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Role of cytoskeletal remodeling in T cell receptor signaling and integrin
activation at the immunological synapse

Abstract
The efficiency of an immune response critically depends on the ability of T cells to respond to antigens. Upon
encountering cognate antigenic peptides on the surface of antigen-presenting cells, T cells form a specialized
interface, termed the immunological synapse (IS), which serves as the site of information transfer between the
cells. This contact zone is characterized by the enrichment of signaling receptors, kinases and adaptor proteins,
and is the site of extensive cytoskeletal remodeling. The versatile nature and spatio-temporal regulation of
signaling cascades at the IS has long been recognized but the exact mechanisms that coordinate these
processes remain poorly understood. In this work we have investigated the role of cytoskeletal remodeling in
propagation of signaling events that lead to T cell activation. Using human T cell lines and primary T cells, we
demonstrate that F-actin flow is largely driven by actin polymerization, rather than by myosin IIA contraction.
While myosin IIA is able to exert forces on the cytoskeleton, it is dispensable for bulk network flow.
Conversely, myosin IIA controls the extent of cell spreading and synaptic symmetry. We have also found that
ongoing retrograde flow of F-actin sustains calcium mobilization at the level of release from endoplasmic
reticulum stores. This defect is likely due to loss of PLCgamma1 activity at the IS, since the concentration of
phosphorylated PLCgamma1 plummets upon F-actin immobilization. Furthermore, we have examined
whether F-actin remodeling is required for integrin LFA-1 activation, which in turn strengthens conjugate
formation and costimulation. Taking advantage of stimulatory planar lipid bilayers and cell-cell conjugates, we
show that F-actin flow drives affinity maturation and spatial organization of LFA-1 at the IS. These
observations are in line with a mechanotransduction model, in which F-actin-derived force induces integrin
conformational change, thereby modulating binding affinity for ligand. The net inward movement of F-actin
also recruits LFA-1 to the interface, thereby increasing its effective concentration. Taken together, these
findings indicate that ongoing remodeling of actin cytoskeleton is required to sustain signaling and to
choreograph spatio-temporal organization of receptors and their associated complexes at the IS during early
phases of T cell activation.
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ABSTRACT 

 

ROLE OF CYTOSKELETAL REMODELING IN T CELL RECEPTOR SIGNALING 

AND INTEGRIN ACTIVATION AT THE IMMUNOLOGICAL SYNAPSE 

Alexander Babich 

Dr. Janis K. Burkhardt 

 

The efficiency of an immune response critically depends on the ability of T cells to 

respond to antigens. Upon encountering cognate antigenic peptides on the surface of 

antigen-presenting cells, T cells form a specialized interface, termed the immunological 

synapse (IS), which serves as the site of information transfer between the cells. This 

contact zone is characterized by the enrichment of signaling receptors, kinases and 

adaptor proteins, and is the site of extensive cytoskeletal remodeling. The versatile nature 

and spatio-temporal regulation of signaling cascades at the IS has long been recognized 

but the exact mechanisms that coordinate these processes remain poorly understood. In 

this work we have investigated the role of cytoskeletal remodeling in propagation of 

signaling events that lead to T cell activation. Using human T cell lines and primary T 

cells, we demonstrate that F-actin flow is largely driven by actin polymerization, rather 

than by myosin IIA contraction. While myosin IIA is able to exert forces on the 

cytoskeleton, it is dispensable for bulk network flow. Conversely, myosin IIA controls 

the extent of cell spreading and synaptic symmetry. We have also found that ongoing 

retrograde flow of F-actin sustains calcium mobilization at the level of release from 

endoplasmic reticulum stores. This defect is likely due to loss of PLC1 activity at the IS, 
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since the concentration of phosphorylated PLC1 plummets upon F-actin immobilization. 

Furthermore, we have examined whether F-actin remodeling is required for integrin 

LFA-1 activation, which in turn strengthens conjugate formation and costimulation. 

Taking advantage of stimulatory planar lipid bilayers and cell-cell conjugates, we show 

that F-actin flow drives affinity maturation and spatial organization of LFA-1 at the IS. 

These observations are in line with a mechanotransduction model, in which F-actin-

derived force induces integrin conformational change, thereby modulating binding 

affinity for ligand. The net inward movement of F-actin also recruits LFA-1 to the 

interface, thereby increasing its effective concentration. Taken together, these findings 

indicate that ongoing remodeling of actin cytoskeleton is required to sustain signaling and 

to choreograph spatio-temporal organization of receptors and their associated complexes 

at the IS during early phases of T cell activation.  
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CHAPTER 1: INTRODUCTION
2
 

 

I. Summary 

Cytoskeletal remodeling plays an essential role in coordinating molecular 

rearrangements in T cells interacting with antigen-presenting cells (APCs). Recent 

advances in the field have demonstrated that the actomyosin and microtubule networks 

are intertwined in many ways and provide a dynamic milieu for signaling cascades 

downstream of T cell receptor (TCR) and integrins in the context of polarized stimulation 

(Bunnell et al., 2001; Lasserre et al., 2010). Two major tasks converge on the T cell 

cytoskeleton during early stages of immunological synapse (IS) formation. First, the 

engaged TCR and the associated molecules must be assembled into signaling complexes, 

known as microclusters (MCs), which further must be organized in space and time to 

fine-tune signaling (Yokosuka and Saito, 2010). Second, the cell–cell interface must 

develop shortly after stimulation and remain firmly adhered through integrins for a 

number of hours for optimal immune response (Beemiller and Krummel, 2010). TCR and 

integrins associate with the cytoskeleton and cooperatively initiate sustained calcium 

(Ca
2+

) mobilization and firm adhesion, which ultimately drive transcriptional 

reprogramming of T cell functions. This thesis addresses the organization and dynamics 
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 Parts of this chapter have been published as:  

Babich A, Burkhardt JK 

Coordinate control of cytoskeletal remodeling and calcium mobilization during T-cell activation. 

Immunological Reviews. November 2013; Volume 256, pp. 80-94. 
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of T cell cytoskeleton and its role in maintenance of synaptic architecture and 

transduction of signaling downstream of surface receptors. 

II. Cytoskeletal control of calcium mobilization downstream of the TCR 

Cytoskeletal responses and Ca
2+

 signaling in T cells are functionally integrated in 

complex ways, creating feedback loops that promote T cell activation and direct effector 

functions. Correlative evidence for a linkage between cytoskeletal remodeling and Ca
2+

 

mobilization dates back to the earliest single-cell studies of T cell activation. In the 70’s 

and 80’s, it was noted that target cell lysis required extracellular Ca
2+

, and entailed a 

programmed series of cell shape changes (reviewed in (Kupfer and Singer, 1989)). Soon 

thereafter, TCR engagement was shown to induce an increase in intracellular Ca
2+

 levels 

(Ostergaard and Clark, 1987). Moreover, two distinct sets of cytoskeletal rearrangements 

were observed:  first, APC binding-induced polymerization of F-actin and recruitment of 

cytoskeletal proteins such as talin to the cell-cell contact site, and second, the T cell 

microtubule organizing center (MTOC), associated Golgi complex, and lytic granules 

reoriented to face the APC. Causal linkage between Ca
2+

 mobilization and cytoskeletal 

remodeling was established by subsequent pharmacological studies. Using 

pharmacological agents to disrupt actin turnover, several groups showed that TCR-

induced polymerization of actin is needed for Ca
2+

 mobilization (Delon et al., 1998; Liu 

et al., 1995; Valitutti et al., 1995). Reciprocal experiments showed that Ca
2+

 responses 

are needed for cytoskeletal remodeling as well. Although initial studies showed that 

chelation of extracellular Ca
2+

 using EGTA does not inhibit TCR-induced polymerization 

of actin or recruitment of talin to the immunological synapse (IS) (Kupfer and Singer, 

1989; Phatak and Packman, 1994), treatment of T cells with a combination of EGTA and 
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BAPTA-AM to deplete both extracellular and intracellular Ca
2+

 showed that Ca
2+

 

elevation is required for actin-dependent spreading (Bunnell et al., 2001). In addition, 

elevated intracellular Ca
2+

 was also found to be required for MTOC reorientation toward 

the APC (Kupfer et al., 1985). 

Recent years have seen considerable progress in our understanding of the mutual 

regulation of cytoskeletal remodeling and Ca
2+

 signaling during T cell activation. Many 

of the key proteins that control both actin dynamics and Ca
2+

 mobilization have been 

identified, making it possible to define specific points where the two pathways intersect. 

Moreover, as we begin to grasp how the cytoskeletal network functions as a unit, we are 

gaining new insights into the role of cell shape changes, mechanotransduction and other 

higher order signaling events (Quintana et al., 2009).  In this section I will address the 

mechanisms underlying the complex interaction between cytoskeletal reorganization and 

Ca
2+

 signaling in T cells, and highlight important areas for future investigation.   

 

General features of Ca
2+

 signaling 

In order to understand the interplay between cytoskeletal dynamics and Ca
2+

 

signaling, it is important to review the mechanisms by which TCR engagement leads to 

Ca
2+

 mobilization.  Broadly speaking, T cell Ca
2+

 signals reflect two distinct but 

interrelated processes: triggering Ca
2+

 release from ER stores, and activation of calcium 

release-activated calcium (CRAC) channels (Orai1) in the plasma membrane (PM) 

(Figure 1.1). Release of Ca
2+

 from the ER by TCR engagement results from the formation 

of sub-micron scale signaling MCs, enriched in TCRs as well as kinases and adaptor 

proteins (Yokosuka and Saito, 2010). The early tyrosine phosphorylation events that take   
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Figure 1.1. F-actin remodeling and Ca
2+

 mobilization downstream of TCR signaling 

TCR stimulation by peptide-loaded MHC triggers Lck-mediated phosphorylation of ITAM 

motifs in the intracellular regions of the TCR complex.  Once phosphorylated, these sites 

recruit Zap70, which phosphorylates LAT and subsequently SLP-76. These adapter proteins 

cooperatively serve as a docking site for PLC1. SLP-76 also recruits two other key regulators 

of downstream signaling – Vav1 and Itk. Vav1 promotes F-actin polymerization by activating 

Rac and Cdc42, which in turn activate WAVE and WASp. Itk phosphorylates and activates 

PLC1, which then cleaves PIP2, generating DAG and IP3.  IP3 binds to IP3 receptors on the 

ER membrane, inducing the release of Ca
2+

 from ER stores.  This process is opposed by 

SERCA pumps, which refill ER stores on an ongoing basis. ER store depletion triggers 

oligomerization of STIM 1 in the ER membrane, which facilitates STIM 1 delivery to PM at 

specialized sites of ER-PM apposition. There, STIM 1 interacts with and activates the CRAC 

channel Orai1 to allow the influx of extracellular Ca
2+

 into the cytosol. Sustained Ca
2+

 

mobilization activates the phosphatase calcineurin, which then activates NFAT and allows its 

shuttling into the nucleus to initiate T cell reprogramming at the level of gene expression.  
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place within MCs have been reviewed extensively elsewhere (Dustin and Groves, 2012; 

Fuller et al., 2003). Briefly, the Src kinase Lck phosphorylates inducible tyrosine 

activation motifs (ITAMs) on the ζ chains of the receptor complex, which serve as 

docking sites for the Syk kinase ζ-chain associated protein of 70 kDa (Zap70).  Zap70 

then phosphorylates Linker for Activation of T cells (LAT) and SH2 domain-containing 

Leukocyte Protein of 76 kDa (SLP-76). Cooperative assembly of these and other MC 

components culminates in the recruitment and subsequent activation of phospholipase C 

1 (PLC1).  Upon activation, PLC1 cleaves phosphotidylinositide 4,5-bisphosphate 

(PIP2) into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). DAG activates 

the Ras pathway, while IP3 triggers its receptors in the ER membrane, leading to Ca
2+

 

release from ER stores. This early phase of Ca
2+

 mobilization ensues within seconds of 

TCR engagement and requires engagement of only a few TCRs (Irvine et al., 2002). ER 

stores are emptied within seconds, and sarco/endoplasmic reticulum Ca
2+

-ATPase 

(SERCA) pumps in the ER membrane immediately begin to return cytoplasmic Ca
2+

 to 

the ER. Thus, on its own, this phase represents a transient and relatively small rise in 

intracellular Ca
2+

, lasting on the order of minutes.  

Release of Ca
2+

 from the ER initiates events that lead to a more prolonged increase in 

cytoplasmic Ca
2+

 levels.  IP3-induced depletion of Ca
2+

 from ER stores and the resulting 

decrease in ER Ca
2+

 concentration leads to dissociation of Ca
2+ 

from N-terminal EF hand 

domains of Stromal Interaction Molecule 1 (STIM 1), a Ca
2+

 sensor that spans the ER 

membrane (Luik et al., 2008).  A subsequent conformational change in STIM 1 leads to 

its oligomerization and subsequent delivery to the sites of ER-PM apposition, probably 

through its interaction with microtubule +TIP tracking proteins (Barr et al., 2008; 
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Grigoriev et al., 2008). There, STIM 1 associates with trans-membrane Orai1 (CRAC) 

channels and activates them.  This allows the entry of Ca
2+

 from the extracellular space 

via a process termed store-operated calcium entry (SOCE) (Reviewed in Hogan, 2010). 

The resulting sustained elevation of cytoplasmic Ca
2+

 is responsible for the activation of 

T cell transcriptional machinery.  A key target of elevated intracellular Ca
2+

 is 

calcineurin, which dephosphorylates the transcription factor NF-AT, allowing its 

translocation to the nucleus (Rao, 2009).  Once in the nucleus, NF-AT promotes 

transcription of interleukin-2 (IL-2) and other proteins that lead to T cell activation. 

Importantly, the two phases of T cell Ca
2+

 mobilization are not temporally segregated. 

Thus, during the initial rise in Ca
2+

 due to release from the ER, extracellular Ca
2+

 enters 

via Orai1 and “floods” the cytoplasm. Without ongoing TCR signaling leading to 

continued IP3 receptor activation, SERCA pumps in the ER membrane quickly replenish 

ER stores, STIM 1 disengages Orai1 and relocalizes away from the PM, and Orai1 

channels close (Alonso et al., 2012; Smyth et al., 2008). In support of the requirement for 

ongoing signaling leading to ER store release, disruption of PLC1 activation during the 

sustained phase of signaling correlates with a concomitant drop in intracellular Ca
2+

 

levels (Babich et al., 2012). The finely-tuned nature of this 2-phase system becomes 

apparent when one considers the magnitude of changes in the intracellular Ca
2+

 

concentration upon TCR triggering.  In resting T cells, the cytosolic Ca
2+

 concentration is 

50-100 nM, while Ca
2+

 concentrations in the ER and the extracellular space are 800-1000 

µM and 2 mM, respectively. Upon TCR engagement, cytoplasmic Ca
2+

 levels rise by an 

ord3er of magnitude, to ~1 µM. Efficient Ca
2+

 influx is facilitated by the steep 

concentration gradient across the PM (Robert et al., 2012). As discussed below, 
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cytoskeletal dynamics have an important function in positioning signaling molecules and 

organelles to modulate this process. 

 

Actin function in TCR signaling  

Actin dynamics are intimately involved in basic mechanical interactions and spatio-

temporal control of signaling events leading to Ca
2+

 mobilization. Actin promotes early 

steps of TCR signaling at two levels: via effects on the TCR itself, and via the assembly 

of MCs, which transduce and amplify TCR signals. In both cases, the actin cytoskeleton 

is not just a static scaffold or a conventional link in a chain of signaling events. Instead, 

actin exerts forces and orchestrates molecular movements needed for Ca
2+ 

signaling. 

Initial TCR triggering 

In mature T cells, TCR engagement leads to association of phosphorylated ITAM 

motifs in the TCR complex with the actin cytoskeleton (Rozdzial et al., 1995; Rozdzial et 

al., 1998). Moreover, the CD3 complex reportedly binds to Nck, a component of a 

protein complex that drives actin polymerization (Kesti et al., 2007).  Linkage of the TCR 

complex to actin filaments is almost certainly indirect, and the exact molecular 

mechanisms remain controversial.  Nonetheless, there is broad consensus that centripetal 

TCR movement at the IS is orchestrated by F-actin dynamics (Barda-Saad et al., 2005; 

DeMond et al., 2008; Hartman et al., 2009). The dynamic association of the TCR 

complex with the actin cytoskeleton has two important implications for signaling events 

leading to Ca
2+

 mobilization.  First, the actin-dependent movement of the TCR impacts 

the kinetics of TCR-pMHC interactions.  Recent studies have shown that the outcome of 

TCR engagement is controlled by receptor-ligand kinetics, rather than by t1/2 or KD of 
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antigen/TCR binding alone (Govern et al., 2010; Huang et al., 2010), and ligands with 

fast on-rates can bind and rebind the same TCR several times.  Thus, depending on the 

particular TCR-pMHC interaction, continuous movement of the TCR at the IS may either 

facilitate serial receptor encounters with rare agonist pMHC or minimize opportunities 

for pMHC rebinding. Huppa et al. (2010), demonstrated that the synaptic TCR-pMHC 

dissociation rate is decreased significantly upon treatment of T cells with actin 

depolymerizing agents, consistent with idea that actin-driven TCR movement promotes 

its dissociation from pMHC complexes. Since ligand mobility is an important variable in 

this model, it is important to point out that these experiments were done using stimulatory 

planar lipid bilayers where pMHC mobility is essentially unrestricted.  Mobility of 

pMHC complexes and costimulatory ligands on the APC membrane is modulated by the 

APC cytoskeleton (our unpublished data).  Thus, it will be important to determine to what 

extent this affects TCR-pMHC binding kinetics.  

Another mechanism through which the actin cytoskeleton may directly affect TCR 

signaling involves mechanotransduction. Recent studies indicate that the TCR is a 

mechano-receptor that depends on physical force in order to propagate signals across the 

membrane (Kim et al., 2012; Kim et al., 2009). Thus, interaction of the TCR complex 

with the actin cytoskeleton could promote TCR signaling through mechanical tension, 

produced by active cytoskeletal flow on the one side and ligand binding on the other 

(Feigelson et al., 2010; Hsu et al., 2012; Tseng et al., 2005). To account for the role of the 

F-actin flow in TCR signaling, Ma and Finkel have proposed the receptor deformation 

model (Ma and Finkel, 2010; Ma et al., 2008a). Building upon the earlier work showing 

that TCR stimulation is greatly increased by the immobilization of agonist pMHCs, they 
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showed that effective TCR triggering depends on T cell adhesion to the stimulatory 

surfaces and an intact T cell cytoskeleton; lack of either of those factors precludes 

efficient Ca
2+

 mobilization. Based on this evidence, the authors postulated that actin flow 

at the T cell IS provides a force that is counteracted by molecular interactions at the T 

cell–APC interface. The resulting tension on the TCR elicits structural changes within the 

complex to facilitate downstream signaling.  The specific mechanism of TCR triggering 

is not fully understood (Dushek, 2011; van der Merwe and Dushek, 2011), and the 

contribution of force-induced TCR deformation is controversial.  Arguably, ITAM motifs 

in the TCR complex are fully exposed without applied force, such that any role for 

mechanotransduction must lie downstream of the TCR itself.  Nonetheless, the 

involvement of mechanical tension at some stage in TCR signaling is supported by 

evidence that depletion of F-actin abrogates signaling (Kaizuka et al., 2007; Varma et al., 

2006). Moreover, investigation in Chapter 2 reveals that a static F-actin network is 

insufficient to sustain TCR-induced Ca
2+

 signaling, pointing to the necessity for ongoing 

actin polymerization and/or centripetal flow of the branched actin network at the IS. 

Additional support for mechanical tension in T cell signaling comes from studies of T 

cells interacting with TCR stimulatory beads, where Ca
2+

 mobilization is enhanced by 

moving the attached bead away from the IS (Li et al., 2010). 

One important and understudied question in this arena is the role played by the 

stimulatory APC.  Ligand mobility and surface stiffness have both been implicated in 

modulating TCR signaling (Hsu et al., 2012; Judokusumo et al., 2012; O'Connor et al., 

2012; Tseng et al., 2005).  Consequently, determinants of these variables on APCs could 

significantly impact both receptor-ligand binding kinetics and mechanotransduction 
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(Govern et al., 2010).  Since there is evidence that actin is recruited to the dendritic cell 

side of the IS (Al-Alwan et al., 2003), it will be important to understand how the APC 

cytoskeleton impacts these aspects of T cell activation. 

TCR microcluster assembly and maintenance  

In addition to its role in TCR triggering, the actin cytoskeleton regulates the assembly 

of TCR-proximal signaling complexes at the T cell–APC contact site. These complexes 

form MCs containing receptors, kinases and adaptor molecules, many of which contain 

actin-binding and actin-regulatory domains.  Studies of the IS using surrogate planar 

stimulatory surfaces have greatly advanced our understanding of cytoskeletal function in 

the assembly and maintenance of signaling MCs. TCR MCs arise at initial sites of T cell 

contact with stimulatory surfaces, concomitant with the initiation of intracellular Ca
2+

 

signaling (Bunnell et al., 2002; Campi et al., 2005; Yokosuka et al., 2005). Multiple 

actin-regulatory molecules are also recruited to these earliest sites of TCR signaling 

(Barda-Saad et al., 2005; Singleton et al., 2011).  This process, in turn, induces T cell 

spreading and formation of a well-defined lamellipodial region rich in branched actin 

filaments, and an inner lamellar region that contains prominent actomyosin II bundles 

(Babich et al., 2012; Hammer and Burkhardt, 2013; Yi et al., 2012).  The ongoing 

polymerization of actin at the cell periphery, coupled with the organizing forces 

generated by myosin II contraction, results in persistent actin centripetal flow at the IS.  

After maximal spreading has been achieved, nucleation of TCR MCs persists in the 

lamellar region and they are swept inward in parallel with the cytoskeletal flow (Bunnell 

et al., 2002; Nguyen et al., 2008; Varma et al., 2006; Yokosuka et al., 2005).  
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The actin cytoskeleton is essential for stabilizing newly-formed MCs. Key evidence 

from the Dustin lab showed that the integration of signaling molecules into the 

cytoskeletal scaffold greatly increases the lifetime of nascent MCs and promotes T cell 

stimulation (Varma et al., 2006).  When fully spread T cells were treated with actin 

destabilizing agent, Latrunculin A, the newly-formed peripheral MCs dissolved, while 

the mature central MCs persisted for more than 10 minutes after drug treatment, 

presumably because they were stabilized by higher order interactions among MC 

components.  

Calcium-regulatory roles of individual actin-regulatory proteins   

In view of the multiple levels at which cytoskeletal remodeling affects Ca
2+

 signaling 

in T cells, one would expect that loss of important actin-regulatory molecules would 

affect Ca
2+

 mobilization; indeed, this is the case.  As in other cell types, the formation of 

a branched F-actin network in T cells is driven by the seven subunit Arp2/3 complex, 

which directs the formation of new actin filaments on the sides of pre-existing filaments.  

The Arp2/3 complex is activated by one or more nucleation-promoting factors (NPFs), 

including WASp, WAVE2 and HS1 (Higgs and Pollard, 1999). WASp and WAVE2 

function downstream of the Rho GTPases Cdc42 and Rac1, which are, in turn, activated 

by guanine exchange factors such as Vav1.  Superimposed on this branched actin 

network is a higher level of organization; myosin II induces bundling and sliding of 

filaments within lamellar regions of the IS. Analysis of signaling defects in cells lacking 

individual actin-regulatory proteins is instructive in defining the mechanisms though 

which cytoskeletal dynamics influence Ca
2+

 mobilization. 
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Nucleation-promoting factors 

WASp: The first actin-regulatory molecule to be carefully studied in T cells was 

WASp, the protein defective in the immunodeficiency disorder Wiskott-Aldrich 

syndrome. T cells lacking WASp exhibit defects in actin dynamics, although the 

magnitude of such defects is variable (Badour et al., 2003; Cannon and Burkhardt, 2004; 

Nolz et al., 2006), possibly due to overlapping function of the closely related protein N-

WASp (Cotta-de-Almeida et al., 2007), or even more distantly related proteins such as 

WAVE2. However, WASp deficient T cells show a significant reduction in Ca
2+

 influx, 

which is associated with defective nuclear translocation of NF-AT and diminished T cell 

activation (Cannon and Burkhardt, 2004; Dupre et al., 2002; Zhang et al., 1999).  

Conversely, mutations that perturb ubiquitin-dependent degradation of WASp lead to 

increased Ca
2+

 influx (Reicher et al., 2012).  In a recent study, Calvez et al. (2011) 

explored the relationship between WASp function and T cell Ca
2+

 responses.  They 

showed that T cells from WAS patients formed conjugates with APCs at normal 

frequency, but exhibited disorganized actin responses and asymmetric polarization of the 

MTOC, culminating in reduced proliferation in response to superantigen-pulsed APCs. In 

keeping with the idea that WASp manages signaling dynamics at the IS, the authors show 

that in comparison with control T cells, WAS T cells show diminished focusing of 

phospho-tyrosine at the IS.  Interestingly, Ca
2+

 mobilization during the sustained phase of 

signaling was erratic and sometimes pulsatory, a phenotype that the authors attribute to 

the unstable nature of the T cell–APC interaction.  While this study does not directly test 

whether the Ca
2+ 

defects in these cells occur at the level of ER store release or CRAC 

channel function, the observed alterations in tyrosine phosphorylation patterns suggest 
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that early signaling steps leading to IP3 generation and ER Ca
2+

 release are perturbed. 

These findings showing that WASp is important for synapse organization are consistent 

with a model proposed by Dustin and coworkers in which WASp controls synapse 

symmetry by opposing the activity of PKCθ (Sims et al., 2007). According to this view, 

synapse stabilization and symmetry may be required for efficient integration of TCR (and 

possibly also costimulatory) signals.  

HS1: Signaling defects similar to those observed in WASp-deficient T cells are seen 

in T cells lacking HS1, the hematopoietic homologue of cortactin.  Like WASp, HS1 can 

activate Arp2/3 complex-dependent formation of branched actin filaments, and 

additionally, it can stabilize F-actin by binding to it.  The Billadeau lab showed that T 

cells lacking HS1 exhibit defects in TCR engagement-induced actin dynamics as well as 

Ca
2+

 mobilization and NF-AT dependent transcriptional activation (Gomez et al., 2006).  

In cell spreading assays, HS1-deficient T cells exhibit unstable lamellipodial protrusions, 

and in conjugates, they show loss of F-actin accumulation at the IS within a few minutes 

of cell-cell contact.  Although the researchers did not observe destabilization of adhesion 

in HS1-deficient T cells, defects in integrin-dependent adhesion and signaling were noted 

in conjugates formed with HS1-deficient NK cells (Butler et al., 2008).  Single cell 

analysis of T cell Ca
2+

 responses showed that release from ER stores is inhibited. 

Moreover, defects in Ca
2+

 signaling are rescued by treatment with the SERCA pump 

inhibitor thapsigargin, indicating that CRAC channel activity is intact (Carrizosa et al., 

2009).  Further analysis of TCR signaling pathways revealed that PLC1 phosphorylation 

and recruitment to the IS is intact, but that dynamics of PLC1 MCs and cytoskeletal 

association of phospho-PLC1 was perturbed (Carrizosa et al., 2009).  Thus, in the case 
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of HS1, it seems clear that defects in stabilization of branched actin filaments lead to 

unstable lamellipodial protrusions and aberrant dynamics of TCR-induced signaling 

MCs, resulting in defective induction of ER store release.  Numerous technical 

differences in the analysis of T cells deficient for HS1 and WASp make it hard to make 

direct comparisons. Nonetheless, there are many phenotypic similarities, consistent with 

the observation that these two proteins frequently work together to generate and stabilize 

branched actin networks. 

