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Estimation and Inference of the Three-Level Intraclass Correlation
Coefficient

Abstract
Since the early 1900's, the intraclass correlation coefficient (ICC) has been used to quantify the level of
agreement among different assessments on the same object. By comparing the level of variability that exists
within subjects to the overall error, a measure of the agreement among the different assessments can be
calculated. Historically, this has been performed using subject as the only random effect. However, there are
many cases where other nested effects, such as site, should be controlled for when calculating the ICC to
determine the chance corrected agreement adjusted for other nested factors. We will present a unified
framework to estimate both the two-level and three-level ICC for both binomial and multinomial outcomes.
In addition, the corresponding standard errors and confidence intervals for both ICC measurements will be
displayed. Finally, an example of the effect that controlling for site can have on ICC measures will be
presented for subjects nested within genotyping plates comparing genetically determined race to patient
reported race.

In addition, when determining agreement on a multinomial response, the question of homogeneity of
agreement of individual categories within the multinomial response is raised. One such scenario is the GO
project at the University of Pennsylvania where subjects ages 8-21 were asked to rate a series of actors' faces as
happy, sad, angry, fearful or neutral. Methods exist to quantify overall agreement among the five responses,
but only if the ICCs for each item-wise response are homogeneous. We will present a method to determine
homogeneity of ICCs of the item-wise responses across a multinomial outcome and provide simulation
results that demonstrate strong control of the type I error rate. This method will subsequently be extended to
verify the assumptions of homogeneity of ICCs in the multinomial nested-level model to determine if the
overall nested-level ICC is sufficient to describe the nested-level agreement.
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ABSTRACT

ESTIMATION AND INFERENCE OF THE THREE-LEVEL INTRACLASS

CORRELATION COEFFICIENT

Matthew Davis

Warren B. Bilker

J. Richard Landis

Since the early 1900s, the intraclass correlation coefficient (ICC) has been used to

quantify the level of agreement among different assessments on the same object. By

comparing the level of variability that exists within subjects to the overall error, a

measure of the agreement among the different assessments can be calculated. His-

torically, this has been performed using subject as the only random effect. However,

there are many cases where other nested effects, such as site, should be controlled for

when calculating the ICC to determine the chance corrected agreement adjusted for

other nested factors. We will present a unified framework to estimate both the two-

level and three-level ICC for both binomial and multinomial outcomes. In addition,

the corresponding standard errors and confidence intervals for both ICC measure-

ments will be displayed. Finally, an example of the effect that controlling for site can

have on ICC measures will be presented for subjects nested within genotyping plates

comparing genetically determined race to patient reported race.

In addition, when determining agreement on a multinomial response, the question of

homogeneity of agreement of individual categories within the multinomial response

is raised. One such scenario is the GO project at the University of Pennsylvania

where subjects ages 8–21 were asked to rate a series of actors’ faces as happy, sad,
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angry, fearful or neutral. Methods exist to quantify overall agreement among the five

responses, but only if the ICCs for each item-wise response are homogeneous. We

will present a method to determine homogeneity of ICCs of the item-wise responses

across a multinomial outcome and provide simulation results that demonstrate strong

control of the type I error rate. This method will subsequently be extended to verify

the assumptions of homogeneity of ICCs in the multinomial nested-level model to

determine if the overall nested-level ICC is sufficient to describe the nested-level

agreement.
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CHAPTER 1

Introduction

”It is by universal misunderstanding that all agree. For if, by ill luck, people un-

derstood each other, they would never agree.” Little did Charles Baudelaire know

that his penned words 150 years prior would be a fitting description for statistical

studies on methods of agreement. Given multiple ratings on the same object, it is

a result of naivety that one would think that all raters would agree in their inter-

pretation of the object. In addition, according to Mr. Baudelaire, even if the raters

were lucky enough to fully understand one another’s way of thinking, they still would

not agree on the individual assessments on the objects. As a result, it is necessary

to study statistical measures of agreement to better quantify how well independent

raters agree when assessing the same object. This dissertation reviews the scope of

available published work on measures of agreement and will add to these measures in

two areas. First, a test for homogeneity of intraclass correlation coefficients (ICCs)

will be derived across separate responses within a multinomial outcome. Second, the

concept of a nested-level of agreement will be examined, and methods for estimat-

ing and providing inference on the nested-level agreement will be presented for both

binary and multinomial outcomes.

1.1. Introduction to Measures of Agreement

A number of books have recently been written on measures of agreement that provide

excellent summaries of the scope of literature published to date on the topic. Measures

of Interobserver Agreement and Reliability [48] by Shoukri et. al. provides an overall

summary of agreement methods for continuous scale measurement, population coef-
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ficient of variation, dichotomous outcomes and multiple raters and categories. The

summary of methods of agreement for kappa statistics and the intraclass correlation

coefficients are of particular interest and provide an important summary of available

methods that are directly applicable to this research. While this dissertation focuses

mainly on the methods summarized by Shoukri, the following references are provided

to more completely describe the current status of the methods of measures of agree-

ment. Analyzing Rater Agreement: Manifest Variable Methods [49] by Von Eye and

Mun provides a framework to assess rater agreement based on log-linear models. In

Statistical Tools for Measuring Rater Agreement, Lin et. al.[36] examine methods of

rater agreement using the concordance correlation coefficient (CCC) as a basis. In

this book, agreement methods for both continuous and categorical data are developed

and corresponding power and sample size methods are presented. Lastly, Broemeling

provides a Bayesian description of measures of agreement in Bayesian methods for

measures of agreement [7] focusing both categorical and continuous outcomes.

While this list of books is by no means exhaustive, it provides a good description of

the current landscape of research as it relates to measures of agreement. This disser-

tation focuses solely on measures of agreement as it pertains to categorical outcomes,

both for binary and multinomial responses. As a result, I will first outline the building

blocks for agreement for categorical outcomes by describing both the kappa statistic

and the intraclass correlation coefficient. I will then describe model-based assessments

of the ICC using the beta-binomial and multinomial-Dirichlet distributions. Thirdly,

I will describe a prior method to determine homogeneity of ICCs among categorical

responses for a multinomial outcome, and will finally conclude with a description

of the current work completed describing the analysis of nested-level agreement for

binomial responses.
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1.1.1. Kappa Statistic

The kappa statistic was originally proposed by Cohen (1960)[13] as a chance corrected

measure of agreement between two raters and is calculated as

κ̂ =
Po − Pe
1− Pe

(1.1)

where Po is the observed proportion of agreement between the two raters and Pe is

the expected measure of agreement by chance. κ̂ has limits [ −Pe

1−Pe
, 1] depending on the

observed level of agreement. Regarding estimation of a standard error of the kappa

statistic, Fleiss, Nee and Landis (1979)[23] wrote ”Many human endeavors have been

cursed with repeated failures before final success. The scaling of Mount Everest is

one example. The discovery of the Northwest Passage is a second. The derivation of

a correct standard error for kappa is a third!” A closed-form solution for the exact

variance of κ̂ has not yet been discovered, however an asymptotic variance can be

found in Fleiss et. al. (1979)[23]. While κ̂ is commonly used to quantify measures of

agreement among raters, it is only applicable in situations where there are only two

raters and a binomial response, necessitating further methods that can handle more

diverse cases.

1.1.2. Weighted Kappa Statistic

The weighted kappa statistic was developed 8 years after the original kappa statistic

by Cohen (1968)[14], which allows for a measure of agreement for a multinomial

outcome based on a set of weights. For k possible outcomes, a k × k contingency

table can be constructed for each possible combination of ratings for two ratings on

the same object, and let i and j index the cell for responses i from rater 1 and j

from rater 2 (i, j = 1...k). Let vij be the weight associated with cell (i, j), poij be the

3



observed probability of response for cell (i, j) and peij be the expected probability of

response for cell (i, j). Then the weighted kappa statistic can be calculated as

κw = 1−
∑
vijpoij∑
vijpeij

(1.2)

The weighted kappa statistics allows for researchers to specify weights for the analysis

giving stronger weights towards specific levels of agreement, allowing for customizable

measures of agreement for a given response. Interestingly, using the weights vij =

(i−j)2, Fleiss and Cohen (1973)[21] proved that the resulting weighted kappa statistic

is equivalent to the intraclass correlation coefficient, drawing a direct comparison

between the two measures of agreement. Krippendorff (1970)[30] showed a similar

result. The remainder of measures of agreement to be covered will focus on the ICC,

however the concept of chance corrected agreement will be important to developing

an adjusted nested-level ICC estimate.

1.1.3. Intraclass Correlation Coefficient

The intraclass correlation coefficient was first introduced by J. Arthur Harris in 1913

[25] as a measurement of agreement for multiple ratings on the same object. Since its

inception, the volume of literature describing and implementing the ICC has grown

exponentially. Originally intended for continuous outcomes, the ICC was expanded

to describe rater agreement for categorical data as well by Landis et. al. (1977)

[33, 34], Fleiss and Cohen (1973)[21] and Krippendorff (1970)[30]. In addition, at

this time rules of thumb for interpretation of the ICC were given by Landis and Koch

(1977a)[33] that assisted in quantifying the ICC.

The introduction of this method of interpretation provided a common benchmark for

researchers to measure their level of agreement against and further promoted the use

4



Table 1.1: Interpretation of ICC Measures from Landis and Koch (1977a)

Kappa Statistic Strength of Agreement
<0.00 Poor

0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect

of the ICC as a measure of agreement for categorical outcomes. By 1999, Ridout et.

al. [44] documented and compared 20 distinct methods for estimating the ICC for

binomial data. For the purposes of this research, we will focus on two methods of

calculating and providing inference on the ICC, the components of variance model

introduced by Landis and Koch (1977c) [34] and the beta-binomial estimate of the

ICC introduced by Crowder (1978, 1979) [15, 16].

Components of Variance Model

ANOVA methods of determining the ICC were documented by numerous researchers

including Anderson and Bancroft [1], Scheffé [45] and Searle [46], however flexible

models to handle varying number of raters per object did not arise until Landis

and Koch [34] presented the variance components approach for estimating the ICC.

According to their approach, the binomial response yij for object i and rater j can

be modeled by

yij = µ+ si + eij (1.3)

where µ is the overall probability of response yij = 1, si are normally distributed

errors with mean 0 and variance σ2
s and eij are normally distributed errors with mean

0 and variance σ2
e . The overall variance in the model can be computed as σ2

s +σ2
e with

5



the between-subject variance categorized as σ2
s . The corresponding ICC is calculated

as

ρ =
σ2
s

σ2
s + σ2

e

(1.4)

as the ratio of the variance attributed to the between-subject error and the total

variance. Therefore, larger ICC values would indicate that the overall variability is

dominated by the between-subject error and not the within-subject error attributed

to multiple ratings on an object, indicating that the raters in the model exhibit a high

level of agreement on the objects they are rating. Landis and Koch extended this

model to account for multinomial data and provided an asymptotic standard error

calculation that involved the use of complex matrix calculations as described in Koch

et. al. (1977) [29]. Further improvements on the standard error calculations were

made, such as the development of more computationally simple variance for the ICC

published by Mak (1988)[39] that relies on fewer assumptions than the Landis and

Koch calculations. However, as these improvements are not needed for the research

presented in this dissertation, the methods will not be described in detail here and

are summarized nicely by Shoukri [48].

Beta-Binomial Model

Crowder (1977)[15] proposed the beta-binomial distribution as an ANOVA method to

model overdispersed binomial data. If y is distributed according to the beta-binomial

distribution,

P (Y = y) =

(
n

y

)
B(y + α, n− y + β)/B(α, β) (1.5)

where B(x) is the beta function of x, n is the number of trials in the sample, y is

sum of the responses in the trial and α and β are the parameters of the model to be

fit. Using the binomial distribution and letting π = P (y = 1) for a one-sample trial,

6



E(y)=nπ and V ar(y)=nπ(1− π). However, as these data are overdispersed, there is

an additional overdispersion parameter added to the variance calculation describing

the overdispersion such that V ar(y)=nπ(1 − π)(1 − (n − 1)ρ). In trial design, this

overdispersion parameter is commonly known as a design effect, or DEFF. By set-

ting the moments of the beta-binomial distribution and the overdispersed binomial

together, it is shown that the ICC can be derived as a function of the parameters of

the beta-binomial model ρ = (α + β + 1)−1.

Given the identities presented regarding π and ρ, the beta-binomial distribution can

then be completely specified by the probability of response and the ICC as demon-

strated by Crowder [16]. Therefore, the resultant likelihood can be maximized over

π and ρ to obtain maximum likelihood (ML) estimates of the parameters. This is

an important discovery as the use of an ML estimate for the ICC contains important

properties. First, the resultant ML estimator for the ICC is a consistent estimate. Sec-

ond, using the Fisher Information matrix, the second derivative of the log-likelihood

can be used to derive an efficient estimate of the variance for the estimate of the ICC

ρ̂ using the methodology described by Casella and Berger [8]. In fact, the ”asymp-

totically fully efficient” variance of this estimator was used by Ridout et. al. [44] as

the reference by which the efficiency of other estimates of the ICC were measured

against.

These desirable properties of the ML estimates of the ICC make the beta-binomial

model an excellent choice to expand to attempt to estimate and provide inference

on the nested-level ICC. In subsequent chapters, the beta-binomial distribution will

be expanded to incorporate multiple levels of ICCs and will form the basis of further

exploration into the nested-level ICC. However, the beta-binomial distribution is only

flexible enough to model binomial data. In order to have a model-based ICC estimate

for multinomial outcomes, the more flexible multinomial analog, the multinomial-
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Dirichlet distribution, should be considered and expanded for exploration into the

nested-level ICC for multinomial data.

Multinomial-Dirichlet Model

When collecting a response that has multiple outcomes, it is generally of interest to

quantify the level of agreement among multiple raters on the multinomial response as

a whole. However too often estimation of agreement on the multinomial response as a

whole is sacrificed for assessing agreement on each item-wise response. For example, in

asking a subject to quantify their race as White, Black, Hispanic or Other, researchers

typically look at the level of agreement among raters on each item-wise response such

as ”White or non-White” or ”Black or non-Black”. Under certain conditions, such as

non-homogeneity of ICCs among the item-wise responses, analyzing each item-wise

response has its place, however analyzing data in this manner neglects the relationship

that the item-wise responses have given they were all asked in the same question and

are therefore correlated. To investigate this overall ICC among all responses, the

multinomial-Dirichlet distribution (MDD) can be used to provide estimation and

inference of the ICC for a multinomial outcome as proposed by Lui et. al. (1999)[37]

and Chen et. al. [9, 10] to do so.

Let yh be the total number of positive responses for category h of a multinomial

response, and let the vector of all responses for a given set of multinomial data be y

with nh categories per response. In addition, let Z = (z1, z2 . . . znh
) be the vector of

parameters that describe the MDD. Then MDD can be written as

P (y = y|Z) =
N !∏nh

a=1 ya!

Γ (
∑nh

a=1 za)

Γ (N +
∑nh

a=1 za)

nh∏
a=1

Γ (ya + za)

Γ (za)
(1.6)
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Chen [10] and Lui et. al. [37] demonstrate that the MDD models the pooled subject-

level correlation ρ = (
∑nh

a=1 za + 1)
−1

and item-wise response rate πi = zi∑nh
a=1 za

for

category i.

Bartfay et. al. (2000) [2] demonstrated the effect of collapsing multinomial data

when assessing agreement. They examined the use of the MDD in modeling the

overall ICC for a multinomial response, determining that there is a significant gain

in efficiency and reduction in the width of the confidence interval surrounding the

overall ICC estimate when analyzing agreement for the multinomial response and op-

posed to each item-wise response. This gain in efficiency is due to accounting for the

non-independent relationships of each item-wise response when assessing agreement.

This is of particular interest and appropriate where the ICCs are equivalent for each

item-wise response as there is no difference in the measures of agreement, and the

pooled ICC is sufficient to model the level of agreement for any individual response.

