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general equilibrium model with financial intermediation and sovereign default risk to study the
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Quadratic Autoregressive (QAR) model. We then show how the QAR model can be used as a diagnostic tool
to assess whether a DSGE model is able to replicate the nonlinear behavior of a set of U.S. aggregate time
series. Chapter 3 studies the determinants of medium term movements in the market value of U.S.
corporations. We find that secular movements in the mean and volatility of TFP growth are strongly
associated with these medium term fluctuations in asset prices. These empirical findings are then interpreted
within a production based asset pricing model where the mean and volatility of aggregate productivity growth
varies over time. We show that the model can rationalize a sizable elasticity of asset prices to the drivers of
aggregate productivity. Chapter 4 proposes a method to identify Harrod-neutral technology shocks in the data
in presence of input heterogeneity in the aggregate production function. We prove that, in a wide class of
models, Harrod-neutral technology shocks are the only one consistent with a certain form of balanced
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indebted to professor Jesús Fernández-Villaverde. His enthusiasm toward my re-

search was a great stimulus to work harder. Chapter 1 of this dissertation owes

a lot to him, not only intellectually. I thank him for his constant support during

the job market period. Professor Iourii Manovskii introduced me to research in

economics. I was in my second year when he hired me as a research assistant for

one of his projects, and when he offered me to become his coauthor. He taught me

a lot during our endless meetings, and the fourth of this dissertation is based on a

project with him and professor Marcus Hagedorn. I thank him for believing in me

more than I ever did. I thank professor Dirk Krueger for his detailed comments

on each chapter of this dissertation and for teaching me the value of intellectual

rigor in academic research.

My doctoral research benefited from the support of a number of institutions. I

thank the Bank of Italy, the Graduate School of Arts and Sciences of the University

of Pennsylvania and the Macro Financial Modeling initiative for financial support.

I thank the Federal Reserve Bank of Philadelphia and the Federal Reserve Bank

iii



of Minnapolis for their hospitality while writing part of this dissertation.

I have been fortunate to meet several people who have helped me and inspired me

during my graduate studies. I thank Nils Gornemann for being a patient coauthor,

Chapter 3 of this dissertation is based on a joint project. I learned a lot from him.
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ABSTRACT

ESSAYS ON NONLINEAR MACROECONOMIC DYNAMICS

Luigi Bocola

Frank Schorfheide

This dissertation consists of four essays that study topics in macroeconomics, fi-

nance and their interplay using nonlinear quantitative equilibrium models and

state of the art econometric techniques. Chapter 1 proposes a general equilibrium

model with financial intermediation and sovereign default risk to study the macroe-

conomic consequences of news regarding a future sovereign default. The model,

estimated on Italian data, is used to measure the output losses of the 2010-2012

sovereign debt crisis, and to evaluate the effects of credit policies implemented by

European authorities. Chapter 2, co-authored with Borağan Aruoba and Frank

Schorfheide, proposes a new class of time series model that can be used to measure

nonlinearities in the data and to evaluate the fit of Dynamic Stochastic General

Equilibrium (DSGE) models solved with high order perturbation. We first char-

acterize this class, the Quadratic Autoregressive (QAR) model. We then show

how the QAR model can be used as a diagnostic tool to assess whether a DSGE

model is able to replicate the nonlinear behavior of a set of U.S. aggregate time

series. Chapter 3, co-authored with Nils Gornemann, studies the determinants

of medium term movements in the market value of U.S. corporations. We find

that secular movements in the mean and volatility of TFP growth are strongly

associated with these medium term fluctuations in asset prices. These empiri-

cal findings are then interpreted within a production based asset pricing model

where the mean and volatility of aggregate productivity growth varies over time.
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We show that the model can rationalize a sizable elasticity of asset prices to the

drivers of aggregate productivity. Chapter 4, co-authored with Iourii Manovskii

and Marcus Hagedorn, proposes a method to identify Harrod-neutral technology

shocks in the data in presence of input heterogeneity in the aggregate production

function. We prove that, in a wide class of models, Harrod-neutral technology

shocks are the only one consistent with a certain form of balanced growth. We

then use this property to identify Harrod-neutral shocks using a state-space model.

Monte Carlo simulations show that the proposed method performs very well in

small samples.
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Chapter 1

The Pass-Through of Sovereign

Risk

1.1 Introduction

At the end of 2009, holdings of domestic government debt by banks in European

peripheral countries - Greece, Italy, Portugal and Spain - were equivalent to 93% of

banks’ total equity. At the same time, these banks provided roughly three-quarters

of external financing to domestic firms. Prior research has established that the

sovereign debt crisis in these economies resulted in a substantial increase in the

borrowing costs for domestic firms.1 One proposed explanation of these findings

is that the exposure to distressed government bonds hurts the ability of banks

to raise funds in financial markets, leading to a pass-through of their increased

financing costs into the lending rates payed by firms.2 This view was at the core

1See, for example, the evidence in Klein and Stellner (2013) and Bedendo and Colla (2013)
using corporate bond data, the analysis of Bofondi et al. (2013) using Italian firm level data and
Neri (2013) and Neri and Ropele (2013) for evidence using aggregate time series. See also ECB
(2011).

2The report by CGFS (2011) discusses the transmission channels through which sovereign
risk affected bank funding during the European debt crisis. For example, banks in the Euro area
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of policy discussions in Europe and was a motive for major interventions by the

European Central Bank (ECB).

I argue, however, that this view is incomplete. A sovereign default triggers a

severe macroeconomic downturn and adversely affects the performance of firms.

Consequently, as an economy approaches a sovereign default, banks perceive firms

to be more risky. Because banks require fair compensation for holding this addi-

tional risk, firms’ borrowing costs rise. If this mechanism is quantitatively impor-

tant, policies that address the heightened liquidity problems of banks but do not

reduce the increased riskiness of firms may prove ineffective in encouraging bank

lending.

I formalize this mechanism in a quantitative model with financial intermedi-

ation and sovereign default risk. In the model, an increase in the probability

of a sovereign default both tightens the funding constraints of banks (leverage-

constraint channel) and raises the risks associated with lending to the productive

sector (risk channel). I structurally estimate the model on Italian data with

Bayesian methods. I find that the risk channel is indeed quantitatively important:

it explains up to 47% of the impact of the sovereign debt crisis on the borrowing

costs of firms. I then use the estimated model to assess the consequences of credit

market interventions adopted by the ECB and to propose and evaluate alterna-

tive policies that are more effective in mitigating the implications of increased

sovereign default risk.

My framework builds on a business cycle model with financial intermediation, in

the tradition of Gertler and Kiyotaki (2010) and Gertler and Karadi (2011, 2013).

extensively use government bonds as collateral, and the decline in the value of these securities
during the sovereign debt crisis reduced their ability to access wholesale liquidity. See also Zole
(2013) and Albertazzi et al. (2012).
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In the model, banks collect savings from households and use these funds, along

with their own wealth (net worth), to buy long-term government bonds and to

lend to firms. This intermediation is important because firms need external finance

to buy capital goods. The model has three main ingredients. First, an agency

problem between households and banks generates constraints in the borrowing

ability of these latter. These constraints on bank leverage bind only occasionally,

and typically when bank net worth is low. Second, financial intermediation is risky:

bank net worth varies over time mainly because banks finance long-term risky

assets with short-term risk-free debt. Third, the probability that the government

defaults on its bonds and imposes losses on banks is time-varying and follows an

exogenous stochastic process.

To understand the key mechanisms of the model, consider a scenario in which

the probability of a future sovereign default rises. The anticipation of a “haircut”

on government bonds depresses their market value and lowers the net worth of

banks.3 This tightens their leverage constraints and has adverse consequences for

financial intermediation: banks’ ability to collect funds from households decline,

lending to the productive sector declines and so does aggregate investment. This

is the conventional leverage-constraint channel in the literature.

However, even when the leverage constraints are currently not binding, a higher

probability of a future sovereign default induces banks to demand higher com-

pensation when lending to firms. This is the case because the sovereign default

triggers a deep recession characterized by a severe decline in the payouts of firms.

Thus, when the probability of a future sovereign default increases, banks have

an incentive to deleverage in order to avoid these losses. More specifically, if the

3In the model, a haircut is the fraction of the principal that is reneged by the government
in the event of a default.
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sovereign default happens in the future, bank leverage constraints tighten because

of the government haircut. This forces banks to liquidate their holdings of firms

assets. The associated decline in their market value leads to a further deteriora-

tion in bank net worth, feeding a vicious loop. Ex-ante, forward-looking banks

demand a premium for holding these claims because they anticipate that they will

pay out little precisely when banks are mostly in need of wealth. The resulting risk

premium is increasing in the probability of a sovereign default. This constitutes

the risk channel.

I measure the quantitative importance of the leverage constraint channel and

the risk channel by estimating the structural parameters of the model with Italian

data from 1999:Q1 to 2011:Q4 using Bayesian techniques. The major empirical

challenge is to separate these two propagation mechanisms since they have qual-

itatively similar implications for indicators of financial stress commonly used in

the literature (e.g., credit spreads). I demonstrate that the Lagrange multiplier

on bank leverage constraints is a function of observable variables, specifically of

the TED spread (spread between the prime interbank rate and the risk free rate)

and of the leverage of banks. I construct a time series for this multiplier and use it

in estimation, along with output growth, to measure the cyclical behavior of the

leverage constraint. In addition, I use credit default swap (CDS) spreads on Italian

government bonds and data on holdings of domestic government debt by Italian

banks to measure the time-varying nature of sovereign risk and the exposure of

banks to that risk.4 The structural estimation is complicated by the fact that the

model features time-variation in risk premia and occasionally binding financial

constraints. I develop an algorithm for its global solution based on projections

4A CDS is a derivative used to hedge the credit risk of an underlying reference asset. CDS
spreads on government securities are typically used in the literature as a proxy of sovereign risk,
see Pan and Singleton (2008).
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and sparse collocation, and I combine it with the particle filter to evaluate the

likelihood function.

Having established the good fit of the model using posterior predictive analysis,

I use it to answer two applied questions. First, I quantify the importance of the

leverage-constraint channel and the risk channel for the propagation of sovereign

credit risk to the financing premia of firms and output. I estimate that the increase

in the probability of a sovereign default in Italy during the 2010:Q1-2011:Q4 period

raised substantially firms’ financing premia, with a peak of 100 basis points in

2011:Q4. This increase reflects both tighter constraints on bank leverage and

increased riskiness of firms, with the risk channel explaining up to 47% of the

overall effects. Moreover, the rise in the probability of a sovereign default had

severe adverse consequences for the Italian economy: cumulative output losses

were 4.75% at the end of 2011.

In the second set of quantitative experiments, I evaluate the effectiveness of a

major unconventional policy adopted by the ECB in the first quarter of 2012 to

address the crisis, the Longer Term Refinancing Operations (LTROs). I model the

policy as a subsidized long-term loan offered to banks. Because of the inherent

nonlinearities of the model, initial conditions matter for policy evaluation. Thus,

I implement this intervention conditioning on the state of the Italian economy in

2011:Q4. I find that the effects of LTROs on credit to firms and output vary over

the 2012:Q1-2014:Q4 window, but they are small and not significantly different

from zero when we average over this time period. This is due to the fact that

risk premia were sizable when the policy was enacted. Banks, thus, have little

incentives to increase their exposure to firms and they mainly use LTROs to

cheaply refinance their liabilities.

5



The lesson from the policy evaluation is that the success of unconventional

policies, such as LTROs, crucially depends on current economic conditions, in

particular on the relative importance of binding leverage constraints versus risk

premia. The former prevents banks from undertaking otherwise profitable invest-

ment. Policies that relax these constraints have sizable effects on bank lending

and capital accumulation. The latter, instead, signal that firms are forecasted to

be a “bad asset” in the future and bank lending is less responsive to refinancing

operations. In these circumstances, policies that insure banks from the downside

risk of a sovereign default (for example through a large injection of equity or a floor

on the price of government bonds) can achieve stimulative effects. These interven-

tions lower the risk associated with lending to the private sector because they limit

the contagion effects that occur in the event of a sovereign default through banks’

balance sheets. However, these stimulative effects should be weighed against the

increased risk taking behavior that these policies are likely to bring and that I do

not capture in my analysis.

Related Literature. This paper is related to several strands of the literature.

Empirical studies document a strong link between sovereign spreads and private

sector interest rates, both in emerging economies and more recently in southern

European countries.5 Several authors recognize the importance of this relation-

ship in different settings. For example, Neumeyer and Perri (2005) and Uribe and

Yue (2006) suggest that sovereign spreads are a major driver of business cycles

in emerging markets, while Corsetti et al. (2013) study the implications of the

sovereign risk pass-through for fiscal policy. However, in these and related papers,

5For emerging market economies, Durbin and Ng (2005) and Borensztein et al. (2006) provide
an empirical analysis of the “sovereign ceiling”, the practice of agencies to rate corporations
below their sovereign. Cavallo and Valenzuela (2007) document the effects of sovereign spreads
on corporate bonds spreads. See footnote 1 and 2 for evidence on southern European economies.
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the reasons underlying the connection between sovereign spreads and private sec-

tor interest rate are not modeled. Part of the contribution of this paper to the

literature is to microfound this link in a fully specified dynamic equilibrium model.

In doing so, my paper also relates to the literature covering the output costs of

sovereign debt defaults, more precisely to papers studying the effects of defaults on

domestic bondholders. Motivated by robust empirical evidence, Gennaioli et al.

(2013b) and Sosa Padilla (2013) study the effects of sovereign defaults on domestic

banks, and the impact that the associated output losses have on the government’s

incentives to default.6 My research is complementary to theirs: I take sovereign

default risk as exogenous, but I explicitly model the behavior of private credit

markets when sovereign risk increases. The novel insight of my paper is that the

mere anticipation of a sovereign default can be recessionary because of its impact

on the perceived riskiness of firms and on the funding constraints of exposed

banks.7 While this exogeneity of sovereign default risk rules out important feed-

back effects between banks and sovereigns (Uhlig, 2013; Acharya et al., 2013), it

does allow for a transparent analysis of these transmission channels.8

This paper contributes to a growing literature on the aggregate implications of

shocks to the balance sheet of financial intermediaries. In particular, I build on

the modeling framework developed by Gertler and Kiyotaki (2010) and Gertler

6Kumhof and Tanner (2005) and Gennaioli et al. (2013a) document that banks are highly
exposed to domestic government debt in a large set of countries. Reinhart and Rogoff (2011)
and Borensztein and Panizza (2009) show that sovereign defaults typically occur simultaneously,
or in close proximity, to banking crises.

7In an empirical study, Yeyati and Panizza (2011) point out that anticipation effects are key
to understand the unfolding of sovereign debt crises. See also Aguiar et al. (2009) and Dovis
(2013) for models where anticipation effects arise because of debt overhang problems.

8Pancrazi et al. (2013) and Mallucci (2013) are two contemporaneous papers studying the
effects of sovereign credit risk on the funding costs of firms. Even though these authors model
explicitly the incentives of the government to default on its debt, their production sector is static.
As such, their analysis abstract from the effects that a sovereign default has on the perceived
riskiness of firms, the key novel mechanism of this paper.
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and Karadi (2011, 2013), where the limited enforcement of debt contracts gen-

erates endogenous constraints on intermediaries’ leverage. Differently from these

papers, my analysis studies how changes in the expectation of these constraints

being binding in the future influence the choices of financial intermediaries re-

garding their lending behavior today.9 In my application, these phenomena arise

because of shocks to the the default probability of government bonds, but the

same logic could be applied to the study of other assets. My analysis uncovers

two important phenomena. First, these changes in expectations can induce quan-

titatively sizable variation in risk premia. Brunnermeier and Sannikov (2013), He

and Krishnamurthy (2012a,b) and Bianchi and Mendoza (2012) study related ef-

fects, but in the present context they emerge because of shocks to the volatility of

an unproductive assets’ payoff. Productive assets are affected because the balance

sheet of banks generates contagion (e.g., produces correlation among the payoffs

of different assets held by banks). Second, stabilization policies are state and

size dependent in this environment.10 As explained earlier, these nonlinearities

depend on the relative importance of currently binding leverage constraints and

risk premia.

The measurement of these two latter components is therefore a key aspect of

this paper. The construction of a model consistent indicator for the Lagrange

multiplier on bank leverage constraints is novel, and it is related to the measure-

ment of financial shocks in Jermann and Quadrini (2012). Methodologically, I

draw from the literature on the Bayesian estimation and validation of dynamic

equilibrium economies (Del Negro and Schorfheide, 2011a), more specifically of

9Technically, I capture these effects because I study the full nonlinear model rather than
local approximation around a deterministic steady state.

10There are a number of papers that study unconventional monetary policy in related envi-
ronments. See, for example, Curdia and Woodford (2010), Curdia and Woodford (2011), Del
Negro et al. (2012) and Bianchi and Bigio (2013).

8



models where nonlinearities feature prominently (Fernández-Villaverde and Rubio-

Ramı́rez, 2007a). The decision rules of the model are derived numerically using

a projection algorithm. I use a Smolyak sparse grid (Krueger and Kubler, 2003),

which sensibly reduces the curse of dimensionality.11 I evaluate the likelihood

function tailoring the auxiliary particle filter of Pitt and Shephard (1999) to the

present application. To my knowledge, this is the first paper to estimate a model

with occasionally binding financial constraints using global methods and nonlin-

ear filters. However, there are other papers using related techniques for different

applications (see Gust et al., 2013; Bi and Traum, 2012, 2013).

Finally, the shock to sovereign default probabilities considered in this paper is

a form of time-varying volatility. As such, my research is related to the literature

that studies how different types of volatility shocks influence real economic activity

(Bloom, 2009; Bloom et al., 2012; Fernández-Villaverde et al., 2011). In partic-

ular, Rietz (1988) and Barro (2006) emphasize the role of large macroeconomic

disasters in accounting for asset prices and Gourio (2012) studies how changes

in the probability of these events affect risk premia and capital accumulation.

The sovereign default studied in this paper can be seen as a potential source of

macroeconomic disasters.12

Layout. The paper is organized as follows. Section 3.3 presents the model,

while Section 1.3 discusses its main mechanisms using two simplified examples.

Section 1.4 presents the estimation and an analysis of the model’s fit. Section

1.5 presents key properties of the estimated model that are useful to interpret

11Christiano and Fisher (2000) is an early paper documenting the performance of projections
in models with occasionally binding constraints. See also Fernández-Villaverde et al. (2012) for
an application of the Smolyak sparse grid in a model where the zero lower bound constraint on
nominal interest rate bind occasionally.

12Arellano et al. (2012), Gilchrist et al. (2013) and Christiano et al. (2013) study the real
effects of a different form of time-varying volatility in models with financial frictions.
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the two quantitative experiments, which are reported in Section 1.6. Section 4.5

concludes.

1.2 Model

I consider a neoclassical growth model enriched with a financial sector as in Gertler

and Kiyotaki (2010) and Gertler and Karadi (2011). In this setting, I introduce

long term government bonds to which financial intermediaries are exposed. These

securities pay in every state of nature unless the economy is in a sovereign default-

an event that can occur every period according to an exogenous and time-varying

probability.

The model economy is populated by households, final good producers, capital

good producers and a government. Each household is composed of two types of

members: workers and bankers. Workers supply labor to final good firms in a

competitive factor market, and their wages are made available to the household.

Bankers manage the savings of other households and use these funds to buy gov-

ernment bonds and claims on firms. Bankers offer a risk free rate on households’

savings. The perfectly competitive non-financial corporate sector produces a final

good using a constant return to scale technology that aggregates capital and la-

bor. Firms rent labor from households and buy capital from perfectly competitive

capital good producers. Their capital expenses are financed by bankers. Finally,

the government issues bonds and taxes households in order to finance government

spending. In every period the government can default on its debt. This event is

modeled as an exogenous stochastic process.

The key friction of the model is the limited enforcement of debt contracts between
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households and bankers: bankers can walk away with the assets of their franchise,

and households can recover only a fraction of their savings when this event occurs.

This friction gives rise to constraints on the leverage of banks, with bank net worth

being the key determinant of their borrowing capacity. When these incentive

constraints bind, or are expected to bind in the future, credit to the productive

sector declines. This has adverse consequences for capital accumulation. An

increase in the probability of a future government default is recessionary because

it adversely impacts the current and expected level of bank net worth, thereby

influencing their lending behavior.

In the remainder of this section I describe the agents’ decision problems, derive

the conditions characterizing a competitive equilibrium, and sketch the algorithm

used for the numerical solution of the model. In Section 1.3, I discuss the key

mechanisms of interest. I denote by S the vector collecting the current value for

the state variables and by S′ the future state of the economy.

1.2.1 Agents and their Decision Problems

Households

A household is composed of a fraction f of workers and a fraction 1−f of bankers.

There is perfect consumption insurance between its members. Let Π(S) be the

net payments that bankers make to their own household, and let W (S) be the

wage that workers receive from supplying labor to final good firms. Households

value consumption c and dislike labor l according to the flow utility u(c, l), and

they discount the future at the rate β. The problem for the household is that

of making contingent plans for consumption, labor supply and savings b′ so as to
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maximize lifetime utility. Savings are deposited into financial intermediaries that

are managed by bankers belonging to other households, and they earn the risk

free return R(S). Taking prices as given, a household solves

vh(b; S) = max
b′≥0,c≥0,l∈[0,1]

{u(c, l) + βES[vh(b
′; S′)]} ,

c+
1

R(S)
b′ ≤ W (S)l + Π(S) + b− τ(S),

S′ = Γ(S).

τ(S) denotes the level of lump sum taxes while Γ(.) describes the law of motion

for the aggregate state variables. Optimality is governed, at an interior solution,

by the intra-temporal and inter-temporal Euler equations

ul(c, l) = uc(c, l)W (S), (1.1)

ES[Λ(S′,S)R(S)] = 1, (1.2)

where Λ(S′,S) = β uc(c
′,l′)

uc(c,l)
. For the empirical analysis I will use preferences that are

consistent with balanced growth, u(c, l) = log(c)−χ l1+ν−1

1+ν−1 , where ν parameterizes

the Frisch elasticity of labor supply.

Bankers

A banker uses his accumulated net worth n and deposits b to buy government

bonds and claims on firms.13 Let aj be asset j held by a banker and let Qj(S)

and Rj(S
′,S) be, respectively, the price of asset j and its realized returns next

period on a unit of numeraire good invested in asset j. The banker’s balance sheet

13A worker who becomes a banker this period obtains start-up funds from his households.
These transfers will be specified at the end of the section.

12



equates total assets to total liabilities:

∑
j={B,K}

Qj(S)aj ≤ n+
b′

R(S)
, (1.3)

where subscript B refers to government bonds and K to firms’ claims. A banker

makes optimal portfolio choices in order to maximize the present discounted value

of dividends payed to his own household. At any point in time there is a probability

1 − ψ that a banker becomes a worker in the next period. When this happens,

the banker pays back a dividend to his own household.14 Bankers who continue

running the business do not pay dividends, and they accumulate net worth. The

objective of a banker is that of maximizing the expected discounted value of his

terminal wealth. Net worth next period equals the difference between realized

returns on assets and the payments promised to households.

n′ =
∑

j={B,K}

Rj(S
′,S)Qj(S)aj − b′. (1.4)

Note that bad realizations of Rj(S
′,S) lead to reductions in bankers’ net worth

n′. This variation in net worth affects the ability of bankers to obtain funds from

the household sector and, ultimately, their supply of credit to the firm. This occurs

due to the limited enforcement of contracts between households and banks. At

any point in time, a banker can walk away with a fraction λ of the project and

transfer it to his own household. If he does, the depositors can force him into

bankruptcy and recover a fraction (1 − λ) of banks’ assets. This friction defines

an incentive constraint for the banker: the value of running his franchise must be

higher than its outside option, λ[
∑

j Qj(S)aj].

14When a banker exits, a worker replaces him so that their relative proportion does not change
over time.
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Taking prices as given, a banker solves the decision problem

vb(n; S) = max
aB ,aK ,b

ES {Λ(S′,S) [(1− ψ)n′ + ψvb(n
′; S′)]} ,

n′ =
∑

j={B,K}

Rj(S
′,S)Qj(S)aj − b′,

∑
j={B,K}

Qj(S)aj ≤ n+
b′

R(S)
,

λ

 ∑
j={B,K}

Qj(S)aj

 ≤ vb(n; S),

S′ = Γ(S).

The following result further characterizes this decision problem.15

Result 1. A solution to the banker’s dynamic program is

vb(n; S) = α(S)n,

where α(S) solves

α(S) =
ES{Λ(S′,S)[(1− ψ) + ψα(S′)]R(S)}

1− µ(S)
, (1.5)

and the multiplier on incentive constraints satisfies

µ(S) = max

{
1−

[
ES{Λ(S′,S)[(1− ψ) + ψα(S′)]R(S)}N

λ[QK(S)AK +QB(S)AB]

]
, 0

}
, (1.6)

where N , AB and AK are, respectively, aggregate bankers’ net worth and aggregate

bankers’ holdings of government bonds and firms assets.

Proof. See Appendix A.1.

15The problem is not well defined for negative values of net worth. When this happens, the
government steps in and refinance the bank via lump sum taxation. At the same time, it issues
a non-pecuniary punishment to the banker that is equivalent to the net worth losses.
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This result clarifies that limited enforcement of contracts places an endogenous

constraint on the leverage of the banker. Indeed, because of the linearity of the

value function, the incentive constraint becomes

∑
j={B,K}Qj(S)aj

n
≤ α(S)

λ
, (1.7)

implying that bank leverage cannot exceed the time-varying threshold α(S)
λ

.16 Bank

net worth is thus a key variable regulating financial intermediation in the model:

when net worth is low, the leverage constraint is more likely to bind and this limits

the amount of assets that a banker can intermediate.

The implications of this constraint for assets’ accumulation can be better under-

stood by looking at the Euler equation for risky asset j

ES

[
Λ̂(S′,S)Rj(S

′,S)
]

= ES

[
Λ̂(S′,S)R(S)

]
+ λµ(S), (1.8)

where Λ̂(S′,S) is the economy’s pricing kernel, defined as

Λ̂(S′,S) = Λ(S′,S)[(1− ψ) + ψα(S′)]. (1.9)

There are two main distinctions between this Euler equation and the one that

would arise in a purely neoclassical setting. First, the presence of leverage con-

straints limits the ability of banks to arbitrage away differences between expected

discounted returns on asset j and the risk free rate: this can be seen from equation

(1.8), as the multiplier generates a wedge between these two returns. Second, the

pricing kernel in equation (1.9) is not only a function of consumption growth as in

16Alternatively, we can interpret equation (1.7) as a collateral constraint. Indeed, using the

balance sheet identity we write the leverage constraint as b ≤
[
α(S)−λ
α(S)

]∑
j={B,K}Qj(S)aj . That

is, bankers’ debt cannot exceed a time varying fraction of the market value of their total assets.
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canonical neoclassical models, but also of bank leverage. Indeed, as stated in equa-

tion (1.7), financial leverage is proportional to α(S) when µ(S) > 0. Adrian et al.

(2013) provides empirical evidence in support of leverage-based pricing kernels for

the U.S. economy and He and Krishnamurthy (2012b) discuss their asset pricing

implications in endowment economies. If the leverage constraint never binds, i.e.

µ(S) = 0 ∀ S, equation (1.8) collapses to the neoclassical benchmark.17

Result 1 also implies that banks heterogeneity in their net worth and asset hold-

ings does not affect aggregate dynamics. Indeed, equation (1.8) suggests that

assets returns depend on the dynamics of the multiplier µ(S) which, in turn, is

a function of financial leverage (see equation (1.6)). Since this latter is identi-

cal across bankers when the constraint binds, µ(S) is independent on the cross-

sectional distribution of bank net-worth: agents in the economy do not need to

know this distribution when forecasting future prices, this making the numerical

analysis of the model tractable. For future reference, it is convenient to derive an

expression for the law of motion of aggregate net worth

N ′(S′,S) = ψ

 ∑
j={B,K}

[Rj(S
′,S)−R(S)]Qj(S)Aj +R(S)N

+ ω
∑

j={B,K}

Qj(S
′)Aj . (1.10)

Aggregate net worth equals the sum of the net worth accumulated by bankers

who did not switch occupations today and the transfers that households make to

newly born bankers. These transfers are assumed to be a fraction ω of the assets

intermediated in the previous period, evaluated at current prices. In the empirical

analysis, ω has the purpose of pinning down the level of financial leverage in a

deterministic balanced growth path of the economy, and it will be a small number.

17Using equation (1.2), we can see that a solution to equation (1.5) is α(S) = 1 ∀ S whenever
µ(S) = 0 ∀ S.
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Capital Good Producers

The capital good producers build new capital goods using the technology Φ
(
i
K

)
K,

where K is the aggregate capital stock in the economy and i the inputs used in

production. They buy inputs in the final good market, and sell capital goods to

final good firms at competitive prices. Taking the price of new capital Qi(S) as

given, the decision problem of a capital good producer is

max
i≥0

[
Qi(S)Φ

(
i

K

)
K − i

]
.

Anticipating the capital goods market clearing condition, the price for new cap-

ital goods is

Qi(S) =
1

Φ′
(
I(S)
K

) , (1.11)

where I(S) is equilibrium aggregate investment.

For the empirical analysis, I specify the production function for capital goods as

Φ(x) = a1x
1−ξ + a2, where ξ parametrizes the elasticity of Tobin’s q with respect

to the investment-capital ratio.

Final Good Producers

Final output y is produced by perfectly competitive firms that operate a constant

returns to scale technology

y = kα(ezl)1−α, (1.12)
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where k is the stock of capital goods, l stands for labor services, and z is a neutral

technology shock that follows an AR(1) process in growth

∆z′ = γ(1− ρz) + ρz∆z + σzε
′
z, ε′z ∼ N (0, 1). (1.13)

Labor is rented in competitive factor markets at the rate W (S). Capital goods

depreciate every period at the rate δ. Anticipating the labor market clearing

condition, profit maximization implies that equilibrium wages and profits per unit

of capital are

W (S) = (1− α)
Y (S)

L(S)
, Z(S) = α

Y (S)

K
, (1.14)

where Y (S) and L(S) are equilibrium aggregate output and labor.

To purchase new capital goods, firms need external financing. At the beginning

of the period, firms issue claims to bankers in exchange for funds. While these

claims are perfectly state contingent and therefore correspond to equity holdings,

I interpret them more broadly as privately issued paper such as bank loans. For

each claim aK bankers pay QK(S) to firms.18 In exchange, they receive the realized

return on a unit of the capital stock in the next period:

RK(S′,S) =
(1− δ)QK(S′) + Z(S′)

QK(S)
. (1.15)

Realized returns to capital move over time because of two factors: variation

in firms’ profits and variation in the market value of corporate securities. These

movements inRK(S′,S) induce variation in aggregate net worth, as equation (1.10)

suggests.

18No arbitrage implies that the price of a unit of new capital equals in equilibrium the price
of an IOU issued by firms, Qi(S) = QK(S).
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The Government

In every period, the government engages in public spending. Public spending as

a fraction of GDP evolves as follows

log(g)′ = (1− ρg) log(g∗) + ρg log(g) + σgε
′
g, ε′g ∼ N (0, 1). (1.16)

The government finances public spending by levying lump sum taxes on house-

holds and by issuing long-term government bonds to financial intermediaries. Long

term debt is introduced as in Chatterjee and Eyigungor (2013). In every period

a fraction π of bonds matures. When this event happens, the government pays

back the principal to investors. The remaining fraction (1− π) does not mature:

the government pays the coupon ι, and investors retain the right to obtain the

principal in the future. The average duration of bonds is therefore 1
π

periods. I

introduce risk of sovereign default by assuming that the government can default in

every period and write off a fraction D ∈ [0, 1] of its outstanding debt. The param-

eter D can be seen as the “haircut” that the government imposes on bondholders

in a default. Denoting by QB(S) the pricing function for government securities,

tomorrow’s realized returns on a dollar invested in government bonds are

RB(S′,S) = [1− d′D]

[
π + (1− π) [ι+QB(S′)]

QB(S)

]
, (1.17)

where d′ is an indicator variable equal to 1 if the government defaults next period.

Realized returns on government bonds vary over time and they affect the balance

sheet of financial intermediaries. First, when the government defaults, it imposes

a haircut on bondholders which has a direct negative effect on the net worth of

bankers. Second, and to the extent that π < 1, RB(S′,S) is sensitive to variation
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in the price of government securities: a decline in QB(S′), for example, lowers the

reselling value of government bonds and reduces the returns on holding government

debt.

Denoting by B′ the stock of public debt, the budget constraint of the government

is given by

QB(S)

B′ − (1− π)B[1− dD]︸ ︷︷ ︸
Newly issued bonds

 = [π + (1− π)ι]B[1− dD]︸ ︷︷ ︸
Payments of principals and coupons

+ gY (S)− τ(S)︸ ︷︷ ︸
Primary Deficit

. (1.18)

Taxes respond to past debt according to the law of motion

τ(S)

Y (S)
= t∗ + γτ

B

Y (S)
,

where γτ > 0.19 Finally, I assume that sovereign risk evolves exogenously. In every

period the government is hit by a shock εd with a standard logistic distribution.

The government defaults on its outstanding debt if εd is sufficiently large. In

particular, d′ follows

d′ =

1 if ε′d − s ≥ 0

0 otherwise,

(1.19)

with s being a Gaussian AR(1) process

s′ = (1− ρs) log(s∗) + ρss+ σsεs. (1.20)

This formulation allows us to study how the endogenous variables respond to

variation in sovereign risk. In fact, the conditional probability of a sovereign de-

19This formulation guarantees that the government does not run a Ponzi scheme and that
its intertemporal budget constraint is satisfied in every state of nature. See Bohn (1995) and
Canzoneri et al. (2001).
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fault is pd(S) = es

1+es
: an increase in s is equivalent to an increase in the conditional

probability that the government defaults tomorrow.

1.2.2 Market Clearing

Letting f(.) be the density of net worth across bankers, we can express the market

clearing conditions as follows20

i) Credit market:
∫
aK(n; S)f(n)dn = K ′(S).

ii) Government bonds market:
∫
aB(n; S)f(n)dn = B′(S).

iii) Market for households’ savings:
∫
b′(n; S)f(n)dn = b′(S).

iv) Market for final goods: Y (S)(1− g) = C(S) + I(S).

1.2.3 Equilibrium Conditions and Numerical Solution

Since the non-stationary technology process induces a stochastic trend in several

endogenous variables, it is convenient to express the model in terms of detrended

variables. For a given variable x, I define its detrended version as x̃ = x
z
.21 The

state variables of the model are S = [K̃, B̃, P̃ ,∆z, g, s, d]. As I detail below,

the variable P̃ keeps track of aggregate bank net worth. The control variables

{C̃(S), R(S), α(S), QB(S)} solve the residual equations (1.2), (1.5) and (1.8) (the

last one for both assets).

20Note that we have anticipated earlier the market clearing condition for the labor market
and for the capital good market.

21The endogenous state variables of the model are detrended using the level of technology
last period.
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The endogenous state variables [K̃, B̃, P̃ ] evolve as follows

K̃ ′(S) =

{
(1− δ)K̃ + Φ

[
e∆z

(
Ỹ (S)(1− eg)− C̃(S)

K̃

)]
K̃

}
e−∆z, (1.21)

B̃′(S) =
[1− dD]{π + (1− π)[ι+QB(S)]}B̃e−∆z + Ỹ (S)

[
g −

(
t∗ + γτ

B
Ỹ (S)

)]
QB(S)

, (1.22)

P̃ ′(S) = R(S)[QK(S)K̃ ′(S) +QB(S)B̃′(S)− Ñ(S)]. (1.23)

The state variable P̃ measures the detrended cum interest promised payements of

bankers to households at the beginning of the period, and it is necessary to keep

track of the evolution of aggregate bankers’ net worth. Finally, the exogenous

state variables [∆z, log(g), s] follow, respectively, (1.13), (1.16) and (1.20), while

d follows

d′ =

1 with probability es

1+es

0 with probability 1− es

1+es
.

(1.24)

I use numerical methods to solve for the model decision rules. The algorithm

for the global numerical solution of the model relies on projection methods (Judd,

1992; Heer and Maussner, 2009). In particular, let x(S) be the function describing

the behavior of control variable x. I approximate x(S) using two sets of coefficients,

{γxd=0, γ
x
d=1}. The law of motion for x is then described by

x(d, S̃) = (1− d)γx0
′T(S̃) + dγx1

′T(S̃),

where S̃ = [K̃, B̃, P̃ ,∆z, g, s] is the vector of state variables that excludes d, and

T(.) is a vector collecting Chebyshev’s polynomials. The coefficients {γxd=0, γ
x
d=1}x
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are such that the residual equations are satisfied for a set of collocation points

(di, S̃i) ∈ {0, 1}× S̃. I choose S̃ and the set of polynomial T(.) using the Smolyak

collocation approach. Krueger and Kubler (2003) and Krueger et al. (2010) pro-

vides a detailed description of the methodology. When evaluating the residual

equations at the collocation points, I evaluate expectations by “precomputing in-

tegrals” as in Judd et al. (2011). Finally, I adopt Newton’s method to find the

coefficients {γxd=0, γ
x
d=1}x satisfying the residual equations. Appendix A.2 provides

a detailed description of the algorithm and discusses the accuracy of the numerical

solution.

1.3 Two Simple Examples Illustrating the Mech-

anisms

Before moving on to the empirical analysis it is useful to describe the mechanisms

that ties sovereign risk to the funding costs of firms and real economic activity. An

increase in the probability of a future sovereign default lowers capital accumulation

via two distinct channels. i) it tightens the leverage constraints of bankers, and

ii) it increases the required premia for holding firms’ claims.

I illustrate these propagation mechanisms using two stylized versions of the

model. We will see that a decline in current net worth tightens bankers’ lever-

age constraints (Section 1.3.1) and that bad news about future net worth leads

to an increase in risk premia over firms’ assets (Section 1.3.2). I then discuss

how sovereign risk interacts with these two mechanisms in the model described in

the previous section. Finally, Section 1.3.3 explains why disentangling these two

mechainisms provides important information for evaluating the effects of credit
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policies in the model.

1.3.1 A Decline in Current Net Worth

I consider a deterministic economy with full depreciation (δ = 0), no capital ad-

justment costs (ξ = 0) and no government. Moreover, I assume that the transfers

to newly born bankers equal a fraction ω of current output, N = ωY and that

bankers live only one period (ψ = 0).

As in the neoclassical model with full depreciation and log utility, the saving

rate is constant in this economy. Specializing equation (1.6) to this particular

parametrization, we obtain an expression for the multiplier on incentives con-

straints

µ =
λσ − ω
λσ

,

where σ is the saving rate. Using equation (1.8), we can solve for σ

σ = min

{
αβ + ω

1 + λ
, αβ

}
.

I assume that the leverage constraints are currently binding (λβα > ω), and I

analyze the implications of an unexpected transitory decline in the transfers to

bankers. More specifically, I assume that at time t = 1 the transfer to bankers

ω declines, then goes back to its previous level at t = 2, and no further changes

occur at future dates. Agents do not expect such a change, but are perfectly

informed about the path of the transfer from period t = 1 ownward and they make

rational choices based on this path. While analytical solutions for this example

can be easily derived, I illustrate the transition to steady state using a numerical
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example.22

Figure 1.1: A Decline in Current Net Worth
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Notes: The figure reports the transitional dynamics induced by a transitory and unexpected 5%
decline in net worth. The parametrization adopted is [α = 0.33, ν =∞, β = 0.995, λ = 0.44, ω =
0.10]. The right panels report variables expressed as percentage deviations from their steady
state.

The top left panel of Figure 1.1 plots the equilibrium in the credit market prior

to the decline in ω. The supply of funds is derived from the bankers’ optimization

problem: if the leverage constraints were not binding, bankers would be willing to

lend at the risk free rate R since this economy is non-stochastic. The supply of

funds to firms is inelastic at K ′ = α
λ
N , the point at which the leverage constraint

binds. The demand for credit is downward sloping and equal to the expected

marginal product of capital, αK ′α−1E[L′α]. Since the leverage constraint binds,

expected returns to capital equal R(1 + λµ).

The unanticipated decline in ω tightens the leverage constraint (α
λ
N∗ < α

λ
N),

and the inelastic part of the supply schedule shifts leftward. The right panels of the

figure describe adjustments for quantities and prices. The tightening of credit has

adverse effects on capital accumulation. Consumption increases because agency

22The qualitative behavior of this transition is robust across a wide range of parameter values.
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costs makes savings in banks less attractive. The risk free rate declines in order

to accommodate this rise in consumption. Aggregate hours falls because the low

returns to savings make working unattractive. The decline in hours leads to a

drop in output.

There are three important things to note about this example. First, consumption

and output move in opposite directions conditional on a tightening of the leverage

constraint of banks. This “comovement problem” arises frequently in neoclassical

settings, see Barro and King (1984) for a general formulation and Hall (2011) and

Bigio (2012) for specific analysis in models with financial frictions.23 One way to

restore comovement would be to allow the demand for labor to be directly affected

by the tightenss of bank leverage constraint. This could be done, for example, by

introducing working capital constraint as in Mendoza (2010) and using preferences

that mute the wealth effect on labor. While this extention is straightforward to

pursue in the current set up, I focus on a benchmark real model for comparability

with previous research. Second, variation in bank net worth is amplified in the

full model because of endogenous response in Tobin’s q. This occurs if there are

frictions in the production of capital goods, ξ > 0. Brunnermeier et al. (2013)

provide a detailed discussion of these amplification effects in models with finan-

cial frictions. Third, the tightening of the leverage constraint induces negative

comovement between bankers’ marginal value of wealth α = 1
1−µ , and realized re-

turn on holding capital. When the constraint tightens, the former increases while

the latter declines. This is intuitive: an additional unit of wealth for bankers is

more valuable when the constraints are tight because it allows them to arbitrage

away part of the difference between E[R′K ] and R. Moreover, the decline in credit

23See also Jaimovich and Rebelo (2009), ? and ? for a discussion of related comovement
problems in different environments.
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to firms leads to a reduction in output per unit of capital, which translates into

lower firms’ profits. As we will see in the subsequent analysis, this negative co-

movement between RK and α is the key mechanism that generates endogenous

risk in the model.

An increase in the probability of a future sovereign default in the model of

Section 3.3 triggers a decline in bank net worth and this may induce their leverage

constraints to bind. An increase in s, in fact, leads to a decline in the market value

of government bonds because investors anticipate a future haircut. Thus, current

realized returns on government bond holdings decline. From equation (1.17) we

can see that this effect is stronger the longer the maturity of bonds.24 Low realized

returns on bonds have a negative impact on bank net worth as we can see from

equation (1.10). The parameters governing the exposure of banks to government

bonds determine the quantitative importance of the elasticity of net worth to RB.

Thus, an increase in s can activate the process of Figure 1.1 through its adverse

effects on bank net worth. I will refer to this mechanism as the leverage-constraint

channel.

1.3.2 Bad News about Future Net Worth

Besides affecting the current net worth of financial intermediaries, sovereign credit

risk acts as a bad news regarding their future wealth. As I will show in this section,

this carries important consequences on the way banks discount risky assets. It is

helpful at this stage to derive an equilibrium relation describing the pricing of

assets in the economy of Section 3.3. From equation (1.8) and (1.5) we find that

24The parameter π also has an indirect effect on the elasticity of RB to the s-shock: when
the maturity is longer, bond prices are more elastic to the sovereign risk shock.
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expected returns to asset j equal

ES[Rj(S
′,S)] = R(S)

[
1 +

λµ(S)

α(S)[1− µ(S)]

]
− R(S)covS[Λ̂(S′,S), Rj(S

′,S)]

α(S)[1− µ(S)]
. (1.25)

Equation (1.25) defines the cross-section of assets’ returns. Expected returns to

capital typically carry a risk premium represented by covS[Λ̂(S′,S), RK(S′,S)]. In

the model, this component is sensitive to news about how tight bank leverage

constraints will be in the future.

This can be illustrated with a simple modification of the previous set-up. I now

allow ψ to be greater than 0.25 Moreover, I assume that there are two regimes in

the economy.

i) “Normal times”: transfers are fixed at their steady state, and bank leverage

constraints are not binding.

ii) “Financial crises”: bankers are hit by the transitory decline in transfers

described in the previous section.

I assume that the economy is currently in the normal time regime, and I denote

by p the probability that in the next period it switches to a financial crisis regime.

Once in a financial crisis, the economy experiences the temporary decline in ω

described in the previous section. I assume that p = 0 at t = 0. In period t = 1,

the economy experiences an unexpected increase in p to 0.1. In period t = 2, p

returns to 0 and no further changes are anticipated. The agents are surprised by

the initial increase in p, but they are aware of its future path from t = 1 onward,

and they make rational choices based on this path. Figure 1.2 describes how the

credit market and equilibrium quantities are affected by this increase in p.

25The decision problem of bankers is static when ψ = 0.
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Figure 1.2: Bad News about Future Net Worth
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Notes: The figure reports the transitional dynamics induced by a transitory and unexpected
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The increase in p shifts the elastic component of the credit supply schedule

upward because of a decline in cov(Λ̂′, R′k). The top right panels of the figure

explain where this change in the covariance originates. The first panel plots the

joint distribution for (Λ̂′, R′k) conditional on being in normal times when p = 0.

This is a point distribution: the pricing kernel equals β while realized returns to

capital are equal to β−1. When p increases to 0.1, banks assign a higher probability

of switching to the financial crises regime. As shown in the previous section,

realized returns to capital are low in this state while bankers’ marginal valuation

of wealth is high. Capital is therefore a “bad” asset to hold during a financial

crisis because it pays little precisely when bankers are most in need of wealth. For

this reason, it commands a risk premium in normal times, and these premia are

typically increasing in p.26

A sovereign default in the model of Section 3.3 resembles the financial crisis

26In this example this is true only when p < 0.5.
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regime discussed here: banks suffer large balance sheet losses because of the haircut

imposed by the government. Claims on firms pay off badly in this state because

of low firm profits and the decline in their market value. These low payouts are

highly discounted by banks because they are already facing large balance sheet

losses, and their marginal valuation of wealth is high. When the likelihood of this

event increases, banks have a precautionary incentive to deleverage because the

economy is approaching a state where firms’ claims are not particularly valuable,

and this deleveraging results in a decline in capital accumulation. I will refer to

this second mechanism through which sovereign credit risk propagates to the real

economy as the risk channel.

1.3.3 Policy Relevance

While these two propagation mechanisms have similar implications for quantities

and prices, they carry substantially different information. This can be seen by

comparing the credit markets in Figure 1.1 and Figure 1.2. In Figure 1.1, excess

returns over firms’ claims arise because the constraints on bank leverage prevent

profitable investment opportunities: if banks had an additional unit of wealth,

they would invest it in firms’ claims. In Figure 1.2, instead, excess returns reflect

fair compensation for increased risk: bank leverage constraint are not binding,

and there are no unexploited profitable opportunities.

This distinction has important implications for the evaluation of credit policies

in the model. For example, it is reasonable to expect that an injection of equity

to the banking sector may be more effective in stimulating banks’ lending when

these latter are facing tight constraints on their leverage, while their aggregate

implications may be muted when risk premia are high. We will see in Section
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1.5 that this intuition holds in the model. First though, I move to the empirical

analysis.