WAVE 2: Like WASp and HS1, WAVE2 functions together with WAVE complex 

components to activate Arp2/3 complex-dependent formation of branched actin filaments 

in response to TCR engagement (Nolz et al., 2006).  In comparison with T cells lacking 

WASp or HS1, T cells lacking WAVE2 show much more profound defects in TCR-

induced actin polymerization and lamellipodial protrusion.  WAVE2 deficiency abrogates 

spreading and T cell–APC conjugates show virtually no actin polymerization at the IS.  

Similar defects are observed in T cells lacking Abi proteins, components of the WAVE 

complex that are needed for translocation of WAVE to the IS (Zipfel et al., 2006).  As 

with loss of other Arp2/3 complex activators, loss of WAVE2 leads to significant 

blunting of Ca
2+

 mobilization.  Surprisingly, however, WAVE2 deficient cells differ from 

cells lacking HS1 in that the initial release of Ca
2+

 from ER stores is intact.  Moreover, 

defects are not bypassed by thapsigargin treatment.  This phenotype points clearly to a 

requirement for WAVE2 in signaling for extracellular Ca
2+

 influx.  Whether WAVE2 is 

needed for Orai1 function per se, or for facilitating STIM 1/Orai1 interactions remains to 

be determined.  In other cell types, WAVE2 has been shown to be targeted to sites of 

lamellipodial protrusion via interactions with proteins that control microtubule dynamics 
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such as EB1 and stathmin (Takahashi, 2012), raising the possibility that WAVE2 

promotes microtubule-dependent dynamics of STIM 1. 

Upstream regulators of actin nucleation 

As one might expect, molecules that regulate activation of WASp, WAVE2 and HS1 

downstream of the TCR are required for both actin responses and Ca
2+

 mobilization.  For 

example, Rac GTPases, which activate WAVE2, are needed for both processes 

(Arrieumerlou et al., 2000; Yu et al., 2001).  Often, however the relevant signaling 

proteins are large, modular molecules with several interdependent functions.  Thus, it can 

be difficult to distinguish the extent to which they affect Ca
2+

 signaling by regulating 

actin dynamics.  Several recent reviews address T cell signaling pathways leading to actin 

polymerization in detail (Burkhardt et al., 2008; Fooksman et al., 2010; Gomez and 

Billadeau, 2008).  Here, I will discuss key molecules that illustrate the complexities 

associated with upstream regulation of actin and Ca
2+

 responses.   

Vav1: A good example of this type of functional complexity is Vav1. Upon TCR 

engagement, Vav1 is recruited to the IS and behaves as a guanine exchange factor (GEF) 

for the Rho family GTPases Rac1 and Cdc42 (Dumont et al., 2009), which activate 

WAVE2 and WASp, respectively. Vav1 function is essential for actin polymerization at 

the IS (Bustelo, 2001; Turner and Billadeau, 2002; Tybulewicz et al., 2003). Other Vav 

family members are ubiquitously expressed and participate redundantly in the activation 

of small GTPases (Cao et al., 2002; Zakaria et al., 2004).  T cells lacking Vav1 show 

profound defects in Ca
2+

 mobilization.  Interestingly, however, Vav1’s role in regulating 

actin and Ca
2+

 responses may be distinct.  In particular, the GEF activity of Vav1 seems 

to be dispensable for Ca
2+

 mobilization, since T cells from knock-in mice bearing a Vav1 
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mutant lacking GEF activity display normal Ca
2+

 and proliferative responses. 

Furthermore, Vav2 and Vav3 cannot mediate Ca
2+

 elevation in stimulated T cells, 

indicating that the isoforms are not completely redundant.  In a recent study, Li et al. 

(2013) isolated a 20 amino acid region in the N-terminus of Vav1 that is indispensable 

for Ca
2+

 mobilization independently of GEF activity. The authors argue that this 

sequence within the calponin homology domain is essential for calmodulin binding and 

recruitment to the sites of active signaling (Li et al., 2013; Zhou et al., 2007), highlighting 

the scaffolding function of Vav1 in TCR-induced Ca
2+

 mobilization.  

Itk: A second example of multidomain complexity is seen in the Tec family kinase 

Itk.  Like Vav1, Itk is a component of the TCR signalosome.  Itk phosphorylates PLC1, 

and so plays a critical role in signaling Ca
2+

 release from ER stores.  Through its SH2 

domain, Itk interacts with HS1 and recruits it to the IS (Carrizosa et al., 2009), and T 

cells deficient for Itk show defective actin responses similar to those of HS1-deficient T 

cells (Dombroski et al., 2005; Grasis et al., 2003; Labno et al., 2003).  Via HS1, Itk also 

promotes Vav1 recruitment to the IS, so that Itk-deficient T cells also have defects in 

TCR engagement-induced activation of Cdc42 and WASp (Labno et al., 2003).  

Interestingly, it appears that the domains of Itk responsible for regulating actin and Ca
2+

 

responses are largely distinct.  PLC1 activation requires kinase activity, while actin 

regulation requires the SH2 domain, and is unaffected by mutations that abrogate kinase 

activity (Dombroski et al., 2005).  Even so, this separation may not be complete.  Binding 

of SLP-76 to the SH2 domain of Itk has been shown to activate Itk kinase activity (Bogin 

et al., 2007), and the same may be true for interactions with HS1. Thus, there could be a 



17 

direct linkage between Ca
2+

 signaling and actin-regulatory pathways, even though actual 

actin remodeling is not involved.    

In addition to the complexities introduced by multi-domain signaling molecules, 

higher order molecular organization intertwines actin polymerization and Ca
2+

 signaling.  

Signalosome components are held together by multiple low affinity molecular 

interactions, such that loss of any one component disrupts interactions among the others 

and perturbs T cell signaling (Barda-Saad et al., 2010; Hartgroves et al., 2003; Houtman 

et al., 2006).  As part of this process, actin scaffolds generated by these signaling 

molecules stabilize newly formed signaling complexes (Campi et al., 2005), thereby 

generating a positive feedback loop to facilitate T cell activation.  As discussed further 

below, there is evidence that this process requires ongoing actin polymerization, rather 

than a static actin scaffold (Babich et al., 2012). Interestingly, PLC1 activation appears 

to be an important control point for this higher order cytoskeletal control of Ca
2+

 

signaling (Babich et al., 2012; Carrizosa et al., 2009). 

Myosin IIA function in the T cell Ca
2+

 response 

Another actin interacting protein that has gained recent interest in the field is myosin 

IIA. This motor protein is the sole representative of non-muscle myosin II family in 

mouse primary T cells (Jacobelli et al., 2004). Jurkat T cells of human origin also express 

myosin IIB (Jbireal et al., 2010). The results of multiple studies are conflicting as to the 

exact role that myosin IIA plays at the IS both in terms of actin dynamics and Ca
2+

 

signaling (Hammer and Burkhardt, 2013). Initial work by Ilani et al. (2009) concluded 

that myosin IIA is indispensable for centripetal movement of TCR microclusters at the IS 

(presumably driven by the actomyosin retrograde flow), as well as for both initial and 
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sustained Ca
2+

 signaling. However, subsequent detailed studies yielded disparate results.  

In studies of murine TCR transgenic T cells responding to stimulatory planar bilayers, Yu 

et al. (2012) found that inhibition of myosin light chain kinase with ML-7 resulted in a 

profound decrease in Ca
2+

 mobilization, while Kumari et al. (2012) observed only a 

modest dampening of the Ca
2+

 response upon RNAi-mediated suppression of myosin IIA.  

Recent report from the Krummel lab confirms their original conclusion that myosin IIA is 

dispensable for IS formation and F-actin flow (Beemiller et al., 2012). However, the 

researchers did not provide any experiments testing the role of myosin IIA in Ca
2+

 

mobilization. Our investigation in Chapter 2 deals in depth with the role of myosin IIA in 

signaling and dynamics at the IS. 

 

Calcium mobilization via cytoskeletal control of organelle positioning 

In addition to promoting the immediate signaling events that take place downstream 

of TCR, the cytoskeleton directs the higher order organization of cellular organelles; this 

also contributes to prolong Ca
2+

 signaling. Organelles known to modulate Ca
2+

 signaling 

in a cytoskeleton-dependent fashion include the ER, mitochondria, and the PM. 

Remodeling of the endoplasmic reticulum 

The ER is distributed throughout the cytoplasm via its interactions with the 

cytoskeleton. While comparatively little is known about ER remodeling in T cells, 

analysis in other cell types has shown that ER organization is determined by the balance 

between movement toward the cell periphery driven by microtubule motors and 

attachment to growing microtubule tips, and movement toward the cell body driven by 

actomyosin (Terasaki et al., 1986; Waterman-Storer et al., 1998).  The net result of these 
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processes is the formation of specialized sites where the ER membrane comes in close 

proximity to the PM, and it is at these sites where the ER protein STIM 1 engages Orai1 

in the PM, promoting Ca
2+

 influx (Shen et al., 2011).  STIM 1 associates with the MT tip 

tracking protein EB1, which directs the accumulation of Stim1 to sites where the ER 

interacts with microtubule plus ends.  Indeed, Grigoriev et al. (2008) investigated the role 

of Stim1 in ER remodeling in HeLa cells and MRC5 fibroblasts, and found that the 

interaction between Stim1 and EB3 (and to lesser extent EB1) promotes ER tubule 

extension. Upon depletion of ER Ca
2+

 stores, Stim1 oligomerizes and moves within the 

plane of the ER, triggering the formation of Stim1-ORAI1clusters at ER-PM junctions. 

Consistent with the notion that the microtubule cytoskeleton positions the ER to promote 

Stim1-Orai1 interactions, depolymerization of microtubules with nocodazole inhibits 

SOCE (Smyth et al., 2007). 

Recruitment of mitochondria to the immunological synapse 

Mitochondria are delivered to the IS along microtubules by kinesin-1 (Pilling et al., 

2006). Besides their canonical role as “cellular powerhouses”, mitochondria are well-

adapted for Ca
2+

 buffering in their immediate vicinity. This turns out to be important for 

the function of the Orai1 channel, which becomes auto-inhibited if the local 

concentration of Ca
2+

 reaches high levels (Hoth et al., 1997). Mitochondria at the IS 

buffer Ca
2+

, preventing its accumulation at the channel mouth, thereby ensuring that the 

CRAC channels remain active. Mitochondria then release Ca
2+

 away from the IS so that 

it can propagate the signaling cascade (Quintana et al., 2009). In this way, mitochondria 

set up a narrow gradient of Ca
2+

 ions near the sites of TCR signaling (Schwindling et al., 

2010).  
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Polarization of mitochondria to the IS is microtubule-dependent. Contento et al. 

(2010) reported that MTOC and mitochondrial polarization to the IS occurs via outside-in 

LFA-1 signaling, providing a potential costimulatory mechanism. However, microtubule 

tracks by themselves are not sufficient for the delivery of mitochondria to the IS. 

Mitochondria are large organelles that are fused into intricate networks, which impedes 

their navigation through intracellular space. Thus, regulated remodeling of mitochondria 

by fusion and fission proteins facilitates their delivery to the IS and promotes their 

interaction with CRAC channels, as well as delivery of ATP to the TCR signaling 

machinery.  

TCR stimulation triggers activation of dynamin-related protein 1 (Drp1), a GTPase 

essential for mitochondrial fission (Smirnova et al., 2001). Depletion of Drp1 in T cells 

interacting with APCs leads to defects in mitochondrial polarization and TCR dynamics 

(Baixauli et al., 2011). Once at the IS, mitochondrial fragments are fused into large 

structures by mitofusin, and become enriched at the pSMAC region (Figure 1.2). This 

localization is most likely regulated by the interplay between microtubule- and actin-

dependent motors; cytoplasmic dynein binding to mitochondria would drive centripetal 

movement, as would pushing by actin retrograde flow. Centripetal movement of 

mitochondria at the IS may be opposed by kinesin-1 and myosin V, which have been 

shown to bind to mitochondria and direct their migration toward the cell periphery in 

other cell types (Pathak et al., 2010; Saxton and Hollenbeck, 2012). Interestingly, 

kinesin-1 binding to the mitochondrial surface is regulated by Ca
2+

 (Wang and Schwarz, 

2009). This provides a potential feedback mechanism that could couple mitochondrial to 

CRAC activity at the IS.  
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Plasma membrane flattening  

Because the Ca
2+

 buffering efficiency of mitochondria is limited to short distances, it is 

essential that these organelles be juxtaposed against the IS within 200 nm of the PM 

(Quintana et al., 2009). Therefore, flattening of the T cell PM at the IS is important to 

facilitate signaling. The Hoth lab investigated the importance of cell morphology during 

T cell activation (Quintana et al., 2009). They discovered that Ca
2+

 signaling was 

augmented in cells that underwent actin-dependent PM flattening upon TCR signaling 

and that these changes promoted mitochondrial delivery to the peripheral contact zone 

(Figure 1.2). Furthermore, they demonstrated that pre-incubation of T cells with non-

stimulatory adhesive beads (a process that deforms the PM) greatly increased their ability 

to respond to soluble TCR ligands. 

 

Regulation of cytoskeletal dynamics by Ca
2+

 signaling 

Although most of the available literature focuses on cytoskeletal control of Ca
2+

 

mobilization, it is clear that Ca
2+

 signaling also impacts remodeling of both actin 

filaments and microtubules. Perhaps more importantly, cytoskeletal dynamics and Ca
2+

 

signaling are inextricably linked at the level of inositol metabolism (Figure 1.3). 

Ca
2+

 control of the actin cytoskeleton 

With respect to the actin cytoskeleton, Bunnell et al. (2001) showed that chelation of 

extracellular and intracellular Ca
2+

 blocked actin-dependent T cell spreading on TCR-

stimulatory surfaces. The defect was profound and mirrored that of blocking Src kinase 

activity. This observation revealed the necessity for elevated intracellular Ca
2+

 early in 

the sequence of events leading to actin polymerization and cell spreading. Although   
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Figure 1.2. Morphological changes and organelle remodeling associated with T cell 

polarization in response to TCR triggering 

(A) Upon encountering an APC bearing cognate pMHC, a T cell undergoes polarization 

towards the site of antigen presentation. Actin polymerization at sites of TCR engagement 

stabilizes newly-formed signaling MCs, and lamellipodial F-actin polymerization induces T 

cell spreading on the APC surface. (B) TCR MCs form in the actin-rich periphery of the IS 

and are continuously delivered to the central region in parallel with actin retrograde flow, a 

process that involves actin polymerization at the cell periphery coupled with contraction of the 

actomyosin network. For at least some MC components, microtubule-dependent motor 

activity also contributes to centripetal movement. Concomitant with T cell spreading, the 

MTOC is recruited to the cell-cell contact zone, which establishes tracks for retrograde traffic 

of signaling molecules to the cSMAC region, and anterograde movement of the ER and 

mitochondria to the IS. Mitochondria undergo fission and fusion to enhance their trafficking to 

the sites of active TCR signaling. (C) Once the machinery is set in place, T cells undergo 

partial actomyosin-dependent contraction to focus receptors and develop a mature IS. 
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the mechanisms involved have not been elucidated in detail, many actin-regulatory 

proteins are Ca
2+

-sensitive.  These include proteins such as myosin II, L-plastin and 

gelsolin that are regulated directly by Ca
2+

, as well as proteins such as talin, ezrin and 

WASp that are sensitive to cleavage by the Ca
2+

 -dependent protease calpain. 

One proposed mechanism by which Ca
2+

 signaling may modulate T cell cytoskeletal 

function involves cleavage of key actin regulatory proteins by the Ca
2+

-activated 

proteases calpain 1 and 2.  Such a mechanism has been proposed to explain seemingly 

unique functions of ezrin, which is calpain sensitive, vs. the closely homologous protein 

moesin, which lacks a calpain cleavage site (Ilani et al., 2007; Shcherbina et al., 1999). 

Similarly, calpain has been implicated in degradation of WASp under conditions where it 

is not assembled with WIP (de la Fuente et al., 2007).  Finally, calpain has been proposed 

to regulate LFA-1 activation and consequent adhesion and migration via cleavage of talin 

or other proteins such as -actinin and filamin A (Bleijs et al., 2001; Cairo et al., 2006; 

Stewart et al., 1998).  However, while these proteins are calpain substrates, recent work 

has cast doubt about the physiological significance of these cleavage events for T cell 

function.  In the case of ezrin, our lab recently generated mice with conditional deletion 

of ezrin in mature T cells, in hopes of uncovering ezrin-specific aspects of T cell 

function. Shaffer and colleagues found minimal ezrin-specific defects in these cells; 

instead, our results pointed to overlapping, dose-dependent function of ezrin and moesin 

in T cell activation, adhesion and migration (Chen et al., 2013; Shaffer et al., 2009).  

With respect to WASp, Ca
2+

 influx downstream of TCR stimulation leads to calpain-

dependent cleavage of WASp followed by proteasomal degradation, and treatment with 

the calpain inhibitor calpeptin reportedly prolonged high F-actin content post TCR 
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stimulation (de la Fuente et al., 2007; Watanabe et al., 2013).  However only a minor 

fraction of WASp is cleaved in WT cells, and significant cleavage was shown only in 

activated T cells from patients with destabilizing WASp mutations (de la Fuente et al., 

2007; Watanabe et al., 2013).  Lastly, the Huttenlocher lab looked closely at calpain-

dependent activation of LFA-1 in T cells.  Unlike previous studies that relied on 

pharmacological inhibition of calpain, this group generated mice with deletion of calpain 

4 in mature T cells (Wernimont et al., 2010). Though T cells from these mice expressed 

very low levels of both calpain 1 and 2 (both of which rely on assembly with calpain 4 

for stabilization) and exhibited diminished talin proteolysis, the T cells showed normal 

LFA-1-dependent adhesion and migration. Binding to APCs, recruitment of F-actin to the 

IS, and proliferation were also unperturbed.  This study provides strong evidence that 

calpain-dependent proteolysis is not a major mechanism by which Ca
2+

 levels affect actin 

remodeling in T cells. 

While the role of calpain is in question, other cytoskeletal regulatory proteins are 

clearly Ca
2+

-dependent.  One of the best examples is the actin bundling protein L-plastin 

(reviewed in (Morley, 2013)). Although multiple plastin isoforms are expressed 

throughout the body, L-plastin is the sole isoform expressed in T cells (Heng et al., 2008) 

and seems to be the only one that is Ca
2+

-dependent (Namba et al., 1992). All plastin 

isoforms contain two N-terminal Ca
2+

-binding sites and two C-terminal actin-binding 

sites, which enable plastins to bundle actin filaments. Actin-bundling activity is thought 

to be negatively regulated by Ca
2+

 (Namba et al., 1992). Thus, in low Ca
2+

 concentrations 

(~ 100 nM), L-plastin is able to bundle actin, while Ca
2+

 concentrations in the 

micromolar range perturb its bundling activity. Given the Ca
2+

 concentrations associated 
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with T cell activation, it seems that L-plastin would be active prior to TCR signaling, 

when intracellular Ca
2+

 levels are low, and would be inactivated upon Ca
2+

 elevation 

during early TCR signaling. This hypothesis is in line with evidence that early TCR-

dependent phosphorylation events and Ca
2+

 influx are intact in T cells lacking L-plastin 

(Wabnitz et al., 2010). However, L-plastin-deficient T cells have defects in IS maturation 

and polarization, indicating that L-plastin promotes later stages of T cell activation, 

perhaps by regaining activity as cytoplasmic Ca
2+

 levels decay. Finally, as discussed 

below, Ca
2+

 signaling regulates the balance between T cell migration and stopping, and 

L-plastin is poised to play an important role in that context. In keeping with that idea, L-

plastin-deficient T cells exhibit migration defects (Freeley et al., 2012).  

Ca
2+

 control of microtubule dynamics 

Ca
2+

 signaling also plays a role in MTOC reorientation to the IS interface. Early work 

by the Kupfer lab demonstrated that the MTOC polarization is Ca
2+

-dependent (Kupfer et 

al., 1985). This finding was confirmed by the Weiss lab (Kuhne et al., 2003; Lowin-

Kropf et al., 1998), who showed that MTOC reorientation is dependent on signaling 

through PLC1, and on the presence of extracellular Ca
2+

.  The relevant Ca
2+

-dependent 

molecules were not identified, although involvement of calcineurin and CaMK was ruled 

out. More recently, however, the Huse laboratory found that MTOC reorientation is Ca
2+

-

independent, and depends instead on local production of DAG (thereby explaining the 

dependence on PLC1) (Quann et al., 2009). In that study, T cells pretreated with Ca
2+

 

blockade solution (EGTA plus BAPTA-AM) polarized their MTOCs to the IS just as 

efficiently as control cells and maintained a high degree of polarization for the first 10 
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minutes of stimulation. One explanation that could reconcile these conflicting findings is 

the temporal differences in the experimental conditions. While the earlier work 

concentrated on prolonged T cell–APC contact (15-60 min.), the Huse lab analyzed 

MTOC reorientation by live-cell microscopy immediately post TCR stimulation. Thus, it 

may be that Ca
2+

 is not needed for initial MTOC recruitment to the IS, but is required for 

retention at later times. Finally, it is worth noting that MTOC reorientation requires both 

pulling forces provided by cytoplasmic dynein as well as pushing forces produced by 

myosin II (Combs et al., 2006; Liu et al., 2013); (Huse et al., 2013). Thus, the 

requirement for myosin II function could explain the Ca
2+

 dependence of MTOC 

reorientation in some experimental settings.  

Parallel control via inositol metabolism 

While one tends to think about serial signaling pathways in which cytoskeletal 

dynamics regulate Ca
2+

 mobilization or vice versa, it is important to point out that these 

two processes can be signaled in parallel, via a common mediator, PIP2 (Figure 1.3).  

Thus, the observed coordinate control is at least partially attributable to mutual 

dependence on inositol metabolism, since cytoskeletal regulatory pathways are highly 

sensitive to inositol lipids, especially PIP2 and its metabolite, diacylglycerol. Many actin-

regulatory proteins including WASp, WAVE 2, moesin, cofilin and Vav1 interact with 

and are activated by PIP2 in the PM (Ben-Aissa et al., 2012; Han et al., 1998; Higgs and 

Pollard, 2000; Sun et al., 2011; Yonezawa et al., 1990). PLC1-dependent cleavage of 

PIP2 simultaneously stimulates ER store release by generating IP3 and consumes a key 

upstream regulator of actin dynamics.  For example, the actin tethering protein moesin 

binds to PIP2 (Hirao et al., 1996), which activates its ability to link PM proteins to the   
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Figure 1.3. Parallel control of cytoskeletal remodeling and calcium signaling via lipid 

metabolism 

Phosphatidylinositol 4,5-bisphosphate (PIP2) is required for recruitment and regulation of key 

actin-regulatory proteins, such as moesin, WASp, WAVE 2, and cofilin. PLC1 activity 

cleaves PIP2 at the IS to generate Inositol 1,4,5-triphosphate (IP3) and sn-1,2-Diacylglycerol 

(DAG). The release of IP3 triggers receptors on the ER membrane, resulting in release of 

stored Ca
2+

.  The release of DAG stimulates local protein kinase C activation, defining the site 

for MTOC polarization, as well as enhancing Ras signaling and other processes. PLC1 also 

affects F-actin remodeling at the IS by transiently consuming PIP2. This leads to release and 

inactivation of moesin and down-regulates activity of WASp and WAVE2, as well as other 

signaling proteins including Vav1 and Itk.  The actin severing protein cofilin is sequestered by 

binding to PIP2, and is released in an active form by PLC1 activity. 
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actin cytoskeleton. Cleavage of PIP2 leads to moesin inactivation, resulting in diminished 

cortical stiffness, and allowing redistribution of moesin-linked PM proteins (Ben-Aissa et 

al., 2012; Delon et al., 2001).  On the other hand, cleavage of PIP2 by PLC1 releases and 

activates cofilin, leading to enhanced severing activity and providing free monomer and 

uncapped barbed ends for new filament growth (van Rheenen et al., 2007).  In the case of 

WASp and WAVE2, which are activated by both Rho GTPases and PIP2 binding, 

consumption of PIP2 may serve to attenuate or terminate the response that was initially 

activated by TCR-dependent activation of Rho GTPases. The interplay between inositol 

metabolism, Ca
2+

 signaling and cytoskeletal reorganization is even clearer in the case of 

microtubule reorganization.  Here, local accumulation of DAG produced by PIP2 

cleavage activates protein kinase C-dependent events leading to MTOC reorientation. 

Details of that pathway are reviewed in depth in Huse et al. (2013). 

 

Higher level complexity: the transition from migration to activation 

The complex interplay between cytoskeletal dynamics and Ca
2+

 signaling sets the 

stage for finely-tuned changes in response to environmental cues.  For example, since 

Ca
2+

 signaling also controls migratory responses downstream of chemokine receptors, it 

is poised to coordinate the “stop” signal that occurs when T cells migrating within 

lymphoid organs encounter APCs bearing rare agonist pMHCs. In migrating T cells, 

extrinsic factors such as chemokines and integrin ligands induce F-actin polymerization 

in the leading edge of the cell, and myosin II contraction to form a trailing uropod 

(Barreiro et al., 2004). The MTOC localizes behind the nucleus, stabilizing the uropod 

and establishing directional persistence (Ratner et al., 1997; Takesono et al., 2010). Upon 
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encounter with an APC, intracellular Ca
2+

 levels rise, and the T cell stops migrating, 

rounds up, and polarizes actin filaments and the MTOC toward the APC. This series of 

events occurs in mature T cells encountering antigen in peripheral lymphoid organs (Wei 

et al., 2007), and also during thymic development.  Using two-photon microscopy Bhakta 

et al. (2005) showed that naïve thymocytes are highly mobile when intracellular Ca
2+

 

concentration are low. However, upon an increase in intracellular Ca
2+

 levels, thymocytes 

become immobile and eventually undergo positive selection. By artificially manipulating 

Ca
2+

 levels, the group could show that elevation of intracellular Ca
2+

 is sufficient to 

inhibit cell migration, prolonging interaction with antigen-bearing stromal cells and 

promoting genetic reprogramming and positive selection. This study highlights the 

importance of crosstalk between Ca
2+

 signaling and cytoskeletal dynamics for T cell 

development. Subsequent work from the Krummel lab (Beemiller et al., 2012) extended 

the investigation of the relationship between Ca
2+

 and cell migration using stimulatory 

planar lipid bilayers. Their findings showed that the amplitude of the Ca
2+

 response is 

dependent on the density of the presented antigen. Consistent with previous in vivo 

observations (Friedman et al., 2010; Skokos et al., 2007), the lab found that TCR 

stimulation slowed the T cells but did not strictly halt their migration. T cell migration 

was inversely proportional to Ca
2+

 spikes. Thus, while T cells with high intracellular Ca
2+

 

concentrations stopped migration, cells with intermediate Ca
2+

 signaling showed a graded 

response in motility. Furthermore, the average speed of migrating T cells underwent step 

changes between high, intermediate and low motile cells. In a related study, Marangoni et 

al. (2013) compared the Ca
2+

 responses required for diminished T cell motility with those 

required for translocation of NFAT to the nucleus, and found that NFAT translocation 
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requires high intracellular Ca
2+

 levels associated with migratory arrest.  In tumor-

infiltrating T cells, nuclear NFAT was maintained for several minutes in cells with 

diminished intracellular Ca
2+

 and unstable APC contacts, a condition that was associated 

with induction of T cell tolerance. Taken together, these studies demonstrate the 

integration of Ca
2+

 mobilization and T cell migration during TCR signaling, and 

emphasize the importance of these events for T cell development and effector function. 