Therefore, attempts should be made where appropriate to quantify the measure of

agreement among multinomial responses as overall pooled ICCs. However, in situa-

tions where these assumptions are violated and there is heterogeneity among item-wise

responses, the pooled ICC should not be considered adequate to model the data and

the loss of efficiency from analyzing each item-wise response should be considered an

acceptable trade-off for the flexibility to individually model each item-wise response.

There has been some work done on determining whether homogeneity of item-wise

ICCs exists for a multinomial response. These existing methods will be summarized

(see Homogeneity of ICCs below) and extended (see Chapter 2).

Nested-Level ICC

Generally when studying measures of agreement among raters, the only factors taken

into account are objects being rated, the rating scale and the raters themselves. Sit-
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uations may arise, however, where there are additional factors that need to be taken

into account. Landis et. al. (2011)[31] provide one such example. Westlund and

Kurland (1953)[50] published the results of a study where two independent neurol-

ogists from Winnipeg and New Orleans classified subjects from their own patients,

then each other’s patients, on the certainty of Multiple Sclerosis (MS) diagnosis using

the following ordinal measurement: (1) Certain MS, (2) Probable MS, (3) Possible

MS, (4) Doubtful, Unlikely or Definitely Not MS. These results had been previously

analyzed for rater agreement by Landis et. al. (1977a)[33], however were reanalyzed

in Landis et. al. (2011)[31] to determine if there is a nested-level factor that helps

explain part of the measures of agreement. In this study, the patients at each site are

the objects being rated. Each patient is nested within one and only one site. Consider

the level of agreement that exists within a nested-level by combining all ratings for

all patients within a nested level and assessing the level of agreement for all ratings

combined. At first this may seem to be a futile exercise as reasonable individuals

may not expect there to be any agreement among seemingly independent subjects

within a site. However, this may not be the case. Consider the extreme example

where all certain MS subjects were located in Winnipeg and all doubtful MS subjects

were located in New Orleans. In that case, the measure of agreement within each

nested-level may actually be significant and of interest, causing researchers to wonder

whether the observed agreement among raters in this case is valid or simply due to

the clustering of patients within the sites.

Landis et. al. (2013)[31] set out to answer the question of how to quantify this nested

level of agreement using the random effects model as a framework, formulating esti-

mates for the object-level and nested-level ICCs using the variance components from

a three-level random effects model. They continue the research to lay out a framework

for an estimate of the variance of the nested-level ICC using the delta method and
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the variance/covariance matrix of the mean square error estimates, however could

not provide a closed form solution of the variance/covariance estimates and therefore

could not specify the variance estimate for the nested-level ICC. In addition, in the

presence of nested-level agreement, the corresponding object-level agreement could

potentially be inflated, and more investigation should be conducted on the effect this

could have on apparent object-level agreement.

1.1.4. Homogeneity of ICCs

Measuring agreement on a multinomial response requires more work and more as-

sumptions than assessing agreement on the binomial counterpart. First, there is only

one ICC associated with a binary outcome, whereas there are k potential ICCs for a

multinomial response with k outcomes that could be derived by dichotomizing each

of the item-wise assessments of the multinomial response. Second, in order to accu-

rately describe the measure of agreement on the multinomial response as a whole, it

is helpful (yet not necessarily imperative) that the item-wise agreement measures for

each dichotomized response are equivalent. It may ofter occur that raters agree more

strongly on certain items than they do on others.

Landis et. al. (1977c)[34] provide an example of estimating ICCs for psychiatric

diagnoses for six raters on one of five response categories: depression, personality

disorder, schizophrenia, neurosis or other diagnosis. The range of resultant ICCs

was 0.254–0.575 with raters most often agreeing on ”other diagnosis” and least often

agreeing on ”depression” or ”personality disorder”. An overall ICC was provided of

0.440, describing the overall agreement across all diagnoses, however it is difficult

to determine if this is an accurate summary of agreement across all responses, or if

the summary of agreement for each item-wise response would best describe the data.

Therefore an investigation into the homogeneity of item-wise ICCs would be prudent
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to assess whether the overall measure of agreement is the best fit for the data.

The question of whether to summarize agreement on the response as a whole or by

each item-wise response is important. Bartfay et. al. [2] demonstrated the gain in

efficiency that can occur by combining responses where appropriate. However, in

order to combine responses (without any a priori hypotheses regarding overall agree-

ment), homogeneity of item-wise ICCs should be demonstrated, otherwise important

differences in agreement on item-wise responses could be lost.

Chen et. al. [9, 10] described the assessment of overall agreement for a trinomial

response using the trinomial-Dirichlet distribution, but also provided a framework to

determine whether homogeneity of ICCs exists across the item-wise responses. Chen

then introduced the double beta-binomial model which is a distribution comprised of

the product of two beta-binomial distributions. Under the condition of homogeneity

of item-wise ICCs, Chen showed that the double beta-binomial distribution devolves

into the trinomial-Dirichlet distribution. As the two distributions are nested, this

allows for the use of the likelihood-ratio test to test whether the assumption of ho-

mogeneity of item-wise ICCs is valid.

These methods fall short in being able to be widely applied in two areas. First, if

there is not homogeneity of ICCs among the item-wise responses, there are 3 potential

expressions of the double beta-binomial distribution as the particular expression re-

lies on a specific breakdown of conditional beta-binomial distributions. Chen (1991)

[9] analyzes all three distributions and concludes that all three test statistics are

greater than the upper 1st percentile of the appropriate chi-square distribution and

can therefore reasonably conclude heterogeneity of ICCs. However, no mention is

made of how to appropriately control the corresponding type I error rate, and the use

of this methodology without such control will lead to unacceptable inflation in the

overall type I error. Second, while Chen mentions that these methods can be extended
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to the quadrinomial case, there is no explicit mention of the form such a distribution

would take nor the proof that the dirichlet-Multinomial distribution would be sim-

ilarly nested within the quadrinomial-Dirichlet distribution. Therefore, the method

should be extended to the more general case where the multinomial-Dirichlet distri-

bution is nested within a multiple beta-binomial distribution to test for homogeneity

of item-wise ICCs, and more consideration should be given to the process and proof

of control of the type I error rate with simulations to support such findings.

1.2. Estimation and Inference of the Three-Level Intraclass Correlation

Coefficient

Chapter 2 of this dissertation will present a test of homogeneity of item-wise intraclass

correlation coefficients for multinomial data. First, the methods originally derived

by Chen et. al. [9, 10] will be presented for the trinomial case and extended to any

number of responses. Second, recommendations for controlling the overall type I error

rate will be presented and simulations provided to show the strong control of the type

I error rate when testing for homogeneity of ICCs for multinomial data. Finally, the

test will be applied to two separate studies concerning cervical cancer diagnoses and

facial recognition to assess whether homogeneity of ICCs exist in either case.

Chapter 3 will provide a framework based on the beta-binomial distribution that

allows for estimation and inference on the nested-level ICC for binary responses.

A likelihood framework will be developed based on estimates of the probability of

positive response and object-level ICCs. Using maximum likelihood techniques, a

formula for the variance of the nested-level ICC along with a corresponding con-

fidence interval will be presented. Then, a nested-level adjusted object-level ICC

will be derived that provides a measure of agreement adjusted for the nested-level
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agreement. A simulation study will then be performed to demonstrate the bias of

the nested-level ICC estimate and corresponding coverage of the confidence inter-

val. Finally, we illustrate the impact of the differential prevalence of the response

attribute across object-level clusters on estimates of nested-level agreement by ex-

amining agreement between self-reported race/ethnicity of 3,546 study participants

and genetically-inferred race/ethnicity assessed across 47 genotyping plates within a

GWAS.

Chapter 4 will combine the results from chapters 2 and 3 and discuss a method to

derive the nested-level ICC for multinomial data. The multinomial-Dirichlet distribu-

tion will be modified, similarly to the beta-binomial distribution as shown in Chapter

3, to account for nested-level data, however this method is proved to be valid in one

of two ways. First, this method can be used if there is demonstrated homogeneity of

object and nested-level ICCs, and therefore the methods derived in chapter 2 will be

used to test homogeneity among object-level ICCs and extended to test homogeneity

of nested-level ICCs. Second, the method is found to be valid when there are a large

number of objects on average per nested-level. The methods presented in this chapter

are applied to the study examining agreement between self-reported race/ethnicity

across plates within a GWAS presented in Chapter 3, providing an overall estimate

of the nested-level ICC and testing whether homogeneity of ICCs exists across each

item-wise response.
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CHAPTER 2

A Test of Homogeneity of Dependent Intraclass

Correlation Coefficients for Multinomial Data

2.1. Introduction

Whether considering if a second opinion is needed or looking at the reliability of a

result, the question of agreement among multiple ratings on the same object has at-

tracted interest since J. Arthur Harris’ seminal paper on the intraclass correlation

coefficient (ICC) in 1913 [25]. Most often, the discussion centers around results that

have continuous outcomes to ensure continuity across multiple ratings. However, in

the biological and clinical setting, the categorical outcome is often of more interest

than the continuous outcome. While methods such as the ANOVA based intraclass

correlation coefficient and the concordance correlation coefficient have spanned the

chasm between continuous and categorical outcomes when answering the questions

of rater agreement, to truly understand the levels of agreement in the categorical

setting, a qualitative-specific framework is needed.

The question of the agreement among multiple raters on a binomial outcome has

been well-documented, starting with Cohen’s kappa statistic [13] and branching out

to a number of methods, many of which are summarized and critiqued by Ridout et.

al. [44]. There has been a larger focus on analyzing the agreement among raters on

binary outcomes at the expense of developing more robust theory on analyzing multi-

nomial outcomes. Some methods exist that are appropriate to assess agreement for

multinomial data. The ANOVA method proposed by Landis and Koch [34] is easily

extendable to multinomial data. Fleiss and Cohen both suggested kappa statistics
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appropriate for multinomial data [14, 22]. The concordance correlation coefficient

has also been extended to multinomial data [28]. There are other methods that have

focused on this area, but the development of likelihood-based methods is of particular

interest due to the desirable properties of maximum likelihood estimators.

The multinomial-Dirichlet distribution has classically been used to model overdis-

persed multinomial data, and estimates from this model can be obtained to make in-

ference on the corresponding intraclass correlation coefficient, assuming that the ICC

is constant across each response. Chen et. al. [9] presented the Dirichlet-trinomial

model to make inference on the proportion and ICC of a three-level multinomial

outcome, as well as the more flexible double beta-binomial model. In their work,

the double-beta binomial model was used to assess the goodness of fit regarding the

trinomial-Dirichlet model to determine if the assumption of heterogeneity of ICCs

across responses was valid. Furthermore, Bartfay and Donner described the gain in

efficiency when using all possible outcomes to make inference on a homogeneous ICC

for multinomial outcomes compared to modeling and making inference on the level

of agreement of each outcome separately [2]. However in both cases, the conversation

is mostly restricted to the three-outcome case. In addition, the goodness-of-fit test

presented by Chen [9] contains a potential flaw due to the fact that given the same set

of data, there are three separate expressions for the double beta-binomial distribution

that could likely lead to different conclusions for the goodness-of-fit test depending

on the decomposition. This paper will provide a generalization of the double beta-

binomial distribution to the multiple beta-binomial distribution and demonstrate how

the goodness of fit test for the homogeneity of ICCs across all possible responses orig-

inally presented by Chen [9] can be extended to multinomial data with any number

of outcomes. In addition, particular attention will be paid to the question of how to

handle various decompositions of the multiple beta-binomial distribution when test-
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ing against the multinomial-Dirichlet distribution. Simulation studies are presented

to demonstrate the control of the goodness of fit test over the type I error rate and

power under various assumptions. Finally, two examples are provided on assessing

homogeneity of ICCs, and recommendations are provided on how to analyze the data

if the assumption of the homogeneity of ICCs across responses is violated.

2.2. Notation and Motivation

2.2.1. Notation

Let yhij be a binary outcome (0 or 1) for the jth rater (j = 1, ..., ni·) on the ith

object (i = 1, ..., n··) for the hth response (h = 1, ..., nh) where nh is the number of

outcomes of the response of interest, and let y be the vector of all responses. Let

xhi =
∑ni·

j=1 yhij be the total number of positive responses for object i for response

h, let x be the vector of all such responses and let xi be the vector of responses

for object i. Let πh be the proportion of objects with the trait being assessed such

that P (yhij = 1) = πh. yhij is assumed to follow a multinomial distribution where

E(yhij) = πh and V ar(yhij) = πh(1 − πh). Let ρh be the object-level intraclass

correlation coefficient for response h and let ρ· be the overall object-level intraclass

correlation.

2.3. Distributions for Overdispersed Multinomial Data

2.3.1. Beta-Binomial Distribution

The beta-binomial distribution can be specified as

(
n

k

)
B(k + α, n− k + β)/B(α, β)

where B(x) is the beta function of x, n is the number of ratings in the sample,

k is number of positive responses in the trial and α and β are the parameters

of the model to be fit. If y ∼ Beta-binomial (α, β), then E(y) = nα/ (α + β)
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and Var(y) = [nαβ (α + β + n)] /
[
(α + β)2 (α + β + 1)

]
. As has been previously

demonstrated, E(xhi)=ni·πh and V ar(xhi) = ni·πh (1− πh) (1 + (ni· − 1) ρh), which

means that πh=α/ (α + β) and ρh = (α + β + 1)−1. This leads to the solution

ρh = πh/ (πh + α), implying α = πh (1− ρh) /ρh and β = (1− πh) (1− ρh) /ρh. The

details of the maximum likelihood estimates of these parameters have been docu-

mented elsewhere and will not be discussed further [15, 16, 39].

2.3.2. Dirichlet-Trinomial and Double Beta-Binomial Models

Chen et. al. [9] developed the Dirichlet-trinomial model to model a trinomial out-

come with an overdispersion of variance. Specifically in his example, Chen modeled

observations with three potential outcomes: xij, yij and zij. Define nij = xij+yij+zij.

Then, the Dirichlet-trinomial can be defined as a Dirichlet-multinomial model with

only three outcomes:

P (xij, yij, zij) =
nij!Γ (αi + βi + γi) Γ (xij + αi) Γ (yij + βi) Γ (zij + γij)

xij!yij!zij!Γ (nij + αi + βi + γi) Γ (αi) Γ (βi) Γ (γi)
(2.1)

However, this distribution assumes that the ICCs among different responses are equiv-

alent. Therefore, Chen broadened the distribution using the double beta-binomial

distribution, which is a joint distribution for the responses that allow for separate

ICCs for each response category. The double beta-binomial model can be written as

the product of two conditional beta-binomial distributions:

P (xij, yij, zij) =
nij!Γ (αi + βi) Γ (xij + αi) Γ (nij − xij + βi)

xij! (nij − xij)!Γ (nij + αi + βi) Γ (αi) Γ (βi)
(2.2)

× (nij − xij)!Γ (γi + δi) Γ (γi + yij) Γ (nij − xij − yij + δi)

yij! (nij − xij − yij)!Γ (nij − xij + γi + δi) Γ (γi) Γ (δi)

Chen determined that the Dirichlet-trinomial model is a special case of the double
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beta-binomial model, implying that the likelihood-ratio test can be used to test the

homogeneity of ICCs across responses within an object.

2.3.3. Multinomial-Dirichlet Distribution

For a given set of multinomial data y with nh categories per response, a Dirichlet

distribution can be assumed as the prior distribution for the probability of response

for each category and a multinomial likelihood for the response vector. By invoking

Bayes’ rule, one obtains the multinomial-Dirichlet distribution (MDD). Let M =

(m1,m2 . . .mk) be the vector of parameters that describe the MDD. Then the MDD

can be written as

P (Xi = xi|M) =
N !∏nh

f=1 xfi!