1.4 Empirical Analysis

The model is estimated using Italian quarterly data (1999:Q1-2011Q4). This sec-

tion proceeds in three steps. Section 1.4.1 describes the data used in estimation

and discusses how they help identifying the mechanisms of interest. Section 1.4.2

illustrates the estimation strategy. I place a prior on parameters and conduct

Bayesian inference. Because of the high computational costs involved in solving

the model repeatedly, I adopt a two-step procedure. In the first step, I estimate a

version of the model without sovereign default risk on the 1999:Q1-2009:Q4 sub-

sample. In the second step, I estimate the parameters for the {st} shock using

a time series for sovereign default probabilities for the Italian economy. Section

1.4.3 presents an assessment of model fit based on posterior predictive checks for

a set of sample moments computed from the data.

1.4.1 Data

As discussed in the previous section, the transmission of sovereign risk to the real

economy is the result of two key mechanisms. Their strength in the model is

governed by three “parameters”: i) the elasticity of government bond returns to

sovereign risk; ii) the elasticity of bank net worth to variation in realized returns

on government bonds; iii) the macroeconomic implications of tighter leverage con-

straints for banks. The selection of the data aims to making the model consistent

with three sets of facts that can empirically inform these aspects of the model.
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First, I ensure that the time-varying nature of sovereign risk in the model is re-

alistic. Indeed, the behavior of government bonds’ prices in response to sovereign

risk is partly determined by how persistent agents perceive these changes to be.

For this purpose, I use credit default swaps (CDS) spreads on Italian government

securities with a five-year maturity. This time series is available at daily frequen-

cies starting in January 2003 from Markit. See Appendix A.3.1 for further details.

Second, I measure the exposure of banks to this risk. I collect data on the

exposure of the five largest Italian banks to domestic government debt obtained

from the 2011 European Banking Authority stress test.27 As detailed in Appendix

A.3.2, these data include holdings of domestic government securities, loans to

central government and local authorities and other provisions, and these items

are classified in terms of their maturity. I match this information with the end of

2010 consolidated balance sheet data obtained from Bankscope. This allows me

to measure the size of the exposure of these five banks to the Italian government

in terms of their total assets.28

Third, I measure the cyclical behavior of the leverage constraint. The agency

frictions studied in this paper are fairly abstract at this level of aggregation and

they have poorly measured empirical counterparts. For this reason, I use the

model’s restrictions to relate the tightness of banks’ leverage constraint to a set

of observable variables. Result 2 in Appendix A.3.3 shows that the Lagrange

multiplier on the leverage constraint of banks can be expressed as a function of

financial leverage (levt) and of the spread between a risk free security (Rf
t ) that is

27The five banks are: Unicredit, Intesa-San Paolo, MPS, BPI and UBI. Their total assets at
the end of 2010 accounted for 82% of the total assets of domestic banking groups in Italy.

28These data do not correct for the possibility that banks insured part of this debt via CDS.
Acharya and Steffen (2013) impute the exposure of major banks to distressed sovereigns in the
euro-area, finding that insurance via CDS is likely to be small.
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traded only by bankers and the risk free rate (Rt)

µt =

[
Rft−Rt
Rt

]
levt

1 +
[
Rft−Rt
Rt

]
levt

. (1.26)

I use equation (1.26) to generate a time series for the multiplier µt. I measure

Rf
t with the prime rate on interbank loans (EURIBOR). This is the natural rate

to consider because we can interpret the model from Section 3.3 as having a

frictionless interbank market of the type considered in Gertler and Kiyotaki (2010).

The risk free rate Rt is matched with the yields on German government securities.

The leverage of financial intermediaries is measured using the Italian flow of funds.

Appendix A.3.3 describes in detail the steps involved in measuring µt. Figure 1.3

reports this time series along with GDP growth. Two main facts stand out from

a visual inspection of the figure. First, the Lagrange multiplier is countercyclical,

rising substantially in periods in which GDP growth is markedly below average.

Second, it is very close to 0 until 2007:Q2. Thus, the constraints seem to bind

only occasionally in our sample.

While these three sets of facts are important to identify the effects of inter-

est, they are not informative for all model parameters. Thus, I complement this

information with time series for the labor income share, the investment-output

ratio, the government spending-output ratio and hours worked. Appendix A.3.4

provides detailed definitions and data sources.
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Figure 1.3: Lagrange Multiplier on Leverage Constraint and GDP
Growth: 1999:Q1-2012:Q4
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Notes: The Lagrange multiplier on banks’ leverage constraint is the solid line (left axis). The
circled line is GDP growth (right axis). Appendix A.3 provides detailed information on data
sources.

1.4.2 Estimation Strategy

I denote by θ ∈ Θ the vector of model parameters. It is convenient to organize
the discussion around the following partition, θ = [θ1, θ2]

θ1 =

[
µbg , ψ, ξ, σz , ρz , γ, π, g

∗, ρg , σg , γt, ν, α,
ibg

ybg
, lbg , levbg , Rbg , expbg , qbgb , adj

bg

]
, θ2 = [D, s∗, ρs, σs].

Conceptually, we can think of θ1 as indexing a restricted version of the model

without sovereign risk, while θ2 collects the parameters determining the sovereign

default process. I have reparametrized [λ, ω, δ, χ, ι, τ ∗, a1, a2] with balanced growth

values for, respectively, the Lagrange multiplier on leverage constraints (µbg), the

leverage ratio (levbg), the investment-output ratio
(
ibg

ybg

)
, worked hours (lbg), the

price of government securities (qbgb ), the ratio of government securities held by

bankers to their total assets (expbg) and the size of capital adjustment costs (adjbg).

While a nonlinear analysis of the model is necessary to capture time variation
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in risk premia and the fact that leverage constraints bind only occasionally, it

complicates inference substantially since repeated numerical solutions of the model

are computationally costly. I therefore estimate θ using a two-step procedure. In

the first step, I infer θ1 by estimating the model without sovereign risk on the

1999:Q1-2009:Q4 subsample using Bayesian methods. This restricted version of

the model has fewer state variables and is easier to analyze numerically. Moreover,

focusing on this restricted model should not substantially alter the inference over

θ1 because i) the 1999:Q1-2009:Q4 period was characterized by low sovereign risk

for the Italian economy; and ii) the decision rules of the restricted model closely

approximate those of the full model in this area of the state space. In the second

step, I estimate θ2 using a retrieved time series of sovereign default probabilities.

Estimating the Model without Sovereign Risk

The model without sovereign risk has five state variables St = [K̂t, P̂t, B̂t,∆zt, gt].

The parameters are

θ1 =

µbg, ψ, ξ, σz, ρz, γ︸ ︷︷ ︸
θ̃1

, π, g∗, ρg, σg, γt, ν, α,
ibg

ybg
, lbg, levbg, Rbg, expbg, qbgb , adj

bg︸ ︷︷ ︸
θ∗1

 .
I construct the likelihood function of the model using time series for GDP growth

and the Lagrange multiplier on banks’ leverage constraint described earlier. As ex-

plained in the earlier section, the cyclical behavior of the model’s financial friction

is key to assess the impact of sovereign risk on the real economy: a likelihood-

based approach guarantees a high degree of consistency between the model implied

behavior for these variables and their data counterparts.

This choice has limitations. First, I am discarding potentially important infor-
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mation as one could incorporate the components of the multiplier into the likeli-

hood function: the risk free rate, the interbank rate and the leverage of banks. I

verified though that the model is too restrictive to track the time series behavior

of financial leverage in the earlier part of the sample, because structural shocks

do not generate enough variation in asset prices when leverage constraints are

far from binding.29 Second, certain model parameters are only weakly affected

by the information in the likelihood and their identification is problematic. For

this reason, and prior to conduct full information inference, I determine a subset

of θ1, θ∗1, prior to the estimation using external information. Table 1.1 reports

the numerical values for these parameters. I set [ i
bg

ybg
, levbg, lbg, Rbg] to the sample

average of their empirical counterparts while α is determined using the sample

average of the labor income share. I use the information in Table A.1 in Appendix

A.3.2 to determine [expbg, π]: holdings of government securities account for 8%

of banks’ total assets in the model, and the average maturity of those bonds is

set to 23 months. I select [g∗, ρg, σg] from the estimation of an AR(1) on the

spending-output ratio over the 1999:Q1-2011:Q4 period. The remaining parame-

ters in θ∗ are determined through normalizations or previous research. I set the

Frisch elasticity of labor supply to 2 and γτ to 0.5. The former is in the high range

of the estimates obtained using U.S. data (Rios-Rull et al., 2012a), but it is not an

uncommon value in the profession for the analysis of Real Business Cycle models.

Since taxes are non-distortionary in the model, γτ has little implications for the

model’s endogenous variables other than debt. I set adjustment costs to zero in a

balanced growth path while I normalize qbgb to 1 (bonds trade at par in a balanced

growth path).

29This aspect is related to one shortcoming of pure neoclassical models, namely their inability
to generate volatility in asset prices. See for example Bocola and Gornemann (2013) for a
discussion.
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Table 1.1: Parameters Determined with External Information

Parameters Source
ibg

ybg
levbg lbg Rbg α OECD, EU-KLEMS,

0.25 4.34 0.30 1.0034 0.30 ECB, BoI

expbg π EBA,
0.079 0.044 Bankscope

eg
∗

ρg σg OECD
0.22 0.92 0.010

qbgb adjbg ν γτ Normalizations,
1 0 2 0.5 Previous Research

Notes: See Appendix A.3 for information on data sources.

I next turn to the estimation of θ̃1 = [µbg, ψ, ξ, γ, ρz, σz]. Let Yt = [GDP Growtht, µt]
′,

and let Yt = [Y1, . . . ,Yt]
′. The model defines the nonlinear state space system

Yt = fθ̃1(St) + ηt ηt ∼ N (0,Σ)

St = gθ̃1(St−1, εt) εt ∼ N (0, I),

where ηt is a vector of measurement errors and εt are the structural shocks.30

Measurement errors, absent from the structural model, are included to help the

evaluation of the likelihood function. I approximate the likelihood function of this

nonlinear state space model using sequential importance sampling (Fernández-

Villaverde and Rubio-Ramı́rez, 2007a).31 The posterior distribution of model pa-

rameters is

p(θ̃1|YT ) =
L(θ̃1|YT )p(θ̃1)

p(YT )
,

30The functions gθ̃1(.) and fθ̃1(.) are approximated following the steps described in Appendix
A.2 for a version of the model that does not feature sovereign credit risk. Since θ∗1 is fixed, I
omit from the notation the dependence of decision rules on these parameters.

31I use the auxiliary particle filter of Pitt and Shephard (1999) which, in this application,
substantially improves the efficiency of the likelihood evaluation. See Aruoba and Schorfheide
(2013a) for a recent application to economics. I consider a diagonal matrix Σ where the nonzero
elements are equal to 25% of the sample variance of {Yt}. Appendix A.4 provides a description
of the evaluation of the model’s likelihood function.
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where p(θ̃1) is the prior, L(θ̃1|YT ) the likelihood function and p(YT ) the marginal

data density. I characterize the posterior density of θ̃1 using the Random Walk

Metropolis Hastings for DSGE models developed in Schorfheide (2000a) with an

adaptive variance-covariance matrix for the proposal density. Appendix A.4 pro-

vides a description of the estimation algorithm. Table 1.2 reports the prior along

with posterior statistics for θ̃1.

Table 1.2: Prior and Posterior Distribution of θ̃1

Parameter Prior Para 1 Para 2 Posterior Mean 90% Credible Set

µbg × 100 Uniform 0 ∞ 0.18 [0.13,0.21]
ψ Uniform 0 1 0.97 [0.95,0.98]
ξ Beta 0.5 0.25 0.42 [0.35,0.50]

γ × 400 Normal 1.25 0.5 0.36 [0.06,0.75]
ρz Beta 0.3 0.25 0.08 [0.04,0.14]

σz × 100 Inverse Gamma 0.75 2 0.94 [0.84,1.06]
Notes: Para 1 and Para 2 list the mean and standard deviation for Beta and Normal distribution; and s and

ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. The prior on γ is truncated at

0. Posterior statistics are computed using 10000 draws from the posterior distribution of model’s parameters.

The table reports equal tail probability 90% credible sets.

The prior on the TFP process is centered using presample evidence while I center

ξ to 0.5, a conventional value in the literature. Priors on these three parameters

are fairly diffuse. I choose uniform priors over µbg and ψ, implying that the shape

of the posterior is determined by the shape of the likelihood. Regarding posterior

estimates, the multiplier is estimated to be close to 0 in a deterministic balanced

growth path while ψ is close to unity. This suggests that agency costs are fairly

small on average in the model. This is not surprising given the time series behavior

of µt in Figure 1.3.32 Capital adjustment costs and the TFP process are in the

range of what is typically obtained in the literature when using U.S. data.

32One way of assessing the size of financial friction in the model is to ask how large the
distortion is that they generate on returns to capital. The posterior mean of µbg tells us that
this distortion is approximately equal to 18 basis points in a balanced growth path of the model.
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Estimating Sovereign Risk

I next turn to the estimation of θ2 = [D, s∗, ρs, σs]. The empirical strategy consists

of i) constructing a time series for the probabilities of a sovereign default and ii)

using this time series to estimate θ2.

I accomplish the first task by exploiting the model’s pricing equation. In fact,

using equation (1.8) and equation (1.5), we can define the the risk neutral measure

as:33

p̂(S′|S) =
Rf (S)p(S′|S)Λ̂(S′,S)

α(S)[1− µ(S)] + λµ(S)
.

After integrating the above expression over states S′ associated with a sovereign

default next period, I obtain an expression for the actual probability of a sovereign

default, pdt . This time series is related to its risk neutral counterpart, p̂dt , as follows

pdt = p̂dt
αt(1− µt) + λµt

Rf
t Et[Λ̂t+1|dt+1 = 1]

. (1.27)

Because of bankers’ risk aversion, there is a wedge between these two probabilities,

represented by the risk correction αt(1−µt)+λµt
Rft Et[Λ̂t+1|dt+1=1]

. Equation (1.27) is important

because it allows us to measure actual probabilities of sovereign default using

empirical counterparts to risk neutral probabilities and the risk correction.

First, I obtain a time series for {p̂dt } using CDS spread on Italian government

securities, up to a normalization of the haircut parameter D. I fix D to 0.45,

consistent with the historical experience on recent sovereign defaults in emerging

economies (Cruces and Trebesh, 2013).34 While Pan and Singleton (2008) show

33Note that p̂(S′|S) is nonnegative and it integrates to 1. To see the last property, note that

the return on a risk free security traded by bankers can be written as Rf (S) = α(S)[1−µ(S)]+λµ(S)

ES[Λ̂(S′,S)]

using equation (1.8) and equation (1.5).
34Zettelmeyer et al. (2013) document a larger haircut (on average between 59% and 65%)

in the Greek debt restructuring event of 2012. A value of D equal to 0.45 is conservative, and

39



that D could be estimated using information from the term structure of sovereign

CDS spreads, their Monte Carlo analysis suggests that this parameter is typically

poorly identified in small samples.

Second, I construct a time series for Et[Λ̂t+1|dt+1 = 1], the conditional expecta-

tion of the pricing kernel in the event of a sovereign default. This is a difficult task

because of the absence of a sovereign default in the sample. I indirectly use the

model’s restrictions to conduct this extrapolation. In particular, I approximate

the object of interest as follows

Et[Λ̂t+1|dt+1 = 1] ≈ Et[Λ̂t+1] + κVart[Λ̂t+1]
1
2 , (1.28)

where κ > 0 is a hyperparameter. The idea underlying equation (D.10) is that

the pricing kernel in the model is above its unconditional average in the event of

a sovereign default because of banks’ implicit risk aversion: κ parametrizes the

number of standard deviations by which Et[Λ̂t+1|dt+1 = 1] is above Et[Λ̂t+1].

The terms {Et[Λ̂t+1],Vart[Λ̂t+1]
1
2} are generated using an empirical counterpart

to the model’s pricing kernel defined in equation (1.9). The pricing kernel, in turn,

is a function of observables and model parameters estimated in the first step

Λ̂t = βe−∆ log(ct)[(1− ψ) + ψλlevt], (1.29)

where ∆ct is consumption growth and levt is financial leverage. I use equation

(1.29), the posterior mean for [β, ψ, λ] and a time series for the conditional forecasts

of [∆ct+1, levt+1] generated by a first order Bayesian Vector Autoregressive model

to construct {Et[Λ̂t+1],Vart[Λ̂t+1]
1
2}. I then select the hyperparameter κ with the

corrects for potential transfers that the government may give to its domestic bondholders.
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help of the structural model. I consider a set of values κi ∈ {1, 3, 5} and select the

value that minimizes, in model simulated data, average root mean square errors

for the approximation of Et[Λ̂t+1|dt+1 = 1]. This gives a value of κ = 3.

Third, I combine the retrieved time series for {Et[Λ̂t+1|dt+1 = 1]} with obser-

vations on banks’ financial leverage, the multiplier and the prime interbank rate

to generate the risk correction αt(1−µt)+λµt
Rft Et[Λ̂t+1|dt+1=1]

. I make use of the fact that the

marginal value of wealth for bankers is proportional to financial leverage when the

constraint binds, and measure the risk correction as follows:

λlevt(1− µt) + λµt

Rf
t {Et[Λ̂t+1] + κVart[Λ̂t+1]

1
2}
. (1.30)

Figure 1.4: Sovereign Default Probabilities
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Notes: The top left panel reports risk neutral probabilities of a sovereign default. The bottom
right panel reports the risk correction, defined in equation (1.30). The right panel reports actual
probabilities of a sovereign default, defined in equation (1.27).

Figure 1.4 plots {pdt } along with its decomposition of equation (1.27) for the

different values of κ. The top left panel reports the risk neutral probabilities, the

bottom-left panel plots the risk correction and the right panel reports the time

series for actual sovereign default probabilities. The estimates imply that roughly
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30% of actual sovereign default probabilities in the sample is due to risk premia,

consistent with the empirical evidence reported in Longstaff et al. (2011) for a

group of developing countries.

I then use {pdt } to estimate the parameters of the sovereign risk shock st. Indeed,

the two are related in the model as follows

log

(
pdt

1− pdt

)
= st, st = (1− ρs)s∗ + ρsst−1 + σsεs,t, (1.31)

where εs,t is a standard normal random variable. I use the Kalman filter to evaluate

the likelihood function of this linear state space model. Table 1.3 reports prior

and posterior statistics for [s∗, ρs, σs]. As I do not have presample information,

I consider fairly uninformative priors. Posterior statistics are computed from a

canonical Random Walk Metropolis Hastings algorithm.

Table 1.3: Prior and Posterior Distribution of [s∗, ρs, σs]

Parameter Prior Para 1 Para 2 Posterior Mean 90% Credible Set

s∗ Normal -7 5 -6.17 [-8.88,-3.35]
ρs Beta 0.5 0.3 0.95 [0.87,0.98]
σs Inverse Gamma 0.75 4 0.55 [0.44,0.70]

Notes: Para 1 and Para 2 liststhe mean and standard deviation for Beta and Normal distribution; and s

and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

. Posterior statistics are

computed using 10000 draws from the posterior distribution of model’s parameters. The table reports equal

tail probability 90% credible sets.

1.4.3 Model Fit

In order to determine if the estimated model fits the time series described in the

previous section, I verify whether model simulated trajectories for the multiplier,

GDP growth and sovereign default probabilities resemble those observed in the
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data. This is accomplished through posterior predictive checks.35 I generate model

implied densities for sample statistics and check how they compare with the same

statistics computed from actual data.

First, I examine the performance of the model regarding GDP growth and the

multiplier. I summarize their joint behavior using the following sample statistics:

mean, standard deviation, first order autocorrelation, skewness, kurtosis and their

correlation. These are collected in S. The model implied densities for S are

generated using the following algorithm

Posterior Predictive Densities: Let θi denote the i’th draw from the poste-

rior density of the model’s parameter. For i = 1 to M

i) Conditional on θi simulate a realization for GDP growth and the multiplier

of length T=100.36 Let {Yi
t} denote this realization.

ii) Based on the simulated trajectories {Yi
t}, compute a set of sample statistics

S i. �

Given the draws {S i}, I use percentiles to describe the predictive density p(S(.)|YT ).

Figure 1.5 shows the 5th and 95th percentile of the model implied density (the box)

along with its median (the bar) and their sample counterpart (the dot).

The model generates trajectories for the multiplier and GDP growth whose mo-

ments are in line with those observed in the data. The main discrepancy with the

data is in the excess kurtosis for the GDP growth trajectory: the model is too

restrictive to replicate this feature of the data. In addition, the model captures

35See Geweke (2005a) for a general discussion of predictive checks in Bayesian analysis and
Aruoba et al. (2013) for a recent application to the evaluation of estimated nonlinear Dynamic
Stochastic General Equilibrium models.

36These simulations are generated from the restricted model (no sovereign risk). Simulations
are initialized at the ergodic mean of the state vector.

43



Figure 1.5: Posterior Predictive Checks: Multiplier and GDP Growth
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Notes: Dots correspond to the value of the statistic computed from actual data. Solid horizontal
lines indicate medians of posterior predictive distribution for the sample statistic and, the boxes
indicate the equal tail 90% credible set associated with the posterior predictive distribution.

part of the left skewness of GDP growth. This derives from two properties: the

amplification of the leverage constraint and the fact that it binds in recessions.

In fact, GDP growth is more sensitive to structural shocks when the leverage

constraint binds. Since these constraints are only occasionally binding, this am-

plification generates asymmetry in the unconditional distribution for GDP growth.

Left skewness is then the result of GDP growth and the multiplier being negatively

correlated. Guerrieri and Iacoviello (2013) discuss the asymmetry generated by

occasionally binding credit constraints in a model of housing.

Second, I ask whether the behavior of sovereign default probabilities in the model

is in line with what was observed in the data. The posterior predictive checks are

reported in Table 1.4. We can verify that the specification adopted to model time-

variation in sovereign risk captures key features of the empirical distribution of

sovereign default probabilities.

Overall, the results in this section suggest that: i) the cyclical behavior of the
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Table 1.4: Posterior Predictive Checks: Sovereign Default Probabilities

Statistic Data Posterior Median 90% Credible Set

Median 0.07 0.25 [0.01,6.81]
Mean 0.53 0.53 [0.03,11.7]

Standard Deviation 0.76 0.63 [0.03,13.5]
Autocorrelation 0.91 0.83 [0.69,0.94]

Skewness 2.03 2.04 [0.96,3.78]
Kurtosis 7.37 7.23 [3.04,20.1]

Notes: Based on 1000 draws from the posterior distribution of [s∗, ρs, σs]. For each draw,

I simulate the {st} process for 100 periods. Statistics are computed on each of these 1000

samples. The table reports the posterior median and equal tail probability 90% credible set

for the posterior predictive distributions.

leverage constraint in the estimated model is empirically reasonable; and that ii)

agents in the model have beliefs about the time-varying nature of sovereign credit

risk that closely track what was observed in the data.

1.5 Model Analysis

This section analyzes some properties of the estimated model that are important

for the interpretation of the main experiments of this paper, which will be pre-

sented in Section 1.6. There are three key points that emerge from this analysis:

i) A sovereign default leads to a deep decline in real economic activity. This

occurs because the haircut on government bonds tightens the leverage con-

straints of banks and triggers a decline in aggregate investment (Section

1.5.1).

ii) An increase in the probability of a sovereign default when the economy is

in the non-default state leads to an increase in expected excess returns.

This occurs through two mechanisms. First, sovereign credit risk tightens

45



the leverage constraint of banks (leverage-constraint channel). Second, it

increases the required premia that banks demand for holding firms’ assets

(risk channel). This increase in the financing premia of firms is associated

with a decline in capital accumulation and output (Section 1.5.2).

iii) The aggregate effects of equity injections into the banking sector are highly

state dependent, even if implemented at times of high financial stress.37

These interventions are more successful in stimulating real economic activity

in regions of the state space where leverage constraints are tight. Conversely,

these policies have substantially weaker effects when risk premia on firms’

assets are high (Section 1.5.3).

Since the aim of this section is purely illustrative, the model’s parameters are

fixed at their posterior mean.

1.5.1 A Sovereign Default

Figure 1.6 shows the behavior of key model’s variables around a typical sovereign

default. I apply event study techniques to the simulated time series and report

their average path around the default. The window covers 10 quarters before and

after the event.

At t = 0 the government imposes a haircut on bondholders. As a consequence,

bank net worth declines and the leverage constraint tightens, thus forcing them

to reduce their holdings of firms’ assets. This has adverse effects on aggregate

investment and output: at t = 0, they are respectively 25% and 2.9% below

their trend. From t = 1 onward, bank net worth recovers because excess returns

37Periods of high financial stress will be defined as periods during which expected excess
returns are above a threshold and output growth is below a threshold.
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Figure 1.6: A Sovereign Default
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are above average. This loosens the leverage constraint, and the economy slowly

returns to its balanced growth path.

It is important to stress two important facts about a sovereign default in the

model. First, the behavior of asset prices substantially amplifies this event (Kiy-

otaki and Moore, 1997; Mendoza, 2010). The tightening of the leverage constraint

forces banks to restrict lending to firms. The associated decline in capital demand

puts downward pressure on asset prices because of Tobin’s Q and further depresses

the net worth of banks. As we can see from the figure, the market value of firms

is 6% below trend at t = 0, while bank net worth is roughly twice the size of

the haircut imposed by the government. Second, as the bottom-right panel of the

figure shows, the marginal value of wealth for bankers is high during a sovereign

default.
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It is also interesting to note that a sovereign default is preceded by a deep slow-

down in real economic activity, which conforms with historical evidence on these

episodes, see Yeyati and Panizza (2011). This observation is typically rationalized

in the literature via a selection argument: equilibrium models of sovereign de-

faults predict that incentives for the government to renege on debt are high in bad

economic times, see Arellano (2008) and Mendoza and Yue (2012) for example.

In the model analyzed here, the “V” shape behavior of output around a default

event occurs purely because of anticipation effects: increases in the probability

of a future sovereign default are, in fact, recessionary. The next section explains

why.

1.5.2 An Increase in the Probability of a Future Sovereign

Default

From equation (1.25) we obtain a decomposition of expected excess returns to

capital into two pieces: the multiplier component and the covariance component.

Et[RK,t+1 −Rt]

Rt︸ ︷︷ ︸
EERt

=
λµt

αt[1− µt]︸ ︷︷ ︸
Multiplier componentt

− covt[Λ̂t+1, RK,t+1]

αt[1− µt]︸ ︷︷ ︸
Covariance componentt

. (1.32)

According to equation (1.32), expected excess returns can be high because of two

distinct sources. First, banks face tight leverage constraints and this restricts the

flow of funds to firms (Multiplier component). Second, banks require a premium

for lending to firm because this intermediation is risky (Covariance component).

Sovereign credit risk influences both of these components.

Figure 1.7 plots Impulse Response Functions (IRFs) to an s-shock when the
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Figure 1.7: IRFs to an s-shock: Expected Excess Returns
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economy is at the ergodic mean. The initial impulse in s is such that the probabil-

ity of a future sovereign default goes from 0.17% to 5%. This represents roughly a

6 standard deviations shock. The figure shows that this shock tightens the lever-

age constraint of banks. The price of government bonds declines by 18%, leading

to a reduction in their realized returns of roughly the same magnitude. The net

worth of banks declines by 15%. Because of this decline in net worth, the leverage

constraints of banks start binding, as the behavior of the multiplier shows. Ex-

pected excess returns increase by 200 basis points in annualized terms on impact,

140 of which are attributable to the multiplier component. Also the covariance

component respond to the s-shock: this risk channel explains 30% of the impact

increase in expected excess returns.

Figure 1.8 explains why firms’ are perceived to be riskier when a sovereign default

approaches. The figure reports the joint probability density function (contour

lines) for the next period pricing kernel and realized returns to capital. The
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Figure 1.8: The s-shock and Risk Premia
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that pdt = 0.05; ii) the other state variable are set at their ergodic mean.

left panel reports it when the state vector is at its ergodic mean. The right panel

reports the same object with the only exception that the probability of a sovereign

default next period equals 5%. We can see from the left panel of the figure a clear

negative association between realized returns to capital and the pricing kernel,

suggesting that the model generates a non-trivial compensation for risk at the

ergodic mean. As the economy approaches a sovereign default (right panel), these

variables become more negatively associated. This motivates an increase in the

compensation for holding claims on firms in their balance sheet. Intuitively, capital

is a “bad” asset to hold during a sovereign default because the decline in its market

value has adverse effects on bank net worth, and these balance sheet losses are

very costly since banks’ marginal value of wealth is high. This makes the s-shock

a priced risk factor for firms’ claims.
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The rise in expected excess returns after an s-shock is associated with a decline

in capital accumulation. Figure 1.9 reports the response of aggregate investment

and output to the s-shock. The increase in the probability of a sovereign default

leads to a decline in output and aggregate investment of, respectively, 1.5% and

12%. The mechanisms through which this happens are those described in Section

1.3.

Figure 1.9: IRFs to an s-shock: Quantities
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Notes: IRFs are computed via simulations on linearly detrended data initialized at the ergodic
mean of the state vector. The variables are expressed as percentage deviations from their ergodic
mean.

1.5.3 An Injection of Equity into the Banking Sector

The distinction between the two propagation mechanisms studied in this paper

is key for the assesment of credit policies. I illustrate this point by studying the

effects of an equity injection into the banking sector. This type of interventions

has been already studied in the literature, see for example Gertler and Kiyotaki

(2010) and He and Krishnamurthy (2012a). I assume that at t = 1 the government

transfers resources from households to banks using lump sum taxes. This policy
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is not anticipated by agents, and no further policy interventions are expected in

the future. The policy has the effect of changing the liability structure of banks,

raising their net worth relative to their debt.

To make the experiment realistic, I implement the policy when the economy is

in a “financial recession”. I define this as a state in which output growth is 1.5

standard deviations below average while expected excess returns are 1.5 standard

deviations above average. Qualitatively, the results do not depend on these cut-

offs. I denote by {S∗i }i a set of states variables that is consistent with this definition

of financial recession.38 For each element of {S∗i }i, I compute the expected path

for selected endogenous variables under the policy and without the intervention.

The policy effects are reported as percentage differences between these two paths.

In order to interpret the results, I define

δi =
−Covariance componenti

EERi

, (1.33)

where the Covariance component and EER are defined in equation (1.32). The

variable δi ∈ [0, 1] gives us an indication of how risky are firms in state S∗i . In

fact, when δi = 0, expected excess returns exclusively reflects agency costs while

δi = 1 means that they reflect fair compensation for risk. Figure 1.10 plots two

sets of results. The solid line reports policy responses conditioning on δi ≤ 0.25,

while the dotted line conditions on δi ≥ 0.75.

The figure shows that equity injections are particularly effective in stimulating

real economic activity when agency costs are large (δ ≤ 0.25). The policy re-

laxes bank leverage constraints and leads to an increase in capital accumulation.

38Operationally, this set is constructed by simulating time series of length T = 20000 from
the model and selecting {S∗i }i so that output growth and expected excess returns satisfy the
threshold restrictions.
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Figure 1.10: An Injection of Equity into the Banking Sector
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This effect is reinforced by general equilibrium forces since the increase in capital

demand pushes up the market value of firms, strenghtening the balance sheet of

banks and relaxing further their leverage constraint.

The same policy has substantially weaker effects in regions of the state space

where firms’ risk is high (δ ≥ 0.75). The red dotted line reports this case. We can

observe that the response of investment and output to the equity injection is 2.5

times smaller with respect to the previous case. Moreover, the general equilibrium

effects are substantially muted.

This state-dependence in the effects of equity injections has an intuitive expla-

nation. Expected excess returns in the model can be high because of two reasons:

tight leverage constraints (low δ-regions) and high risk premia (high δ-regions).
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Leverage constraints prevents banks from undertaking otherwise profitable in-

vestment opportunities. Therefore, policies that relax their constraints stimulate

investment because they facilitate the flow of funds from households to firms. A

large value of δ, instead, indicates that the high excess returns we observe are fair

compensation for risk: aggregate investment respond little to equity injections

since these latter have only indirect effects on this risk.39

1.6 Measurement and Policy Evaluation

I now turn to the two main quantitative experiments of this paper. In Section

1.6.1, I measure the effect of sovereign credit risk on the financing premia of

firms and output, and I assess the contribution of the leverage-constraint channel

and the risk channel. More specifically, I use the estimated model along with the

particle filter to generate trajectories for variables of interest under the assumption

that sovereign default probabilities in Italy were constrant over the sample. I

then study the difference between these counterfactual trajectories and the actual

trajectories in order to assess the impact of sovereign credit risk on the variables

of interest. Section 1.6.2 proposes a quantitative assessment of the Longer Term

Refinancing Operations (LTROs) implemented by the European Central Bank

(ECB) in the first quarter of 2012. As we saw in the earlier section, the effects of

policy interventions are state and size dependent due to the highly nonlinear nature

of the model. Therefore, an integral part of the policy evaluation is to specify the

“initial conditions”. I do so by estimating the state of the Italian economy in

39By strengthening bank net worth, the policy provides a buffer when a sovereign default hits
the economy. This dampens the effects of a sovereign default on realized returns to capital and
lowers risk premia ex-ante. The size of the equity injection is thus an important determinant of
the policy effects.
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2011:Q4 using the particle filter. The evaluation of LTROs is conducted from an

ex-ante perspective.

1.6.1 Sovereign Risk, Firms’ Borrowing Costs and Output

What were the effects of sovereign credit risk on the financing premia of firms and

on real economic activity in Italy? What was the relative strength of the leverage-

constraint channel and the risk channel in driving this propagation? In order to

answer these questions, I conduct a counterfactual experiment. First, I use the

particle filter to extract the historical sequence of shocks for the Italian economy.

Second, I feed the model with counterfactual trajectories for these shocks: these

are equivalent to the estimated ones, with the exception that the innovations to

st are set to 0 for the entire sample. I then compare the actual and counterfactual

path for a set of the model’s endogenous variables. Their difference reflects the

effects of sovereign risk on the variables of interest. More specifically, I use the

following algorithm

Counterfactual Experiment: Let θi denote the i’th draw from the posterior

distribution of the model’s parameter. For i = 1 to M

i) Conditional on θi, apply to {Yt = [GDP Growtht, µt, π
d
t ]}2011:Q4

t=2003:Q1 the par-

ticle filter and construct the densities {p(St|Yt, θ
i)}2011:Q4

t=2003:Q1.

ii) Sample N realizations of the state vector from {p(St|Yt, θ
i)}2011:Q4

t=2003:Q1.

iii) Feed into the model each of these realizations, n ∈ N , and generate a path

for a set of outcome variables, {xt(i, n)}t.

iv) For each realization n, replace the sovereign risk shock with its unconditional
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mean. Feed the model with this counterfactual realization of the state vector

and collect in {xct(i, n)}t the implied outcome variables of interest.

v) The effect of sovereign credit risk for the outcome variable x is measured as

xeff
t (i, n) = xt(i, n)− xct(i, n). �

Regarding the specifics of this experiment, I select the parameters’ draws by

subsampling, picking 1 of every 100. Thus, M = 100. In the filtering state, I set

measurement errors to 0.5% of the sample variance of {Yt}t and I use 500,000

particles. This implies that the filtered time series {Yt}t are essentially equivalent

to the actual data. I first analyze the effect of sovereign risk on the financing costs

of firms and on output. I then decompose these effects into the two transmission

mechanisms.

The left panel of Figure 1.11 reports the filtered and counterfactual trajectories

for GDP growth while the top-right panel reports the effects of sovereign risk

on expected excess returns. The rise in sovereign risk in Italy over the 2010:Q1-

2011:Q4 period led to an increase in the financing costs of firms and a decline in

output growth. The model predicts that expected excess returns increased by 50

basis points on average over this period, with a peak of 100 basis points in the

last quarter of 2011. GDP growth would have been on average 0.5422% higher

throughout the 2010-2011 period if sovereign default probabilities were fixed at

their unconditional mean.

The bottom-right panel of the figure reports the covariance component defined in

equation (1.32) as a fraction of expected excess returns. The model shows that the

risk channel played quantitatively a first order role in the propagation of sovereign

credit risk in Italy, and its relevance grew over time: at the end of 2011:Q4, the
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Figure 1.11: Sovereign Risk, Firms’ Borrowing Costs and Output
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series, and the dotted line reports the posterior mean of its counterfactual. The solid lines
in the right panels represent the posterior mean. The Dark and light shaded area represents,
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covariance component explains on average 47% of the effects of sovereign risk on

the financing premia of firms. Table 1.5 reports posterior statistics for variables

of interest.

Table 1.5: Sovereign Risk, Firms’ Borrowing Costs and Output: 2010:Q1-
2011:Q4

Statistic Posterior Mean 90% Credible Set

Cumulative Output Losses 4.7576 [2.0890,8.0290]
Average Expected Excess Returns 0.4768 [0.1633,1.0741]
Covariance Component 0.2619 [0.1940,0.5129]
Notes: Cumulative output losses: sum of GDP growth losses (difference between counterfactual and filtered

GDP growth) over the 2010:Q1-2011:Q4 period. Average expected excess returns: average difference be-

tween filtered and counterfactual expected excess return, expressed in annualized basis points. Covariance

component: fraction of expected excess returns explained by the covariance component.
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1.6.2 Longer Term Refinancing Operations

The ECB undertook several interventions in response to the euro-area sovereign

debt crisis. Some of these policies were explicitly targeted toward easing the

tensions in the market for bonds of distressed governments. The Security Markets

Program (SMP) and the Outright Monetary Transactions (OMTs) fall within this

category.40 Other interventions, instead, had the objective of loosening the funding

constraints of banks exposed to distressed government debt. The unconventional

LTROs launched by the ECB in December 2011 and February 2012 were the most

important in this class. Relative to canonical open market operations in Europe,41

these interventions featured a long maturity (36 months), a fixed-interest rate (1%)

and special rules for the collateral that could be used by banks. Moreover, the

two LTROs were the largest refinancing operations in the history of the ECB, as

more than 1 trillion euros were lent to banks through these interventions.

A full assessment of the policy is beyond the scope of this paper. LTROs, in

fact, are not sterilized and the real model considered here misses this aspect.

Moreover, the policy may have resulted in a reduction of sovereign credit risk, and

the analysis in this paper does not capture this effect either. However, we can use

the model to ask whether the provision of liquidity to banks, by itself, stimulated

lending. I model LTROs as a nonstationary version of the discount window lending

considered in Gertler and Kiyotaki (2010). The government gives banks the option

40In May 2010, the ECB started the SMP. Under the SMP, the ECB could intervene by
buying, on secondary markets, the securities that it normally accepts as collateral. This program
was extensively used for sustaining the price of government securities of southern European
countries. The program was replaced by OMTs in August 2012. This latter program had two
main differences compared with SMP: i) OMTs are ex-ante unlimited; ii) their approval is subject
to a conditionality program from the requiring country.

41Open market operations in the euro-area are conducted through refinancing operations.
These are similar to repurchase agreements: banks put acceptable collateral with the ECB and
receive cash loans. Prior to 2008, there were two major types of refinancing operations: main
refinancing operations (loans of a weekly maturity) and LTROs, with a three month maturity.
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at t = 1 of borrowing resources up to a threshold m. These resources are financed

through lump sum taxes. The loans have a fixed interest rate Rm. Banks repay

the loan (principal plus interest) at a future date T and no interests are payed

between t and T . Finally, the government has perfect monitoring of banks, so

that these liabilities do not count for their leverage constraint.42 Within the logic

of the model, this intervention has the effect of relaxing the leverage constraint

of banks, and it has a positive effect on their net worth. These two points are

explained in Appendix A.5, along with a description of the numerical algorithm

used to implement the policy.

The evaluation of LTROs is conducted using the following algorithm

Evaluating LTROs: Let θi denote the i’th draw from the posterior distribution

of the model’s parameter. For i = 1 to M

i) Conditional on θi, sample from p(S2011:Q4|YT , θi) N realizations of the state

vector.

ii) For each {Sn2011:Q4}n, simulate the model forward J times with and without

the policy intervention.

iii) For each outcome variable x, compute the difference between these two paths

xeff
t (i, n, j) = xltro

t (i, n, j)− xno ltro
t (i, n, j). Collect these paths in xeff

t (i, n, j).

�

The density p(St=2011:Q4|YT , θi) is computed using the particle filter. The vector

of variables {xeff
t (i, n, j)}t denotes the effect of the policy on variable x. The results

of this experiment can be interpreted as an ex-ante evaluation of the policy, since

42If that were not the case, the loans would perfectly crowd out households’ deposits by
construction: see Gertler and Kiyotaki (2010).
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I am conditioning on retrospective estimates for the state vector in the 2011:Q4

period. In order to make the experiment more realistic, I calibrate the policy to

the actual ECB intervention. I set Rm = 1.00, T = 12 and m = 0.1Ŷ ss.

Figure 1.12: Ex-Ante Assessment of LTROs
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Notes: The solid line in the left panel is the conditional mean forecasts of the GDP growth time
series from 2012:Q1 to 2014:Q4. The Dark and light shaded area represents, respectively, a 60%
and 90% equal tail probability credible sets. The right panels reports the predictive densities
for GDP growth with and without LTROs (box plots).

As a benchmark, I first discuss the forecasted path for GDP growth in absence

of the policy. The left panel of Figure 1.12 reports the posterior median of the

model’s forecast for GDP growth in absence of the policy along with its 60% and

90% credible set. The model predicts a “risky” recovery for GDP growth from the

2011:Q4 point of view. While on average GDP growth returns to its trend value

by 2013, we can see a long left tail in these forecasts, especially in the early part

of 2012. That is, the model indicates some probability that economic outcomes

substantially worsen in the absence of the policy.43

The right panel of Figure 1.12 shows how LTROs influence these forecasts. I

43The long left tail is induced by two factors: i) the asymmetries induced by the leverage
constraint; ii) the probability of a sovereign default.
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use box plots to describe the predictive densities p(GDP GrowthT+h|YT ) with

and without LTROs for h = {1, 6, 11}. The box stands for the interquartile

range, the line within the box is the median while the circle represents the mean.

The refinancing operations have a clear positive effect on GDP growth in the

first quarter of 2012. Indeed, the median forecast for GDP growth under the

policy is 0.5% while in its absence is 0.16%. More strikingly, the policy removes

most of the downside risk: the left tail of the predictive density for GDP growth

in 2012:Q1 almost disappears. This happens because the policy increases the

maturity of banks’ liabilities, which makes their balance sheet less sensitive to

adverse shocks. As time goes on and the repayment date approaches, though,

GDP growth forecasts under LTROs become fairly similar to those in absence

of this policy. At the scheduled repayment date, the predictive density for GDP

growth is actually more left-skewed relative to that obtained in absence of the

policy.

Figure 1.13 reports posterior statistics on the policy effects for the level of out-

put, expected excess returns and their decomposition into multiplier and covari-

ance components. The policy lowers expected excess returns on impact and most

of these effects are due to looser funding constraints of banks. The covariance

component is barely affected by refinancing operations at early stages because of

the reasons discussed in Section 1.5.3.

These initial positive effects are reversed over time. Starting from 2013:Q1, the

model places a probability of at least 20% on LTROs increasing the financing

costs of firms and reducing the level of output. This result, which may appear

paradoxical, is driven by the behavior of the model at the repayment stage. In

2014:Q4, banks need to repay the loans they took on and adverse net worth shocks

61



Figure 1.13: Effects of LTROs on Output and Expected Excess Returns
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Notes: The solid line reports the posterior mean of the expected policy effects on the time series
2012:Q1 to 2014:Q4. The Dark and light shaded area represents, respectively, a 60% and 90%
equal tail probability credible sets. Output is linearly detrended and expressed in percentages.
The other variables are expressesed in annualized basis points.

at that date are very costly for them. The anticipation of the repayment stage

makes banks more cautious ex-ante and leads them to demand higher compen-

sation for risk. This counteracts the initial positive effects of the policy. Under

certain circumstances, this second effect may dominate and lead to an increase

in expected excess returns and to a decline in output relative to the no-policy

benchmark. Overall, these results suggest that refinancing operations are fore-

casted to be quite ineffective in stimulating real economic activity if we condition

to empirically reasonable regions of the state space in 2011:Q4.

This result does not imply that refinancing operations are a bad policy instru-

ment. Rather, that their effects depend on the economic environment in which

they are implemented. In order to see this last point, I implement LTROs in a

different region of the state space, drawn from the density p(St=2008:Q3|YT , θi).

In contrast to the 2011:Q4 period, the model interprets the financial distress of

2008:Q3 as driven mainly by banks liquidity problems. Table 1.6 reports the ef-

62



fects of the policy on output and expected excess returns on impact and at the

repayment stage. Two main differences stand out compared to the previous anal-

ysis. First, the policy has a substantially stronger effect on the financing premia

of firms and on output when implemented in 2008:Q3. Expected excess returns

decline on impact by 79 basis points while the level of output increases by 0.52%.

Second, the downside risk at the repayment stage is substantially reduced. This

can be seen by comparing the credible sets for output at the repayment stage for

the two cases.

Table 1.6: Effects of LTROs on Impact and at Repayment: 2008:Q3 vs.
2011:Q4

2008:Q3 2011:Q4

Statistic Impact Repayment Impact Repayment

Output 0.52 0.01 0.34 -0.01
[0.29,0.73] [-0.24,0.15] [0.11,0.56] [-0.86,0.12]

Expected Excess Returns -0.79 -0.01 -0.35 0.11
[-1.30,-0.26] [-0.39,0.25] [-0.71,-0.01] [-0.2054,2.14]

Notes: Posterior statistics on the effects of LTROs on output and expected excess returns on impact

(period 1) and at the repayment stage (period 12). The first two columns initialize the state vector

at p(St=2008:Q3|YT , θi). The last two columns initialize the vector at p(St=2011:Q4|YT , θi).

The reasons underlying this state dependence are related to the discussion of

equity injections in Section 1.5.3. In 2008:Q3, agency costs are estimated to be

high. This indicates that there are profitable investment opportunities in the

economy and banks use the funds from the LTROs to lend to firms. General

equilibrium, then, generates a positive loop: the market value of firms’ claims is

positively influenced by higher demand for capital, and this strengthens bank net

worth. As a result, banks arrive at the repayment stage with a buffer that makes

their balance sheet less sensitive to adverse shocks. These general equilibrium

effects are, instead, muted when implementing the policy in 2011:Q4.
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1.7 Conclusion

In this paper I have conducted a quantitative analysis of the transmission of

sovereign credit risk to the borrowing costs of firms and real economic activity. I

studied a model where banks are exposed to risky government debt and they are

the main source of finance for firms. An increase in the probability of a sovereign

default has negative effects on credit markets through two channels. First, by re-

ducing the market value of government securities, higher sovereign risk reduces the

net worth of banks and hampers their funding ability: their increased financing

costs pass-through into the borrowing rates of firms (leverage-constraint channel).