 

F-actin function in TCR-induced Ca
2+

 mobilization 

The interdependence of Ca
2+

 signaling and cytoskeletal remodeling has been evident 

since the earliest single studies of T cell activation. Over the past several years, 

researchers have identified many of the molecules that control these two processes, and 

placed them into major regulatory pathways.  This has revealed key points of intersection 

within the signaling network. Cytoskeletal influence on Ca
2+

 signaling is simultaneously 

exerted at various scales, ranging from single molecule conformational changes to 

changes in cell morphology.  The tight association between Ca
2+

 signaling and the 

cytoskeleton provides mechanisms by which environmental cues can tune the T cell 

response, such as when the presence of cognate antigen induces stopping of T cells 

trafficking through lymphoid organs.  In addition, the complex interplay between Ca
2+

 

and the cytoskeleton provides a basis for positive and negative feedback loops. For 

example, minute bursts of actin polymerization may promote early TCR signaling.  The 

resulting rise in cytoplasmic Ca
2+

 may then sustain actin remodeling during T cell 

spreading. Finally, cell shape changes or forces generated by T cell spreading may, in 

turn, promote sustained Ca
2+

 elevation. 



31 

III. Mechanotransduction and signaling of the integrin LFA-1 at the IS 

Integrins in T cell biology 

Physiological milieus that require efficient T cell responses often present substantial 

challenges, both in terms of mechanical stresses associated with biological processes and 

availability of activating stimuli. To overcome these obstacles, T cells must be able to 

modulate their adhesiveness and signaling efficiency. These tasks converge on adhesion 

receptors known as integrins, first characterized in the late 80’s (Tamkun et al., 1986). 

These proteins, as the name suggests, integrate the chemical and mechanical properties of 

external environments with the cell interior. Integrins are a large family of 

transmembrane proteins, comprised of 24 known members. Each integrin molecule is 

assembled as a dimer of one α and one β subunit. Lymphocyte function-associated 

antigen-1 (LFA-1) is αLβ2 integrin. It is expressed only in leukocytes and has been 

implicated in T cell migration and adhesion. Recent findings also show that LFA-1 is a 

potent costimulatory molecule that lowers the threshold of T cell activation. CD4
+
 T cells 

deficient for LFA-1 exhibit priming defects at the level of IL-2 production and 

proliferation (Kandula and Abraham, 2004; Varga et al., 2010). Furthermore, 

malfunctions in LFA-1-dependent adhesion and tethering results in a profound 

immunodeficiency disorder known as leukocyte adhesion deficiency (LAD) (Bunting et 

al., 2002). Therefore, LFA-1 activation and its function in T cell adhesion and signaling 

are important areas of investigation that may lead to new therapeutic targets.  

 

Structural features of LFA-1 

The αL and the β2 subunits of LFA-1 are non-covalently associated in the PM with 

large N-terminal extracellular head regions and relatively short C-terminal cytoplasmic 
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tails. Their single-span transmembrane domains convey information across the cell 

membrane in both directions. LFA-1 contains an αI (inserted) domain in the headpiece 

region that binds to ligand, ICAM-1, with high specificity (Springer and Dustin, 2011). In 

an αI-less integrins, e.g. αVβ3, ligand specificity is determined by the βI domain in the β 

subunit, which is homologous to αI and is also present in the β2 chain of LFA-1. The two 

I domains are positioned closely to each other and undergo analogous alterations in 

structure to modulate binding affinity for ICAM-1 (Springer and Dustin, 2011).  

On naïve T cells, resting LFA-1 exists in a bent conformation that has low affinity for 

ICAM-1. Signaling downstream of TCR (or other cell sensors, such as chemokine and 

selectin receptors) stimulates talin binding to the β tail, which induces jack knife-like 

extension of the LFA-1 headpiece and promotes intermediate affinity for ligand (Kim et 

al., 2003; Luo et al., 2005; Partridge et al., 2005). This first step in LFA-1 activation is 

known as “inside-out” signaling (Hogg et al., 2011). Multiple studies have investigated 

the subsequent conformational changes that fully activate LFA-1 (Weitz-Schmidt et al., 

2011; Zhu et al., 2008). The extended open, high-affinity LFA-1 requires lateral swing-

out of the hybrid domain which pulls on the α7 helix in the βI domain and eventually 

opens the αI domain (Figure 1.4). The allosteric opening of the αI domain increases 

integrin’s affinity for ICAM-1 by three orders of magnitude (Schurpf and Springer, 

2011). Current models propose that cytoskeletal forces can segregate the α and β tails and 

induce the high affinity state of LFA-1 (Zhu et al., 2008). Tracking of individual LFA1–

ICAM-1 pairs at the IS indicates that bond lifetimes last for seconds, which is consistent 

with participation of cytoskeletal dynamics in this process (Shimaoka et al., 2003; 

Springer and Dustin, 2011). The β chain of LFA-1 is primarily responsible for talin-  
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Figure 1.4. Integrin activation through conformational intermediates 

On the surface of T cells the integrin LFA-1 exists mainly in three interdependent 

conformational states. Inactive LFA-1 is present in the bent conformation on the surface of T 

cells and exhibits low affinity for ligand. Inside-out signaling induces talin binding to the β 

chain of LFA-1, which leads to a switchblade-like extension of the integrin away from plasma 

membrane. This step increases affinity for ligand by a factor of four and results in the 

intermediate affinity state. Subsequent cytoskeletal engagement results in a lateral swing-out 

of the hybrid domain, resulting in a downward movement of the α7 helix in the βI domain, 

which allosterically opens it for substrate binding. Binding of glutamate 310 to the open βI 

domain pulls on the α7 helix of the αI domain, in turn increasing the affinity of that domain 

for ICAM-1 by 1000-fold. This extended open conformation of LFA-1 is capable of strong 

adhesion and outside-in signaling.  
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mediated interactions with the cytoskeleton and transduction of tension. In agreement 

with this, immobilization of ICAM-1 was found to be critical for triggering of the high-

affinity state (Feigelson et al., 2010). 

 

TCR-dependent activation of LFA-1 

In order to interact with its ligand, LFA-1 must undergo preliminary activation by 

inside-out signaling downstream of stimulatory receptors.  Unlike chemokine- or 

selectin-induced activation, TCR-induced inside-out signaling occurs in the absence of 

shear flow. Therefore, cytoskeletal dynamics are expected to play an important role in the 

generation of forces, which facilitate LFA-1 activation (Alon and Dustin, 2007). Besides 

establishing cytoskeletal dynamics, TCR signaling induces recruitment of certain adaptor 

molecules that facilitate LFA-1 clustering and conformational changes at the IS. Some of 

the fundamental understanding of the integrin activating machinery comes from 

reductionist studies in platelets, where it has been shown that the process requires the 

small GTPase RAP1, the adaptor protein RIAM and the cytoskeletal protein talin. 

Furthermore, the membrane-targeting sequence of RAP1 fused to the talin-binding 

fragment of Lamellipodin (a homolog of RIAM) was shown to be sufficient for integrin 

activation (Lee et al., 2009). This finding indicated that the association with the PM and 

activation of RAP1 and RIAM-mediated recruitment of talin with the integrin β tail 

represent the functional core of inside-out signaling. I will briefly describe these events 

below. 

A crucial component of integrin activation is localization of activated RAP1 GTPase 

at the PM (Katagiri and Kinashi, 2012). This process must be tightly regulated since 
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expression of a constitutively active mutant of RAP1 induces hyper-activation of β2 and 

β1 integrins and stabilizes T cell–APC interactions (Sebzda et al., 2002). The active GTP-

loaded form of RAP1 is maintained by guanine exchange factors such as C3G.  Recent 

studies in Jurkat T cells demonstrated that C3G associates with CrkL and participates in 

T cell adhesion to ICAM-1–coated surfaces. This report also implicated WAVE2 and 

cAbl kinase in recruitment and activation of C3G at the IS (Nolz et al., 2008). Once at the 

PM, active Rap1 modulates functions of adaptor molecules such as RapL and RIAM to 

trigger the activation of LFA-1. The mechanisms that regulate RAP1 delivery to the IS 

remain to be established; while RAP1 localizes to secretory vesicles (Bivona et al., 2004), 

it is also reported to reside constitutively in the PM (Raab et al., 2010). However, since 

inhibition of recycling machinery inhibits RAP1 recruitment to the PM, it seems likely 

that RAP1 localization continuously depends on exocytosis. To determine whether 

activation of RAP1 occurs on recycling vesicles or in the PM, Bivona and colleagues 

studied the localization of GFP-tagged Ras binding domain of RalGDS, a reporter of 

GTP-bound RAP1. They observed signal only on the PM, which suggests that RAP1 

activation is PM-specific (Bivona et al., 2004).  

RAP1-dependent localization of RapL and RIAM to the PM is a critical part of 

inside–out signaling, which subsequently facilitates recruitment of talin to integrin β tail. 

Optimal activation of LFA-1 requires talin binding to facilitate the transition into the 

active conformation. In resting T cells, talin exists in the cytosol as an auto-inhibited 

head-to-tail dimer.  The FERM domain of talin has affinity for PIP2 and this interaction 

partially releases the auto-inhibited conformation (Goksoy et al., 2008). Furthermore, the 

FERM domain binds to membrane-proximal NPXY site in the β-subunit tail of LFA-1 
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(Calderwood et al., 2002). Kindlin 3 also binds the β-subunit tail but at a membrane-

distal NPLF sequence (Feigelson et al., 2011). It is thought that kindlin 3 facilitates the 

interaction of talin with LFA-1 and thus orchestrates integrin activation because loss of 

kindlin 3 results in loss of adhesion and immune responses in T cells (Moser et al., 2009). 

These binding events are critical for induction of the LFA-1 extended conformation and 

subsequent activation of the high-affinity form. 

 

Costimulation through “outside-in” signaling 

The costimulatory properties of LFA-1 have been appreciated since the early 90’s, 

when it was shown that ICAM-1 binding can tune the sensitivity of T cells for activating 

stimuli (Van Seventer et al., 1990). “Outside-in” signaling pertains to ligand-induced 

molecular rearrangements that strengthen adhesion and enhance signaling downstream of 

LFA-1. Engagement of LFA-1 heightens the sensitivity of T cells for agonist peptides by 

two orders of magnitude (Bachmann et al., 1997) and augments IL-2 gene transcription 

(Abraham and Miller, 2001). One of the ways in which LFA-1 can aid in costimulation at 

the IS, is production of an F-actin cloud that facilitates delivery of TCR-associated 

molecules and may generate forces required for TCR triggering (Porter et al., 2002; 

Suzuki et al., 2007). LFA-1 accumulates in the peripheral activating cluster at the IS 

(Monks et al., 1998), which is the site of ongoing TCR signaling (Yokosuka et al., 2005). 

While TCR and LFA-1 clusters accumulate in the same general area of the IS, they never 

completely colocalize but rather reside in distinct membrane domains (Kaizuka et al., 

2007), suggesting that the interactions between these receptors must be mediated by 

cytosolic activators and adaptor proteins. 
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Many molecules from the TCR signaling pathway have been detected downstream of 

LFA-1 activation. Lck and Zap70 kinases associate with the cytoplasmic tails of LFA-1 

and undergo activation upon integrin ligation (Evans et al., 2011). Phosphorylated Zap70 

colocalizes with SLP-76 MCs at the PM upon integrin stimulation (Baker et al., 2009). 

SLP-76 is one of the key players at the IS since it serves as a docking site for many 

accessory protein modules involved in TCR signaling (GADS–LAT–PLC1 axis), 

integrin activation (ADAP–SKAP55 axis), and actin polymerization (VAV1/Nck–

WAVE2 axis). Thus, SLP-76 may integrate signaling downstream of LFA-1 and TCR in 

a single molecular complex. Interestingly, both RIAM and RapL have been implicated in 

bringing the SKAP55–ADAP module to the α chain of LFA-1 revealing a physical link 

between integrins and SLP-76 MCs (Katagiri et al., 2003; Menasche et al., 2007). 

Experiments with the β1 integrin VLA-4 demonstrate that engagement of immobilized 

integrin ligands can attenuate the dynamics of signaling molecules at the IS and 

concentrate F-actin-dependent tension (Nguyen et al., 2008); however, whether this 

mechanism applies to LFA-1 signaling remains to be investigated. 

 

 LFA-1 activation and organization at the IS 

LFA-1 is an important adhesion protein that stabilizes cell-cell interactions and 

provides costimulatory cues to enhance T cell activation. By virtue of their structure, 

integrins rely on mechanical stresses for activation and signaling. Protein crystallography 

and electron microscopy have revealed precise conformational changes that take place 

upon inside-out and outside-in signaling. Usage of monoclonal antibodies that recognize 

different conformations of human LFA-1 has greatly accelerated our understanding of the 
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molecular rearrangements that direct LFA-1 activation. However, there are still many 

unknown factors that coordinate affinity maturation and valency at the cellular level. For 

example, to date, it is still unclear how integrins are organized into the micron-scale 

supramolecular activation cluster at the IS. Furthermore, which integrin molecules in the 

IS-associated pool are activated also remains unanswered in the field. This work aspires 

to answer these pending questions.  
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CHAPTER 2: F-ACTIN POLYMERIZATION AND RETROGRADE FLOW 

DRIVE SUSTAINED PLCγ1 SIGNALING DURING T CELL ACTIVATION
34

 

 

I. Summary 
 

Activation of T cells by APCs involves assembly of signaling molecules into dynamic 

MCs within the IS. Actin and myosin IIA localize to the IS, and depletion of F-actin 

abrogates MC movement and T cell activation. However, the mechanisms that coordinate 

actomyosin dynamics and T-cell receptor signaling are poorly understood. Using 

pharmacological inhibitors that perturb individual aspects of actomyosin dynamics 

without dismantling the network, we demonstrate that F-actin polymerization is the 

primary driver of actin retrograde flow, whereas myosin IIA promotes long-term integrity 

of the IS. F-actin arrest led to a complete immobilization of SLP-76-containing MCs even 

in the regions, where the network was sparse. Furthermore, rate analysis indicated MCs 

exhibit a fundamentally different mode of translocation than the F-actin network. In line 

with this, microtubules were enriched at the IS and localized in close proximity to MCs. 

Confocal and TIRF microscopy imaging revealed that although F-actin flow is 

dispensable for microtubule turnover, the forces associated with F-actin polymerization 

                                                           
 

3
 Parts of this chapter have been published as: 

Babich A, Li S, O'Connor RS, Milone MC, Freedman BD, and Burkhardt JK.  

F-actin polymerization and retrograde flow drive sustained PLCgamma1 signaling during T cell activation.  

Journal of Cell Biology. June 2012; Volume 197, pp. 775-787. 

 
4
 AB designed and conducted the experiments, SL performed molecular cloning, and RO provided primary 

T cells expressing fluorescent actin. MM, BF and JB oversaw the work in their respective labs, conducted 

discussions and provided critical reading and revision of the manuscript.  
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are required to press microtubule filaments to PM, where MCs originate. Additionally, 

disruption of F-actin retrograde flow, but not myosin IIA contraction, inhibited sustained 

Ca
2+

 signaling at the level of ER store release. Loss of F-actin dynamics inhibited PLC1 

phosphorylation within MCs but left Zap70 activity intact. These studies highlight the 

importance of ongoing actin polymerization as a central driver of actomyosin retrograde 

flow, MC centralization, microtubule positioning and sustained Ca
2+

 signaling in T cells 

during the early stages of activation.  

II. Introduction  

T cell activation by APCs requires the formation of a specialized cell-cell interface, 

known as the IS. This process involves extensive spatial and temporal regulation of 

protein complexes to coordinate and tune signaling events. Initial TCR engagement 

triggers the formation of sub-micron scale signaling MCs enriched in receptors, kinases 

and adaptor proteins that propagate downstream signaling events. In the MCs, the Src 

kinase Lck phosphorylates the ζ chains of the TCR complex. ζ-chain Associated Protein 

of 70 kDa (Zap70), a kinase crucial in MC assembly, associates with the TCR and 

phosphorylates LAT and SLP-76. Cooperative assembly of these and other MC 

components culminates in the recruitment and subsequent activation of phospholipase C 

(PLC)γ1 at the PM (Bunnell et al., 2006; Houtman et al., 2004; Sherman et al., 2011). 

Upon activation, PLCγ1 cleaves PIP2 into diacylglycerol and inositol 1,4,5-trisphosphate 

(IP3). Subsequently, IP3 stimulates the release of Ca
2+

 from ER stores, which in turn 

leads to opening of Orai1 channels in the PM (Zhang et al., 1999). The resulting 

sustained Ca
2+

 mobilization is required for initiation of gene transcription.  
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Newly generated MCs arise in the periphery of the IS, and are the predominant sites 

for active signaling (Bunnell et al., 2002; Lee et al., 2002; Yokosuka et al., 2005). These 

structures undergo continuous translocation to the center of the IS, the central 

supramolecular activation cluster (cSMAC), where signaling is extinguished. This 

provides a clock for MC lifetime, and is thought to modulate response to antigens 

(Valitutti et al., 2010). MC dynamics are dependent on the actin cytoskeleton in complex 

ways. Treatment of spreading T cells with the F-actin depolymerizing agent Latrunculin 

A inhibits formation of new MCs, indicating that actin filaments promote MC assembly. 

Once formed, however, MCs are stable in the absence of F-actin, although their 

centripetal movement ceases with F-actin depletion. In keeping with the close 

association between signaling MCs and the actin cytoskeleton, T cell activation is highly 

dependent on maintenance of an intact F-actin network. Treatment of T cells with actin 

depolymerizing agents or disruption of key actin regulatory proteins leads to loss of Ca
2+

 

mobilization and downstream transcriptional activation (Nolz et al., 2006; Varma et al., 

2006). 

Recent studies have shown that TCR-induced F-actin polymerization depends on 

activation of Arp2/3 complex by multiple nucleation promoting factors, including 

WAVE2, HS1 and WASp (Gomez et al., 2006; Nolz et al., 2006; Zhang et al., 1999). 

However, the mechanisms that coordinate F-actin retrograde flow and disassembly of 

the F-actin network are largely unexplored, and the role of myosin II contraction is 

poorly understood and controversial. Jacobelli et al. (2004) showed that non-muscle 

myosin IIA is recruited to the IS, but found that activity of this motor protein was 

dispensable for conjugate formation and for recruitment of signaling molecules to the IS. 



42 

In contrast, Ilani et al. (2009) found that inhibition or knockdown of myosin IIA disrupts 

T cell–APC conjugates and inhibits multiple aspects of TCR signaling. In that study, 

centripetal TCR MC movement was shown to be myosin II-dependent. Since myosin II 

contraction is known to contribute to actin retrograde flow in non-hematopoietic cells 

(Cai et al., 2006), this could reflect a linkage between myosin II function, F-actin 

retrograde flow, and MC centralization. Understanding this process will require detailed 

analysis of actomyosin dynamics with respect to distinct MC components.  

The mechanisms that link the actin cytoskeleton to T cell signaling in general are 

largely unknown. F-actin could promote signaling in multiple ways, including 

maintenance of cell-cell contact, organization of gross cell polarity, and providing a 

nano-scale scaffold for assembly of signaling complexes (Kaizuka et al., 2007; Wulfing 

and Davis, 1998). Recent studies also point to the exciting possibility that F-actin 

dynamics could actively promote signaling by exerting force on receptors or signaling 

molecules (Alon and Dustin, 2007; Beemiller and Krummel, 2010). These possibilities 

are not mutually exclusive, but cannot be distinguished based upon manipulations that 

globally deplete actin filaments.  

In this chapter, we have systematically studied the roles of actin polymerization and 

myosin II contraction in controlling protein dynamics and signaling during T cell 

activation. We found that F-actin and myosin IIA exhibit distinct but overlapping 

distributions at the IS.  Using a panel of cytoskeletal inhibitors together with an RNAi 

approach, we found that actin polymerization is the primary driver of actomyosin 

retrograde flow, while myosin IIA exerts contractile forces on the network and helps 

maintain its radial symmetry. We show that simultaneous inhibition of both F-actin 
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turnover and myosin IIA contraction leads to arrest of retrograde flow without 

disassembling the actin network. Under these conditions, centralization of SLP-76 MCs 

is also arrested, likely because microtubules, which provide tracks for MC translocation, 

move away from the PM in the absence of pushing forces generated by F-actin 

polymerization. Functionally, Ca
2+

 elevation is abrogated at the level of release from 

stores and phosphorylation of PLCγ1 but not Zap70 is inhibited after F-actin 

immobilization. This highlights that cytoskeletal dynamics selectively affect specific 

signaling molecules at the IS. Our studies demonstrate a requirement for F-actin 

polymerization-driven flow in promoting T cell activation.  

III. Results 

Quantitative analysis of actomyosin distribution and dynamics at the IS 

Numerous studies have shown the importance of actin for T cell activation, but the 

mechanics of actin movement at the IS have not been carefully addressed. Moreover, 

myosin II function at the IS is poorly understood, and results are conflicting (Ilani et al., 

2009; Jacobelli et al., 2004). To investigate the actomyosin network as a functional unit, 

we used Jurkat T cells stably expressing low levels of GFP-actin (Gomez et al., 2006), 

and transfected with mKate2-tagged heavy chain of non-muscle myosin IIA (NMHC II-

A). When these cells were allowed to spread on anti-CD3-coated coverglasses, they 

formed characteristic actin-rich lamellipodial protrusions. Consistent with previous 

observations (Bunnell et al., 2001; Gomez et al., 2006), cell spreading reached a 

maximum within 2-4 minutes, and was maintained for 15-20 minutes before partial 

contraction. We concentrated our studies on the fully spread cells, representing the 

sustained phase of TCR signaling. Myosin IIA localized to the IS (Figure 2.1 A), as 
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reported previously in T cell–APC conjugates (Jacobelli et al., 2004) and formed 

characteristic arcs, as seen by others (Yi et al., 2012). Intensity profile analysis showed 

that myosin IIA was present throughout the actin-rich region, but accumulated most 

prominently behind the lamellipodium (Figure 2.1 B). Importantly, while the distribution 

of F-actin and myosin IIA are distinct, they are overlapping; F-actin was detectable 

throughout the myosin-rich region, albeit at lower levels than in the lamellipodium. 

Indeed, the presence of myosin IIA within the lamellum region highlights a pool of F-

actin that is not readily appreciated in images contrasted for optimal observation of the 

more abundant actin filaments in the lamellipodium. Similar distributions were observed 

using antibody and phalloidin labeling of F-actin and endogenous myosin IIA in fixed 

cells (Figures 2.1 D and 2.5 E), although endogenous pool of myosin IIA did not form the 

prominent arcs, suggesting that the features seen in cells transfected with mKate2-NMHC 

IIA may be partially attributed to over-expression artifacts.  

Live-cell microscopy revealed that myosin IIA undergoes continuous retrograde flow 

comparable to that of F-actin (Movie 2A). Interestingly, both actin and myosin IIA were 

nearly undetectable in the central region of the IS. This was not due to an artifact of cell 

shape and shallow focal plane, since 3D reconstructions showed that the network exhibits 

a planar organization only about 1 µm in thickness, and since we could readily detect 

other structures within this region (e.g. SLP-76 MCs in Figure 2.1 D, and the MTOC in 

Figure 2.11 B). Based on these studies, we define three regions with distinct cytoskeletal 

topology: the actin-rich lamellipodium (LP), the myosin IIA-rich lamellum (LM), and the 

cell body (CB), a perinuclear region largely devoid of actomyosin filaments.  
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Figure 2.1. Distribution and dynamics of the T cell actomyosin network 

(A) mKate2-NMHC II-A was transiently expressed in Jurkat T cells stably expressing GFP-

actin. The cells were dropped on OKT3-coated coverglass and imaged at a single focal plane 

every 3 s. An image from a sequence is shown and is representative of four independent 

experiments. Scale bar represents 5 µm. (B) The intensity profile of F-actin and myosin IIA 

was acquired along the dashed line in (A). (C) Composite kymograph of actomyosin dynamics 

was acquired along the dashed line in (A). Scale bar represents 5 µm. (D) Jurkat T cells stably 

expressing GFP-SLP-76 (green) were stimulated as in (A), fixed after 5 minutes and stained 

for F-actin with phalloidin (red). Z-stacks of whole cells were collected with 0.25-µm step size 

and deconvolved using calculated Point Spread Function in Volocity. A representative cell is 

shown in XZ and XY planes; CB – cell body, LM – lamellum, LP – lamellipodium. Scale bars 

represent 5 µm   5 µm. (E) Kymography analysis of F-actin features was compiled into a 

single graph to show the distribution of F-actin velocity across the IS radius. Abbreviations 

are same as in (D). Mean ± SD are shown for each point (n = 13 cells). Similar results were 

obtained from three independent experiments.  
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We next quantified the velocity of the F-actin retrograde flow in two complementary 

ways. First, movies were digitally sharpened to amplify signal-to-noise, and fiduciary 

features with ~1-2 µm spacing along the radius were tracked by kymography (Figure 2.2 

A and B and Movie 2B). Alternatively, a region was photo-bleached to induce 

synchronous incorporation of bleached GFP-actin into the network, generating a high-

contrast wave that is easily identified by kymography (Figure 2.2 C and Movie 2C). 

Results using both approaches were in agreement, and showed that F-actin flow at the 

very edge of the IS proceeds at 0.095 ± 0.028 µm/s. Upon closer examination of these 

kymographs, however, we noted that actin velocity depended on position along the radius 

of the IS. This is evident in Figure 2.2 B, where the deflection of the red line drawn near 

the periphery is more pronounced than that of the blue line drawn in the LM region, 

indicating a slowing of movement toward the IS center. Features within the central CB 

region track vertically (yellow line), indicating that they are immobile. Similar behavior 

is evident in kymographs generated from myosin IIA movies (Figure 2.1 C). The 

distribution of actomyosin dynamics across the IS in a population of cells is shown in 

Figure 2.1 E, with the three respective regions of the IS are indicated for comparison. 

Centripetal flow decelerates gradually from the periphery through the LM. The 

occasional features that show movement within the CB region appear to be diffusive.  
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Figure 2.2. Measurement of F-actin dynamics at the IS 

(A) Top: “Raw” image of a fully spread IS of a Jurkat T cell expressing GFP-actin. Bottom: 

Same image digitally “processed” in Adobe Photoshop using a filter with 300% intensity 

increase for local maxima within 3 pixel radius. Scale bars represent 10 µm. (B) Kymograph 

generated from the video sequence and along the diameter of the cell depicted in (A) and 

processed as above. Scale bars represent 10 µm   1 min. (C) Left: Image series of a spreading 

GFP-actin Jurkat T cell subjected to photo-bleaching in the region marked with an asterisk (*). 

Scale bar, 10 µm. Right: Kymograph generated along the dashed line from the sequence on 

the left. θ represents the angle of deflection from the vertical position. 
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Myosin IIA exerts contractile force on the F-actin network, but is dispensable for F-actin 

flow  

The observed centripetal flow could be driven by F-actin polymerization pushing 

against the membrane edge (Pollard and Berro, 2009) or myosin II contraction pulling 

against the branched F-actin network (Cai et al., 2006; Wilson et al., 2010) (Figure 2.3). 

To uncouple these components, we used a panel of well-defined pharmacological 

inhibitors. Initially, we tested the effects of jasplakinolide (Jas), an F-actin stabilizing 

agent that perturbs actin turnover (Bubb et al., 1994). T cells pretreated with Jas were not 

useful for analysis, since this abrogated cell spreading and induced cytoplasmic F-actin 

aggregates (data not shown). We therefore allowed cells to contact a stimulatory 

coverglass for 3 minutes before addition of the drug. Acute addition of Jas collapsed the 

F-actin network toward the center of the IS. This was true in both Jurkat T cells (Figure 

2.4 A and Movie 2D) and human primary T cell blasts (Figure 2.4 B and Movie 2E). 

Myosin IIA behaved similarly (Figure 2.4 C and Movie 2F), with two important 

differences. First, the collapse of myosin IIA was more rapid. This is evident in the 

kymography analysis of F-actin and myosin IIA dynamics (Figures 2.4 D and E, 

respectively). Second, unlike F-actin, which accumulated in an irregular ring around the 

CB, myosin IIA transiently formed a tight symmetrical ring that subsequently 

disappeared as large aggregates accumulated in the periphery. Thus, myosin IIA is able to 

exert centripetal force on the T cell cytoskeleton, which is revealed upon stabilization of 

the F-actin network. 

