functional form

of δ above, we explored the various reaction-order forms of the other rates that converge to a

steady state solution. As discussed in the following sections, none of the other functional forms

properly recapitulate the matrix elasticity-dependence of structural proteins unless the protein

degradation rate is tension-dependent, and protein positively regulates its own gene expression.

Rate-order forms by Schwanhausser et al.

Schwanhausser et al. (2011) quantified proteomic and transcriptomic half-lives under the

following rate equations:

dS

dt
= α̃− β̃ · S

ds

dt
= γ̃ · S − δ̃ · s

where α̃, β̃, γ̃, δ̃ are rate constants. A phase plot below of protein (s) and mRNA (S),

while varying relative protein synthesis/degradation rates (γ̃/δ̃) and the relative mRNA

synthesis/degradation rates (α̃/β̃), shows that mRNA-relevant rates scale mRNA and protein
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levels (blue line), but protein-relevant parameters do not (red line). This was expected from

α/β

s(t)

S(t)

α = 1
β = 2
γ = 3
δ = 4

~
~
~
~

~ ~

~ ~γ/δ

attractor loci

the chosen forms of the rate equations above as the protein kinetics does not affect its mRNA.

Thus, in the search for the appropriate forms of the rate equations that capture the variations in

structural protein expression with matrix elasticity, E, the ones described by Schwanhausser et

al. are not sufficient.

Zeroth-order α, tension-dependent δ

Now if we consider changing degradation rate to be tension-dependent, keeping others similar

to above:

dS

dt
= α̃− β̃ · S

ds

dt
= γ̃ · S − δ0s

n

Kn
s + sn

In this case, we get the following phase plot where varying Ks, and hence protein levels, does

not affect mRNA levels. This is again not physically relevant as we expect that both mRNA and

protein levels should respond to Ks (or E).
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s(t)

S(t)

α = 1
β = 2
γ = 3
δ = 4

~
~
~

0

Ks

attractor locus

First-order rates, tension-dependent δ

First-order rates were chosen for the main text as they recapitulate experimental observations

for the mechanobiological gene circuit of lamin A (Swift et al., 2013b).

dS

dt
= α̃ · s− β̃ · S

ds

dt
= γ̃ · S − δ0s

n

Kn
s + sn

With the lack of precise values for rate constants published in literature, we chose O(1) values

for the parameters. For the purposes of display in Figure 4.2 of the main text, we used the

following values for each of the rate constants:

Parameter Value

α̃ 1

β̃ 2

γ̃ 3

δ0 4

n 2

Protein and mRNA levels were initialized in the range {0, 1}, as shown in the phase plot in
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Figure 4.2.

Unstable steady states: higher-order rates

The following higher-order (p ≥ 2) cases have divergent steady states, and hence not

biologically relevant:

• α = α̃ · sp; β = β̃ · S; γ = γ̃ · S;

• α = α̃ · s; β = β̃ · S γ = γ̃ · Sp;

• α = α̃ · sp; β = β̃ · Sp γ = γ̃ · Sp;

B.1.2 Two-Module Gene Circuit

Assuming first-order rates (except for protein degradation rates), the set of ODEs for coupled

two-module gene circuit is:

dL

dt
= α̃1 · l − β̃1 · L

dl

dt
= γ̃1 · L− δ1 ·

lnl

Knl
l + lnl

dM

dt
= α̃2 ·m (+α̃3 · l)− β̃2 ·M

dm

dt
= γ̃2 ·M − δ2 ·

mnm

Knm
m +mnm

where Ks = f(s) and Ks = f(tension), for some functional form (e.g. power-law). For lamin-

myosin coupling, we chose Kl = mx/nl and Km = Ey/nm .