Γ
(∑nh

f=1mf

)
Γ
(
N +

∑nh

f=1mf

) nh∏
f=1

Γ (xfi +mf )

Γ (mf )
(2.3)

Using the fact that the MDD models the overall ICC, ρ· =
(∑nh

f=1mf + 1
)−1

, and

probability of response, πh = mh/
(∑nh

f=1 mf

)
[10], it can be shown that mh =

πh (1− ρ·) /ρ· ∀h. The likelihood for n·· observations can be written as

L (M|X = x) =
n··∏
a=i

 na·!∏nh

q=1 xqa!

[
na·∏
d=1

(
d+

1− ρ·
ρ·
− 1

)]−1

(2.4)

×

[
nh∏
b=1

xab∏
c=1

(
c+

1− ρ·
ρ·

πb − 1

)]]

This likelihood can be directly maximized to obtain MLE’s of each πi and ρ·. In

addition, the standard error of each can be found by inverting the negative of the

information matrix appropriately for each parameter, the details of which can be

found elsewhere [42].
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2.3.4. Multiple Beta-Binomial Distribution

It is well known that a common distribution to describe the presence of overdispersed

binomial responses is the beta-binomial distribution [16, 44]. When a response vector

has more than two responses, to maintain the concept of overdispersion, one can use

the multinomial-Dirichlet distribution to capture the overdispersion [9]. However,

this distribution makes the strong assumption that ρh = ρ·∀h, which is unreasonable

in many situations as raters on the same object may agree for certain responses and

disagree for others. Therefore, other considerations need to be made to allow for the

flexibility of separate ρh responses for different categories.

Originally, when considering the multinomial-Dirichlet distribution, the joint distri-

bution of responses for object i, P (Xi = xi|M), is modeled. However, using the

definition of conditional probability, this probability can be rewritten as

P (Xi = xi|M) = P (X2i = x2i, . . . Xhi = xhi|M, X1i = x1i)P (X1i = x1i|M)

= P (X3i = x3i, . . . Xhi = xhi|M, X1i = x1i, X2i = x2i)×

P (X2i = x2i|M, X1i = x1i)P (X1i = x1i|M) . . .

Therefore, the probability model can be written as a product of successive conditional

beta-binomial distributions. In order to make the model more flexible, the restriction

based on the parameters of the MDD can be removed and each conditional beta-

binomial distribution can be modeled with its own set of parameters α and β. Define∑n
i=m zi = 0 where n < m and let A = (α1, α2, ...αnh−1) and B = (β1, β2, ...βnh−1) be

the vectors of parameters that describe each conditional beta-binomial distribution.

Then, the multiple beta-binomial distribution (MBBD) for the vector of responses
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for object i can be written as

P (Xi = xi|A,B) =

nh−1∏
f=1

(
N −

∑f−1
g=1 xgi

xfi

)
(2.5)

×
Γ (xfi + αf ) Γ

(
N −

∑f
g=1 xgi + βf

)
Γ (αf + βf )

Γ
(
N −

∑f−1
g=1 xgi + αf + βf

)
Γ (αf ) Γ (βf )

Unlike the standard beta-binomial distribution, however, the conditional

beta-binomial distribution does not have a direct parametrization that links it to the

unconditional probability of response and corresponding ICC. Instead, each condi-

tional beta-binomial distribution models the response probability and level of agree-

ment given the predecessors it is conditional upon have already occurred. Assuming

that conditioning occurs in order of response such that

P (Xi = xi|A,B) =P (X1i = x1i|A,B)P (X2i = x2i...Xnhi = xnhi|A,B, X1i = x1i)

=P (X1i = x1i|A,B)(X2i = x2i|A,B, X1i = x1i)...

P (Xnhi = xnhi|A,B, X1i = x1i...X(nh−1)i = x(nh−1)i)

then the conditional beta-binomial distribution can instead be written in terms of the

probability of response h, πh|1,2,...,h−1, and conditional level of agreement of response
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h, ρh|1,2,...h−1, conditional on all previous responses.

P (Xi = xi|A,B) =

nh−1∏
f=1

[
xfi∏
a=1

(
a+

(
1− ρf |1...f−1

)
πf |1...f−1

ρf |1...f−1

− 1

)
× (2.6)

Ni·−
∑f

j=1 xji∏
a=1

(
a+

(
1− ρf |1...f−1

) (
1− πf |1...f−1

)
ρf |1...f−1

− 1

)
×

Ni·−
∑f−1

j=1 xji∏
a=1

(
a+

1− ρf |1...f−1

ρf |1...f−1

− 1

)−1



It can be shown that the MDD is a special case of the MBBD. With nh possible

outcomes of the response vector of interest, the MDD has nh parameters that define

the distribution. Call these parameters m1,m2, ...,mnh
. In contrast, the MBBD would

have 2(nh − 1) parameters that define the distribution. Assume for the MBBM that

each outcome xhi has two parameters that comprise its conditional beta-binomial

distribution, ah and bh. Under the conditions ah = mh and bh = mh+1 + mh+2 +

...mnh
∀h, the MBBD devolves into the MDD. The proof is provided in Appendix A.1.

2.4. Testing for Homogeneity of Dependent Intraclass Correlation Co-

efficients

2.4.1. Estimation of Parameters

As previously mentioned, the MDD can be written in terms of nh parameters

π1, π2, ...πnh−1, ρ· (since the probabilities of response are constrained by the equality∑nh

i=1 πi = 1). The corresponding MBBD has similar constraints and can be written

in terms of parameters π1, π2|1, ...πnh−1|1,2...,nh−2, ρ1, ...ρnh−1|1,2...,nh−2. One will notice

that πnh|1,2...,nh−1 and ρnh|1,2...,nh−1 are not accounted for in the MBBD, but this is

expected as the conditional beta-binomial distribution for the nh
th response is trivial
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conditional on all other possible responses.

Because the primary focus of these methods is on determining differences among the

ICCs, each of the probabilities will be obtained prior to estimating the parameters

of the final model using the moment estimator πh =
(∑n··

q=1

∑ni·
p=1 yhqp

)
/
(∑n··

q=1 nq·

)
.

Given the proportion πh within each model, the ICC can subsequently be determined.

For the MDD, given the assumptions outlined earlier, the conditional ICC can be

completely determined by the parameters m1...mk in the MDD. Recall within each

conditional beta-binomial distribution, the ICC is specified as 1
ah+bh+1

= 1∑nh
i=hmi+1

,

so no further estimation of the ICC is required. However, within the MBBD, for

each conditional beta-binomial distribution, the ICC for each conditional distribution

needs to be estimated maximizing the respective likelihood. Estimation of the ICC

in this fashion has been documented elsewhere and will not be discussed further [16].

2.4.2. Testing Homogeneity of Intraclass Correlation Coefficients

Given that the MDD is a special case of the MBBD and the fact that the proportion

parameters are the same between the two models, the MDD is a nested model within

the MBBD under the constraint that ρ1 = ρ2 = ... = ρ·. If this is true, the likelihood

under the MBBD is equivalent to the likelihood under the MDD, and different other-

wise. Given the nested likelihoods, one can test the hypothesis that ρ1 = ρ2 = ... = ρ·

using a likelihood ratio test.

Let LMDD be the likelihood of the parameters given the data assuming the MDD, and

let LMBBD be the likelihood of the parameters given the MBBD. Then, the test statis-

tic ψ = 2logLMBBD

LMDD
follows a chi-square distribution with nh − 2 degrees of freedom
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(
χ2
nh−2

)
[8]. Thus, the following test of hypotheses can occur:


H0 : ρ1 = ρ2 = ... = ρ·

HA : ρ1 6= ρ· or ρ2 6= ρ· or ...ρnh
6= ρ·

However, this likelihood-ratio test is not as straightforward as it may appear. Recall

that the MBBD is a decomposition of the joint distribution of all possible responses of

the outcome of interest. Under the null hypothesis laid out above, different decompo-

sitions of the joint distribution can be obtained using various orderings of conditional

beta-binomial distributions. Therefore, the following hold true for object i:

P (Xi = xi|A,B) =P (X1i = x1i|A,B)(X2i = x2i|A,B, X1i = x1i)...

P (Xnhi = xnhi|A,B, X1i = x1i...X(nh−1)i = x(nh−1)i)

=P (Xnhi = xnhi|A,B)(X(nh−1)i = x(nh−1)i|A,B, Xnhi = xnhi)...

P (X1i = x1i|A,B, Xnhi = xnhi...X2i = x2i)

Of course these are only two examples, and for each distribution there are nh!/2 unique

decompositions of the joint likelihood since the last two beta-binomial distributions

in the decomposition are interchangeable as the two decompositions will result in

equivalent likelihoods. The test statistic from any one of the possible decompositions

can be used to reject the null hypothesis that the ICC for all responses are equal.

However, performing all possible tests and observing whether any test indicates that

there is enough information to reject the null hypothesis of equivalent ICCs will

inflate the type I error rate as the issue of multiple comparisons arises. Therefore,

multiple comparison methods must be employed to ensure that the type I error rate

is controlled.
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2.4.3. Multiple Comparisons Considerations

Given nh possible outcomes to the response of interest, there are nh!/2 possible unique

decompositions of the MBBD. Let Lb be the likelihood of the parameters given the

data under the bth decomposition of the MBBD (b = 1...nh!/2). Let pb be the p-

value associated with the likelihood ratio test comparing the bth decomposition of the

MBBD to the MDD according to the χ2
nh−2 distribution. Finally, the ordered p-values

will be denoted as p(1)...p(nh!/2) where p(1) ≤ p(2)... ≤ p(nh!/2).

In practice, there is no true decomposition of the likelihood as the decomposition

is arbitrary, necessitating that all possible decompositions are considered. As each

of the likelihood ratio test statistics are based on the same data, have the same

reference null-hypotheses, and in some cases use some of the same parameters, each

of the statistics are positively correlated. Unfortunately, the research on the joint

distribution of correlated chi-square variables has yet to reveal a closed-form solution

of the joint distributions in many situations [12], which leaves little room to either

attempt to estimate the correlation among the test statistics or use that information

for multiple comparisons. Thus, one is relegated to using methods based on the

ordered p-values to control the type I error rate.

To obtain strong control over the type I error rate, the Bonferroni-Holms method [26]

lends itself to a simple solution to control the error rate. However, this method was

demonstrated to control the type I error rate when assessing multiple independent

test statistics. For the purposes of this test where the aim is to test the homogeneity of

ICCs among all responses, only one of the test statistics is required to be significant at

the α level of interest in order to reject the null hypothesis. After performing all nh!/2

possible likelihood-ratio tests, the concern is not which test rejects the null hypothesis,
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only that one of the tests rejects the null hypothesis. Therefore, using the Bonferroni-

Holms procedure in this case is equivalent to observing only whether p(1) ≤ 2α/nh!.

However, due to the high correlation among each of the test statistics, the Bonferroni-

Holms procedure will actually prove to be too conservative in its control of the type

I error rate, leading to an overall loss of power of the test [24].

In contrast, alternative methods serve to provide weak control over the type I error

rate by controlling the false-discovery rate (FDR). The Benjamini-Hochberg method

[3] has been widely used as a step-down procedure that provides control over the FDR,

but has been criticized in its use for not providing strong control over the type I error

rate. To define this procedure, let z = max
(
g : p(g) ≤ 2gα/nh!

)
if such a g exists,

otherwise let z = 0. If z > 0, the null hypothesis of homogeneity of ICCs is rejected

in favor of the alternative that the ICCs are not all equivalent across responses.

This procedure has two benefits over the Bonferroni-Holms procedure. First, it uses

all available likelihood-ratio tests to compare against the null hypothesis. Second,

Benjamini and Yekutieli [4] showed that the FDR is well controlled in the case of

comparing positively correlated test-statistics, which lends credence to the results.

2.4.4. Test Conclusions

This likelihood-ratio test is intended to test multinomial responses for homogeneity

of ICCs across each potential outcome. However, the proposed MBBD does not pro-

vide an avenue to simultaneously estimate the ICC of each response. Many methods

suggest dichotomizing the multinomial response into binary yes/no results for each

possible response, then assess the ICC for each dichotomized response [34, 19, 2].

One commonly used method to assess the ICC for each dichotomized result is the

beta-binomial model[15, 16, 39, 44], which has been indirectly utilized in the MBBD.

In each decomposition of the MBBD, the first term in the decomposition will re-
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sult in an ICC estimate equivalent to the beta-binomial ICC. Therefore, each of the

ICCs are estimated among all permutations of the MBBD by maximizing the first

dichotomized beta-binomial distribution with respect to the ICC of the outcome of

interest. Therefore, it would appear to be most appropriate, in the case that the hy-

pothesis of homogeneity of ICCs across all responses is rejected, to estimate the ICC

and corresponding standard error of each dichotomized outcome using the likelihood-

based method of maximizing the dichotomized beta-binomial distribution. If not

rejected, the methods presented by Lui et. al. [37] can be employed to estimate the

common ICC among all outcomes.

2.5. Simulations

2.5.1. Simulation Methodology

To test the overall type I error rate of the test of homogeneity of ICCs, as well as to

demonstrate the power of the procedure, a simulation study was carried out. All data

were generated under the MBBD, and in the case of the null model, the assumptions

of the MBBD which equate to the MDD were implemented as described in section

3.4. Recall that the MBBD is a product of conditional beta-binomial distributions

such that if

Xi ∼MBBD (π1, π2|1...πnh−1|1,2...nh−2, ρ1, ρ2|1...ρnh−1|1,2...nh−2,

N,N − x1i, ...N −
nh−2∑
j=1

xji

)
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and BB (πh, ρh, N) denotes the beta-binomial distribution with probability of success

πh and ICC ρh with N responses, then

P (Xi = xi) =BB (π1, ρ1, N)×BB
(
π2|1, ρ2|1, N − x1i

)
× ...

BB

(
πnh−1|1,2...nh−2, ρnh−1|1,2...nh−2, N −

nh−2∑
j=1

xji

)

Simulating parameters under this distribution involves specifying a number of options

governing the simulation including:

1. The number of objects, i

2. The number of raters, j

3. The probability of response for each possible outcome,
(
π1, π2|1..., πnh−1|1,2...nh−2

)
4. The overall ICC under the null hypothesis, ρ·

5. For power studies, the deviation from the ICC under the null hypothesis,(
ρd1, ρd2..., ρd(nh−1)

)
Then, to obtain the sampled data, first set a sample of data from the first beta-

binomial distribution BB (π1, ρ· − ρd1, j). After obtaining the number of positive re-

sponses for the first outcome, continue to obtain the number of positive responses

for the second outcome by sampling from the second beta-binomial distribution

BB
(
π2|1, ρ2|1 − ρd2, j − x1

)
, where π2|1 and ρ2|1 are the conditional probability of

success and conditional ICC under the MDD assumption as previously described.

The deviation from the MDD assumption lies in the specification of ρd2. Continue

this process for all possible outcomes up to nh − 1. The final set of outcomes are

specified as j−
∑nh−1

f=1 xf . All simulations were performed using the R software pack-
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Figure 2.1: Homogeneity of ICC Power Plots
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age [43], and sampling from the beta-binomial distribution was performed using the

rbetabinom function from the emdbook package written by Bolker [5].
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2.5.2. Simulation Results

The results of a series of simulations performed based on the methodology set forth

in section 2.5.1 are provided in both figure 2.1 and table 2.1. The simulations results

provided in figure 2.1 examine only the effect of a difference in ρ on one of the four

possible outcomes, where the difference between the ICC of the response in question

and the rest of the responses is programmed to be either 0, .2, .3 or .4. Power calcu-

lations are displayed for both Bonferroni-Holms and Benjamini-Hochberg corrections

for multiple comparisons. In all cases, as expected, the power from the Benjamini-

Hochberg correction was greater than that of the Bonferroni-Holms. Examining the

type I error rate for these tests leads to two conclusions. First, the Bonferroni-Holms

correction is a conservative correction with type I error rates ranging from 0.028 to

0.042 percent for an α = 0.05 test, which also shows that the FWER is strongly

controlled for this test under these conditions. Secondly, the Benjamini-Hochberg

correction yields a type I error rate closer to the nominal 0.05 level with a range of

0.043 to 0.058, however more powerful than the expected error-rate.