Second, an increase in the probability of a sovereign default raises the risks associ-

ated with lending to firms: if the default occurs in the future, in fact, claims on the

productive sector will pay out little and banks will have to absorb these losses. I

referred to this second mechanisms as the risk channel. The structural estimation

of the model on Italian data suggests that the sovereign debt crisis significantly

increased the financing premia of firms, with the risk channel explaining up to

47% of these effects. Moreover, the rise in the probability of a sovereign default

had severe adverse consequences for the Italian economy: cumulative output losses

were 4.75% at the end of 2011. In counterfactual experiments, I use the estimated

model to evaluate the policy response adopted by the ECB, with particular em-

phasis on the LTROs of the first quarter of 2012. The model estimates that these

interventions have minor effects on lending and output. This happens because

risk premia, which were sizable when the policy was enacted, discourage banks’

lending to firms. More generally, the analysis shows that the stabilization proper-

ties of these interventions are state dependent in the model, and their aggregate

effects depend on the relative strength of the leverage-constraint channel and of
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the risk-channel.

There are a number of dimensions in which the model could be extended. The

most important is to allow sovereign default risk to respond to macroeconomic

conditions. This could be done in different ways, for example by introducing

distortionary taxation in the model and considering the optimal default policy

of a Ramsey government. Incorporating these aspects would allow for a more

complete evaluation of policy responses adopted by the ECB. A second extension

would be that of considering an open economy. I believe this dimension would

help the empirical identification of the mechanisms discussed in this paper, since

they are likely to generate differential implications for international capital flows.

While both of these issues are challenging, and require a substantial departure

from this framework, they represents exciting opportunities for future work.

Abstracting from the current application, recent research advocates the use of

indicators of credit spreads as observables when estimating quantitative models

with financial intermediation. This paper adds to that by underscoring the im-

portance of measuring the sources driving the movements in these indicators of

financial stress. Understanding whether firms’ financing premia during crises are

high because of “frictions” in financial markets or because of fair compensation for

increased risk is a key information for policy makers. Incorporating the nonlinear-

ities emphasized in this paper in larger scale models used for policy evaluation is

technically challenging. Moreover, given the policy relevance of these nonlineari-

ties, there is a need for developing tools for their empirical validation in the data.

I plan to address these issues in future work.
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Chapter 2

Assessing DSGE Model

Nonlinearities

2.1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are now widely used for

empirical research in macroeconomics, as well as for forecasting and quantita-

tive policy analysis in central banks. In these models, decision rules of economic

agents are derived from assumptions about agents’ preferences and production

technologies utilizing some fundamental principles such as optimization, rational

expectations, and competitive equilibrium. In practice, this means that the func-

tional forms and parameters of equations that describe the behavior of economic

agents are tightly restricted by the equilibrium conditions. Consequently, a care-

ful evaluation of the DSGE model-implied restrictions is an important aspect of

empirical research.

Until recently, much of the research that estimates DSGE models used first-order

approximations to the equilibrium decision rules. This made linear models such
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as vector autoregressions (VARs) appropriate for evaluating the restrictions of the

DSGE model. With the advance of the methods to estimate DSGE models using

higher-order approximations, as developed in Fernández-Villaverde and Rubio-

Ramı́rez (2007b), an important avenue of research has opened. The end of the

Great Moderation also makes nonlinear models all the more relevant for empirical

macroeconomics.1 While there is a burgeoning literature on both the methods to

solve nonlinear DSGE models and their applications, there does not seem to be

an obvious nonlinear time series model to use to evaluate these DSGE models.

The objective of this paper is to develop a class of time series models that mimic

nonlinearities of DSGE models and to use these models as a benchmark for the

evaluation of a nonlinear DSGE model. Motivated by the popular second-order

perturbation approximations of DSGE model dynamics, we consider autoregres-

sive models that involve quadratic terms of lagged endogenous variables as well

as interactions between current period innovations and lagged endogenous vari-

ables, which generate conditional heteroskedasticity. These time series models are

derived from a perturbation solution to a nonlinear difference equation and have

a recursively linear structure that makes it straightforward to characterize stabil-

ity properties and derive moments. While multivariate extensions are possible,

we focus in this paper on univariate specifications, that we refer to as QAR(p,q)

models, where “Q” stands for quadratic.2 In the empirical work, we use p = q = 1.

1There are in principle two types of nonlinearities that can appear in a nonlinear DSGE
model. First are (approximately) smooth nonlinearities, where decision rules display curvature
and possibly asymmetries such as those that are generated by asymmetric loss or cost functions.
Second are kinks in decision rules such as those that are generated by the zero lower bound on
nominal interest rates. This paper is about the former. While the latter is also crucial and we
intend to extend our work to address this type of nonlinearities, solving and estimating DSGE
models with kinks in decision rules is very difficult. See, for example, Gust et al. (2012), Aruoba
and Schorfheide (2013b), Bocola (2013), and references therein.

2The abbreviation QAR has previously been used for Quantile Autoregressions, see Koenker
and Xiao (2006).
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After documenting some of the theoretical properties of the QAR models, the

first step of the empirical analysis is to fit QAR(1,1) models to growth of real

gross domestic product (GDP), inflation, nominal wage growth, and interest rate

data for the U.S. We start our sample in 1960 but consider various subsamples,

using 1983 (the end of the Volcker era and the start of the Great Moderation)

and 2007 (the end of the Great Moderation and the start of the Great Recession)

as additional start and end points. We find three sets of important nonlinearities

across the variables and samples we consider. First, GDP growth displays pro-

nounced nonlinearities in the post-1983 samples with sharp output losses during

recessions are relatively slow recoveries. Second, for inflation and wage growth

the long samples that start in 1960 and extend beyond the 1990s exhibit high

volatility in times of high inflation and wage growth, which is mainly driven by

the observations in the 1970s. Finally, QAR estimates for interest rates imply an

asymmetric behavior by the Federal Reserve in the post-1983 era; interest rates

increase more gradually than they fall.

The second step of the empirical analysis consists of the estimation of a DSGE

model. In our application we focus on the estimation and evaluation of a New

Keynesian DSGE model with asymmetric price and wage adjustment costs, build-

ing on Kim and Ruge-Murcia (2009). This model can generate downward nominal

wage and price rigidity and is interesting for several reasons. First, it is well

known that in the absence of the zero-lower-bound (ZLB) constraint on nominal

interest rates, unrealistically large shocks or degrees of risk aversion, New Key-

nesian DSGE models do not generate significant nonlinearities (see, for instance,

An (2007)). However, once one allows for asymmetric adjustment costs, agents’

decision rules can become strongly nonlinear. Thus, ex ante, to the extent that
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there are nonlinearities in the data, the model may be able to deliver some of

these.

Second, downward rigidity is a well-documented feature of nominal wage changes

at the micro-level, e.g., Gottschalk (2005), Barattieri et al. (2010), and Daly et

al. (2012). Third, there are a number of papers that have incorporated downward

nominal wage rigidity into DSGE models to study its macroeconomic effects. For

instance, Kim and Ruge-Murcia (2009) study optimal monetary policy in the

presence of downward nominal wage rigidity. Schmitt-Grohe and Uribe (2013)

use downward nominal wage rigidity to generate large output losses and a jobless

recovery in a deflation (or liquidity-trap) equilibrium of a New Keynesian model

with ZLB constraint. Thus, a careful evaluation of the nonlinearities that this

mechanism generates is important.

In estimating the DSGE model, we use the same data set as in the estimation of

the univariate QAR models and consider two samples, one long and one short, both

of which end in 2007 to avoid using data where the ZLB starts to bind. By and

large, the parameter estimates for the DSGE models are consistent with estimates

that have been reported elsewhere in the literature. In particular, our estimates

indicate asymmetries in the adjustment costs for both prices and nominal wages

that make increases less costly than decreases.

The final, and most important step of the analysis is to conduct a posterior

predictive check of the DSGE model that compares coefficient estimates obtained

from data simulated from an estimated DSGE model to coefficient estimates ob-

tained from actual data. The predictive check amounts to assessing how far the

QAR estimates obtained from the actual data lie in the tails of the predictive dis-

tribution. The general conclusion is that the DSGE model does not generate very
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strong nonlinearities except for inflation and nominal wage growth, both of which

show conditional heteroskedasiticity. This means that the asymmetric adjustment

costs in prices and wages are able to deliver asymmetric behavior in inflation and

nominal wage growth in line with the data but this asymmetry does not spill over

neither to real GDP growth, nor to the policy instrument of the Federal Reserve.

Our work is related to several branches of the literature. There exists a large

body of work on nonlinear time series models.3 However, none of these model

classes seem to be directly useable for our purposes since either the nonlinear-

ities do not match the nonlinearities of DSGE models solved with higher-order

perturbation methods or the models have undesirable instability properties.

The proposed QAR family is most closely related to generalized autoregressions

(GAR) discussed in Mittnik (1990) in the sense that the conditional mean of the

dependent variable yt is a polynomial function of its lags. Our QAR models also

involve interactions between lagged dependent variables yt−j and innovations ut,

which is a defining property of bilinear models and linear autoregressive conditional

heteroskedasticity (LARCH) models, e.g., Giraitis et al. (2000). However, rather

than simply augmenting a linear autoregressive model by quadratic terms and

interactions between lagged endogenous variables and innovations, we derive its

structure from a second-order perturbation approximation to the solution of a

nonlinear difference equation along the lines of Holmes (1995). To the extent

that both conditional mean and variance depend on quadratic functions of the

innovations ut our model is also related to the class of (G)ARCH-M models, e.g.

Engle et al. (1987) and Grier and Perry (1996). Finally, the QAR model can

3These include regime switching models, e.g. Hamilton (1989) and Sims and Zha (2006),
time-varying coefficient models, e.g. Cogley and Sargent (2002) and Primiceri (2005), threshold
and smooth-transition autoregressive models, e.g. Tong and Lim (1980) and Teräsvirta (1994),
bilinear models, e.g. Granger and Andersen (1978) and Rao (1981).
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be viewed as a set of tight restrictions on the coefficients of a Volterra (1930)

representation of a nonlinear time series.

There exists an abundant literature that develops methods to evaluate DSGE

models based on comparisons with more flexible and densely parameterized time

series models. However, much of the existing econometric work is based on lin-

earized DSGE models. A natural benchmark for the evaluation of such models

is provided by vector autoregressions (VARs) that relax the cross-coefficient re-

strictions. In fact, there exists an extensive literature that develops and applies

methods to evaluate DSGE models based on comparisons with VARs, e.g., Cogley

and Nason (1994), Schorfheide (2000b), Christiano et al. (2005a), Del Negro et al.

(2007), and Fernández-Villaverde et al. (2007a).

In this paper we use so-called posterior predictive checks to evaluate a prototyp-

ical DSGE model. A general discussion of the role of predictive checks in Bayesian

analysis can be found in Lancaster (2004) and Geweke (2005b). Canova (1994)

is the first paper that uses predictive checks to assess implications of a DSGE

model. While Canova (1994)’s checks were based on the prior predictive distribu-

tion, we use posterior predictive checks in this paper as, for instance, in Chang et

al. (2007b). Finally, Abbritti and Fahr (2013) use a model with asymmetric wage

adjustment costs and search and matching frictions to investigate the ability of the

model to deliver nonlinearities, focusing on skewness and turning point statistics.

The remainder of the paper is organized as follows. In Section 2.2 we review

the structure of second-order perturbation approximations of DSGE models. The

QAR model is developed in Section 2.3. We discuss some of its theoretical prop-

erties as well as Bayesian inference. Estimates of the QAR model for U.S. data

are presented in Section 2.4. The DSGE model with asymmetric price and wage
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adjustment costs is introduced in Section 2.5. The estimation and evaluation of

the DSGE model is presented in Section 3.2. Finally, Section 4.5 concludes. An

online Appendix contains detailed derivations of the properties of the QAR model,

as well as details of the Markov chain Monte Carlo (MCMC) methods employed

in this paper.

2.2 DSGE Model Nonlinearities

Most estimated nonlinear DSGE models are solved with perturbation methods

because they can be efficiently applied to models with a large state space. A

DSGE model solved by second-order perturbation can be generically written as

ci,t = ψ1i(θ) + ψ2ij(θ)xj,t + ψ3ij(θ)zj,t

+ψ4ijk(θ)xj,txk,t + ψ5ijk(θ)xj,tzk,t + ψ6ijk(θ)zj,tzk,t

xi,t+1 = ζ1i(θ) + ζ2ij(θ)xj,t + ζ2ij(θ)zj,t (2.1)

+ζ4ijk(θ)xj,txk,t + ζ5ijk(θ)xj,tzk,t + ζ6ijk(θ)zj,tzk,t

zi,t+1 = ξ2ij(θ)zj,t + ξ3i(θ)εi,t+1,

where θ denotes the parameters of the model and the DSGE model variables are

grouped into control variables ci,t, e.g., consumption, endogenous state variables

xi,t, e.g., the capital stock, and exogenous state variables zi,t, e.g., total factor pro-

ductivity. The notation aijkxj,txk,t in (2.1) is shorthand for
∑n

j=1

∑n
k=1 aijkxj,txk,t.

Since not all of the control and state variables are observable it is common to aug-

ment the system by a measurement equation of the form

yi,t = A1i(θ) + A2ij(θ)cj,t + A3ij(θ)xj,t + A4ij(θ)zj,t + ei,t, (2.2)
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where the ei,t’s are measurement errors. Typically, the vector of observables yt is

composed of a subset of the state and control variables such that the A matrices

are simple selection matrices.

Nonlinear features may arise endogenously or exogenously. Curvature in util-

ity functions, adjustment cost function, and production functions can generate

nonlinear decision rules of households and firms endogenously. An example of an

exogenous nonlinearity is stochastic volatility in the exogenous shocks that gener-

ate business cycle fluctuations. In (2.1) the endogenous nonlinearity is captured

by the quadratic functions of xt and zt that appear in the law of motion of the

control variables ci,t and the endogenous state variables xi,t+1. The representation

assumes that there are no exogenous nonlinearities as the exogenous states xexoi,t

evolve according to a linear autoregressive process.

The objective of this paper is to propose an econometric method to assess the

empirical adequacy of the nonlinear terms in the DSGE model solution (2.1).

The DSGE model generates cross-coefficient restrictions between the first-order

terms and the higher-order terms which may or may not be correctly specified. In

principle, one could try to estimate two versions of the state-space model given

by (2.1) and (2.2): a restricted version that imposes the functional relationship

between the low-dimensional DSGE model parameter vector θ and the state-space

coefficients ψ(·), ζ(·), and ξ(·) and an unrestricted version in which the ψ’s, ζ’s, and

ξ’s are freely estimated. The discrepancy between the restricted and unrestricted

estimates provides a measure of empirical adequacy. However, due to the large

number of parameters and some inherent identification problems, the unrestricted

estimation of the state-space system (2.1) and (2.2) is difficult to implement. In

fact, even the literature that evaluates linearized DSGE models has by and large
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abstained from trying to estimate unrestricted state-space representations.

A more common approach in the literature on linearized DSGE models is to com-

pare properties of the DSGE model to properties of an unrestricted VAR. This

comparison can take many different forms, e.g., assessing the discrepancy between

unrestricted VAR coefficient estimates and the DSGE-model-implied VAR approx-

imation as in Smith (1993), or the comparison of VAR and DSGE model impulse

responses as in Cogley and Nason (1994) or Christiano et al. (2005a). Since our

goal is to identify nonlinearities, a linear VAR would not be of any use. Instead, we

compare parameter estimates of nonlinear autoregressive time series models ob-

tained from actual U.S. data and data simulated from a nonlinear DSGE model.

If the DSGE model is well specified, then the estimates of the auxiliary models

ought to be very similar. This comparison is formalized as a Bayesian posterior

predictive check. We proceed by providing a detailed description of the auxiliary

time series model that is used for the DSGE model evaluation.

2.3 Quadratic Autoregressive Models

The most popular (and empirically successful) nonlinear time series models are

those capturing time variation in the coefficients of linear time series models,

e.g., Markov-switching models, time-varying coefficient models, GARCH models,

stochastic volatility models. However, none of these models provide a good charac-

terization of the nonlinearity generated endogenously by the DSGE model solution

in (2.1). For this reason we develop a new class of nonlinear autoregressive time

series models that are more closely tied to the DSGE model solution in (2.1).

We introduce the specification of a first-order quadratic autoregressive (QAR)
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model in Section 2.3.1. We subsequently characterize some of its important prop-

erties in Section 2.3.2 and describe the implementation of posterior inference in

Section 2.3.3. Section 2.3.4 provides generalizations of the basic specification and

discusses the relationship of our QAR models to other nonlinear time series mod-

els.

2.3.1 Specification of the QAR(1,1) Model

The starting point is a perturbation approximation of the solution of a nonlinear

difference equation of the form

yt = f(yt−1, ωut), ut
iid∼ N(0, 1). (2.3)

We assume that the process characterized by (2.3) has a unique deterministic

steady state that solves the equation y∗ = f(y∗, 0). Following the literature on

perturbation methods, e.g. Holmes (1995) and Lombardo (2011), we construct an

approximate solution of the form

y∗t = y
(0)
t + ωy

(1)
t + ω2y

(2)
t . (2.4)

It turns out that this solution is second-order accurate in the sense that

yt = y∗t +Op(ω3) (2.5)

as ω −→ 0.

To obtain y∗t , we take a second-order Taylor expansion of the function f around
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yt = y∗ and ω = 0:

yt − y∗ = fy(yt−1 − y∗) + fuωut (2.6)

+
1

2
fy,y(yt−1 − y∗)2 + fy,u(yt−1 − y∗)ωut

+
1

2
fu,u(ωut)

2 + higher-order terms,

where fx,y denotes the (x, y)’th derivative of f evaluated at the point (yt = y∗, ω =

0). Substituting (2.4) into (2.6) and neglecting terms of order Op(ω3), one obtains:

y
(0)
t − y∗ + ωy

(1)
t + ω2y

(2)
t

= fy

(
y

(0)
t−1 − y∗ + ωy

(1)
t−1 + ω2y

(2)
t−1

)
+ fuωut

+
1

2
fy,y

(
y

(0)
t−1 − y∗ + ωy

(1)
t−1 + ω2y

(2)
t−1

)2

(2.7)

+
1

2
fy,u

(
y

(0)
t − y∗ + ωy

(1)
t−1 + ω2y

(1)
t−1

)
ωut +

1

2
fu,uω

2u2
t +Op(ω3).

We set y
(0)
t = y

(0)
t−1 = y∗ and then match terms of the same ω-order on the left-

hand-side and the right-hand-side of (2.7) to obtain the laws of motion for y
(1)
t

and y
(2)
t :

y
(1)
t = fyy

(1)
t−1 + fuut,

y
(2)
t = fyy

(2)
t−1 +

1

2
fy,y

(
y

(1)
t−1

)2

+
1

2
fy,uy

(1)
t−1ut +

1

2
fu,uu

2
t .

Notice that y
(1)
t follows an AR(1) process and that conditional on y

(1)
t the dynam-

ics of y
(2)
t are also linear. Substituting the expressions for y

(1)
t and y

(2)
t into (2.4)

and collecting terms, we obtain that a second-order accurate perturbation approx-
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imation of the nonlinear difference equation (2.3) is given by the system:

yt = y∗ + fy(yt−1 − y∗) +
1

2
fy,y

(
ωy

(1)
t−1

)2

+

(
fu +

1

2
fy,uy

(1)
t−1

)
ωut +

1

2
fu,uω

2u2
t

y
(1)
t = fyy

(1)
t−1 + fuut (2.8)

We undertake a few additional modifications. We define st ≡ ωy
(1)
t and introduce

the parameters

φ0 = y∗, φ1 = fy, φ̃2 =
1

2
fy,y, γ̃ =

1

2ω
fy,u, σ = fuω.

Moreover, we drop the term 1
2
fu,uu

2
t to obtain a conditional Normal distribution

of yt. Overall, this leads to the nonlinear state-space model:

yt = φ0 + φ1(yt−1 − φ0) + φ̃2s̃
2
t−1 + (1 + γ̃s̃t−1)σut (2.9)

s̃t = φ1s̃t−1 + σut, ut
iid∼ N(0, 1).

To complete the specification of the time series model we assume that the distri-

bution of the initial values in period t = −T∗ have distribution F−T∗ , and that the

innovations ut are normally distributed:

(y−T∗ , s̃−T∗) ∼ F−T∗ , ut
iid∼ N(0, 1). (2.10)

We refer to (2.9) as the QAR(1,1) model. The first “1” indicates the number of

lags in the conditional mean function and the second “1” denotes how many lags

interact with the innovation ut.

It is convenient to reparameterize the QAR(1,1) model as follows. Define φ2, γ,
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and st such that

φ2 = φ̃2
σ2

1− φ2
1

, γ =
σ√

1− φ2
1

γ̃, and st =

√
1− φ2

1

σ
s̃t. (2.11)

Under the reparameterization the coefficients φ2 and γ interact with standardized

versions of s2
t−1 and st−1, respectively. Thus, (2.9) becomes

yt = φ0 + φ1(yt−1 − φ0) + φ2s
2
t−1 + (1 + γst−1)σut (2.12)

st = φ1st−1 +
√

1− φ2
1ut, ut

iid∼ N(0, 1).

2.3.2 Important Properties of the QAR(1,1) Model

In order to appreciate two of the important implications of the recursively linear

structure of the QAR(1,1) model given by (2.12) consider the alternative speci-

fication (omitting the constant term and the volatility dynamics) yt = φ1yt−1 +

φ2y
2
t−1 + ut, 0 < φ1 < 1 and φ2 > 0. It is straightforward to verify that this

specification has two steady states, namely, y
(1)
∗ = 0 and y

(2)
∗ = (1− φ1)/φ2. The

second steady state arises as an artefact of the quadratic representation even if

the underlying nonlinear model (2.3) only has a single steady state. Moreover,

from writing ∆yt = (−1 + φ1 + φ2yt−1)yt−1 + ut notice that the system becomes

explosive if a large shock has pushed yt−1 above y
(2)
∗ . This explosiveness can arise

regardless of the value of φ1.

The multiplicity of steady states and the undesirable explosive dynamics have

been pointed out in the context of second-order perturbation solutions of DSGE

models by Kim et al. (2008) who proposed an ex-post modification of quadratic

autoregressive equations to ensure that unwanted higher-order terms do not propa-
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gate forward and generate explosive behavior not present in the underlying nonlin-

ear model. This modification is called pruning in the literature.4 Our derivation of

the QAR model in Section 2.3.1 automatically generates a recursively linear struc-

ture with a unique steady state and non-explosive dynamics for suitably restricted

values of φ1. If the marginal distribution of s−T∗ is N(0, 1), then the process st,

t ≥ −T∗, is strictly stationary under the restriction |φ1| < 1. In turn, the vector

process zt = [st−1, s
2
t−1, ut]

′ is strictly stationary and we can rewrite the law of

motion of yt in (2.9) as

yt = φ0 + φ1(yt−1 − φ0) + g(zt) = φ0 +
∞∑
j=0

φj1g(zt−j). (2.13)

This representation highlights that yt is a stationary process. Since g(zt) is a

nonlinear function of ut and its history, the process is, however, not linear in ut

anymore. In fact, under the assumption that yt was initialized in the infinite past

(T∗ −→ −∞), we obtain the following representation:

yt = φ0+σ
∞∑
j=0

φj1ut−j+σ
∞∑
j=0

∞∑
l=0

γ̃I{l > j}φl−j1 + φ̃2

min {j,l}∑
k=0

φj+l−k1

ut−jut−l. (2.14)

(2.14) is a discrete-time Volterra series expansion, in which the Volterra kernels

of order one and two are tightly restricted and the kernels of order larger than two

are equal zero.5 The recursively linear structure also facilitates the computation

of higher-order moments of yt. Further details are provided in the appendix.

4 Lombardo (2011) constructs a pruned perturbation solution of a DSGE model directly
rather than by ex-post adjustment. Lan and Meyer-Gohde (2013) solve DSGE models by con-
structing approximate second-order Volterra series expansions for the model variables, which
also eliminates unwanted higher-order terms. Andreasen et al. (2013) derive the moments of
observables from a general state-space representation for pruned DSGE models to facilitate
moment-based estimation.

5 The infinite sequences of coefficients on terms {ut−j}j≥0, {ut−jut−l}j≥0,l≥0,
{ut−jut−lut−k}j≥0,l≥0,k≥0, etc. are called Volterra kernels.
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Impulse responses defined as

IRFt(h) = Et[yt+h|ut = 1]− Et[yt+h]

are state dependent. For instance, for h = 1 we obtain

IRFt(0) = σ(1 + γst−1), IRFt(1) = σ

(
φ1(1 + γst−1) + 2φ1φ2

√
1− φ2

1st−1

)
. (2.15)

Moreover, the model generates conditional heteroskedasticity. The conditional

variance of yt is given by

Vt−1[yt] = (1 + γst−1)2σ2. (2.16)

2.3.3 Posterior Inference for the QAR(1,1) Model

We estimate the QAR(1,1) model using Bayesian methods. Starting point is a

joint distribution of data, parameters, and initial states:

p(Y0:T , θ, s0) = p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ),

where p(Y1:T |y0, s0, θ) is a likelihood function that conditions on the initial values

of y0 and s0, p(y0, s0|θ) characterizes the distribution of the initial values, and p(θ)

is the prior density of the QAR(1,1) parameters, and θ = [φ0, φ1, φ2, γ, σ
2]′. Since

for large values of |st−1| the term (1 + γst−1) in (2.12) may become close to zero

or switch signs, we replace it by

(
(1− ϑ) exp

[
γ

1− ϑst−1

]
+ ϑ

)
, (2.17)
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where 1+γst−1 is the first-order Taylor series expansion of (2.17). The exponential

transformation guarantees non-negativity of the time-varying standard deviation

and the constant ϑ provides some regularization that ensures that the shock stan-

dard deviation is strictly greater than σ exp(ϑ) in all states of the world.

It is convenient to factorize the likelihood function into conditional densities as

follows:

p(Y1:T |y0, s0, θ) =
T∏
t=1

p(yt|y0:t−1, s0, θ).

Given s0 and θ it is straightforward to evaluate the likelihood function iteratively.

Conditional on st−1 the distribution of yt is normal. The equation for yt in (2.12)

can be solved for ut to determine st, which completes iteration t. In addition

to the likelihood function, we need to specify an initial distribution p(y0, s0|θ).

We assume that the system was in its steady state in period t = −T∗, that is,

y−T∗ = φ0 and s−T∗ = 0. Based on iterating the original system (2.9) forward

we compute a mean and variance for (y0, s0) and assume that the initial values

are normally distributed. Further details of this initialization are provided in the

Appendix. Since the dimension of θ is small, we use a single-block random-walk

Metropolis (RWM) algorithm to generate draws from the posterior of θ.

2.3.4 Further Discussion

The QAR(1,1) model in (2.8) has a straightforward generalization in which we

include additional lag terms:

yt = φ0 +

p∑
l=1

φ1,l(yt−l − φ0) +

p∑
l=1

p∑
m=l

φ̃2,lmst−lst−m +

(
1 +

q∑
l=1

γ̃lst−l

)
σut (2.18)

s̃t =

p∑
l=1

φ1,lst−l + σut.
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We refer to (2.18) as QAR(p,q) model.6 As in the standard AR(p) model, the

stationarity of yt is governed by the roots of the lag polynomial 1−∑p
l=1 φ1,lz

l. The

quadratic terms generate an additional p(p + 1)/2 coefficients in the conditional

mean equation for yt. Since the number of coefficients grows at rate p2, a shrinkage

estimation method is required even for moderate values of p, in order to cope with

the dimensionality problem. The QAR model can also be extended to the vector

case, which is an extension that we are pursuing in ongoing research. The empirical

analysis presented in Section 3.2 is based on the QAR(1,1) specification.

The QAR model is closely related but not identical to some of the existing

nonlinear time series models. For γ = 0 the QAR(1,1) can be viewed as a pruned

version of the generalized autoregressive model (GAR) discussed in Mittnik (1990)

which augments the standard AR model by higher-order polynomials of the lagged

variables. The conditional heteroskedasticity in (2.9) has a linear autoregressive

structure. For φ2 = 0 our model is a special case of the LARCH model studied in

Giraitis et al. (2000). Since the conditional variance of yt can get arbitrarily close

to zero, likelihood-based estimation of LARCH models is intrinsically difficult.

We circumvent these difficulties by introducing the exponential transformation

in (2.17).

Grier and Perry (1996, 2000) have estimated GARCH-M models on macroeco-

nomic time series. GARCH-M models provide a generalization of the ARCH-M

models proposed by Engle et al. (1987) and can be written as

yt = φ0 + φ1(yt−1 − φ0) + φ2(σ2
t − σ2) + σtut

σ2
t − σ2 = γ1(u2

t−1 − σ2) + γ2(σ2
t−1 − σ2).

6If we start with a pth order nonlinear difference equation in (2.3), then we can arrive at a
QAR(p,p) model.
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Under suitable parameter restrictions yt can be expressed as a nonlinear function

of ut and its lags. As in the case of the QAR model, yt depends on the sequence

{u2
t−j}. In addition, the term σtut introduces interactions between ut and u2

t−j,

j > 1. However, coefficients on terms of the form ut−jut−l, j 6= l are restricted to be

zero. From our perspective, the biggest drawback of the GARCH-M model is that

nonlinear conditional mean dynamics are tied to the volatility dynamics: in the

absence of conditional heteroskedasticity the dynamics of yt are linear. The QAR

model is much less restrictive in this regard: yt can be conditionally homoskedastic

(γ = 0) but at the same time have nonlinear conditional mean dynamics, that is,

φ2 6= 0.

2.4 QAR Empirics

We begin the empirical analysis by fitting the QAR(1,1) model to per capita

output growth, nominal wage growth, GDP deflator inflation, and federal funds

rate data.7 The choice of data is motivated by the DSGE model that is being

evaluated subsequently. The DSGE model features potentially asymmetric wage

and price adjustment costs and we will assess whether the nonlinearities generated

by this DSGE model are consistent with the nonlinearities in U.S. data. We report

parameter estimates for the QAR model in Section 2.4.1 and explore the properties

of the estimated models in Section 2.4.2.

7 All series are quarterly and obtained from the FRED database of the Federal Reserve
Bank of St. Louis. Output growth is the log difference of real GDP (GDPC96). We compute
log differences of civilian noninstitutional population (CNP16OV) and remove a one-sided eight-
quarter moving average to smooth population growth. The smoothed population growth series
is used to obtain per capita GDP growth rates. Inflation is the log difference of the GDP deflator
(GDPDEF). Nominal wage growth is the log difference of compensation per hour in the nonfarm
business sector (COMPNFB). As interest rate we use quarterly averages of monthly effective
federal funds rates (FEDFUNDS).
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Table 2.1: Estimation Samples and Pre-Samples

Sample Estimation Sample Pre-Sample for Prior
1 1960:Q1 - 1983:Q4 1955:Q1 - 1959:Q4
2 1960:Q1 - 2007:Q4 1955:Q1 - 1959:Q4
3 1960:Q1 - 2012:Q4 1955:Q1 - 1959:Q4
4 1984:Q1 - 2007:Q4 1955:Q1 - 1983:Q4
5 1984:Q1 - 2012:Q4 1955:Q1 - 1983:Q4

2.4.1 Estimation of QAR(1,1) Model on U.S. Data

We estimate QAR(1,1) models for output growth, inflation, nominal wage growth,

and interest rates using five different sample periods, which are summarized in

Table 2.1. The longest sample spans the period from 1960:Q1 to 2012:Q4. This

sample includes the high-inflation episode of the 1970s, the subsequent disinflation

period, as well as the Great Recession of 2008-09. We then split this sample after

1983:Q4 into a pre-Great-Moderation sample that ranges from 1960:Q1 to 1983:Q4

and a post-Great-Moderation sample from 1984:Q1 to 2012:Q4. Since the 2008-

09 recession involves large negative GDP growth rates which may be viewed as

outliers, and federal funds rate has been at or near the lower bound of 0% since

2008, we consider two additional samples that exclude the Great Recession data

and end in 2007:Q4.

To specify the prior distribution for the QAR parameters we use normal distribu-

tions for φ0, φ2, and γ. The autoregressive coefficient φ1 is a priori also normally

distributed, but the normal distribution is truncated to ensure stationarity of the

QAR model. Finally, the prior distribution of σ is of the inverted gamma form.

We use pre-sample information to parameterize the priors. The pre-sample peri-

ods for our five estimation samples are provided in the last column of Table 2.1.

Throughout the estimation the tuning constant ϑ in (2.17) is fixed at ϑ = 0.1. The

prior distributions for φ1, the first-order autoregressive coefficient, are centered at
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Figure 2.1: Posterior Medians and Credible Intervals for QAR Parame-
ters Parameter φ2
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Notes: The solid bars indicate posterior medians and the shaded boxes delimit 90% equal-tail-
probability credible intervals.

the pre-sample first-order autocorrelations of the four time series. The inverse

Gamma distribution of σ is centered at the residual standard deviation associated

with the pre-sample estimation of an AR(1) model. Finally, the prior mean of φ0

is specified such that the implied E[yt] of the QAR(1,1) model corresponds to the

pre-sample mean of the respective time series. The priors for φ2 and γ are centered

at zero and have a standard deviation of 0.1. Further details are provided in the

Appendix.

Figure 2.1 summarizes the posterior distributions of φ2 and γ. In this figure the
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boxes represent the 90% credible intervals and the solid bars indicate posterior

medians. Detailed estimation results for the remaining QAR(1,1) parameters are

tabulated in the Appendix. The φ2 posteriors for GDP growth using the three

samples starting in 1960 are essentially centered at zero with the 90% credible

interval covering both positive and negative values. The γ posterior medians for

the same samples are slightly negative, around -0.05, but the 90% credible sets also

cover positive values, providing only some mild evidence for conditional variance

dynamics. For the two post-Great Moderation samples the φ2 estimates drop to

about -0.1 and the credible set now excludes zero. The strongest evidence for

nonlinearity in GDP growth is present in the 1984-2012 sample, which includes

large negative growth rates of output during the Great Recession, in the form of

φ2 < 0 and γ < 0. Nonlinearities in wages and inflation are reflected in positive

estimates of γ. These nonlinearities are most pronounced for the 1960-2007 and

the 1960-2012 samples. For the federal funds rate we obtain estimates of φ2

near zero and estimates of γ of about 0.4 for samples that include the pre-1984

observations. For samples that start after the Great Moderation the pattern is

reversed: the estimates of φ2 are around -0.2 and the estimates of γ are close to

zero. We will discuss the interpretation of these estimates in Section 2.4.2.

Figure 2.2 depicts log marginal likelihood differentials for the QAR(1,1) versus

a linear autoregressive AR(1) model. The AR(1) models are estimated by setting

φ2 = γ = 0 and using the same priors for φ0, φ1, and σ as in the estimation of the

QAR(1,1) model. A positive value indicates evidence in favor for the nonlinear

QAR(1,1). Under equal prior probabilities, the difference in log marginal data

density between two models has the interpretation of log posterior odds. By and

large, the marginal likelihood differentials favor the QAR(1,1) specification. The
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Figure 2.2: Log Marginal Data Density Differentials: QAR(1,1) versus
AR(1)
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Notes: The figure depicts log marginal data density differentials. A positive number provides
evidence in favor of the QAR(1,1) specification.

evidence in favor of the nonlinear specification is strongest for the federal funds

rate. Marginal likelihood differentials range from 20 to 60. For output growth there

is substantial evidence in favor of the QAR model for the post-Great Moderation

samples, whereas for inflation large positive log marginal likelihood differentials

are obtained for the 1960-2007 and the 1960-2012 samples. For wage growth

the evidence in favor of the nonlinear specification is less strong: log marginal

likelihood differentials are around 2.

2.4.2 Properties of the Estimated QAR Models

In this section we discuss what the nonlinearities we identified in the previous

section mean for each variable. For ease of exposition, we focus on the subsample

that “maximizes” the nonlinearities for each variable, which roughly corresponds

to picking the subsample that has the largest marginal data density differential

between the AR(1) and the QAR(1,1) models.
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GDP Growth. Our results show that the posterior medians of φ2 and γ for GDP

growth are less than zero. The largest estimates (in absolute terms) are obtained

for the 1984-2012 sample. As (2.16) shows, with a negative γ, the periods of

below-mean growth (likely to be recessions) are also periods where volatility is

higher, which is a well-known business cycle fact. A negative φ2, along with

a negative γ also imply that the response to shocks is a function of the initial

state s0. Using the formulas in (2.15), Figure 2.3 depicts the absolute responses of

GDP growth to a negative and a positive one-standard deviation shock. In the left

panel, we assume that the initial state s0 takes on large negative values whereas

the responses in the right panel condition on large positive s0’s.8 This figure

highlights that regardless of the initial state negative shocks are more persistent

than positive shocks. Moreover, both shocks are more persistent in recessions.

Combining these results, we deduce that multiple positive shocks are necessary to

recover from a recession, while a small number of negative shocks can generate a

recession. In other words output losses during recessions are sharp and recoveries

are slow.

The impulse response findings are consistent with the time-series plot of GDP

growth, which is provided in the top left panel of Figure 2.4. In this figure shaded

areas indicate NBER recessions and the solid vertical line indicates the year 1984,

which is the starting point of two of the five estimation samples. The unconditional

mean of the variable is shown as a horizontal dashed line. Focusing on the post-

1983 sample, the most extreme observations are all during recessions, confirming

the effect of γ < 0. Looking at the quarters just prior to and just after NBER

recessions, we see that the declines in GDP growth are always very sharp but the

8To obtain the s0 for a given draw, we compute a two-period moving average to smooth the
st series and use the minimum and the maximum values for this smoothed series.
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Figure 2.3: Impulse Responses of GDP Growth (In Absolute Terms)

Notes: 1984-2012 sample. Solid and dashed lines correspond to median impulse responses to
one-standard-deviation shocks and shaded bands represent 60% credible intervals (equal tail
probability). To initialize the latent state s0 we compute two-quarter moving averages based
on the states associated with the estimated QAR model and calculate the minimum and the
maximum of the smoothed series. For the left panel (large negative s0) the initialization is
based on the minimum and in the right panel (large positive s0) it is based on the maximum.

recoveries, defined as getting back to and staying at pre-recession level, take much

longer.

It is easy to see why the nonlinearities identified in the samples starting in

1984 are not as pronounced in the samples that start in 1960. First, prior to

1984 there are more episodes of large positive GDP growth rates. These are, in

absolute terms, as large as the negative growth rates observed between 1960 and

2012. Thus, recessions are not necessarily periods of higher volatility. Second,

the recoveries from recessions are as sharp as the entries, not displaying the clear

asymmetry in the later sample. These findings explain why a linear AR(1) is a

good description of GDP growth pre-1984.9

9Qualitatively, our results for GDP growth are in line with findings by Brunner (1997), who
estimated three nonlinear models for real Gross National Product (GNP). Based on a sample
from 1947 to 1990 the author obtained strong evidence of countercyclical volatility, that is
recessions are periods of high volatility. Moreover, Brunner (1997) detects nonlinear conditional
mean dynamics: according to the impulse responses the effects of a negative shock accumulate
faster than those of a positive shock, in line with our findings. Similarly, McKay and Reis (2008)
find that the brevity and violence of contractions and expansions are about equal in a sample
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Figure 2.4: Data
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Notes: All variables are in annualized percentage units. Shaded areas indicate NBER recessions
and the dashed horizontal line represents the sample mean of the series.

Inflation and Wage Growth. The nonlinearities in the inflation dynamics are

most pronounced in the 1960-2007 sample with γ > 0 and φ2 = 0. Once again

referring to the conditional variance formula in (2.16), we conclude that periods

of above-mean inflation are associated with high volatility. In fact, the top right

panel of Figure 2.4 shows that the period from 1970 to 1980 has high and volatile

inflation. A similar conclusion can be reached in the post-1983 sample but to a

lesser degree. The bottom left panel of Figure 2.4 shows that nominal wage growth

displays properties similar to inflation. In the 1960-2007 sample, which is also the

relevant one for nominal wage growth, volatility tends to be high when the level

is high. Because nominal wage growth is more volatile than inflation, and there

are many large negative observations, the estimate of γ is smaller for the former

that encompasses our longest sample, once again in line with our results.
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series.

Federal Funds Rate. The bottom right panel of Figure 2.4 shows the plot of

the federal funds rate. Based on the QAR(1,1) estimation results, there are two

samples with strong nonlinearities. In the 1960-2007 sample, we find a positive γ.

As was the case for inflation and nominal wage growth, this is due to the obser-

vations from late 1960s to mid 1980s, which are typically above the unconditional

mean and thus volatility is higher when the level is higher. For the 1984-2012

sample we find φ2 < 0 and γ = 0. In this period the extreme observations are

equally likely to be positive or negative and thus γ = 0 is reasonable. φ2 < 0

implies that interest rate fall faster than they rise. This seems to be consistent

with Federal Reserve’s operating procedures in the post-1983 sample and it can

have two separate explanations. First, the Federal Reserve may have an asymmet-

ric policy rule, in which reactions to deviations from targets may depend on the

sign of the deviation. This can happen, for example, if the Federal Reserve is risk

averse and wants to avoid recessions: when GDP growth falls, the central bank is

willing to cut the policy rate quickly, but when GDP growth starts to improve, it

is reluctant to increase the policy rate immediately. Second, the variables that the

Federal Reserve track may have asymmetries themselves. Given our finding that

φ2 < 0 for GDP in this sample, the second explanation is certainly reasonable.

There is some evidence about the first explanation as well. For example Dolado

et al. (2004) and Cukierman and Muscatelli (2008) estimate a non-linear Taylor

rule using GMM and find that U.S. monetary policy is better characterized by a

nonlinear policy rule after 1983, especially with respect to the reaction to output

gap deviations.

To sum up, the estimation of QAR(1,1) models provides evidence of interesting
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and substantial nonlinearities in the U.S. macroeconomic time series. For the two

samples that start in 1960 and extend beyond the 1990s the nonlinearities are

reflected in the run-up in inflation in the 1970s, with spill-overs to nominal wage

growth and the federal funds rate. In the shorter post-1983 samples, there are two

important nonlinearities – the asymmetries in GDP growth, which is particularly

pronounced if the 2008-09 recession is included in the sample, and the federal

funds rate. In the remainder of this paper we examine whether a DSGE model

with asymmetric adjustment costs for prices and wage can possibly generate the

nonlinearities documented in this section.

2.5 A DSGE Model with Asymmetric Price and

Wage Adjustment Costs

By now there exists a large empirical literature on the estimation of New Keynesian

DSGE models, including small-scale models such as the one studied in Lubik and

Schorfheide (2004) and Rabanal and Rubio-Ramı́rez (2005), as well as variants of

the Smets and Wouters (2007a) model. It turns out that in the absence of zero-

lower-bound constraints on nominal interest rates, high degrees of risk aversion,

large shocks, or exogenous nonlinearities such as stochastic volatility, these models

do not generate strong nonlinearities, in the sense that first-order and higher-

order perturbation approximations deliver very similar decision rules. In order to

generate stronger nonlinearities that can be captured in higher-order perturbation

approximations, we consider a model with potentially asymmetric price and wage

adjustment costs that builds on Kim and Ruge-Murcia (2009).

The model economy consists of a final good producing firm, a continuum of inter-
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mediate goods producing firms, a representative household, and a monetary as well

as a fiscal authority. The model replaces Rotemberg-style quadratic adjustment

cost functions by linex adjustment cost functions, which can capture downward (as

well as upward) nominal price and wage rigidities. Our model abstracts from cap-

ital accumulation. In the subsequent empirical analysis we examine whether the

asymmetric adjustment costs can generate the observed nonlinearities in inflation

and wage growth and whether the effects of asymmetric adjustment costs trans-

late into nonlinearities in GDP growth and the federal funds rate. In a nutshell,

asymmetric price adjustments should lead to asymmetric quantity adjustments.

To the extent that the central bank sets interest rates in response to inflation

and output movements, nonlinearities in the target variables may translate into

nonlinearities in the interest rate itself.

Final Good Production. The perfectly competitive, representative, final good

producing firm combines a continuum of intermediate goods indexed by j ∈ [0, 1]

using the technology

Yt =

(∫ 1

0

Yt(j)
1−λp,tdj

) 1
1−λp,t

. (2.19)

Here 1/λp,t > 1 represents the elasticity of demand for each intermediate good.

The firm takes input prices Pt(j) and output prices Pt as given. Profit maximiza-

tion implies that the demand for intermediate goods is

Yt(j) =

(
Pt(j)

Pt

)−1/λp,t

Yt. (2.20)

The relationship between intermediate goods prices and the price of the final good
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is

Pt =

(∫ 1

0

Pt(j)
λp,t−1

λp,t dj

) λp,t
λp,t−1

. (2.21)

Intermediate Goods. Intermediate good j is produced by a monopolist who

has access to the following production technology:

Yt(j) = AtHt(j), (2.22)

where At is an exogenous productivity process that is common to all firms. In-

termediate good producers buy labor services Ht(j) at a nominal price of Wt.

Moreover, they face nominal rigidities in terms of price adjustment costs. These

adjustment costs, expressed as a fraction of the firm’s revenues, are defined by the

linex function

Φp(x) = ϕp

(
exp (−ψp (x− π)) + ψp (x− π)− 1

ψ2
p

)
, (2.23)

where we let x = Pt(j)/Pt−1(j) and π is the steady state inflation rate associated

with the final good. The parameter φp governs the overall degree of price stick-

iness and ψp controls the asymmetry of the adjustment costs. Taking as given

nominal wages, final good prices, the demand schedule for intermediate products

and technological constraints, firm j chooses its labor inputs Ht(j) and the price

Pt(j) to maximize the present value of future profits

Et
[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s

(
1− Φp

(
Pt+s(j)

Pt+s−1(j)

))
Yt+s(j)−

1

Pt+s
Wt+sHt+s(j)

)]
. (2.24)

Here, Qt+s|t is the time t value of a unit of the consumption good in period t+ s

to the household, which is treated as exogenous by the firm.

Labor Packers. Labor services used by intermediate good producers are sup-

plied by a perfectly competitive labor packer. The labor packer aggregates the
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imperfectly substitutable labor services of households according to the technology:

Ht =

(∫ 1

0

Ht(k)1−λwdk

) 1
1−λw

. (2.25)

The labor packer chooses demand for each type of labor in order to maximize his

profits, taking as given input prices Wt(k) and output prices Wt. Optimal labor

demand is then given by:

Ht(k) =

(
Wt(k)

Wt

)− 1
λw

Ht. (2.26)

Perfect competition implies that labor cost Wt and nominal wages paid to workers

are related as follows:

Wt =

(∫ 1

0

Wt(k)
λw−1
λw dk

) λw
λw−1

. (2.27)

Households. Each household consists of a continuum of family members indexed

by k. The family members provide perfect insurance to each other which equates

their marginal utility in each state of the world. A household member of type

k derives utility from consumption Ct(k) relative to a habit stock. We assume

that the habit stock is given by the level of technology At. This assumption

ensures that the economy evolves along a balanced growth path even if the utility

function is additively separable in consumption, real money balances, and leisure.