The following values for rate constants were used in the simulations presented in

Figure 4.4B, C of the main text:

Parameter Value

{α̃1, α̃2} {1.1, 1.1}
{β̃1, β̃2} {5, 5}
{γ̃1, γ̃2} {1.2, 1.2}
{δ1, δ2} {5, 5}
{nl, nm} {2, 2}
{x, y} {0.44, 0.44}
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with E = 0.003 − 0.4, to represent the order of magnitude range elasticities in cell-on-

gels experiments (0.3–40 kPa; Swift et al., 2013b). The different molecular species were all

initialized as L(0) = l(0) = m(0) = M(0) = 0.005.

B.1.3 Two-Module, Tissue-level Mechanobiological Gene Circuit

The set of ODEs for population-level coupling of two modules (e.g. collagen and myosin levels

in a developing heart) are:

dC

dt
= α̃1 ·

cnf−1

k
nf

f + cnf
− β̃1 · C

dc

dt
= γ̃1 · C − δ̃1 ·

cnc

Knc
c + cnc

dM

dt
= α2 ·m− β2 ·M

dm

dt
= γ2 ·M − δ2 ·

mnm

Knm
m +mnm

where Kc = mx/nc for some x, Km = cy/nm , for some y.

The following values for rate constants were used in the simulations in Figure 4.6 (unless

otherwise specified):

Parameter Value

{α̃1, α̃2} {5.2, 4.1}
{β̃1, β̃2} {5, 3}
{γ̃1, γ̃2} {3, 1.5}
{δ1, δ2} {6.5, 7}

{nf , nc, nm} {2, 1.6, 3.7}
{x, y, a0} {0.51, 0.39, 0.89}

The different molecular species were initialized with the following values:

Species Initial Value

C 0.00051
c 0.00051
M 0.011
m 0.011
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B.2 Analytical Solution for Single-Module Gene Circuit

For the case that δ is tension-dependent and all other rates are first-order (B.1.1), as in the main

text, such that at steady state we have:

dS

dt
= 0 = α̃ · s− β̃ · S (B.1)

ds

dt
= 0 = γ̃ · S − δ0s

n

Kn
s + sn

(B.2)

For the simplest case of n = 2 and substituting Eq. (B.2) to Eq. (B.1), we get (after removing

null solution):

s3 − β̃δ0
γ̃α̃

s2 + γ̃K2s = 0 (B.3)

s2 − β̃δ0
γ̃α̃

s+ γ̃K2 = 0 (B.4)

Equation (B.4) is simply a quadratic equation, which has two solutions:

s1,2 = 1
2

(
β̃δ0
γ̃α̃

)
± 1

2

√√√√( β̃δ0
γ̃α̃

)2

− 4Kl (B.5)

Stability analysis shows that the larger solution is an unstable node, such that we only have one

biologically relevant, non-zero steady state:

{sss, Sss} =

1
2

(
β̃δ0
γ̃α̃

)
− 1

2

√√√√( β̃δ0
γ̃α̃

)2

− 4Ks,
α̃sss

β̃

 (B.6)

where the rate constants must have values that obey the following:

(
β̃δ0
γ̃α̃

)2

− 4Ks > 0 (B.7)
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B.3 Numerical Solution for Two-Module Gene Circuit

For the coupled mechanobiological gene circuit (in ??), we employed a numerical solver

(Mathematica; version 8, Wolfram Research) to conduct kinetic and steady-state analyses. The

outputs for the code below are found in Figure 4.4B (plot of E = 0.4 kinetics, and steady-state

plot). To obtain Figure 4.4C plots, we changed the value of J (in code; equivalent to α̃3 in ??)

from 0 to 1.8. To obtain plots for the case of E = 0.003 , we changed the upper limit of the For

loop to i < 0.0031.