We next analyzed retrograde flow under conditions where myosin II activity is 

perturbed. The Rho kinase inhibitor, Y-27632, blocks phosphorylation of myosin light  
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Figure 2.3. Potential mechanisms that can drive actomyosin retrograde flow in 

symmetrically spreading cells* 

In the lamellipodium, ongoing F-actin polymerization generates pushing forces against the 

PM, while in lamellum myosin II bundles bind and cross-link actin filaments, generating 

pulling forces.  Coordinate balance between these mechanisms leads to persistent centripetal 

flow of the actomyosin network.  

*Figure adapted from Yam et al., 2007 
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chain (MLC) at S19 and inhibits myosin II filament assembly (Ueda et al., 2002). 

Surprisingly, T cells pretreated with Y-27632 continued to show retrograde F-actin flow 

with unchanged rate (Figures 2.5 A and B and Movie 2G). The drug successfully 

inhibited MLC phosphorylation, based upon immune-blotting with a phospho-specific 

antibody (Figure 2.5 B, bottom). As a more direct test of myosin II function, we 

generated Jurkat T cells expressing the F-actin sensor F-tractin labeled with Td-Tomato 

(Johnson and Schell, 2009), and measured actin dynamics in cells treated with 

blebbistatin, a specific inhibitor of myosin II ATPase activity (Straight et al., 2003). As 

shown in Movie 2H and quantified in Figure 2.5 C, the rates of retrograde flow were 

unaffected by blebbistatin pre-treatment. Finally, siRNA was used to suppress expression 

of myosin IIA heavy chain (Myh9). We could suppress protein levels by 75% without 

any effect on the rate of actin retrograde flow (Figure 2.5 D).  Taken together with the 

results above, these studies show that myosin II exerts contractile forces on the T cell 

actin network, but these forces are dispensable for actin retrograde flow at the IS. 

T cells responding to stimulatory surfaces exhibit initial expansion of the contact 

area, followed by a steady-state period during which the area remains constant, and a 

  

Figure 2.4. F-actin stabilization leads to contraction of the actomyosin network. 

(A-C) Time-lapse series of T cells spreading on OKT3-coated coverslips. Arrowheads 

indicate time when 1 µM Jas was added. Scale bars represent 10 µm.  (A) Jurkat T cells stably 

expressing GFP-actin. (B) Human primary T cell blasts transiently transfected with GFP-actin.  

(C) E6.1 Jurkat T cells transiently transfected with GFP-NMHC-IIA. (D, E) Kymographs of 

F-actin and myosin IIA dynamics, generated along the dashed lines in (A) and (C), 

respectively. Arrowheads indicate the addition of 1 µM Jas into the media. Scale brackets 

represent 10 µm   1 min. 
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Figure 2.5. Myosin IIA is not required for F-actin flow but is necessary for long-term 

maintenance of the IS. 

(A) GFP-actin expressing Jurkat T cells were pre-treated for 15 minutes with vehicle or 25µM 

Y27632, and imaged while spreading on anti-CD3 coated coverslips. Kymographs were 

generated along the radii of fully spread cells. Arrowhead indicates the time when photo-

bleaching of lamellipodia was induced. Scale bars represent 2 µm   15 s.  (B) Top, analysis of 

velocities calculated from kymographs as in (A), (mean ± SD, n = 15 cells).  Bottom, to verify 

inhibitory activity of Y-27632, Jurkat T cells were pre-treated with Y-27632 as in (A), and 

stimulated with OKT3 (1 µg/ml) for 5 min. Cells were lysed and analyzed by Western blot 

analysis with antibodies to phosphorylated myosin light chain (pMLC) or GAPDH. (C) Jurkat 

T cells were transiently transfected with F-Tractin tdTomato, and pre-treated with 50µM 

blebbistatin or vehicle for 30 min.  Actin retrograde flow was analyzed as in (B).  Values are 

mean ± SD of 80-90 kymographs from 14-20 cells. (D) GFP-actin expressing Jurkat T cells 

were transfected with oligonucleotides specific for myosin IIA heavy chain (SiM) or control 

oligonucleotides (SiC), and cultured for 48 h, at which time suppression was found to be 

optimal. Top panel, retrograde flow was analyzed as in (B).  Bottom panel, lysates were 

analyzed by Western blot to assess efficiency of suppression.  Values represent relative 

NMHC-IIA levels, normalized to GAPDH. (E) Jurkat T cells were untreated or pretreated 

with 25 µM Y-27632 or 50 µM blebbistatin, and allowed to spread for the indicated times on 

anti-CD3 coated coverslips prior to fixation and labeling with phalloidin and anti-NMHC-IIA. 

Scale bar, 5 µm. (F) Morphometric analysis of cells prepared as in E. Data represent mean ± 

SEM, n = 67-125 cells per condition). 
*
p < 0.05, 

**
p < 0.01, 

***
p < 0.001. Similar results were 

obtained in two independent experiments.  
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contraction phase. Time course analysis of IS organization showed that control and 

myosin-inhibited cells looked comparable during the expansion and steady-state phases 

of the response. After 10-15 minutes, however, myosin-inhibited cells failed to contract 

normally and became irregularly shaped (Figures 2.5 E and F). Moreover, the F-actin 

network looked thinner and more disorganized. Thus, although myosin II activity is 

dispensable for F-actin flow, it limits cell spreading and maintains synaptic integrity over 

time.  

 

Inhibition of myosin IIA and F-actin turnover arrests cytoskeletal retrograde flow 

Having analyzed F-actin and myosin II inhibitors separately, we next evaluated their 

cumulative effect on cytoskeletal dynamics. T cells were pretreated with Y-27632 and 

allowed to interact with the anti-CD3-coated glass to allow spreading. Jas was then added 

to the chamber, resulting in arrest of F-actin retrograde flow within ~30 seconds (Figure 

2.6 A and Movie 2I). The “frozen” network persisted for several minutes but then thinned 

and eventually dissipated (data not shown). To verify the complete lack of dynamics, we 

bleached a region within the LP. Cells treated with Y-27632 and Jas showed no 

fluorescence recovery, while control cells recovered normally (Figure 2.6 B). Similar 

results were observed in primary T cell blasts treated with Y-27632 and Jas (Movie 2J), 

and in Jurkat T cells treated with blebbistatin and Jas (data not shown). In T cells 

suppressed for myosin IIA by siRNA, Jas treatment did not result in complete loss of 

actin dynamics; instead a slow, partial collapse of the actin network was observed (Figure 

2.7 A and Movie 2K). This may reflect the activity of residual myosin IIA (~25%); or  
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Figure 2.6. Inhibition of myosin IIA and F-actin stabilization arrests retrograde flow.  

(A) Kymograph was generated along the diameter of a cell pretreated with 25 µM Y-27632 

and spreading on OKT3-coated coverglass. Arrowhead along the time axis indicates the 

addition of 1 µM Jas to the well. The kymograph was sharpened in Photoshop to accentuate F-

actin features. (B) Time-lapse series of cells pretreated with 25 µM Y-27632 and allowed to 

interact with the stimulatory surface for 5 minutes before addition of either DMSO or 1 µM 

Jas. 30 seconds after the treatment a portion of F-actin, marked with asterisk (*), was photo-

bleached and fluorescence recovery was recorded. Scale bars, 5 µm. 
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Figure 2.7. Assessment of F-actin dynamics in response to Jas treatment of cells 

suppressed for myosin IIA. 

(A) Time-lapse series of Jurkat T cell spreading on OKT3-coated coverglass. At the indicated 

time, 1 µM Jas was added to the imaging well. Scale bars, 5 µm. (B) Western blot analysis of 

myosin IIB expression in Jurkat T cells suppressed for Myosin IIA (same lysates as in Figure 

2.5 D, bottom).  
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the function of myosin IIB, which is also expressed in these cells (Figure 2.7 B). Taken 

together, these studies show that actin polymerization is the primary engine for retrograde 

F-actin flow in T cells. Continuous F-actin flow is driven by ongoing assembly of actin 

filaments in the LP, coupled to disassembly in the LM, with overall organization 

provided by myosin II motors. 

 

Depletion of actin-capping protein IQGAP1 accelerates the F-actin network flow 

As a corollary to our studies of F-actin immobilization, we wondered if the network 

can instead be accelerated in some way. Because F-actin retrograde flow is the net result 

of polymerization-depolymerization kinetics, we decided to take the cell biological 

approach to assess the effects of perturbing the F-actin turnover balance on network 

centralization. IQGAP1 is an actin-binding protein with barbed end-capping activity 

(Pelikan-Conchaudron et al., 2011). We thus hypothesized that IQGAP1 may regulate F-

actin dynamics during TCR signaling. Jurkat T cells expressing GFP-actin were depleted 

of IQGAP1 using shRNA. Knockdown of IQGAP1 routinely resulted in a nearly 

complete loss of protein (data not shown). T cells were then imaged while spreading on 

OKT3-coated coverglass. Confocal imaging showed that IQGAP1-deficient T cells 

spread to a greater extent and the network was denser as indicated by the increased 

fluorescence at the IS (Figure 2.8 A and Movie 2L). Furthermore, kymography analysis 

showed that T cells lacking IQGAP1 had faster F-actin retrograde flow relative to that of 

the control cells (Figure 2.8 B) The lamellipodia also occupied a larger portion of the 

synapse area than those in control counterparts. Taken together with the above   
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Figure 2.8. IQGAP1 knockdown in Jurkat T cells accelerates F-actin dynamics at the 

IS*.  

(A) Jurkat T cells stably expressing GFP-actin were transfected with empty vector or 

shIQGAP1 plasmid. Cells were imaged 72 hr. post transfection, while spreading on OKT3-

coated coverglass. 0.5 µm-thick Z stacks were collected just above the glass, using the same 

exposure settings for all cells and representative images are shown as extended projections. 

Scale bars, 5 µm.  (B) F-actin flow rates were analyzed using kymographs drawn along the 

radii of spreading cells. Data represent mean ± SD of at least 140 kymographs from at least 36 

cells, pooled from two independent experiments. ***p<0.001. 

 

* These data were published in the manuscript titled:  

The Cytoskeletal Adaptor Protein IQGAP1 Regulates TCR-Mediated Signaling and 

Filamentous Actin Dynamics. 

Journal of Immunology. June 2012; Volume 188, pp. 6135-6144. 

With the following list of authors: Gorman JA, Babich A, Dick CJ, Schoon RA, Koenig A, Gomez TS, 

Burkhardt JK, and Billadeau DD.  
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observations, these data suggest that F-actin network dynamics can be modulated to 

accelerate or to arrest the retrograde flow. 

 

F-actin retrograde flow governs SLP-76 MC centralization 

The mechanisms linking MC movement and signaling to F-actin dynamics are poorly 

understood. Furthermore, recent studies show that microtubules can direct MC movement 

(Bunnell et al., 2002; Hashimoto-Tane et al., 2011; Lasserre et al., 2010). We took 

advantage of our ability to manipulate actin flow to examine the relationship between the 

actomyosin network and SLP-76 MC dynamics. Since we were unsuccessful in raising a 

stable cell line expressing fluorescently tagged actin and SLP-76, we imaged a mixture of 

GFP-SLP-76 and GFP-actin expressing T cells to conduct side-by-side analysis of these 

proteins in response to pharmacological intervention. As expected, treatment with Y-

27632 did not perturb F-actin flow (Figure 2.9, before Jas injection). SLP-76 MCs also 

continued to centralize normally in the presence of Y-27632, indicating that myosin II 

activity is dispensable for their dynamics (Figure 2.9 B). After addition of Jas, however, 

MC centralization was arrested concomitantly with the arrest of F-actin (Figure 2.9 A, 

after Jas, Movie 2M). Interestingly, even MCs close to the center, where F-actin was 

sparse, stopped their movement. This result is also shown in maximum-over-time 

projections of movie sequences (Figure 2.9 C). In these images, moving SLP-76 MCs, 

seen as radial streaks, are readily apparent in cells treated with Y-27632 alone, but only 

stationary SLP-76 MCs, projected as dots, are evident after the “freeze” of the F-actin   
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Figure 2.9. F-actin governs MC dynamics but has different velocity distribution across the 

IS. 

(A) Kymographs were generated along the diameter of cells expressing GFP-actin and GFP-SLP-

76, and sharpened in Photoshop. Arrowhead along the time axis indicates the addition of 1 µM 

Jas. (B) Jurkat T cells expressing GFP-SLP76 were pretreated with either vehicle control or Y-

27632 and allowed to spread on OKT3-coated coverglass. Velocities of SLP-76 MCs were 

analyzed by kymography (mean ± SD, n = 40-150 MCs from 10-19 cells). (C) ‘‘Maximum-over-

time’’ images GFP-SLP-76 Jurkat T cells were compiled from the images acquired before or after 

the addition of Jas. Scale bars represent 10 µm. Images are representative of three independent 

experiments. (D) Comparative analysis of SLP-76 MC centripetal velocity from a single cell 

overlaid with F-actin dynamics from Figure 2.1 E. Mean ± SEM.  
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network. Finally, it is important to note that no new MCs formed in the absence of F-

actin retrograde flow (data not shown). Taken together, these observations suggest that 

dynamic F-actin, and not simply F-actin accumulation at the IS, is required for SLP-76 

MC nucleation and centripetal movement. 

 

SLP-76 MC dynamics do not correlate with F-actin behavior 

Qualitatively, SLP-76 MC centralization did not resemble actomyosin movement, e.g. 

MCs often gathered at the center of the IS where little F-actin was present to facilitate 

their movement (Figure 2.10 A and Movie 2N). We therefore performed careful 

quantitative measurements of MC velocity, to seek clues to the driving mechanism. 

Particle tracking and kymography analysis yielded very similar results. Both techniques 

revealed that SLP-76 MC centralized with relatively constant velocity, averaging 

0.065±0.059 µm/s based on particle tracking and 0.059±0.034 µm/s based on 

kymography (Figure 2.10). This differs dramatically from the behavior of F-actin, which 

decelerated with inward movement. F-actin and SLP-76 MC centripetal velocity 

distributions are overlaid in Figure 2.9 D. From this analysis, it is evident that although F-

actin retrograde flow could drive SLP-76 MC movement in the periphery of the IS, SLP-

76 MCs actually move faster than the F-actin network in the LM and CB regions. Thus, a 

second mechanism is needed to account for MC dynamics in these regions.  
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Figure 2.10. Measurement of SLP-76 MC velocities at the IS  

(A) Left: “Maximum-over-time” projection of a video of SLP-76 MCs centralizing at the IS. 

Right: Tracks calculated from the same cell as on the left using shortest path algorithm in 

Volocity. Scale bar, 5 µm. (B) Kymograph generated along the path of a mobile SLP-76 MC. 

Scale bar represents 2 µm   15 s. (C) Histogram of apparent instantaneous velocity 

distribution from the cell in (A), n = 6407. (D) Histogram of average velocity distribution 

from a cell population (n = 287 measurements) found using kymography analysis. 
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Dynamic microtubule network translocates to the IS in close proximity to SLP-76 MCs 

The discrepancy between the rates of F-actin and SLP-76 MC centralization pointed us in 

the direction of a microtubule-dependent mechanism. Indeed, multiple reports implicated 

microtubules and microtubule-dependent motor cytoskeletal dynein in the organization of 

signaling complexes at the IS (Hashimoto-Tane et al., 2011; Lasserre et al., 2010; 

Schnyder et al., 2011). Yet, to date, the verdict on the microtubule function in MC 

dynamics remains controversial. This undoubtedly reflects the complexity of signaling 

machinery in question. We, therefore, wanted to investigate further the role of 

microtubules in the organization of the synaptic architecture. Confocal imaging and 3D 

reconstruction of Jurkat T cells spreading on OKT3-coated glass and immunostained for 

α tubulin revealed that microtubules polarized towards the IS and assumed a radial 

distribution resembling the maximum-over-time projections of MC dynamics (Figure 

2.11 A, compare with Figure 2.10 A). While live-cell imaging of SLP-76 and 

microtubules was less than conclusive, fixed-cell imaging of GFP-SLP-76 cells stained 

for α tubulin revealed that microtubules were found in close proximity to GFP-SLP76 

MCs, especially in the center of the IS (Figure 2.11 B). Thus we confirm the current 

notion that microtubules are positioned closely to the MCs to facilitate their movement in 

the central region of the IS. 

We then wondered whether the drug treatment that induces F-actin immobilization 

could perturb microtubule assembly and dynamics. A convenient way to evaluate 

microtubule turnover is to look at dynamics of microtubule-plus-end-tracking proteins 

(+TIPs) such as EB1 or STIM1, which binds directly to EB1 and thus also serves as a 

marker of growing microtubule ends (Grigoriev et al., 2008). We transfected GFP-actin   
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Figure 2.11. Dynamic microtubule network translocates to the IS proximally to SLP-76 

MCs. 

(A) E6.1 Jurkat T cells were dropped on OKT3-coated coverglass and allowed to spread for 

15 min. Cells were fixed and stained for microtubules. 3D reconstruction of confocal Z-stacks 

was performed to assess recruitment of microtubule network to the IS. Scale bar, 5 µm. (B) 

Jurkat T cells stably expressing GFP-SLP-76 were stained as in (A) and imaged just above the 

glass. Arrows point to streaks of SLP-76 MCs that lie in close contact with the microtubules. 

Scale bar, 10 µm. (C) GFP-actin Jurkat T cells were transiently transfected with STIM1-

mCherry and stimulated as above. Live-cell confocal imaging was performed just above the 

glass interface. A single frame from a movie sequence is shown. (D) ‘‘Maximum-over-time’’ 

projections of STIM1-mCherry were compiled from the images sequences acquired before 

(left) and after (right) the addition of Jas to cells pretreated with Y-27.  
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Jurkat T cells with STIM1 fluorescently labeled with mCherry at C terminus and allowed 

these cells to interact with the stimulatory coverglass. T cells pretreated with Y-27 

(Figure 2.11 C) did not show changes in STIM1 distribution and turnover compared to 

the untreated cells (data not shown). During cell spreading, STIM1 localized to the IS and 

generally moved in clusters resembling comets, which emanated from a single point, 

likely MTOC (Figure 2.11 D and Movie 2O). Upon F-actin immobilization by addition of 

Jas STIM1 continued to move at seemingly unchanged rate and frequency. We conclude 

that F-actin remodeling is not required to maintain microtubule turnover at the IS. 

 

Dynamic F-actin network maintains microtubules close to the PM 

The dominant role of F-actin flow in SLP-76 MC movement suggested that dynamic 

F-actin facilitates a global interaction between MCs and microtubules, and that upon F-

actin immobilization this interaction is abrogated. Hashimoto-Tane et al. (2011) 

demonstrated that in activated T cells microtubules are in close proximity to the PM and 

associate with the membrane-bound MCs through cytoplasmic dynein-dynactin complex. 

We thus hypothesized that F-actin polymerization may induce local pushing forces on 

microtubule filaments and press them tightly against the membrane, thereby enabling 

MC-microtubule association. To test this possibility we resorted to TIRF microscopy, 

which illuminates the glass slide at an obtuse angle, creating an evanescent wave that 

penetrates the sample only a short distance of about 70 to 250 nm (Millis, 2012). GFP-

actin Jurkat T cells were allowed to spread on OKT3-coated coverglass for 10 minutes 

with or without Y-27. Cells inhibited for myosin II contraction were then further 

subjected to Jas treatment for 5 additional minutes. After that, cells were fixed and   
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Figure 2.12. Dynamic F-actin network presses microtubules against plasma membrane 

at the IS. 

(A and B) GFP-actin Jurkat cells were pretreated with Y-27 for 15 min or left untreated and 

then allowed to spread on OKT3-coated glass for 10 minutes. Y-27 treated cells were then 

further treated with Jas so stop the actin flow for 5 min. Cells were then fixed and stained for 

alpha-tubulin. Untreated (A) and flow-inhibited (B) cells were imaged in widefield and in 

TIRF (90 nm depth of view). The inset in B shows the same cell in TIRF but with contrast 

increased 10-fold. Scale bar, 10 µm. 
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stained for microtubules. Widefield imaging confirmed previous observations that 

microtubules assume an asterisk-like pattern at the IS (Figure 2.12 A, left). This 

distribution was even more pronounced in the TIRF plane with evanescent wave 

penetration depth of 90 nm (Figure 2.12 A, right). “Freezing” the F-actin flow did not 

reduce the amount of microtubules as observed by epifluorescence imaging (Figure 2.12 

B, left), however, these microtubules were completely gone from the TIRF plane (n>50 

cells) (Figure 2.12 B, right). Interestingly, immobilized F-actin network also moved away 

from the PM. Dim fluorescence for both cytoskeletal networks was observed only when 

the contrast ratio was increased 10-fold (Figure 2.12 B, inset). Collectively, these results 

indicate that F-actin and microtubules function as a complex unit, whereby F-actin 

dynamics regulate tight positioning of the microtubule tracks at the IS. 

 

F-actin dynamics are necessary for sustained Ca
2+

 signaling 

Retention of MCs in the IS periphery by integrin ligands, genetic perturbations or 

physical barriers correlates with enhanced T cell activation (Hashimoto-Tane et al., 2011; 

Mossman et al., 2005; Nguyen et al., 2008). To assess the effect of MC arrest in the 

context of F-actin immobilization, we first examined the effects on sustained Ca
2+

 entry, 

a hallmark of T cell activation (reviewed in Chapter 1) (Negulescu et al., 1994; Oh-hora, 

2009). Cells were loaded with the ratiometric dye fura-2, AM and imaged while 

spreading on the stimulatory coverslips (Figure 2.13 A). Despite previous reports that 

myosin IIA contraction is essential for Ca
2+

 entry (Ilani et al., 2009), we found no 

difference in Ca
2+

 levels in cells pretreated with Y-27632 and control cells. Both showed 

a rapid increase in intracellular Ca
2+

, with levels declining gradually over the next 15-30   
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Figure 2.13. Loss of F-actin dynamics abrogates sustained Ca
2+

 signaling by perturbing 

Ca
2+

 release from ER stores. 

(A) GFP-actin Jurkat T cells were pretreated with 25 µM Y-27632 or left untreated and loaded 

with fura-2 before plating on OKT3- or PLL-coated coverglass in 2 mM Ca
2+

.  (B) Cells were 

pretreated as in (A) and allowed to interact with the stimulatory surfaces for 5 minutes. DMSO 

or Jas was then added to the imaging chamber and the response was measured for another 5 

minutes. Similar results were obtained from three independent experiments. (C and D) Cells 

were pretreated as in (B). 1 µM Tg was added to the dishes to induce Ca
2+

 release from ER 

stores.  
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minutes. To assess the “freeze” condition, we pretreated cells with Y-27632 and allowed 

them to spread on OKT3 for 5 minutes before application of Jas (Figure 2.13 B, red line). 

Intracellular Ca
2+

 levels began to drop within 30 seconds of Jas addition, roughly the 

same lag period observed for F-actin arrest (Figure 2.6 A). Within 3 minutes, Ca
2+

 had 

diminished to baseline levels, as defined by cells interacting with poly-L-lysine alone. A 

similar loss of sustained intracellular Ca
2+

 was observed when cells were treated with Jas 

alone (Figure 2.13 B, green line), indicating that F-actin turnover is essential for 

sustained Ca
2+

 signaling.  

Loss of intracellular Ca
2+

 could result from changes in Ca
2+

 release from ER stores or 

from inhibition of Ca
2+

 entry through CRAC channels in the PM. To test if the defect was 

at the level of ER store release, we treated cells with either Jas alone (Figure 2.13 C) or 

Y-27632+Jas (Figure 2.13 D) to inhibit Ca
2+

 signaling, and then added the SERCA pump 

inhibitor thapsigargin (Tg) to pharmacologically empty ER stores. In both cases, Tg 

treatment restored intracellular Ca
2+

 to normal levels, indicating that CRAC activity 

remains intact when F-actin is immobilized. Taken together, these data show that F-actin 

retrograde flow maintains sustained Ca
2+

 signaling by regulating Ca
2+

 release from ER 

stores. 

 

F-actin retrograde flow maintains activation of PLCγ1 in MCs 

Ca
2+

 store release is regulated by signaling through PLCγ1-dependent cleavage of 

PIP2 to generate IP3, which stimulates receptors in the ER membrane (Zhang et al., 1999). 

To ask if PLCγ1 activation is intact in T cells under conditions where F-actin dynamics   
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Figure 2.14. F-actin immobilization selectively inhibits PLCγ1 phosphorylation. 

(A and B) GFP-actin Jurkat T cells were either pretreated with 25 µM Y-27632 or left 

untreated, and plated on OKT3-coated coverglass. After 5 min, cells were treated with DMSO 

or Jas, then fixed at the indicated times and stained for phospho-Y783 of PLCγ1 (A) or 

phospho-Y319 of Zap70 (B). Intensity of antibody staining is pseudo-colored. Scale bars, 5 

µm. (C and D) Analysis of fluorescence intensities from phospho-PLCγ1 (A) or phospho-

Zap70 (B) staining. The IS boundaries were gauged by F-actin intensity; phospho-Y intensity 

per IS was calculated by integrating pixel intensity over IS area. Mean ± SEM, 
*
p < 0.05, 

***
p 

< 0.001.  
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Figure 2.15. Assessment of SLP-76 phosphorylation in response to F-actin immobilization.  

(A) Jurkat T cells expressing GFP-SLP-76 were allowed to interact with the stimulatory surface. 

Cells were fixed after 5 minutes and stained for F-actin and phospho-Y128 of SLP-76; a sample 

cell is shown. Scale bar represents 5 µm. (B) Relative fluorescence intensities along the dashed 

line in (A). (C) Average ratios of fluorescence intensities of phospho-Y128 SLP-76 and total 

GFP-SLP-76. Cells were pretreated with Y-27632 or left untreated, then allowed to spread for 5 

min. Jas was added where indicated and cells allowed to spread further for the indicated times. 

Mean ± SEM (average n = 3410 MCs from average of 23 cells per condition). (D) Relative total 

fluorescence intensities of phospho-SLP-76 (pY145) obtained from synapses of GFP-actin-

expressing Jurkat T cells fixed and stained as in (A). Mean ± SEM, average of 30 cells per 

condition. 
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have been perturbed, cells were incubated in the presence or absence of Y-27632 and 

allowed to spread on OKT3-coated surfaces. After 5 minutes, cells were treated with 

vehicle alone or with Jas to “freeze” the actin network. Cells were fixed at either early 

times of treatment (5 min + 2 min) or late times (5 min + 10 min), and labeled for PLCγ1 

phosphorylated at Y783, which represents the active enzyme pool (Kim et al., 1991). 

Control T cells formed numerous MCs containing pPLCγ1, and these became more 

prevalent within the central regions of the IS at the later time points (Figure 2.14 A). 

Treatment of cells with Y-27 alone had little effect on the intensity of pPLCγ1 staining or 

in the distribution of pPLCγ1 MCs, consistent with our finding that Ca
2+

 signaling is 

intact in these cells. In contrast, treatment with Y-27 together with Jas resulted in a loss 

of pPLCγ1 signal at the IS. Loss of pPLCγ1 intensity was detectable by 2 minutes after 

Jas treatment and further decreased over time; by 10 minutes the pPLCγ1 signal was only 

59% of control (Figure 2.14 B). Interestingly, loss of F-actin dynamics did not affect 

phosphorylation of Zap70 at Y319 (Figures 2.14 C and D). Furthermore, SLP-76 

phosphorylation at positions Y128 or Y145 showed no dependence on myosin IIA or F-

actin dynamics (Figure 2.15). These results indicate that F-actin dynamics selectively 

maintain IS-associated PLCγ1 activation, leading to sustained Ca2+ signaling. 