The household member derives disutility from hours worked Ht(k) and maximizes

Et

[
∞∑
s=0

βs

(
(Ct+s(k)/At+s)

1−τ − 1

1− τ − χH
H

1+1/ν
t+s (k)

1 + 1/ν

)]
, (2.28)

where β is the discount factor, 1/τ is the intertemporal elasticity of substitution,

χH is a scale factor that determines the steady state hours worked. Moreover ν is
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the Frisch labor supply elasticity.

The household is a monopolist in the supply of labor services. As a monopolist,

he chooses the nominal wage and labor taking as given the demand from the labor

packer. We assume that labor market frictions induce a cost in the adjustment

of nominal wages. Adjustment costs are payed as a fraction of labor income and

they have the same linex structure assumed for prices

Φw(x) = ϕw

(
exp (−ψw (x− γπ)) + ψw (x− γπ)− 1

ψ2
w

)
, (2.29)

where x = Wt(k)/Wt−1(k) and γπ is the growth rate of nominal wages where

γ is the average growth rate of technology as we define below. Beside his labor

choices, the household member faces a standard consumption/saving trade-off. He

has access to a domestic bond market where nominal government bonds Bt(k) are

traded that pay (gross) interest Rt. Furthermore, he receives aggregate residual

real profits Dt(k) from the firms and has to pay lump-sum taxes Tt. Thus, the

household’s budget constraint is of the form

PtCt(k) +Bt(k) + Tt

= Wt(k)Ht(k)

(
1− Φw

(
Wt(k)

Wt−1(k)

))
+Rt−1Bt−1(k) + PtDt(k) + PtSCt,

where SCt(k) is the net cash inflow that household k receives from trading a full set

of state-contingent securities. We denote the the Lagrange multiplier associated

with the budget constraint by λt. The usual transversality condition on asset

accumulation applies, which rules out Ponzi schemes.

Monetary and Fiscal Policy. Monetary policy is described by an interest rate
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feedback rule of the form

Rt = R∗ 1−ρR
t RρR

t−1e
εR,t , (2.30)

where εR,t is a monetary policy shock and R∗t is the (nominal) target rate. Our

specification of R∗t implies that the central bank reacts to inflation and deviations

of output growth from its equilibrium steady state γ:

R∗t = rπ∗
( πt
π∗

)ψ1
(

Yt
γYt−1

)ψ2

. (2.31)

Here r is the steady state real interest rate, πt is the gross inflation rate defined

as πt = Pt/Pt−1, and π∗ is the target inflation rate, which in equilibrium coincides

with the steady state inflation rate. The fiscal authority consumes a fraction ζt

of aggregate output Yt, where ζt ∈ [0, 1] follows an exogenous process. The gov-

ernment levies a lump-sum tax (subsidy) to finance any shortfalls in government

revenues (or to rebate any surplus).

The model economy is perturbed by four exogenous processes. Aggregate pro-

ductivity evolves according to

lnAt = ln γ + lnAt−1 + ln zt, where ln zt = ρz ln zt−1 + εz,t. (2.32)

Thus, on average technology grows at the rate γ and zt captures exogenous fluc-

tuations of the technology growth rate. Define gt = 1/(1 − ζt). We assume that

ln gt = (1− ρg) ln g + ρg ln gt−1 + εg,t. (2.33)

The inverse demand elasticity for intermediate goods evolves according to a first
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order autoregressive processes in logs:

lnλp,t = (1− ρp) lnλp + ρp lnλp,t−1 + εp,t. (2.34)

Finally, the monetary policy shock εR,t is assumed to be serially uncorrelated.

The five innovations are independent of each other at all leads and lags and are

normally distributed with means zero and standard deviations σz, σg, σp, and σR,

respectively.

2.6 Estimation and Evaluation of DSGE Model

The estimation and evaluation of the DSGE model proceeds in three steps. In Sec-

tion 2.6.1 the DSGE model is estimated for two samples: 1960-2007 and 1984-2007,

using the same series that were studied in Section 2.4. In Section 2.6.2 we use pos-

terior predictive checks that are based on posterior mean estimates of QAR(1,1)

parameters to assess whether the nonlinearities captured in the second-order ap-

proximated DSGE model are commensurate with the nonlinearities captured by

the QAR(1,1) model. Finally, we assess the effect of adjustment cost asymmetries

on the model’s ability to generate nonlinear inflation and wage growth dynamics

in Section 2.6.3.

2.6.1 DSGE Model Estimation on U.S. Data

The second step in the empirical analysis consists of estimating the DSGE model

based on the same data that was used to estimate the QAR(1,1) models in Sec-

tion 2.4. The marginal prior distributions for the DSGE model parameters are

summarized in Table ??. We use pre-sample evidence to quantify a priori beliefs
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about the average growth rate of the economy, as well as average inflation and

real interest rates. We use the same priors for both samples. The prior mean for

τ implies a risk aversion coefficient of 2. Our prior for the Frisch labor supply

elasticity covers some of the low values estimated in the microeconometrics liter-

ature as well as a value of 2 advocated in the real-business-cycle literature based

on steady-state considerations. The prior for the price-adjustment-cost parameter

ϕp is specified indirectly through a prior for the slope κ(ϕp) of the New Keynesian

Phillips curve. This prior encompasses values that imply an essentially flat as well

as a fairly steep Phillips curve. The prior for the wage rigidity is directly specified

on ϕw and spans values in the range from 0 to 30. The priors for the asymmetry

parameters ψp and ψw are centered at zero (symmetric adjustment costs) and have

a large variance, meaning that the asymmetries could potentially be strong. We

do not restrict the signs of ψp and ψw, i.e., allowing a priori for both downward

and upward price and wage rigidities. The priors for the monetary policy rule

coefficients are centered at 1.5 (reaction to inflation), 0.2 (output growth), and

0.5 (interest rate smoothing). Finally, we use priors for the parameters associated

with the exogenous shock processes then generate a priori reasonable magnitudes

for the persistence and volatility of the observables.

The DSGE model presented in Section 2.5 is solved using a second-order approx-

imation, which leads to a nonlinear state-space representation. We use the particle

filter developed in Fernández-Villaverde and Rubio-Ramı́rez (2007b) to evaluate

the likelihood function of the DSGE model. To facilitate the likelihood evalu-

ation with the particle filter, the measurement equation contains mean-zero iid

Gaussian measurement errors. The measurement error variances are set equal to

10% of the sample variances of GDP growth, inflation, interest rates, and nominal
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Table 2.2: Posterior Estimates for DSGE Model Parameters
Prior Posterior

1960:Q1-2007:Q4 1984:Q1-2007:Q4
Parameter Distribution Para (1) Para (2) Mean 90% Interval Mean 90% Interval

400
(

1
β − 1

)
Gamma 2.00 1.00 0.47 [0.08, 1.04] 1.88 [0.47, 3.01]

πA Gamma 3.00 1.00 3.19 [2.57, 3.84] 3.34 [2.44, 4.32]
γA Gamma 2.00 1.50 2.04 [1.57, 2.77] 1.98 [1.59, 2.36]
τ Gamma 2.00 1.00 4.83 [2.75, 7.28] 4.10 [2.35, 6.06]
ν Gamma 0.50 1.00 0.37 [0.21, 0.52] 0.10 [0.05, 0.17]
κ(ϕp) Gamma 0.30 0.20 0.02 [0.01, 0.04] 0.21 [0.12, 0.35]
ϕw Gamma 15.0 7.50 18.7 [8.47, 38.1] 11.7 [5.34, 20.2]
ψw Uniform -200 200 67.4 [33.2, 99.5] 59.4 [21.7, 90.9]
ψp Uniform -300 300 150 [130, 175] 165 [130, 192]
ψ1 Gamma 1.50 0.50 1.77 [1.51, 2.12] 2.57 [1.93, 3.26]
ψ2 Gamma 0.20 0.10 1.41 [0.97, 1.85] 0.79 [0.42, 1.18]
ρr Beta 0.50 0.20 0.81 [0.23, 0.72] 0.73 [0.64, 0.80]
ρg Beta 0.80 0.10 0.95 [0.92, 0.98] 0.96 [0.94, 0.98]
ρz Beta 0.20 0.10 0.48 [0.23, 0.72] 0.07 [0.01, 0.20]
ρp Beta 0.60 0.20 0.89 [0.86, 0.94] 0.90 [0.76, 0.98]
100σr InvGamma 0.20 2.00 0.17 [0.14, 0.21] 0.17 [0.12, 0.23]
100σg InvGamma 0.75 2.00 0.88 [0.58, 1.29] 0.83 [0.49, 1.30]
100σz Beta 0.75 2.00 0.44 [0.31, 0.62] 0.47 [0.38, 0.56]
100σp Beta 0.75 2.00 2.62 [0.46, 7.23] 6.54 [4.56, 9.37]

Notes: 1/g is fixed at 0.85. Para (1) and Para (2) list the means and the standard deviations
for Beta, Gamma, and Normal distributions; the upper and lower bound of the support for the
Uniform distribution; and s and ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝
σ−ν−1e−νs

2/2σ2

. The effective prior is truncated at the boundary of the determinacy region. As
90% credible interval we are reporting the 5th and 95th percentile of the posterior distribution.

wage growth. Posterior inference is implemented with a single-block RWM algo-

rithm, described in detail in An and Schorfheide (2007). Theoretical convergence

properties of so-called particle MCMC approaches are established in Andrieu et

al. (2010).

Posterior summary statistics for the DSGE model parameters are reported in

Table 2.2. The most interesting and important estimates are the ones of the

asymmetry parameters in the price and wage adjustment cost function. The wage

and price rigidity estimates differ substantially across subsamples. For instance,

the estimated slope of the New Keynesian Phillips curve is 0.02 for the 1960-

2007 sample, whereas it increases to 0.2 for the post-1983 sample. Likewise, the

estimated wage rigidity is larger over the long sample. The positive estimates of
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ψp and ψw imply that it is more expensive to lower prices and wages than to raise

them and that the asymmetry in prices is more pronounced than in wages. The

asymmetry of the adjustment costs is more pronounced for prices (ψ̂p equals 150

and 165, respectively) than for wages (ψ̂w equals 67 and 59, respectively).

Compared to the estimates reported by Kim and Ruge-Murcia (2009) and Abbritti

and Fahr (2013) who report estimates of ψ̂w = 3, 844 and ψ̂w = 24, 700, respec-

tively, our estimates of the ψw’s are considerably smaller.10 In our experience such

large values of ψw lead to a clear deterioration of the model’s ability to track U.S.

data. Moreover, the second-order solution of the DSGE model relies on a third-

order approximation of the linex cost function which becomes very inaccurate for

large values of ψ. In particular, we found that for values of ψw above 500 the the

adjustment costs for large positive wage changes (that lie in the support of the

ergodic distribution) would become negative due to the polynomial approximation

of the linex function.

We estimate the risk-aversion parameter τ to be fairly large, around 4, and

the Frisch labor supply elasticity to be fairly low, ranging from 0.1 to 0.4. The

estimates of ν are in line with those reported in Ŕıos-Rull et al. (2012b). The

policy rule coefficient estimates are similar to the ones reported elsewhere in the

DSGE model literature. The coefficient ψ1 on inflation is larger for the post-1983

sample, which is consistent with the view that after the Volcker disinflation the

Federal Reserve Bank has responded more aggressively to inflation movements.

10Kim and Ruge-Murcia (2009) estimated their DSGE model Simulated Method of Moments
(SMM). While they also used consumption and hours worked data in their estimation, the
SMM objective function only includes second moments. The authors find that the covariance
of consumption and hours worked, respectively, with wage growth plays a crucial role for their
estimation. Abbritti and Fahr (2013) use a calibration approach to parameterize their model.
Given their preferred calibration of the exogenous technology, discount-factor, and monetary-
policy shocks, they find that a very large value of ψw is needed to match the volatility and
skewness of wage growth observed in the data.
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The government spending shock, which should be viewed as a generic demand

shock, is the most persistent among the serially correlated exogenous shocks: ρg is

approximately 0.95. The estimated autocorrelation ρz of technology growth shock,

which generates most of the serial correlation in output growth rates, drops from

0.48 for the long sample to 0.07 for the post-1983 sample.

2.6.2 Posterior Predictive Checks

We proceed by examining whether QAR(1,1) parameter estimates obtained from

data that are simulated from the estimated DSGE model are similar to the es-

timates reported in Section 2.4 computed from actual data. This comparison is

formalized through a posterior predictive check. The role of posterior predictive

checks in Bayesian analysis is discussed in the textbooks by Lancaster (2004) and

Geweke (2005b) and reviewed in the context of the evaluation of DSGE models

in Del Negro and Schorfheide (2011b). The posterior predictive checks is imple-

mented with the following algorithm.

Posterior Predictive Check. Let θ(i) denote the i’th draw from the posterior

distribution of the DSGE model parameter θ.

i) For i = 1 to n:

ii) Conditional on θ(i) simulate a pre-sample of length T0 and an estimation

sample of size T from the DSGE model. The second-order approximated

DSGE model is simulated using the pruning algorithm described in Kim et

al. (2008). A Gaussian iid measurement error is added to the simulated data.

The measurement error variance is identical to the one imposed during the

estimation of the DSGE model. Denote the simulated data by Y
(i)
−T0+1:T .
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iii) Based on the simulated trajectory Y
(i)
−T0+1:T estimate the QAR(1,1) model as

described in Section 2.4.1. The prior for the QAR(1,1) parameters is elicited

from the presample Y
(i)
−T0+1:0 and the posterior is based on Y

(i)
1:T . Denote the

posterior median estimates of the QAR parameters by S
(
Y

(i)
−T0+1:T

)
.

iv) The empirical distribution of
{
S
(
Y

(i)
−T0+1:T

)
}ni=1 approximates the posterior

predictive distribution of S|Y−T0+1:T . Examine how far the actual value

S(Y1:T ), computed from U.S. data, lies in the tail of its predictive distribu-

tion. �

The predictive check is carried out for each QAR(1,1) parameter estimate sep-

arately. The results are summarized in Figure 2.5. The top panel corresponds

to the 1960-2007 sample, whereas the bottom panel contains the results from the

1984-2007 sample. The red dots signify the posterior median estimates obtained

from U.S. data and correspond to the horizontal bars in Figure 2.1. The blue rect-

angles delimit the 90% credible intervals associated with the posterior predictive

distributions and the solid horizontal bars indicate the medians of the predictive

distributions. The length of the credible intervals reflects both parameter uncer-

tainty, i.e., the fact that each trajectory Y
(i)
−T0+1:T is generated from a different

parameter draw θ(i), and sampling uncertainty, meaning that if one were to hold

the parameters θ fixed, the variability in the simulated finite-sample trajectories

generates variability in posterior mean estimates. Because the posterior variance

of the DSGE model parameters is fairly small, these intervals mostly capture sam-

pling variability. Accordingly, they tend to be larger in the bottom panel (short

sample) than in the top panel (long sample).

By and large the QAR parameter estimates for output growth, wage growth, and

inflation from model-generated data are very similar to the ones obtained from
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Figure 2.5: Predictive Checks Based on QAR(1,1) Estimates
1960-2007 Sample

GDP Wage Infl FFR
0

5

10

φ
0

GDP Wage Infl FFR
0

0.5

1

φ
1

GDP Wage Infl FFR
−0.2

0

0.2

φ
2

GDP Wage Infl FFR
−0.2

0

0.2

γ  

GDP Wage Infl FFR
0

1

2

3
σ  

1984-2007 Sample

GDP Wage Infl FFR
0

5

10

15

φ
0

GDP Wage Infl FFR

0

0.5

1

φ
1

GDP Wage Infl FFR
−0.2

0

0.2

φ
2

GDP Wage Infl FFR
−0.2

0

0.2
γ  

GDP Wage Infl FFR
0

1

2
σ  

Notes: Dots correspond to posterior median estimates from U.S. data. Solid horizontal lines
indicate medians of posterior predictive distributions for parameter estimates and the boxes
indicate 90% credible associated with the posterior predictive distributions.

actual data – in the sense that most of actual estimates do not fall far in the tails

of their respective posterior predictive distributions. Only interest rates exhibit

large discrepancies between actual and model-implied estimates of the QAR(1,1)

parameters.

Overall, the estimated DSGE model does not generate very strong nonlineari-
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ties. Posterior predictive distributions for φ̂2 and γ̂ typically cover both positive

and negative values. The only exceptions are the predictive distributions for wage

growth and inflation γ̂ conditional on the 1960-2007 sample, which imply that γ̂

is positive. Recall from Table 2.2 that for this sample we estimate sizeable ad-

justment costs (κ̂ = 0.02 and ϕ̂w = 18.7). Moreover, the asymmetry parameter

estimates are substantially larger than zero: ψ̂p = 150 and ψ̂w = 67.4. The model-

implied positive estimates of γ imply that high inflation and wage-growth rates

are associated which high levels of volatility, which describes the experience of the

U.S. economy in the 1970s and early 1980s. However, the nonlinear inflation and

wage dynamics do not generate any spillovers to nonlinearities in GDP growth

or the interest rate. Figure 2.5 indicates that the predictive distribution for the

corresponding φ̂2 and γ̂ are centered at zero. For the 1984-2007 sample the over-

all magnitude of the estimated adjustment costs are smaller, which flattens the

adjustment cost functions, makes the asymmetries less important for equilibrium

dynamics, and shifts the predictive distribution for the inflation and wage growth

γ̂’s toward zero.

There are two types of nonlinearities present in the data that the estimated

DSGE model does not predict. First, for the short sample φ̂2 for GDP growth

is negative, because the post-1983 sample exhibits pronounced drop in output

growth during the recessions but does not feature positive growth rates of similar

magnitudes in early parts of expansions. Second, the interest rate exhibits strong

nonlinearities in the data, i.e., a large positive γ̂ in the 1960-2007 sample and a

large negative φ̂2 in the 1984-2007 sample, that the DSGE model is unable to

reproduce.

To sum up, of the nonlinearities we identified in Section 2.4, the only ones the
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DSGE model seems to be able to deliver are the conditional heteroskedasticity

in inflation and nominal wage growth. It is able to do so relying on the asym-

metric adjustment costs which penalize downward adjustments more than upward

adjustments. However, while ex-ante reasonable, these asymmetries in prices do

not spill over to quantities. Moreover, since the interest-rate feedback rule in the

model does not feature any asymmetries, which would result from the central bank

having an asymmetric loss function, and since there are no asymmetries in GDP

growth in the model, the policy instrument does not display the asymmetry we

identified in the data.

2.6.3 The Role of Asymmetric Adjustment Costs

To further study the role of asymmetric adjustment costs in generating nonlinear

wage and inflation dynamics we repeat the predictive checks based on φ̂2 and γ̂ for

alternative choices of ψp and ψw. We focus on the 1960-2007 sample because the

nonlinearities are more pronounced than in the post-1983 sample. For each draw

θ(i) from the posterior distribution of the DSGE model parameters, we replace ψ
(i)
p

and ψ
(i)
w by alternative values ψ̄p and ψ̄w. In particular, we consider an elimination

of the asymmetries, i.e., ψ̄p = ψ̄w = 0 and an increase to ψ̄p = ψ̄w = 300. The

results are plotted in Figure 2.6. A decrease of the asymmetry in the adjustment

costs moves the predictive distributions of φ̂2 and γ̂ toward zero, whereas an

increase shifts them further away from zero. Relative to the overall width of

the predictive intervals the location shifts are fairly small. This highlights that a

precise measurement of nonlinearities is very difficult using quarterly observations.

For nominal wage growth the increase in the asymmetry parameters essentially

eliminates the gap between the median of the posterior predictive distributions
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Figure 2.6: Effect of Adjustment Costs on Nonlinearities
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Notes: 1960-2007 sample. Box plots of posterior predictive distribution for φ2 and γ estimates for
different parameter values of the adjustment cost functions. No Asymmetric Costs is ψp = ψw =
0 (light blue); High Asymmetric Costs is ψp = ψw = 300 (dark blue). Large Dots correspond to
posterior median estimates based on U.S. data.

for φ̂2 and γ̂ and the estimates obtained from actual data, which are -0.05 and

0.14, respectively. For inflation the median of the predictive distributions for

φ̂2 and γ̂ shift slightly upward, toward 0.05 and 0.06, respectively. This implies

that the actual value of φ̂2 lies further in the tail of the predictive distribution

if ψw is increased, whereas the actual value of γ̂ is less far in the tails. While

an increase of ψw improves the outcome of the predictive check constructed from

the QAR parameter estimates for nominal wage growth, judging from the overall

posterior distribution, the increased asymmetries lead to a deterioration of fit in

other dimensions of the model, which is why the posterior estimates for ψp and

ψw are only about 150 and 68, respectively.

107



2.7 Conclusion

Building on the specification of generalized autoregressive models, bilinear models,

and LARCH models, this paper uses a perturbation approximation of a nonlinear

difference equation to obtain a new class of nonlinear time series models that

can be used to assess nonlinear DSGE models. We use these univariate QAR(1,1)

models to identify nonlinearities in the U.S. data and to construct predictive checks

to assess a DSGE model ability to capture nonlinearities that are present in the

data. The QAR(1,1) estimates obtained from U.S. data highlight nonlinearities

in output growth, inflation, nominal wage growth, and interest rate dynamics.

Output growth displays sharp declines and slow recoveries in the post-1983 sample.

Inflation and nominal wage growth both display conditional heteroskedasticity in

the 1960-2007 sample. Finally, downward adjustments in the federal funds rate

seem to be easier than upwards adjustments in the post-1983 sample.

Among the nonlinearities identified through the estimation of the QAR models,

the only ones that our estimated DSGE model seems to be able to capture, are the

conditional heteroskedasticity in inflation and nominal wage growth. The model

does so by relying on the asymmetric adjustment costs which penalize downward

adjustments more than upward adjustments. The model is not able to generate

the apparent nonlinearities in output growth and the federal funds rate.

The tools developed in this paper can be used to identify nonlinearities in any

time series and doing this for other key series such as labor market variables in

the U.S., and for key variables in other countries will be a useful exercise. The

predictive checks simply require a simulation from the model and can be applied to

any model, whether or not it is estimated, and should be a part of the toolbox for
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researchers working with DSGE models. Finally, we leave multivariate extensions

of the QAR model, where the main challenge is to cope with the dimensionality

of the model, to future research.
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Chapter 3

Risk, Economic Growth and the

Market Value of U.S.

Corporations

3.1 Introduction

During the postwar period, the U.S. economy experienced large movements in the

value of firms. The market value of U.S. corporations relative to gross domestic

product (henceforth, value-output ratio) went through a slump during the 1970s

followed by a large increase throughout the 1980s and 1990s until the marked

decline of the last decade.1 Researchers have devoted a great effort to understand-

ing the origins of these medium-term fluctuations.2 A widespread view among

them is that the value of corporations should be particularly sensitive to variables

1We define the market value of the U.S. corporate sector to be the sum of outstanding
equities and net debt liabilities. See Appendix D.5 for details in the construction of this series
using Flow of Funds data.

2In this paper, we refer to medium-term fluctuations as the movements in the medium
frequency component of a time series. As in Comin and Gertler (2006), the medium term
consists of frequencies between 32 and 200 quarters.
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that drive expectations of future corporate payouts and that influence the rate at

which investors discount them. Within this context, research pioneered by Barsky

and De Long (1993) and Bansal and Yaron (2004) suggests that economic funda-

mentals affecting the long-run growth of corporate payouts and its risk should be

responsible for these large swings in the stock market.

Motivated by this view, recent studies have investigated the links between aggre-

gate productivity and asset prices. While Beaudry and Portier (2006) and Croce

(2012) have documented a strong sensitivity of stock prices to the mean of total

factor productivity (TFP) growth, the theories mentioned above also suggest that

variation in other moments of aggregate productivity may be relevant. Moreover,

the documented empirical correlation between TFP growth and stock prices does

not reveal a direction of causality.3 This latter concern is strengthened by the

finding that productivity driven standard macroeconomic models are not able to

generate the medium-term fluctuations in the value of firms when calibrated with

a realistic TFP process (see Boldrin and Peralta-Alva, 2009).

In this paper, we present new evidence on the relation between the value of

U.S. corporations and aggregate productivity. First of all, we document empir-

ically that changes in the volatility of TFP growth are important in predicting

the medium-term movements in the value of U.S. corporations. We fit a Markov

Switching model to TFP growth, detecting large and infrequent shifts in the mean

and volatility of this series throughout the postwar period.4 We then show that

3Changes in asset prices, for example, may feed-back into decisions of economic agents and
therefore influence aggregate productivity. Jermann and Quadrini (2007) study an economy
where increases in asset prices relax firms’ credit constraints and endogenously generate an
increase in measured TFP.

4In particular, we estimate that TFP was in a “high growth regime” between 1960Q1-1973Q1
and 1994Q1-2003Q4, while we estimate a “low volatility regime” during the period 1984Q1-
2009Q3. These results are consistent with previous empirical analysis on the behavior of U.S.
productivity; see for example Kahn and Rich (2007) and Benigno et al. (2011).
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these shifts explain two-thirds of the medium-run variability in the value-output

ratio measured using a band pass filter. In particular, a 1% increase in the con-

ditional mean of productivity growth is associated with a 19% increase in the

value-output ratio, while this indicator declines by 4% following a 1% increase

in the standard deviation of TFP growth. The second contribution of this paper

is to assess whether these elasticities can be interpreted as the response of asset

prices to exogenous changes in the first two moments of TFP growth. We develop

a stochastic growth model and show that, for reasonable calibrations, the model

is consistent with a large response of the value-output ratio to shocks in the mean

and volatility of TFP growth.

We build a stochastic growth model where households have Epstein-Zin prefer-

ences and where TFP growth is driven by two disturbances: a persistent Markov-

Switching shock to its mean and a purely transitory shock. Consistent with our

empirical analysis, we allow the volatility of the transitory component to vary over

time. We assume a particular form of incomplete information: agents are aware of

the underlying structure of the economy, and in every period they observe realized

TFP growth, but they cannot tell whether movements in TFP growth come from

the Markov-Switching mean or the transitory shock. We assume that they form

beliefs about the mean of TFP growth using Bayes’ rule.5 The induced movements

in beliefs about the growth regime influence agents’ views over future corporate

payouts. Beside the standard neoclassical channel, our model features monop-

olistic rents in production. This is intended to capture variation in dividends

unrelated to the marginal product of physical capital, e.g., organizational capi-

tal, patents, etc.. These are factors that previous research identifies as important

5The resulting filtering problem implies that the model shifts in the mean of productivity
growth are difficult to detect in real time, a fact that is well documented for the U.S. economy
(see Edge et al., 2007).
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drivers of firms’ valuation (see Hall, 2001). The interaction between incomplete

information, monopolistic rents and Epstein-Zin preferences generates a strong

sensitivity of the value-output ratio to the first two moments of TFP growth com-

pared to a full information neoclassical benchmark. In the next two paragraphs,

we briefly discuss the intuition underlying this result.

In the model, the behavior of the value of corporations conditional on a growth

shock resembles qualitatively that of related production based asset pricing models,

in particular Croce (2012). Indeed, under a plausible calibration of preferences,

the model features a strong intertemporal substitution effect. A persistent in-

crease in the mean of TFP growth is associated with expectations of a higher

growth in corporate payouts, and households react to this change in expectations

by demanding more assets. A higher demand for assets pushes up the value of

corporations, therefore generating a positive association between TFP growth and

asset prices. Our model, though, is less restrictive than Croce (2012) with respect

to the quantitative association. In fact, and differently from a neoclassical setting,

the value of corporations in our model is the sum of two components: the market

value of the physical capital stock and the present value of rents that firms are

expected to generate. As we will discuss in the paper, the latter component is

an order of magnitude more sensitive to the mean of TFP growth than the for-

mer. This aspect greatly improves the model’s ability to generate an empirically

plausible behavior for prices and quantities relative to its neoclassical benchmark.6

The model also has implications for the effects of volatility on the value of corpo-

rations. As in other production-based long-run risk models, agents in our economy

6Indeed, absent monopolistic rents, strong frictions in the production of capital would be
required by the model in order to generate a large elasticity of the value-output ratio to the
mean of TFP growth. These frictions, while making asset prices more volatile, would reduce the
relative volatility of investment to an empirical implausible level.
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are strongly averse to long-run fluctuations in the growth rate of corporate pay-

outs, and they therefore ask for a sizable compensation when holding shares. An

increase in the uncertainty over the long-run component of firms’ productivity

growth would accordingly generate a reduction in asset prices through its effects

on risk premia. In our model, this channel is triggered by the interactions between

incomplete information and volatility. Indeed, an increase in the volatility of the

transitory component of TFP growth adds more noise to the filtering problem

that agents are solving in real time. This makes them more uncertain about the

long-run properties of corporate payouts. Depending on the calibration consid-

ered, asset prices can be very sensitive to the volatility of TFP growth, a feature

that a model with full information would miss.7

We document that, under plausible calibrations, the model generates business

cycle statistics for real and financial variables that are in line with postwar U.S.

observations. Moreover, we compute the model implied elasticities of the value-

output ratio to the mean and volatility of TFP growth and compare them with

our empirical estimates. We find that a 1% increase in the mean of TFP growth

is associated with a 4% increase in the value-output ratio. At the same time, this

indicator falls by 0.4% after a 1% increase in the standard deviation of productivity

growth. This represents, respectively, 20% and 9% of the magnitude observed in

the data. We also show that, for less conservative calibrations of the TFP process,

the growth elasticity can be reconciled with our empirical estimates, while the

model accounts for 60% of the sensitivity of the value-output ratio to the volatility

of TFP growth.

Related Literature. The idea that variations in risk and economic growth

7See for example Naik (1994).
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influence asset prices has a long tradition in economics, see for example Malkiel

(1979), Pindyck (1984), Barsky (1989), Barsky and De Long (1993), Bansal and

Yaron (2004) and references therein. In a recent paper, Lettau et al. (2008) present

an endowment economy where shifts in the mean and volatility of consumption

growth influence stock prices. Their model accounts for the 1990s “boom” in the

U.S. stock market via a decline in the volatility of consumption growth, while

they estimate that changes in the mean of consumption growth have small effects

on stock prices. To the best of our knowledge, we are the first to look at more

fundamental sources of variation in a general equilibrium model with production.

Our paper contributes to the production-based asset pricing literature (Jermann,

1998; Tallarini, 2000; Boldrin et al., 2001; Gourio, 2012). Within this literature,

our work is closely related to that of Croce (2012). He studies a neoclassical

growth model with recursive preferences, adjustment costs and persistent variation

in the mean of TFP growth. His model is consistent with the cyclical behavior of

standard real and financial indicators of the U.S. economy. The analysis, though,

is silent about the performance of the model regarding the elasticity of asset prices

to the mean and volatility of TFP growth. One of our contributions is to show

that two plausible mechanisms dramatically improve the model’s ability to capture

this conditional behavior of asset prices: incomplete information and monopolistic

rents.

Incomplete information is important in our model to generate a quantitatively

meaningful association between volatility and asset prices. The friction we con-

sider is not new in the literature, see for example Kydland and Prescott (1982a)

and Edge et al. (2007). Relative to the existing literature, we point out an in-

teresting interaction between learning and time-varying volatility. An increase in
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the volatility of the transitory component of TFP growth dampens the ability of

agents to learn about the persistent component of TFP growth.8 In a model with

Epstein-Zin preferences, this endogenous variation in uncertainty over long-run

growth has strong asset pricing implications. We find in addition that monopolis-

tic rents greatly enhance the performance of standard exogenous growth models

regarding the volatility of asset prices without impairing their ability to account

for variations in quantities. A similar point has been made recently by Comin et

al. (2009) and Iraola and Santos (2009) in a class of endogenous growth models.

We consider our empirical findings particularly relevant for the literature study-

ing movements in asset prices over longer horizons. Several attempts have been

put forth to explain the behavior of the U.S. stock market. Plausible explanations

for the medium-term movements in the value of corporations include technolog-

ical revolutions (Greenwood and Jovanovic, 1999; Laitner and Stolyarov, 2003;

Pastor and Veronesi, 2009), variation in taxes and subsidies (McGrattan and

Prescott, 2005), intangible investments (Hall, 2001) and the saving behavior of

baby boomers (Abel, 2003). Our paper suggests that a successful theory should

account for the joint evolution of productivity growth and asset prices, since these

two series share common cycles in the medium run. This would help the profession

with the task of measuring the contribution of each of these mechanisms.

Layout. The rest of the paper is organized as follows. In section 3.2 we doc-

ument the medium-term association between productivity growth and the value-

output ratio. Section 3.3 presents the model. In section 3.4 we calibrate the model,

8Bullard and Singh (2012) discuss a setting in which the opposite happens. They consider
an RBC model with a similar signal extraction problem to ours, but they model an increase in
the volatility of TFP growth by permanently increasing the gap between the two means of the
TFP growth process. This change, while increasing the unconditional volatility of TFP growth,
makes the signal extraction problem easier as agents can better distinguish between the two
different growth regimes.
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study its business cycle properties and analyze the behavior of the value-output

ratio conditional on a persistent change in the mean and volatility of TFP growth.

Section 4.5 concludes.

3.2 Productivity Growth and the Market Value

of U.S. Corporations: Empirical Evidence

We begin by looking at simple indicators of time variation in the mean and volatil-

ity of productivity growth. We construct a quarterly series for total factor produc-

tivity (TFP) in the U.S. business sector using BLS and NIPA data. Our data cover

the period from the first quarter of 1952 to the last quarter of 2010. In Figure 3.1,

we plot 10 years centered rolling window estimates for the annualized mean (top-

right panel) and standard deviation (bottom-right panel) of productivity growth.

The left panel of the figure plots the TFP growth series.

The data show substantial time variation in the mean and volatility of TFP

growth. In the top-right panel of Figure 3.1, we can observe the slowdown in

growth during the late 1960s/early 1970s and the subsequent resurgence during

the 1990s, facts that have been extensively discussed in narrative and econometric

studies on the U.S. economy.9 Regarding volatility, the bottom-right panel of

Figure 3.1 shows the drastic decline during the 1980s, consistent with the “great

moderation” in macroeconomic aggregates after 1984 (see Kim and Nelson, 1999;

McConnell and Quiros, 2000). It is also important to notice that shifts in these two

9One issue of the Journal of Economic Perspectives is devoted to the productivity growth
slowdown of the 1970s (Volume 2, Number 4 ) and another issue to the resurgence in productivity
growth of the 1990s (Volume 14, Number 4 ). Econometric studies that have recently analyzed
shifts in the trend growth rate of productivity include Roberts (2000), French (2001), Kahn and
Rich (2007), Croce (2012) and Benigno et al. (2011).
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series are large and infrequent. For instance, the standard deviation of productivity

growth fluctuates very little during the period 1960-1980, and it experienced a

sudden reduction of about 50% in the early 1980s. Similarly, productivity growth

fell by 2% within a few years in the late 1960s and then fluctuated very little

around a value of 1.5% for about 20 years.

Figure 3.1: Growth and Volatility: Rolling Windows Estimates
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Note: The figure reports 10 years centered rolling windows estimates for the mean and volatility of TFP growth
(right panel). For example, the mean of TFP growth in 1980 is calculated as the arithmetic mean of
productivity growth within the period 1977.II-1983.II. The left panel reports the TFP growth series (blue line),
along with the rolling windows estimates for the mean (red line). The TFP growth series is annualized.

3.2.1 Identifying Shifts in Growth and Volatility: A Markov-

Switching Approach

We now describe a parametric model that we use to fit the shifts in the mean

and volatility of TFP growth documented in the previous section. We model the

growth rate of TFP as follows:
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∆Zt = µt + φ [∆Zt−1 − µt−1] + σtεt

µt = µ0 + µ1s1,t µ1 > 0 (3.1)

σt = σ0 + σ1s2,t σ1 > 0

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)

The variable µt captures the different “growth regimes” characterizing the post-

war behavior of aggregate productivity. In particular, we assume that µt alternates

between two regimes driven by the Markov process s1,t ∈ {0, 1} whose law of mo-

tion is governed by the transition matrix Pµ. Since µ1 > 0, we interpret s1,t = 1

as the “high growth” regime during which productivity grows on average at the

rate µ0 +µ1, while s1,t = 0 implies that TFP grows at the rate µ0 (“low growth”).

Transitory fluctuations around µt are modeled via the white noise εt and an autore-

gressive component. The volatility of εt is allowed to fluctuate between a “high

volatility” regime and a “low volatility” regime driven by the Markov process

s2,t ∈ {0, 1}.10

Markov-Switching models are commonly used in the literature to fit large and

infrequent changes of the type observed in Figure 3.1, and they have already been

used to fit changes in the trend growth rate of productivity (see French, 2001; Kahn

and Rich, 2007).11 Our approach is different from existing ones in that we do not

model transitory fluctuations in the level of TFP. This is done mainly because the

10Our choice regarding the number of regimes is suggested by the nonparametric analysis in
the previous section and is confirmed by formal posterior odds comparisons.

11An equally plausible specification would be that of a random coefficients model in which
variations in µt and σt are represented by continuous stochastic processes. This approach has
been followed in a similar context by Cogley (2005). We have formally compared our specification
with one in which µt follows an AR(1) process, and the marginal data density slightly favors our
model. Results are available upon request.
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process in equation (1) makes the general equilibrium model of Section 3.3 more

tractable.

We estimate the model’s parameters using Bayesian methods. Appendix C.1.2

describes in detail the selection of the prior as well as the sampler adopted to

conduct inference. Table 3.1 reports posterior statistics for the model’s parame-

ters under the header Univariate Model, while the top panel of Figure 3.2 plots

posterior estimates of µt and σt.

Table 3.1: Markov-Switching Model: Prior Choices and Posterior Dis-
tribution

Univariate Model Multivariate Model
Parameter Prior Median 90% Credible Set Median 90% Credible Set

µ0 N (1.5, 1) 1.68 [0.30,2.67] 1.12 [0.59,2.67]
µ1 1(x > 0)N (1, 1) 1.19 [0.29,2.48] 1.75 [0.32,2.57]
σ0 IG(5, 2) 3.63 [3.40,3.83] 3.30 [2.60,3.99]
σ1 IG(5, 2) 2.51 [2.02,2.79] 2.92 [2.00,3.84]
φ N (0, 1) 0.10 [-0.01,0.20] 0.04 [-0.06,0.12]

P1,1,µ 1(|x| < 1)N (0.98, 0.3) 0.953 [0.543,0.998] 0.971 [0.861,0.997]
P2,2,µ 1(|x| < 1)N (0.98, 0.3) 0.975 [0.570,0.998] 0.969 [0.890,0.996]
P1,1,σ 1(|x| < 1)N (0.98, 0.3) 0.995 [0.965,0.999] 0.990 [0.901,0.999]
P2,2,σ 1(|x| < 1)N (0.98, 0.3) 0.992 [0.971,0.998] 0.990 [0.954,0.998]

The model clearly identifies movements in the volatility of productivity growth.

From the top right panel of Figure 3.2, we can observe a decline in σt of 44% in the

mid-1980s, with little uncertainty regarding this event. The model also identifies

a slight increase in the volatility of TFP growth toward the end of the sample,

although credible sets are large. On the contrary, shifts in the mean are poorly

identified with this approach, as shown by the large credible sets on µt and on the

parameters governing its behavior.
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Figure 3.2: Growth and Volatility: Markov-Switching Model
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Note: In the left panels, we report smoothed posterior estimates of µt. In particular, the solid line represents
the posterior mean E[µt|IT], while the shaded area denotes a 60% pointwise credible set. The right panels
report the same information for σt.

3.2.2 Identifying Shifts in Growth and Volatility: Multi-

variate Analysis

High uncertainty in our estimates for µt reflects the difficulties in detecting changes

in the trend growth rate of TFP. As the left panel of Figure 3.1 shows, transitory

fluctuations in TFP growth are large compared to the changes in the conditional

mean that we wish to isolate, and this complicates the filtering problem signif-

icantly. A remedy suggested in the literature consists of introducing additional

variables that carry information on µt. We follow this insight and augment the

model in equation (3.1) as follows:
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 ∆Zt

∆Yt

 =

 µt

µt

+ Φ

 ∆Zt−1 − µt−1

∆Yt−1 − µt−1

+ Σtet

µt = µ0 + µ1s1,t (3.2)

Σt = Σ0 + Σ1s2,t

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)

This specification introduces a set of variables ∆Yt that share the same growth

rate as TFP. This formulation is rooted in economic theory. Indeed, under bal-

anced growth restrictions, equilibrium models predict that several economic ratios

share a common trend with TFP. This justifies the introduction of ∆Yt into the

analysis, as one can pool these time series with TFP growth in order to obtain a

sharper estimate of µt. Following Kahn and Rich (2007), we include the growth

rate of consumption per hour and compensation per hour in ∆Yt.
12

The law of motion for µt and Σt has the same Markov-Switching structure de-

scribed in the previous section. For tractability and parsimony, we allow the vari-

ance of the innovations to have common switches while keeping their correlation

structure constant over time.13 The model is estimated via Bayesian techniques

as discussed in Appendix C.1.3, and the results are reported under the header

Multivariate Model in Table 3.1 and in the bottom panel of Figure 3.2. These

estimates are consistent with the univariate analysis presented in the previous

section. The multivariate approach allows us to identify the shifts in the mean of

productivity growth more precisely. Credible sets on the parameters governing µt

12Consumption and wages are scaled by total hours in order to account for the unit root
behavior of hours worked that, under preferences consistent with balanced growth, is unrelated
to TFP dynamics. See Chang et al. (2007a) for a discussion of this issue.

13This is accomplished by reparametrizing Σt, see Appendix C.1.3 for details.
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are considerably tighter and this is reflected in increased precision of our estimates

for µt. As Figure 3.2 shows, we estimate that the trend growth rate of TFP was

about 3% in the periods 1960Q1:1973Q1 and 1997Q3:2004Q1, while growth was

around 1.3% in the remaining periods.

3.2.3 Productivity Growth and the Market Value of U.S.

Corporations

We now consider the relation between productivity growth and the market value

of U.S. firms. Following Hall (2001), Wright (2004) and McGrattan and Prescott

(2005), we use Flow of Funds data and define the market value of the U.S. corpo-

rate sector to be the sum of outstanding equities and net debt liabilities.14 This

indicator has the advantage of including the market value of closely held firms,

thus being a more reliable measure for trends in the value of firms relative to

standard indicators that are based only on publicly held corporations.

We summarize the relation between the value-output ratio and our estimates of

µt and σt via linear projections. Our benchmark specification is the following:

MVt = a + bµ̂t + cσ̂t + et (3.3)

Table 3.2 reports the results. From Column 3, we can observe a positive relation

between trend growth and the value-output ratio. An increase of 1% in the trend

growth rate of TFP is associated with an increase in the value-output ratio of

21%. Volatility, on the other hand, is negatively associated with the value of

14See Appendix D.5 for details on the calculation of this indicator.
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U.S. corporations. An increase of 1% in the standard deviation of TFP growth is

associated with a reduction in the value-output ratio of 12%.

Table 3.2: Growth, Volatility and the Value of U.S. Corporations

[1] [2] [3] [4]

Constant -0.34 0.36 0.17 -0.13
(0.04) (0.07) (0.05) (0.03)

µ̂t 0.19 0.21 0.19
(0.02) (0.02) (0.01)

σ̂t -0.07 -0.12 -0.04
(0.01) (0.01) (0.005)

R2 0.23 0.13 0.56 0.68
Note: Column [1] reports the results of a linear projection of E[µt|IT ] on the value-output ratio. Column [2]
reports the results of a linear projection of E[σt|IT ] on the value-output ratio. Column [3] reports the results
from the estimation of equation (3.3). Column [4] reports the results of a linear projection of E[µt|IT ] and
E[σt|IT ] on the medium frequency component of the the value-output ratio isolated using the band-pass filter
between 32 and 200 quarters. The value-output ratio is demeaned prior to running the projections. Robust
standard errors are in parentheses.

The linear projection also shows that the association between productivity growth

and the value-output ratio is sizable. Indeed, fluctuations in the first two moments

of productivity jointly predict more than half of the variation in the value-output

ratio at quarterly frequencies. In order to gain more insights into this associ-

ation, we plot in Figure 3.3 the value-output ratio along with the fitted values

of the linear projection. We can verify that the decline in growth in the early

1970s is closely followed by a sharp decline in the value-output ratio and that

the growth resurgence is associated with a boom in this indicator, while the sub-

sequent decline in productivity growth is associated with a fall in the valuation

of U.S. corporations. The great moderation occurred during a period of a rising

value-output ratio, while the surge in aggregate volatility observed toward the

end of the sample is associated with a decline in this indicator. Moreover, from

the figure we can see that most of the association between productivity growth

124



and the value-output ratio occurs over horizons longer than the business cycle.

The fitted values of equation (3.3) closely track the medium term component of

the value-output ratio constructed using the band-pass filter (32-200 quarters).

This point is confirmed by column [4] of Table 3.2, where we project the medium

frequency component of the value-output ratio on µ̂t and σ̂t. Relative to column

[3], the R2 increases substantially, suggesting that the movements in TFP growth

and volatility that we identify are mainly relevant for predicting the medium-term

fluctuations in the value-output ratio.

Figure 3.3: Growth, Volatility and the Value of U.S. Corporations
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Note: The blue solid line plots the value of corporations scaled by gross domestic product. The red solid line
reports the fitted values of Equation (3.3). The black dotted line reports the medium frequency component of
the value-output ratio isolated using the band-pass filter between 32 and 200 quarters.

3.3 Model

So far, we have documented a strong relationship between persistent innovations

to the mean and standard deviation of TFP growth and medium-term fluctuations

in the value-output ratio. As mentioned in the Introduction, this reduced form

125



association may have several interpretations. In what follows, we set up a quan-

titative model with the aim of measuring the fraction of this association that can

be explained by exogenous variation in the mean and volatility of TFP growth.

We consider a fairly standard growth model with four major ingredients:

i) Markov-Switching regimes in the mean and volatility of technological growth

ii) Recursive preferences

iii) Capital adjustment costs and monopolistic rents

iv) Incomplete information about the drivers of technological growth

In the model, infinitely lived households supply labor inelastically to firms and

own shares of the corporate sector. They use their dividend and labor income to

consume the final good and accumulate shares of the corporate sector. The final

good is sold in a competitive market by firms that aggregate a set of imperfectly

substitutable intermediate goods. Each variety is produced by an intermediate

good firm using capital and labor. Those firms rent the capital stock and labor

in competitive markets. They are monopolists in producing their variety. Capital

services are supplied by capital producers in a competitive market. These firms

own the capital stock and make optimal capital accumulation plans by maximizing

the present discounted value of profits.

Below we describe the major ingredients of our model, while Appendix C.2

contains a detailed account of the agents’ decision problems and of the equilibrium

concept adopted. In terms of notation, the level of variable X at time t is denoted

by Xt. Even though every endogenous variable depends on the history of shocks,

we keep the notation simple and omit this explicit dependence.
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3.3.1 Preferences

Households have Epstein-Zin preferences over streams of consumption. Given a

continuation value Ut+1 and consumption ct today, the agent’s utility is given by:

Ut = ((1− β)c
1−γ
η

t + βEt[((Ut+1)1−γ)]
1
η )

η
1−γ .