1 test = Partition[

2 Flatten[Reap[

3 For[i = .003, i < .4, i = i + .05, Clear[a, b, h, g, s , L, l , m, M, J, j , t , x, y, A1, A2

, E1, q, r ];

4 a = 1.10; b = 5; g = 1.20; h = 5; x = .440; y = .44; J = 0; j = 1.1; q = 5; r = 1.20;

s = 5; A1 = 2.0; A2 = 2.0; E1 = i; Ko = 9.2;

5 s = NDSolve[{l’[t] == a∗L[t] − b∗l[t],

6 L’[ t ] == g∗l[t] − h∗L[t]^A1/(M[t]^x + L[t]^A1),

7 m’[t] == J∗L[t] + j∗M[t] − q∗m[t],

8 M’[t] == r∗m[t] − s∗M[t]^A2/(E1^y + M[t]^A2),

9 l [0] == .005, L[0] == .005, m[0] == .005, M[0] == .005}, {l, L, m, M}, {t, 0, 1000}];

10 Plot[Evaluate[{l[t], L[t ], m[t], M[t]} /. s ], {t, 0, 1000}, PlotRange −> {{0, 15},

{0.00001, 1.1}}, PlotStyle −> Thick] Sow[{L[1000] /. s, l[1000] /. s, M[1000] /. s,

m[1000] /. s }]];][[2, 1]]], 4]; Lss = test [[All, 1]]; lss = test [[All, 2]]; Mss =

test[[All, 3]]; mss = test[[All, 4]];

11 Plot[Evaluate[{200 L[t], 200 M[t]} /. s ], {t, 0, 100},P lotRange −> {{0, 25}, {0., 10}},

PlotStyle −> Thick, PlotLegends −> {"Lamin␣protein", "Myosin␣protein"}]

12 ListLogLogPlot[{Partition[Riffle[200 Lss, 200 Mss], 2]}, PlotRange −> {{0.5, 20}, {0.5,

20}}]
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B.4 Numerical Solution for Tissue-level Coupled Gene

Circuit

The code listed below refers to ?? on modeling of the mechano-regulated dynamics of collagen

production (by cardiac fibroblasts) and myosin expression and hence contraction levels (by

cardiomyocytes), which prints out Figure 4.6C:

1 Clear[a, b, h, g, u, s , F, f , M, m, J, j , t , T, x, y, k0]

2 a = 5.2; b = 5; g = 3; h = 6.5; x = .51; j = 4.1; q = 3; r = 1.5; s = 7;

3 A1 = 1.6; A2 = 3.7; y = .39; z = 2; k0 = .89;

4 s = NDSolve[{F’[t] == a∗f[t]^(z − 1)/(k0^z + f[t]^z) − b∗F[t],

5 f ’[ t ] == g∗F[t] − h∗f[t]^A1/(m[t]^x + f[t]^A1),

6 M’[t] == j∗m[t] − q∗M[t],

7 m’[t] == r∗M[t] − u∗m[t]^A2/(f[t]^y + m[t]^A2),

8 F[0] == .00051, f[0] == 0.00051, M[0] == 0.011, m[0] == 0.011},

9 {F, f , M, m}, {t, 0, 1000}];

10 LogPlot[Evaluate[{100 F[t], 100 f[t ], 100 M[t], 100 m[t]} /. s ], {t, 0.5, 1000},

11 PlotRange −> {{0, 15}, {0.1, 100.}}]
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Appendix C

Standard biological laboratory
protocols and reagents used

C.1 Cell culture

Cell cultures were kept in 5% CO2 humidified incubators and maintained at 37 °C. Cells were

passaged at 70–80% confluence using 0.05% trypsin-EDTA solution and fed every 2–3 days

for cell lines (e.g. A549 cells) or 3–4 days for primary cell cultures.

Human mesenchymal stem cells (MSCs), isolated from human donor bone marrows

(anonymous donors with Institutional Review Board approvals), were obtained from Stem

Cell and Xenograft Core, University of Pennsylvania School of Medicine, and cultured

using standard methods (Pittenger et al., 1999). Cells were expanded on tissue culture

flasks (Corning, Inc.) in low-glucose (1 g/L) Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) and 100 µg/ml penicillin and 100 µM

streptomycin (P/S) and used at passages 3–5 for all cell-on-gel cultures. All reagents were

purchased from Gibco (Life Technologies) unless otherwise specified.