In general, the power of the test for homogeneity of ICCs is greater when either

the number of objects or raters is increased. In addition, with all other parameters

equivalent, a higher ICC for the majority of tests results in greater power. For ex-

ample, a result with one outcome with an ICC of 0.5 and the rest 0.7 will have less

power than another situation where one outcome has an ICC of 0.7 and the others

0.9. Therefore, both the difference of the discrepant ICC and the magnitude of the

ICCs must be taken into consideration when considering power analyses for this test.

Finally, a close analysis of table 2.1 reveals that greater power is observed with only

one discrepant ICC instead of two, all other parameters being equal. Consider the

case of 5 raters and 200 subjects where the majority ρ = 0.5. The case with only
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one discrepant outcome yields 82.8% power using the Bonferroni-Holms correction

[88.0% using Benjamini-Hochberg], however two discrepant outcomes results in only

65.6% [71.3%] power. Therefore investigators should consider the number of expected

discrepant outcomes to properly power this test understanding that fewer discrepant

results will result in greater power.

2.6. Applications

2.6.1. Cervical Cancer Diagnoses

As originally reported by Holmquist, McMahan and Williams [27], ratings for the

classification of carcinoma in situ of the uterine cervix from seven pathologists were

recorded. Each rater gave their interpretation of 118 slides and rated each slide as

one of the following five ordinal categories: negative, atypical squamous hyperplasia,

carcinoma in situ, squamous carcinoma with early stromal invasion, and invasive

carcinoma. Both Landis and Koch [32] and Landis et. al. [31] investigated these data

to assess rater agreement and to test for potential rater bias. These data will now

be assessed to determine whether the levels of agreement within each response are

equivalent and can be jointly modeled, or whether an assumption of homogeneity of

ICCs for each response is violated.

2.6.2. Face Recognition

The GO Project at the University of Pennsylvania enrolled subjects ages 8-21 who

entered the emergency room at Children’s Hospital of Philadelphia for any reason.

Demographic information was collected for each subject. In addition, the subjects’

medical health was rated on a scale of 0 to 4 (0 being the healthiest) and their

cognitive ability was rated as ’typically developing’, ’other psychiatric’, ’sub psychotic’
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or ’psychosis spectrum’. Each subject was shown 3D images of 40 faces and asked

to specify an emotion on each face from happy, sad, anger, fear or neutral. This

study has the primary goal of establishing a cohort to follow to better understand

the factors leading to psychosis. However, we wish to examine the level of agreement

of face recognition among healthy, developed subjects. Therefore, the ratings of a

subset of 73 subjects 18 or older who are typically developing with medical rating 0

will be analyzed to measure the level of agreement of facial recognition among healthy

volunteers.

2.6.3. Application Results

Table 2.2 shows the proportion, ICC and corresponding ICC standard error for each

of the 5 responses from the two scenarios described above. In addition, the overall

ICC based on the multinomial-Dirichlet distribution is displayed along with its cor-

responding standard error. Figure 2.2 displays the −log10 p-value for each of the 60

possible decompositions of the MBBM from largest p-value to smallest. In addition,

the corresponding Benjamini-Hochberg boundary for significance is displayed for each

decomposition as a reference. In both cases the hypothesis of homogeneity of ICC

across responses is violated. Table 2.2 shows a diversity of ICCs for both scenarios,

but particularly in the cervical cancer diagnoses data with a range in ICC of .147 for

atypical hyperplasia to .546 for invasive cancer. As expected, the level of agreement

among healthy subjects for the facial recognition data is relatively homogeneous, ex-

cept for their assessment of happy faces where there is markedly better agreement

among subjects. There is strong evidence in both cases that the assumption of homo-

geneity is violated, and the graph of the distribution of p-values accurately portrays

a much stronger signal for the cervical diagnoses data (note that 5 p-values were cal-

culated as zero and a value of 20 was imputed for display purposes). As a result, the
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overall ICC from the multinomial-Dirichlet distribution does not accurately portray

the true level of agreement among responses due to the lack of homogeneity, and re-

searchers should consider the levels of agreement among the 5 item-wise responses as

an alternative. This may not be a surprising result for the cervical cancer diagnosis

data, but is unexpected for the facial recognition data. One would posit that typically

developing, healthy 18–21 year old subjects would be able to agree on the emotions

displayed on 40 artificial faces, but clearly this is not the case. Therefore, caution

should be taken when using these facial recognition results as outcomes for research

as even healthy subjects do not agree what emotions are being shown.

Table 2.2: Application Results

Cervical Cancer Results Face Recognition Results
Category π̂ ρ̂ SE(ρ̂) Category π̂ ρ̂ SE(ρ̂)
Negative .281 .518 .046 Happy .207 .861 .043
Atyp. Hyperplasia .254 .147 .033 Sad .194 .573 .060
Ca in Situ .364 .377 .042 Anger .171 .660 .065
Ca w/ Early Invas. .074 .184 .054 Fear .198 .638 .062
Invasive Cancer .027 .546 .137 Neutral .230 .593 .060
Overall ICC .332 .028 .637 .031

2.7. Conclusion

Comparing the level of agreement among various outcomes of a multinomial response

is important when testing reliability and reproducibility of an assessment. Ideally

there would be no difference in the level of agreement among any of the outcomes, how-

ever practically it may not be the case. In order to appropriately test this phenomenon

taking the dependency of the data into account, we have presented a likelihood-based

approach to test the homogeneity of ICCs across multiple outcomes in a multinomial

response. This test was demonstrated to have an appropriate, yet conservative, type I

error rate when using the Bonferroni-Holms correction and a close to nominal, albeit
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Figure 2.2: Application Results Distribution of -log10 P-values
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slightly liberal, type I error rate when using Benjamini-Hochberg correction. This test

is applicable to any number of potential multinomial outcomes, however simulations

were completed on only the case of a four-outcome response. The test was observed

to have increased power when the number of subjects, number of raters or majority

ρ· was increased. Finally, in addition to testing the homogeneity of ICCs, this test

can also be used to test the appropriateness of modeling the data with a common

ICC, which can result in a more accurate estimate of the overall ICC while reducing

the corresponding standard error if the method is deemed appropriate.
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CHAPTER 3

Estimation and Inference of the Three-Level Intraclass

Correlation Coefficient for Binomial Data

3.1. Introduction

Many different methods have been developed to assess inter-rater agreement on re-

peated measures on the same object. In studying the measures of agreement and

reliability of measuring a particular object multiple times, the intraclass correlation

coefficient (ICC) has been proposed as a measure of agreement. Given normal, con-

tinuous data, the ICC can be relatively easily calculated using the one-way random

effect model yijk = µ+ sij + εijk where εijk ∼ N (0, σ2
e) and sij ∼ N (0, σ2

s) for the kth

rating for the jth object in the ith nested-level [34]. The ICC can then be calculated

from the model as σ2
s/ (σ2

s + σ2
e). [21]. For the continuous case, the normality assump-

tion can generally be satisfied and few issues arise in inference. Inference procedures

are also straightforward given normal continuous data as presented in Searle [47].

Typically, only the object-level agreement is considered. However, this object-level

agreement can be nested within other levels of agreement, artificially inflating the ob-

served object-level agreement if the nested-level agreement is not taken into account.

The correlation that can be found among ratings within a site, for example, can artifi-

cially inflate the object-level ICC. As shown by Landis et. al. [31], the random effects

model for object and nested-level effects can be written as yijk = µ + ci + sij + εijk

where εijk ∼ N (0, σ2
e), sij ∼ N (0, σ2

s) and ci ∼ N (0, σ2
c ). Then, the nested-level

ICC is calculated as σ2
c/ (σ2

c + σ2
s + σ2

e); whereas the object-level ICC is calculated

as (σ2
c + σ2

s) / (σ2
c + σ2

s + σ2
e). While this method can estimate the ICC among all
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observations within a nested-level, there is currently no method to determine the

corresponding standard error of the nested-level agreement.

Given dichotomous binary responses, the normality assumption is not verified and

issues can arise in calculating confidence intervals and standard errors. Landis and

Koch [34] showed the consistency of the point estimate of the ICC in the dichoto-

mous case using the one-way random effects model, however challenging issues still

arose with deriving a simplified version of the linearized Taylor-series based variance

estimator for the ICC. Koch et. al. [29] developed a general method of estimation

for repeated measures of categorical data that allows for asymptotic estimation of the

standard error of the ICC estimate, but this method requires ≥ 5 observations per

cluster to be valid and requires expressing the ICC estimator as a compounded func-

tion of the underlying multinomial proportions, leading to a series of matrix products

to formulate the variance estimators. As an improvement, Mak [39] developed an

”exact asymptotic” variance of the ICC with dichotomous outcomes using the one-

way random effects ANOVA model. This model provides more accurate standard

errors than using methods that assume normality. However, none of these models

work optimally on binary data and are not sufficient to estimate the standard error

of the nested-level ICC.

Beyond these ANOVA methods, Ridout et. al. [44] compared 20 different estimates

of the ICC for binary response data, each with their own efficiencies and drawbacks.

Of these methods, one method that performed particularly well was using the Beta-

Binomial model to estimate the ICC [15, 16]. Following these favorable comparisons,

this paper will extend the estimation of the ICC using the Beta-Binomial model to de-

termine the level of agreement between different objects within the same nested-level

and calculate the corresponding standard error. Then, we will demonstrate that a
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level of agreement existing among different objects within the same nested level artifi-

cially inflates the estimate of the object-level agreement and will provide a nested-level

adjusted object-level correlation that will better reflect the true level of agreement

among objects. Finally, we will apply this method to the actual race/ethnicity classi-

fication data arising from a genome-wide association study (GWAS) in which serious

identity misalignment was discovered. Comparison of self-reported race/ethnicity and

genetically-inferred race/ethnicity, separately within each of 47 genotyping plates, led

to isolation of several genotyping plates with substantial misalignment of study sub-

ject identity with mis-matched genotyping plate results.

3.2. Notation and Motivation

3.2.1. Motivating Example: Investigating Identity Misalignment within a GWAS

A mini-GWAS (50K single-nucleotide polymorphisms - SNPs) conducted within a

multipurpose cohort study of renal and cardiovascular outcomes led to the trou-

bling discovery that intentionally duplicate genotyping results were paired with to-

tally different subject IDs. Fortunately, within the same clinical research network,

a full-scale GWAS (1 million SNPs) was conducted shortly thereafter, and the ”fin-

gerprinting” step was used to correctly realign nearly 4% of the subject IDs to their

correct genotyping results. Since each study participant was classified by self-reported

race/ethnicity as 1) Non-Hispanic White; 2) Non-Hispanic Black; 3) Hispanic; and 4)

Other, the cross-classification of genetically-inferred race/ethnicity with self-reported

race summarized in Table 3.1 illustrates the impact of the re-alignment of subject IDs

quite strikingly among the NH-White and NH-Black discordant cells. In particular,

prior to re-alignment of IDs, there were 55 misclassifications (left panel), but after

re-alignment of IDs there were 0 (right panel), with the estimator of simple kappa
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Table 3.1: Agreement between Self-Reported and Genetically-Inferred Ethnicity

Self-
reported 

Race/ 
Ethnicity 

Genetically-inferred 
Race/Ethnicity  

 

Total NH-
White 

NH-
Black 

Hisp- 
anic 

Asian/ 
Other 

NH-White 
1,505 

(98.75) 
0 

(0.00) 
7 

(0.46) 
12 

(0.79) 
1,524 
(42.98) 

NH-Black 
0 

(0.00) 
1,478 

(99.13) 
1 

(0.07) 
12 

(0.80) 
1,491 
(42.98) 

Hispanic 
15 

(3.75) 
8 

(2.00) 
361 

(90.25) 
16 

(4.00) 
400 

(11.28) 

Asian/ 
Other 

30 
(22.90) 

4 
(3.05) 

4 
(3.05) 

93 
(70.99) 

131 
(3.69) 

Total 
1,550 
(43.71) 

1,490 
(42.02) 

373 
(10.52) 

133 
(3.75) 

3,546 

Self-
reported 

Race/ 
Ethnicity 

Genetically-inferred 
Race/Ethnicity  

 

Total NH-
White 

NH-
Black 

Hisp- 
anic 

Asian/ 
Other 

NH-
White 

1,474 
(96.91) 

26 
(1.71) 

8 
(0.53) 

13 
(0.85) 

1,521 
(42.89) 

NH-Black 
29 

(1.94) 
1,447 

(96.98) 
3 

(0.20) 
13 

(0.87) 
1,492 
(42.08) 

Hispanic 
16 

(3.99) 
11 

(2.74) 
359 

(89.53) 
15 

(3.74) 
401 

(11.31) 

Asian/ 
Other 

31 
(23.48) 

6 
(4.55) 

3 
(2.27) 

92 
(69.70) 

132 
(3.72) 

Total 
1,550 
(43.71) 

1,490 
(42.02) 

373 
(10.52) 

133 
(3.75) 

3,546 

Original PID  
(Kappa=0.921)  

Re-aligned PID  
(Kappa=0.951)  

Note: Cell proportions are displayed as row percentages to illustrate the accuracy of
the genetically-inferred race/ethnicity within each self-reported category

increasing from 0.92 to 0.95.

On further investigation, among the final set of 3,546 study participants with resolved

data from both GWAS studies, it was discovered that the biospecimens from the His-

panic study participants were heavily clustered on 5 of the 47 genotyping plates, as

illustrated in Figure 3.1. This differential prevalence of self-reported Hispanic eth-

nicity across the 47 genotyping plates, together with the race-ethnicity agreement

between self-report and genetically inferred race/ethnicity will be used as a moti-

vating example to illustrate the impact of multi-stage clustering on ICC measures

of agreement. Given that 400/3,546 = 11.3% of the study participants self-reported

Hispanic ethnicity, the observed distribution of subjects across genotyping plates in
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Figure 3.1: Distribution of Self-Reported Hispanics by Plate in a GWAS
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Figure 3.1 illustrates the differential prevalence, with most plates having far less than

11%, and 5 plates with more than 50% prevalence. With the discrepant number

of Hispanics present per plate, there is an issue that could potentially arise when

assessing the level of agreement between the self-reported race and the genetically-

determined race. Particularly, when looking at the level of agreement of responses

among Hispanics, there is a possibility that there is a large level of agreement simply

due to the distribution of Hispanics across plates which could artificially inflate the

apparent subject-level race agreement.
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To focus particular attention on the impact of object-level clustering on ICC mea-

sures of agreement, four separate category-specific binary ICCs were estimated for

each race/ethnicity category in Table 3.2. The level of agreement among subjects

was obtained via the 2-level variance components model, which is asymptotically

equivalent to using the beta-binomial model to assess agreement [15]. The level of

agreement among responses within the same genotyping plate was obtained using the

methods described in Landis et. al. [31]. These methods are used to determine the

subject-level agreement ρ and the plate-level agreement ρc. As can easily be seen, the

level of agreement among subjects is very high, while the level of agreement among

results within the same plate is low. However, looking at the results from Hispanic

subjects, we see that the intraclass correlation coefficient for results within a plate is

0.427, which corresponds to a moderate level of agreement for responses that should

be uncorrelated, according to the criteria set out by Landis and Koch [33] . How-

ever, this method for assessing the ICC of responses within the same plate has a

drawback. The method of deriving the standard error of the ICC estimate specified

in [31] required estimating the variance/covariance matrix of the expected ANOVA

mean squares estimates. This research did not provide formulas for the corresponding

variance/covariance matrix, leaving a need for an explicit formula for the standard

error of the nested-level ICC.

In this paper, we set out to find methods that will serve to appropriately determine

the level of agreement among different objects within the same nested-level and find

the standard error and confidence interval for this measure of agreement. In addition,

we will examine the effect that this level of agreement can have on the object-level

agreement and demonstrate cases where this nested-level agreement can positively

bias object-level agreement in a way that overstates the true level of agreement of

43



raters on the same object.