IV. Discussion 

The central role of the actin cytoskeleton in T cell activation was recognized in the 

1980s, but exactly how actin orchestrates T cell signaling has remained enigmatic. Early 

studies relying on actin depolymerizing agents could demonstrate a requirement for actin, 

but could not define whether actin functions as a static scaffold or whether dynamic 

processes such as turnover and motility were involved. More recent studies have 
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successfully addressed the role of individual actin regulatory proteins, but this approach 

does not provide a sense of the coordinated behavior of the cytoskeletal network. In this 

study, we took a pharmacological approach combined with genetic intervention to 

systematically study the roles of actin polymerization and myosin II contraction in 

controlling protein dynamics and signaling at the IS. Our findings demonstrate that the 

actomyosin network is a complex functional unit, with retrograde flow driven primarily 

by actin polymerization, and organizing contractile forces provided by myosin II. We 

show that ongoing actin polymerization is required for centralization of signaling MCs, 

for positioning of microtubule network and for tyrosine phosphorylation events leading to 

sustained Ca
2+

 mobilization. 

The actomyosin network in spreading T cells exhibits an actin-rich periphery, an 

actomyosin-rich ring, and central actomyosin poor region corresponding to the LP, LM 

and CB regions of other cell types (Cai et al., 2006). In particular, IS cyto-architecture 

bears a striking resemblance to that of fish keratocytes (Yam et al., 2007), cells used as a 

model of protrusion-based motility. In keratocytes, as in T cells, actin retrograde flow is 

very fast [40-100 nm/s, vs. 5-8 nm/s in some epithelial cells (Ponti et al., 2004)]. Our 

estimates of actin retrograde flow rates within the LP are in good agreement with values 

in the literature (Nguyen et al., 2008; Yu et al., 2010a). However, we find that actin flow 

slows with movement toward the CB. This behavior has been has been previously noted 

in T cells (Yu et al., 2010a), and is also observed in keratocytes (Yam et al., 2007). Based 

upon studies pioneered in keratocytes (Wilson et al., 2010), we used a panel of 

pharmacological inhibitors to dissect the roles of actin polymerization and myosin II 

contraction in driving overall flow of the T cell actomyosin network. We show that actin 



76 

polymerization generates most of the force in this system. Previous work shows that this 

polymerization is carried out by the Arp2/3 complex in response to activation by 

WAVE2, HS1 and WASp (Gomez et al., 2007; Gomez et al., 2006; Nolz et al., 2006). 

While we did not find a role for myosin IIA in driving F-actin flow, we did find that 

myosin II activity maintains the radial symmetry and overall organization of the IS, 

presumably by cross-linking antiparallel actin filaments and creating a meshed network 

that functions as a synchronous unit. Moreover, as in non-hematopoietic cells (Cai et al., 

2006), myosin IIA activity limits T cell spreading, and promotes a contraction phase 

during IS maturation. This contraction phase is similar to, albeit more modest than, the 

response in B cells during antigen gathering (Schnyder et al., 2011). Interestingly, Jurkat 

T cells also express myosin IIB (Figure 2.7 B and (Jbireal et al., 2010)). Partial 

contraction was observed in cells suppressed for myosin IIA and treated with Jas, 

suggesting that either residual myosin IIA (~25%) or myosin IIB contribute to contractile 

forces in these cells.  

Quantitative comparison of F-actin and SLP-76 MC velocities yielded surprising 

results. Within the LP region, we found that SLP-76 MC centralization was slower than 

actin retrograde flow by a factor of approximately 0.7. This effect was reported 

previously by Nguyen et al. (2008), and was interpreted as a “duty ratio”, representing 

intermittent attachment/detachment of MCs to the continuously moving F-actin network. 

Similar observations were reported for integrin and TCR MCs, where the duty ratio with 

actin was ~0.4 (Kaizuka et al., 2007). Strikingly, however, we show that while actin flow 

slows with centripetal movement, SLP-76 MCs exhibit relatively uniform velocity, and 

ultimately outpace the actomyosin network. We conclude that actin retrograde flow 
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cannot be the sole driver of MC centralization, and that other forces must be at play. It 

seems likely that microtubules are involved, since recent studies show that cytoplasmic 

dynein drives TCR MC movement into the cSMAC (Hashimoto-Tane et al., 2011). While 

a “hand-off” from actin in the IS periphery to microtubules in the IS center could be 

envisioned, there is evidence for a more complex mechanism. First, MCs do not collapse 

onto the MTOC after F-actin depolymerization (Nguyen et al., 2008; Varma et al., 2006). 

Second, we find that virtually all MC movement is arrested under conditions that “freeze” 

actin flow, even within the actin-poor cSMAC region. Furthermore, we and others 

present evidence of alteration of the microtubule network in response to perturbation of 

actin binding proteins such as ezrin (Lasserre et al., 2010). These observations, together 

with our finding that ongoing F-actin polymerization-derived force is required to 

maintain the microtubule cytoskeleton in close opposition to the PM, point to an intimate 

crosstalk between the F-actin and microtubule networks, and to simultaneous interaction 

of MCs with both networks (Lasserre and Alcover, 2010).  

The pharmacological approach used here sheds new light on the role of actin 

scaffolding, actin turnover, and myosin II contraction on specific aspects of T cell 

signaling. The requirement for myosin II in TCR signaling has been debated (Hammer 

and Burkhardt, 2013). Jacobelli et al. (2004) found that myosin IIA suppression or 

inhibition in mouse primary T cells (which express only myosin IIA isoform) affected T 

cell polarity and migration but not IS formation. However, Ilani et al. (2009) reported that 

inhibition of myosin II or suppression of Myh9 diminished tyrosine phosphorylation and 

ablated Ca
2+

 signaling. In our hands, myosin II activity was not needed for cell spreading 

or F-actin retrograde flow in Jurkat or human primary T cells. Moreover, in Jurkat T 



78 

cells, we found that myosin II inhibition did not affect MC centralization, tyrosine 

phosphorylation or Ca
2+

 flux. The explanation for these conflicting results is not clear but 

may involve differences in experimental approaches. In particular, while we used glass 

coverslips coated with immobilized anti-CD3, Ilani et al used supported lipid bilayers 

coated with anti-CD3 and ICAM-1. It will be interesting to examine whether the 

requirement for myosin IIA depends on ligand mobility or on integrin-mediated firm 

adhesion, which enhances T cell spreading on bilayers (Grakoui et al., 1999). 

The Hammer lab had published a study that is closely related to the work in this 

chapter, describing the actomyosin network in Jurkat T cells (Yi et al., 2012). Our 

findings support and extend those of Yi et al., and the areas where our results differ are 

informative. We observed lamellipodial, lamellar, and actin-poor regions of the IS, in 

excellent agreement with the regions described by Yi et al. Two comparatively minor 

differences exist between the two studies with respect to cyto-architecture. First, Yi et al. 

emphasize the presence of actomyosin arcs within the lamellar region. We, too, observe 

these structures, although in our hands they are rarely obvious, and only become 

prominent in cells expressing high levels of F-tractin or myosin IIA heavy chain. Second, 

Yi et al. reported a sharp LP/LM boundary, like that found in tightly adherent migrating 

cells (Ponti et al., 2004), however we have analyzed retrograde flow rates with 1-2 µm 

resolution across this region, and find that actin deceleration is a linear function of IS 

radius. Moreover we observe that actin speckles traverse this boundary. Thus, we 

conclude that actin flow at the LP/LM boundary undergoes a gradual transition similar to 

that found in loosely adherent cells such as keratocytes (Yam et al., 2007). Another area 

where our results differ from those of Yi et al. concerns the contribution of myosin II to 
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driving actin retrograde flow. Both studies show that actin polymerization provides a 

large component of the force driving retrograde flow of the actomyosin network, while 

myosin II contraction imposes radial organization on the network. However, we observed 

no effect of myosin II inhibition or suppression on actin retrograde flow, while Yi et al. 

show slowing of the actin network in blebbistatin-treated cells to about 60% of controls. 

This difference may be due to the stimulatory surfaces used (immobilized anti-CD3 vs. 

mobile anti-CD3 and ICAM-1).  

Probably the most informative difference between our work and Yi et al. involves the 

relationship of the actomyosin network to MC movement. In both cases, arresting 

actomyosin flow with a combination of inhibitors arrests centripetal MC movement. 

However, under steady-state conditions, Yi et al. show that centripetal movement TCR 

MCs tracks with F-actin flow, while we observed a striking disconnect between the rates 

of SLP-76 MC movement and actin flow. This is almost certainly due to differences in 

the proteins under investigation. SLP-76 MCs are known to be mobile under conditions 

where TCR MCs are not, and we recently showed in collaboration with the Baumgart lab 

that the velocity of Zap70 MCs (which presumably report on TCR localization) is 

affected by altered ligand mobility, while SLP-76 MCs are independent of this variable 

(Hsu et al., 2012). As discussed above, both types of MCs are likely to interact with both 

the actin and microtubule cytoskeletons, but these data point to fundamental differences 

in the nature or extent of these interactions.  

While Yi et al. focused on describing actomyosin dynamics, we took advantage of 

our ability to manipulate those dynamics to probe T cell signaling under conditions that 

“freeze” actomyosin flow, but leave the network intact. This is a powerful technique, as it 
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allows us to ask for the first time if the presence of an actin scaffold is sufficient to 

support signaling, or if actin turnover and flow is required. Our results clearly show that 

ongoing F-actin dynamics are required to sustain TCR signaling. We observed a drop in 

intracellular Ca
2+

 almost immediately after F-actin polymerization was inhibited, 

regardless of whether the F-actin network was allowed to collapse inward, or was 

immobilized by pretreatment with myosin II inhibitors. The decrease in intracellular Ca
2+

 

could be rescued by Tg treatment, indicating that CRAC channels operate normally under 

conditions where actin turnover is blocked. This finding is consistent with work by 

Mueller et al. (2007), who showed that CRAC channels function independently of 

cortical actin in T cells. It is currently unclear how to reconcile these findings with our 

previous work showing that expression of WAVE2, a key actin nucleation promoting 

factor, interferes with coupling of ER store release to CRAC channel opening (Nolz et 

al., 2006). One possibility is that the requirement for WAVE2 does not involve its actin 

polymerizing activity. The ability of Tg to rescue Ca
2+

 influx in actin-immobilized T cells 

points to a defect in Ca
2+

 release from ER stores. In keeping with this, we found 

diminished levels of phosphorylated PLC1 at the IS under conditions of F-actin 

immobilization. Phosphorylation of Zap70 and its substrate SLP-76, which lie upstream 

of PLC1 in the TCR signaling cascade, are intact, indicating that actin immobilization 

affects a specific PLC1-proximal signaling event, possibly involving its activating 

kinase Itk. In keeping with this idea, both Itk and PLC1 interact with actin, and our lab 

previously observed defects in PLC1 function in T cells deficient for the actin regulatory 

protein HS1 (Carrizosa et al., 2009; Gomez et al., 2006).  



81 

Our ability to “freeze” actomyosin flow is also informative with respect to the 

mechano-biology of MC signaling. Retention of MCs in the IS periphery induced by 

integrin engagement, genetic perturbations or physical barriers correlates with enhanced 

T cell activation, and it has been proposed that this reflects the fact that active signaling 

takes place in peripheral MCs, while signal extinction takes place in the cSMAC 

(Hashimoto-Tane et al., 2011; Lasserre et al., 2010; Mossman et al., 2005; Nguyen et al., 

2008). However, we find that peripheral MC arrest under F-actin “freeze” condition is 

not sufficient to enhance signaling; on the contrary, signaling is lost under these 

conditions. Two models are compatible with our data. First, F-actin flow could promote 

signaling by generating tension on receptors or signaling complexes. Such tension would 

be released by inhibiting F-actin flow, but enhanced by restraining ligand or MC 

movement. The TCR is a mechano-sensor that interacts with the actin cytoskeleton (Kim 

et al., 2012; Kim et al., 2009; Li et al., 2010), and actin flow could induce conformational 

change in the TCR. Given our results showing phosphorylation defects downstream of 

Zap70, however, molecules such as Itk or PLC1 might be the relevant, tension-sensitive 

molecules. Consistent with the idea that F-actin dynamics may modulate TCR function 

by exerting physical forces on the signaling complexes, our findings show that upon 

IQGAP1 depletion, T cells exhibit stronger retrograde flow of F-actin at the IS. This 

highlights that augmented F-actin dynamics correlate with enhanced T cell activation. 

Although this is not the only possible explanation for the functional effects of IQGAP1 

suppression, this paradigm implicates IQGAP1 in the mechanical aspects of the TCR 

signaling (Gorman et al., 2012). 
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An alternative explanation of the necessity of retrograde flow is that signaling 

requires ongoing MC biogenesis. F-actin depletion blocks MC formation without 

perturbing older MCs and leads to loss of signaling (Campi et al., 2005; Varma et al., 

2006). Similarly, interruption of TCR-pMHC interactions prevents MC formation and 

induces loss of intracellular Ca
2+

 without affecting MC centralization (Varma et al., 

2006). Our work extends these findings: under our “freeze condition” no new MCs are 

formed, demonstrating that the presence of F-actin is not sufficient for MC formation; 

instead, ongoing polymerization is required.  

Models based on tension and on new MC formation are not mutually exclusive. 

Indeed, we hypothesize that the two processes are mechanistically linked. We propose 

that peripheral F-actin-rich sites nucleate assembly of signaling complexes, which are 

initially associated with both extracellular ligands and the flowing cytoskeleton. Tension-

induced signaling would be maximal immediately prior to initiation of MC movement, 

and movement would partially relieve tension and dampen signaling. This model has 

significant physiological implications. For example, ligand mobility on the surface of 

APCs is predicted to be an important parameter for modulating T cell responses, and 

molecules that link signaling intermediates to the cytoskeletal network should be 

interesting therapeutic targets. The scientific community should concentrate the efforts to 

address these questions and carefully test the predictions of the model.   
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CHAPTER 3: ONGOING FLOW OF THE F-ACTIN NETWORK DRIVES 

AFFINITY MATURATION AND SPATIAL ORGANIZATION OF LFA-1 AT 

THE IMMUNOLOGICAL SYNAPSE
56

 

 

I. Summary 

Integrin-dependent interactions between T cells and APCs are vital for proper T-cell 

activation, effector function, and memory formation. Regulation of integrin function 

occurs via conformational change, which modulates affinity for ligand, and molecular 

clustering, which modulates receptor valency. Here, we show for the first time that 

conformational intermediates of LFA-1 are organized in a concentric array at the IS. 

Using an inhibitor cocktail to arrest F-actin dynamics, we show that formation of this 

array depends on F-actin flow and ligand mobility. Furthermore, F-actin flow is critical 

for maintaining the high affinity conformation of LFA-1, and for enhancing valency 

through recruitment of LFA-1 to the cell-cell interface. Our data provide direct support 

for a model in which the T cell F-actin network generates mechanical forces that regulate 

LFA-1 activity at the IS. 
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II. Introduction 

T-cell activation and specific effector function require the formation of a regulated 

cell-cell contact with an APC bearing cognate pMHC termed the IS. In mature IS, a 

distinct molecular pattern forms in which an outer ring of LFA-1 and the LFA-1 

regulatory protein talin surrounds an inner region enriched in TCR and associated 

signaling molecules (Monks et al., 1998). These respective regions have been termed the 

peripheral (p-) and central (c-) SMACs. A third region distal SMAC (dSMAC) region, 

enriched in CD45, lies at the edge of the IS (Freiberg et al., 2002; Sims et al., 2007). This 

region corresponds roughly to the F-actin rich lamellipodium of migratory cells (see 

Figure 2.1 in Chapter 2). Signaling from the TCR occurs in microclusters that form in the 

IS periphery and undergo F-actin- and microtubule-dependent movement to the IS center 

(Campi et al., 2005; Hashimoto-Tane et al., 2011; Yokosuka et al., 2005). Most active 

signaling is associated with newly-formed MCs, while signal extinction occurs in the 

center of the IS (Varma et al., 2006). 

The actin cytoskeletal network plays a central role in IS formation, and ongoing F-

actin polymerization is required for TCR signaling (Billadeau et al., 2007; Burkhardt et 

al., 2008; Campi et al., 2005; Varma et al., 2006; Yu et al., 2013). F-actin dynamics at the 

IS are characterized by polymerization in the lamellipodium, with centripetal flow and 

filament disassembly in the central region of the IS. This process is primarily dependent 

on F-actin polymerization, with minor contributions from myosin IIA contractility 

(Chapter 2 and (Yi et al., 2012)). Simultaneous inhibition of myosin IIA contraction and 

F-actin polymerization results in the arrest of F-actin dynamics at the IS, with 

concomitant loss of Ca
2+

 signaling (Chapter 2). Conversely, conditions that increase F-
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actin polymerization and retrograde flow correlate with enhanced T-cell activation and 

cytokine production (Gorman et al., 2012). The molecular basis for the requirement of a 

dynamic F-actin network has not been elucidated. One possibility is that certain signaling 

events proceed only under application of physical force, a process termed 

mechanotransduction. Recent studies indicate that TCR triggering may be sensitive to 

application of force along the TCR–pMHC bond (Li et al., 2010; Ma et al., 2008b). 

Moreover, there is evidence that TCR tension-sensing at the IS depends in part on myosin 

II contraction, and also on F-actin centripetal flow (Kumari et al., 2012). Despite the 

accumulating evidence for mechanotransduction in TCR signaling, the precise role of F-

actin dynamics remains unclear. Furthermore, the role of F-actin-dependent mechanical 

force in regulating other molecules needed for T cell activation has largely been 

unaddressed.  

Integrins are heterodimeric transmembrane proteins that are critical for the formation 

and maintenance of cell–cell interactions. In humans, there are 24 known integrin αβ 

dimers consisting of different combinations of the 18 α and 8 β chains. The αLβ2 integrin 

LFA-1 is expressed exclusively in leukocytes and is essential for T-cell trafficking and IS 

formation. In general, integrins are regulated at two distinct levels, valency, or integrin 

density at the cell–cell interface, and affinity, or the strength of interaction between each 

individual integrin molecule and its ligand. Both valency and affinity contribute to firm 

adhesion (Yu et al., 2010b). Therefore, the collective strength of the interaction, which is 

referred to as avidity, is a product of valency, affinity and relative contact area (Kinashi, 

2005).  
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In resting T cells, LFA-1 is maintained in an inactive, bent conformation with very 

low ligand binding capacity. TCR stimulation recruits the actin binding protein talin to 

the β chain of LFA-1. Talin binding to the NPXY/F motif relieves interactions between 

the transmembrane and cytoplasmic domains of the  and  chains that are required to 

maintain the bent conformation, allowing unfolding of LFA-1 and the adoption of an 

intermediate conformation (Calderwood et al., 1999; Hughes et al., 1996; Kim et al., 

2003; Li et al., 2003; Luo et al., 2005; Partridge et al., 2005; Tadokoro et al., 2003). This 

“switch-blade”-like unfolding occurs in the presence of activating antibodies or ligand-

mimetic peptides, and exposes epitopes that report integrin activation (Figure 1A) 

(Nishida et al., 2006; Takagi et al., 2002). Signaling events, such as talin binding, that 

result in the modulation of LFA-1 activation are generally termed inside-out signaling 

(reviewed in (Hogg et al., 2011; Kim et al., 2011; Kinashi, 2005)).   

In a reciprocal process termed outside-in signaling, the actual binding of ligand can 

also induce the activation of LFA-1 through induced fit of the high affinity form. The 

structural changes that take place upon integrin activation have been characterized using 

activating mutations and activation-inducing antibodies (Shimaoka et al., 2003; Takagi et 

al., 2002; Weitz-Schmidt et al., 2011; Zhu et al., 2008). Typically, integrin activation and 

ligand binding are associated with a lateral swing-out of the hybrid domain, resulting in a 

downward movement of the α7 helix in the βI domain, thus inducing the high affinity, 

extended open conformation of the βI domain. In αI domain-containing integrins, such as 

LFA-1, the activated βI domain binds an invariant glutamate residue in the C-linker 

region between the αI and β-propeller region. This results in downward movement of the 

αI domain α7 helix and adoption of the extended open, high affinity, αI domain (Figure 
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3.1 A). Importantly, it has been shown that antibodies that stabilize the extended 

conformation or ones that stabilize hybrid domain swing-out greatly increase the affinity 

of LFA-1 for ligand (Chen et al., 2010b; Schurpf and Springer, 2011). Incubation of cells 

with antibody TS1/18, which stabilizes the closed βI domain, decreases baseline affinity 

by half. Conversely, induction of the extended conformation with the activating antibody 

CBR LFA 1/2 results in a 4-fold increase in affinity from baseline levels, while induction 

of hybrid domain swing-out with antibody MEM-148 increases the affinity 100-fold over 

the extended conformation. Thus, conformational change of LFA-1 can regulate its 

affinity for ICAM-1 by over three orders of magnitude. These data imply that an external 

force applied to LFA-1 that results in hybrid domain swing-out can greatly enhance LFA-

1 affinity for ligand. In support of this idea, molecular modeling has suggested that a 

tensile force applied parallel to the membrane on the β tail can result in hybrid domain 

swing-out and affinity modulation (Zhu et al., 2008).   

Consistent with the prediction that force can enhance LFA-1 affinity, it has been 

demonstrated that integrins engage in catch-bond interactions, in which force on the 

bonds increases the strength and longevity of the interaction (Chen et al., 2012; Chen et 

al., 2010a; Kong et al., 2009). Bond lifetime increases as tensile normal force is applied, 

until a threshold is reached where bonds are rapidly ruptured. Importantly, it was found 

that blocking binding of the αI internal ligand by the open βI domain with the allosteric 

inhibitor XVA143 perturbs catch bond behavior, suggesting that conformational change 

is required to initiate catch-bond interactions. Furthermore, it has been shown that α5β1 

and LFA-1 can undergo a process termed cyclic mechanical reinforcement, whereby a 

short application of high tensile force can induce a state under which bond lifetime is 
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greatly extended after the original force is removed or decreased (Kong et al., 2013). For 

LFA-1–ICAM-1 interactions, force cycling increased the average bond lifetime from 1.5 

seconds over 35 seconds.   

In naïve T cells the integrin LFA-1 is essential for proper T-cell trafficking, conjugate 

stability and IS maturation. Recently it has been shown that LFA-1–mediated adhesion is 

critical for the formation of immunological memory (Parameswaran et al., 2005; Scholer 

et al., 2008). Although it is clear that integrins play a central role in T cell function, major 

questions remain about the mechanisms that regulate integrin activation at the IS. It has 

been proposed that tensile force on the β chain of LFA-1 can be produced through 

linkage to the dynamic F-actin network (Schurpf and Springer, 2011; Springer and 

Dustin, 2012), but this model has not been directly tested. We have now investigated the 

function of the T-cell actin cytoskeleton in regulating conformational change and 

organization of LFA-1 at the IS. Our data suggest that mechanical forces provided by the 

flow of the T cell actomyosin II network are critical for the recruitment of LFA-1 to the 

IS and its organization at the interface. Moreover, F-actin dynamics were required for the 

maintenance of the high affinity conformation of LFA-1; LFA-1 affinity could be 

modulated through slowing of the F-actin network by VLA-4 co-engagement. We 

propose that the mechanical force provided by F-actin centripetal flow maintains LFA-1 

density and conformational state at the IS, thus regulating LFA-1-mediated adhesiveness 

and costimulatory potency.  
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III. Results 

Extended and extended open conformations of LFA-1 display distinct patterns of 

organization at the IS  

T cell activation by APCs involves clustering of LFA-1 at the cell-cell interface and 

conformational changes associated with affinity modulation, but the distribution of the 

activated forms of the molecule in this context has not been well-characterized.  To 

address this question, we labeled conjugates formed between human ex vivo CD4
+
 T cells 

and SEE-pulsed Raji B cells with a panel of antibodies specific for different 

conformations of LFA-1, associated with well-defined changes in ligand binding affinity 

as depicted in Figure 3.1 A.  TS2/4, which binds the β propeller domain of CD11a, 

(hereafter αL) was used to label total LFA-1 on cell surface. Conjugates were rendered in 

3D in the IS plane (Movie 3A). TS2/4 labeling showed an even distribution across the 

pSMAC region of the IS with a slight decrease in intensity in the cSMAC, and was 

largely absent from the F-actin-rich dSMAC region (Figure 3.1 B).  Kim127 binds the 

extended form of CD18 (hereafter β2) in the intermediate and high affinity 

conformations, and was used to mark these ligand-binding forms of LFA-1.  Kim127 

labeled LFA-1 within the pSMAC region, but was largely absent from the cSMAC 

(Figure 3.1 B).  Finally, m24, which binds β2 within the βI domain following hybrid 

domain swing-out, was used to specifically label LFA-1 molecules in the extended open 

(high affinity) state.  m24 labeling concentrated in the inner region of pSMAC relative to 

Kim127 staining, though labeling was typically very low at the very center of the contact 

area (Figure 3.1 B).  The inner boundary of extended open LFA-1 corresponded to the 

CD3-rich cSMAC region in conjugates that had a clear cSMAC (Figure 3.2 A); however,   
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Figure 3.1. LFA-1 conformational change at the IS is organized into a concentric array 

via a T-cell intrinsic mechanism. 

(A) LFA-1 conformational states and antibody binding sites. Inactive LFA-1 (low affinity for 

ligand) exists in bent conformation. Intermediate affinity LFA-1 is induced upon talin binding 

to the cytoplasmic tail of the β chain. Cytoskeletal interactions and ligand binding further 

separate the integrin tails and results in extended open conformation of LFA-1, which has high 

affinity for ligand, ICAM-1. Putative binding sites of monoclonal antibodies are marked with 

asterisks. (B) Human primary CD4+ T cells were conjugated to SEE-pulsed Raji B cells 

(asterisk in first panel) for 25 min, and labeled with CF405M-phalloidin (to detect F-actin) and 

with antibodies to a conformation-independent epitope on L (to detect total LFA-1) and to 

the 2 chain in the extended and extended open conformations. Z stacks of whole conjugates 

were collected and rendered in 3D in the IS plane (arrowhead). Representative rendered 

images are shown. Right panel, radial intensity profiles of synapses from multiple conjugates 

were analyzed as described in Chapter 5, Materials and Methods. Data are represented as 

mean  SD. (C) Cells were allowed to spread on stimulatory bilayers and analyzed as in B.  

(D) Cells were allowed to spread on stimulatory coverglasses and analyzed as in B. Radial 

intensity distributions in C and D were obtained as in B. (E) Conjugates were prepared as in 

B, except that labeling for talin, rather than L, was performed.  (F) Cells were prepared as in 

C, except that labeling for talin was performed instead of labeling for L and without F-actin 

staining. Radial intensity distributions in F were obtained from average intensity projections 

as described in Experimental Procedures. Note that in both E and F, talin colocalizes with the 

extended and extended open conformations of LFA-1, confirming integrin conformational 

change. Results are representative of three independent experiments. Where indicated, n 

represents the number of analyzed synapses per experiment. Scale bars, 5 µm.  



92 

the overall pattern of LFA-1 and the central clearance was present even in cells where no 

clear cSMAC accumulation of CD3 was observed (Figure 3.2 B).  When superimposed, 

LFA-1 labeling patterns show a clear concentric distribution, with the extended open 

conformation distributed more centrally.  This observation was confirmed by quantitative 

analysis of relative signal intensity as function of cell radius in multiple conjugates.  As 

shown in Figure 3.1 B (rightmost panel), this analysis reveals that LFA-1 conformational 

intermediates form a concentric pattern at the IS, with the bent (low affinity) 

conformation relatively evenly distributed across the pSMAC and cSMAC regions, a 

peripheral ring rich in the extended (intermediate affinity) conformation and a more 

centralized ring enriched in the open headpiece (high affinity) conformation.   