γ controls the degree of risk aversion, η is equal to 1−γ
1− 1

Ψ

and Ψ parametrizes

the elasticity of intertemporal substitution in consumption. The operator Et[.]

is interpreted as the expectation conditional on all the observations made by the

agents up to period t.

3.3.2 Production

A fixed variety of intermediate goods is produced in the economy. Intermediate

goods are indexed by j ∈ [0, 1], and each variety is produced by an intermediate

good producer. He uses capital services kj,t and labor services lj,t to produce yj,t

units of the good according to the production function:

yj,t = (eZtlj,t)
1−αkαj,t.

Zt is the log of TFP common to all firms. Intermediate goods are aggregated by

final good producers into units of a final good using the production function
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yt =

(∫ 1

0

y
ν−1
ν

j,t dj

) ν
ν−1

.

The final output is consumed by households or purchased by capital producers

to invest in capital. In particular, if a capital producer with kt units of capital

invests it, his stock of capital in period t + 1 will increase by G
(
it
kt

)
kt. For the

quantitative analysis, we parametrize G(.) as15

G (.) = a (.)1−τ + b.

Capital depreciates every period at the rate δ. Therefore, the stock of capital

for a producer evolves according to the following law of motion:

kt = (1− δ)kt +G

(
it
kt

)
kt

3.3.3 Total Factor Productivity and Information Structure

We model the logarithm of TFP as a random walk with time varying drift and

volatility:16

15This functional form is quite standard in the literature. Jermann (1998) points out that
the inverse of τ is equal to the elasticity of the investment-capital ratio to Tobin’s Q in a wide
class of models.

16This is different from Section 3.2 in that we do not include a autoregressive component, as
we did not find a strong contribution of this component in the estimation and as the omission
simplifies the numerical solution of the model.
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∆Zt = µt + σtεt εt ∼ N (0, 1),

where the drift and the volatility follow the Markov processes:

µt = µ0 + µ1s1,t µ1 > 0

σt = σ0 + σ1s2,t σ1 > 0.

The variable sj,t ∈ {0, 1} is a state whose probabilistic law of motion is governed

by the transition matrix Pj.

Household and firms know the parameters governing the stochastic process and

use it to form expectations about future periods. They are, however, imperfectly

informed about the drivers of technological progress. In particular, we assume that

they learn, at every point in time, the realization of TFP growth ∆Zt while not

observing its components µt and εt separately. Therefore, the information that

agents can use to update their beliefs about the current state of the stochastic

process is given by the history of TFP growth realizations, the state governing

volatility and an unbiased Gaussian signal gt = µt + σget that they receive in

every period. They are fully rational and form their beliefs about s1,t via Bayes’

rule. We denote the probability that any agent assigns to being in growth regime

s1,t in period t by pt(s1,t). Similarly, we label the likelihood that he attaches

to being in state s1,t+1 in period t + 1 by pt+1|t(s1,t+1) . Bayes’ rule implies the

following updating equations:

pt+1|t(s1,t+1) =

∑2
i=1 pt−1(i)P1(s1,t|i)∑2

j=1

∑2
i=1 pt−1(i)P1(j|i)

;
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and

pt(s1,t) =
pt|t−1(s1,t)pN(∆Zt, gt|s1,t, s2,t)∑2
i=1 pt|t−1(i)pN(∆Zt, gt|i, s2,t)

pN(.|j, ĵ) is the pdf of a two dimensional normal random variable with mean

µ0+µ1j and standard deviation σ0+σ1ĵ for the first component and mean µ0+µ1j

and standard deviation σg for the second one. Both components are assumed to

be independent. The first equation updates the beliefs about the state today into

beliefs over the expected state tomorrow using the known probabilities of a state

transition. The second equation captures how those probabilities are updated

after observing the realizations of the growth rate and the signal. As we see, given

the structure of the stochastic process considered, (∆Zt, s2,t, gt) are sufficient to

update the beliefs of the household about the underlying state in the last period

to the beliefs in the current period.

3.3.4 Equilibrium and Numerical Solution

We focus on a symmetric equilibrium in which all capital good producers initially

own the same amount of capital. This assumption implies that capital good pro-

ducers make the same investment choices and that intermediate good producers

charge the same price and sell the same quantity to the final good producers. In

appendix C.2, we argue that the equilibrium law of motion for aggregate variables

can be derived from a planner’s problem, which we describe below.

The planner maximizes lifetime utility of the representative household by se-

lecting a sequence for investment, consumption, the capital stock and the value

function (it, ct, kt+1, Vt+1)∞t=0,
17 subject to the same information restriction as the

17These are functions of the realization of the stochastic process subject to the measurability
restrictions implied by the information structure.
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households, initial conditions and a function that maps the observed realizations

of shocks into an aggregate capital stock (kt)
∞
t=0:18

max
(it,ct,kt+1,Vt+1)∞t=0

V0

s.t. ct + it =
ν − 1

ν
Ztk

α
t +

1

ν
Ztk

α

t

Vt = [(1− β)c
1−γ
η

t + βEt[V 1−γ
t+1 ]

1
η ]

η
1−γ

kt+1 = (1− δ)kt +G

(
it
kt

)
kt.

In addition, the choice of Vt has to be finite for all t. An equilibrium is fully

characterized when kt = kt. We solve the model numerically using global methods

as described in Appendix C.3.

3.3.5 Asset Prices

We can express the market value of firms as the present discounted value of corpo-

rate payouts to households. In our economy, there are two types of firms making

nonzero profits: the capital good producers and the intermediate good producers.

The per period profits of a capital good producer are given by:

18The aggregate capital is therefore measurable with respect to the households’ information
set and does not add new information to the signal extraction problem.
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dcpt = rkt kt − it,

where rkt stands for the return to capital. The per period profits of an intermediate

good producer are given in equilibrium by:

dipt =
1

ν
yt.

Profits are a fixed fraction of the revenues of an intermediate good producing firm.

Both types of producers distribute these profits to households in every period. As

a result, one can express the market value of these two types of firms as follows:

pst = Et

[
∞∑
j=1

Λt,t+jd
s
t+j

]
s = {cp, ip}.

Here we denote by Λt,t+s the stochastic discount factor of the household between

period t and period t + s . The market value of the corporate sector is then the

sum of these two components. For future reference, it is convenient to further

characterize this object. Based on Hayashi (1982) it is easy to show that the

equilibrium value of the corporate sector is given by

pt =
1

(1− τ)a

(
it
kt

)τ
kt+1 +

1

ν
Et

[
∞∑
j=1

Λt,t+jyt+j

]
. (3.4)

Indeed, one can easily verify that in our model the equilibrium value of capital

good producers can be expressed as the product of marginal Q and the capital

stock. The decomposition of equation (3.4) has an intuitive interpretation. It

tells us that, in equilibrium, the value of the corporate sector is the sum of two
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components: the value of the capital stock and the present discounted value of

monopolistic rents.19 In the next section, we will calibrate the model and study

how these two components respond to fluctuations in µt and σt.

3.4 Risk, Economic Growth and the Value of

Corporations

3.4.1 Calibration

We set a model period to be a quarter. The parameters of our model are:

θ = [δ, a, b, τ, β,Ψ, γ, µ0, µ1, P
µ
0|0, P

µ
1|1, σ0, σ1, P

σ
0|0, P

σ
1|1, α, ν, σg]

The depreciation parameter δ is set to 0.025, leading to an annual depreciation

rate of roughly 10%. We follow the literature in calibrating a and b so that

the deterministic balanced growth path of our model coincides with that of an

economy without adjustment costs (Van Binsbergen et al., 2010).20 The parameter

controlling the capital adjustment (τ) is set to 0.5, in the range of values considered

in the literature. The discount factor β is set to 0.994, a value that implies an

average annualized risk free-rate of 2.07%.21 Following Croce (2012), we set Ψ to

2 and γ to 10.22

19Indeed, in our decentralization, the price of capital equals 1
(1−τ)a

(
it
kt

)τ
.

20We construct a deterministic balanced growth path around the average growth rate of TFP,
which we denote by µ.

21We solve the model repeatedly for different values of β until the average risk-free rate
computed on simulated data matches the target value. See Table 3.3 for additional details.

22A value of 2 for the IES and a coefficient of relative risk aversion of 10 are, for example,
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We use the empirical results in Section 3.2 to calibrate the parameters of the

shock process Zt.
23 In accordance with our estimates, we set µ0 = 0.003, µ1 =

0.0045, σ0 = 0.0082 and σ1 = 0.0073. As a benchmark, we restrict the transition

matrices of the two Markov processes to be symmetric, and we assume that Pµj|j =

Pσj|j. Thus, the two transition matrices can be represented by a single parameter,

denoted by ρ. We set ρ = 0.99, a value that implies an average state duration of

25 years. The unbiased signal in our model stands for all additional information

that agents use to infer shifts in the mean of productivity growth. We calibrate

its precision so that the average speed of learning is 16 quarters.24 This number

is consistent with the results in Edge et al. (2007) and Jorgenson et al. (2008).

We calibrate ν to 10, implying a markup of 10%. This value is in the range

typically considered in the business cycle literature for the whole U.S. economy.25

The remaining parameter to be calibrated is α. In our model, the labor income

share is given by

wtlt
yt

=
(ν − 1)

ν
(1− α), (3.5)

Because pure economic profits are treated as a reward to capital in U.S. national

accounts, we can calibrate α by matching a labor income share of 70% in line with

U.S. data. This strategy results in α = 0.22.

consistent with the estimates obtained by Attanasio and Vissing-Jorgensen (2003).
23In order to be consistent, we reestimate the model in Section 3.2 restricting the autoregres-

sive component of TFP growth to be equal to zero.
24We simulate the signal extraction problem 100,000 times. We keep the mean growth rate

fixed in the high regime for 100 periods. We then switch the regime to the low state and count
the number of periods it takes the filter to attach a probability of 0.9 to the low regime for the
first time. We keep changing σg until the average time it takes over the simulations is 16. The
resulting value for σg is 0.0074.

25See for example Altig et al. (2011) and their references.
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3.4.2 Unconditional Moments

Table 3.3 reports a set of model implied statistics for selected real and financial

variables along with their data counterparts. For comparison, we also report the

results for two natural benchmarks. We consider a version of our model in which

agents have perfect information over the TFP process (Full Info) and a version

in which intermediate firms operate in a competitive environment (No Rents).26

Under the calibration considered, our model generates business cycle fluctuations

for consumption, output and investment that are not too far from the data. In

particular, we obtain that consumption growth is less volatile than output growth,

while investment growth is more volatile, with relative magnitudes in line with data

observations. The model predicts a high degree of comovement of consumption

and investment growth with output growth. However it differs from the standard

Real Business Cycle model in that we obtain a relatively small correlation between

consumption and investment growth. This happens because changes in the beliefs

over the trend growth rate of TFP induce differential movements in aggregate

investment and consumption.27 Finally, the model implies a small autocorrelation

for the variables in growth rates, which is not surprising given its lack of a strong

internal propagation mechanism.28

The model is also consistent with the first two moments of the equity premium

26We recalibrate β in each case to keep the risk-free rate at 2.07 in order to make it easier to
contrast the three examples with regard to their asset pricing behavior.

27Indeed, a shock to the growth rate of TFP induces offsetting wealth and substitution effects
on the part of households. On the one hand, higher growth signals households’ higher income in
the future, which makes them more willing to reduce their savings and increase their consumption
level today. On the other hand, higher TFP growth implies a higher reward to savings today,
which motivates households to save more. Irrespective of which of these two effects prevails in
equilibrium, consumption and investment growth move in opposite directions conditional on a
TFP “growth” shock.

28This problem is shared by many simple business cycle models as discussed in Cogley and
Nason (1995).
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Table 3.3: Model Implied Moments for Selected Variables

σ(∆y)
σ(∆c)
σ(∆y)

σ(∆i)
σ(∆y)

ρ(∆y,∆c) ρ(∆y,∆i) ρ(∆i,∆c) ρ−1(∆y) ρ−1(∆c) ρ−1(∆i)

Data 1.00 0.79 2.69 0.70 0.69 0.60 0.34 0.23 0.50

Model 1.00 0.90 1.96 0.96 0.80 0.60 0.05 0.05 -0.04

Full Info 0.97 0.91 1.47 0.99 0.94 0.90 0.05 0.07 0.02

No Rents 0.90 0.89 1.94 0.89 0.82 0.47 0.06 0.05 -0.03

E[Re −Rf ] σ[Re −Rf ] ρ−1[Re −Rf ] E[Rf − 1] σ[Rf − 1] ρ−1[Rf − 1]

Data 4.49 15.89 0.02 2.07 2.6 0.61

Model 3.34 8.28 -0.06 2.07 1.63 0.87

Full Info 1.70 5.06 0.04 2.07 0.25 0.96

No Rents 3.52 5.00 0.43 2.07 2.12 0.87

Note: ∆Xt stands for the quarterly growth rate of variable X. Re is the annualized gross return on equity,
while Rf is the annualized gross return on a risk-free bond. We assume that equity is leveraged using a
debt-to-equity ratio of 1. The data figure for the volatility of the value-output ratio stands for the standard
deviation of the fitted values in equation (3.3). Means and standard deviations are reported in percentage
terms. Model statistics are based on a long simulation (T=1000000). The data column is based on quarterly
observations (1960Q1-2010Q4). Statistics on the equity premium and on the risk-free rate are calculated using
annual data from 1948 to 2010, which we downloaded from Robert Shiller’s website
http://www.econ.yale.edu/∼shiller/data.htm.

in postwar U.S. data. However, the mechanism through which we achieve a large

and volatile equity premium differs from that of other production-based versions

of the long-run risk model. Croce (2012), for example, generates a sizable eq-

uity premium by introducing a persistent random component into the growth rate

of productivity. This leads to covariation at low frequencies between consump-

tion growth and corporate payouts, therefore triggering the long run-risk channel

discussed in Bansal and Yaron (2004). In our model, this channel is triggered

by incomplete information. The Markov-Switching structure, in fact, imposes a

trade-off between the persistence and the volatility of µt. Under complete infor-

mation, the changes in the growth rate of corporate payouts would be too rare for

agents to require large premia on stocks.29 With incomplete information, though,

29As we use realized postwar growth rates in output to discipline our calibration, the model
cannot generate a high risk premium by triggering the rare disaster risk channel as in Gourio
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what matters for the equity premium are the beliefs of agents regarding µt. In

our model, these beliefs are more volatile than µt because the learning process

is influenced by high frequency variations in TFP growth, in its volatility and in

the signal. This generates additional risk from the perspective of investors. The

resulting effect on prices stands out clearly when comparing the performance of

our model to its full information benchmark since the latter generates a sensibly

lower equity premium (1.70% versus 3.34% implied by our model).

While still falling short on the volatility of the equity premium in the data, the

calibrated model substantially improves relative to the Full Information and the

No Rents model. As will be argued in more depth in the next section, incom-

plete information raises the sensitivity of asset prices to σt, while monopolistic

rents make them more sensitive to µt. A stronger response of asset prices to eco-

nomic fundamentals contribute to raising the unconditional volatility of the equity

premium. Finally, the model is able to generate the low volatility and high persis-

tence of the risk-free rate observed in U.S. postwar data. The mechanisms through

which this happens are well understood in the literature on the production-based

long-run risk model, see for example Croce (2012).

3.4.3 Growth, Volatility and the Value of Corporations

In the previous section, we discussed the performance of the model in reproducing

key unconditional moments. We now study the sensitivity of the value-output

ratio to the first two moments of TFP growth. For this purpose, and in view of

the analysis of Section 3.2, it is natural to study the model implied elasticities

of the value-output ratio to the mean and volatility of TFP growth. In what

(2012).
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follows, we analyze the economic mechanisms through which µt and σt influence

the value-output ratio by means of impulse response functions (IRFs) and through

extensive sensitivity analysis. In Section 3.4.5, we will ask how far the model goes

in matching quantitatively these elasticities.

Figure 3.4 shows IRFs of selected variables to a positive change in µt. The top

panel reports the dynamics of TFP growth and the value-output ratio, while the

bottom panel plots the response of the expected stochastic discount factor and

the expected average 5-year growth rate of corporate payouts. The annualized

growth rate of TFP increases by 1.5% and reverts back to trend thereafter. After

the switch, agents slowly learn about the transition to the high-growth regime.

Agents’ beliefs about µt, represented by the dotted line in the top-left panel of the

figure, steadily increase from quarter 1 to quarter 20, after which agents become

almost sure that a change in regime has occurred. During this period, we observe

a protracted increase in the value-output ratio. From a quantitative point of view,

a 1.5% increase in TFP growth is associated, at peak, with an 8% increase in the

value-output ratio.

The bottom panel of Figure 3.4 captures the mechanism through which higher

economic growth induces an increase in the value-output ratio. As households

learn about the switch to the high-growth regime, they anticipate higher con-

sumption growth for an extended period of time. This positive wealth effect low-

ers the rate at which households discount corporate payouts, as the bottom-left

panel of the figure shows. Ceteris paribus, the decline in the stochastic discount

factor has a depressive effect on the value of corporations. However, higher TFP

growth changes the expectations that households have regarding future corporate

payouts. Indeed, the bottom-right panel of the figure shows that long-run expec-
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tations regarding the growth rate of corporate payouts slowly increase after the

switch to the high-growth regime. Households have thus an incentive to substi-

tute from current to future consumption by acquiring more securities, generating

upward pressures on the value of firms. Since under our calibration agents are

not too averse to intertemporal substitution, the latter effect dominates and the

value-output ratio rises after a switch to the high-growth regime.

Figure 3.4: IRFs to a Growth Switch
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Note: IRFs are calculated via simulation techniques. We simulate M = 25000 different realization of length
T = 500. Each simulation has the characteristic that the trend growth rate of TFP is in the low state between
period 1 and period 400 and switches to the high regime in period 401. After that, the simulations are not
restricted with regard to the mean. The volatility state is fixed to its low state throughout the simulations. The
above figure report the mean across the Monte Carlo replications as percentages with respect to period 400 for
the expected discount factor and the value output ratio. The growth rate of TFP and corporate payouts is
reported in annualized terms. The average expected growth of corporate payouts over 20 periods is shown
relative to the average dividends in period 400. The black dotted lines report the IRFs for a model with perfect
competition in the markets for intermediate goods (ν =∞).

We can also observe that imperfect competition significantly raises the sensitivity

of asset prices to µt. As we can see from the dotted line in Figure 3.4, the No Rents

model implies a response of the value-output ratio of only 1% at peak, sensibly

smaller with respect to that in our benchmark model. We can rationalize this

difference across models by looking at the behavior of expected corporate payouts

growth in the bottom-right panel of the figure. In our model, corporate payout
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growth is more responsive to µt relative to what happens in the No Rents model.

This result is best understood in terms of the decentralization of the economy

discussed in Section 3.3. In the No Rents model, the value of corporations equals

the value of capital good firms, while in our model the value of corporations also

includes the market value of intermediate good producers. These two sectors of

the economy differ in terms of their competitiveness. Capital good producers

are identical to each other, while intermediate good firms have traits that partly

shield them from competitive pressures. Once the growth rate of TFP increases,

capital good producers have an incentive to invest. As more producers invest, the

marginal product of existing capital for every firms declines, therefore eroding part

of the profits induced by higher TFP growth. Firms operating in the intermediate

good sector, instead, are not affected by these competitive pressures. Thus, their

payouts growth is more responsive to changes in µt.

Figure 3.5 reports the response of the value-output ratio when the economy tran-

sits from the low to the high volatility regime. Higher volatility of TFP growth

is associated with declining asset prices. In particular, the value-output ratio in

our model falls by 3.5%. The bottom panel of Figure 3.5 captures the major

trade-off that higher volatility brings. An increase in σt is associated by agents

with more aggregate risk. As individuals are risk averse, they have stronger incen-

tives to demand shares in order to insure consumption fluctuations. The expected

stochastic discount factor, therefore, increases. However, households also real-

ize that corporate shares are now riskier securities. Indeed, as the bottom-right

panel of Figure 3.5 shows, the covariance between the stochastic discount factor

and equity returns declines.Therefore, households have an incentive to substitute

corporate shares with current consumption, and this puts downward pressure on
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share prices. Since the IES is sufficiently large in our economy, this latter effect

dominates, resulting in a negative association between volatility and asset prices.

It is also clear from the figure that incomplete information is the key model ele-

ment governing the sensitivity of asset prices to σt. Indeed, in the full information

model, the switch to the high volatility regime is associated with a 1% decline in

the value-output ratio, 3.5 times smaller with respect to our benchmark specifi-

cation. This happens because a change in the volatility is perceived differently

by the agents in the two models. In the full information set-up, the increase in

the volatility of the transitory component of TFP growth has almost no influ-

ence on risk, since the stochastic discount factor is hardly affected by transitory

TFP growth shocks. In our model, instead, an increase in σt makes learning over

µt more difficult and raises agents’ uncertainty over long-run growth. As a re-

sult, households demand a higher compensation to hold assets whose expected

discounted payouts are strongly influenced by µt. This variation in risk premia,

absent in the full information model, is the major driver of the response of the

value-output ratio to σt.

3.4.4 Sensitivity Analysis

We now briefly discuss the sensitivity of the results presented in the previous

section to our calibration. In order to do so, we construct the model implied

elasticities of the value-output ratio to µt and σt and study how these elasticities

are affected when changing some key parameters of the model. Let θ′ be a given

value for our parameter vector. Conditional on θ′, we simulate realizations of

length T for µt, σt and for the value-output ratio. Given these simulated series,
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Figure 3.5: IRFs to a Volatility Switch
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Note: IRFs are calculated via simulation techniques. We simulate M = 25000 different realization of length
T = 500. Each simulation has the characteristic that the volatility of TFP is in the low state between period 1
and period 400 and switches to the high regime in period 401. After that, the simulations are not restricted with
regard to the volatility. The mean growth rate is fixed to its high state throughout the simulations. The above
figure reports the mean across the Monte Carlo replications as percentages with respect to period 400 for all
series but the volatility. The black dotted lines report the IRFs for a model with perfect information (σg = 0).

we run the following linear projection:

pt
yt

= a + bµ̂t + cσ̂t + et.

The coefficients of these linear projections, {b(θ′), c(θ′)}θ′ , are the model coun-

terparts of the elasticities computed in Section 3.2 using U.S. data.30 Moreover,

they are an interesting object to base our sensitivity analysis on since they give

information on the sign and size of the association between the value-output ratio,

economic growth and volatility.

30In our simulations, µ̂t and σ̂t are the retrospective estimates of households. These differ,
in principle, from what an econometrician would obtain by estimating the system in (2) using
data simulated from our model. We have verified, though, that in practice the two produce
almost identical quantitative results. We have therefore decided to use households’ retrospec-
tive estimates when calculating the model implied elasticities, since it substantially reduces the
computational burden of the procedure.
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We organize our discussion around four key parameters: i) the elasticity of in-

tertemporal substitution (Ψ); ii) the elasticity of marginal Q with respect to the

investment-capital ratio (τ); iii) the elasticity of substitution between intermediate

goods (ν); and iv) the persistence of the Markov processes (ρ). Figure 3.6 reports

the value of b when varying these four parameters one at a time, with the red

dotted line marking our benchmark calibration.

The top-left panel shows that b is increasing in Ψ. This is in line with our

discussion in the previous section. Indeed, we have seen how a switch from the

low- to the high-growth regime brings in offsetting wealth and substitution effects

on households. As agents become less averse to intertemporal substitution (Ψ

increases), the substitution effect becomes stronger, and their demand of corporate

shares becomes more sensitive to fluctuations in µt. As a result, a 1% increase in

the trend growth rate of TFP is associated with a stronger increase in the value-

output ratio. Notice that when Ψ is sufficiently small, b becomes negative. In

these situations, the wealth effect dominates the substitution effect, leading to a

negative association between economic growth and the value of corporations.

The next two panels of Figure 3.6 report the sensitivity of b with respect to

τ and ν. We can see that a higher τ is associated with a stronger response of

asset prices to fluctuations in µt, while a higher ν is associated with a smaller b.

When τ is large, adjusting capital is more costly from the perspective of capital

good producers, who then have less incentives to invest. Thus, after a shift in

µt, their profits on existing capital are eroded less from the process of capital

accumulation. This implies that the value of capital good firms is more sensitive

to µt: when τ equals 2.5, a 1% increase in the trend growth rate of the economy

is associated with a 7% increase in the value-output ratio, almost double with

143



respect to what we obtain in our benchmark calibration. A similar phenomenon

occurs when decreasing ν. Indeed, we have seen that the present value of rents

is the most volatile component of asset prices in our model. As ν declines, the

share of this component on the total value of corporation increases, thus raising

the sensitivity of the value-output ratio to µt.

Figure 3.6: Sensitivity Analysis: Elasticity of Value-Output Ratio to µt
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Note: For each point in the parameter space, the elasticity of the value output ratio to µt is calculated
according to the procedure in Section 3.4.4. In the simulation, T is set to 25000000. The red dotted line marks
the benchmark calibration.

The last panel of the Figure shows the sensitivity of b with respect to ρ. This is

by far the most important parameter in determining quantitatively the response

of the value-output ratio to fluctuations in economic growth. When the switch

from the low to the high TFP growth regime is perceived to be almost permanent

(ρ = 0.999), a 1% increase in µt is associated with a 12% increase in the value-

output ratio. On the contrary, b is almost 0 when ρ is equal to 0.95. This is in

line with our previous discussion. When ρ is high, households expect the growth

rate of corporate payouts to be high for a long period of time. Since households

are forward looking, they have now stronger incentives to buy corporate shares,
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and this raises the response of the value-output ratio. Notice also that b is highly

nonlinear in ρ around our benchmark parametrization. Even a small increase in

this parameter results in the elasticity of the value-output ratio to double or triple

with respect to our benchmark calibration.

Figure 3.7 reports the same experiment for the elasticity of the value-output

ratio to σt. The Figure confirms the above discussion. Higher Ψ is associated with

a decline in c. Asset prices are marginally more sensitive to volatility fluctuations

when the supply of capital is less elastic (τ is large) or when monopolistic rents

are more relevant (ν small). Again, ρ is the most important parameter governing

the elasticity of the value-output ratio to σt. As ρ passes from 0.99 to 0.999, the

absolute value of c increases by almost 10 times.

Figure 3.7: Sensitivity Analysis: Elasticity of Value-Output Ratio to σt
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3.4.5 Posterior Predictive Analysis

After having analyzed the economic mechanisms governing the relation between

growth, volatility and asset prices, we now assess the model’s quantitative per-
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formance along this dimension. For this purpose, we will ask how far the model

implied elasticities b and c are from the ones we estimated for the U.S. economy

(Column 3 of Table 3.2). Because of the extreme sensitivity of these elasticities to

the value chosen for the persistence of µt and σt, we will rely on posterior predic-

tive analysis. In particular, let θ1 = [µ0, µ1, P
µ
0|0, P

µ
1|1, σ0, σ1, P

σ
0|0, P

σ
1|1] and let θ−1

be the vector collecting the remaining structural parameters of our model, fixed

at their calibration values. Given a series of posterior draws for the TFP pro-

cess parameters, {θm1 }Mm=1, one can calculate {bmodel(θm1 , θ−1), cmodel(θm1 , θ−1)}Mm=1

and use those values to characterize the posterior distribution of the model im-

plied value-output ratio elasticities. Because of the high computational burden

involved when solving our equilibrium model repeatedly, we evaluate the model

implied elasticities at {θm1 }Mm=1 using the following procedure:31

Posterior Draws for Model Implied Elasticities Let {θm1 }Mm=1 be a set of

posterior draws for the TFP growth process.

i) Given {θm1 }Mm=1 we obtain bounds on each parameter so that all elements of

the sequence lie in the set defined by those bounds. We denote this set by

Θ1.

ii) We compute the Smolyak collocation points for Θ1 as described in Krueger

and Kuebler (2003). We denote these collocation points by {θs1}Ss=1.

iii) For each element in {θs1}Ss=1, we compute the model implied elasticities

b(θs1, θ−1) and c(θs1, θ−1) using the simulation procedure described in Sec-

tion 3.4.4.

31In order to reduce the dimensionality of the problem, we estimate the system in (2) by
imposing symmetry on the transition matrices and by fixing µ0 + 1

2µ1 and σ0 + 1
2σ1 to their

sample means. Thus, θ1 is a 4-dimensional object.
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iv) We fit a polynomial through the computed {bmodel(θs1, θ−1), cmodel(θs1, θ−1)}Ss=1.

We then use this polynomial to evaluate the model implied elasticities at the

sequence {θm1 }Mm=1.

Our exercise consists of assessing how far the coefficients of the linear projection

in Table 3.2, obtained from actual U.S. data, lie in the tails of the model implied

distributions for the same objects.

Figure 3.8: Growth, Volatility and the Value of U.S. Corporations: Model
vs. Data

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

bmodel

bdata × 100

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

cmodel

cdata × 100

Note: The histogram reports the model implied elasticities of the value-output ratio to the mean and volatility
of TFP growth relative to their data counterparts. The red dotted lines report the posterior mean of these
statistics. The figures are constructed using 50000 draws from the posterior distribution of θ1.

The left panel of Figure 3.8 reports the posterior distribution of bmodel

bdata × 100. A

value of this statistic equal to 100 tells us that the model predicts the same elas-

ticity estimated in the data, while values smaller than 100 would imply a weaker

association between economic growth and the value-output ratio with respect to

what we have estimated in the data. We verify from the figure that the model

is broadly consistent with the data along this dimension. Indeed, on average the

model captures 20% of the relation between economic growth and the value-output

ratio (red vertical line in the Figure). Moreover, we can also see that for reasonable
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parametrizations of the TFP process,32 the model is able to deliver elasticities of

the value-output ratio to the trend growth rate of TFP that are consistent with

the estimates in Table 3.2.

The right panel of Figure 3.8 plots the posterior distribution of cmodel

cdata ×100. The

graph shows that the model is less successful in accounting for the association

between the value-output ratio and the volatility of TFP growth. On average, in

fact, it predicts that the value-output ratio falls by 0.4% following a 1% increase

in the standard deviation of TFP growth, roughly 10% of what we have estimated

in the data. Moreover, the histogram shows that the model can account for at

most 60% of the association between the value-output ratio and the volatility of

TFP growth.

3.5 Conclusion

In this paper we have uncovered a striking association between the first two mo-

ments of TFP growth and the value of corporations in postwar U.S. data. Persis-

tent fluctuations in the mean and volatility of TFP growth predict two-thirds of

the medium-term variation in the value-output ratio. This indicator rises strongly

after an increase in the trend growth rate of TFP, while it declines substantially

following an increase in the volatility of TFP growth. A possible explanation for

this association, suggested elsewhere in the literature, is that movements in ag-

gregate productivity influence investors’ expectations of future corporate payouts

as well as the rate at which they discount them. This explanation is put under

scrutiny by us. We developed a general equilibrium model with production fea-

32By reasonable parametrization, we mean regions of the parameter space that have positive
mass in the posterior distribution.
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turing Markov-Switching fluctuations in the mean and volatility of TFP growth,

incomplete information, capital adjustment costs, monopolistic competition and

recursive preferences. Under plausible calibrations, the model is consistent with

the behavior of several U.S. real and financial indicators during the postwar pe-

riod. It accounts on average for roughly 20% (9%) of the association between

the mean (volatility) of TFP growth and the value-output ratio. For reasonable

parametrizations of the TFP process, the model predicts an elasticity of the value-

output ratio to economic growth that is in line with the data, while it predicts an

elasticity of the value-output ratio to the volatility of TFP growth that is 60% of

the data observation.

It is important to stress the ex-post nature of our analysis. This has at least

two important implications. First of all, our estimates for the TFP process are

retrospective and this may contribute to muting some of the channels analyzed in

this paper. This is surely the case for the implications of incomplete information.

Indeed, while a two-state process for the mean of TFP growth fits postwar U.S.

data well, agents may still consider states that never occurred during this pe-

riod when forming their expectations. If that was the case, a model restricted to

two states necessarily bounds the amount of perceived risk over long-run growth,

which dampens the response of risk premia to a change in the volatility of TFP

growth. This particular aspect may explain why the model does not generate a

strong sensitivity of the value-output ratio to second moments. Secondly, agents

in our model have perfect knowledge of the parameters governing the growth and

volatility regimes. This assumption rules out important sources of history depen-

dence. With uncertainty on the persistence of the Markov processes, for example,

agents’ perception about these parameters depends on previous realizations of the
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process. Our approach may thus misrepresent how agents interpreted these fluctu-

ations when solving their decision problem in real time. This may severely affect

our results, since the sensitivity of asset prices to shifts in the first two moments

of TFP growth depends crucially on their perceived duration.

While difficult to discipline empirically, we believe that an analysis that relaxes

these two types of restrictions would further enhance our understanding of the

medium-term movements in the value of corporations.
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Chapter 4

Identifying Neutral Technology

Shocks

4.1 Introduction

The objective of this paper is to propose a method to identify neutral labor-

augmenting technology shocks in the data. Classic results, starting with Uzawa

(1961), establish that these shocks drive the long-run economic behavior along the

balanced growth path. They are also the key driving force inducing fluctuations

in real business cycle (RBC) models pioneered by Kydland and Prescott (1982b),

Long and Plosser (1983), and play a quantitatively important role in New Key-

nesian models, e.g., Smets and Wouters (2007b).1 Moreover, the relationships

between various economic variables and neutral technology shocks identified in

the data are routinely used to assess model performance and to distinguish be-

tween competing models. For example, the empirical finding that aggregate hours

1In most models the production function is such that the labor augmenting or Harrod-neutral
technology shocks are isomorphic to the Hicks-neutral shocks that do not affect the marginal
rate of substitution between any factors of production.
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worked fall in response to a technology shock called into question the usefulness

of the RBC model for interpreting aggregate fluctuations.

However, the methods used in the literature to identify the technology shocks

are not designed to measure neutral technology shocks. Consider, for example,

the classic Solow residual accounting procedure. Suppose output is produced with

effective labor input Let = G(L1, ..., Ln, t) aggregating various labor inputs and,

for simplicity, a single capital input according to the following constant returns to

scale production function:

Y = F (K,Z G(L1, ..., Ln, t)), (4.1)

where Z represents the labor-augmenting neutral technology shock we are inter-

ested in identifying. Note that the labor aggregator is allowed to depend on time

to capture non-neutral changes in technology, e.g., changes in relative productiv-

ity or substitutability of various labor inputs. Such changes are thought key for

understanding various issues in macro and labor economics. For example, the vast

literature on skill biased technical change rationalizes the simultaneous increase

in supply and in the relative wages of college educated workers since the 1970s

through the change in the relative productivity of these workers in aggregate pro-

duction (e.g., Katz and Murphy (1992), Acemoglu (2002)).2 Thus, as emphasized

by Solow (1957), one must allow for the possibility that the neutral technology

parameter is only one of many technological parameters that can change over time.

Differentiating the production function with respect to time and dividing by Y we

2The alternative interpretation of the evidence in Krusell et al. (2000) also relies on non-
neutral change in the parameters governing relative productivity of the investment good sector.
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obtain the Solow residual:

(1− ωK)
Ż

Z
+
∂F/∂t

F
=
Ẏ

Y
− ωK

K̇

K
−

n∑
j=1

ωLj
L̇j
Lj
, (4.2)

where, assuming that factors are paid their marginal products, ωi represents in-

come share of factor i. Clearly, as emphasized in the original Solow (1957) article,

the residual equals neutral plus non-neutral technology changes. Hence its other

name - the total factor productivity. As variables, such as total hours worked, may

react either positively or negatively to a non-neutral shock, their response to an

innovation in the Solow residual is difficult to interpret. Unfortunately, the growth

accounting methodology is not designed to identify the contribution of only the

neutral shock, to which models have a robust prediction regarding the response

of endogenous variables. It also provides no possibility to ascertain the relative

importance of neutral and biased technological innovations in driving aggregate

economic dynamics.

An alternative approach to identifying neutral technology shocks is based on the

assumption put forward by Gali (1999) that only technology shocks have a long-

run effect on labor productivity (output per hour). He implemented this idea in

a business cycle context using structural vector autoregressions (SVAR) identified

with long-run restrictions following Blanchard and Quah (1989). Unfortunately,

this approach is also not designed to identify neutral technology shocks. Denote

by L the total sum of hours worked. Then, using (4.1), output per hour can be

written as

log

(
Yt
Lt

)
= log(Zt) + log

(
Let
Lt

)
+ log

(
F

(
Kt

ZtLet
, 1

))
. (4.3)
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Note that Kt
ZtLet

is stationary in most models (consistent with the stationary interest

rate in the data). However, the long-run changes in productivity can be induced

either by persistent technology shocks or by persistent changes in the effective

labor input per hour worked. In particular, Le/L could change in the long run

either due to the persistent changes in worker composition (e.g., changes in fe-

male labor force participation and their distribution across occupations), changes

in the effective units of labor supplied by various labor inputs (e.g., expecting

longer careers, women invest more in human capital through on-the-job training)

or changes in the production function parameters that govern the relative produc-

tivity or substitutability of various labor inputs (e.g., an increase in the relative

productivity of females due to an increase in the demand for tasks in which they

have a comparative advantage or due to directed changes in technology induced

by an increase in their labor force participation). Any of these changes affecting

labor productivity in the long run will be interpreted as a technology shock by

this methodology. The existing literature provides no guidance on how the neutral

technological changes can be isolated.3

These observations lead us to propose a method for estimating neutral technology

shocks. To do so, we assume a constant returns to scale aggregate production

3The econometric issues underlying this approach have been intensely discussed in the lit-
erature (e.g., Faust and Leeper (1997), Chari et al. (2008), Christiano et al. (2006), Fernandez-
Villaverde et al. (2007b)). Instead, we question the long-run restriction itself. Indeed, any shock
that affects the composition of factors of production or their relative productivity in the long run
will have a long-run effect on labor productivity and will be erroneously interpreted as a neutral
technology shock by this methodology. Several related critiques of this approach appeared in
the literature. Shea (1998) suggests that if low-productivity firms are destroyed in recessions,
there might be a long run effect on productivity. Uhlig (2004) argues that permanently changing
social attitudes to workplace, whereby workers substitute leisure activities at home with leisure
activities at work, will result in mis-measurement of effective work hours and affect measured
productivity in the long run. Francis and Ramey (2005, 2009) note that changes in capital taxes
or low frequency movements in age composition of population also may have a long-run effect
on labor productivity. Fisher (2006) imposes additional restrictions to separate neutral from
investment-specific shocks.
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function and exploit the rich implications of Uzawa’s characterization of neutral

technology on a balanced growth path. We do not assume the economy to be

on the balanced growth path but instead use a weak conditional form of this

assumption. We only require that the impulse responses to a permanent neutral

technology shocks have the standard balanced growth properties in the long run.

This is sufficient to identify the neutral technology shock because we are able to

prove that no other shock (to non-neutral technology, preferences, etc.) satisfies

these restrictions.

To implement this identification strategy we use a state-space model for a set

of variables for which we know the long run effect of neutral technology. These

macroeconomic variables can be represented as a sum of a neutral technology

shock, which is treated as one of the unobserved components driving the system,

and an unobserved state. For example, the log of the wage of workers of a partic-

ular type is written as the sum of the neutral technology shock and an unobserved

component that is partially idiosyncratic to that worker type (in a competitive

framework representing the derivative of the production function with respect to

that labor input).

We do not require orthogonality among the state variables, an assumption com-

monly used to identify these types of models although inconsistent with typical

economic models. Instead we prove that the conditional balanced growth restric-

tions are sufficient to identify neutral technology shocks in the resulting system of

equations collecting various macroeconomic time-series using filtering/smoothing

techniques. Since we do not treat the technology shock as a residual, our method

does not require to specify an explicit function that aggregates heterogeneous labor
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and capital inputs.4 Instead, all this information is summarized in the unobserved

states which we identify without the need to specify the structure behind the dy-

namics of these states. Moreover, our method does not require the parameters of

this function to be invariant over time. The identification methodology relies on

a testable assumption on the time series process for the neutral technology, e.g.,

AR(1) and other unobserved states, e.g., VAR(1). This process is only required to

provide a good statistical approximation and does not have to be consistent with

a structural model since we do not need to assign a structural interpretations to

the other shocks affecting the economy.

To assess the small sample properties of the proposed method, we conduct a

Monte Carlo study using samples drawn from estimated benchmark business cy-

cle models. We consider the RBC and the New-Keynesian models with worker

heterogeneity. We find that the proposed method is successful in identifying neu-

tral technology shocks in the data generated by the models and does not confound

neutral technology with other disturbances such as non-neutral technology, pref-

erence shifts or wage markup shocks.

The paper is organized as follows. In Section 4.2 we develop the method to

recover neutral technology shocks and establish the sufficient conditions for iden-

tification. In Section 4.3 we illustrate the implementation and evaluate the per-

formance of the proposed method in an estimated RBC model. In Section 4.4

we assess the performance of the proposed method in small samples drawn from

an estimated medium scale DSGE model with multiple sources of real and nom-

inal rigidities and numerous exogenous shocks. Finally, in Section ?? we apply

4This is in contrast to attempts to identify neutral technology shocks by fully specifying
the production function and all the associated inputs as in e.g., Nadiri and Prucha (2001) and
Dupuy (2006). The data requirements underlying this approach seem prohibitive.
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our method in the data and estimate a quarterly technology series for the US.

We also describe and analyze the sequence of identified shocks and document its

co-movement with other economic aggregates. Section 4.5 concludes.

4.2 Identifying Neutral Technology Shocks

In this section we propose a method to estimate Harrod-neutral technology shocks.

Section 4.2.1 provides a characterization of these type of shocks. We prove that

Harrod-neutral technical change is the only type of shock that can induce balanced

growth on a set of macroeconomic variables. We next show how we can use this

property to identify neutral technology shocks from the data using benchmark time

series models. Section 4.2.2 present the time series model we use while Section

4.2.3 formally proves that the long run restrictions implied by balanced growth

are sufficient to identify Harrod-neutral technology shocks. Section 4.2.4 discusses

several issues related to the practical implementation of our approach.

4.2.1 Identification: Theory

In this section we build on this classic result and show how to use the insights

from Uzawa’s theorem (see Acemoglu (2009) for an excellent treatment) on tech-

nological progress in the long-run to identify Harrod-neutral technology shocks.

Suppose that aggregate output Yt is produced as follows

Yt = F (K1,t, . . . , KJ,t, ZtL1,t, . . . , ZtLM,t; θt), (4.4)

where Kj,t represent capital input of type j, Lm,t represents labor inputs of type

m, Zt is Harrod-neutral technology progress and θt is a vector collecting other non-
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neutral technological changes. We assume that F is constant return to scale in

capital and labor inputs. Our methodology does not require any further restriction

on the aggregate production function.

We make the following conditional balanced growth assumption, anticipating that

the implementation of the identification methodology in the data will use a state-

space model and thus identify the shock through its impulse response.

Assumption 1 (conditional balanced growth assumption). A time T exists

such that the impulse response of a variable Xt to a Harrod-neutral innovation εZ0

(to Z0) of x percent at time 0,

IRX
t (x) = E0[Xt | log(εZ0 ) = x]− E0[Xt]

equals

IRX
t (x) = (egXx − 1)E0[Xt]

for all t ≥ T , where gXx is the percent increase in X. If gX = g for output, for

all capital inputs, and for all types of investment and of consumption, then labor

inputs X = Lm do not respond in the long-run to a neutral shock, gX = gLm = 0.

This assumption guarantees convergence of the impulse response for all variables.

In addition, it assumes a linearity property of the long-run response to a neutral

technology shock (i.e. a shock of size 2x has exactly twice the effect of a shock of

size x). History dependence of the impulse response function is not ruled out in

the short run, nor it is for all other economic shocks. fMoreover, this assumption

tells us that if Harrod-neutral shocks induce a common trend in output, capital

inputs, investments and consumption, then they do not influence labor inputs in

the long run.
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We now demonstrate that Harrod-neutral technology shocks are the only one

that can induce a certain pattern of long run responses for a set of macroeconomic

variables. This property will be then used to identify this technical change from

aggregate data. Before stating the main theorem, though, we prove a useful result

Lemma 1. Suppose the conditional balanced growth assumption holds for variables

Xt, X1,t, . . . , XH,t where Xt =
∑H

h=1Xh,t. The long-run response for variable X is

gX and for the components Xh > 0 equal to gXh . Then

gX = gX1 = · · · gXh = · · · = gXH .

The proof is in Appendix D.1.1. Lemma 1 tells us that, for a shock to have a well

defined long run effect on a variable X, it must have the same long run effect on

its components.

Theorem 1. Suppose the conditional balanced growth assumption holds. Then a

permanent Harrod-neutral technological shock is the only shock with the following

(balanced-growth) properties for some time T . An innovation which increases the

level of the shock by x percent at time 0 implies for all t ≥ T

- An increase in aggregate output Y by x percent, IRY
t (x) = (ex − 1)E0[Yt]

- An increase in investment Ij by x percent, IR
Ij
t (x) = (ex − 1)E0[Ij,t]

- An increase in capital Kj by x percent, IR
Kj
t (x) = (ex − 1)E0[Kj,t]

- An increase in aggregate consumption C by x percent, IRC
t (x) = (ex −

1)E0[Ct]

- No effect on labor inputs Lm, IRLm
t (x) = 0

- No effect on the marginal product of capital FKj , IR
FKj
t (x) = 0
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- An increase in the marginal product of labor FLm by x percent, IR
FLm
t (x) =

(ex − 1)E0[FLm,t]

The proof in Appendix D.1.2 follows the steps in the proof of Uzawa’s theorem

in Acemoglu (2009).

The conditions in the theorem rule out non-neutral technical change. For ex-

ample, they rule out investment-specific shocks (Greenwood et al., 1997), which

are often modeled as a non-neutral shock to the technology for producing capital

equipment. This shock has long run effects on the capital equipment to capital

structures ratio and the capital output ratio, which is inconsistent with the above

properties.

The theorem is not limited, however, to distinguishing between different types

of technical change. Instead, it characterizes Harrod-neutral technology shocks

and thus tells them part from any other economic shock, e.g. preference shocks,

government expenditure shocks or wage mark-up shocks. The logic is as follows. If

output and capital increase by the same percentage rate then constant returns to

scale imply that effective labor input has to increase by the same percentage rate.

Because labor inputs is assumed not to change in the long run, the productivity

of labor has to increase by the same percentage term, i.e. it has to be a Harrod-

neutral technological change.

4.2.2 Implementation: The State Space Model

In this section we show how we can implement the conditional balance growth

restrictions of the previous section using a benchmark time series model. To this

aim, we assume that we observe a vector time series Dt, collecting growth rates
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of a set of macroeconomic variables. Without loss of generality, we write Dt as

the sum of two components

Dt = ∆Zt1n + S̃t, (4.5)

where ∆Zt is the growth rate of the neutral technology series (in logs and 1n is the

n-dimensional vector of ones), and S̃t is a vector of states. Both ∆Zt and S̃t are

unobserved. Clearly, any macroeconomic time-series can be written this way. Two

examples for Dt with a clear economic interpretation, are output growth ∆ log(Yt)

and the growth rate of competitive wages for a worker of type m, ∆ log(Wm,t):
5

∆ log(Yt) = ∆Zt + ∆ log

[
F

(
K1,t

Zt
, . . . ,

KJ,t

Zt
, L1,t, . . . , LM,t; θt

)]
, (4.6)

∆ log(Wm,t) = ∆Zt + ∆ log

(
∂F

∂Lm,t

)
. (4.7)

Thus, the unobserved state S̃t is ∆ log
[
F
(
K1,t

Zt
, . . . ,

KJ,t
Zt
, L1,t, . . . , LM,t; θt

)]
for

output and for wages it is equal to ∆ log
(

∂F
∂Lm,t

)
.