3.2.2. Notation

Understanding the roles of ”raters”, ”objects” and ”nested-levels” are crucial to un-

derstanding the methods presented in this paper. In this context of rater-agreement,

”objects” will refer to the item being rated and ”raters” will refer to the process

assigning the ratings. A ”nested-level” refers to a grouping that could be applied to

all ”objects” such that each ”object” has an identity in one and only one ”nested-

level”. For example, in the motivating GWAS example, the ”object” being rated is

the race of each subject and the ”raters” refer to either the subjects’ self-assessment

of race or the genetically determined race. The ”nested-level” is considered to be the

genotyping plate as each subject was assigned to one and only one genotyping plate.

Let yijk be a binary outcome (0 or 1) for the kth rater (k = 1, ..., nij·) on the jth object

(j = 1, ..., ni··) in the ith nested-level (i = 1, ..., n···), and let y be the vector of all

responses. yijk is assumed to follow a binomial distribution where E(yijk) = π and

V ar(yijk) = π(1−π). Let π be the proportion of objects with the trait being assessed

such that P (yijk = 1) = π. Let ρ be the object-level intraclass correlation coefficient

and ζ be the nested-level intraclass correlation coefficient. Given nij· ratings per

object, the sum of all responses for an object can be written as xij =
nij·∑
k=1

yijk, while

the sum of all responses within a nested-level can be written as xi· =
ni··∑
j=1

nij·∑
k=1

yijk. Let

xij and xi· be vectors that contain the sum of responses for all object or nested-levels

for the ith nested-level for the jth object. Let mi =

(
ni··∑
j=1

(
nij·

2

))
/
(ni··∑
j=1

nij·

2

)
, which can

be interpreted as the proportion of area of the upper diagonal of the correlation matrix

contributed to by the object-level ICC contributes towards. Let di = miρ+(1−mi)ζ,

which is the weighted average of all pair-wise correlations within nested-level i.
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3.3. Obtaining the Variance of xi·

3.3.1. Estimation of the Variance of xij

In general, when multiple raters assess the same object, the results are correlated

together. When studying the reliability of the raters’ assessments, that correlation is

of high interest. For the typical object level ICC estimation, the correlation ρ among

ratings within each object is assumed to be constant while ratings on different objects

are considered to be independent. Given nij· ratings per object, the vector of all re-

sponses for an object will have an nij· x nij· dimension correlation matrix in the form of

Σij· =



1 ρ . . . . . . ρ

ρ
. . . . . . . . .

...

... . . . 1 . . .
...

... . . . . . .
. . . ρ

ρ . . . . . . ρ 1


(3.1)

Then a consistent estimate of the proportion π is

π̂ =

n···∑
i=1

ni··∑
j=1

nij·∑
k=1

yijk

n···∑
i=1

ni··∑
j=1

nij·

(3.2)

As the theory is developed further, it is important that any ICC estimate allows

for varying number of replicate observations per object. Restricting analysis only to

objects with a certain number of ratings is unrealistic, so the theory must be kept

robust to account for these cases.

The variance of xij can be found directly. Consider p and q to be the position of the
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response in the covariance matrix. Given the correlation matrix for multiple ratings

on the same object, the variance for the total number of responses within an object

can be written as

V ar(xij) =

nij·∑
k=1

V ar(yijk) + 2
∑
p<q

Cov(yijp, yijq)

= nij·π(1− π) + 2

(
nij·
2

)
Cov(yijp, yijq)

= nij·π(1− π) + nij·(nij· − 1)Cov(yijp, yijq)

= nij·π(1− π) + nij·(nij· − 1)ρπ(1− π)

= nij·π(1− π) [1 + (nij· − 1)ρ] (3.3)

As a result, it is clear that an over dispersion parameter exists that inflates the

variance of correlated binomial data more than independent binomial data. However,

the correlation due to this over dispersion increases in the presence of a nested level

of correlation.

3.3.2. Estimation of the Variance of xi·

When a nested-level of correlation exists beyond object-level correlation, the correla-

tion matrix of xij no longer contains all of the information regarding xi·. Therefore,

the entire xi· needs to be considered as the cluster of interest rather than the object

level xij. The correlation matrix for the vector of responses within a nested-level

contains two parameters, the object-level ICC, ρ, and the nested-level ICC, ζ. This

correlation matrix can be expressed by a combination of object and nested-level cor-

relations. Let 1i·· be a
∑ni··

j=1 nij· ×
∑ni··

j=1 nij· matrix with all matrix elements equal

to 1, and 1ij· be a nij· × nij· matrix with all matrix elements equal to 1. Then the
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correlation matrix for nested-level i can be written as

Σi·· = DIAG(Σi1· − ζ1i1·,Σi2· − ζ1i2·, ...,Σini··· − ζ1ini···) + ζ1i·· (3.4)

Then we can find the nested-level variance in a similar fashion as the object-level

variance. Recall that mi is the proportion of area of the upper diagonal of the

correlation matrix that the object-level ICC contributes towards. Then:

V ar (xi·) =

(
ni··∑
j=1

nij·

)
π(1− π)

[
1 +

(
ni··∑
j=1

nij· − 1

)
[miρ+ (1−mi) ζ]

]
(3.5)

The details of this derivation can be found in Appendix A.2. This variance looks

similar to the variance of xij with two exceptions:

1. The number of responses for xij is the number of responses per object while the

number of responses for xi· is the number of responses within the entire cluster

2. The object-level ICC in xij is replaced by a mixture of the object and nested-

level ICCs proportional to the area of the covariance matrix occupied by ρ.

This necessitates that a method should be developed such that this nested-level over

dispersion parameter can be accounted for. The beta-binomial distribution will allow

for the accurate modeling of the first two moments of the correlated binomial data.

3.4. Current ICC Methods

3.4.1. Object-Level ICC Estimation Framework

The beta-binomial distribution can be specified as

(
n

k

)
B(k + α, n− k + β)/B(α, β)

where B(x) is the beta function of x, n is the number of trials in the sample, k
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is sum of the responses in the trial and α and β are the parameters of the model

to be fit. If y ∼ Beta-binomial (α, β), then E(y) = nα/ (α + β) and Var(y) =

[nαβ (α + β + n)] /
[
(α + β)2 (α + β + 1)

]
. As demonstrated earlier, E(xij)=nij·π,

which means that π=α/ (α + β). It follows that 1 − π=β/ (α + β) as described by

Crowder[16]. As a result, the variance can then be written as

V ar(xij) =
nij·π(1− π) [α + β + nij·]

α + β + 1

= nij·π(1− π)

[
1 +

(nij· − 1)

α + β + 1

]
= nij·π(1− π)

[
1 +

(nij· − 1)
α
π

+ 1

]
= nij·π(1− π)

[
1 +

π(nij· − 1)

π + α

]
(3.6)

Recall from earlier that V ar(xij)=nij·π(1 − π) [1 + (nij· − 1) ρ] and π=α/ (α + β).

This leads to the solution ρ = π/ (π + α). Then α = π (1− ρ) /ρ and

β = (1− π) (1− ρ) /ρ.

Now instead of optimizing the beta-binomial distribution over α and β, the likelihood

can be maximized over π and ρ. Then the log likelihood can be expressed as

LogL(π, ρ|Xij = xij) =
n···∑
i=1

ni··∑
j=1

[
log

(
nij·
xij

)
+

xij−1∑
a=0

log

(
xij + π

1− ρ
ρ
− 1− a

)
+

nij·−xij−1∑
b=0

log

(
nij· − xij + (1− π)

1− ρ
ρ
− 1− b

)
− (3.7)

nij·−1∑
c=0

log

(
nij· +

1− ρ
ρ
− 1− c

)]

The object-level beta-binomial distribution has been demonstrated to consistently

estimate object-level ICC [15, 44] and will not be discussed further.
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3.4.2. ICC Estimation within Nested-Levels

Landis et. al. [31] described a method to obtain the object-level ICC. A similar

framework was described where the following marginal and pairwise probabilities

were defined:

1) Pr(Yijk = 1) = π

2) Pr(Yijk = 1, Yij′k′ = 1) = δc if j 6= j’, ∀ i

3) Pr(Yijk = 1, Yijk′ = 1) = δs, for the ijth object and k 6= k′

Then the category specific variance components model can be described as yijk =

π + ci + sij + rijk where

• ci·· are independent nested-level effects with variance component σ2
c , indexed by

i=1,. . .,n···;

• sij· are object effects (nested within nested-levels) with variance component σ2
s ,

indexed by j=1,. . .,ni··;

• rijk are rater effects (nested within objects) with variance component σ2
r , in-

dexed by k=1,. . .,nij·.

Then it follows that the components of variance can be written as

σ2
c = ρcπ(1− π)

σ2
s = (ρ− ρc)π(1− π)

σ2
r = (1− ρ)π(1− π)
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Then the nested-level ICC is derived as

ρc =
cov(Yijk, Yij′k′)√
var(Yijk)var(Yij′k′)

=
δc − π2√

π(1− π)
√
π(1− π)

=
σ2
c

σ2
c + σ2

s + σ2
r

.

and the object-level ICC is derived as

ρ =
cov(Yijk, Yijk′)√
var(Yijk)var(Yijk′)

=
δs − π2√

π(1− π)
√
π(1− π)

=
σ2
c + σ2

s

σ2
c + σ2

s + σ2
r

While ρ proves to be a consistent estimate of the object-level ICC [44], ρc proves to

consistently estimate ζ. However, this problem needs to be addressed in a different

fashion in order to both estimate ζ and obtain an accurate standard error estimate

for ζ. The beta-binomial distribution can be modified to estimate ζ as well as obtain

a standard error estimate for ζ.

3.5. The Nested-Level ICC

3.5.1. Nested-Level ICC Likelihood Framework

To accurately estimate ζ, the variance derived in section 3.2 can be used with the beta-

binomial distribution to obtain appropriate estimation of ζ. To estimate the object-

level ICC, the beta-binomial distribution was specified with α = π (1− ρ) /ρ and

β = (1− π) (1− ρ) /ρ. Using the variance described in section 3.2, however, α and β

are presented as α = π [1− (miρ+ (1−mi) ζ)] / [(miρ+ (1−mi) ζ)] = π (1− di) /di

and β = (1− π) [1− (miρ+ (1−mi) ζ)] / [(miρ+ (1−mi) ζ)] = (1− π) (1− di) /di.
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Then the updated log-likelihood can be written as

LogL(π, ζ, ρ|Xi· = xi·) =
n···∑
a=1

[
log

(
na··
xa·

)
+

xa·∑
b=0

log

(
b+ π

1− da
da

− 1

)
+

na··−xa·∑
c=0

log

(
c+ (1− π)

1− da
da

− 1

)
− (3.8)

na··∑
e=0

log

(
e+

1− da
da

− 1

)]

However, direct maximization of this likelihood does not yield unique solutions for

ρ or ζ. Note that this likelihood is the same as the two-level likelihood where ρ is

replaced by miρ+(1−mi) ζ. Just as ρ can be consistently estimated using the object-

level model, miρ+ (1−mi) ζ can also be consistently estimated. However, given ni··,

xi· and mi, there is not enough information to estimate both ζ and ρ strictly using the

nested-level likelihood. Therefore, alternative methods should be used for accurate

estimation of ζ.

3.5.2. Estimation of ζ

As described in section 3.4.1, the beta-binomial distribution can consistently estimate

both the object-level ICC ˆ(ρ) and its corresponding standard error. Generally, when

analyzing data on agreement, the true proportion π needs to be estimated, but infer-

ence on this parameter is not usually of interest. Therefore, π will be estimated as

described in section 3.3.1 and will be considered known throughout estimation of ρ

and ζ.

In order to estimate ζ, the following steps should be followed:

1. Since ρ can be estimated from the object-level data, along with its corresponding

standard error, we can take advantage of the consistency of the estimate in
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estimation ζ. Therefore, the first step in this process should be to estimate ρ

given the data.

2. Given that we now have an estimate of ρ (ρ̂), we can know maximize the likeli-

hood (3.8) using ρ̂ as the consistent estimate of ρ. Direct maximization of the

resultant profile-likelihood will yield a consistent estimate of ζ and an asymp-

totic standard error estimate.

Given these steps, we now seek to maximize the profile-likelihood using standard

maximum likelihood techniques. First, the gradient vector can be derived as

δLogL(ζ|Xi· = xi·, ρ̂, π̂)

∂ζ
=

n···∑
a=1

 xa·∑
b=0

−π̂ (1−ma)

d2
a

(
b+ π̂ 1−da

da
− 1
)+

na··−xa·∑
c=0

−(1− π̂) (1−ma)

d2
a

(
c+ (1− π̂) 1−da

da
− 1
)+ (3.9)

na··∑
e=0

1−ma

d2
a

(
e+ 1−da

da
− 1
)


While an explicit solution for δLogL(π,ζ,ρ|Xi·=xi·)
δζ

= 0 is not apparent, this gradient can

be numerically solved to obtain ζ̂, the maximum likelihood estimate of ζ.

Next, the second derivative with respect to ζ can be calculated using the following

equations:

∂2LogL(ζ|Xi· = xi·, ρ̂, π̂)

∂ζ2
=
−2∂LogL(ζ|Xi·=xi·,ρ̂,π̂)

∂ζ

d3
i

−
n···∑
a=1

 xa·∑
b=1

(1−ma)
2π̂2

d4
a

(
b+ π̂ 1−da

da
− 1
)2

+
na··−xa·∑
c=1

(1−ma)
2(1− π̂)2

d4
a

(
c+ (1− π̂) 1−da

da
− 1
)2 −

na··∑
e=1

(1−ma)
2

d4
a

(
e+ 1−da

da
− 1
)2

 (3.10)
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It is easy to infer that when the second derivative is evaluated at ζ̂,

δLogL(ζ|Xi· = xi·, ρ̂, π̂)/δζ = 0. The second derivative can then be inverted and

evaluated and the parameters of interest, resulting in the standard error

SE
(
ζ̂
)

=

 n···∑
a=1

 d4
a

(1−ma)2

 xa·∑
b=0

π̂2(
b+ π̂ 1−da

da
− 1
)2 +

na··−xa·∑
c=0

(1− π̂)2(
c+ (1− π̂) 1−da

da
− 1
)2− (3.11)

na··∑
e=0

1(
e+ 1−da

da
− 1
)2




− 1

2

3.5.3. Asymptotic Properties of ζ̂

Recall that

V ar(xi·) =
(∑ni··

j=1 nij·

)
π (1− π)

[
1 +

((∑n1··
j=1 nij·

)
− 1
)

[miρ+ (1−mi) ζ]
]
. mi can

be rewritten as

mi =

ni··∑
j=1

nij· (nij· − 1)(
ni··∑
j=1

nij·

)(
ni··∑
j=1

nij· − 1

) (3.12)

It is easy to show that as ni·· → ∞,mi → 0. Therefore, as ni·· → ∞, V ar(xi·) →(∑ni··
j=1 nij·

)
π(1− π)

[
1 +

((∑n1··
j=1 nij·

)
− 1
)
ζ
]
.

In this case, the problem devolves to a two-level maximum likelihood ICC estimation,

where ζ̂ proves to be a consistent estimate of ζ. In some highly controlled situations,

such as a well-controlled clinical trial, it may be possible to hold the number of objects

per nested-level and the number of ratings per object constant, in which case mi can
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be written as:

mi =
ni·· (nij·) (nij· − 1)

(ni··nij·) (ni··nij· − 1)

=
(nij· − 1)

(ni··nij· − 1)
(3.13)

As nij· →∞, mi converges to 1/ni·· and ζ̂ is not a maximum likelihood estimator of ζ.