C.2 Quantitative Immunofluorescence Microscopy

For immunofluorescence staining, cells were fixed with 3.7% formaldehyde (Sigma) in PBS

for 15 min at RT and washed with PBS twice for 5 min. Blocking was done for 1 hr
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with 1% BSA in PBS. All primary antibodies (see Table C.6 for specifications) in PBS with

0.025% Tween-20 (PBST) were incubated at RT for 1 hour or overnight at 4 °C. All donkey

secondary antibodies (at 1:1000 dilution, Alexa series from Invitrogen) were used to stain

primary antibody-labeled fixed cells for 1 hour at RT in PBST. Actin filament (F-actin) staining

was done in PBS with 100 ng/ml TRITC-phalloidin (Sigma) for 20 min at RT. Hoechst 33342

(Invitrogen) was used at a concentration of 1 µg/ml in PBS to stain for DNA for 5 min at RT.

Quantitative immunofluorescence of immunolabeled proteins of interest and their localization

was performed using an inverted microscope (IX-71, Olympus) with a 20× LCACh objective

(NA 0.40) and a Cascade CCD camera (Photometrics). Image acquisition was performed

under Image-Pro Plus software (Media Cybernetics, Inc.) and image analysis was done using

ImageJ software. For quantitative immunofluorescence microscopy, samples were imaged

under the same specifications of exposure times and gains. If two different exposure times were

necessary for quantification between samples, both exposure times were performed for those

samples to ensure that images were in the linear range of fluorescence intensities with respect

to exposure times. Control samples incubated only with secondary antibody (no primary-

antibody incubation) were also imaged as negative control under the same specifications and

used as background-intensity subtraction during image processing.

C.3 Cell Morphometrics

Intensity analyses and cell-morphology quantification were performed in ImageJ software.

From images acquired from immunofluorescent samples, F-actin and myosin IIB rear/front

polarization ratios were determined by splitting the cell into two equal areas (rear and front)

and plotting the fluorescence vs length. For nuclear-localized stains (e.g. of NKX2.5), a

dedicated channel for Hoechst 33342-stained nuclear DNA was used to delineate nuclear

versus cytoplasmic/whole-cell regions. The ratio is the total integrated fluorescence of the

rear half over the front half of the cell. Cell area and aspect ratio were quantified from

myosin IIA or F-actin immunofluorescence (since they consistently stain the whole cell body).
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Before comparing different sample conditions, integrated intensity of a particular protein was

normalized to background value (secondary antibody-only control).

C.4 Transfection protocol

For transfecting plasmid DNA and siRNA into cell cultures, Lipofectamine 2000 Reagent was

used according to Invitrogen’s instructions. After 4–24 h post-transfection, culture media was

freshly replaced. Western analysis of transfection efficiency was performed on cell lysates 48 h

post-transfection.

C.5 Western Blotting and Analysis

Adherent cells such as MSCs, THP1-derived macrophages, and A549 cells were trypsinized,

then pelleted and washed in cold PBS twice prior to addition of RIPA lysis buffer (1.0 vol% NP40,

2 mM EDTA, 150 mM NaCl, 50 mM Tris-HCL, 0.1 wt% SDS, 0.5 wt% sodium deoxycholate)

at 4 °C for 30 minutes. During incubation, the pellet solution was sonicated to fully break

down cell particulates. The pellet solution is then centrifuged at 12,000 rpm at 4 °C for

20 min and the collected supernatant lysate can be stored at –80 °C or immediately used.

LDS (4×, Thermo Scientific) / β-mercaptoethanol solution at 11:1 v/v is then added at 36%

of lysate volume and boiled at 90 °C for 10 min prior to gel electrophoresis. Boiled lysates

were cooled at RT, loaded onto 3–8% NuPAGE Novex Tris-Acetate gels (Life Technologies);

after gel-run, the gel-immobilized protein bands were transferred to blotting paper (iBlot PVDF,

Life Technologies) using an iBlot gel transfer device (Life Technologies) set at P3 for 7 min.