Since we treat the second component as an unobserved state variable, we do not

have to make any assumptions on the shape of the production function. Instead

our approach consists in restricting the time-series behavior of St = [∆Zt, S̃t] and

in exploiting the factor structure of the system in (4.5). In particular, we propose

to estimate the technology series {∆Zt}Tt=0 in a three steps procedure:

i) Assume a time series model for the behavior of [∆Zt, S̃t], indexed by the

vector of parameters Λ.

ii) Estimate the parameters’ vector Λ.

5Wages are competitive here for illustrative purposes only. Our method does not assume
that wages are competitive.
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iii) Conditional on the estimation of Λ and given a time series for Dt, we esti-

mate the realization of ∆Zt using smoothing techniques.

For concreteness, suppose that ∆Zt is an univariate AR(1) process with persistence

parameter given by φzz and innovation variance given by r2
zz (which we normalize

to one), while the unobserved states follow a VAR(1). None of the results dis-

cussed in this section depend on this parametrization, and richer dynamics can

be allowed for by introducing additional lags and moving average terms. Under

these assumptions we can express the dynamics of Dt in state space form:

n×1︷ ︸︸ ︷[
Dt

]
︸ ︷︷ ︸

Dt

=

n×(n+1)︷ ︸︸ ︷[
1 I

]
︸ ︷︷ ︸

B

(n+1)×1︷ ︸︸ ︷ ∆Zt

S̃t


︸ ︷︷ ︸

St

(n+1)×1︷ ︸︸ ︷ ∆Zt

S̃t


︸ ︷︷ ︸

St

=

(n+1)×(n+1)︷ ︸︸ ︷ φzz 0′

ΦS̃z ΦS̃S̃


︸ ︷︷ ︸

Φ

(n+1)×1︷ ︸︸ ︷ ∆Zt−1

S̃t−1


︸ ︷︷ ︸

St−1

+

(n+1)×(n+1)︷ ︸︸ ︷ rzz 0′

RS̃z RS̃S̃


︸ ︷︷ ︸

R

n×1︷ ︸︸ ︷ ez,t

ẽt


︸ ︷︷ ︸

et

(4.8)

et
i.i.d.∼ N (0n+1, In+1)

∆Zt is assumed to be an exogenous process in the above system. In particular,

S̃t−1 does not affect current technology once we condition on Zt−1, this explaining

the zeros in the transition matrix Φ. Moreover, the zero restrictions on the R

matrix tell us that the first element of the et vector has to be interpreted as an

innovation to technology. Notice that we allow for contemporaneous correlation

among the innovations to ∆Zt and S̃t since we do not restrict RS̃z to be zero.

This is particularly relevant in our application since technology shocks are likely

162



to affect S̃t.
6 Because of this correlation, the state space model is not identified

without further restrictions. Fortunately, as we show in the next section, we can

use Theorem 1 to impose a set of restrictions that are sufficient to identify the

parameters of the model. In terms of notation, we will refer to Dj,t as the jth

element of the measurement vector Dt while to Sj,t as the jth element of the state

vector St = [∆Zt, S̃t]
′. We denote by et the vector [ez,t, ẽt]

′.

4.2.3 Identification of the State Space Model

We include in the vector of observable variables, Dt, the growth rates of output,

investment and hours as well as of the wages of two groups of workers, (s)killed

and (u)skilled:

Dt = (∆ log (Yt) ,∆ log (It) ,∆ log (Lt) ,∆ log (Ws,t) ,∆ log (Wu,t))
′. (4.9)

From the discussion in Section 4.2.1 we know that these variables are sufficient to

distinguish Harrod-neutral technology shocks from other economic disturbances.

Clearly, one could incorporate in Dt more variables with known balanced growth

restrictions: this would sharpen identification at the cost of increasing the com-

plexity of the model.

We now formally define identifiability of the state space model

Definition 1. Let Λ and Λ̂ be two parameterizations of the system in (4.8).

These are observationally equivalent if ΓD(τ,Λ) = ΓD(τ, Λ̂) for all τ ∈ N, where

ΓD(τ,Λ) is the τ th order autocovariance of Dt under Λ.

Definition 2. The state space model in (4.8) is identifiable from the autoco-

6Both of the examples discussed earlier share this characteristic. A shock to technology
affects labor inputs, this generating correlation between ∆Zt and S̃t.
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variances of Dt at Λ = (Φ,R) if for any admissible parametrization Λ̂ = (Φ̂, R̂)

we have that Λ and Λ̂ are observationally equivalent if and only if Φ = Φ̂ and

RR′ = R̂R̂′

In what follows, we show how the restrictions brought by the conditional bal-

anced growth assumption are sufficient to guaranteee the identification of Λ. Prior

to that, we make an additional technical assumption

Assumption 2. i) The matrix R is invertible.

ii) (−1, 1, . . . , 1)′ is not an eigenvector with eigenvalue φzz of the matrix Φ̃.

In Appendix D.1.3 we prove that this assumption implies that the state space

representation in (4.8) is minimal, i.e. the dimension of the state vector St can not

be reduced. This assumption allows us to cast our problem within the literature

of identification of minimal state space systems (Hannan and Diestler, 1988).

Lemma 2. Let Assumption 2 hold. Then, the state space model in (4.8) is mini-

mal.

Given minimality of the state space in (4.8), lack of identification is known

to be represented by linear transformations of the state vector through invertible

matrices T and U with UU′ = I (see Proposition 1-S in Komunjer and Ng (2011)).

In fact, consider defining the state vector Ŝt = T−1St and the innovation vector

as êt = U−1et. Then, one can rewrite the system in (4.8) as:

D̃t = B̂Ŝt

(4.10)

Ŝt = Φ̂Ŝt−1 + R̂êt
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where the new matrices (B̂, Φ̂, R̂) are related to the original one as follows:

B̂ = BT

Φ̂ = T−1ΦT (4.11)

R̂ = T−1RU

Clearly, the observationally equivalent parametrization must satisfy the restric-

tions made on (B,Φ,R), narrowing the set of admissible (T,U) matrices. In what

follows we provide a characterization of this set for the system in (4.8).

First of all, notice that since the matrix B is known, one needs to have B̂ = B.

This implies that the matrix T has the form:

T =


1 + κ1 −κ2 . . . −κn
−κ1 1 + κ2 . . . κn

. . . . . . . . . . . .

−κ1 κ2 . . . 1 + κn

 T−1 =


1− κ1

κ
κ2

κ . . . κn
κ

κ1

κ 1− κ2

κ . . . −κnκ
. . . . . . . . . . . .

κ1

κ
κ2

κ . . . 1− κn
κ

 (4.12)

for some scalars κ1, . . . , κn and for κ = 1 + (
∑n

l=1 κl). What this means is that if

κ1 = κ2 = κ3 = . . . κn = 0 all the parameters of the system in (4.8) are identified

and T = I: we are then able to identify correctly the parameters Φ and Σ = RR′,

only the ordering of ẽt would not be identified.

In general, we can easily verify that the state vector associated with the T−1

matrix becomes:

Ŝt =


(1− κ1

κ
)Zt +

∑n
l=2

κl
κ
Sl,t

κ1

κ
Zt + S2,t −

∑n
l=2

κl
κ
Sl,t

· · ·
κ1

κ
Zt + Sn,t −

∑n
l=2

κl
κ
Sl,t

 . (4.13)

This parametrization needs to satisfy the restrictions on the transition equation
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in (4.8), namely that the first element of Ŝt follows an AR(1) with innovations

given by the first element of êt. This cannot be ruled out given the assumptions

made so far, i.e. without further restrictions, the system in (4.8) is not identified.

This is where we use Theorem 1 which states that the balanced growth properties

identify the neutral technology process.

The balanced growth restrictions for output, investment, hours, skilled and un-

skilled wages can be written as7



1

1

0

1

1


=

1

1− ρz
B(I−Φ)−1R1:(n+1),1. (4.14)

Thus, one can express the long run effect of neutral technology on the variables in

D as a function of the parameters in the matrices Φ and R and restrict it to be

equal to 0 or 1. For example the first row of the restriction in (4.14) states that

the the long-run response of output to a unit increase in εz,t equals 1. Similarly

rows 2, 4 and 5 restrict the long-run response of investment, high skilled and low

skilled wages to be of the same magnitude as well (again scaled by 1
1−ρz ). Row 3

requires the long-run response of hours to be 0.

As Theorem 1 shows, these long-run restrictions uniquely identify the neutral

shock, that is U(1, 0, . . . , 0)′ = (1, 0, . . . , 0)′. This implies that the first column

of U equals (1, 0, . . . , 0)′ and using that UU′ = I then implies that the first row

7∆Zt follows an AR(1) with persistence parameter ρz. A one standard deviation error to the
innovation (which we normalized to one) of the growth rate accumulates to a long-run change
of 1

1−ρz in the level of z. As the balanced growth restrictions apply to changes in the level of z,

the term 1
1−ρz multiplies the long-run effect on V .
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equals (1, 0, . . . , 0).

Theorem 2. [Identification] Consider the state space model (4.8) with D in-

cluding the logs of output, investment, hours worked, skilled and unskilled wages

as in (4.9) and with balanced growth restrictions (4.14). Then the parameters Φ

and RR′ are identified. In particular κ1 = κ2 = · · · = κn = 0. Furthermore the

neutral technology shock is identified, i.e.

U =


1 0 . . . 0

0
Ũ

0

 . (4.15)

The proof is in Appendix D.1.4.

4.2.4 Discussion

In this section we discuss how we estimate the model, how to obtain impulse-

responses and the choice of the time-series model that we use to implement our

identification procedure. We also discuss how additional restrictions on the state

space can be imposed.

Estimation

Because of the linear-gaussian structure of the state space model, we can evaluate

the likelihood function using the Kalman filter. The model parameters are then

estimated by maximum likelihood. Conditional on the estimated parameters, we

can apply the Kalman smoother and obtain retrospective estimates of Harrod-

neutral technical change, {p(∆Zt|DT)}Tt=1. See Durbin and Koopman (2001) for

an extensive discussion of these methodologies.
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Impulse Response Functions

Impulse Response Functions (IRFs) to a neutral technology shock for variables

included in the data vector Dt can be easily computed using the estimated param-

eters and the state space model in (4.8). We may be also interested in computing

IRFs for variables xt that do not enter the measurement equation. In this case

we proceed by using the estimated technology innovations of {ez,t}Tt=1. We project

{ez,t}Tt=1 and its lags onto xt,

xt = α + β(L)ez,t + εt,

where β(L) are polynomials in the lag operator and they represent the IRFs.

OLS delivers consistent estimates of these parameters to the extent that ez,t is

exogenous. This assumption is natural if we think of xt as being generated by an

underlying equilibrium model and we are willing to assume orthogonality of its

structural shocks.

Choice of Time-Series Model

Our procedure requires to specify a parametric time series model for key macroe-

conomic variables. Because of its generality, we focus here on a linear state space

model, but in principle our analysis could be carried using other linear or nonlinear

time series models. As in the SVAR literature, we need to make several specitica-

tion choices regarding the number of macroeconomic time series to include in the

model and the law of motion of the state variables.

The dimension of the state space St may be limited by the curse of dimensional-

ity. First, the number of parameters increases in the lag length of the VAR for St.
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This problem, common to the SVAR literature, can be partly circumvented with

the use of shrinkage methods that are becoming popular in applied time series

econometrics (Del Negro and Schorfheide, 2010). However, because of the exo-

geneity restrictions on Zt, we can adopt a more flexible specification for its law of

motion without imposing much burden on the estimation. For example, suppose

we assume a more general ARMA(p,q) for neutral technology. Then, the number

of unknown parameters associated with the technology process equals (n+ 1)p+ q

with n being the dimension of St. Second, given a DGP for the vector St, the

number of parameters to be estimated steeply increases in the number of variables

in the measurement equation. For the example described in Section 4.3, the num-

ber of parameters to be estimated equals 2 + 2n(n+ 1) + s(2 + n), where n is the

dimension of the vector Dt and s is the dimension of St. This limits the number

of variables, and associated balanced growth restrictions, that can be allowed for.

The Monte Carlo exercise in the next section is supposed to shed lights on these

issues. We will see that a parsimonious specification of the state space model

considered in this section performs well when data are simulated from reasonably

calibrated business cycle models.

Using Additional Theoretical Restrictions

The method proposed in this paper can easily accommodate additional restrictions

implied by economic theory. While these restrictions are not strictly necessary,

they may help sharpening identification of neutral technology shocks especially

when dealing with short samples. A popular identification scheme in the SVAR

literature are sign restrictions as in Uhlig (2005). These can be easily incorporated

in our set up: for example, we could set R∆wj ,z > 0 to restrict the neutral technol-
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ogy shock to have a positive impact effect on wages. Other types of information

regarding the properties of neutral technology shocks can be easily implemented

by appropriate restriction on the state space form. Aside from these identification

schemes, the state space model considered here can incorporate external informa-

tion without imposing excessive burden to the estimation. For example, suppose

that we have a robust method to identify other types of structural structural

shocks, say a government spending shock {eg,t}Tt=1 which we know a priori to be

orthogonal to neutral technology shocks. Then, we could proceed in two steps: i)

Add {eg,t}Tt=1 to the list of observables in the measurement equation; ii) add an

additional state variables in St that selects one of the non-technology reduced form

innovations; iii) restrict the matrix R so that ez,t and eg,t are orthogonal. Impor-

tantly, this does not result in additional parameters to be estimated, but it helps

the identification of the neutral shock. See also Stock and Watson (2012) for a

discussion of the role of external information (“instruments”) for the identification

of structural shocks in dynamic factor models.

4.3 An Example: A Simple RBC Model

We now illustrate the proposed procedure by means of an example. We study the

basic RBC model with two types of labor, a useful benchmark due to its trans-

parency and widespread use. We use this example to illustrate how our method

for measuring neutral technology shocks can be applied in practice. Using data

simulated from the calibrated model we study the relation between identified tech-

nology shocks and the true structural disturbances. In particular, we consider the

small sample performance of our method and contrast it with the performance of

an SVAR with long run restrictions on labor productivity and with Solow residu-
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als. The transparency of the model allows us to isolate the reasons for the poor

performance of the latter two methods in recovering neutral technology shocks.

4.3.1 The Real Business Cycle Model with Heterogeneous

Labor

We consider a frictionless RBC model with worker heterogeneity. Agents of type

j = {u, s} (unskilled of measure u and skilled of measure 1−u) value consumption,

ct, and dislike labor, ht, according to a type-dependent utility function

Uj(ct, ht) = log(ct)− eAtbj
h

1+ν−1
j

t

1 + ν−1
j

. (4.16)

At is a shock to the disutility of labor parameterizing the labor wedge, commonly

found to play an important role in business cycle accounting. We allow the elas-

ticity of labor supply, νj, to differ across the two demographic groups. Because of

this, aggregate productivity in our model will vary over the cycle due to endoge-

nous changes in the skill compositions of the labor input. Firms in the economy

have access to the production function

Yt = Kα
t (eZtLet )

1−α, (4.17)

where Let , the effective labor input, is an aggregator of low and high-skilled labor

Let = Lφts,tL
1−φt
u,t .

Note that observed labor input (total hours) equals Lt = Ls,t+Lu,t, where unskilled

labor input equals Lu,t = uhu,t and skilled labor input Ls,t = (1 − u)hs,t. The

relative productivity of skilled workers, φt, changes over time. This is one source
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of non-neutral technical change in the model. The accumulation equation for

investment is expressed as

Kt+1 = (1− δ)Kt + Itqt, (4.18)

where qt represents the current state of the technology for producing new capital

goods, a second source of non-neural technical change. Capital depreciates in

every period at rate δ. The resource constraint equals

Yt = Itqt + Ct + gtYt, (4.19)

where gt is the fraction of final good devoted to government spending.

The laws of motion for economic shocks are standard:8

∆Zt = γ + ρz∆Zt−1 + σzεz,t, (4.20)

At = ρaAt−1 + σaεa,t, (4.21)

log(φt) = (1− ρφ)φ∗ + ρφ log(φt−1) + σφεφ,t, (4.22)

log(gt) = (1− ρg)g∗ + ρg log(gt−1) + σgεg,t, (4.23)

log(qt) = ρq log(qt−1) + σqεφ,t. (4.24)

Firms hire labor and rent capital from households at competitive factor prices, pro-

duce the final good and sell it to households in a competitive market. Households

use labor and capital income to finance their consumption and saving choices. The

equilibrium law of motion for the model’s endogenous variables is defined by a set

8The only novel process here is the one for the skill-biased technical change. Although the
specification we use permits φt > 1, this event has almost zero measure in all our simulations.
We could use a logistic function to preclude that. However, since we study a linearized version
of the model, nothing would prevent the linearized shock to be larger than 1.
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of conditions that describes the optimal behavior of agents, and the evolution of

shocks. Since these equations are standard in the literature, we avoid repeating

them here.

To ensure stationarity, certain model’s endogenous variables need to be nor-

malized. We have estimated the model with an unrestricted persistence of the

preference shock process and found that, to match the high persistence in hours

worked, it is estimated to be unit root.9 Given this, we restrict ρa = 1, and scale

hours worked by a type j household by e
−

νj
1+νj

At
, while the other model’s variables

by eZte[φ∗ νs
1+νs

+(1−φ∗) νu
1+νu

]At .

4.3.2 Identifying Neutral Technology Shocks: Setup

The choice of the variables added to the state vector is guided by the balanced

growth restrictions. We therefore consider the growth rate of output, ∆ log(Yt),

the growth rate of wages of skilled workers, ∆ log(ws,t), and unskilled workers,

∆ log(wu,t), the growth rate of labor productivity, ∆ log(Yt/Lt) and investment,

∆ log(It). As described earlier, we interpret each of these times series as the sum of

two unobserved components: the growth rate in neutral technological component

(common to all variables) and a residual component (specific to each variable).

Thus, defining Dt = [∆ log(Yt),∆ log(ws,t),∆ log(wu,t),∆ log(Yt/Lt),∆ log(It)]
′ the

vector of observables, and by St the vector collecting these unobserved compo-

nents, we can write the measurement equation as

Dt =
[

1 I
]

︸ ︷︷ ︸
B

St. (4.25)

9As in Gali (2005) and Chang et al. (2007c), among others.
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Notice that, under this formulation, ∆Zt is the first entry of the state vector.

Next we must chose the model for the time series behavior of the state vector St.

In the Monte Carlo analysis, we will restrict to the simple VAR(1) model used in

Section 4.2.2:

St =

 ρz 0′

ΦS̃z ΦS̃S̃


︸ ︷︷ ︸

Φ

St−1 +

 rzz 0′

RS̃z RS̃S̃


︸ ︷︷ ︸

R

 ez,t

ẽt

 . (4.26)

We restrict ∆Zt to be exogenous with respect to the other unobserved states:

this is achieved with the “zeros” restrictions on the matrix Φ and R. However,

note that we are not ruling out correlation among the idiosyncratic states.

Balanced Growth Restrictions

The balanced growth restrictions discussed in the earlier section can be easily

implemented in this time series model. For example, consider a one standard

innovation increase in neutral technology. Under balanced growth restrictions, we

know that the effect of this shock on the level of output is equal to σz
1−ρz in the

long run. In the time series model described earlier, the long run effect of the first

element of St (which we label neutral technological growth) on the level of output

equals to:10

lim
m→∞

IR
log(Y )
t+m (ez,t = 1) = [1, 0, 0, 0, 0, 0]B(I−Φ)−1R1:(n+k),1.

Hence, the balanced growth restriction for output consist in equating the above

10This expression derives from the fact that the long run effect of a shock on variable x equals
the cumulative effect on its growth rates.
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expression to σz
1−ρz . Similar balanced growth restriction can be derived for the

other variables. More specifically, we restrict output per hour and investment to

have the same long run effect of output: this implies, among other things, that

hours worked and the investment-output ratio are not affected in the long run by a

neutral technology shock. Similarly, we restrict neutral technology shocks to have

the same long run effect on the two wages (e.g., relative wages are not affected by

a neutral technology shock in the long run).

From a technical point of view, these are restrictions on the Φ and R matri-

ces that, as discussed in the earlier section, are sufficient to identify the neutral

technology shock.

4.3.3 Estimation and Results

The calibration is standard and described in Appendix D.3. We simulate 100

realizations from the calibrated model, with each sample being composed of 250

quarters. For each realization, we estimate the state space model discussed in

Section 4.3.2, and we study the properties of the retrieved neutral technology

innovations. In addition, we compute technology innovations using the Solow

residual accounting and using SVAR with long-run restrictions as in Gali (1999).

We assess the accuracy of each procedure using the R2 of the following linear

regressions:

εtruej,t = α + βεidentified
z,t + ηt j ∈ {z, a, φ, g, q}, (4.27)

where {εidentified
z,t } are the technology shocks identified according to the procedure

and {εtrue
j,t } is structural innovation j in the model economy. These statistics have
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a clear interpretation. Indeed, a method that perfectly identifies the technology

innovations would yield an R2 = 1 with εtruez,t as the dependent variable and an

R2 = 0 for the other structural innovations.11 These R2 are calculated for each of

the Monte Carlo replications.

Table 4.1: True vs. Identified Technology Shocks: RBC Model

εz,t εa,t εφ,t εg,t εq,t

BHM 0.94 0.00 0.01 0.00 0.00
Gali 0.73 0.10 0.09 0.00 0.03
Solow 0.62 0.00 0.26 0.00 0.00

Notes: Each column contains R2 from the regression of the structural innovation εj,t, j ∈ {z, a, φ, g, q} on
technology shock εz,t, identified using the procedure in each row. Results are based on a Monte Carlo studies
with 30 replications. BHM refers to the method proposed in this paper as specified in Section 4.3.2. Gali refers to
the technology shock identified following the procedure in Gali (1999). The Solow residual is calculated applying
Jorgenson correction for labor composition effects.

The results reported in Table 4.1 imply that the method proposed in this paper

performs very well. The identified neutral technology shocks are closely related

to the true neutral technology shocks used when simulating the model (median

R2 = 0.94), and are not systematically related to other structural shocks in the

model. In contrast, the technology shocks identified using the other two methods

are less closely related to the true neutral technology shocks and systematically

pick up other structural disturbances. We now use this simple model to better

understand the reasons for their shortcomings.

Using SVAR with long-run restrictions to identify technology shocks

The second row of Table 4.1 indicates that retrieving technology innovations using

an SVAR with long run restrictions yields a median R2 of only 0.73.12 The reason

11Note that these are theoretical benchmarks. Even if we observed the actual process for
neutral technology, the R2 of the εtrue

z,t equation would be below 1 because of sampling errors in

the estimation of (ρz, σz), which are needed to measure the innovations εidentified
z,t .

12Specifically, we follow Gali (1999) and estimate a VAR(4) on the growth rate of labor
productivity and hours worked, and identify technology innovations as the unique shock having
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is that an SVAR with long run restrictions on labor productivity interprets any low

frequency variation in labor productivity as a neutral technology shock. Indeed,

labor productivity can be decomposed as

log

(
Yt
Lt

)
= Zt + α log

(
Kt

eZtLe,t

)
+ log

(
Le,t
Lt

)
.

The idea underlying the use of an SVAR with long-run restrictions to identify z is

that the second term α log
(

Kt
eZtLe,t

)
is stationary and thus is not affected by any

shock in the long-run. If labor is homogeneous, the third term log
(
Le,t
Lt

)
is zero

so that only neutral technology affects output per hour in the long-run.

If labor inputs are heterogeneous, the third term is not zero and will be moved

by shocks other than Zt. There are two key sources inducing such movements in

the simple model studied in this section. Preference shocks induce changes in the

share of hours worked by skilled and unskilled workers due to different labor supply

elasticities of the two groups. This moves labor productivity at low frequencies and

leads the SVAR procedure to erroneously interpret the innovations in preference

shocks as technology shocks. This explains the R2 of 0.1 in the regression of the

preference shock on the technology shock identified using this method. In the next

Section we will study a richer model with more shocks and will observe that any

shock that induces persistent changes in labor composition will be interpreted as

a technology shock in this context.

Even for a counterfactually constant share of hours worked by skilled and un-

skilled individuals, persistent changes in the relative productivity of skilled workers

induced by the skill-biased shock φt will also induce low-frequency movements in

the effective labor input per hour worked. This explains the R2 of 0.09 in the

a long run effect on labor productivity.

177



regression of the skill-bias shock on the technology shock identified using this

method. Thus, any such non-neutral shocks will also be identified as technology

shocks by this methodology.

Finally, as is well known from the work of Fisher (2006), without additional

restrictions this method confounds neutral and non-neutral investment-specific

shocks.

The Solow Residual

The Solow residual explains on average only 62% of the variation in actual neu-

tral technology because it is a composite of neutral and non-neutral technological

change. This is clear form Equation (4.2) in the Introduction, which specializes

to

(1− α)
Ż

Z
+ φ̇(1− α) log

(
Ls
Le

)
=
Ẏ

Y
− αK̇

K
− φ(1− α)

L̇s
Ls
− (1− φ)(1− α)

L̇u
Lu

in this model. Thus, the Solow residual picks up the non-neutral skill premium

shock φ and explains on average 26% of its variation. The difference between how

much of the skill premium shock is picked up by the Solow residual and how much

is picked up by the SVAR with long run restrictions depends on the persistence

of the skill premium shock. As the persistence of this shock is estimated to be

less than one in this model, its contribution to the Solow residual - which is

independent of this persistence - is larger.

Note that in contrast to the SVAR procedure, the Solow residual we compute

does not pick up the effects of labor composition induced by the preference shocks.

The reason is that when calculating the Solow residual we applied Jorgenson’s cor-
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rection for labor composition effects pioneered by Jorgenson and Griliches (1967).

The key idea underlying this correction is to disaggregate the labor force into cat-

egories based on education, age, gender, etc. Then, in computing total effective

labor input, each hour is weighted by the observed average wage of the group it be-

longs to, assumed to coincide with the marginal product of that labor input. Then,

adding an additional worker with, say, a college degree would account for more

of an increase in output than would adding a worker with a high school diploma.

While this procedure corrects for pure changes in composition, in Appendix D.2

we show that it does not correct for the biased changes in technology affecting

the relative productivity of labor inputs. Of course, it was never intended to do

so as the growth accounting literature was not interested in measuring neutral

technological innovations.13

4.4 Monte Carlo Analysis using a New Keyne-

sian Model

In this section we assess the performance of our method in a Monte Carlo study

using a calibrated benchmark New Keynesian business cycle model. We use a

medium-scale model with price and wage rigidities, capital accumulation, invest-

ment adjustment costs, variable capital utilization, and habit formation. The

model is based on Christiano et al. (2005b) and Smets and Wouters (2007b). We

13We computing the Solow residual we assumed that the parameter α is known and all in-
puts are observed. More realistically though, suppose that the aggregator Let features richer

heterogeneity, for example three groups l,m, h, Let = L
φ1,t

h,t L
φ2,t

m,tL
1−φ1,t−φ2,t

l,t but the researcher
can distinguish only two groups. This misclassification worsens the ability of the Solow residual
to identify technology shocks substantially whereas our methodology is immune to such misclas-
sifications. The result in Table 4.1 assume a correct classification and thus the Solow residual
performs better than it will likely do in real data where misclassification is present.
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enrich this setting with labor heterogeneity. As in the RBC model analyzed in the

previous section, workers can be of two types: low and high skilled. They are dis-

tinguished by their marginal productivity, defined through the production function

in equation (4.17), and by their Frisch elasticity of labor supply νl 6= νh. Appendix

D.4 contains the full description of the model. In addition to the economic shocks

that were present in the RBC model, this model incorporates monetary policy

shocks, price markup shocks, wage markup shocks and shocks to the discount

factor of households. There are nine economic disturbances in total.

After calibrating the model to match the behavior of post-1984 U.S. business

cycles, we apply our procedure on simulated data and compare our estimates with

the true neutral technology series. The economic significance of deviations between

the actual and estimated technology series is assessed by comparing our estimated

impulse response functions to their theoretical counterparts. We repeat this exer-

cise for technology series estimated using the SVAR with long run restrictions and

the Solow residual accounting procedure. Finally, we perform various robustness

checks by varying the parameter estimates of our benchmark calibration.

4.4.1 Calibration

Most of the model’s parameters associated to preferences and technology are fixed

to conventional values used in the literature. In particular, we use the estimates

(posterior mean) reported by Schorfheide et al. (2010), who consider a version

of the model studied here without wage markup shocks and labor heterogeneity.

The parameters associated to labor heterogeneity come from our analysis of the

RBC model, while those governing the economy’s structural shocks are calibrated

through moment matching. In particular, denote the parameters governing the
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structural shocks by θ, and let mT be a vector of sample moments for selected

time series of length T computed using US data. We denote by mT(θ) their model

counterpart when the vector of structural parameter is θ. θ is chosen to minimize

a weighted distance between model and data moments:

min
θ2

[mT − m̂(θ)]′WT[mT − m̂(θ)],

where WT is a diagonal matrix whose nonzero elements are the inverse of the

variance of the corresponding moment. The empirical moments included in the

vector mT are standard measures of cyclical variation and comovement for post

1984 quarterly US data. The time series used are the growth rate in GDP, private

non-durable consumption, private nonresidential investment, total hours worked in

the business sector, total hours of low and high skilled individuals in the business

sector, nominal wages for these two demographic groups, labor productivity, and

an inflation series constructed using the GDP deflator and the Federal Funds

Rate. For each of these time series, we compute the sample standard deviation,

the first order autocorrelation and the cross-correlation with GDP growth. We

collect these sample moments in the vector mT. The associated model’s moments

are calculated via a Monte Carlo procedure. In particular, for each θ, we solve for

the policy functions using first order perturbation. We next simulate a realization

of length T for the model’s counterparts of the above time series and calculate the

vector m̂T(θ). We repeat this procedure M = 300 times, each time changing the

seed used in the simulation. We then take the (component wise) median of m̂(θ)

across the Monte Carlo replications.

Table A-3 summarizes the procedure used for the calibration of our model and

reports numerical values for the structural parameters. Table A-4 reports the fit
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of our model in terms of the calibration targets. We can verify that the calibrated

model is consistent along many dimensions with the behavior of aggregate time

series at business cycle’s frequencies, although certain features of the data are

missed.

4.4.2 Identifying Technology Shocks in Model-Generated

Data

Suppose that data on output, capital and hours worked etc. have been generated

from the New Keynesian model described above and assume that a researcher

identifies technology using the methodology proposed in this paper (i.e., estimates

the state space model discussed in Section 4.3.2), as the Solow residual or using a

SVAR with long run restrictions on labor productivity. Is the researcher correctly

backing-out the actual realization of technology shocks in the economy? To answer

this question, we perform a simple exercise. Given the parametrization of our

model in Table A-3, we simulate M = 300 realizations of length T = 250 for the

model’s variables, and calculate the series of “technology” innovations identified

using the three methods.14

In order to assess the accuracy of each procedure, as in Section 4.3.3, we consider

the R2 of the following linear regressions:

εtruej,t = α + βεidentified
z,t + ηt j ∈ {z, a, φ, g, q, β, r, p, w},

where {εidentified
z,t } are the identified technology shocks and {εtrue

j,t } is structural

14When calculating the Solow residual we use the true parameter α rather than estimating
it. Moreover, we assume that the level of capital utilization is observed by the researcher.
Therefore, the only source of discrepancy between neutral technology shocks and the solow
residual is coming from the time variation in the non nutral technological parameter.
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innovation j in the model economy. The results are presented in Table 4.2.

As in our analysis of the simple RBC model, we find that the shocks identi-

fied using the SVAR with long run restrictions or as the Solow residuals have

little structural interpretation, whereas the proposed method is recovering neutral

technology shocks very well. Indeed, the median R2 of our method equals 0.93.

For comparison, retrieving technology innovations using SVAR with long run re-

strictions yields a median R2 of 0.52, while the Solow residual explains on average

23% of the variation in actual neutral technology. As discussed in Section 4.3.3,

these two methods are not well suited to identify neutral technology shocks in

models with heterogeneous inputs. Indeed, the SVAR with long run restrictions

on labor productivity interprets any low frequency variation in labor productivity

as a neutral technology shock, while the Solow residual is a composite of neutral

and non-neutral skill-biased technical change. This generates biased estimates of

the neutral technology shock, as is clear from Table 4.2. The SVAR procedure

systematically picks up changes in the composition of the labor force induced by

preference and other shocks, which drive labor productivity at low frequencies in

the model. The Solow residual, instead, explains on average 42% of the variation

in the skill premium shock. The procedure proposed in this paper is not subject

to these problems and provides a correct identification of the neutral technology

shock.

Notice also that the correlation between the Solow residual and the Long-Run

shock to productivity is quite high (0.58) and of similar magnitude to the empirical

one reported by Gali (2004). Table 4.3 suggests, therefore, that a high correlation

between these two series is not necessarily a sign of the robustness for either one

of the two procedures.
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Table 4.2: True vs. Identified Technology Shocks: NK Model

Method εz,t εa,t εφ,t εg,t εq,t εβ,t εr,t εp,t εw,t

BHM 0.93 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00
Gali 0.52 0.08 0.14 0.00 0.03 0.02 0.00 0.00 0.04
Solow 0.23 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Each column contains R2 from the regression of the structural innovation εj,t, j ∈ {z, a, φ, g, q, β, r, p, w}
on technology shock εz,t, identified using the procedure in each row. Results are based on a Monte Carlo studies
with 300 replications. BHM refers to the method proposed in this paper as specified in Section 4.3.2. Gali
refers to the technology shock identified following the procedure in Gali (1999). The Solow residual is calculated
applying Jorgenson correction for labor composition effects.

4.4.3 Impulse Response Functions

In the previous section we assessed the quality of our method as well as of the

other two methods (Gali and Solow) by considering the correlation between the

true technology series and the identified ones. While indicative of the various

biases induced by the three methods, these correlations do not provide information

on the economic importance of these biases. In this Section we complement this

evidence by computing impulse responses to identified technology shocks. For all

three identified technology series we compute the impulse response of key model

variables - output, consumption, investment, hours, relative wages of skilled and

unskilled and inflation - and compare it to the impulse response for the true

technology series. Figure 4.1 shows the results. The response of each of these

variables is reported in a separate row of the figure. The three columns report

results for, respectively, our method, SVAR with long run restriction on labor

productivity and the Solow residual. In each panel, the dashed line reports the

true impulse response while the solid line the estimated one, with the shaded area

marking the 90% confidence interval for the estimated impulse response.15

15The estimated impulse response and their confidence interval are constructed as via a Monte
Carlo simulation. Specifically, for n = 1 : N , we i) apply the three procedures on time series
simulated from the model; ii) collect the series of estimated technology innovations for the three
procedures; iii) compute impulse response as described in Section 4.2.4. The figure reports the
pointwise median and 90% confidence interval across these Monte Carlo simulations.

184



Figure 4.1: Impulse Responses to Identified Technology Shocks
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As already suggested by the high correlation between our identified technology

series and the true technology series, we find in the first column of the figure

that the true and estimated impulse response are very similar as well. With

the exception of investment, we can verify that our estimated impulse response

functions track very closely their model counterpart. Moreover, the true impulse

response always fall in the 90% confidence interval of our estimator. This is

clearly not the case for the SVAR approach: the estimates of the the response of

the model’s variables to a neutral technology shock are, in fact, very imprecise.

From our previous discussion we know that SVARs with long run restrictions on

labor productivity misinterpret low frequency variation in labor supply with a

neutral technology shock. Specifically, a decline in labor supply moves measured

output per worker up, and it is interpreted by this procedure as a technology

improvements. Not surprisingly, the response of hours to this innovation is biased

downward relative to its response to the true technology shock. Because of that,

the response of output, consumption and investment is also biased downward: in

our numerical simulations, a researcher using SVARs with long run restrictions

would conclude that neutral technology shocks are unimportant for business cycle

fluctuations, as these variables hardly move conditional on an increase in the

identified neutral shock. The response to the Solow residual for real variables

are more in line with the true impulse response functions. This reflects the fact

that, under our parametrization, skill premium shocks are fairly unimportant for

business cycle dynamics. The pattern, though, is that the a positive skill bias shock

raises the Solow residual. This shock, in the model, lowers worked hours, increase

output and its components and lowers inflation as it decreases firms’ marginal

costs. These biases can be observed by comparing the true and estimated impulse

response functions in the third column of the figure.
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Beside the average behavior, the figure also documents that our method signifi-

cantly improves in the precision of estimates for the impulse response. Confidence

interval are, in fact, significantly tighter relative to the other two approaches. This

is the result that the technology series we identify is, on average, less noisy with

respect to the other methods.

4.4.4 Sensitivity

We now assess whether these results are sensitive to the particular parameteriza-

tion we used. To do so we vary the value of each potentially relevant estimated

parameter to the upper or lower boundary of its 95% confidence interval. For each

resulting parameterization we report the R2 of the following linear regressions:

εtruez,t = α + βεidentified
z,t + ηt,

where {εidentified
z,t } are the identified technology shocks and {εtrue

z,t } is structural

neutral technology innovation. The results are presented in Table 4.3.

Table 4.3 shows results for those parameters where we obtained a different R2

from either increasing it to the lower or upper bound of its confidence interval. In

addition we report results for “technology” parameters such as κ (capital adjust-

ment), γu (capital utilization), the persistence of the price of new investment ρq

and of the skill shock, ρφ that may be thought of easily confoundable with neutral

technology. We find that this is not the case. This conclusion remains also if we

for example increase the persistence of the price of investment q to ρq = 0.99.

Similarly changing the parameters governing the stickiness of prices and wages,

σw, σp, ρw and θw does not alter our conclusions. Although the R2 slightly moves,
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Table 4.3: Sensitivity to Parameters in New Keynesian Model

BHM Gali Solow
Parameter down up down up down up

θw ∈ {0.15, 0.35} 0.95 0.87 0.46 0.54 0.23 0.23
h ∈ {0.58, 0.72} 0.92 0.92 0.53 0.50 0.23 0.23
γu ∈ {0.14, 0.41} 0.93 0.93 0.55 0.50 0.23 0.23
κ ∈ {0.84, 3.91} 0.93 0.93 0.52 0.50 0.23 0.23
ρw ∈ {0.02, 0.04} 0.93 0.90 0.52 0.46 0.23 0.23
ρq ∈ {0.31, 0.46} 0.93 0.93 0.52 0.52 0.23 0.23
ρφ ∈ {0.04, 0.12} 0.93 0.93 0.52 0.46 0.23 0.24
σw ∈ {0.27, 0.62} 0.93 0.93 0.50 0.53 0.23 0.23

100× σp ∈ {0.09, 0.21} 0.93 0.92 0.51 0.51 0.23 0.23
Notes: Each column contains the R2 from the regression of the structural neutral technology innovation εz,t on
the technology shock εz,t, identified using the procedure in the respective column. The column “down” refers to
lowering the respective parameter to the lower bound of its condifence band and the column “up” refers to the
increase to the upper bound. Results are based on a Monte Carlo study with 300 replications. BHM refers to
the method proposed in this paper as specified in Section 4.3.2. Gali refers to the technology shock identified
following the procedure in Gali (1999). The Solow residual is calculated applying Jorgenson correction for labor
composition effects.

we checked that this change is inconsequential for the impulse responses to the

neutral technology identified using our proposed method.

4.5 Conclusion

Standard methods for identifying technology shocks in the data do not identify

neutral technology in models with heterogeneous inputs. In particular, the pres-

ence of worker heterogeneity invalidates the key identification assumption in Gali

(1999) because not only technology, but virtually all persistent shocks have a long

run effect on productivity in such models. The identification of neutral technol-

ogy shocks using the Solow residual accounting procedure is also biased if the

effects of factor heterogeneity and non-neutral technical changes are not explicitly

accounted for.

Yet, most models have clear predictions for the dynamic responses of variables
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to neutral technology shocks only. Thus, to evaluate such models it is desirable

to be able to separate neutral technology shocks from the multitude of other

shocks in the data and to compare the conditional response of variables to these

neutral shocks in the data to the responses implied by the models. As existing

measures of technology in the data confound neutral technology with non-neutral

technology shocks or even with non-technology shocks, such a comparison would

not be informative on the empirical performance of a model.

In this paper we therefore propose a method to identify neutral technology in

the data. We use Uzawa’s classic characterization on balanced growth, to show

that imposing balanced growth properties on long-run impulse responses uniquely

identifies neutral technology shocks. We implement this identification in the data

using an identified state-space model and establish in Monte Carlo simulations

that neutral technology is very well recovered in business cycle models including

the New Keynesian one. In particular small samples do not lead our methodology

to confound neutral technology neither with non-neutral technology shocks nor

with non-technology shocks, such as wage markup shocks or preference shifts.

In future research we plan to apply our method to identify neutral technology

shocks in U.S. data. In particular, we will describe and analyze the sequence of

identified shocks and document its co-movement with other economic aggregates.

Finally, we will hopefully be able to provide conclusive answers to some of the

classic questions in macroeconomics.
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Appendix A

Appendix to “The Pass-Through

of Sovereign Risk”

A.1 Derivation of Results 1

Combine equation (1.3) and (1.4) to eliminate the demand for deposits from the

decision problem of the banker. The decision problem is then

vb(n; S) = max
aB ,aK

ES {Λ(S′,S) [(1− ψ)n′ + ψvb(n
′; S′)]} ,

n′ =
∑

j={B,K}

[Rj(S
′,S)−R(S)]Qj(S)aj +R(S)n,

λ

 ∑
j={B,K}

Qj(S)aj

 ≤ vb(n; S),

S′ = Γ(S).

Guess that the value function is v(n,S) = α(S)n. Necessary and sufficient
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conditions for an optimum are

ES {Λ(S′,S) [(1− ψ) + ψα(S′)] [Rj(S
′,S)−R(S)]} = λµ(S) j = {B,K},

(A.1)

µ(S)

α(S)n− λ
∑

j={B,K}

Qj(S)aj

 = 0. (A.2)

Substituting the guess in the dynamic program, and using the law of motion for

n′, we obtain

vb(n,S) = max
aB ,aK

 ∑
j={B,K}

ES

{
Λ(S′,S)[(1− ψ) + ψα(S′)][Rj(S

′)−R(S)]
}
Qj(S)aj

+

ES

{
Λ(S′,S)[(1− ψ) + ψα(S′)]

}
R(S)n.

Note that the first term on the right hand side of the above equation equals

µ(S)α(S)n. Indeed, when the leverage constraint does not bind (µ(S) = 0), ex-

pected discounted returns on assets held by bankers equal the discounted risk free

rate by equation (A.1). This implies that the term equals 0. When the constraint

binds (µ(S) > 0), instead, this term can be written as

λµ(S)
∑

j={B,K}

Qj(S)aj.

Using the complementary slackness condition in (A.2), we can rewrite the ex-

pression λµ(S)
∑

j={b,k}Qj(S)aj as µ(S)α(S)n. Thus, the value function under
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the guess takes the following form:

α(S)n = µ(S)α(S)n+ ES {Λ(S′,S)[(1− ψ) + ψα(S′)]}R(S)n.

Solving for α(S), we obtain

α(S) =
ES{Λ(S′,S)[(1− ψ) + ψα(S′)]}R(S)

1− µ(S)
.

The guess is verified if µ(S) < 1. From equation (A.2) we obtain:

µ(S) = max

1− ES{Λ(S′,S)[(1− ψ) + ψα(S)]}R(S)n

λ
(∑

j={B,K}Qj(S)aj

) , 0

 < 1.

Finally, notice that financial leverage equals across bankers whenever µ(S) > 0.

This implies that n
λ
∑
j={B,K}Qjaj

is equal to N

λ[
∑
j={B,K}QjAj]

when the constraint

binds.
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A.2 Numerical Solution

A.2.1 Equilibrium Conditions

The state variables of the model are S = [K̃, B̃, P̃ ,∆z, g, s, d]. The control vari-

ables {C̃(S), R(S), α(S), QB(S)} solve the residual equations

ES

[
β
C̃(S)

C̃(S′)
e−∆z′R(S)

]
− 1 = 0, (A.3)

ES

β C̃(S)

C̃(S′)
e−∆z′ [(1− ψ) + ψα(S′)]

 (1− δ)QK(S′) + α Ỹ (S′)

K̃′(S)
e∆z′

QK(S)

− λµ(S) = 0, (A.4)

ES

{
β
C̃(S)

C̃(S′)
e−∆z′ [(1− ψ) + ψα(S′)] [1− d′D]

[
π + (1− π) [ι+Qb(S

′)]

QB(S)

]}
− λµ(S) = 0, (A.5)

α(S)−
(1− ψ) + ψR(S)ES

[
β C̃(S)

C̃(S′)
e−∆z′α(S′)

]
1− µ(S)

= 0, (A.6)

where QK(S) is the market value of the capital stock and the multiplier µ(S) is

given by

µ(S) = max

1−

ES

{
β C̃(S)

C̃(S′)
e−∆z′ [(1− ψ) + ψα(S′)]R(S)

}
Ñ(S)

λ[QK(S)K̃ ′(S) +QB(S)B̃(S)]

 , 0
 . (A.7)

The endogenous state variables [K̃, B̃, P̃ ] evolve as follows

K̃ ′(S) =

{
(1− δ)K̃ + Φ

[
e∆z

(
Ỹ (S)(1− eg)− C̃(S)

K̃

)]
K̃

}
e−∆z, (A.8)
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B̃′(S) =
[1− dD]{π + (1− π)[ι+QB(S)]}B̃e−∆z + Ỹ (S)

[
g −

(
t∗ + γτ

B
Ỹ (S)

)]
QB(S)

, (A.9)

P̃ ′(S) = R(S)[Qk(S)K̃ ′(S) +Qb(S)B̃′(S)− Ñ(S)]. (A.10)

The state variable P̃ measures the detrended cum interest deposits that bankers

pay to households at the beginning of the period and it is sufficient to keep track

of the evolution of aggregate bankers’ net worth. Indeed, the aggregate net worth

of banks can be expressed as

Ñ(S) = ψ

{[
QK(S) + α

Ỹ (S)

K̃
e∆z

]
K̃ + [1− dD] [π + (1− π) [ι+QB(S)]] B̃ − P̃

}
(A.11)

+ω[QK(S)K̃ +QB(S)B̃].

Using the intratemporal Euler equation of the household, we can express de-

trended output as

Ỹ (S) =

[
χ−1 (K̃e−∆z)α

C̃(S)

] 1−α
α+ν−1

(Ke−∆z)α. (A.12)

The exogenous state variables [∆z, log(g), s] evolve as follows

∆z′ = (1− ρz)γ + ρz∆z + σzεz, (A.13)

g′ = (1− ρg)g∗ + ρgg + σgεg, (A.14)

s′ = (1− ρs)s∗ + ρss+ σsεs, (A.15)
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while d follows

d′ =

1 with probability es

1+es

0 with probability 1− es

1+es
.