However, as ni·· →∞, mi → 0 and ζ̂ becomes the maximum likelihood estimate of ζ

and possesses all of the properties thereof. Then, due to the efficient asymptotic prop-

erties of maximum likelihood estimators,
√
n···

(
ζ̂ − ζ

)
→ N

[
0, SE

(
ζ̂
)2
]

[8]. There-

fore, the asymptotic normality of ζ̂, a Wald 95% confidence interval around ζ̂ can be

derived using the 1-αth quantile of the normal distribution Z1−α for a given type I error

rate α, resulting in the 95% confidence interval
[
ζ̂ − Z1−αSE

(
ζ̂
)
, ζ̂ + Z1−αSE

(
ζ̂
)]

.

In addition, a Z-statistic from the standard normal distribution can be found testing

ζ̂ against an alternative value ζa as Z =
(
ζ̂ − ζa

)
/SE(ζ̂). Appropriate hypothesis

testing can then be performed by comparing the Z-statistic to the standard normal

distribution.

3.5.4. Nested-Level Adjusted Object-Level ICC

Thus far, there has been no consideration towards the effect that ρ has on ζ and vice-

versa. In estimating ζ, π and ρ were estimated first based on the object-level data,

then used to estimate ζ. Therefore, the estimate of ζ had no effect on the estimation

of ρ. However, in practice, a nested-level ICC could have some significant influence

over the object-level ICC. If there is a large nested-level ICC effect, then there will

be an artificially large object-level ICC effect. Consider the extreme case where there

was perfect agreement on every rating within each site in a multi-center trial (for

example, each rating within a site was either positive or negative). Then, regardless
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of how well raters within a site could actually rate the outcome of interest, there

would be perfect object-level agreement due to the fact that there was perfect site-

level agreement. Therefore, a correction to the object-level ICC needs to be made.

Consider the definition of object-level ICC as defined by Landis, et. al. [31].

ζ =
σ2
c

σ2
c + σ2

s + σ2
r

ρ =
σ2
c + σ2

s

σ2
c + σ2

s + σ2
r

As previously mentioned, ζ can have the effect of artificially inflating ρ. To demon-

strate that effect, we want to investigate the minimum ρ that can exist for a given ζ.

Then, using the variance components definitions of the object-level and nested-level

ICCs, we can derive

ρ =
σ2
c + σ2

s

σ2
c + σ2

s + σ2
r

=
σ2
s

σ2
c + σ2

s + σ2
r

+
σ2
c

σ2
c + σ2

s + σ2
r

=
σ2
s

σ2
c + σ2

s + σ2
r

+ ζ

ρ ≥ζ

Thus, for a given ζ, the corresponding object-level ρ has the range [ζ, 1]. Therefore, in

order to adjust ρ to obtain a range of [0, 1], we can compute the nested-ICC adjusted

object-level ICC as

ρ∗ =
ρ− ζ
1− ζ

(3.14)

In the presence of nested-level ICC, ρ∗ should be a better representation of the true

level of agreement among objects since it adjusts for the effect of ζ that exists from
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observations that should be uncorrelated. Let Σ∗ be the variance/covariance matrix

for π̂, ρ̂ and ζ̂. Then the variance of the estimate of ρ∗
(
ρ̂∗
)

can be estimated using

the delta method.

V ar
(
ρ̂∗
)

=

 1

1− ζ̂
,

ρ̂− 1(
1− ζ̂

)2

Σ∗

 1

1− ζ̂
,

ρ̂− 1(
1− ζ̂

)2


′

(3.15)

3.6. Simulations

In order to accurately estimate ζ, we first estimated π and ρ from object-level data,

then used π̂ and ρ̂ to estimate ζ. Ideally, the data would be simulated in a simi-

lar fashion, where object-level data were simulated from a beta-binomial distribution

with a given π and ρ, and were then used to generate nested-level data. Methods cur-

rently exist to generate random observations from a beta-binomial distribution [51].

However, this method assumes a constant ρ among all observations, which is clearly

not the case when presented with nested categorical data. As a a result, object-level

data cannot be generated first as objects are no longer independent in the presence

of nested-level correlations.

Instead, a method needs to be used that has the capability to generate correlated

binomial outcomes with the specified nested-level correlation matrix that will provide

object-level estimates. As a result, we chose to simulate data from a multivariate

normal distribution and dichotomize the outcome vectors according to the method

of Emrich and Piedmonte [20]. While these random observations are not generated

from the same distribution as assumed by the theory thus far, the inference on the

correlation parameters should provide similar results. For a given number of nested-

level clusters (n···), simulate the number of responses (xi·) per rater within a cluster
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for a given π, mi, ρ and ζ, then proceed to estimate π, ρ and ζ as previously outlined.

As documented by Demirtas et. al. [18], this method does not perform as well on

inference about the correlation as the methods of Poisson sums [41] or archemedian

copulas [35]. However, the method of Emrich and Piedmonte allows for the speci-

fication of a nested-level type correlation matrix, suiting our needs, while the other

two methods are restricted to assuming a common correlation among all observations

and are not suited for nested-level analysis. Therefore, the simulations will show that

the nested-level maximum profile-likelihood method works well despite the method of

simulation. After performing these simulations, we found that this method appears

to be asymptotically unbiased for almost all results. We see that the coverage of the

confidence interval is closest to 95% when π=0.5 as opposed to π=0.3, which is ex-

pected since 0.5 is further from the boundary of π than 0.3. In addition, we found the

initially surprising result that, when holding the number of objects per nested-level

constant, increasing the number of raters per object actually hurts the performance

of both the nested-level ICC estimator and the corresponding confidence interval.

However, the theory supports this finding as described earlier.

Table 2 shows a larger range of simulations carried out in this manner. This simula-

tion method works well when the correlations and prevalence are not near the [0,1]

boundary. The simulation appears to perform better as either ζ or π → 0.5. In ad-

dition, the simulation confirms that the method works best as mi → 0 as previously

discussed.

57



Figure 3.2: Simulation Results for ζ = 0.5, ρ = 0.7, π = 0.5
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3.7. Nested-Level Agreement within a GWAS

When analyzing the GWAS data presented earlier, it was demonstrated that there was

quite a bit of correlation among Hispanic subjects within a genetic plate. However, at

the time of the analysis, no methods existed to accurately assess the correlation due

to genetic plate nor did a method exist to obtain the standard error surrounding that

estimate. Using the methods presented in this paper, this parameter was able to be

estimated for all four ethnicities analyzed in the GWAS data (NH-White, NH-Black,

Hispanic and Other). These estimates (with their corresponding standard errors and

95% confidence intervals) are displayed in table 3.5.
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Figure 3.3: Potential Effects of Varying Plate or Subject-Level ICC
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From this analysis, the re-aligning of the PIDs resulted in better agreement between

self-reported and genetically-inferred ethnicity. Among Hispanics it is clear that there

is a nominal level of plate-level agreement among observations on different subjects

that should be uncorrelated (ζ=0.215, 95% CI [.1530, .2769] using the original PIDs),

significantly different than zero when α = 0.05. The resulting plate-adjusted ICC

among Hispanics was 0.897, which is only a 0.022 difference from the originally re-

ported subject-level ICC. However, the magnitude of this difference is attributable

solely to the high estimate of subject-level agreement among Hispanics. Figure 3.3

shows how the adjusted ICC could be affected by varying the levels of subject or plate-

level ICC. As is apparent from equation 3.14, given a constant object-level ICC, the

adjusted object-level ICC is a non-linear function of the nested-level ICC with an

x-intercept equal to ρ and ζ → 1 as ρ → 0. On the other hand, given a constant

plate-level ICC, the adjusted ICC is a linear function of the object-level ICC with an

x-intercept equal to ζ and ρ → 1 as ζ → 1. Clearly from the potential outcomes of
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the adjusted level of agreement, higher levels of nested-level agreement or lower levels

of object-level agreement will both reduce the nested-level adjusted object-level ICC.

3.8. Immediate Extension

While this worked focused on only one level of nesting, this method can handle more

than one level of nesting. For example, consider another level of nesting creating a

first nested-level and second nested-level. Then, three separate correlations would

need to be taken into consideration. ρ and ζ would retain their definitions of the

object and first nested-level correlations, and a second nested-level correlation ω would

be introduced as the measure of agreement among objects within the same second

nested-level but in different first nested-levels. In this scenario, similar steps would be

followed to first estimate π and ρ, then estimate ζ, and finally estimate ω. Similarly, ζ

would be artificially inflated by ω and would have the range [ω,1]. The same correction

could be applied to obtain an estimate of ζ adjusted for ω.

3.9. Conclusion

3.9.1. Summary

In this paper, a nested-level profile-likelihood method was presented to estimate the

level of agreement that exists within a nested-level factor. In most cases, this correla-

tion parameter should be equal to zero, but in the case that it is not, we have proven

that the level of correlation can positively bias the reported object-level ICC. Using

profile-likelihood theory (and asymptotic maximum-likelihood theory) we were able

to develop a consistent estimate of ζ and provide an α-level Wald type confidence

interval around the estimate.

Most importantly, this method demonstrates the necessity of appropriate study plan-
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ning when examining levels of agreement. We are accustomed to planning for levels

of bias in other studies by stratifying randomizations based on confounding param-

eters or matching covariates across two different treatment groups, but rarely is the

necessary planning applied to studies where levels of agreement are the primary focus

to ensure that these nested-level biases do not exist. In the GWAS example pre-

sented earlier, perhaps blocking the genotyping plates by patient-reported race would

have reduced the plate-level agreement among Hispanics and allowed for appropriate

subject-level agreement without adjusting for the plate-level agreement. Clearly this

method can adjust object-level agreement for the case where nested-level agreement

is non-negligible, however, unless the nested-level agreement is of interest, it is best

that this agreement is reduced as much as possible at the planning stage of the study.

3.9.2. Future Work

Currently this work is limited to the case where binomial outcomes are possible. How-

ever, even in the case of the GWAS presented above, the data are truly captured in

a multinomial fashion (Non-Hispanic Whites, Non-Hispanic Blacks, Hispanics, Oth-

ers). In order to analyze the data, we dichotomized each response to a binary yes-no

answer. Using methods similar to those presented in Bartfay et. al. [2], this method

should be able to be extended to capture the nested-level agreement among multino-

mial responses. In addition, an ICC adjusted for the presence of adjusted nested-level

agreement should be derived. Subsequently, there is work to be done to examine the

sample-size and power consequences that result in assessing the object-level agree-

ment in the presence of nested-level agreement.
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CHAPTER 4

On the Nested-Level Intraclass Correlation Coefficient

for Multinomial Data

4.1. Introduction

Nested-level methods have been developed to analyze data in many situations. There

is significant potential to increase statistical power when combining results from dif-

ferent nested-levels, however appropriate considerations must be made to ensure that

results from various nested-levels are sufficiently homogeneous to be combined. Of-

ten times, tests are developed to verify these assumptions, such as the Breslow-Day

Test [6] to verify the assumption of homogeneity of odds ratios across independent

2x2 categorical contingency tables to validate the use of the corresponding Cochran-

Mantel-Haenszel test. While consideration is often given to this important concept,

until recently appropriate focus has not been paid to this phenomenon in the area of

rater agreement.

Analyzing agreement among multiple raters on the same object has been generally

considered without taking into account the potential effect of nested-level effects that

may bias the estimates of object-level agreement. Historically, multiple ratings on the

same objects would be analyzed using any of a number of methods to assess the level

of agreement among raters, most often using kappa statistics or the intraclass correla-

tion coefficient. Chapter 3 described how to estimate agreement on object-level binary

data accounting for a confounding nested-level of agreement using the beta-binomial

distribution to model the corresponding ICC. However, many situations arise where

raters are asked to provide assessments based on a multinomial scale instead of a
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binary scale. Bartfay and Donner [2] and Chen et. al. [9] provided a framework using

the multinomial-Dirichlet distribution to model multinomial outcomes and estimate

the corresponding pooled ICC. In order to employ their method, however, the as-

sumption of equivalent ICCs across responses must be verified. Chapter 2, as well as

Chen et. al.[9], provided likelihood-ratio tests to test the assumption of homogeneity

of ICCs across binary responses to verify the assumptions needed for the pooled ICCs.

This paper will demonstrate that these frameworks can be further modified to model

the nested-level agreement for multinomial outcomes and provide a nested-level ad-

justed object-level ICC. In addition, under the assumption of either homogeneous

object-level ICCs or in the presence of large number of objects per nested-level, a test

of homogeneity for nested-level ICCs will be provided. Finally, these methods will

be used to reanalyze the GWAS study originally presented in Chapter 3 to provide

insight into the measure of nested-level agreement among all responses across races.

4.2. Notation

This methodology generally analyzes repeated ratings on two separate populations

referred to as ”objects”, the items being rated, and ”nested-levels”, a grouping level

that could be applied to all ”objects” such that each ”object” has a unique identifi-

cation (and is therefore nested) within a ”nested-level”. For example, in the case of

a diagnostic imaging agent, the ”object” would be an image obtained from a patient

that would be interpreted multiple times. Each interpreter is hereto referred to as

a ”rater” who provides a qualitative assessment for each ”object”. Theses ”objects”

(images) could then be grouped into the healthcare facilities where they were obtained

such that each ”object” comes from one and only one ”nested-level”. These examples

are by no means exhaustive and many scenarios could be considered where ”objects”,

”nested-levels” and ”raters” take different forms.
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Let yhijk be a binary outcome (0 or 1) for the kth rater (k = 1, ..., nij·) on the jth object

(j = 1, ..., ni··) in the ith nested-level (i = 1, ..., n···) on the hth trait (h = 1, ..., nh), and

let y be the vector of all responses. yhijk is assumed to follow a binomial distribution

where E(yhijk) = πh and V ar(yhijk) = πh(1−πh). Let πh be the proportion of objects

with trait h being assessed such that P (yhijk = 1) = πh and let p be the nh×1 vector

of all possible proportions. Let ρh be the object-level intraclass correlation coefficient

and ζh be the nested-level intraclass correlation coefficient for the hth response. Let

ρ· and ζ· be the overall object-level and nested-level intraclass correlation coefficients.

Given nij· ratings per object, the sum of all ratings for an object within a given

response can be written as xhij =
nij·∑
k=1

yhijk where xij· is the vector containing all such

results for each object, while the sum of all responses for a given outcome within a

nested-level can be written as xhi· =
ni··∑
j=1

nij·∑
k=1

yhijk with the vector xi·· containing all such

results for each nested-level. Let mi =

(
ni··∑
j=1

(
nij·

2

))
/
(ni··∑
j=1

nij·

2

)
, which can be interpreted

as the proportion of area of the upper diagonal of the correlation matrix contributed

to by the object-level ICC. Let di = miρ· + (1−mi)ζ·, which is the weighted average

of all pair-wise object-level and nested-level correlations within nested-level i.

4.3. Distributions for Overdispersed Multinomial Data

4.3.1. Multinomial-Dirichlet Distribution: Object-Level Results

For a given set of multinomial data y with nh categories per response, a Dirichlet

distribution can be assumed as the prior distribution for the probability of response

for each category and a multinomial likelihood for the response vector. By invoking

Bayes’ rule, one obtains the multinomial-Dirichlet distribution (MDD)[38]. Let Z =

(z1, z2 . . . znh
) be the vector of parameters that describe the MDD. Then for the jth
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object in the ith nested-level, the MDD can be written as

P (Xij· = xij·|Z) =
N !∏nh

a=1 xaij!

Γ (
∑nh

a=1 za)

Γ (N +
∑nh

a=1 za)

nh∏
a=1

Γ (xaij + za)

Γ (za)
(4.1)

Given that Chen [10] demonstrates that the MDD models the pooled object-level

correlation ρ· = (
∑nh

a=1 za + 1)
−1

and item-wise response rate πi = zi∑nh
a=1 za

, it can

be shown that zi = πi
1−ρ·
ρ·
∀i and

∑nh

a=1 za = ρ−1 − 1. Using the identity log (Γ(z)) +

log(z) = log (Γ(z + 1)), the ratio of log-gamma functions can be specified as

log (Γ(A+B))

log (Γ(B))
=

A−B∑
C=1

log (B + C − 1) (4.2)

Then, the corresponding log-likelihood for object-level results can be written as

LogL (Z|Xij· = xij·) =
n···∑
a=1

na··∑
b=i

[
log

(
nab·!∑nh

q=1 xqab!