Blots were blocked with 5% non-fat milk (American Bioanalytical) in TBST for 1 hour at RT

and then desired primary antibodies in TBS were added overnight at 4 °C. HRP-conjugated

secondary antibodies (ECL™, GE Healthcare) in TBST with 5% milk were added for 1 hour

at RT. Two 10-min TBST washes were performed in between above steps, and a final TBS

wash before precipitate development. Chromosensor (GenScript), a chromogenic substrate,
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was finally added to generate a precipitate for the ECL reaction that should appear visible

within 5–10 min.

C.6 Statistical Analyses

An independent samples t-test was used when there were only two different sample means.

One-way ANOVA was used for matrix elasticity effects on cell morphometrics, protein

expression, etc. Two-way Analysis of Variance (ANOVA) with Tukey post-hoc test was used

for time-lapse cell migration experiments with time-dependent displacement values between

conditions. Statistical significance was determined at α = 0.05 level. All statistics analyses

were done in Microsoft Excel.
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Table C.1. Polyacrylamide gel precursor formulations#

Nominal
Elasticity

(kPa)

Volume (µL) of
40% Acrylamide

stock

Volume (µL) of 1.5%
w/v Bis-Acrylamide

stock

Volume (µL) of
distilled water

0.3 75 47 874.84

3.0 112 70 812.86

10 150 93 750.68

20 200 93 696.00

40 250 200 539.47

#1 µL of N,N,N’,N’-Tetramethylethylenediamine (Sigma) and 10 µL of 10% w/v Ammonium Persulfate
(Sigma) was added to a ∼1 mL gel formulation to initiate polymerization.
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Table C.2. Primary antibody specifications#

Antigen
Host species and

Reactivity
Clone, Catalog

number, Vendor
Concentration/Dilution

and Application

β-Actin
mouse

anti-β-Actin IgG1
C4, sc-47778, Santa
Cruz Biotechnology

1 µg/mL (Western blot)

β-tubulin goat anti-β-tubulin ab21057, Abcam 1 µg/mL (Western blot)

Collagen-1
mouse

anti-collagen
type I IgG11

COL-1, C2456, Sigma
1:1000 (Indirect

immunofluorescence – IF)

Myosin IIB
(MIIB)

rabbit anti-MIIB
3404, Cell Signaling

Technology
1:1000 (Western blot),

1:200 (IF)

Myosin IIA
(MIIA)

rabbit anti-MIIA M8064, Sigma 1:200 (IF)

Myosin
phosphatase-1

(MYPT1)
rabbit anti-MYPT1 ab24670, Abcam

1:10000 (Western blot),
1:2000 (IF)

NKX2.5 rabbit anti-NKX2.5
H-114, sc-14033,

Santa Cruz
Biotechnology

1 µg/mL (Western blot, IF)

Lamin A,C
mouse anti-lamin

A,C IgG2b
636, sc-7292, Santa
Cruz Biotechnology

1 µg/mL (Western blot, IF)

Lamin B goat anti-lamin B1
sc-6217, Santa Cruz

Biotechnology
1 µg/mL (Western blot, IF)

Heat shock
protein 90
(HSP90)

mouse
anti-HSP90

AC88, ab13492,
Abcam

1 µg/mL (Western blot)

Heat shock
protein 70
(HSP70)

mouse
anti-HSP70

C92F3A-5, ab47455,
Abcam

1 µg/mL (Western blot)

Pro-collagen
type I

mouse
anti-pro-collagen

type I IgG1

M-38, Developmental
Studies Hybridoma

Bank (DSHB)
1 µg/mL (Western blot, IF)

Sarcomeric
α-actinin

mouse
anti-sarcomeric
α-actinin IgG1

EA-53, MA1-22863,
Sigma

1 µg/mL (IF)

α-Smooth
Muscle Actin

(SMA)

mouse anti-SMA
IgG2a

1A4, A2547, Sigma 1:1000 (Western blot, IF)

SUMO-1
mouse

anti-SUMO-1 IgG1
21c7, DSHB 1 µg/mL (Western blot, IF)

#reactive to human antigen, unless otherwise specified; 1used to stain rat collagen-1, also reactive to
human.
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