The concentric pattern of LFA-1 conformational intermediates was not unique to 

conjugates.  A similar pattern was observed in T cells interacting with stimulatory planar 

lipid bilayers functionalized with anti-CD3 and ICAM-1 (characterized in Appendix A), 

except that total LFA-1 was evenly distributed across the entire IS (Figure 3.1 C).  

Moreover, T cells spreading on glass coverslips coated with anti-CD3 and ICAM-1 also 

showed a concentric pattern of LFA-1 conformational intermediates (Figure 3.1 D).  In 

this case, cell spreading was more extensive and LFA-1 molecules in the extended 

conformation formed a thinner ring near the cell periphery.  Extended open LFA-1 

molecules were also more peripherally localized, accumulating just inside the ring of 

extended LFA-1.  Quantitative analysis of multiple T cells responding to stimulatory 

bilayers and coverslips (rightmost panels of Figures 3.1 C and 3.1 D, respectively) 

confirms the generality of these observations, and highlights the shift of the concentric 

array to the periphery in cells responding to immobilized ligand.  We conclude that   
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Figure 3.2. LFA-1 conformational change at the IS is organized into a concentric array 

regardless of CD3 accumulation in the cSMAC or cell lineage 

(A and B) Human primary CD4+ T cells were conjugated to SEE-pulsed Raji B cells (dashed 

outlines and asterisks) for 25 min, and labeled with antibodies to 2 chain in the open and 

extended conformations and to CD3ε chain of TCR. Z stacks of whole conjugates were 

collected and rendered in 3D in the IS plane (arrowhead). Representative rendered images are 

shown. Activated LFA-1 assumes annular pattern in the presence (A) or absence (B) of CD3 ε 

enrichment in the cSMAC. (C) Human primary CD8+ T cells were stimulated as in A and 

labeled with antibody against 2 open conformation of LFA-1. Cells were then fixed and 

further stained with antibodies to a conformation-independent epitope on L and to the 2 

chain in the extended conformation. Cells were imaged and processed as in A. Scale bar, 5 

µm. 
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ligand mobility affects the extent of centralization, but not the tendency toward radial 

organization of LFA-1 activation intermediates.   

As an independent method of assessing integrin conformational change, we used 

talin, a well-known integrin regulatory protein that binds to the cytoplasmic portion of the 

β chain upon TCR stimulation, inducing LFA-1 activation (Calderwood et al., 1999; 

Hogg et al., 2011). Talin co-localized strongly with both the extended and extended open 

conformations of LFA-1 in conjugates (Figure 3.1 E) and on planar bilayers (Figure 3.1 

F).  The characteristic distribution of activated LFA-1 was also observed in naïve CD8
+
 T 

cells (Figure 3.2 C), and in CD4
+
 T cell blasts (see Figure 3.3).  Taken together, these 

results show that LFA-1 activation intermediates are organized in a radial array at the IS.  

Since similar patterns are observed in T cells responding to APCs and artificial 

stimulatory surfaces, we conclude that this process occurs in a T cell intrinsic manner.  

 

High affinity, extended open conformation of LFA-1 is enriched in areas of low F-actin 

dynamics 

Since LFA-1 associates with the actin cytoskeleton, it seemed likely that centripetal 

flow of the F-actin network plays a role in organizing the radial array of LFA-1 

activation.  In order to better understand the relationship between F-actin dynamics and 

regulation of LFA-1 affinity, we transduced human primary CD4
+
 T lymphoblasts with 

the F-actin tracer Lifeact-GFP, and analyzed live cells responding to bilayers coated with 

anti-CD3 and ICAM-1.  As shown in Figures 3.3 A and B and Movie 3B, T cells showed 

a highly dynamic IS characterized by repeated periods of expansion and retraction and an 

overall inward flow of the F-actin network.  The network was generally organized as a 
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peripheral ring.  While some cells exhibited an enrichment of Lifeact-GFP at the IS 

center (Figure 3.3 A; Movie 3B, left cell), others lacked this central accumulation (Figure 

3.3 B; Movie 3B, right cell).  In either case, total LFA-1 marked by TS2/4 was present 

across the IS irrespective of actin intensity, while the extended conformation was present 

largely in F-actin-poor regions, though absent from the IS center (Figure 3.3 C).  Thus, 

labeling of the extended open conformation did not correlate with F-actin intensity.   

Since LFA-1 has been shown to interact with myosin IIA, and myosin IIA is known 

to mark the actomyosin II network in areas of lower F-actin density in spreading T cells 

(see Chapter 2), we also evaluated LFA-1 distribution with respect to myosin IIA.  As 

reported previously (Kumari et al., 2012; Yi et al., 2012), T cells spreading on 

stimulatory planar lipid bilayers exhibited a ring of myosin IIA that overlapped with the 

inner aspect of the F-actin-rich region (Figure 3.3 D). Interestingly, the ring of myosin 

IIA accrued between the ring formed by the extended form of LFA-1, which co-localizes 

with F-actin at the periphery of such cells (see Figure 3.1 C), and the more central ring of 

extended open LFA-1. The relative localization of myosin IIA and LFA-1 conformational 

intermediated was somewhat different in T cells responding to SEE-pulsed Raji B cells 

(Figure 3.3 E).  Here, myosin IIA co-localized more tightly with F-actin at the IS 

periphery, so that peak myosin IIA intensity fell outside the rings of extended and 

extended open LFA-1.  These differences likely involve changes in ligand mobility and 

the extent of T cell spreading. The important point, however, is that the distribution of 

myosin IIA does not directly correlate with that of any LFA-1 activation intermediate.  

Taken together, these data show that high affinity, but not low or intermediate affinity  
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Figure 3.3. Active LFA-1 is excluded from the zones of high F-actin dynamics  

(A and B) Time-lapse series of T cells expressing Lifeact-EGFP spreading on the stimulatory 

bilayers. Imaging was initiated after full spreading was reached. Some cells had a central 

accumulation of fluorescence (A), while others had a central clearance (B). (C) T cells were 

allowed to spread on bilayers for 30 minutes and labeled with conformation-specific LFA-1 

antibodies and phalloidin as indicated.  Right panel, the average intensity distribution at the IS 

within the cell population was calculated from average intensity projection (AVG projection) 

of cell population, as described in Chapter 5, Materials and Methods. (D) T cells were allowed 

to spread on bilayers for 30 minutes and labeled with conformation-specific LFA-1 and anti-

myosin IIA antibodies as indicated. Right panel, the average intensity distribution at the IS 

within the cell population was determined as in C. (E) T cells were conjugated to SEE-pulsed 

Raji B cells (dashed outline and asterisk) for 30 minutes and labeled with phalloidin, anti-

myosin IIA and conformation specific LFA-1 antibodies as indicated. Z stacks of whole 

conjugates were collected and rendered in 3D in the IS plane (arrowhead). Representative 

rendered images are shown. Where indicated, n represents the number of analyzed synapses. 

Scale bars, 5 µm. 
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LFA-1 is selectively excluded from regions of high actomyosin II dynamics. Since high 

affinity LFA-1 is preferentially associated with the F-actin network (Cairo et al., 2006), it 

seems likely that this pool of the molecule is preferentially pushed to the inner region of 

the IS and deposited there upon disassembly of actin filaments. 

 

Ligand mobility influences the magnitude of the retrograde flow rate of F-actin  

An outstanding question in the field is whether ligand mobility influences the rate at 

which F-actin moves at the synapse. Early studies concentrated either on mobile or on 

immobile substrates and reports from different labs yielded widely disparate results 

(DeMond et al., 2008; Kaizuka et al., 2007; Nguyen et al., 2008). The Groves lab (Yu et 

al., 2010a) had conducted studies in Jurkat T cells spreading on mixed mobility surfaces, 

and demonstrated that local retardation of F-actin flow occurs upon encountering a 

barrier in ligand mobility. This observation raised the notion that ligand mobility affects 

the centripetal movement of the F-actin network. However, in a recent publication (Yi et 

al., 2012) had shown that in their hands retrograde flow rate was not different between 

Jurkat cells spreading on stimulatory bilayers or on coverglasses. We also decided to 

perform a side-by-side analysis of this phenomenon. We dropped GFP-actin Jurkat cells 

on coverglasses and on bilayers and performed confocal live-cell imaging. Qualitatively, 

cells spreading on bilayers, which contained OKT3 and ICAM-1, spread less extensively 

and had much thicker lamellipodia than cells spreading on coverglasses containing the 

same ligands (Figures 3.4 A and B; Movie 3C). Kymograph analysis showed that cells 

spreading on mobile OKT3 and ICAM-1 had flow rate of 87.717.8 nm/s (meanSD), 

which was significantly higher than 67.816.5 nm/s (meanSD) in cells spreading on   
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Figure 3.4. Ligand mobility modulates F-actin retrograde flow rate  

Jurkat T cells expressing low levels of GFP-actin were allowed to spread on the OKT3- and 

ICAM-1-coated coverglasses (A) or stimulatory bilayers containing the same pair of ligands 

(B). Representative extent of cell spreading and F-actin organization is depicted. Scale bars, 5 

µm. (C) Comparative analysis of F-actin flow rates at the periphery of the IS, as determined 

by kymography. Each dot represents a single measurement, multiple measurements were made 

on the same cell; 16 cells were used for measurements on coverglass and 21 cells for 

measurements on bilayer. ***p<0.001 



100 

immobilized ligands (Figure 3.4 C). Thus, we conclude that ligand mobility does play a 

role in the extent of cytoskeletal flow rate in stimulated T cells, which may influence the 

outcome of overall signaling cascade. 

 

LFA-1 engagement by immobilized ICAM-1 retains high affinity LFA-1 in the periphery 

of the IS 

We next assessed the role of ligand engagement in defining the organization of LFA-

1 activation intermediates with respect to the dynamic actin network.  For this, human 

primary CD4
+
 T lymphoblasts were allowed to interact with stimulatory coverslips 

coated with OKT3 + ICAM-1 or with OKT3 alone, and labeled with conformation-

specific antibodies as well as with antibodies against total LFA-1.  T cells stimulated with 

OKT3 + ICAM-1 spread more extensively than cells stimulated with OKT3 alone, but 

the patterns of total and extended LFA-1 were similar (Figures 3.5 A and B), with a ring 

of enrichment near periphery of the IS, with intensities at the center reaching ~ 50% of 

the maximal value (Figure 3.5 A, right panel).  In contrast, manipulating ligand 

engagement had a dramatic effect on the distribution of LFA-1 molecules in the extended 

open conformation. In these T cell blasts spreading on OKT3 + ICAM-1, staining for the 

extended open conformation co-localized completely with staining for extended and total 

LFA-1, whereas in T cells stimulated in the absence of ICAM-1 these high affinity 

molecules were concentrated at the center of the IS (Figure 3.5 B, right panel).  This also 

showed that ICAM-1 engagement is not absolutely necessary to induce the extended open 

integrin conformation.  
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Figure 3.5. ICAM-1 binding retains the pool of activated LFA-1 in the IS periphery 

(A and B) Blasted T cells were allowed to interact with coverslips, coated with OKT3+ICAM-

1 (A) or OKT3 alone (B) for 30 minutes, fixed and stained with the indicated antibodies as 

described in Chapter 5, Materials and Methods. Rightmost panels represent traces of 

fluorescence intensities obtained from average intensity projections (AVG projection). n 

represents the number of analyzed synapses. (C) Blasted T cells expressing Lifeact-EGFP 

were allowed to interact with the stimulatory coverslips, while being imaged. (D) Kymograph 

of F-actin dynamics generated along the dashed line in C. Arrowhead indicates a mobile 

fiducial mark in the F-actin network. (E) Kymograph analysis of F-actin dynamics along IS 

radii (663 measurements from 13 cells) superimposed with the normalized radial distribution 

of F-actin in the same cells. (F) Same cells as in C were allowed to interact with the 

stimulatory coverslips, coated with OKT3+ICAM-1, and imaged for F-actin dynamics. (G) 

Kymograph of F-actin dynamics generated along the dashed line in F. Arrowhead indicates a 

mobile fiducial mark in the F-actin network. (H) Kymograph analysis of F-actin dynamics 

along IS radii (1180 measurements from 21 cells) superimposed with the normalized radial 

distribution of F-actin in the same cells. Data are represented as mean  SD. Scale bars in A 

and B, 5 µm and in C and F, 10 µm. 
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The degree of centralization of extended open LFA-1 in T cells stimulated on 

coverslips without ligand resembled the pattern seen in cells responding to planar bilayers 

where ICAM-1 is present, but mobile (Figure 3.1 C).  The simplest interpretation of these 

data is that actin-dependent delivery of ICAM-1 to the center of the IS is directly opposed 

by the immobilized ligand. Alternatively, however, engagement of immobilized ligand 

could affect the flow of the F-actin network.  Evidence for this comes from the work of 

(Nguyen et al., 2008), who showed that engagement of the 1 integrin VLA-4 with 

immobilized VCAM-1 dramatically retards centripetal F-actin flow.  To differentiate 

between these possibilities, we measured F-actin flow rates in T lymphoblasts expressing 

Lifeact-GFP.  T cells spreading on OKT3 alone showed continuous centripetal flow of F-

actin (Figures 3.5 C–E; Movie 3D). Kymography analysis revealed flow rate of 8347 

nm/s (meanSD) in the lamellipodial region, with linear deceleration as the network 

moved toward the F-actin-low center of the synapse.  These results are in good accord 

with our findings in Jurkat T cells (see Chapter 2). 

Importantly, addition of ICAM-1 to the stimulatory coverslips had minimal effect on 

actin dynamics or the pattern of centripetal deceleration, although we noticed that there 

was more F-actin at the center of the synapse (Figures 3.5 F–H; Movie 3E).  F-actin flow 

in the very periphery slowed down to 7344 nm/s but in general, the differences between 

the two conditions were not statistically significant across the IS radius (Figure 3.12).  

Taken together, these data favor a model, in which pre-activated (transient intermediate, 

Step 3 in model in Figure 3.13 B) LFA-1 first binds to ICAM-1 in the periphery of the IS, 

and then high affinity, ligand-bound molecules are pulled inward by centripetal flow of 

the F-actin network.  If ICAM-1 is present and immobilized, high affinity LFA-1 is 
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physically retained in the periphery of the contact, whereas if ICAM-1 is absent, or 

highly mobile, pre-activated LFA-1 can accumulate at the center of the contact area. 

 

F-actin flow regulates the valency of LFA-1 at the IS 

In order to directly determine the relationship between forces exerted by F-actin flow 

and LFA-1 conformational change and organization, we used an inhibitor cocktail 

containing the F-actin-stabilizing agent jasplakinolide (Jas) together with either the 

myosin II inhibitor blebbistatin (Bleb) or the Rho-kinase inhibitor Y-27632 (Y-27), 

which indirectly inhibits myosin IIA activity.  We and others have shown previously that 

this treatment stops F-actin flow in Jurkat T cells without depleting the network (Chapter 

2 and (Yi et al., 2012)).  As expected, treatment of Lifeact-GFP-transduced human 

primary T cells spreading on planar lipid bilayers with myosin II inhibitors alone had 

little effect on F-actin dynamics (Figures 3.6 A and B; Movie 3F), but cells treated with 

myosin II inhibitors together with Jas showed complete inhibition of actin dynamics 

(Figure 3.6 C; Movie 3F).  Using the same pharmacological conditions, we tested the 

effects on LFA-1 conformational change in T cells interacting with SEE-pulsed Raji B 

cells. In untreated conjugates, total labeling showed that LFA-1 was enriched at the IS 

where it was relatively uniformly distributed (Figures 3.7 A and B). To quantify this, 

labeling intensity was measured as detailed in Chapter 5, Materials and Methods.  In 

Figures 3.7 C–H, each data point represents the average value from 33-75 conjugates 

from one healthy donor; individual measurements from donor 2 (Figure 3.8) highlight the 

representative range in variability within experiment.  To quantify redistribution of total  
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Figure 3.6. Actin dynamics persist in the under myosin II inhibition alone but cease 

completely after abrogating F-actin turnover  

(A–C) Kymographs of F-actin dynamics generated from Movie 3F. In untreated cells (A) the 

peripheral accumulation of F-actin is very dynamic. F-actin dynamics seem unperturbed after 

pretreatments with Y-27632 (B).  Complete “freeze” of the F-actin flow is observed after acute 

addition of jasplakinolide (C).  
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LFA-1, TS2/4 labeling intensity was measured at the IS (Figure 3.7 C) and over the entire 

cell surface (data not shown).  The ratio of these two values showed that in untreated 

cells ~60% of total LFA-1 is present at the IS (Figure 3.7 F). Inhibition of myosin II 

contraction by treatment with either Bleb or Y-27 had no obvious effect on the 

distribution of LFA-1 (Figures 3.7 A and B) or the proportion of surface-expressed LFA-

1 at the IS (Figure 3.7 F). Unlike cells treated only with myosin II inhibitors, cells treated 

with inhibitor cocktails (Bleb + Jas or Y-27 + Jas) showed a dramatic depletion of LFA-1 

from the IS (Figures 3.7 A–C).  Much of this decrease was due to changes in the 

distribution of cell surface molecules, since cells treated with the inhibitor cocktail 

showed a 25–30% decrease in the proportion of cell surface LFA-1 localized at the cell-

cell contact (Figure 3.7 F).  Similar results were obtained in T cells spreading on 

stimulatory bilayers.  In that system, freezing the F-actin network resulted in an overall 

loss of LFA-1 from the synaptic region, with TS2/4 labeling intensity decreasing to the 

levels found in bilayers that lacked ICAM-1 (Figure 3.10 B). Here, too, no change in the 

distribution of total LFA-1 within the plane of the IS was observed (Figures 3.9 A and B). 

Taken together, these results indicate that F-actin flow continuously shuttles LFA-1 

toward the IS, thereby greatly increasing LFA-1 valency (see model in Figure 3.13 A).   

 

Myosin II contraction and F-actin flow regulate affinity maturation of LFA-1 at the IS 

We next asked whether in addition to regulating LFA-1 valency at the IS, the actin 

cytoskeletal network controls conformational changes associated with affinity 

maturation.  For this, conjugates were labeled with conformation-specific LFA-1  
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Figure 3.7. Centripetal flow of the actomyosin II network regulates valency and affinity 

of LFA-1 

(A) T cells from donor 2 were conjugated with SEE-pulsed Raji B cells (dashed outlines with 

asterisks) for 10 min. and then either left untreated or treated to inhibit myosin II contraction 

with Bleb or Y-27 for an additional 15 min. Some myosin II-inhibited conjugates were then 

treated with Jas for 5 min to arrest the actomyosin II network dynamics. Cells were then fixed 

and labeled with conformation-specific LFA-1 antibodies. Representative conjugates are 

shown. Scale bar, 5 µm. (B) Rendered IS images from Z stacks are shown en face. (C–E) The 

effects of drug treatments on normalized intensities of total (C), extended (D) and extended 

open (E) LFA-1 staining at the IS. Data from six independent human donors are shown; at 

least 33 conjugates were analyzed per condition for each donor. (F) The effects of drug 

treatments on maintenance of overall LFA-1 recruitment at the IS.  Individual donors are 

color-coded as in C. (G, H) The effects of drug treatments on the efficiency of maintenance of 

LFA-1 in extended (G) or extended open (H) conformations. Individual donors are color-

coded as in C.  *p<0.05, **p<0.01, ***p<0.001 
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Figure 3.8. Data from individual conjugates from a single donor in Figure 3.7 

(A–G) Fluorescence intensity values from cells of a single donor (Donor 2) in Figure 3.7. 

Note the representative range in variation between conjugates. Data are represented as mean 

within variation range. 
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antibodies and absolute signal intensities at the IS were measured and normalized to 

untreated control cells (Figures 3.7D and E).  In addition, to control for changes in levels  

of LFA-1 at the IS and focus analysis on conformational change, Kim127 and m24 

intensity values were normalized to TS2/4 intensity (Figures 3.7 G and H). As shown in 

Figure 3.7 D, treatment with myosin II inhibitors alone resulted in a decrease in the 

amount of extended LFA-1 at the IS, and a further decrease, when cells were treated with 

myosin II inhibitors in combination with Jas (Figures 3.7 A, B, and D).  However, 

normalization of Kim127 values to total LFA-1 at the IS revealed that there was no 

statistical difference in the proportion of IS-associated LFA-1 in the extended 

conformation after either treatment (Figure 3.7 G). Labeling with m24 also showed a 

modest decrease in active LFA-1 at the IS after inhibition of myosin II contraction and a 

profound diminution after the freeze of the F-actin network, reaching approximately 40% 

of the control values (Figure 3.7 E).  In contrast to the results obtained for the extended 

conformation, we found that the loss of m24 labeling was statistically significant, even 

after correction for changes in levels of total LFA-1 in the plane of the IS.  Inhibition of 

myosin II contraction alone resulted in a 20% decrease in the proportion of extended 

open LFA-1, while freezing the F-actin network resulted in a 42% decrease from control 

cells (Figure 3.7 H).  

The effects of inhibition of F-actin dynamics were verified in T cells responding to 

stimulatory planar bilayers. As in conjugates, we found that both the intermediate and 

high affinity epitopes decreased upon inhibition of F-actin flow (Figures 3.10 C and D), 

but when corrected for changes in total LFA-1 at the IS (Figure 2.10 B), we found no 

change in the proportion of extended LFA-1 at the IS (Figure 3.9 C).  We observed a 
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decrease in proportion of extended open LFA-1 with myosin II inhibition, and a further 

decrease upon total inhibition of F-actin flow (Figure 3.9 D).  On bilayers, freezing the F-

actin network decreased the amount of high affinity LFA-1 to the levels observed in the 

absence of ICAM-1 (Figures 3.9 D and 3.10 D).  Taken together, these data show that 

myosin II contraction and F-actin dynamics at the IS do not play an appreciable role in 

the maintenance of the intermediate form of LFA-1, but are indispensable for maintaining 

the extended open conformation of LFA-1.  

 

F-actin dynamics regulate the localization and distribution of extended open 

conformation LFA-1 

In addition to analyzing LFA-1 affinity modulation, we asked whether F-actin 

dynamics organize the radial distribution of LFA-1 activation intermediates.  As shown 

in Figure 3.9 A for individual cells and Figure 3.9 B for population averages (see Chapter 

5, Materials and Methods for details), treatment of T cells with the myosin II inhibitors 

alone had minimal effect on the distribution molecules in either the extended or the 

extended open conformations. In the experiment shown, Bleb induced an outward shift of 

the ring of active LFA-1, while Y-27 induced an inward shift; however these effects were 

modest and were not reproducible between multiple donors (data not shown).  In contrast, 

freezing the F-actin network led to a clear redistribution of the molecules remaining in 

the intermediate and high affinity conformations. Both intermediate and high affinity 

LFA-1 became randomly distributed across the IS, and the central clearance region was   
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Figure 3.9. F-actin dynamics regulates the localization and distribution of extended open 

conformation of LFA-1 

(A) CD4+ T cells were allowed to spread on stimulatory bilayers for 10 minutes and then 

either left untreated or treated to inhibit myosin II contraction with Bleb or Y-27 for additional 

15 minutes. Some myosin II-inhibited conjugates were then treated with jasplakinolide for 5 

min. to arrest flow of the actomyosin II network.  Cells were then fixed and labeled with 

conformation-specific LFA-1 antibodies.  Representative synapses were selected within 0.5 

SD of the mean. Scale bar, 5 µm. (B) Average fluorescence intensity distributions for cell 

populations (n = 20–58 cells). (C, D) Total intensities of β2 extended conformation (C) or β2 

extended open conformation (D) staining at the IS were normalized to total αL staining in the 

same area. All values were normalized to the mean of the untreated T cells spreading on 

ICAM-1 and OKT3. Data are represented as mean within the distribution range. Statistical 

significance relative to untreated T cells spreading on OKT3 and ICAM-1, *p<0.05, 

**p<0.01, ***p<0.001. (E and F) Effects of drug treatments on the distribution of the 

extended conformation of LFA-1.  Similar results are obtained using either Bleb (E) or Y-27 

(F) to inhibit myosin II contraction. (G and H) Effects of drug treatments on the distribution 

of the extended open conformation of LFA-1.  Similar results are obtained using either Bleb 

(G) or Y-27 (H) to inhibit myosin II contraction. 
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lost (Figures 3.9 A and 3.9 B, rows 4 and 6).  In some cells treated with Bleb and Jas, 

small puncta of high affinity LFA-1 were observed at the cell periphery, but Y-27 + Jas 

treatment did not have this effect.  Quantitative analysis of radial intensity profiles 

showed that the most dramatic change is the near complete loss of the peak of extended 

open conformation relative to total LFA-1 under conditions that abrogate F-actin flow 

(Figures 3.9 E–H). Taken together, these data demonstrate that the concentric pattern of 

LFA-1 activation intermediates is maintained by continuous F-actin centripetal flow.  

 

Co-ligation of 1 integrins slows the F-actin network and dampens LFA-1 activation 

Since pharmacological approaches always carry the risk of off-target artifacts, we 

sought a more physiological context, in which T cell actin flow can be perturbed.  In 

Jurkat T cells, it has been previously shown that co-engagement of VLA-4 with TCR 

slows actin flow at the IS (Nguyen et al., 2008).  We, therefore, asked whether co-ligation 

of VLA-4 has the same effect in primary T cells responding to TCR stimuli in the context 

  

Figure 3.10. Myosin IIA contraction and F-actin flow maintain high affinity 

conformation of LFA-1 and its localization at the IS  

(A) Synapse area of CD4+ T cells after spreading on the stimulatory bilayers for a total of 30 

minutes and subjected to the indicated conditions. Data are represented as meanSD.  (B and 

C) Fluorescence intensities from individual synapses presented in figure 5. Statistical 

significance relative to untreated T cells spreading on ICAM-1 and OKT3, *p<0.05, 

**p<0.01, ***p<0.001. (E and F) Effects of drug treatments on the distribution of the 

extended conformation of LFA-1.  Similar results are obtained using either blebbistatin (E) or 

Y-27632 (F). (G and H) Effects of drug treatments on the distribution of the extended open 

conformation of LFA-1.  Similar results are obtained using either blebbistatin (G) or Y-27632 

(H). 
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of LFA-1 engagement.  T cells spreading on coverslips coated with a combination of 

OKT3, ICAM-1 and VCAM-1 spread to about the same extent as cells spreading on 

OKT3 and ICAM-1 alone (data not shown). As shown in Figures 3.11 A–C and Movie 

3G, in T cells stimulated with both integrin ligands F-actin flow rates reached 6035 

nm/s (meanSD) at the periphery of the IS, with a 6-fold decrease in rate  near the IS 

center. Within the outer 40% of the IS radius, where most F-actin dynamics occur, the 

flow rate was significantly lower than that observed in cells spreading on OKT3 and 

ICAM-1 (Figure 3.12). Correlating with this decrease in flow rate, VCAM-1 co-ligation 

resulted in a 34% decrease in the labeling intensity for extended open LFA-1 at the IS 

(Figure 3.11 D).  Most of this decrease was due to changes in affinity modulation; after 

normalization to total LFA-1 levels, the proportion of LFA-1 molecules in the extended 

open conformation was reduced by 20%.  Since VLA-4 and LFA-1 use many common 

adapters to link the  chain to the actin cytoskeleton, we considered the possibility that 

this effect reflects competition between 1 and 2 integrins for these proteins.  However, 

binding of these adapters is required to reach the extended conformation of integrins and, 

since there was no loss of LFA-1 in the extended conformation, we do not believe that 

adapter molecules were limiting in this context of stimulation. Indeed, the proportion of 

LFA-1 molecules in the extended conformation increased significantly upon 1 integrin 

engagement (Figure 3.11 D).  Thus, we conclude that 1-integrin engagement, like 

pharmacological treatment, modulates 2-integrin affinity maturation by slowing 

centripetal flow of the F-actin network.  This result also demonstrates that the F-actin 

network can serve as a mechanical intermediary between distinct integrins, and possibly 

between integrins and other cell surface receptors.  
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Figure 3.11. Co-ligation of VLA-4 slows F-actin flow and dampens LFA-1 activation 

(A) Blasted T cells expressing Lifeact-EGFP were allowed to interact with the stimulatory 

coverslips, while being imaged. Scale bar, 10 µm. (B) Kymograph of F-actin dynamics 

generated along the dashed line in A. Arrowhead indicates a mobile fiducial mark in the F-

actin network. (C) Kymograph analysis of F-actin dynamics (817 measurements from 11 

cells) superimposed with the normalized radial distribution of F-actin in the same cells. Data 

are represented as meanSD. (D) T cells spreading on OKT3+ICAM-1 (– VCAM-1) or on 

OKT3+ICAM-1+VCAM-1 (+VCAM-1) coated coverglasses were stained with the indicated 

antibodies and analyzed for fluorescence intensity in the IS plane.  Results are representative 

of three independent experiments. Data are represented as meanSD, ***p<0.001. 
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IV. Discussion 

Our results establish that LFA-1 conformational intermediates are differentially 

distributed at the T-cell IS, and that this pattern, along with the adoption of the high 

affinity conformation, is regulated by actomyosin network flow.  These findings are  

consistent with a mechanotransduction model of LFA-1 affinity maturation, in which 

force derived from cytoskeletal dynamics enhances LFA-1 affinity (see Figure 3.13 B).   