(A.16)

It will be convenient to express detrended state and control variables as log-

deviations from their deterministic steady state. I denote this transformation for

variable x as x̂.

A.2.2 Algorithm for Numerical Solution

I approximate the control variables of the model using piece-wise smooth functions,

parametrized by γ = {γxd=0, γ
x
d=1}x={Ĉ,α̂,Q̂b,R̂}. The law of motion for a control

variable x is described by

x(d, Ŝ) = (1− d)γxd=0
′T(Ŝ) + dγxd=1

′T(Ŝ), (A.17)

where Ŝ = [K̂, P̂ , B̂,∆ẑ, ĝ, ŝ] and T(.) is a vector collecting Chebyshev’s poly-

nomials.1 Define R(γc, {d, Ŝ}) to be a 4 × 1 vector collecting the left hand

side of the residual equations (A.3)-(A.6) for the candidate solution γc evaluated

at {d, Ŝ}. The numerical solution of the model consists in choosing γc so that

R(γc, {d, Ŝ}) = 0 for a set of collocation points {d, Ŝi} ∈ {0, 1} × S.

The choice of collocation points and of the associated Chebyshev’s polynomials

follows Krueger et al. (2010). The rule for computing conditional expectations

when evaluating R(γc, {d, Ŝ}) follows Judd et al. (2011). To give an example of

this latter, suppose we wish to compute Ed,Si [y(d′, Ŝ′)], where y is an integrand of

interest.2 Given a candidate solution γc, we can compute y at every collocation

1The shocks are expressed as deviation from their mean.
2For example, y could be e−∆z′

C(S′) in equation (A.3).
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point using the model’s equilibrium conditions. Next, we can construct an implied

policy function for y, {γyd=0, γ
y
d=1}, via a Chebyshev’s regression. Using the law of

total probability, the conditional expectation of interest can be expressed as

Ed,Si [y(d′, Ŝ′)] = (1− Prob{d′ = 1|Ŝi})EŜi [γ
y
d=0
′T(Ŝ′)] +

(A.18)

+Prob{d′ = 1|Ŝi}EŜi [γ
y
d=1
′T(Ŝ′)],

where Prob{d′ = 1|Ŝi} = es
i

1+es
i . Judd et al. (2011) propose a simple procedure

to evaluate integrals of the form EŜi [γ
y
d=1
′T(Ŝ′)]. In proposition 1 of their pa-

per, they show that, under weak conditions, the expectation of a polynomial can

be calculated via a linear transformation I of the coefficient vector γyd , where I

depends exclusively on the deep parameters of the model. The authors provide

general formulas for the transformation I.

The algorithm for the numerical solution of the model goes as follows

Step 0.A: Defining the grid and the polynomials. Set upper and

lower bounds on the state variables Ŝ = [K̂, P̂ , B̂,∆z, g, s]. Given these

bounds, construct a µ-level Smolyak grid and the associated Chebyshev’s

polynomials T(.) following Krueger et al. (2010).

Step 0.B: Precomputing integrals. Compute I using Judd et al. (2011)

formulas.

Step 1: Equilibrium conditions at the candidate solution. Start

with a guess for the model’s policy functions γc. For each (d, Ŝi), use γc and

equation (A.17) to compute {Ĉ(d, Ŝi), α̂(d, Ŝi), Q̂b(d, Ŝ
i), R̂(d, Ŝi)}. Given

the control variables, solve for the endogenous state variables next period
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using the model’s equilibrium conditions. Given the value of control and

state variables, compute the value of every integrand in equations (A.3)-

(A.6) at (d, Ŝi). Collect these integrands in the matrix y.

Step 2: Evaluate conditional expectations. For each d = {0, 1}, run a

Chebyshev regression for the integrand in y, and denote by γyd the implied

policy function for an element y ∈ y. Conditional expectations are calculated

using equation (A.19) and the matrix I.

Step 3: Evaluate residual equations. Given conditional expectations,

compute the multiplier using equation (A.7). Evaluate the residual equations

R(γc, {d, Ŝi}) at every collocation point (d, Ŝi). The dimension of the vector

of residuals equals 4 times the cardinality of the state space. Denote by r

the Euclidean norm for this vector.

Step 4: Iteration. If r ≤ 10−20, stop the algorithm. Else, update the

guess and repeat Step 1-4. �

The specific for the algorithm are as follows

Choice of bounds. The bounds on [∆ẑ, ĝ] are +/- 3 standard deviations

from their mean. The bounds on ŝ are larger and set to [−5,+5]. The

bounds on the endogenous state variables Ŝ = [K̂, P̂ , B̂] are set to +/- 4.5

their standard deviations in the model without sovereign risk. The standard

deviation is calculated by simulating a third order perturbation of the model

without sovereign risk. A desirable extention of the algorithm is to select

different bounds depending on whether the economy is in a default state or

not.

Smolyak Grid. For tractability, I choose µ = 3 for the Smolyak grid. This
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implies that I have 389 distinct points in S.

Precomputation of Integrals. I use Gaussian numerical quadrature for

computing the matrix I.

Iterative Algorithm. I find the zeros of the residual equation using a

variant of the Newton algorithm. To speed up computations, numerical

derivatives are computed in parallel.

I denote the model solution by γ∗.

A.2.3 Accuracy of Numerical Solution

I check the accuracy of the numerical solution by computing the errors of the

residual equations (Judd, 1992). More specifically, I proceed as follows. First,

I simulate the model forward for 5000 periods. This gives a simulation for the

state variable of the model {dt, Ŝt}5000
t=1 . Second, for each pair (dt, Ŝt), I calculate

the errors of the residual equations R(γ∗, {dt, Ŝt}). As an example, let’s consider

equation (A.4). Then, the residual error at (dt, Ŝt) for this equation is defined as

1−
Edt,Ŝt

{
β C̃(dt,Ŝt)

C̃(S′)
e−∆z′ [(1− ψ) + ψα(S′)]

[
(1−δ)QK(S′)+α Ỹ (S′)

K̃′(dt,Ŝt)
e∆z
′

QK(dt,Ŝt)

]}
λµ(dt, Ŝt)

,

where the model’s policy functions are used to generate the value for endogenous

variables at dt, Ŝt. Note that, by construction, the residual errors are zero at the

collocation points. This residual equation errors provide a measure of how large

are the discrepancy between the decision rule derived from the numerical algorithm

and those implied by the model’s equilibrium condition in other points of the state

space. Following standard practice, I report the decimal log of the absolute value
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Figure A.1: Residual Equations Errors
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Notes: The histograms reports the residual equations errors in decimal log basis. The dotted
line marks the mean residual equation error.

of these residual errors. Figure A.1 below reports the density (histogram) of those

errors.

On average, residual equation errors are in the order of -4.75 for the risk free

rate, -3.5 for consumption and the price of government securities and -3 for the

marginal value of wealth. These numbers are comparable to values reported in

the literature for models of similar complexity, and they are still very reasonable.

Figure A.2 reports residual equation errors for a sequence of states {St}2011:Q4
t=2004:Q1

extracted using the particle filter (See Section 1.4). The figure shows that residual

equation errors are reasonable in empirically relevant region of the state space.

Figure A.2: Residual Equations Errors: Empirically Relevant Region
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A.3 Data Source

A.3.1 Credit Default Swap (CDS) Spread

Daily CDS spreads on 5 years Italian governmet securities (RED code: 4AB951).

The restructuring clause of the contract is CR (complete restructuring). The

spread is denominated in basis points and paid quarterly. The source is Markit,

accessed from the Wharton Research Data Services.

A.3.2 Banks’ exposure to the Italian government

The European Banking Authority (EBA) published information on holdings of

government debt by European banks participating to the 2011 stress test. Five

Italian banks were in this pool: Unicredit, Intesa-San Paolo, Monte dei Paschi di

Siena (MPS), Banco Popolare (BPI) and Unione di Banche Italiane (UBI). Re-

sults of the stress test for each of these five banks are available at http://www.eba.

europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011/results.

I measure exposure of each bank to Italian central and local government as gross

direct long exposure (accounting value gross of specific provisions). This informa-

tion is available by maturity of financial instrument, and it reflects positions as

of 31st of December 2010. I match these data on exposure with end of 2010 total

financial assets for each of the five institutions. This latter information is obtained

using consolidated banking data from Bankscope, accessed from the Wharton Re-

search Data Service. Table A.1 reports these information.
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Table A.1: Exposure to Domestic Sovereign by Major Italian Banks: End
of 2010

3Mo 1Yr 2Yr 3Yr 5Yr 10Yr 15Yr Tot. Tot. Assets

Intesa 17.71 9.86 2.82 5.16 8.16 6.64 9.77 60.15 658.76

Unicredit 17.97 10.14 3.04 6.21 4.47 6.39 0.87 49.07 929.49

MPS 5.67 4.99 4.00 3.58 1.45 3.75 9.02 32.47 240.70

BPI 3.89 1.65 1.14 3.64 0.78 0.40 0.25 11.77 134.17

UBI 1.33 3.56 0.30 0.31 0.72 2.53 1.76 10.54 129.80

Total 46.57 30.02 11.30 18.9 13.76 19.71 21.67 164.00 2092.99

Notes: Data is reported in billions of euros.

A.3.3 Construction of the Multiplier

Result 2. In equilibrium, the multiplier on the incentive constraint of bankers is a

function of financial leverage and of the spread between a risk free security traded

by bankers and the risk free rate

µt =

[
Rft−Rt
Rt

]
levt

1 +
[
Rft−Rt
Rt

]
levt

. (A.19)

Proof. Since the asset is risk free, one has that covt(Λ̂t+1, R
f
t+1) = 0. Therefore,

using equation (1.25) in the main text, one has:

[
Rf
t −Rt

Rt

]
=

λ

αt

µt
1− µt

.

Equation (A.19) follows from the fact that αt
λ

equals financial leverage when
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µt > 0.

Essentially, Result 2 tells us that the agency friction can be interpreted as a

markup on financial intermediation. To measure this markup, one needs to focus

on returns on assets, traded only by bankers, that have the same risk properties

of households’ deposits. I use the prime interbank rate to measure Rf
t since the

model of Section 3.3 can be interpreted as having a frictionless interbank market

as in Gertler and Kiyotaki (2010). The time series used in the construction of the

multiplier are the following

Financial Leverage: The definition of financial leverage in the model is banks’

equity divided by the market value of total assets. I use quarterly data from the

Italian flow of funds (Conti Finanziari) to construct these two time series. First,

I match banks in the model with Monetary and Financial Institutions (MFIs).

This category includes commercial banks, money market funds and the domestic

central bank. I use balance sheet information for the Bank of Italy to exclude

the latter from this pool. Second, I construct a time series for bank equity as the

difference between “total assets” and total debt liabilities. This latter is defined

as “total liabilities” minus “shares and other equities” (liabilities) and “mutual

fund shares” (liabilities). Financial leverage is the ratio between equity and total

assets. Data can be downloaded at http://bip.bancaditalia.it/4972unix/.

See Bartiloro et al. (2003) for a description of the Italian flow of funds.

TED Spread: The prime interbank rate (EURIBOR 1yrs.) is obtained from the

ECB Statistical Data Warehouse, under Market Indexes in the section Monetary

and Financial Statistics. The frequency of observation is monthly. Data can be

downloaded at http://sdw.ecb.europa.eu/. I match the model’s risk free rate

with the yields on German bonds with a 1 year maturity. A monthly time series
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for this latter is obtained from the time series database of the Deutsche Bundes-

bank. Data can be downloaded at http://www.bundesbank.de/Navigation/EN/

Statistics/Time_series_databases/time_series_databases.html. I construct

a quarterly measure of the TED spreads by averaging the computed series over

three months.

A.3.4 Other Time Series

GDP growth: Real GDP growth is the growth rate relative to previous quarter

of real gross domestic product (B1 EG). Data are quarterly, 1980:Q1-2012:Q4.

The source is OECD Quarterly National Accounts.

Consumption growth: Consumption growth is the growth rate relative to pre-

vious quarter of real private final consumption expenditure (P31S14 S15 ). Data

are quarterly, 1991:Q1-2012:Q4. The source is OECD Quarterly National Ac-

counts.

Spending-Output Ratio: Spending-output ratio is general government final

consumption expenditure divided by gross domestic product. Both series are sea-

sonally adjusted and in volume estimates. Data are quarterly, 1991:Q1-2012:Q4.

The source is OECD Quarterly National Accounts.

Investment-Output Ratio: Investment-output ratio is gross capital formation

divided by gross domestic product. Both series are seasonally adjusted and in

volume estimates. Data are quarterly, 1991:Q1-2012:Q4. The source is OECD

Quarterly National Accounts.

Labor income share: I obtain annual data (1970-2007) for and labor compen-

sation (LAB) and value added (VA) from EU KLEMS database. Labor share is
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defined as LAB
VA

. Data can be downloaded at http://www.euklems.net/.

Worked hours: Average numbers of hours worked per year by person engaged.

I scale the series by (24− 8)× 7× 52. Data are annual (1970-2007), and obtained

from EU KLEMS. Data can be downloaded at http://www.euklems.net/.
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A.4 Estimating the Model without Sovereign Risk

The model without sovereign risk has five state variables St = [K̂t, P̂t, B̂t,∆zt, gt].

Let Yt be a 2 × 1 vector of observables collecting output growth and the time

series for the multiplier on the leverage constraint. The state-space representation

is

Yt = fθ̃(St) + ηt ηt ∼ N (0,Σ) (A.20)

St = gθ̃(St−1, εt) εt ∼ N (0, I). (A.21)

The first equation is the measurement equation, with ηt being a vector of Gaus-

sian measurement errors. The second equation is the transition equation, which

represents the law of motion for the model’s state variables. The vector εt repre-

sents the innovation to the structural shocks ∆zt and gt. The function fθ̃(.) and

gθ̃(.) are generated using the numerical procedure described in Appendix A.2 ap-

plied to the model without sovereign risk. I characterize the posterior distribution

of θ̃ using full information Bayesian methods. I denote by p(θ̃) the prior on θ̃. In

what follows, I provide details on the likelihood evaluation and on the posterior

sampler adopted.

A.4.1 Likelihood Evaluation

Let Yt = [Y1, . . . ,Yt], and denote by p(St|Yt−1; θ) the conditional distribution of

the state vector given observations up to period t− 1. The likelihood function for
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the state-space model of interest can be expressed as

L(YT |θ) =
T∏
t=1

p(Yt|Yt−1; θ) =
T∏
t=1

[∫
p(Yt|St; θ)p(St|Yt−1; θ)dSt

]
. (A.22)

While the conditional density of Yt given St is known and Gaussian, there is

no analytical expression for the density p(St|Yt−1, θ). I use the auxiliary particle

filter of Pitt and Shephard (1999) to approximate this density via a set of pairs

{Sit , π̃it}Ni=1. This approximation is then used to estimate the likelihood function.

Step 0: Initialization. Set t = 1. Initialize {Si0, π̃i0}Ni=1 from the model’s

ergodic distribution and set π̃i0 = 1
N
∀i.

Step 1: Prediction. For each i = 1, . . . , N , draw Sit|t−1 values from the

proposal density g(St|Yt,Sit−1).

Step 2: Filtering. Assign to each Sit|t−1 the particle weight

πit =
p(Yt|Sit|t−1; θ)p(St|Sit|t−1; θ)

g(St|Yt,Sit−1)
.

Step 3: Sampling. Rescale the particles {πit} so that they add up to

unity, and denote these rescaled values by {π̃it}. Sample N values for the

state vector with replacement from {Sit|t−1, π̃
i
t}Ni=1. Call each draw {Sit}. If

t < T , set t = t+ 1 and go to Step 1. Else, stop. �

The likelihood function of the model is then approximated as

L(YT |θ) ≈ 1

N

(
T∏
t=1

[
1

N

N∑
i=1

p(Yt|Sit|t−1; θ)

])
.

Regarding the tuning of the filter, I set N = 20000. The matrix Σ is diagonal,
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and the diagonal elements equal 25% of the variance of the observable variables.

The choice for the proposal density g(St|Yt,Sit−1) is more involved. I sample

the structural innovations εt from N (mt, I). Then, I use the model’s transition

equation (A.21) to obtain Sit|t−1. The center for the proposal distribution for εt is

generated as follows:

- Let St−1 be the mean for {Sit−1} over i.

- Set mt to the solution of this optimization program

argminε
{

[Yt − fθ̃(gθ̃(St−1, ε))]
′[Yt − fθ̃(gθ̃(St−1, ε))] + ε′Σ−1ε

}
.

The first part of the objective function pushes ε toward values such that the

state vector can rationalize the observation Yt. The second part of the objective

function imposes a penalty for ε that are far away from their high density regions.

I verify that this proposal density results in substantial efficiency gains relative

to the canonical particle filter, especially when the model tries to fit extreme

observations for Yt.

A.4.2 Posterior Sampler

I characterize the posterior density of θ̃ using a Random Walk Metropolis Hastings

with proposal density given by

q(θ̃p|θ̃m−1) ∼ N (θ̃m−1, cH).

The sequence of draws {θ̃m} is generated as follows

i) Initialize the chain at θ̃1.
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ii) For m = 2, . . . ,M , draw θ̃p from q(θ̃p|θ̃m−1). The jump from θ̃m−1 to θ̃p is

accepted (θ̃m = θ̃p) with probability min{1, r(θ̃m−1, θ̃p|YT )}, and rejected

otherwise (θ̃m = θ̃m−1). The probability of accepting the draw is

r(θ̃m−1, θ̃p|YT ) =
L(YT |θ̃p)p(θ̃p)

L(YT |θ̃m−1)p(θ̃m−1)
.

First, I run the chain for M = 10000 with H being the identity matrix and c =

0.001. The chain is initialized from an estimation of the model using the Method

of Simulated Moments.3 I drop the first 5000 draws, and I use the remaining

draws to initialize a second chain and to construct a new candidate density. This

second chain is initialized at the mean of the 5000 draws. Moreover, the variance-

covariance matrix H is set to the empirical variance-covariance matrix of these

5000 draws. The parameter c is fine tuned to obtain an acceptance rate of roughly

60%. I run the second chain for M = 20000. Posterior statistics are based on the

latter 10000 draws.

3The moments used in this step are: i) mean, standard deviation and autocorrelation for
GDP growth and the multiplier; ii) correlation between GDP growth and the multiplier.
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A.5 Policy Experiments

A.5.1 Refinancing Operations

It is instructive to first consider the stationary problem. The government allows

bankers to borrow up to m at the fixed interest rate Rm, and this intervention

is financed through lump-sum taxation. Moreover, these loans are not subject to

limited enforcement problems. The decision problem of the banker becomes

vb(n; S) = max
aB ,aK ,b

ES {Λ(S′,S) [(1− ψ)n′ + ψvb(n
′; S′)]} ,

n′ =
∑

j={B,K}

[Rj(S
′,S)−R(S)]Qj(S)aj +

+[Rm −R(S)]m−R(S)b,∑
j={B,K}

Qj(S)aj = n+ b,

λ

 ∑
j={B,K}

Qj(S)aj −m

 ≤ vb(n; S),

m ∈ [0,m],

S′ = Γ(S).

Assuming that m ≥ 0 does not bind,4 the first order condition with respect to m

is

Es
{

Λ(S′,S)

[
(1− ψ) + ψ

∂vb(n
′; S)

∂n′

]}
[R(S)−Rm] + λµ(S) = χ(S)

It can be showed, following a similar logic of Result 1, that vb(n; S) = α(S)n +

x(S), with x(S) ≥ 0. The leverage constraint becomes

4This is not a restriction, as the policy considered involves an Rm substantially below R,
meaning that bankers are willing to accept the loan.
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∑
j Qj(S)aj

n
≤ α(S)

λ
+
x(S)

λ
+m

Notice that refinancing operations have two main direct effects on banks. First,

they represent an implicit transfer to banks. Indeed, to the extent that (Rm <

R(S)), banks benefit from the policy as their debt is subsidized. This has a positive

effect on the net worth of banks relative to what would happen in the no-policy

case. Second, the policy relaxes the leverage constraint of banks. This happens

because of two distinct reasons: i) the loan from the government does not enter

in the computation of the constrained level of leverage (the m component); and

ii) the value function of bankers increase as a result of the subsidized loan, this

lowering the incentives of the banker to walk away.

A.5.2 Longer Term Refinancing Operations (LTROs)

The LTROs are a non-stationary version of the refinancing operations discussed

above. The government allows banker to borrow up to m in period t = 1, and

they receive the pricipal and the interest in a later period T . Figure A.3 describes

the timing of transfers between government and banks under LTROs.

I assume that the policy was unexpected by agents. At time t = 1, agents are

perfectly informed about the time path of the loans and they believe that the

policy will not be implemented in the future. Note that the decision rules under

LTROs are time dependent: the dynamics at t = 1 will be different from those

at t = T − 1 as in the latter case we are getting closer to the repayement stage

and banks will have a different behavior. In order to solve for the path of model’s

decision rules, I follow a backward induction procedure. From period t = T + 1
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Figure A.3: Timing of LTROs

0 t = 1 t = T

R m

0

m
Transfers

onward, the decision rules are those in absence of policy. Thus, at t = T , agents use

those decision rules to form expectations. By solving the equilibrium conditions

under this assumption and the repayment of the loan, we can obtain decision rules

for cT (S), RT (S), αT (S), QB,T (S). At t = T − 1 we proceed in the same way, this

time using cT (S), RT (S), αT (S), QB,T (S) to form expectations. More specifically,

the policy functions in the transition {ct(S), Rt(S), αt(S), Qb,t(S)}Tt=1, are derived

as follows:

i) Period T : Solve the model using {c(S), R(S), α(S), q(S)} to form expecta-

tions. The multiplier is modified as follows

µT (S) = max

{
1− ES{ΛT+1(S′)[(1− ψ) + ψαT+1(S)]}RT (S)(N ′ −m)

λ (Qb,T (S)B′T +Qk,T (S)K ′T )
, 0

}

Denote the solution by {cT (S), RT (S), αT (S), qT (S)}.

ii) Period t = T−1, . . . , 1: Solve the model using the previous iteration policy

functions to form expectations. �
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Appendix B

Appendix to “Assessing DSGE

Model Nonlinearities”

B.1 QAR(1,1) Model

This section shows how to derive important moments for the QAR(1,1) model

given by

yt = φ1yt−1 + φ2s
2
t−1 + (1 + γst−1)σut, ut ∼ iidN(0, 1) (B.1)

st = φ1st−1 + σut, |φ1| < 1 (B.2)

by exploiting the recursively linear structure of the model. The model corresponds

to (2.9) in the main text. To simplify the presentation, we dropped the tildes for

φ2, γ, and s.
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B.1.1 Moments

We now derive the time-invariant mean and autocovariances for yt, assuming the

process is stationary and was initialized in the infinite past. Due to the recursively

linear structure of the model we begin with the derivation of the moments of st.

Moments of st. The process st in (B.2) is linear and has a moving average

representation of the from

st = σ

∞∑
j=0

φj1ut−j.

The mean and the autocovariances of st are given by

E[st] = 0, µs2 = E[s2
t ] =

σ2

1− φ2
1

, E[stst−h] = φh1µs2 .

Since the innovations ut are iid standard normal variates, we obtain the following

third and fourth moments:

E[s3
t ] =

∞∑
j=0

φ3j
1 E[u3

t−j] = 0, E[s4
t ] =

∞∑
j=0

φ4j
1 E[u4

t−j] =
3σ4

1− φ4
1

.

Mean of yt. Taking expectations on both sides of (B.1) we obtain

E[yt] = φ1E[yt−1] + φ2µs2 + (1 + γE[st−1])σE[ut] = φ1E[yt] +
φ2σ

2

1− φ2
1

.

Here we used the expression for µs2 obtained previously as well as the fact that ut

and st−1 are independent. In turn,

µy = E[yt] =
φ2σ

2

(1− φ1)(1− φ2
1)
. (B.3)
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Variance of yt. Consider the centered second moment of yt:

V[yt] = E
[
(φ1(yt−1 − µy) + φ2(s2

t−1 − µs2) + σ(1 + γst−1)ut)
2
]

= E
[
φ2

1(yt−1 − µy)2 + φ2
2(s2

t−1 − µs2)2 + σ2(1 + γst−1)2u2
t

2φ1φ2(yt−1 − µy)(s2
t−1 − µs2) + 2φ2σ(s2

t−1 − µs2)(1 + γst−1)ut

+2φ1σ(1 + γst−1)(yt−1 − µy)ut
]

= φ2
1E[(yt−1 − µy)2] + φ2

2E[(s2
t−1 − µs2)2] + σ2(1 + γ2µs2)

+2φ1φ2E[(yt−1 − µy)(s2
t−1 − µs2)].

The time-invariant solution is

V[yt] =
1

1− φ2
1

[
φ2

2V[s2
t ] + σ2(1 + γ2E[s2

t ]) + 2φ1φ2Cov[yt, s
2
t ]

]
,

where

Cov[yt, s
2
t ] = E

[
(φ1(yt−1 − µy) + φ2(s2

t−1 − µs2) + (1 + γst−1)σut)

×(φ2
1(s2

t−1 − µs2) + 2φ1σst−1ut + σ2(u2
t − 1))

]
= φ3

1E[(yt−1 − µy)(s2
t−1 − µs2)] + φ2

1φ2E[(s2
t−1 − µs2)2]

+2φ1γσ
2µs2 ,

which implies

Cov[yt, s
2
t ] =

1

1− φ3
1

[
φ2

1φ2V[s2
t ] + 2φ1γσ

2E[s2
t ]

]
.
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Interestingly,

Cov[yt, st] = E
[
(φ1(yt−1 − µy) + φ2(s2

t−1 − µs2) + (1 + γst−1)σut)(φ1st−1 + σut)
]

= φ2
1Cov[yt−1, st−1] + σ2

All other terms drop out because E[ut] = E[st] = E[s3
t ] = 0. Thus, solving for the

time-invariant solution leads to the “first-order” variance expression

Cov[yt, st] = E[s2
t ] =

σ2

1− φ2
1

.

Autocovariances of yt. Consider E[(yt − µy)(yt−1 − µy)]:

Cov[yt, yt−1] = E
[
(φ1(yt−1 − µy) + φ2(s2

t−1 − µs2) + (1 + γst−1)σut)(yt−1 − µy)
]

= φ1V[yt−1] + φ2Cov[yt−1, s
2
t−1].

In general, higher-order autocovariances can be computed recursively:

Cov[yt, yt−h] = E
[
(φ1(yt−1 − µy) + φ2(s2

t−1 − µs2) + (1 + γst−1)σut)(yt−h − µy)
]

= φ1Cov[yt−1, yt−h] + φ2Cov[yt−h, s
2
t−1].

The term Cov[yt−h, s
2
t−1] can also be calculated recursively:

Cov[yt−h, s
2
t−1] = E

[
(yt−h − µy)(φ2

1(st−2 − E[s2
t−2]) + 2φ1st−2σut−1 + σ(ut−1)2 − 1)

]
= φ2

1Cov[yt−h, s
2
t−2].

215



B.1.2 Initialization and Identification

In order to compute the likelihood function recursively, it is necessary to initialize

s0. We write the joint distribution of observables, initial state, and parameters as:

p(Y0:T , θ, s0) = p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ)

and use MCMC methods to generate draws from the posterior

p(θ, s0|Y0:T ) ∝ p(Y1:T |y0, s0, θ)p(y0, s0|θ)p(θ).

We will approximate the distribution of (y0, s0) using a normal distribution

 y0

s0

 ∣∣∣∣θ ∼ N

 µy

µs

 ,
 Σyy Σys

Σsy Σss

 . (B.4)

The moments of this normal distribution are calculated as follows. We will assume

that the system was in its steady state in period t = −T∗, i.e. s−T∗ = 0 and

y−T∗ = φ0. In principle, T∗ could be infinite, but this will create some problems

if φ1 = 1. In order to simplify the time subscripts a bit, we shift the time index

by T∗ periods. Starting from s0 = 0 and y0 = φ0 we will calculate the first and

second moments of yt, st, and s2
t recursively, starting with

E[s0] = 0, E[y0] = φ0, V[s0] = 0, V[y0] = 0, (B.5)

Cov[y0, s0] = 0, Cov[y0, s
2
0], V[s2

0] = 0.

The process for st is linear autoregressive of order one and we obtain

E[st] = φ1E[st−1], V[st] = φ2
1V[st−1] + σ2. (B.6)
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Since the innovations εt are iid standard normal variates, we obtain that the third

moment is zero:

E[s3
t ] =

t−1∑
j=0

φ3j
1 E[ε3t−j] = 0.

Now consider

V[s2
t ] = E[(s2

t − V[st])
2] (B.7)

= E[(φ2
1(s2

t−1 − V[st−1]) + 2φ1st−1σεt + σ2(ε2t − 1))2]

= φ4
1V[s2

t−1] + 4φ2
1σ

2V[st−1] + 2σ4.

A formula for the mean of yt is obtained by taking expectations of the observation

equation:

E[yt] = φ0(1− φ1) + φ1E[yt−1] + φ2V[st−1]. (B.8)

The covariance between yt and st is given by

Cov[yt, st] = E[(yt − E[yt])st] (B.9)

= E
[(
φ1(yt−1 − E[yt−1]) + φ2(s2

t−1 − E[s2
t−1]) + (1 + γst−1)σεt

)(
φ1st−1 + σεt

)]
= φ2

1Cov[yt−1, st−1] + σ2.

All other terms drop out because the first and third moments of st−1 and εt are

equal to zero. The covariance between yt and s2
t is given by

Cov[yt, s
2
t ] = E[(yt − E[yt])(s

2
t − V[st])] (B.10)

= E
[
(φ1(yt−1 − E[yt−1]) + φ2(s2

t−1 − V[st−1]) + (1 + γst−1)σεt)

×(φ2
1(s2

t−1 − V[st−1]) + 2φ1σst−1εt + σ2(ε2t − 1))
]

= φ3
1Cov[yt−1, s

2
t−1] + φ2

1φ2V[s2
t−1] + 2φ1γσ

2E[s2
t−1].
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The variance of yt can be computed as follows:

V[yt] = E
[
(φ1(yt−1 − E[yt−1] + φ2(s2

t−1 − V[st−1]) + σ(1 + γst−1)εt)
2
]

(B.11)

= φ2
1V[yt−1] + φ2

2V[s2
t−1] + σ2(1 + γ2V[st−1])

+2φ1φ2Cov[yt−1, s
2
t−1].

We can iterate Equations (B.6) to (B.11) forward for T∗ periods to obtain the

moments for the initial distribution of (y0, s0) in (B.4).

Note that for γ = φ2 = 0 s0 and y0 become perfectly correlated conditional on θ

since for a linear model y0 = s0 + φ0. This may affect our posterior sampler when

we include s0 into the parameter vector. To avoid the singularity we add a small

constant to the covariance matrix of (y0, s0).

B.1.3 MCMC Implementation

The RWM algorithm mentioned in Section 2.3.3 is used to implement the posterior

inference. Using a preliminary covariance for the proposal distribution in the RWM

algorithm that is constructed from the prior variance of the QAR parameters we

generate an initial 100,000 draws from the posterior. Based on the last 50,000

draws we compute a covariance matrix that replaces the preliminary covariance

matrix of the proposal distribution. We then continue the chain, generating an

additional 60,000 draws, retaining the last 50,000 to construct summary statistics

for the posterior.
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B.1.4 Detailed Estimation Results

Table A-1: Prior Distribution for QAR(1,1) Model, Samples Starting in
1960

GDP Growth Wage Growth Inflation Fed Funds Rate
φ0 N

(
0.48, 2

)
N
(
1.18, 2

)
N
(
2.38, 2

)
N
(
2.50, 2

)
φ1 N †(0.36, 0.5) N †(−0.02, 0.5) N †(0.00, 0.5) N †(0.66, 0.5)
σ IG(1.42, 4) IG(0.82, 4) IG(1.87, 4) IG(0.58, 4)
φ2 N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)
γ N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

Notes: (†) The prior for φ1 is truncated to ensure stationarity. The IG distribution
is parameterized such that pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.

Table A-2: Prior Distribution for QAR(1,1) Model, Samples Starting in
1984

GDP Growth Wage Growth Inflation Fed Funds Rate
φ0 N

(
0.43, 2

)
N
(
1.58, 2

)
N
(
4.38, 2

)
N
(
6.08, 2

)
φ1 N †(0.28, 0.5) N †(0.34, 0.5) N †(0.85, 0.5) N †(0.94, 0.5)
σ IG(1.33, 4) IG(0.88, 4) IG(1.83, 4) IG(1.45, 4)
φ2 N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)
γ N(0, 0.1) N(0, 0.1) N(0, 0.1) N(0, 0.1)

Notes: (†) The prior for φ1 is truncated to ensure stationarity. The IG distribution
is parameterized such that pIG(σ|ν, s) ∝ σ−ν−1e−νs

2/2σ2
.
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Table A-3: Posterior Estimates for QAR(1,1) Model, 1960:Q1-1983:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.42 0.28 -0.02 -0.05 1.16 1.42
[0.11 , 0.69] [0.11 , 0.46] [-0.14 , 0.09] [-0.17 , 0.06] [0.91 , 1.53] [1.02 , 1.85]

WAGE 1.75 0.41 -0.05 0.04 0.52 0.89
[1.49 , 1.98] [0.23 , 0.58] [-0.13 , 0.04] [-0.05 , 0.15] [0.40 , 0.68] [0.63 , 1.15]

INFL 4.24 0.87 -0.01 0.16 1.52 -1.97
[2.28 , 5.84] [0.80 , 0.95] [-0.08 , 0.07] [0.04 , 0.27] [1.08 , 2.12] [-4.68 , 0.79]

FFR 4.84 0.92 0.02 0.38 0.62 -1.56
[0.86 , 6.75] [0.88 , 0.96] [-0.05 , 0.05] [0.30 , 0.47] [0.41 , 1.00] [-4.21 , 0.14]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-4: Posterior Estimates for QAR(1,1) Model, 1960:Q1-2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.48 0.29 -0.02 -0.06 0.69 1.37
[0.33 , 0.63] [0.16 , 0.41] [-0.07 , 0.04] [-0.13 , 0.01] [0.58 , 0.82] [1.19 , 1.56]

WAGE 1.41 0.44 -0.03 0.12 0.48 1.22
[1.25 , 1.59] [0.33 , 0.55] [-0.09 , 0.02] [0.05 , 0.20] [0.40 , 0.57] [1.00 , 1.42]

INFL 3.51 0.85 -0.01 0.23 1.06 -1.31
[2.74 , 4.47] [0.79 , 0.91] [-0.06 , 0.05] [0.16 , 0.31] [0.81 , 1.38] [-2.90 , 0.31]

FFR 2.96 0.96 0.04 0.44 0.28 -0.74
[2.16 , 4.16] [0.95 , 0.97] [0.02 , 0.06] [0.37 , 0.52] [0.22 , 0.42] [-1.27 , 0.45]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-5: Posterior Estimates for QAR(1,1) Model, 1960:Q1-2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.45 0.33 -0.03 -0.07 0.68 1.41
[0.28 , 0.60] [0.22 , 0.44] [-0.08 , 0.03] [-0.14 , 0.00] [0.58 , 0.81] [1.19 , 1.61]

WAGE 1.29 0.43 -0.01 0.08 0.54 1.31
[1.12 , 1.46] [0.32 , 0.53] [-0.06 , 0.04] [0.01 , 0.15] [0.46 , 0.63] [1.11 , 1.50]

INFL 3.23 0.84 0.02 0.22 1.09 -1.26
[2.55 , 4.16] [0.78 , 0.90] [-0.04 , 0.09] [0.15 , 0.30] [0.87 , 1.36] [-2.82 , 0.22]

FFR 3.54 0.96 -0.01 0.41 0.22 0.43
[2.29 , 5.06] [0.94 , 0.97] [-0.02 , 0.00] [0.33 , 0.50] [0.13 , 0.37] [-0.94 , 1.47]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.

Table A-6: Posterior Estimates for QAR(1,1) Model, 1984:Q1-2007:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.57 0.26 -0.07 0.01 0.25 1.06
[0.44, 0.70] [0.10 , 0.44] [-0.13 , -0.02] [-0.10 , 0.11] [0.20 , 0.32] [0.91,1.21]

WAGE 1.09 0.24 -0.06 0.07 0.41 0.10
[0.93,1.21] [0.06,0.42] [-0.12,0.02] [-0.03,0.17] [0.32,0.53] [-0.09,0.29]

INFL 2.72 0.63 -0.06 0.07 0.68 2.42
[2.30,3.13] [0.48,0.78] [-0.14,0.04] [-0.06,0.19] [0.52,0.89] [1.76,2.93]

FFR 9.80 0.91 -0.16 0.08 0.22 0.79
[8.68,11.56] [0.87,0.93] [-.23,-.10] [-0.03,0.17] [0.15,0.32] [-0.26,1.64]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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Table A-7: Posterior Estimates for QAR(1,1) Model, 1984:Q1-2012:Q4

Data φ0 φ1 φ2 γ σ s0

GDP 0.53 0.36 -0.09 -0.07 0.28 1.09
[0.38 , 0.66] [0.22 , 0.52] [-0.15 , -0.03] [-0.17 , -0.00] [0.23 , 0.35] [0.87 , 1.28]

WAGE 0.98 0.18 -0.04 0.03 0.48 0.20
[0.83 , 1.14] [0.02 , 0.36] [-0.10 , 0.04] [-0.06 , 0.12] [0.38 , 0.60] [0.03 , 0.37]

INFL 2.51 0.63 -0.02 0.07 0.76 2.54
[2.12 , 2.93] [0.48 , 0.77] [-0.10 , 0.06] [-0.03 , 0.19] [0.61 , 0.97] [1.80 , 3.00]

FFR 10.00 0.92 -0.17 0.01 0.19 1.00
[8.72 , 11.43] [0.90 , 0.94] [-0.25 , -0.12] [-0.05 , 0.11] [0.15 , 0.29] [0.05 , 1.40]

Notes: We report posterior means and 90% equal-tail-probability credible sets in brackets.
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B.2 The DSGE Model

B.2.1 First-Order Conditions

Intermediate Goods Producers. Taking as given nominal wages, final good

prices, the demand schedule for intermediate products and technological con-

straints, firm j chooses its labor inputs Ht(j) and the price Pt(j) to maximize

the present value of future profits. After using the production function to substi-

tute our Yt(j) from the present value of future profits in (2.24) (see main text) we

can write the objective function of the firm as

Et
[ ∞∑
s=0

βsQt+s|t

(
Pt+s(j)

Pt+s

(
1− Φp

(
Pt+s(j)

Pt+s−1(j)

))
At+sHt+s(j)−

1

Pt+s
Wt+sHt+s(j)

)]
. (B.12)

This objective function is maximized with respect to Ht(j) and Pt(j) subject to

At+sHt+s(j) =

(
Pt(j)

Pt

)−1/λp,t

Yt+s.

We use µt+sβ
sQt+s|t to denote the Lagrange multiplier associated with this con-

straint. Setting Qt|t = 1, the first-order condition with respect to Pt(j) is given

by

0 =
1

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
AtHt(j)−

Pt(j)

PtPt−1(j)
Φ′p

(
Pt(j)

Pt−1(j)

)
AtHt(j) (B.13)

− µt
λp,tPt

(
Pt(j)

Pt

)−1/λp,t−1

Yt + βEt
[
Qt+1|t

P 2
t+1(j)

Pt+1P 2
t (j)

Φ′p

(
Pt+1(j)

Pt(j)

)
At+1Ht+1(j)

]
.

Taking first-order conditions with respect to Ht(j) yields

Wt

Pt
=
Pt(j)

Pt

(
1− Φp

(
Pt(j)

Pt−1(j)

))
At − µtAt. (B.14)

Households. The first-order condition with respect to consumption is given by

Ptλt =

(
Ct(k)

At

)−τ
1

At
. (B.15)
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We define

Qt+1|t =
λt+1Pt+1

λtPt
. (B.16)

Using this definition, the first-order condition for bond holdings becomes

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (B.17)

Member k is a monopolistic competitor with respect to his wage choice. Taking

into account the demand for labor of type k the relevant portion of the utility

function for the wage decision is

t

[
∞∑
s=0

βs

(
· · · − χH

1

1 + 1/ν

(
Wt+s(k)

Wt+s

)−(1+1/ν)/λw

H
1+1/ν
t

)]
,

The relevant portion of the budget constraint after substituting Ht+s(k) by the

labor demand schedule is

· · · = Wt+s(k)

(
Wt+s(k)

Wt+s

)−1/λw

Ht+s

(
1− Φw

(
Wt+s(k)

Wt+s−1(k)

))
+ · · · ,

where the demand for aggregated labor services Ht+s is taken as given. Taking

first-order conditions with respect to Wt(k) yields

0 =
χH
λwWt

(
Wt(k)

Wt

)− 1+1/ν
λw
−1

H
1+1/ν
t + λt

(
Wt(k)

Wt

)−1/λw

Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
− λt
λw

Wt(k)

Wt

(
Wt(k)

Wt

)−1/λw−1

Ht

(
1− Φw

(
Wt(k)

Wt−1(k)

))
(B.18)

−λt
Wt(k)

Wt−1(k)

(
Wt(k)

Wt

)−1/λw

HtΦ
′
w

(
Wt(k)

Wt−1(k)

)
+βEt

[
λt+1

W 2
t+1(k)

W 2
t (k)

(
Wt+1(k)

Wt+1

)−1/λw

Ht+1Φ′w

(
Wt+1(k)

Wt(k)

)]
.
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B.2.2 Equilibrium Relationships

We consider the symmetric equilibrium in which all intermediate goods producing

firms, as well as households, make identical choices when solving their optimization

problem. Therefore, we can drop the index k and j. In slight abuse of notation

let ∆Xt = Xt/Xt−1 and πt = ∆Pt. We use wt = Wt/Pt to denote the real

wage. Since the non-stationary technology process At induces a stochastic trend

in output, consumption and real wages, it is convenient to express the model in

terms of detrended variables yt = Yt/At, ct = Ct/At and w̃t = wt/At.

Intermediate Goods Producers. Using the above notation, multiplying (B.13)

by Pt, and replacing Yt by Atyt we can simplify the first-order condition for Pt(j)

as follows

0 =
(
1−Φp(πt)

)
Atyt−πtΦ′p(πt)Atyt−

µt
λp,t

Atyt+βEt
[
Qt+1|tπt+1Φ′p(πt+1)At+1yt+1

]
.

Dividing by Atyt and replacing At+1/At by γ exp(zt+1) we obtain

0 =
(
1− Φp(πt)

)
− πtΦ′p(πt)−

µt
λp,t

+ βEt
[
Qt+1|tπt+1Φ′p(πt+1)∆yt+1γ exp(zt+1)

]
.

We proceed by rewriting (B.14) as

w̃t =
(
1− Φp(πt)

)
− µt. (B.19)

Households. In terms of detrended consumption we can express Qt+1|t as

Qt+1|t =

(
ct+1

ct

)−τ
1

γ
exp(−zt+1). (B.20)
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The consumption Euler equation remains unchanged:

1 = βEt
[
Qt+1|t

Rt

πt+1

]
. (B.21)

We now divide (B.18) by λt and replace λt by c−τt /(AtPt):

0 =
χH
λw

1

w̃t
cτtH

1+1/ν
t +Ht

(
1− Φw(πt∆wt)

)
− 1

λw
Ht

(
1− Φw(πt∆wt)

)
−πt∆wtHtΦ

′
w(πt∆wt) + βEt

[
Qt+1|tπt+1∆w2

t+1Ht+1Φ′w(πt+1∆wt+1)
]
.

Aggregate Resource Constraint. The aggregate production function (in terms

of detrended output) is

yt = Ht. (B.22)

The intermediate goods producers’ dividend payments to the households are given

by

Dt =
(
1− Φp(πt)

)
Yt − wtHt. (B.23)

Combining the household budget constraint and the government budget constraint

and detrending all variables leads to aggregate resource constraint

ct + ζyt =
(
1− Φp(πt)

)
yt − w̃tytΦw(πt∆wt),

where ∆wt = ∆w̃tγ exp(zt).

The model economy has a unique steady state in terms of the detrended variables

that is attained if the innovations εR,t, εg,t, and εz,t are zero at all times. The steady

state inflation π equals the target rate π∗ and

R =
γ

β
π∗, µ = λp, c =

(
(1− λp)(1− λw)g−

1
ν

χH

) 1
τ+1/ν

, y = gc̃, H = y, w̃ = (1− λp).
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B.2.3 Posterior Simulator

We first estimate a log-linearized version of the DSGE model using the Random-

Walk Metropolis (RWM) algorithm described in An and Schorfheide (2007). Us-

ing the same covariance matrix for the proposal distribution as for the linearized

DSGE model, we then run the RWM algorithm based on the likelihood function

associated with the second-order approximation of the DSGE model. The covari-

ance matrix of the proposal distribution is scaled such that the RWM algorithm

has an acceptance rate of approximately 50%. We use 80,000 particles to approx-

imate the likelihood function of the nonlinear DSGE model, while the variance

of measurement errors is set to 10% of the sample variance of the observables.

We generate 120,000 draws from the posterior distribution of the nonlinear DSGE

model. The summary statistics reported in Table 2.2 in the main paper are based

on the last 100,000 draws of this sequence.
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Table A-8: Posterior Estimates for DSGE Model Parameters: Linear
Model

1960:Q1-2007:Q4 1984:Q1-2007:Q4
Parameter Mean 90% Interval Mean 90% Interval

400
(

1
β
− 1
)

0.48 [0.06, 1.01] 1.31 [0.60, 2.17]

πA 3.46 [2.94, 3.97] 2.80 [2.33, 3.29]
γA 1.86 [1.39, 2.34] 1.88 [1.53, 2.24]
τ 6.54 [4.37, 9.24] 4.78 [2.57, 8.70]
ν 0.09 [0.06, 0.13] 0.08 [0.03, 0.15]
κ(ϕp) 0.01 [0.01, 0.02] 0.18 [0.09, 0.30]
ϕw 62.33 [44.48, 83.14] 14.89 [6.15, 25.88]
ψw N/A
ψp N/A
ψ1 1.45 [1.24, 1.68] 2.67 [2.10, 3.30]
ψ2 0.80 [0.54, 1.09] 0.76 [0.41, 1.11]
ρr 0.77 [0.73, 0.82] 0.71 [0.61, 0.79]
ρg 0.97 [0.96, 0.98] 0.96 [0.93, 0.98]
ρz 0.26 [0.10, 0.41] 0.07 [0.01, 0.19]
ρp 0.99 [0.98, 0.99] 0.93 [0.87, 0.98]
100σr 0.18 [0.14, 0.22] 0.18 [0.13, 0.25]
100σg 0.65 [0.44, 0.95] 0.76 [0.39, 1.34]
100σz 0.75 [0.64, 0.85] 0.47 [0.37, 0.56]
100σp 15.28 [12.66, 18.18] 7.63 [5.96, 9.48]

Notes: As 90% credible interval we are reporting the 5th and 95th percentile of
the posterior distribution.
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Appendix C

Appendix to “Risk, Economic

Growth and the Market Value of

U.S. Corporations”

C.1 Empirical Analysis

C.1.1 Data Definition and Sources

TFP Growth

Quarterly data on output growth and hours growth for the U.S. Business Sector

are from the BLS, respectively Series id PRS85006042 and PRS85006032. We

construct an annual series for the growth rate of the U.S. Business Sector capital

stock using NIPA Tables. In particular, from Table 6.2, we calculate the growth

rate of real private fixed assets for the following sectors:

- Corporate
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- Sole Proprietorships

- Partnerships

We use Table 7.2A and 7.2B from NIPA to construct the growth rate of real

fixed assets of government sponsored enterprises (GSE). We construct the growth

rate of real fixed assets for the Business Sector as follows:

∆kbus = θcorp∆kcorp + θpropr∆kpropr + θpart∆kpart + θgse∆kgse,

where θj is the share of subsector j in total fixed assets of the Business Sector.1

Next, we use the following formula to calculate TFP growth for the Business

Sector:2

∆zt =
∆yt − α∆kt − (1− α)∆lt

1− α

We choose a value of α equal to 0.30, as it is customary in the macroeconomic

literature.3

1That is, we take fixed assets measured at current cost in sector j, divide by the same figure
for the entire Business Sector, and average over the time period considered.