)
−

nab·∑
c=1

log

(
c+

1− ρ·
ρ·
− 1

)

+

nh∑
d=1

xdab∑
f=1

log

(
f +

1− ρ·
ρ·

πd − 1

)]
(4.3)

This likelihood can be directly maximized to obtain maximum likelihood estimates

of each πi and ρ. In addition, the standard error of each can be found by inverting

the negative of the information matrix appropriately for each parameter, the details

of which can be found elsewhere [42].

4.3.2. Multinomial-Dirichlet Distribution: Nested-Level Results

Generally, only the object-level of agreement is considered to be important when

looking at reliability of a set of data. Researchers are often interested only in how

well raters agree when looking at the same object and not the same set of objects
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within the same nested-level. However, this second level of information can be impor-

tant to identify additional levels of bias that may artificially inflate the object-level

agreement.

If yij· were distributed according to the multinomial-Dirichlet distribution, E(yij·) =

nij·p and V ar(yij·) = nij· [1 + (nij· − 1) ρ·] (DIAG (p)− pp′) [40]. Consider the co-

variance matrix for a set of object-level responses. Given nij· ratings for the jth object

in the ith nested-level, the vector of all responses for the object will have an nij· x nij·

dimension correlation matrix in the form of

Σij· =



1 ρ· . . . . . . ρ·

ρ·
. . . . . . . . .

...

... . . . 1 . . .
...

... . . . . . .
. . . ρ·

ρ· . . . . . . ρ· 1


(4.4)

Ideally, two results from the same nested-level that are not from the same object

should be uncorrelated. However, there may be situations where these results are

correlated. In this case, the nested-level, rather than the object, should be considered

the true cluster as clustering on the object-level does not account for the correlation

that exists among separate objects in a nested-level. Let 1i·· be a
∑ni··

j=1 nij·×
∑ni··

j=1 nij·

matrix with all matrix elements equal to 1, and 1ij· be a nij· × nij· matrix with all

matrix elements equal to 1. Then the correlation matrix for nested-level i can be

written as

Σi·· = DIAG(Σi1· − ζ·1i1·,Σi2· − ζ·1i2·, ...,Σini··· − ζ·1ini···) + ζ·1i·· (4.5)
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Under the logic laid out in Chapter 3, the nested-level ICC describes the level of

agreement that exists among separate observations within the same nested-level that

are generally considered to be independent, such as separate objects or separate

subjects. At the nested level, the moments of the multinomial-Dirichlet distribution

can be written as E(yi··) = ni··p and

V ar(yi··) =

ni··∑
j=1

nij·

1 +

ni··∑
j=1

nij·

− 1

 (miρ· + (1−mi) ζ·)

(DIAG (p)− pp′
)

=

ni··∑
j=1

nij·

1 +

ni··∑
j=1

nij·

− 1

 di

(DIAG (p)− pp′
)

which models the overall nested-level ICC as a linear combination of the object and

nested-level ICCs. Therefore, the corresponding log-likelihood can be expressed as:

LogL (Z|Xi·· = xi··) =
n···∑
a=1

[
log

(
na··!∏nh

q=1 xqa·!

)
−

[
na··∑
c=1

log

(
c+

1− di
di
− 1

)]
+[

nh∑
e=1

xea·∑
f=1

log

(
f +

1− di
di

πe − 1

)]]
(4.6)

The nested-level ICC describes the level of agreement that exists among separate

observations within the same nested-level that are generally considered to be inde-

pendent, such as separate objects or separate subjects. The pooled ICC under the

assumption that the ICC is constant across separate responses can be accurately es-

timated using the multinomial-Dirichlet distribution. Therefore, in order to estimate

the nested-level ICC, the following steps can be used:

1. Estimate p using the estimate derived from the multinomial distribution

2. Estimate ρ· using the object-level multinomial-Dirichlet distribution

3. Test whether homogeneity of ICCs exist among object-level responses
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4. If homogeneity of object-level ICCs exists, using the estimates from the two

steps above and the profile-likelihood for the nested-level data, estimate the

overall nested-level ICC

The maximum profile-likelihood estimate for ζ· can be found by finding ζ̂ that sets

the score equation of the profile-likelihood with respect to ζ to zero. The standard

error can be calculated using the second derivative of the log-likelihood with respect

to ζ, resulting in

SE
(
ζ̂
)

=

[
−1 · ∂

2LogL (Z|Xi·· = xi··)

∂ζ2

]− 1
2

(4.7)

Due to the asymptotics associated with maximum-likelihood estimates, an α level

Wald confidence interval can be constructed around the point estimate using Zα/2,

which is the (1− α) /2 quartile of the standard normal distribution. The confidence

interval can then be calculated as ζ̂·±Zα/2×SE
(
ζ̂
)

[8]. The explicit formulas for the

estimate and standard error of the overall nested-level ICC can be found in Appendix

A.3.

If the nested-level ICC for each trait are either assumed or proven to be different,

there is currently no distribution that jointly models separate ICCs for each trait.

However, in this case, it may be appropriate (as the multiple beta-binomial distri-

bution would imply) that each response could be analyzed separately and distinct

estimates, standard errors and confidence intervals for each separate outcome can

be obtained by dichotomizing each result and using the methodology described in

Chapter 3 to determine the separate measures of agreement for each response.
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4.3.3. Multiple Beta-Binomial Distribution

As described in Chapter 2 and by Chen [9], the multiple beta-binomial distribution

(MBBD) is a non-unique decomposition of the multinomial-Dirichlet distribution un-

der the assumption that the ICC among all responses are equivalent. If that as-

sumption does not hold, the MBBD can be used to specify the joint distribution of

correlated multinomial responses by writing the likelihood as a product of successive

conditional beta-binomial distributions. Define
∑n

i=m zi = 0 where n < m and let

A = (α1, α2, ...αnh−1) and B = (β1, β2, ...βnh−1) be the vectors of parameters that de-

scribe each conditional beta-binomial distribution. Then, the multiple beta-binomial

distribution (MBBD) can be written as

P (Xij· = xij·|A,B) =

nh−1∏
f=1

(
N −

∑f−1
g=1 xgij

xfij

)

×
Γ (xfij + ai) Γ

(
N −

∑f
g=1 xgij + bi

)
Γ (ai + bi)

Γ
(
N −

∑f−1
g=1 xgij + ai + bi

)
Γ (ai) Γ (bi)

(4.8)

The MBBD can not be used to describe the unconditional ICCs for each response

and can only accommodate the conditional responses, and is therefore better used

for a goodness of fit test rather than to estimate the ICC for each specific outcome.

The nested-level MBBD is analogous to the object-level MBBD described in Chapter

2, however instead of modeling the object-level correlation, it models the linear com-

bination of object and nested-level correlations, di, as described in the nested-level

MDD. Estimation of this correlation is carried out the same way as its object-level

counterpart, however it is performed at the nested-level instead of the object-level.

For more details surrounding the MBBD, see Chapter 2 and Chen [9].
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4.4. Goodness-of-Fit Testing

4.4.1. Testing Homogeneity of ICCs

As mentioned earlier, the Dirichlet-multinomial distribution is a special case of, and is

nested within, the multiple beta-binomial distribution. Therefore, a likelihood ratio

test can be used to test the goodness of fit for separate levels of agreement against

a pooled level of agreement. Chapter 2 describes the method of testing for homo-

geneity of the ICC across multinomial responses by comparing the goodness of fit

of the multinomial-Dirichlet distribution to the more flexible multiple beta-binomial

distribution using the likelihood ratio test comparing the likelihoods of the two mod-

els. This test can be extended to test for homogeneity of the nested-level ICC. If the

object-level ICC is found to be homogeneous across results, the multiple beta-binomial

distribution can be used to demonstrate the goodness-of-fit of both the object-level

and nested-level ICC. In the case that homogeneity of ICCs is observed, the MBBD

will devolve into the MDD, which can also be used to evaluate the goodness-of-fit of

the model. If the homogeneity of the object-level results is not observed, the assump-

tions for the MBBD are violated and each response should be analyzed separately

according to the beta-binomial distribution.

The benefit of using this test in this setting is that the likelihood-ratio test is still

valid using profile-likelihoods[17]. Therefore, one can use the methods presented in

Chapter 2 to test for homogeneity of the nested-level ICC using the following steps:

1. Estimate ρ· from the object-level data and test for homogeneity of ICCs across

multiple responses of the multinomial object-level data

2. If the object-level ICCs are found to be homogeneous, model the profile likeli-
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hood based on the ICCs outlined in (1) using ρ̂·

3. Test for homogeneity of nested-level ICCs in a similar fashion as the object-level

method

For nh responses, there are nh!/2 unique decompositions of the MBBD that could po-

tentially model the data, each with its own set of parameters. In order to model the

nested-level agreement, each one of these must be considered. In the case that there

is homogeneity of ICCs across the object-level responses, the nested-level MBBD can

be used to examine the data for potential heterogeneity of nested-level ICCs. The

conditional beta-binomial distribution can instead be written in terms of the probabil-

ity of response h, πh|1,2,...,h−1, conditional object-level ICC for response h, ρh|1,2,...h−1,

the conditional nested-level agreement, ζh|1,2,...h−1, and mi,h|1,2,...,h−1, which is the pro-

portion of the correlation matrix conditional beta-binomial distribution occupied by

ρh|1,2,...h−1. Then, let dh|1,2,...,h−1 = mi,h|1,2,...,h−1ρh|1,2,...h−1+(1−mi,h|1,2,...,h−1)ζh|1,2,...h−1.

Let C be the set of all possible conditional probabilities of response and D be the set

of all possible conditional overall nested level ICCs in the form of dh|1,2,...,h−1. Then

the nested-level MBBD can be written as

P (Xi·· = xi··|C,D) =

nh−1∏
f=1

[
xfi·∏
a=1

(
a+

(
1− df |1...f−1

)
πf |1...f−1

df |1...f−1

− 1

)
×

ni··−
∑f

g=1 xgi·∏
a=1

(
a+

(
1− df |1...f−1

) (
1− πf |1...f−1

)
df |1...f−1

− 1

)
×

ni··−
∑f−1

g=1 xgi·∏
a=1

(
a+

1− df |1...f−1

df |1...f−1

− 1

)−1


In this expression of the model, di can be considered the overall measure of agreement

among all responses in a nested-level, which is a linear combination of the overall
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object-level and nested-level ICCs. Under the profile-likelihood framework, the pooled

object-level ICC is considered to be known as it was previously tested and found to

be homogeneous. Therefore, testing the goodness of fit of the MDD given parameter

di is analogous to testing the goodness of fit of the same model for the nested-level

ICC. Therefore, this profile-likelihood can then be used to test the assumption of

the homogeneity of ICCs across nested-level responses. Under the assumption that

ζ1 = ζ2... = ζ·, fewer parameters are needed to model the distribution than if the

flexibility were allowed such that at least one ζi 6= ζj. For the MBBD, it has been

documented that in the object-level case, the conditional object-level ICC can be

specified as 1
ah+bh+1

= 1∑nh
i=h zi+1

for response h conditional on responses 1,2...nh − 1.

As a result, in the nested-level case, dh|1,2...h−1 can be exactly specified in the same

way. Given that the estimates of the object-level ICC are retained from the previous

model, the nested-level ICC can be expressed under the homogeneity assumption as

ζh|1,2...h−1 =
dh|1,2...h−1 −mi,h|1,2,...,h−1ρh|1,2...h−1

1−mi,h|1,2,...,h−1

(4.9)

Thus, the following test of hypotheses can occur:


H0 : ζ1 = ζ2 = ... = ζ·

HA : ζ1 6= ζ· or ζ2 6= ζ· or ...ζk 6= ζ·

As object-level homogeneity is assumed, the likelihood under the null model will

be the same regardless of the decomposition while the likelihood under the alter-

native would continue to yield separate likelihoods. Then, each alternative likeli-

hood can be compared to its corresponding null likelihood yielding the test statistic

ψ = 2logLMBBD

LMDD
which follows a χ2

nh−2distribution [8, 17]. Given the number of tests
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considered, the multiple decompositions of the likelihood can artificially inflate the

type I error rate if not appropriately controlled for. Therefore, multiple comparisons

methods such as the Bonferroni-Holms[26] or the Benjamini-Hochberg[3] methods can

be employed as appropriate depending on whether controlling the family-wise error

rate or the false-discovery rate is of more importance. The Benjamini-Hochberg cor-

rection is universally more powerful than the Bonferroni-Holms correction, however

does not maintain strong control of the family-wise type I error rate. Therefore, the

balance between increased power and potentially inflated type I error rate should

be considered and the multiple comparison correction should be decided on prior to

conducting the test. The effect of these methods on the type I error rate as well as

the degree of inflation of the type I error rate due to the multiple tests is described

in detail in Chapter 2 and should be taken into consideration when choosing the

appropriate method to control the type I error rate for testing the homogeneity of

nested-level ICCs.

4.4.2. Asymptotic Considerations

The multinomial-dirichlet distribution can be used to estimate the nested-level agree-

ment by comparing the overdispersion of the variance of the observed data to the

expected variance for the multinomial distribution in order to estimate the ICC where

di, the linear combination of the object and nested-level agreement, represents the

total agreement among all responses within a nested level. However, as mi → 0,

as occurs when ni·· → ∞, di devolves into simply the nested-level correlation ζ.

Therefore, if there is a sufficiently large number of objects per nested-level, or mi

is sufficiently small, then it can be feasible to disregard the effect of heterogeneity

among object-level results to provide further inference on the nested-level results. If

this assumption can be made, ζ̂ ≈ d̂i and appropriate inference can be made on ζ̂
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as described in the two-level model presented in Chapter 3. In addition, testing of

the homogeneity of the nested-level ICCs can occur as described in Chapter 2 as the

likelihood now devolves to a two-level model instead of a three-level model. This is

an important benefit as there lies great potential in larger studies where investigation

of the nested-level ICC may be of interest for object-level heterogeneity to exist due

to the power resulting from the potentially large number of objects in these studies.

These asymptotic properties allows for investigation into the nested-level ICCs with-

out consideration of object-level results given a large enough number of objects per

nested-level.

4.4.3. Adjusted Object-Level ICC

In the presence of non-zero nested-level ICCs, the unadjusted object-level ICCs can

overestimate the measure of agreement that exists among objects. In the binomial

case, it was proved in Chapter 3 that for a given object-level correlation ρh and

nested-level correlation ζh, ρh ≥ ζh ∀ h. For the pooled estimate ζ· to be a valid

representation of the nested-level agreement, there must be a demonstration of both

object-level and nested-level homogeneity of ICCs among all responses. Therefore,

ρ1 = ρ2 = ... = ρ· and ζ1 = ζ2 = ... = ζ·, which therefore necessitates that ρ· ≥ ζ·.

This reduces the range of the object-level ICC from the expected range of (0,1) to

the range (ρ·,1). To adjust for the reduced range of the ICC due to the nested-level

ICC, the adjusted measure of the object-level ICC, ρ∗· , can be derived as

ρ∗ =
ρ· − ζ·
1− ζ·

(4.10)
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Figure 4.1: Distribution of Self-Reported Hispanics by Plate in a GWAS
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4.5. Application: ”Fingerprinting” within a GWAS

4.5.1. Description

A GWAS conducted within a cohort study led to the troubling discovery that inten-

tionally duplicate genotyping results were paired with totally different subject IDs.

Fortunately, within the same clinical research network, a full-scale GWAS (1 million

SNPs) was conducted shortly thereafter, and the ”fingerprinting” step was used to

correctly realign nearly 4% of the subject IDs to their correct genotyping results.