In keeping with previous reports (Monks et al., 1998), we found that total LFA-1 was 

present across the IS, though sometimes with a minor diminution at the center of the 

interface.  Intermediate affinity LFA-1 in the extended conformation was concentrated in 

the outermost (pSMAC) region of the IS, whereas high affinity LFA-1 in the extended-

open conformation was concentrated more centrally, in a region just outside the cSMAC. 

This pattern suggests that in T cell–APC conjugates, adhesion is strongest towards the 

center of the IS where LFA-1 is in its high affinity form, and weaker in the periphery 

where LFA-1 is present only in the intermediate and low affinity forms.   

We find a strict requirement for F-actin flow in the maintenance of LFA-1 

organization and affinity regulation at the IS.  Since this requirement was observed even 

in T cells responding to artificial stimulatory surfaces, our data indicate that cell-intrinsic 

forces are enough to produce large scale separation of the integrin α and β tails, thereby 

producing the conformational changes associated with affinity maturation (Fig.7) 

(Springer and Dustin, 2012).  Furthermore, since we see an almost complete loss of 

ligand dependent LFA-1 activation upon inhibition of actin dynamics, our data suggest 

that the high affinity, ligand bound state requires ongoing tension.  This behavior is   
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Figure 3.12. Comparative analysis of F-actin dynamics of T cells responding to various 

combinations of stimulatory and adhesive ligands 

Radial distributions of F-actin flow rates from Figures 3C, F and Figure 6C were 

superimposed for comparison. Statistical analysis was performed relative to data from cells 

spreading on OKT3 + ICAM-1. n represents the number of cells imaged per condition. Data 

are represented as meanSEM.  
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consistent with known properties of catch-bond molecular interactions (Kong et al., 

2009). While ligand-induced outside–in signaling enhances LFA-1 activation, it is 

insufficient to maintain activation in the absence of force. Force is therefore critical not 

just for the initial priming of LFA-1 for ligand binding, but also for the subsequent 

maintenance of the high affinity, ligand-bound form.  

We show that myosin II function is not necessary for recruitment of LFA-1 to the IS 

or for long-term maintenance of organizational patterns of the activated integrin pool.  

Myosin II contraction also does not affect the intermediate affinity pool of LFA-1; 

however, it promotes adoption of the high affinity extended open conformation.  This 

effect is independent of changes in actin flow rates, since this parameter is unaltered in 

cells treated with myosin II inhibitors (see Chapter 2).  The role of myosin IIA 

contraction at the IS remains unclear (Hammer and Burkhardt, 2013).  However, myosin 

IIA interacts with LFA-1 during T cell migration, and provides contractile forces required 

to break LFA-1–ICAM-1 bonds in the trailing end of a migrating T cell (Morin et al., 

2008).  Additionally, myosin IIA is required for focusing of ICAM-1 microclusters into 

an annular pattern similar to the pattern we observe for high affinity LFA-1 (Kumari et 

al., 2012; Yi et al., 2012).  This suggests that myosin IIA can exert a direct force on LFA-

1, triggering hybrid domain swing-out and affinity maturation of LFA-1 at the IS.  This 

reasoning is in line with evidence that myosin IIA maintains T cell–APC conjugate 

formation and stability (Ilani et al., 2009) .  

Interestingly, although high affinity LFA-1 conformation depends on F-actin 

dynamics, we did not observe a direct spatial correlation between LFA-1 activation and 

F-actin density or flow rate.  A likely explanation for this is that nascent LFA-1–ICAM-1 
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microclusters originate in the F-actin rich periphery and undergo flow-dependent 

centralization and compaction (Kaizuka et al., 2007).  High affinity LFA-1 is more tightly 

linked to the actin cytoskeleton than low affinity LFA-1(Cairo et al., 2006).  Thus, 

centripetal actin flow would drive high affinity LFA-1 further toward the IS center 

(Hartman et al., 2009).  This mechanism requires ICAM-1 to be mobile, and is supported 

by the fact that the ring of high affinity LFA-1 molecules is distributed more peripherally 

in T cells responding to coverglasses coated with immobilized ligand, and more centrally 

in cells responding to bilayers or APCs.    

The relative contribution of valency and affinity of LFA-1 in the formation and 

maintenance of T cell–APC contacts has been a subject of ongoing debate (Bazzoni and 

Hemler, 1998; Carman and Springer, 2003; Kim et al., 2004).  We show here that T cell 

actin flow drives both aspects of avidity modulation.  While flow is required to maintain 

the high affinity conformation of LFA-1 independently of changes in valency, it also 

maintains the accumulation of LFA-1 of all affinities at the synapse (Figure 3.13).  If the 

total amount of high affinity form of LFA-1 at the IS represents the total avidity of the 

system, we observed a 60% reduction following inhibition of actin dynamics.  

Normalization to total LFA-1 at the IS reveals that changes in affinity account for 70% of 

this loss, while valency modulation accounts for the other 30%.  Thus, while actin flow 

regulates both valency and affinity, the primary effector of firm adhesion is likely to be 

the regulation of affinity. 
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Figure 3.13. Model of avidity regulation of LFA-1 at the IS 

(A) Ongoing F-actin flow (left) in T cells responding to polarized TCR stimuli actively drives 

accumulation of LFA-1 at the cell-cell interface. Loss of F-actin dynamics (right) abrogates 

active recruitment of LFA-1 to the IS and instead leads to passive diffusion of LFA-1 away 

from the contact site. (B) Inactive LFA-1 exists in a bent conformation (1) on the T-cell 

surface. Inside-out signaling events downstream of TCR engagement lead to recruitment of 

talin and F-actin to the integrin β tail.  This allows for the segregation of the α and β tails, and 

the “switch-blade” unbending of LFA-1 (2). Subsequent application of F-actin-generated 

tensile force along the talin-LFA-1 interaction facilitates a greater separation of the integrin 

chains, resulting in swing-out of the hybrid domain and induction of the open headpiece (high 

affinity) form of LFA-1 (3). The open αI domain allows for binding of ICAM-1, which 

through induced fit and resistance of the facilitating force stabilizes LFA-1 activation (4). 

Alternatively, LFA-1 affinity maturation can proceed through an ICAM-1-bound, intermediate 

affinity conformation (3’), in which ICAM-1 interacts first with the extended conformation 

and induces the open head domain prior to application of force; force then stabilizes this 

interaction.   
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It is interesting to note that engagement of different integrins by immobilized ligands 

has distinct effects on F-actin dynamics at the IS.  In Jurkat T cells, VLA-4 ligation of 

VCAM-1 has been shown to decelerate F-actin flow nearly to a halt (Nguyen et al., 

2008).  We have reproduced this finding, but did not see a similar effect in Jurkat T cells 

responding to ICAM-1 (data not shown). In primary T cells, we find that engagement of 

LFA-1 induces a very modest slowing of the actin network.  However, we observed 

significant slowing in primary T cells responding to a combination of VLA-4 and LFA-1 

ligands.  The reasons for this difference are unclear; one plausible idea is that the β1 

chain provides tight anchorage to the actin cytoskeleton, while the 2 chain allows 

slippage and continued actin flow.  This could be achieved through differential 

interactions with actin-binding adapter molecules.  If slippage of LFA-1 – actin 

interactions is occurring, the transient interactions must be sufficient to maintain LFA-1 

conformational change.  Consistent with the observed slowing of the actin network, we 

observed diminished LFA-1 activation with the addition of VCAM-1.  This has important 

functional implications, since upregulation of VLA-4 during T cell activation could not 

only enhance binding to VCAM-1, but also effectively down-regulate LFA-1 dependent 

interactions.  

Our data suggest that force provided by the T cell F-actin network is critical for 

integrin affinity maturation and maintenance of catch-bond interactions between LFA-1 

and ICAM-1.  While loss of LFA-1 affinity is likely to be a direct effect of loss of force 

following inhibition of F-actin dynamics, it is possible that other molecules involved in 

LFA-1 signaling are also affected by cytoskeletal immobilization. In fact, talin and 

vinculin, two cytoskeletal proteins involved in regulation of integrin activation and 
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adhesive strengthening, depend on force transmission for proper function (del Rio et al., 

2009). Talin, as previously mentioned, is required for the initial unbending of inactive 

integrins, thus producing the intermediate affinity conformation. Subsequently, talin 

functions as one of the key molecules linking the β chain to the actin cytoskeleton, 

thereby transducing force between the cytoskeleton and the integrin.  Talin itself is 

regulated by mechanotransduction, and can stretch by up to 160 nm under tension (del 

Rio et al., 2009). Stretching of talin is dependent on myosin II contraction and is transient 

in nature, with multiple stretching and relaxation events occurring over time (Margadant 

et al., 2011). Unfolding of the rod domain in talin reveals 11 vinculin binding sites; 

vinculin in turn stabilizes talin stretching in a feedback loop and also binds to F-actin, 

reinforcing the connection to the cytoskeleton (Ciobanasu et al., 2013; Hirata et al., 2014; 

Margadant et al., 2011). Vinculin interaction with talin is reversible and mechano-

sensitive, thus, loss of tension would most likely result in talin dissociation from the F-

actin network. While knowledge about talin and vinculin mechano-sensitivity comes 

from research done on focal adhesions in other cell types, it is known that vinculin is 

delivered to the T cell IS in a WAVE2-dependent manner, and is required for talin 

recruitment and conjugate stability, but not for recruitment of LFA-1 (Nolz et al., 2007).  

These observations indicate that vinculin stabilization of the interaction between F-actin 

and talin specifically enhances LFA-1 affinity maturation at the IS.  

Synapse formation is only a single step in an immune response. Prior to antigen-

dependent stimulation, T cells continuously migrate in the lymph nodes searching for 

ligands. Once cognate peptides are found, T cells stop and form a stable conjugate with 

an APC to receive information about intruding pathogens. Once appropriate stimulation 
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has been achieved, T cells release the APCs and regain migratory characteristics. The 

regulation of “stop and go” signals is not entirely understood, and how T cells can 

disengage from the firm attachments with APCs is currently unknown.  Our findings 

suggest that LFA-1 would naturally disengage ICAM-1 on APCs if the symmetric F-actin 

flow dissipates. Over time, if signals from the TCR diminish, either through loss of 

antigen or increase in negative regulators, such as CTLA-4, F-actin flow would also 

diminish. This would reduce the amount of force on the integrin bonds and cause 

relaxation of the contact. Such a model postulates a self-regulated timing mechanism for 

proper T cell activation.   

Besides their function in adhesion, integrins are also potent costimulatory molecules. 

The pathways downstream of integrin activation are termed “outside-in” signaling. Naïve 

T cells require activation of LFA-1 through “inside-out” signaling downstream of TCR, 

which in turn depends on adhesion downstream of integrins. This “catch 22” scenario has 

made “outside-in” signaling notoriously hard to study. However, a few studies have 

successfully separated integrin outside-in signaling from integrin mediated adhesion.  

LFA-1 engagement has been shown to lead to SLP-76 microcluster formation and T cell 

polarization in an ADAP-dependent fashion (Baker et al., 2009; Wang et al., 2009).  T 

cells lacking β2 chain were unable to respond potently to TCR stimulation even in the 

context of CD28 costimulation, resulting in reduced ERK phosphorylation and 

inflammatory cytokine production at later time points (Li et al., 2009; Varga et al., 2010).  

Importantly, it has been shown that “outside-in” signaling in the integrin αIIbβ3 is 

completely dependent on the segregation of α and β tails and does not occur in the 

extended confirmation (Zhu et al., 2007).  If LFA-1 functions similarly to αIIbβ3 in this 
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respect, it is likely that maintenance of the extended open conformation of LFA-1 

represents the signaling competent pool at the IS.  Therefore, F-actin dynamics may not 

only regulate “inside–out” mediated adhesion, but also affect “outside–in” side of 

signaling by LFA-1.  

Given the critical role of cytoskeletal dynamics in maintaining the high affinity 

conformation of LFA-1, and the effects of ligand mobility on the extent of integrin 

centralization, it is likely that ICAM-1 mobility on the surface of APCs has a role in 

modulating the extent of LFA-1 activation. Highly mobile molecules would provide little 

resistance to the T cell cytoskeletal flow and thus be less effective in inducing high 

affinity state of LFA-1. In agreement with this, soluble ICAM-1 does not induce the 

extended open integrin conformation. Furthermore, immobilized ICAM-1 was able to 

induce LFA-1 activation when TCR was stimulated with either soluble or immobile 

ligands (Feigelson et al., 2010). It is also known that Natural Killer cells are highly to the 

mobility of ICAM-1 on target surfaces (Gross et al., 2010).  When ICAM-1 mobility was 

increased by depleting F-actin in target cells, conjugates with NK cells became unstable 

and lytic granule polarization was diminished. Conversely, overexpression of actin-

binding protein ezrin to anchor ICAM-1 to the cytoskeleton strengthened conjugates and 

enhanced lytic granule polarization. This evidence highlights modulation of ligand 

mobility as a potential way of regulating T-cell–APC interactions.  

Overall, our results demonstrate the importance of F-actin dynamics at the IS in the 

mechanotransduction of intracellular signaling events leading LFA-1 activation. 

Interestingly, integrins may not be the only mechano-sensitive molecules on T cell 

surface, as recent findings implicate the TCR in mechanotransduction as well (Kim et al., 
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2009). The emerging paradigm is that of a clock mechanism, whereby the F-actin flow 

sets the spatio-temporal parameters of signaling cascades at the IS, which ultimately 

result in effective T cell activation. 
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CHAPTER 4: DISCUSSION 

 

Summary 

Cytoskeletal remodeling is a crucial aspect in regulation of numerous T cell 

functions. Early studies highlighted the degree of importance of actin filaments in 

signaling events that take place at the IS. However, those studies were inconclusive 

regarding the exact role of the filamentous network. Recent approaches aim to investigate 

whether F-actin-generated forces contribute to the molecular rearrangements in early T 

cell activation. In the present work, we demonstrate that propagation of signaling at the 

level of Ca
2+

 mobilization and integrin triggering is dependent upon ongoing F-actin 

dynamics at the IS.   

By using a combination of inhibitors that perturb F-actin turnover and myosin IIA 

activity, we have established that the retrograde flow of the actomyosin network is a 

consequence of actin polymerization, rather than myosin IIA contraction. Consistent with 

previous reports, we showed that myosin IIA accumulates at the IS upon TCR 

engagement and associates with F-actin into tight bundles in the lamellum. Under 

conditions that stabilize F-actin, myosin IIA is able to exert tension of the network, but 

this tension is dispensable for the overall centripetal flow when F-actin polymerization 

proceeds normally. Although the exact role of myosin IIA in T cell activation is disputed, 

we found that myosin IIA contraction limits cell spreading and provides symmetrical 

organization of the interface. We showed that F-actin remodeling sustains Ca
2+

 

mobilization by managing TCR-proximal signaling events. In our hands, the activation of 

Zap70 kinase was not altered by inhibition of F-actin dynamics, while PLC1 
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phosphorylation was significantly diminished in the absence of cytoskeletal retrograde 

flow.  

We also researched the role of F-actin-generated flow in triggering activation of the 

β2 integrin LFA-1, which is an essential mediator in T cell adhesion and co-stimulation. 

Careful analysis of the localization of LFA-1 conformational intermediates revealed that 

the high-affinity conformation of LFA-1 is enriched in the inner zone of the pSMAC. The 

activated LFA-1 was largely excluded from the cSMAC and the dSMAC regions.  The 

recruitment of LFA-1 to the IS, as well as induction of the high-affinity state largely 

depends on F-actin retrograde flow and partially on myosin IIA contraction. Unlike the 

β1 integrin VLA-4, which was previously shown to slow down F-actin retrograde flow 

(Nguyen et a., 2008), engagement of LFA-1 does not significantly retard actin 

centralization across the IS, although partial deceleration was observed. Additionally, co-

engagement of VLA-4 attenuates LFA-1 activation most likely through modulation of F-

actin dynamics.  The above results cumulatively emphasize the contribution of persistent 

F-actin remodeling in the organization of signaling dynamics and integrin triggering 

during T cell activation. In this chapter, I discuss the significance of these findings and 

provide insight into future directions for research.  

 

The architecture of actomyosin and microtubule networks at the IS 

In Chapter 2, I carefully investigated the organization of cytoskeletal networks at the 

IS. Live-cell analysis of fluorescently labeled molecules and fixed-cell 

immunofluorescence imaging revealed that actin filaments polymerize at the periphery of 

the IS and move centripetally. This peripheral accumulation of branched actin filaments 
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defines the lamellipodium , and is generated by the Arp2/3 complex in response to 

activation by WAVE2, HS1 and WASp (Gomez et al., 2007; Gomez et al., 2006; Nolz et 

al., 2006). Myosin IIA localizes behind the actin-rich ring and colocalizes with low levels 

of bundled F-actin. This zone is analogous to the lamellum in fibroblasts and keratocytes 

and is regulated by ROCK activity and myosin IIA contraction (Cai et al., 2006; Yam et 

al., 2007). Finally, the cell body (CB) region is mainly depleted of actomyosin network 

and serves as the site of MTOC docking. Microtubules accumulate throughout the CB 

and LM zones but they are sparse, albeit not absent, in the LP, mainly because ongoing 

F-actin flow pushes them out of the region (Waterman-Storer and Salmon, 1997). The 

cooperation between these two cytoskeletal networks facilitates efficient transport of 

signaling MCs, secretory vesicles and cellular organelles (Figure 4.1). The cyto-

architecture of primary T cell bears resemblance with that of Jurkat T cells; however, the 

boundaries between the regions are less clear and there is significant accumulation of 

diffuse F-actin in the CB, which may reflect the extent of activation of NPFs in these 

cells.  

I found that F-actin flow slows down inwardly along the radius of the IS. The 

deceleration has also been observed by other labs (Yi et al., 2012; Yu et al., 2010a) as 

well as in other cell types (Cai et al., 2006; Yam et al., 2007). While there are differences 

in the cytoskeletal organization between Jurkat cells and primary T cells, we report that 

their actin flow rates are comparable. Peripheral F-actin moves at an average of 95±28 

nm/s in Jurkat cells, while in blasted primary T cells the flow averages 8347 nm/s with 

gradual centripetal deceleration in both cell types. Indeed, the deceleration behavior may 

be a ubiquitous paradigm in nature, as suggested by mathematical   
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Figure 4.1. Cytoskeleton-dependent organization of signaling machinery at the T cell 

immunological synapse 

A T lymphocyte interacting with an antigen presenting cell develops an immunological 

synapse, where T cell receptors and associated proteins assemble into membrane-bound 

microclusters that translocate continuously towards the center of the interface. F-actin 

retrograde flow initiates microcluster formation and movement in the periphery (red arrows), 

while microtubule-dependent transport by cytoplasmic dynein drives microcluster coalescence 

in the center of the immunological synapse (green arrows). The ongoing flow of F-actin also 

pushes the MTOC close to the membrane to facilitate the transport of MCs along 

microtubules. The delivery of signaling molecules to the central zone (red gradient) is 

associated with extinction of signaling. 

Figure modified from:  

Babich A and Burkhardt JK, Lymphocyte signaling converges on microtubules.Immunity. 

June 2011; Volume 34, pp. 825-827. 
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modeling (Zhu et al., 2010). Additionally, our finding that F-actin flow rates are higher 

on bilayers than on glass (Figure 3.4) indicate that ligand mobility can modulate F-actin 

flow, as has been shown for T cells spreading on mixed-mobility surfaces (Yu et al., 

2010a). 

Recently, a controversy has been raised regarding the nature of the actomyosin 

network at the IS. The issue is whether the network is a single unit or a combination of 

two independent networks. Yi et al. (2012) have proposed that actomyosin-rich LM 

originates downstream of formins, which polymerize linear actin filaments, while the 

extensive branched F-actin in LP, nucleated by Arp2/3 complex, presents a separate 

population of filaments. Although we agree that there is significant difference between 

LP and LM regions in terms of architecture and dynamics, we do not believe that those 

differences signify two independent networks. Indeed, closer examination reveals that 

GFP-actin speckles transverse the two zones as they move along the radius. Thus, we 

propose that the whole network is polymerized downstream of Arp2/3, and that branched 

actin filaments become progressively more parallel as more and more myosin IIA 

accumulates and bundles them. This is consistent with reports that formin activity is 

largely dispensable for actin polymerization at the IS (Gomez et al., 2007). Future 

experiments should be directed to visualize the F-actin cytoskeleton at high resolution 

using electron microscopy and super-resolution techniques such as PALM and STEDM. 

 

The function (or lack thereof) of myosin IIA at the IS 

In the past decade, more than half a dozen papers have addressed the function of 

myosin IIA at the IS. Surprisingly, there is a great range of conclusions regarding the 
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importance of the motor in T cell activation. Early studies from the Krummel lab 

demonstrated that myosin IIA is dispensable for conjugate formation and molecular 

recruitment to the IS (Jacobelli et al., 2004). Subsequent work by Ilani et al. (2009) 

revealed that myosin II was essential for maintenance of T cell–APC contact and MC 

dynamics at the IS. These disparate findings have incited a number of follow-up studies, 

which attempted to iron out the inconsistencies. Yi et al. (2012) investigated IS formation 

in Jurkat T cells spreading on stimulatory bilayers. Although they did not find myosin II 

function as essential in F-actin retrograde flow, they did demonstrate that F-actin and 

TCR MCs move more slowly and haphazardly in T cells with inhibited myosin II 

activity. A parallel study by Yu et al. (2012) showed that treatment of cells with MLCK 

inhibitor ML-7 resulted in loss of Ca
2+

 mobilization and phospho-Zap70. In addition, 

(Kumari et al., 2012) showed that myosin IIA knockdown blunted Ca
2+

 flux and 

prevented of cSMAC coalescence. The disagreements about the extent of myosin IIA 

involvement in the cytoskeletal remodeling at the IS may reflect the various contexts of 

stimulation of T cells, however, that remains to be demonstrated. 

The investigation in Chapter 2 also addresses the role of myosin IIA in T cell 

signaling. Using inhibitors of myosin II function (blebbistatin or Y-27632) or genetic 

intervention (Myh9 siRNA), we showed that F-actin flow is not perturbed in cells that 

lack myosin IIA contraction. Furthermore, stabilization of F-actin by jasplakinolide 

completely abrogates the flow in myosin IIA-inhibited cells, unlike in uninhibited cells, 

where jasplakinolide addition results in a collapse of the actomyosin ring to the center. T 

cells lacking myosin IIA function also show normal Ca
2+

 mobilization response and 

phosphorylation of TCR-proximal molecules, such as Zap70, SLP-76 and PLC1. In our 
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hands, lack of myosin IIA function in retrograde flow at the IS cannot be attributed to cell 

type or stimulatory conditions as we have recapitulated our findings in primary cells and 

on planar lipid bilayers. We do observe increased cell spreading and asymmetric 

oscillations in the actomyosin network in the absence of myosin II contraction, which 

suggests that myosin II exerts some influence on the network, but in most cases this 

influence is not necessary to sustain dynamics and signaling at the IS. Moreover, we have 

successfully used myosin II inhibitors to investigate the role of myosin II function in 

LFA-1 integrin activation (Chapter 3). Here, too, we see at best a blunting of LFA-1 

activation upon myosin II inhibition, with the main role in the process falling on actin 

polymerization-derived dynamics.   

The fact that we see actomyosin collapse to the center of the IS upon F-actin 

stabilization indicates that under some conditions myosin II is able to exert force on the 

network. It is important to keep in mind that myosin IIA is not an independent contributor 

to the retrograde flow, rather the motor moves along a continually moving track, 

analogous to a runner on a treadmill. Thus, the extent of myosin II contraction may be 

overshadowed by robust actin polymerization at the interface. Indeed, T cells have 

exceptionally fast retrograde flow, analogous to that in keratocytes (40-100 nm/s), and an 

order of magnitude higher than that in some epithelial cells (5-8 nm/s) (Ponti et al., 

2004). This may reflect hyper-activation of machinery that drives network turnover at the 

IS, i.e. cofilin, profiling, HS1 and Arp2/3 among others. On the other hand, stabilization 

of F-actin filaments may exaggerate myosin IIA contraction by straining the whole 

network. In agreement with this notion, our unpublished observations indicate that 
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treatment with Calyculin A boosts myosin IIA contraction and causes a rapid collapse of 

the actomyosin network towards the center of the IS. 

Studies in vitro and in keratocytes demonstrate that myosin II motor activity can 

sever actin filaments and thus contribute to retrograde flow (Haviv et al., 2008; Wilson et 

al., 2010). This is not the likely function in T cells as we do not see the accumulation of 

actin filaments in the center of the IS when myosin IIA function is abrogated. The 

severing activity may be unique to keratocytes because of their peculiar crescent shape. 

In these cells, myosin IIA accumulates in two foci behind the cell body, in zones of 

highest torsion in the network. However, T cells do not have such privileged sites of 

network disassembly and myosin IIA filaments are not positioned to tear the network 

apart. The apparent lack of myosin II contribution in retrograde flow or filament 

disassembly does not rule out its function in the organization of IS symmetry and 

spreading. Myosin II can cross-link anti-parallel filaments and assemble them into a 

coherent network that would function as a synchronous unit. This bundling activity 

would enable the cells to “feel” local fluctuations and minimize symmetry-breaking. In 

support of this idea, the Dustin lab reported that ablation of myosin IIA increases the 

percentage of cells that spontaneously initiate random migration of the stimulatory 

bilayers (Kumari et al., 2012). 

 

What role do F-actin dynamics play in T cell signaling? 

The early models of T cell activation concentrated on the spatial distribution of 

molecular complexes but failed to explain the temporal progression of signaling (Grakoui 

et al., 1999). The simplistic understanding was that the accumulation of TCR in the 
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cSMAC would lead to efficient signaling. However, subsequent research has pointed out 

that early signaling begins before SMACs take shape (Lee et al., 2002). The modified 

models began to take the dynamic nature of the IS into account and postulated that active 

cytoskeletal flow contributes to molecular rearrangements required for proper signaling 

(Yokosuka et al., 2010). The data in Chapter 2 further solidify the notion that mere 

positioning of signaling complexes along the radius of the IS does not determine their 

signal potential. While peripheral retention of MCs augments signaling in the presence of 

F-actin retrograde flow (Mossman et al., 2005; Nguyen et al., 2008), retention of MCs in 

the absence of F-actin dynamics is insufficient to enhance activation. Peripheral 

localization of MCs may be necessary for signaling because machinery that determines 

signaling output is most efficient in the periphery of the IS. Once the machinery is shut 

down, however, the localization becomes irrelevant. In agreement with this explanation, 

we show in Chapter 3 that upon immobilization of F-actin flow, the remaining activated 

LFA-1 loses highly organized peripheral localization and becomes randomly distributed 

at the IS. 