2In order to reconcile the frequency of output and hours with those of capital, we linearly
interpolate the growth rate of capital and convert it at quarterly frequencies.

3We also considered a version of TFP growth with time-varying factor shares. Data on labor
shares for the Business Sector are from BLS, Series id PRS85006173. Our results did not change,
both from a qualitative and quantitative standpoint.
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Market Value of U.S. Corporations

Our indicator of value is the sum of two components, the value of equities and

the value of net debt for the U.S. corporate sector. We use data from the Federal

Reserve’s Flow of Funds Accounts to obtain these two time series. In particular:

- Market value of Corporate Equities: We take the data from Table L.213 of

the Flow of Funds (“Market Value of Domestic Corporations”).

- Net Debt: We construct a net debt series for all domestic sectors issuing

corporate equities. The sectors issuing corporate equities can be obtained

from Table F.213 of the Flow of Funds. These are:

– Non Financial Corporate Business (Table L.201).

– Domestic Financial Corporations (Tables L.110, L.114, L.115, L.121,

L.126, L.122, L.127, L.128, L.129).4

We define net debt as the difference between total debt liabilities and to-

tal debt assets, where “debt” includes any financial instrument that is not

corporate equity, mutual funds holdings that are equity and the equity com-

ponent of “miscellaneous claims.”5 We then aggregate to obtain the net debt

series. Notice that the net debt series computed consists of instruments that

are recorded mainly at book value in the Flow of Funds.6

4Domestic financial corporations issuing equities are, in order: i) U.S. chartered depository
institutions; ii) property-casualty insurance companies; iii) life insurance companies; iv) close-
end funds and exchange traded funds; v) REITS; vi) government-sponsored enterprises; vii)
brokers and dealers; viii) holding companies; and ix) funding companies.

5We follow the procedure described in the online appendix of McGrattan and Prescott (2005)
in order to deduce the equity component of mutual funds holdings and miscellaneous claims. For
this purpose, we use Flow of Funds Tables L.229, L.230, L.231.

6Hall (2001) proposes a procedure to correct for this issue. McGrattan and Prescott (2005)
show that correcting for this issue results in only minor changes to the sample 1960-2001 (see
Figure A.3 in their online appendix).

231



C.1.2 Univariate model

We model TFP growth as follows:

∆Zt = µt + φ [∆Zt−1 − µt−1] + σtεt

µt = µ0 + µ1s1,t

σt = σ0 + σ1s2,t

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)

We collect in θ = [µ0, µ1, σ0, σ1, φ, P1,1,µ, P2,2,µ, P1,1,σ, P2,2,σ] the parameters to be

estimated. We use Bayesian methods to conduct inference over θ. Given prior

information on the parameters, represented by the distribution p(θ), and given

the likelihood function p({∆Zt}Tt=2|θ,∆Z1), the posterior distribution of θ is found

using Bayes’ rule:

p(θ|{∆Zt}Tt=1) =
p(θ)p({∆Zt}Tt=1|θ)
p({∆Zt}Tt=1)

The parametrization of the prior distribution is given in Table 3.1. Functional

forms are chosen for tractability. We center the prior on µ0 and µ1 so that, on

average, the growth rate of TFP is 2% at an annual level. In the low-growth

regime, TFP growth is 60% of the high-growth regime. We center the prior on
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σ0 and σ1 so that the the standard deviation of TFP growth is on average 4%.

In the low volatility regime, the standard deviation of TFP growth is on average

60% that of the high volatility regime. We center the prior of φ at zero, reflecting

beliefs of low autocorrelation of TFP growth. Finally, the prior on the transition

probabilities is centered so that the expected duration of a regime is approximately

15 years. A better way of interpreting our prior is to look at Table A-1, which

reports prior predictive checks. Essentially, our prior is that TFP growth has very

low autocorrelation, with small and very persistent time variation in the mean.

Moreover, we can verify from the table that our prior is quite diffused, as the

standard deviations of the statistics show.

We use a Random Walk Metropolis Hastings (RWMH) algorithm to sample from

the posterior of θ. We follow common practice in choosing the following proposal

density:

θproposal ∼ N (θi, cH−1),

where θi is the state of the Markov Chain at iteration i and H−1 is the inverse

Hessian of the log-posterior density evaluated at the posterior mode. The scaling

factor c is chosen so that our RWMH algorithm has an acceptance rate of approx-

imately 30%. We generate N = 100000 draws and discard the first 20000 when

computing posterior statistics.7

7We perform several tests confirming that our choice of N yields an accurate posterior
approximation.
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Table A-1: Prior Predictive Checks

Statistic MS-Model

Mean(∆Zt)
2.00
(1.10)

Stdev(∆Zt)
4.42
(4.50)

Acorr(∆Zt)
0.05
(0.53)

Expected Duration of Regimes
10

(80)

Note: Prior Predictive Checks are calculated as follows: 1) generate a random draw of the model’s parameters
θm from p(θ); 2) given θm, use the Markov-Switching model to compute a realization (T = 10000) for ∆Zt; 3)
compute statistics on the generated sample; 4) repeat this procedure M = 10000 times and report mean and
standard deviation (in parenthesis) of each statistic computed in 3). Expected duration of a regime is reported
in years.
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C.1.3 Multivariate Model

The multivariate analysis is based on the following model:

 ∆Zt

∆Yt

 =

 µt

µt

+ Φ

 ∆Zt−1 − µt−1

∆Yt−1 − µt−1

+ Σtet

µt = µ0 + µ1s1,t

Σt = Σ0 + Σ1s2,t

εt ∼ N (0, 1) s1,t ∼MP(Pµ) s2,t ∼MP(Pσ)

We include in ∆Yt the growth rate of aggregate consumption per hour and the

growth rate of real compensation per hour in the Non Farm Business Sector. We

follow Cogley and Sargent (2005) in parametrizing the matrix Σt as follows:

Σt = BΣ̂(s2,t)

with B being a lower triangular matrix with ones on the main diagonal and

Σ̂(s2,t) a diagonal matrix whose (j, j) element evolves as follows:

σj,t = σj,0 + σj,1s2,t

Given these restrictions, the parameters to be estimated are 25. As in the pre-

vious section, we use Bayesian methods to estimate the above model. In partic-

ular, we sample from the posterior distribution of the model’s parameter using a

Metropolis-within-Gibbs algorithm. Our posterior simulator has four main steps:
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i) Sample {s1,t, s2,t}Tt=1 given the data and the model’s parameters using the

Kim-Hamilton smoother (Kim and Nelson, 1999);

ii) Sample Φ conditional on {s1,t, s2,t}Tt=1 and the other model’s parameters from

a standard linear Bayesian regression with conjugate priors;

iii) Sample the lower diagonal elements of B conditional on {s1,t, s2,t}Tt=1 and

the other model’s parameters from a system of unrelated regressions with

conjugate priors, see Cogley and Sargent (2005);

iv) Sample the parameters [µ0, µ1, {σj,0, σj,1}3
j=1, P1,1,µ, P2,2,µ, P1,1,σ, P2,2,σ] using

a Metropolis step, with proposal density constructed in the same way as in

Appendix C.1.2

The prior for the parameters governing µt and σj,t is the same as the one de-

scribed in the previous section, while the priors on the remaining parameters are

fairly diffuse. We generate 100000 draws from the posterior and discard the first

20000 when computing posterior statistics.

C.2 Equilibrium and Auxiliary Planner’s Prob-

lem

In this appendix, we are going to

- formally define an equilibrium for our model;

- characterize some of its properties that are useful for the computation;

- describe the Auxiliary Planner’s Problem utilized in the numerical solution;

- explain how we choose the state variables during computation to minimize
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the computational burden.

C.2.1 Equilibrium

An equilibrium of our economy are sequences (depending on realizations of the

stochastic process) of quantities 8

(kt, (kj,t)j∈[0,1], it, (lj,t)j∈[0,1], (dj,t)j∈[0,1], (yj,t)j∈[0,1], (ŷj,t)j∈[0,1], (ωj,t)j∈[0,1], yt, ct, ωt)
∞
t=0,

prices (rt, wt, (Pj,t)j∈[0,1], (pj,t)j∈[0,1], p̄t, p
k
t , dt)

∞
t=0, value functions (Vt)

∞
t=0 and dis-

count factors (Λ0,t)
∞
t=0 such that

- (Vt)
∞
t=0, ((ωj,t)j∈[0,1], ωt)

∞
t=0, (ct)

∞
t=0 solves the household’s problem given

(wt, (dj,t)j∈[0,1], (Pj,t)j∈[0,1], p
k
t , dt)

∞
t=0:

max
(Ṽt)∞t=0,((ω̃j,t)j∈[0,1])

∞
t=0,(c̃t)

∞
t=0,(d̃t)

∞
t=0

Ṽ0

s.t. Ṽt = [(1− β)c̃
1−γ
η

t + βEt[Ṽ
1−γ
t+1 ]

1
η ]

η
1−γ

c̃t +

∫
Pj,tω̃j,t+1dj + ωt+1p

k
t = wt +

∫
(Pj,t + dj,t)ω̃j,tdj + ωt(dt + pkt )

and a no Ponzi condition for ω and finiteness for Ṽt;

- ∀j (dj,t, kj,t, lj,t, pj,t)
∞
t=0 solve intermediate good producer j’s problem given

(rt, wt, pi,t)i∈[0,1]\{j}, p̄t)
∞
t=0, (Λ0,t)

∞
t=0 and (ŷj,t)j∈[0,1]:

max
(d̃j,t,k̃j,t,l̃j,t,p̃j,t)∞t=0

E0

∞∑
t=0

Λ0,td̃j,t

s.t. d̃j,t = ŷj,t(p̃j,t)
p̃j,t
p̄t
− wtl̃j,t − rtk̃j,t

8ŷj,t is the demand function for good j and not a number.
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- (kt+1, it)
∞
t=0 solves the capital good producers problem given rt:

max
(̃it,k̃t+1)∞t=0

E0

∞∑
t=0

Λ0,trtk̃t − ĩt

k̃t+1 = (1− δ)k̃t +G

(
ĩt

k̃t

)

- ∀t (yt, yj,t)j∈[0,1] given p̄t, (pj,t)j∈[0,1] solve the final good producers problem

max
ỹt,(ỹj,t)j∈[0,1]

p̄tỹt −
∫
pj,tỹj,tdj

ỹt ≤
[∫

y
ν−1
ν

j,t dj

] ν
ν−1

and

(ŷj,t)j∈[0,1]

are consistent with pointwise maximization of the final good producer given

any chosen price p ∈ Rt by intermediate producer j given p̄t, (pj,t)j∈[0,1]\{j}

- markets clear: ∀t, h ∫
lj,tdj = 1∫
ωj,tdj = 1

ωt = 1

ŷj,t(pj,t) = yj,t

ct +

∫
ij,tdj = yt

kt =

∫
kj,tdj
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- The discount factor of the firm fulfills Λ0,t = Πt−1
s=0Λs,s+1 where Λt,t+1 =

β
(
ct+1

ct

)− 1
ψ V

(1−γ)(1− 1
η )

t+1

Et[V
1−γ
t+1 ]

1− 1
η

.9

We will focus on a symmetric equilibrium in the following. It then implies that

prices and capital service choices are the same for all intermediate good producers.

C.2.2 Partial Characterization and Auxiliary Planner’s Prob-

lem

It is well known in the literature and easy to check that the final good producer

problem results in the following demand for intermediate good i in equilibrium:

pj,t
p̄t

(
pj,t
p̄t

)−ν
Ȳt, where Ȳt is demand and equal to output in equilibrium and p̄t =[∫ 1

0
p1−ν
j,t dj

] 1
1−ν

. Imposing this in any intermediate good producing firm’s problem

and combining it with the problem of a capital good producer,10 we get as a

representative firm’s problem

max
kj,t,ij,t,lj,t,Pj,t

E0

∑
t=0

Λ0,t[
pj,t
p̄t

(
pj,t
p̄t

)−ν
ȳ − ij,t − wtlj,t]

s.t.

(
pj,t
p̄t

)−ν
ȳt = F (kj,t, Ztlj,t)

kj,t+1 = (1− δ)kj,t +G(
ij,t
kj,t

)kj,t.

We continue by taking first-order conditions (We drop the j index for now.). Let

λt be the multiplier on the first constraint and µt on the second.

9This condition could be easily derived from assuming there is a full set of Arrow securities
in zero net supply. In order not to further expend the notation, we directly impose the condition
on the discount factor.

10A intermediate good producer’s problem is static and the market for capital services is
competitive. In addition, we assume a symmetric equilibrium so that the capital stock and
capital and labor services are the same across firms. Therefore, we can combine the two problems
without changing equilibrium allocations.
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FOC:

(pt) Et[Λ0,t(1− ν)

(
pt
p̄t

)−ν
ȳt
p̄t
− λt(−νpt

(
pt
p̄t

)−ν
ȳt)] = 0

(it) Et[−Λ0,t + µtG
′(
it
kt

)] = 0

(kt) Et−1[−{µt−1}] + Et−1[λtFK,t + µt(1− δ +G(
it
kt

)−G′( it
kt

))
it
kt

] = 0

(lt) Et[Λ0,t{−wt}+ λtFL,t] = 0

FK,t and FL,t denote the derivatives of F with respect to K and L given period t

inputs. Imposing a symmetric equilibrium (all intermediate prices are the same)

and using qt = 1
G′t

:

(pt) Et[−
(1− ν)

ν
Λ0,t] = Et[λt]

(it) Et[−Λ0,t +
µt
qt

] = 0

(kt) Et−1[−{µt−1}] + Et−1[λtFK,t + µt(1− δ +G(
it
kt

)−
it
kt

qt
] = 0

(lt) Et[{−wt} −
(1− ν)

ν
FL,t] = 0

Combining further and dropping the expectation operators where not necessary:

wt =
(ν − 1)

ν
FL,t

Λ0,tqt = µt

−(1− ν)

ν
Λ0,t = λt

qt−1 = Et−1[Λt−1,t[
ν − 1

ν
FK,t + qt(1− δ +G(

it
kt

))− it
kt

]]

The last equation is the Euler equation for capital accumulation which we will

target in the computation. The reader should notice the distortion terms ν−1
ν

for
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capital and labor compared to the ”‘standard”’ Euler equation in a competitive

model. The price of the final good in each period is set to one for simplicity.

The total profits of the two types of firms combined can be seen to be (assuming a

Cobb-Douglas production function) F (kt, Ztlt)∗(α+ 1−α
ν

)−It. It is easy to see that

1−α
ν
F (kt, Ztlt)−It is the share of the profit collected by the capital good producers

while the remaining part of the 1
ν
F (kt, Ztlt) is the profit of each intermediate good

producer.

After these derivations it is easy to see now that the auxiliary planner’s problem

defined in the main text leads to the same Euler equation as the one of the firm

if we impose symmetry. Given that also the resource constraints are the same we

see that the symmetric equilibrium and the planner’s problem result in the same

allocations. If we solve the latter we can as usual use first order conditions to

obtain prices.

C.2.3 State Space Selection for the Computation

In order to solve the model numerically using the planner’s problem, we normalize

all quantities that grow over time - consumption, investment and capital - and

the value function in period t by Zt. To be more specific, if Xt is the value of

X ∈ {c, i, k̄, k} in period t, we define X̃t = Xt
Zt
. Normalizing this way we get the

following first-order conditions for the planner’s problem, where we also normalize

the multipliers accordingly.11

wt =
(ν − 1)

ν
FL(K̃t, Lt)

11Assuming F is Cobb-Douglas and of degree 1, FL, FK are of degree 0. It is also the case

that ĩt
k̃t

= it
kt

, which takes care of normalizing q.
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Λ0,tqt = µt

−(1− ν)

ν
Λ̃0,t = λ̃t

qt−1 = Et−1Λ̃t−1,t[
ν − 1

ν
FK + qt(1− δ +G(

ĩt

k̃t
))− ĩt

k̃t
]

Λ̃t,t+1 = β

(
Zt+1

Zt
c̃t+1

c̃t

)− 1
ψ
Ṽ

(1−γ)(1− 1
η

)

t+1

Et[Ṽ
1−γ
t+1 ]1−

1
η

k̃t+1
Zt+1

Zt
= (1− δ)k̃t +G(

ĩt

k̃t
)

ỹt =
1

ν
˜̄kαt +

ν − 1

ν
k̃αt

Ṽt = [(1− β)c̃
1−γ
η

t + βEt[
Zt+1

Zt
Ṽ 1−γ
t+1 ]

1
η ]

η
1−γ .

It should be noted that Zt drops out everywhere beside in the ratio ∆Zt+1 = Zt+1

Zt
.

Furthermore, ∆Zt+1 factors out in the discount factor and the value function. It

follows that Zt does not influence the value of the normalized variables solving

the equations beyond the effect it might have on the expectation for ∆Zt+1. We

therefore use the beliefs after updating using Zt, gt and s2,t as a state variable.

This allows us to drop Zt and gt as states when solving the model in its normalized

form. We have to incorporate the possible realizations of the shocks and beliefs into

the transition probabilities only when taking expectations. We are left with both

capital stocks ˜̄kt, k̃t, updated beliefs µ̂t and the state of the volatility shock s2,t.

But once the Euler equation for capital was derived while correctly distinguishing

the two capital stocks, we can impose K̃t = k̃t without changing the results. This

allows us to drop one capital stock in computing the solution, leaving us with two

continuous and one discrete state variable for the purpose of numerically solving

the normalized problem of the planner.
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C.3 Computation - Projection

We follow Krueger and Kuebler (2003) by applying a Smolyak collocation method.

Our system of state variables contain the capital stock in the beginning of a period

and the belief about the state of the long run component of technology growth

after observing the shock and the signal. In addition, we have a state variable tak-

ing two values for the variance, and we therefore use two sets of polynomials, one

for the high and one for the low volatility regime, to approximate policy and value

functions.12 We outline the applied procedure in the following with references to

more detailed descriptions. To solve for the coefficients of the polynomials, we use

a time iteration procedure for the investment decision and the value function.

- Step 0: Define a tolerance (we used 10−5 but checked for the benchmark cal-

ibration that the results do not change significantly, if we use 10−6 instead).

Select an upper and lower bound for capital and the belief to define the in-

tervals the approximation should focus on. Compute the collocation points

as described in Krueger and Kuebler (2003). For the baseline problem, we

need to fit the investment policy function and the value function. As an ini-

tial guess, we use constant functions at the deterministic steady-state levels

of these variables (we later used the approximations obtained from previous

solutions as an initial guess). Denote this initial guess by V 0
p,i and I0

p,i for

i = 1, 2, where i = 1 is the low variance state and i = 2 the high variance

state. Set n=1, Norm=10. Go to Step 1.

- Step 1: Enter iteration n. Calculate Inp,i(x) by using the normalized Euler

equation for capital of the planner imposing equilibrium conditions (espe-

12We refer the reader to the model appendix for the arguments on why these states suffice.
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cially k = K) in each point x of the grid and using In−1
p,i to determine policy

choices in the next period. For the computation of the expectation, see

below. Go to step 2.

- Step 2: Use Inp,i(x) to obtain V n
p,i(x) using the budget constraint and the

definition of V and V n−1
p,i for the values in the next period. Go to step 3.

- Step 3: Use the interpolation rule as described in Krueger and Kuebler

(2003) to obtain the approximation polynomials V n
p,i and Inp,i for i = 1, 2. Go

to step 4.

- Step 4: Compute Norm as the maximum norm of the difference of the values

in the collocation for this and the previous approximation normalizing by

the previous approximation. If the Norm is smaller than the tolerance end,

otherwise set n=n+1 and go to Step 1.

After solving for the investment policy function, the value function and the law

of motion for K, we compute Euler equation errors on a grid different from the

one used to solve the model to check the quality of the approximation. For taking

the expectation, we used that conditional on the beliefs and the realization of

the volatility state the distribution of productivity growth shocks is normal and

applied a five point Gauss Hermite Quadrature formula ((Judd, 1998) pages 261-

263). We also checked with more points resulting only in very mild changes in

the results. To obtain the full approximation, we use the transition matrix for

the stochastic volatility and Bayes’ rule to update beliefs given technology growth

shocks and signals. In practice we use an accelerator method as described in Judd

(1998) to speed up the computation.
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Finally, we also need to compute asset pricing functions. In order to do this,

we follow the same procedure as before for investment and value functions. We

fix those solutions and then iterate on the price using the Euler equations for the

specific asset we want to value until convergence.

245



Appendix D

Appendix to “Identifying Neutral

Technology Shocks”

D.1 Proofs and Derivations

D.1.1 Proof of Lemma 1

Consider a variable Xt =
∑M

i=1Xit, with long-run response gX for variable X and

gXi for the components Xi 6= 0. By the definition of the impulse response

IRX
t (x) = (egXx − 1)E0[Xt] =

H∑
h=1

IRXi
t (x) =

H∑
h=1

(egXhx − 1)E0[Xh,t]

and therefore after canceling terms

egXxEt[Xt] =
H∑
h=1

egXhxE0[Xh,t]

246



Taking the l′th derivative w.r.t. x yields

glXe
gXxE0[Xt] =

H∑
h=1

glXhe
gXhxE0[Xh,t]

and dividing by glX ,

egXxE0[Xt] =
H∑
h=1

(
gXh
gX

)l
egXhxE0[Xh,t]

This implies that gXh ≤ gX since otherwise the RHS converges to ∞ for l → ∞.

Then, since

exp(gXx)E0(Xt) =
H∑
h=1

exp(gXhx)E0(Xht),

gX = gX1 = · · · gXh = · · · = gXH .

D.1.2 Proof of Theorem 1

The argument has two parts. The first part is to show that a neutral technological

shock has the properties stated in the theorem and the second part is to show that

any other shock with these properties is a neutral shock. In order to prove the

first part, note that the resource constraint implies

IRY
t (x) = IRI

t (x) + IRC
t (x),

where I is total investment and C is total consumption of output Y . Equivalently

egY xE0[Yt] = egIxE0[It] + egCxE0[Ct].
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Dividing by egY x yields

E0[Yt] = e(gI−gY )xE0[It] + e(gC−gY )xE0[Ct].

Taking derivatives w.r.t. x:

0 = (gI − gY )e(gI−gY )xE0[It] + (gC − gY )e(gC−gY )xE0[Ct].

Since this holds for all x, it must be the case that gY = gI = gC . Capital

accumulation implies that

IR
Kj
t+1(x) = IR

Kj
t (x)(1− δj) + IR

Ij
t (x)

and equivalently

egKjxE0[Kj,t+1] = egKjxE0[Kj,t] + egIjxE0[Ij,t].

This yields

egKjx{E0[Kj,t+1]− (1− δj)E0[Kj,t]} = egKjxE0[Ij,t] = egIjxE0[Ij,t],

and thus gKj = gIj . By Lemma 1, it must be the case that gIj = gI , and thus

gKj = gI ∀j. This implies gY = gC = gIj = gKj = g. By Assumption 1, this also

means that gLj = 0 ∀j. Since the production function features constant return

to scale, we hve g = 1. Constant returns to scale also implies that the marginal

products of capital is not influenced by the shock in the long run

FKj(e
xK1,t, . . . , e

xKJ,t, e
xZtL1,t, . . . , e

xZtLN,t; θt) (D.1)

= FKj(K1,t, . . . , KJ,t, ZtL1,t, . . . , ZtLN,t; θt),
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and that the marginal product of labor increases by x percent,

FLn(exK1,t, . . . , e
xKJ,t, e

xZtL1,t, . . . , e
xZtLN,t; θt) (D.2)

= exFLn(K1,t, . . . , KJ,t, ZtL1,t, . . . , ZtLN,t; θt).

For the impulse responses we thus get

IR
FKj
t (x) = 0

IR
FLj
t (x) = (ex − 1)E0(FLj).

This proves the first part of the characterization theorem.

The second part of the proof shows that any other shock with these properties

is the neutral technology shock, which establishes that no other shock has these

properties. To this aim, consider an innovation to a non-neutral permanent shock

θi of x percent at time 0 and consider how this changes a variable Xt. The impulse

response compares variables in two scenarios: one where the shock happens and

one where it does not. Denote variables Xt with a˜(i.e. X̃t is conditional on the

shock) in the first scenario and without a ,̃ Xt in the second scenario. The impulse

response of a variable Xt therefore equals

E0(X̃t)− E0(Xt),

and for t ≥ T :

Ỹt = exp(x)Yt, K̃jt = exp(x)Kjt, L̃jt = Ljt, θ̃i(t) = exp(x)θi(t)
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Using this notation we get on the one hand

Ỹt = F (K̃1,t, . . . , K̃J,t, ZtL̃1,t, . . . , ZtL̃N,t; (θ1(t), . . . , θ̃i(t), . . .) (D.3)

= F (exp(x)K1,t, . . . , exp(x)KJ,t, ZtL1,t, . . . , ZtLN,t; (θ1(t), . . . , exp(x)θi(t))

and on the other hand that

Yt = F (K1,t, . . . , KJ,t, ZtL1,t, . . . , Z0LN,0; (θ1(t), . . . , θi(0), . . .)). (D.4)

Constant returns to scale and Ỹt = exp(x)Yt imply that

Ỹt = exp(x)Yt (D.5)

= F (exp(x)K1,t, . . . , exp(x)KJ,t, exp(x)ZtL1,t, . . . , exp(x)ZtLN,t; (θ1(t), . . . , θi(t)))

Equating the last two expressions for Ỹt gives for all x and t ≥ T that

F (exp(x)K1,t, . . . , exp(x)KJ,t, ZtL1,t, . . . , ZtLN,t; (θ1(t), . . . , exp(x)θi(t))) (D.6)

= F (exp(x)K1,t, . . . , exp(x)KJ,t, exp(x)ZtL1,t, . . . , exp(x)ZtLN,t; (θ1(t), . . . , θi(t))).

Thus the first line - the effect of a x percent shock to θi - is equivalent to the latter

line which is the effect of a x percent shock to neutral technology (Z̃t = exp(x)Zt).

Since this identity holds for all x, θi is a neutral technology shock.

Note that the proof at no point uses that the shock θ directly enters the produc-

tion function, i.e. it applies also to non-technology shocks, e.g. preference shocks,

government expenditure shocks or wage mark-up shocks.
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D.1.3 Proof of Lemma 2

In order to check that our state space is minimal, one needs to verify the observ-

ability and controllability conditions are satisfied in our state space model. The

observability matrix is given by:

On(n(n+k−1))×(n+k) =


B(n+k−1)×(n+k)

BΦ(n+k)×(n+k)

. . .

BΦn
(n+k)×(n+k)

 .

The observability condition is satisfied if On(n(n+k−1)×(n+k) is of full rank. First

notice that B is of rank n+ k− 1. Now, suppose that the observability condition

is violated. That would imply the existence of a n + k dimensional vector ξ 6= 0

such that:1

Bξ = 0 = BΦξ

Given our knowledge of the B matrix, that would imply that the vector ξ is

equal to

ξ = (χ,−χ, . . . ,−χ︸ ︷︷ ︸
n−1 elements

, 0, . . . , 0)tr

for some χ 6= 0. The last k elements, corresponding to the ξ vector are equal to

1The nullspace of B is one-dimensional, that means it is generated by a non-zero vector x.
The nullspace of BΦ is one-dimensional as well. If the observation matrix has rank n + k − 1
then the nullspace of these of two matrices are identical and generated by the same vector x.
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zero since these variables are observable. As a result we have

Φξ = χ

(
φ1,1 −

n∑
l=2

φ1,l, . . . φj,1 −
n∑
l=2

φj,l, . . . , φn,1 −
n∑
l=2

φn,l, 0, . . . , 0

)tr

,

which equals using that the off-diagonal elements in the first row (φ1,j = 0) are

zero,

Φξ = χ

(
φ1,1, . . . , φj,1 −

n∑
l=2

φj,l, . . . , φn,1 −
n∑
l=2

φn,l, 0, . . . , 0

)tr

(D.7)

Multiplying this vector with B maps it to zero, so that we get the set of equations:

−φ1,1 = φj,1 −
n∑
l=2

φj,l ∀2 ≤ j ≤ n, (D.8)

contradicting Assumption 2 ii). Thus, by contradiction we must have that ξ is

not in the nullspace of BΦ. Thus, the observability matrix is of full rank and the

system is observable.

The controllability matrix is given by:

Cnn+1×(n)2 =
[

R(n+1)×nΦR(n+1)×n . . .Φ
nR(n+1)×n

]
.

That the controllability matrix in our state space system is of full rank follows

from Assumption 2 i).

As a result, our state space realization is observable and controllable, hence

minimal.
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D.1.4 Proof of Theorem 2

Suppose the state space is described by the matrices (B̂, Φ̂, R̂) which are related

to the original one as follows:

B̂ = BT

Φ̂ = T−1ΦT (D.9)

R̂ = T−1RU

We show now that T is the identity matrix and that U is as described in the

theorem.

Let χi = (0, . . . , 1︸︷︷︸
i

, . . . , 0)′ be the unit vector with the i′th entry equal to 1

and other entries equal to zero. Consider the long-run effect of χ1, that is the

long-run effect of a neutral technology shock, which equals

BT−1(I−Φ)−1RUχ1 = B(I−Φ)−1RUχ1

since BT−1 = B. Let

Uχ1 =
n+1∑
i=1

ui1χi,

where ui1 is the (i, 1) entry of U. Then the long-run effect of χ1 equals

n+1∑
i=1

ui1vi,

where vi is the true long-run effect (i.e. for the state space described by the true

matrices (B,Φ,R) of χi:

vi = B(I−Φ)−1Rχi.
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We impose the balanced growth restriction which states that the long-run effect

of χ1 equals v1, so that

v1 =
n+1∑
i=1

ui1vi,

The RHS is the long-run response to the shock Uχ1 which equals the long-run

response of neutral technology (χ1) on the LHS (v1). Theorem 1 implies that only

neutral technology has this property so that Uχ1 = χ1, i.e. first column of U is

the vector (1, 0, . . . , 0)′. Since UU′ = I this implies that the first row of U equals

(1, 0, . . . , 0). Finally we use that the first row of

T−1RU

is (1, 0, . . . , 0). Using the properties of U, we also know that the first row of

T−1R

is (1, 0, . . . , 0). Since R̃ is invertible, we have that κ2 = κ3 = . . . = κn = 0.

Furthermore since rzz = 1 we also have κ1 = 0, so that R̂ = RU, what completes

the proof since R̂R̂′ = RUU′R′ = RR′.

D.2 Standard Approaches to Controlling for In-

put Heterogeneity

D.2.1 Jorgenson’s Correction

The fact that inputs heterogeneity complicates the measurement of technology is

a well known problem in the growth accounting literature. Here we discuss the
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most widely accepted procedure that was developed by Jorgenson (1966). An

alternative but closely related procedure due to Hansen (1993) is discussed in

Appendix D.2.2. Central to these approaches is the approximation of the growth

rate of Let in terms of a weighted sum of the hours worked by different groups of

individuals:

∆ log(Let ) ≈
J∑
j=1

aj,t∆ log(Lj,t). (D.10)

The procedures differ in the way the weights {aj,t} are computed. Jorgenson

uses the following Tornqvist aggregator:

aj,t =
νj,t + νj,t−1

2
, where νj,t =

wi,tLi,t∑
j wj,tLj,t

. (D.11)

As shown in Diewert (1976), this would be the right correction to make in the

case that Let is a deterministic homogeneous translog function of the J groups

considered, log(Let ) = f(log(Lt)), where Lt is the vector of hours worked by the

J groups.2 Using the properties of quadratic function (e.g., translog as defined in

footnote 2), one obtains:

∆ log(Let ) = f(log(Lt))− f(log(Lt−1)) (D.13)

=
1

2
[∇f(log(Lt)) +∇f(log(Lt−1))]

′
(log(Lt)− log(Lt−1)),

where the matrix ∇f(log(Lt)) collects the partial derivatives of f(.). Under the

2 Defined by

lnf(x) = α0 +

K∑
k=1

αklnxn +
1

2

K∑
m=1

K∑
l=1

γmllnxmlnxl, (D.12)

where
∑K
k=1 αk = 1, γml = γlm and

∑K
l=1 γml = 0 for j = 1, 2, . . . ,K.
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additional assumption that prices equal marginal products at all points in time,

the Jacobian ∇f(log(Lt)) is equal to
wi,tLi,t∑
j wj,tLj,t

. Thus, equation D.10 is exact for

a homogeneous translog aggregator when the weights are Tornquivst indexes of

labor shares of different groups. All other functional forms, e.g., CES aggregator,

will generate a bias.

A fundamental problem of this strategy arises when hours in efficiency units is

not a deterministic aggregator of hours worked. An implicit assumption in this

procedure is that the parameters of the aggregator have to be constant, making

it for example difficult to explain movements in the skill premium. Thus even if

the aggregator satisfies the functional form requirements at every point of time

but parameters are changing over time, technology is measured with a bias. In

order to make this point explicit, suppose that log(Let ) = f(log(Lt),Θt), where

Θt is a vector of time varying observable or unobservable factors and parameters.

In this environment, one immediately verifies that equation D.14 is an incorrect

expansion for Let as it neglects changes in Θt.

D.2.2 Hansens’ Correction

Hansen (1993) measures the efficiency units of labor as

∑
i

αiLi,t, (D.14)

where αi is the constant weight of group i. The weights αi are the average hourly

earnings

αi =
HEi
HE

, (D.15)
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where HEi is average hourly earnings for group i and HE is average hourly earn-

ings.

We first compute a log-linear approximation of log(
∑

i αiLi,t) with respect to

log(Li,t):

log(
∑
i

αiLi,t) ≈
∑
i

αiLi∑
j αjLj

log(Li,t), (D.16)

where Li is the average labor supply of group i. In addition to this approximation,

a second difference between Hansen and Jorgensen is that they use different coef-

ficients. Jorgensens uses νj,t, an average of two adjacent periods whereas Hansen

uses

αiLi∑
j αjLj

, (D.17)

a time average for the full sample. This means the second bias in the measurement

due to differences in computing averages of wages equals

νj,t −
αiLi∑
j αjLj

. (D.18)

After these approximations, Hansen measurement is equal to Jorgenson and thus

is unbiased if and only if the aggregator is a homogeneous translog function (with

constant coefficients).

D.2.3 Estimation of Solow Residual in Practice

The current the state-of-the-art measurement of Solow residual in the data is based

on IV-regression methods described in Basu et al. (2006). As their methodology

differs from the Solow residual construction we used in the main text, a few details
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should be mentioned. First, it is well-known that if there might be increasing

returns to scale, time-varying factor utilization, or if factors are not paid their

marginal products, tfp measured as Solow residual will be biased. To overcome

this limitation, Basu et al. (2006), following the insight in Hall (1988, 1990),

treat Equation (4.2) as a regression. As input choices are likely endogenous to

innovations in the technology estimated as the residual, the regression is estimated

using instrumented variables. The instruments are required to affect the input

choice but to be uncorrelated with innovation in technology. The authors use

oil prices, growth in real government defense spending, and “monetary shocks”

from a non-structural VAR. Their estimates are based on the data described in

Jorgenson et al. (1987) that controls for changes in labor composition using the

Jorgenson’s correction.

D.3 Calibration of the Simple RBC Model

The vector of structural parameters of our model is given by:

θ = [β, δ, α, h∗s, h
∗
u, u, φ

∗, ν, γ︸ ︷︷ ︸
θ1

, ρφ, σφ, xl, ρz, σz, σa, ρq, σq, ρg, σg︸ ︷︷ ︸
θ2

].

Model period is one quarter. We use quarterly post-84 data on the US economy

in order to calibrate the vector θ. The parameters in θ1 are pinned down using

long run average for selected time series. In particular, the parameters β, α and δ

are chosen so that, in a deterministic steady state of the model, the real interest

rate, the depreciation rate of capital and a labor income share are respectively

1%, 2.5% and 66%, values that are common in the business cycle literature. The

growth rate of neutral technology shocks, γ, is chosen so to match an average
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growth rate of GDP per capita equal to 2%. The parameters h∗u, h
∗
s, u and φ∗ are

chosen so that the model matches a fraction of 0.29 hours worked by low-skilled

individual, 0.36 by high-skilled individuals, a fraction of low-skilled individuals

over total population of 0.64 and a skill premium equal to 1.7. These numbers are

calculated using CPS quarterly data (1979-2006) on wages and hours worked by

education level.3 Finally, we fix the average Frisch elasticity ν to 1.

The remaining parameters in θ2 are calibrated via a Simulated Method of Mo-

ments (SMM) algorithm. In particular, let mT be a vector of sample moments for

selected time series of length T computed using US data. We denote by mT(θ)

their model counterpart when the vector of structural parameter is θ. θ is chosen

to minimize a weighted distance between model and data moments:

min
θ2

[mT − m̂(θ)]′WT[mT − m̂(θ)],

where WT is a diagonal matrix whose nonzero elements are the inverse of the

variance of the corresponding moment. The empirical moments included in the

vector mT are standard measures of cyclical variation and comovement for post

1984 quarterly US data. The time series used are the growth rate in GDP, private

non-durable consumption, private nonresidential investment, total hours worked in

the business sector, total hours of low and high skilled individuals in the business

sector, nominal wages for these two demographic groups, labor productivity. For

each of these time series, we compute the sample standard deviation, the first

order autocorrelation and the cross-correlation with GDP growth. We collect

these sample moments in the vector mT. The associated model’s moments are

calculated via a Monte Carlo procedure. In particular, for each θ, we solve for the

3We define high-skilled individuals as those possessing college education and low-skilled
individuals as those with no college education. See Appendix D.5.
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policy functions using first order perturbation. We next simulate a realization of

length T for the model’s counterparts of the above time series and calculate the

vector m̂T(θ). We repeat this procedure M = 300 times, each time changing the

seed used in the simulation. We then take the (component wise) median of m̂(θ)

across the Monte Carlo replications.

Table A-1 summarizes the procedure used for the calibration of our model and

reports numerical values for the structural parameters. Table A-2 reports the fit

our model in terms of the calibration targets. We can verify that the calibrated

model is consistent along many dimensions with the behavior of aggregate time

series.

Table A-1: Calibrated Parameter Values: RBC Model

Parameter Value Source

α 0.33 Labor Income Share
δ 0.025 Depreciation of Capital Stock
β 0.99 Real Interest Rate
γ 1.004 Average GDP growth per capita
h∗s 0.36 Weekly Hours per Individual (College)
h∗u 0.29 Weekly Hours per Individual (no College)
u 0.64 % of Individuals without College
µφ 0.39 Skill Premium
ν 1.00 Fixed
xs 0.85 Calibrated
ρφ 0.74 Calibrated
ρa 1.00 Calibrated
ρz 0.26 Calibrated
ρg 0.97 Calibrated
ρq 0.99 Calibrated

σa × 100 1.14 Calibrated
σφ × 100 1.32 Calibrated
σz × 100 0.74 Calibrated
σg × 100 0.18 Calibrated
σq × 100 0.12 Calibrated
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D.4 A New-Keynesian Model with Heterogeneous

Labor

In this section we describe the New-Keynesian model which we use in the main

text. The model is identical to Christiano et al. (2005b) and Smets and Wouters

(2007b), except that we have two different type of labor (u)nskilled and (s)killed

labor. There is a mass one of workers (on the unit interval), unskilled workers

on the interval [0, u] and skilled workers on [1 − u, 1]. We also have a richer

specification of uncertainty. The sources of uncertainty in the model are shocks

to TFP, investment, the disutility of labor, discount factor, the wage markup, the

price markup, the skill premium, government spending and monetary policy.

D.4.1 Final-Good Firms

The final consumption good Y is a composite made of intermediate goods Yj and

is sold in a perfectly competitive market at price Pt and equals

Yt =

[∫ 1

0

Y
1

1+λf,t

jt dj

]1+λf,t

, (D.19)

where λf,t is an exogenous shock whose law of motion will be specified later, and

Yjt is intermediate good i. The inflation rate πt = Pt/Pt−1. Bonds pay a return

ebR, where eb is a risk-premium shock on the nominal return R.
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D.4.2 Intermediate-Goods Firms

A monopolist produces intermediate good j ∈ [0, 1] using the following technology:

Yjt =

 Kα
jt[e

ZtLejt]
1−α − ZtF if ≥ F

0 otherwise
, (D.20)

where 0 < α < 1,

Lejt = Lφs,jtL
1−φ
u,jt

and Ls,t = shs,t is total hours worked by skilled individuals, and Lt = Ls,t +Lu,t is

total hours worked. Here, Lejt and kjt denote the time t labor and capital services

used to produce the jth intermediate good. The fixed cost of production are

denoted F > 0. Intermediate firms rent capital and labor in perfectly competitive

factor markets. Profits are distributed to households at the end of each time

period. Let Rk
t and Wt denote the nominal rental rate on capital t services and

the wage rate, respectively. A firm’s real marginal cost is st = δSt(Y )/δY , where

St(Y ) = min
K,Ls,Lu

rktK + wut Lu + wstLs (D.21)

Y given by (D.20) (D.22)

where rkt = Rk
t /Pt, w

s
t = W s

t /Pt and wut = W u
t /Pt. Given our functional forms,

we have

st =

(
1

α

)α [(
1

φ(1− α)

)φ(
1

(1− φ)(1− α)

)1−φ
]1−α

(rkt )α
[
(wst )

φ(wut )1−φ]1−α eZt(α−1)(D.23)

Price setting by firms is as in Calvo (1983) with a constant probability, 1− θp, of

being able to reoptimize its nominal price.
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D.4.3 Households

There is a continuum of households, indexed by j ∈ [0, 1]. As in Christiano et al.

(2005b) and Smets and Wouters (2007b) all households - skilled and unskilled -

are homogeneous with respect to consumption and asset holdings but are hetero-

geneous with respect to the wage rate they earn and the hours they work. The

utility function of the jth household of type T ∈ {u, s}

Ej
t−1

∞∑
l=0

βl−t
[
u(ct+l − hct+l−1)− eAt+l

1 + νT
h1+νT
j,t+l

]
. (D.24)

Here, Ej
t−1 is the expectation operator, conditional on aggregate and household

j′s idiosyncratic information up to, and including, time t − 1; ct denotes time t

consumption; hjt denotes time t hours worked. The household’s stock of physical

capital, kt, evolves according to

kt+1 = (1− δ)kt + eqt
[
1− S

(
It
It−1

)]
It (D.25)

The physical rate of depreciation is denoted δ, It denotes time t investment, and S

is the adjustment cost function, with the following properties: S(eγ) = 0, S ′(eγ) =

0 and S ′′(eγ) = κ, where γ is mean growth rate of Zt.

Capital services, kt, are related to the physical stock of capital by kt = utkt. Here,

ut denotes the utilization rate of capital, which at cost a(ut)kt (in consumption

goods) is set by the household. We assume that u∗ = 1 in steady state, that

a(1) = 0 and we define γu = a′′(1).
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D.4.4 The Wage Decision

Households are monopoly suppliers of a differentiated labor service, hu,jt for un-

skilled and hs,jt for skilled workers. They sell this service to a representative,

competitive firm for skilled/unskilled workers that transforms it into an aggregate

labor input, Ls,t and Lu,t respectively, using the following technologies:

LT,t =

[∫ 1

0

h
1

1+λw,t

T,jt dj

]1+λw,t

, (D.26)

for T ∈ {s, u}. In each period, a household faces a constant probability, 1 − θw,

of being able to reoptimize its nominal wage.

D.4.5 Monetary Policy

We assume that monetary policy is described by an interest rate rue given by

Rt

R∗t
=

(
Rt−1

R∗

)ρR [( πt
π∗

)rπ ( Yt
Y ∗t

)ry]1−ρR
exp(εrt ), (D.27)

where R∗ is the steady state nominal gross interest rate, π∗ is steady state inflation

rate, and Y ∗t is the natural level of output, i.e. the output level in the flexible price

and wage economy.

D.4.6 The aggregate resource constraint

The aggregate resource constraint is

ct + gt + ut + a(ut) ≤ Yt, (D.28)
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where gt is government expenditure.

D.4.7 Stochastic Structure

In addition to monetary policy there are eight additional sources of uncertainty.

The law of motion for these shocks are given by:

zt − zt−1 = γ + ρz(zt−1 − zt−2) + εz,t (D.29)

εrt = εr,t (D.30)

At = ρaAt−1 + εa,t (D.31)

φt = ρφφt−1 + εφ,t (D.32)

gt = ρggt−1 + εg,t (D.33)

qt = ρqqt−1 + εq,t (D.34)

bt = ρbbt−1 + εb,t (D.35)

λwt = ρwλwt−1 + εw,t (D.36)
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λft = ρwλft−1 + εf,t (D.37)

The innovations follow a standard normal random vector.
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D.5 Data Construction

GDP growth: Log difference of gross domestic product in per capita term

(chained dollars). Data are quarterly, 1979:Q1-2012:Q4. The source is Bureau

of Economic Analysis, National Income and Product Accounts Tables, Table 7.1.

Consumption growth: Log difference of personal consumption expenditures in

per capita term (chained dollars). Data are quarterly, 1979:Q1-2012:Q4. The

source is Bureau of Economic Analysis, National Income and Product Accounts

Tables, Table 7.1.

Investment growth: Log difference of nonresidential gross private domestic in-

vestment (chained dollars). Data are quarterly, 1979:Q1-2012:Q4. The source

is Bureau of Economic Analysis, National Income and Product Accounts Tables,

Table 1.1.6.

Inflation: Log difference of GDP deflator. Data are quarterly, 1979:Q1-2012:Q4.

The series is downloaded from the FRED database of the Federal Reserve Bank

of St. Louis (GDPDEF).

Federal Funds Rate: Quarterly averages of monthly effective Federal Funds

Rate. Data are quarterly, 1979:Q1-2012:Q4. The series is downloaded from the

FRED database of the Federal Reserve Bank of St. Louis (FEDFUNDS).
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