Each study participant was classified by self-reported race/ethnicity as

1) Non-Hispanic White; 2) Non-Hispanic Black; 3) Hispanic; and 4) Other. Further

analyzing the results, among the final set of 3,546 study participants, it was discovered

that the biospecimens from the Hispanic study participants were heavily clustered on
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5 of the 47 genotyping plates. Looking at the level of agreement of responses among

Hispanics, there is a possibility of a large level of agreement due to the distribution

of Hispanics which could artificially inflate the subject-level race agreement.

For the purposes of these data, each subject is considered to be the ”object-level”

result, and each genotyping plate is considered to be the ”nested-level” result as each

specimen is nested within each plate. Chapter 3 answered a similar question for

response-level results, dichotomizing each race outcome and determining the effect

of the nested-level agreement on the corresponding object-level agreement. While

those methods were sufficient for the dichotomized responses, it does not analyze the

four-part question as a whole and therefore does not use all available information in

the analysis for each response. The methods described in this paper serve as an av-

enue, under the correct circumstances, to either determine the nested-level agreement

among all responses or give validity to analyzing each response separately due to the

lack of fit of the MDD. To fully analyze the effect of the nested-level correlation on

the object-level correlation, the following questions must be answered:

1. Does homogeneity of object-level ICCs exist for these data?

2. Does homogeneity of nested-level ICCs exist for these data?

3. Can all responses be analyzed simultaneously or must each response be analyzed

separately?

4.5.2. Results

The methods described thus far will be sufficient to adequately answer all three

questions. First, each response will be analyzed separately, and the corresponding

object-level and nested-level (in this case, subject-level and plate-level) ICC will be
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estimated along with its corresponding standard error. Second, the pooled estimates

of the subject and plate-level correlations will be calculated using the MDD. Finally,

the MDD and MBBD will be used in combination first to test for the homogeneity of

subject-level ICCs and, in the presence of homogeneity of subject-level ICCs, to test

for homogeneity of plate-level ICCs.
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The response-level results displayed were previously reported in Chapter 3. The

pooled object and nested-level results summarize the measure of agreement among

all responses and can be considered assessment-level ICCs, assessing the agreement of

the results of the entire four-part question as opposed to the response-level results. In

both alignments, the pooled object-level agreement is excellent, while the re-aligned

subject ID’s prove to have a greater pooled object-level ICC than the original pa-

tient ID’s. This is expected as one would expect a high level of agreement between

patient reported race and genetically-determined race, so appropriately aligning the

two responses should result in higher levels of agreement. Interestingly, the nested-

level agreement remained remarkably similar between the two alignments, with all

point-estimates remaining constant through the alignment. One can argue that this

is expected as well as the re-alignment of a small number of 3,546 subjects may re-

sult in better object-level agreement, but may not have an effect on the nested-level

agreement among only 47 genotyping plates. The estimated pooled nested-level ICC

was 0.092 in both alignments, and in both cases the lower-limit of the 95% confidence

interval was greater than zero. Therefore, there is a measure of agreement among

the plates that is significantly greater than zero and ratings on nested-level results

can be categorized as having ’slight agreement’ according to Landis and Koch [33].

However, overall the nested-level adjusted object-level ICC did not change much due

to the high level of pooled subject-level correlation and the relatively low level of

overall nested-level agreement. Therefore, while there was slight agreement among

observations within a nested-level where there should be no agreement, the magnitude

of object-level agreement as well as the small magnitude of nested-level agreement

were enough to only slightly decrease the adjusted object-level ICCs.

However, when analyzing the goodness-of-fit of the pooled model, it is clear that the

83



Figure 4.2: Test of Homogeneity of ICCs for Race Results
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MDD describing the pooled object-level agreement does not accurately fit the data.

From a glance at the range of the object-level ICCs, this should come as no surprise.

The range of the object level ICCs from the original data is 0.682–0.949 and is 0.693–

0.986 among the re-aligned subject ID’s. If there was homogeneity of object-level

ICCs among the responses, it would be expected that the object-level ICC for each

separate race would be roughly equivalent. Due to the large range of object-level ICCs,

there does not appear to be homogeneity of ICCs. In both cases, the p-value resulting

from each decomposition of the MBBD compared to the MDD was less than 0.0001,

indicating that using either the Bonferonni-Holms or Benjamini-Hochberg approach,

there is a clear violation of the notion of object-level homogeneity of responses across

responses. Therefore, to appropriately determine the object-level agreement in this

scenario, each race response should be analyzed separately as opposed to modeling

the level of agreement of the question as a whole.

Even though there is not homogeneity among the subject-level ICCs, the asymptotic

properties of the MDD can be used to evaluate the homogeneity of nested-level ICCs

due to the large number of responses per genotyping plate. On average, there were

150.9 results per plate, resulting in an average mi of .0067. The overall plate-level ICC

di is estimated as .098 with standard error .012 and, as mi is sufficiently small, can be

used to estimate the overall plate-level agreement in order to test the homogeneity of

nested-level ICCs. The range of nested-level ICCs is 0.001–0.215, so it is expected that

there is heterogeneity of nested-level ICCs. Figure 4.2 provides a clear indication that

the hypothesis that there is homogeneity among plate-level ICCs should be rejected as

the likelihood-ratio tests of all decompositions of the MDD into the MBBD are highly

significant. Therefore, there is evidence that the level of agreement among plates is

inconsistent across races, signifying that genotyping samples should have been better
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stratified among plates in order to achieve balance across plates and reduce the level

of bias in analyzing subjects’ race. As a result, this provides further evidence that

the overall assessment of race should not be analyzed for these data, but rather the

dichotomized race assessment for each race in question.

4.6. Conclusion

The presence of nested-level ICCs can artificially inflate the apparent object-level

ICCs and should be accounted for when potential nested-level correlations exist. In

this paper, the method of modeling pooled nested-level ICCs has been described us-

ing the MDD. In addition, in the presence of homogeneity of object-level results, a

goodness-of-fit test has been proposed that detects whether the assumption of homo-

geneity of nested-level ICCs is valid, which indicates whether the pooled nested-level

ICC is the appropriate statistic to model the nested-level agreement. These methods

were applied to a GWAS study where there was significant nested-level correlation

among results that should have been uncorrelated and found that there is strong

evidence of heterogeneity of nested-level ICCs among races. However, there is a

shortcoming of this approach that mandates that, in the presence of heterogeneity of

either the object or nested-level ICC, the level of agreement for each response should

be analyzed based on the dichotomized result for each response. Ideally, these results

would be modeled using a likelihood-based approach that allows for heterogeneity of

ICCs that allows for separate modeling the ICCs for each response. Overall, these

methods result in an advance to measure the pooled nested-level ICC for the question

as a whole and a goodness-of-fit test to determine if the pooled ICC is an appropri-

ate assessment of nested-level agreement while paving the way for future research to

improve on and advance the investigation into measures of agreement.
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CHAPTER 5

Discussion

Prior to this dissertation, there was not a comprehensive method to test for homo-

geneity of ICCs across multiple item-wise responses for a multinomial outcome. In

addition, the nested-level ICC for both binomial and multinomial outcomes could nei-

ther be accurately estimated nor inference provided on the result. This dissertation

has achieved both milestones. Therefore, researchers now have the ability to test the

assumption of homogeneity of ICCs across a multinomial response to support sum-

marizing rater agreement by either a pooled ICC or by dichotomized responses. In

addition, potential biases due to nested-level agreement can be identified and subse-

quently corrected to provide unbiased estimates of measures of object-level agreement.

Specifically, in this dissertation, we have described and demonstrated the validity of

a test for homogeneity of item-wise ICCs across a multinomial response. Although

there were a number of potential expressions for the multiple beta-binomial distribu-

tion given the number of potential outcomes of the response, recommendations for

controlling the type I error rate were presented. Simulations demonstrated not only

the strong control of the type I error rate for the test of homogeneity of ICCs across

the multinomial response, but also gave some insight into the power of the test un-

der various assumptions for differences in ICC, numbers of subjects and raters, and

methods for controlling the type I error rate. As a result, investigators interested in

researching the overall measure of agreement for a multinomial response by pooling

the ICCs should first test whether homogeneity of item-wise ICCs for the individual

responses exist. First, if there is homogeneity among the responses, there is an in-

crease in efficiency to be gained by pooling responses and reporting one overall ICC.

87



However, if there is heterogeneity among responses, valuable information regarding

the differences in measures of agreement for each response will be lost. As a result, in

the case of heterogeneity of ICCs, we are recommending at this time that each poten-

tial outcome be dichotomized and analyzed separately as there is no likelihood-based

framework available to simultaneously estimate the ICCs.

In addition, we have identified the potential issue of a nested-level measure of agree-

ment, and provided frameworks to estimate and provide inference on the nested-level

ICC. Using a modification of the beta-binomial distribution for binomial data, we

were able to identify the measure of agreement that exists among ratings on separate

objects within the same nested-level and provide both variance and confidence interval

formulas for the estimate. Simulations verified that the estimation provides unbiased

estimates of the nested-level ICC and appropriate coverage of the confidence interval

given a large enough sample size. We were also able to prove that the presence of

nested-level agreement artificially inflates the apparent object-level agreement, and

provided a nested-level adjusted object-level agreement measure to account for this

artificial inflation.

In a similar fashion, for multinomial outcomes, the multinomial-Dirichlet distribution

was leveraged to estimate and provide inference on the pooled nested-level ICC using

the assumption of homogeneity of both object and nested-level ICCs. In order to

test this assumption of homogeneity of nested-level ICCs, the multiple beta-binomial

distribution was extended to account for nested-levels of agreement and a test for ho-

mogeneity of nested-level ICCs was derived. In addition, the asymptotic properties

of the model were examined and found that, for a large number of objects per nested-

level, that the nested-level ICC can be examined without regard to the object-level

ICC. Finally, a nested-level adjusted object-level ICC measure was derived to account

for the inflation of the apparent object-level agreement.
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Future work should be done investigating a likelihood that can accommodate the

data in such a manner to provide simultaneous estimation on separate ICCs for each

outcome. This would allow for flexible modeling of ICCs across responses and could

be used to conduct pairwise tests of equivalency of item-wise ICCs. In addition, it

may lend itself to more flexibility in performing hypothesis tests on the item-wise

measures of agreement. Upon its discovery, this model should be used to estimate

nested-level ICCs, determine whether homogeneity among the nested-level ICCs ex-

ists and provide a nested-level adjusted object-level ICC.

Until this point, few researchers have looked at the potential issue that agreement

among a nested-level can cause when estimating agreement. In general, well designed

and/or randomized trials will exhibit no nested-level agreement as it is not expected

that there would be any type of agreement on ratings on separate objects, however

studies that do not pay attention to this point may introduce bias into the results.

This emphasizes the point that, if at all possible, attention should be paid to have

a random mixture of objects within each nested level to reduce bias in measuring

agreement. This methodology also allows for examination into whether nested-level

bias exists in previously conducted research studies and to adjust the object-level ICC

where appropriate.
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APPENDIX A

Technical Arguments

A.1. Chapter 2: Multinomial-Dirichlet Distribution, A Special Case of

the Multiple Beta-Binomial Distribution

With nh response categories for object i, the multiple beta-binomial distribution

(MBBD) can be written as

P (Xi = xi|A,B) =

nh−1∏
f=1

(
N −

∑f−1
g=1 xgi

xfi

)
(A.1)

×
Γ (xfi + af ) Γ

(
N −

∑f
g=1 xgi + bf

)
Γ (af + bf )

Γ
(
N −

∑f−1
g=1 xgi + af + bf

)
Γ (af ) Γ (bf )

Under the assumption that ah = mh and bh = mh+1 + mh+2 + ...mk∀h where

m1,m2, ...mk are the parameters of the multinomial Dirichlet distribution, the MBBD
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can be rewritten as

P (Xi = xi|A,B) =

nh−1∏
f=1

(
N −

∑f−1
g=1 xgi

xfi

)

×
Γ (xfi +mf ) Γ

(
N −

∑f
g=1 xgi +

∑nh

q=f+1 mq

)
Γ
(∑nh

q=f mq

)
Γ
(
N −

∑f−1
g=1 xgi +

∑nh

q=f mq

)
Γ (mf ) Γ

(∑nh

q=f+1mq

)
=

N !∏nh

f=1 xfi!

×
nh−1∏
f=1

Γ (xfi +mf ) Γ
(
N −

∑f
g=1 xgi +

∑nh

q=f+1mq

)
Γ
(∑nh

q=f mq

)
Γ
(
N −

∑f−1
g=1 xgi +

∑nh

q=f mq

)
Γ (mf ) Γ

(∑nh

q=f+1 mq

)
=

N !∏nh

f=1 xfi!

Γ
(∑nh

f=1mf

)
Γ
(
N +

∑nh

f=1mf

) nh∏
f=1

Γ (xfi +mf )

Γ (mf )

which is simply the multinomial-Dirichlet distribution.

A.2. Chapter 3: Estimation of the Variance of xi·

Let yijk be the binary response 0 or 1 for the kth rater on the jth object in the ith

nested-level. Assuming that yijk follows a binomial distribution yijk ∼ Bin (π), the
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variance of xi· =
ni··∑
j=1

nij·∑
k=1

yijk is written as follows:

V ar(xi·) =

ni··∑
j=1

nij·∑
k=1

V ar(yijk) + 2
∑
m<n

∑
p<q

Cov(yimp, yinq)

=

ni··∑
j=1

nij·π(1− π) + 2

ni··∑
j=1

(
nij·
2

)
ρπ(1− π) + 2ζπ(1− π)

(
ni··∑
j=1

nij·

2

)
−

ni··∑
j=1

(
nij·
2

)

=

ni··∑
j=1

nij·π(1− π)

1 +

2ρ
ni··∑
j=1

(nij·
2

)
+ 2ζ

((ni··∑
j=1

nij·

2

)
−

ni··∑
j=1

(nij·
2

))
ni··∑
j=1

nij·



=

ni··∑
j=1

nij·π(1− π)

1 + 2

ni··∑
j=1

nij· − 1

 ρ
ni··∑
j=1

(nij·
2

)
+ ζ

((ni··∑
j=1

nij·

2

)
−

ni··∑
j=1

(nij·
2

))
ni··∑
j=1

nij·

(
ni··∑
j=1

nij· − 1

)


=

ni··∑
j=1

nij·π(1− π)

1 +

ni··∑
j=1

nij· − 1

 ρ
ni··∑
j=1

(nij·
2

)
+ ζ

((ni··∑
j=1

nij·

2

)
−

ni··∑
j=1

(nij·
2

))
(ni··∑
j=1

nij·

2

)


=

ni··∑
j=1

nij·π(1− π)

1 +

ni··∑
j=1

nij· − 1

 (miρ+ (1−mi) ζ)



A.3. Chapter 4: Estimation and Inference of ζ·

Using the likelihood displayed in equation (5), the properties associated with profile-

likelihood can be used to provide a consistent estimate for ζ· and its corresponding

standard error. The estimate ζ̂· can be derived by finding the value for ζ that will set
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the derivative of the log-likelihood with respect to ζ equal to zero, thereby solving

the equation

0 =
n···∑
a=1

 nh∑
e=1

xea·∑
f=1

−(1−ma)πe

d2
a

(
f + 1−da

da
πe − 1

) +
na··∑
c=1

1−ma

d2
a

(
c+ 1−da

da
− 1
)


The formula for the variance can be found in section 3.2, however the second derivative

can be calculated as follows:

∂2LogL(p̂, ρ̂, ζ|Xi·· = xi··)

∂ζ2
=

n···∑
a=1

 nh∑
e=1

xea·∑
f=1

 −(1−ma)2π2
e

d4a

(
f + 1−da

da
πe − 1

)2 +
2(1−ma)πe

d3a

(
f + 1−da

da
πe − 1

)


+

na··∑
c=1

 (1−ma)2

d4a

(
c+ 1−da

da
− 1
)2 − 2(1−ma)

d3a

(
f + 1−da

da
− 1
)


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