Varma et al. (2006) showed that the MCs that persist upon the depletion of F-actin are 

not sufficient to sustain signaling, since Ca
2+

 was reduced to baseline levels within 

minutes of Latrunculin A treatment.  Consistent with this observation, we reported that 

Rho kinase inhibition (with Y-27) to inhibit myosin II activity and actin stabilization 

(with Jas) in T cells resulted in complete F-actin immobilization with a concomitant drop 

in intracellular Ca
2+

 levels (Chapter 2). In addition to immobilizing the F-actin network, 

this pharmacological manipulation inhibited new MC formation and immobilized 

existing MCs.  Thus, two interpretations are possible: either ongoing actin-dependent 
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assembly of new MCs or application of actin-dependent mechanical force on existing 

MCs is needed to sustain Ca
2+

 signaling. While our original data implied that cytoskeletal 

forces and/or dynamic scaffold is required for signaling and nucleation of MCs, 

subsequent TIRF imaging of the “frozen” network revealed that F-actin filaments are 

lifted away from the membrane – something that could not be readily addressed by 

confocal microscopy. This novel finding leaves room for the possibility that a static 

scaffold may be sufficient for nucleation of de novo MCs, but upon F-actin 

immobilization the scaffold is physically displaced from the PM, creating a gap, which 

precludes signaling. Thus it is unclear whether actin polymerization sustains Ca
2+

 

mobilization downstream of TCR by generating forces on the signaling molecules or by 

maintaining the F-actin scaffold in close proximity to the PM. While these two 

possibilities would be technically challenging to tease apart, it is clear that the existence 

of a static actin scaffold is insufficient to support Ca
2+

 signaling.  Rather, a dynamic actin 

network is needed, reflecting a requirement either for continued actin polymerization or 

for centripetal flow of the actomyosin II network. Currently, we favor the need of direct 

forces on the signaling molecules.  

Assuming that the cytoskeleton is capable of exerting direct forces on the signaling 

machinery at the IS, there are two plausible explanations for the data. First, force, which 

is a direct consequence of network remodeling, could propagate signaling. Force may be 

necessary to activate the TCR itself and/or some of its downstream effectors and also 

induce high-affinity state of LFA-1. Loss of F-actin dynamics would consequently relax 

the tension at the IS; conversely, engagement of receptors by immobilized ligands would 

increase the tension. There is support for this idea, as recent studies implicate force in 
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TCR and integrin signaling (Kim et al., 2009; Kong et al., 2009; Li et al., 2010). Current 

thinking is that actin flow induces conformational changes in receptors exposing moieties 

required for signaling (discussed below). Interestingly, we found that immobilization of 

the F-actin network did not affect tyrosine phosphorylation of Zap70 or SLP-76, 

suggesting that at least in Jurkat cells this phenomenon does not stem from effects on the 

TCR per se; whether this is true in primary T cells remains to be determined. However, 

we did find that PLC1 phosphorylation was diminished.  This finding is in agreement 

with our studies on HS1-deficient T cells, where defects in lamellipodial actin and MC 

dynamics correlated with diminished association of PLC1 with the insoluble 

cytoskeletal fraction and unstable recruitment of pPLC1 to the IS (Carrizosa et al., 

2009), see also (Patsoukis et al., 2009). Given that the active, phosphorylated pool of 

PLC1 preferentially associates with the cytoskeleton (Carrizosa et al., 2009; Patsoukis et 

al., 2009), it is interesting to speculate that PLC1 is a relatively direct point of 

intersection between the T cell cytoskeleton and the signaling cascade leading to ER store 

release. 

An alternative explanation is that sustained signaling could require ongoing MC 

biogenesis. While many phosphorylation events have been correlated with enhanced 

signaling, it is not clear which events are causally linked to T cell activation. It is possible 

that only nascent MCs are capable of relevant signaling (e.g. production of IP3 and 

DAG), in which case, the phosphorylation observed in the mature MCs may be a by-

product of transient initial signaling. This model is supported by evidence that F-actin 

depletion blocks MC formation without diffusing mature MCs, yet signaling is abruptly 

lost (Campi et al., 2005; Varma et al., 2006). Similarly, interruption of TCR-pMHC 
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interactions prevents MC formation and induces loss of intracellular Ca
2+

 without 

affecting MC centralization (Varma et al., 2006).  

The above-mentioned models are not mutually exclusive and could be mechanically 

linked. The assembly of MCs in the presence of a flowing cytoskeleton suggests that the 

cytoskeleton can provide a transient scaffold, a conveyer belt of sorts, to deliver MC 

components to the PM. Actin-rich sites nucleate complexes which mature with continual 

delivery of additional molecules until MCs become auto-stabilized. The simultaneous 

interaction with the cytoskeleton and extracellular ligands would create tension within 

MCs and induce conformational changes in interacting molecules. The tension would be 

maximal immediately prior to initiation of MC movement. If this is indeed the case, then 

one would expect that ligand mobility and clustering are important parameters that 

regulate the extent of T cell activation. Additionally, clutch molecules that transduce 

force from the cytoskeleton onto MCs are critical regulatory points for modulation of 

signaling. As discussed later in this chapter, future studies should evaluate the above 

predictions by employing force mapping techniques, coupled with genetic knockdown 

screens and correlative microscopy. 

 

Mechanotransduction at the IS 

Actin dynamics may promote early steps of T cell activation by exerting forces on the 

TCR and its MC components and on integrins and their associated complexes. While key 

points of intersection have been identified, many mechanistic questions remain.  Does 

mechanotransduction occur at the level of the TCR?  If so, how is force transmitted to the 

TCR, and what, if any, is the contribution of the APC cytoskeleton?  Why is the 



140 

activation of PLC1 sensitive to perturbation of actin dynamics – is there 

mechanotransduction at the level of signaling MCs? How exactly force induces high-

affinity conformation of LFA-1? And which adaptor molecules are involved in force 

transduction for mechanical activation of integrins at the IS? In addition to these 

molecular questions, there are many unanswered questions about higher order 

interactions and feedback events. Here I will discuss the evidence that addresses these 

questions and provide the current paradigm in the field of how T cells test local 

extracellular environment and transduce the information across the PM.  

TCR triggering 

Studies done in the 90’s showed that TCR ligation induces the association of ITAM 

motifs with actin cytoskeleton (Rozdzial et al., 1995; Rozdzial et al., 1998). More 

recently Nck was suggested to mediate the interaction between the CD3 complex and F-

actin (Kesti et al., 2007). While current literature agrees that actin at least in part drives 

TCR dynamics (Barda-Saad et al., 2005; DeMond et al., 2008; Hartman et al., 2009), to 

date, there is no clear understanding of how TCR connects to the actomyosin network. 

This question has important implications, since evidence exists for mechano-sensitivity 

within TCR (Kim et al., 2012; Kim et al., 2009). A likely explanation is that cytoskeletal 

forces may be transduced along the TCR and countered by ligand binding in the extra-

cellular space (Feigelson et al., 2010; Hsu et al., 2012; Tseng et al., 2005). To test the 

mechanical triggering model, the Finkel lab showed that effective TCR triggering, as 

indicated by efficient Ca
2+

 mobilization, depends on T cell adhesion to surrogate 

stimulatory surfaces and an intact cytoskeleton (Ma et al., 2008b). Whether force is 

required to expose ITAM motifs for cytoskeletal interactions is the subject of ongoing 
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debate (van der Merwe and Dushek, 2011). We find that Zap70 phosphorylation and 

accumulation at the IS persists in the absence of cytoskeletal flow. If  mechanical 

triggering of the TCR was absolutely required for T cell signaling, then one would expect 

that such proximal kinase as Zap70 would be diminished at the IS once the flow is 

“frozen”. Therefore, at least in Jurkat T cells spreading on immobilized stimulatory 

antibody, mechano-sensitivity of the TCR is not required to maintain exposed ITAM 

motifs for Zap70 recruitment and phosphorylation. This, however, does not preclude the 

importance of this mechanism in other circumstances. Additional support for mechanical 

tension in T cell signaling comes from studies of T cells interacting with TCR stimulatory 

beads, where Ca
2+

 mobilization is enhanced by moving the attached bead away from the 

IS (Li et al., 2010). Current efforts should be made to measure and map forces exerted on 

the extracellular environment by the T cell cytoskeleton. Here too, the predictions are that 

the nature of stimulatory ligands, along with their mobility and clustering, should affect 

force-dependent signal propagation. 

Mechano-sensing in MCs 

Using PALM imaging to visualize MCs containing different signaling molecules, the 

Baumgart lab has reported that MCs exhibit various morphologies and that the 

morphology is modulated by the F-actin cytoskeleton (Hsu and Baumgart, 2011). 

Furthermore, the report demonstrated that mobile SLP-76 MCs become progressively 

more segregated from the immobile Zap70 MCs in Jurkat T cells spreading on the anti-

CD3-coated coverslips. It remains to be determined if this spatial segregation occurs on 

mobile stimulatory surfaces, or if molecular dissociation is a side-effect of ligand 

immobilization. These observations support a plausible explanation that the cytoskeletal 
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forces can be harvested at the level of multi-molecular complexes. While this concept is a 

fairly novel in the field, there is circumstantial evidence suggesting that MCs may be 

mechano-sensitive. Whether MCs reside on the PM or on vesicular compartments is a 

subject of ongoing debate. Nonetheless, MCs should not be regarded simply as 

endosomal vesicles, neither are they spontaneous aggregates of signaling molecules; 

rather, findings from the Samelson lab indicate that MCs possess highly organized nano-

scale spatial organization (Sherman et al., 2011). Many protein interactions in MCs have 

been mapped using biochemical assays (Houtman et al., 2006; Kuhne et al., 2003; 

Yablonski et al., 2001). It is known that phosphorylation of LAT leads to recruitment of 

GADS/SLP-76 module to the PM and subsequent signaling events bring PLC1 to the 

complex (Braiman et al., 2006; Yablonski et al., 1998). In the MCs, PLC1 is wedged 

between LAT and SLP-76, with GADS serving as a hinge. One can envision that tension 

generated along the LAT/SLP-76 axis could be absorbed by PLC1. Interestingly, the 

activating tyrosine 783 lies in the region of PLC1 that would experience stretching if 

force was applied to SLP-76. ITK binds to SLP76 and is closely positioned to 

phosphorylate PLC1 (Bogin et al., 2007). Additionally, previous research from our lab 

demonstrated that loss of HS1, an effector of ITK, disrupts the spatio-temporal 

organization of PLC1-containing complexes at the IS (Carrizosa et al., 2009).  

Further evidence that MC structure is critically important for signaling came from the 

Yablonski lab, where it was shown that length rather than the sequence of the P-I region 

of SLP76 is important for sustained signaling. Deletion of this region abrogated signaling 

but substitution of a scrambled sequence of the same length fully rescued signaling. Thus, 

the investigators argued that the P-I region of SLP-76 serves a structural role that is not 
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dependent on immediate protein-protein interactions (Gonen et al., 2005). Taken 

together, these results imply that proteins within MCs downstream of TCR can respond to 

mechanical forces and that force vectors may induce conformational changes in MC-

associated signaling complexes. 

LFA-1 activation 

LFA-1 can be regulated at the single molecule level, via affinity maturation, or at the 

population level (via valency). Our work in Chapter 3 shows that ongoing F-actin flow 

controls both mechanisms. Both LFA-1 and its binding partner talin exhibit mechano-

sensitivity and can respond to applied tension. In line with dependence of LFA-1 on 

mechanical stimulation, we find that actomyosin dynamics play a crucial role in LFA-1 

recruitment to the IS and subsequent induction of the high-affinity conformation of 

integrin. While maintenance of the intermediate affinity conformation did not depend on 

F-actin flow, the proportion of molecules in the high-affinity conformation was 

significantly diminished upon F-actin immobilization. Moreover, organization of 

activated integrin into a ring pattern was maintained by F-actin flow, regardless of the 

context of stimulation. Interestingly, inhibition of myosin IIA alone reduced the 

efficiency of LFA-1 activation, even though we did not notice substantial effects on F-

actin dynamics. Possibly, myosin IIA participates in bond-formation between F-actin and 

LFA-1, since myosin IIA has been found in integrin-associated complexes (Morin et al., 

2008). The ongoing requirement for cytoskeletal dynamics reflects the catch-bond type 

binding of LFA-1, where tension strengthens the interaction and loss of tension relieves 

the bond with ligand (Thomas, 2008).  Our data highlight the necessity of actin 
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polymerization-derived force in maintenance of firm adhesion through LFA-1–ICAM-1 

binding.  

Force-sensing by talin and vinculin 

The link between LFA-1 and actomyosin is likely indirect and requires intermediates 

that can bind integrin and F-actin. The most prominent of these are talin and vinculin. In 

T cells vinculin is recruited to the IS downstream of WAVE2 and facilitates recruitment 

of talin to the interface (Nolz et al., 2007). Studies of focal adhesions demonstrated that 

talin is a mechano-sensitive molecule that stretches upon experiencing tension (del Rio et 

al., 2009). As described above, talin binding triggers extension of integrin chains and 

increases affinity for ligand (Simonson et al., 2006). Talin can also bind directly to F-

actin, creating a physical link between integrins and the flowing actomyosin network. 

Accordingly, we find a high degree of co-localization of talin with high-affinity LFA-1. 

The presumption is that tension exerted along this axis kinetically tests the stability of the 

integrin interaction by using talin as a stretch sensor. In other systems, it has been shown 

that stretching of talin rod domain reveals 11 bindings sites for vinculin, an adaptor 

protein that binds to Arp2/3 and F-actin, thus reinforcing the bond with the cytoskeleton. 

In turn, loss of tension on talin reverses vinculin binding and weakens the bonds (Hirata 

et al., 2014). Thus, in T cells talin and vinculin may comprise a module that feeds back 

on force to strengthen the interaction between LFA-1 and actin cytoskeleton, as has been 

shown for focal adhesions in other cell types (Ciobanasu et al., 2013).  
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Ligand mobility and clustering 

Tension that is an essential component in mechanotransduction must come from 

application of force and concomitant resistance of engaged molecules. Thus, an important 

area of investigation is mobility of ligands on the surface of APCs and how this 

parameter influences the spatio-temporal organization of signaling dynamics at the IS. 

Currently there are reports that surface stiffness and ligand mobility affect TCR signaling 

(Hsu et al., 2012; Judokusumo et al., 2012; O'Connor et al., 2012; Tseng et al., 2005). 

Furthermore, mobility of integrin ligands is also critical in adhesion and costimulation, as 

affinity maturation of LFA-1 occurs only in the presence of surface-bound, but not 

soluble ICAM-1 (Feigelson et al., 2010). Going forward, the challenge for the field is to 

understand this integrated complexity, a task that will require novel approaches ranging 

from protein conformational biosensors to multi-photon analysis of signaling dynamics 

during an in vivo immune response. The mechanisms that determine ligand mobility and 

clustering on APCs may prove to be great therapeutic targets to modulate the immune 

response. 

Putting the mechanotransduction model to the test 

Although the mechanotransduction model can account for the requirement of ongoing 

F-actin flow at the IS, it is not the only plausible explanation.  F-actin remodeling could 

participate in the recruitment and spatial organization of signaling complexes 

independently of force transduction at the molecular level. More careful analysis is 

needed to determine the production of force at the IS, and whether that force can be 

utilized by the receptors and/or receptor-associated molecules to initiate and sustain 

signaling. Here I will present a few directions to test the specific aspects of the 
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mechanotransduction model as well as consider the alternative hypotheses for the role of 

cytoskeletal rearrangements in at the IS. 

Currently, forces exerted by the T cell cytoskeleton are poorly characterized. Multiple 

aspects of T cell biology impede the progress on this front. T cells are relatively small, 

spreading to an average of 100-200 µm
2
 (Chapter 3), while other cell types, such as 

fibroblasts, in which forces have been successfully mapped, spread to a 15-fold larger 

area (Cai et al., 2010). Also, unlike the firmly adherent cells, T cells do not form focal 

adhesions or stress fibers, indicating that the forces in this cell type are much lower in 

magnitude. Despite these caveats, numerous efforts are being made to track cytoskeletal 

forces during T cell activation. The Milone lab has recently engineered high-density 

pillar arrays that can report forces based on the deflection of individual pillars (M. 

Milone, personal communication). Analogous substrates had been used previously to 

track forces in other cell types (Cai et al., 2006), however, the densely-packed arrays will 

facilitate the precise mapping  of forces at the T cell IS. Additionally, acrylamide gels 

with embedded beads have been used to measure force vectors in Jurkat T cells 

responding to anti-CD3-coated surfaces (A. Upadhyaya, personal communication). 

Although these measurements are relatively crude, they provide evidence that tension 

along the TCR correlates with F-actin retrograde flow rate (unpublished data).  

To test the necessity of force in TCR and LFA-1 activation one could supply external 

forces on T cells with the immobilized F-actin network. In chemokine signaling LFA-1 

activation has been shown to rely on shear stress produced by blood flow in vivo (Shamri 

et al., 2005). Thus, shear flow is predicted to create the tension that may be necessary for 

receptor activation and signaling. Closed-chamber systems, which regulate the fluid flow 
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rate, could rescue the TCR and integrin signaling even without ongoing F-actin 

centralization at the IS. Alternatively, stretchable surfaces can be used to introduce strain 

on the receptors (Tamada et al., 2004). Stretching of T cells after “freezing” the F-actin 

network would provide the force, which may be required for sustained Ca
2+

 mobilization 

and induction of high-affinity conformation in LFA-1. 

The pharmacological treatments used in this thesis cannot readily differentiate 

between the role of the F-actin polymerization and retrograde flow, since stopping one 

precludes the other. Thus, at this time it is not possible to determine whether signaling is 

maintained essentially by the network flow or by the ongoing production of filaments. 

Local bursts of F-actin polymerization throughout the IS plane may generate forces 

orthagonal to the membrane; this would allow for tension-dependent activation of the 

receptors even in the context of freely mobile ligands, as seen on the stimulatory bilayers. 

The differential roles of F-actin polymerization and retrograde flow could be governed by 

two related NPFs: WASp and WAVE2. These molecules differ in their localization at the 

IS; while WAVE2 localizes to the LP region (Nolz et al., 2006), WASp is preferentially 

recruited to the MCs (Barda-Saad et al., 2005). Moreover, ablation of WAVE2 has 

detrimental effects on the F-actin network flow at the IS, though WASp seems 

dispensable for this process (Nolz et al., 2006). Current research from the Dustin lab 

indicates that WASp and HS1 orchestrate TCR signaling (M. Dustin, personal 

communication), pointing to the functional importance of WASp-dependent F-actin 

polymerization in the TCR MCs. 

We show that the F-actin reorganization is needed to recruit the LFA-1 integrin to the 

T cell–APC contact site, promoting the role of F-actin dynamics in valency regulation. 
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This paradigm can be extended to other membrane receptors and cytoplasmic adapter 

molecules. Newly polymerized actin filaments may provide a specialized dynamic 

scaffold for the recruitment of signaling molecules to the PM. In line with this idea, new 

MC formation is abrogated upon F-actin “freeze”.  Furthermore, retrograde flow can 

increase local concentration of signaling molecules at the IS and facilitate their 

subsequent activation.  Thus, it has been shown that in migratory cells the spatial 

persistence of Rac activity specifically depends of F-actin remodeling and not simply on 

F-actin accumulation at the leading edge (Peng et al., 2011).  

Recently, the Baumgart lab demonstrated by super-resolution microscopy that Zap70, 

LAT and SLP-76 complexes exhibit a variety of cluster morphologies at the IS, which 

may reflect transmission of forces along MC components (Hsu and Baumgart, 2011). MC 

shape was shown to be partially regulated by the presence of  actin filaments at the IS, 

since depletion of F-actin destabilized MC shape leading to a loss in circularity, 

indicating that F-actin plays a scaffolding function in the organization of signaling 

molecules within MCs. This, however, does not eliminate the role of flow-generated 

force in signaling, as the deformations in MC morphology could result from other factors, 

for example microtubule-dependent motility, and may not be relevant in signaling. 

Even though our original observation that F-actin flow sustains signaling at the IS 

pointed to mechanotransduction, recent TIRF imaging of T cells with the immobilized F-

actin revealed that the acto-myosin II network is lifted off the PM. This result leaves 

room for a possibility that force is not crucial for signaling. Rather, the presence of a 

static F-actin scaffold in close proximity to the PM could facilitate signal transduction. In 

this case, ongoing F-actin remodeling is required to continually push the network against 
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the membrane and thus maintain the interaction of F-actin with the membrane-associated 

components of the TCR and integrin signaling pathways. This evidence also reveals that 

the polymerization exerts pushing forces parallel as well as normal to the PM. Thus, a T 

cell not only spreads on the stimulatory surface, but also actively pushes itself into the 

APC. This mode of behavior can facilitate a more efficient discovery of pMHCs and 

enable mechanotransduction independently of the centripetal flow at the T cell IS.  

 

What are the clutch molecules that couple signaling molecules to cytoskeletal flow? 

Just like an automobile requires a clutch to modulate transduction of force between 

the engine and transmission, T cells rely on adaptor molecules that couple signaling 

receptors and receptor-associated proteins to F-actin flow. Simplistically, these “clutch 

proteins” should be regulated in an activation-dependent manner and should be able to 

bind F-actin and MC components. Loss of a “clutch” should diminish signaling 

efficiency (e.g. Ca
2+

 mobilization) and possibly MC dynamics.  Multiple proteins have 

been found that fit these criteria; however, the redundancy on one hand and the 

cooperative nature of interactions on the other make the investigation of individual 

components a cumbersome task. To name a few putative “clutches”: HS1 (Gomez et al., 

2006), Vav1 (Sylvain et al., 2011), ADAP (Pauker et al., 2011), WASp (Barda-Saad et 

al., 2005), talin (Wernimont et al., 2011) and ezrin (Lasserre et al., 2010) amongst others. 

These proteins have been shown to localize to the IS and modulate various aspects of 

TCR signaling. I propose that future investigations should involve a broad shRNA screen 

to discover which “clutch” molecules play dominant roles in MC assembly, dynamics 

and signaling.  
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Cross-talk between TCR and integrin signaling complexes 

Some of the early studies of IS formation concentrated on stimulation through the 

TCR alone (Bunnell et al., 2002; Bunnell et al., 2001). Subsequent work compared 

synapse architecture downstream of TCR or integrin ligation (Baker et al., 2009). Side-

by-side comparison showed that SLP-76 MCs exhibit differential assembly kinetics and 

dynamics under the two stimulatory conditions. Thus, MCs formed by TCR ligation 

assembled quickly and underwent centralization to the cSMAC, while MCs generated by 

integrin ligation showed up later during cell spreading and were largely long-lived and 

immobile. Baker and colleagues implicated different binding partners of SLP-76 in the 

formation of different MCs. The interaction with LAT turned out to be essential for 

formation of SLP-76 MCs downstream of TCR, while binding to ADAP was crucial for 

MCs downstream of integrins. Remarkably, it took almost a decade since the first report 

from the Kupfer lab regarding the molecular patterns at the IS (Monks et al., 1998) to 

conduct careful high-resolution imaging of synapse formation in the costimulatory setting 

(Kaizuka et al., 2007; Nguyen et al., 2008). Studies on bilayers demonstrated that integrin 

clusters and TCR MCs reside in spatially distinct yet adjacent micro-domains within the 

IS. Furthermore, findings on stimulatory coverglasses indicated that in the context of 

stimulation by anti-CD3 antibody and VLA-4 ligand, MCs do not centralize at the IS but 

instead exhibit stronger signaling in the periphery. The homogeneity of behavior suggests 

that in that setting all MCs have the same properties, which means that when stimulated 

by both ligands, T cells make hybrid clusters that contain signaling molecules associated 

with TCR and with integrins. Unpublished work from our lab shows that on patterned 
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surfaces, de novo MCs preferentially form at the interface between TCR and integrin 

ligands, suggesting that MC nucleation is a cooperative process that involves both axes of 

signaling. It would be informative to investigate the molecular make-up of these MCs by 

surface micro-patterning techniques combined with super-resolution imaging and 

correlative microscopy.  

 

Actin-microtubule cross-talk in synaptic organization and dynamics  

The newly-formed IS exhibits extensive actin polymerization towards the APC, 

followed by efficient polarization of MTOC to the center of the contact zone. Studies in 

Jurkat T cells stimulated on glass have shown that microtubules are dispensable for the 

initial burst of F-actin at the IS (Bunnell et al., 2001). However, microtubules are 

required to maintain long-term cell spreading and molecular dynamics. It is thought that 

microtubules provide tracks for delivery of signaling molecules that are required for 

proper signaling (Lasserre and Alcover, 2010).  

Using TIRF imaging that enables visualization of cytoskeletal structures within 90 

nm from PM, we show that inhibition of F-actin turnover leads to lifting of the F-actin 

and microtubule networks away from the synapse. Our finding that precise positioning of 

MTOC at the membrane depends on actin dynamics indicates that there is ongoing 

interplay between the two networks during sustained phase of signaling. To determine 

whether F-actin actively pushes microtubules towards the IS, one should depolymerize 

the F-actin network and examine the presence of microtubules in the TIRF plane. I 

postulate that in the absence of an F-actin scaffold, microtubules will not be able to 

associate tightly with the PM. This poses a question about how microtubules and 
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branched actin filaments are organized with respect to each other. Whether microtubules 

grow below or above the actin flow remains to be answered by careful 3-D reconstruction 

of super-resolution images and/or electron tomography.  

Given that the F-actin network continuously flows away from the PM, actin-

dependent pushing of microtubules towards the PM is possible only if microtubules 

associate with the growing ends of actin filaments. To date, there is no evidence that 

microtubules and actin filaments bind directly to each other. Therefore, the interaction is 

likely facilitated by auxiliary proteins that have dual affinity for F-actin and 

microtubules. Formins, such as mDia and FMNL1, fit well within this profile. Recent 

work from the Billadeau lab showed that formin-dependent actin polymerization is 

dispensable for formation of peripheral lamellipodia (Gomez et al., 2007). Furthermore, it 

was also found that depletion of formins abrogated efficient translocation of the MTOC 

to the IS. Immunofluorescence staining revealed that mDia and FMNL1 colocalize with 

F-actin and also with the MTOC. This observation is consistent with earlier findings that 

mDia mediates formation and organization of stable microtubules (Palazzo et al., 2001). 

Evidence that mDia associates directly with microtubules (Bartolini et al., 2008) or with 

the +TIP tracking protein EB1 (Wen et al., 2004) further corroborates involvement of 

formins in microtubule organization and stability. The recently identified formin inhibitor 

SMIFH2 could be used to shed new light on this area of research (Rizvi et al., 2009). The 

prediction is that acute loss of formin activity during the sustained phase of spreading 

would enhance signaling by preventing efficient MTOC anchoring at the IS and 

disrupting centralization of TCR-mediated MCs. Additionally, co-localization and 
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immune-precipitation experiments should help identify the interactions that mediate 

crosstalk between the two cytoskeletal networks.  

Another protein that is known to coordinate cytoskeletal crosstalk at the IS is ezrin 

(Roumier et al., 2001; Shaffer et al., 2009). Knockdown of ezrin in T cells altered 

organization of microtubules and apposition of MTOC to the PM (Lasserre et al., 2010). 

Furthermore, ezrin silencing disrupted movement of SLP-76-containing MCs, leading to 

hyper-activation of signaling molecules, such as PLC1 and Erk1/2. Ezrin is recruited to 

the IS and our unpublished observations indicate that while ezrin clusters in the periphery 

of the interface, it does not colocalize with SLP-76 MCs (data not shown). Since ezrin 

does not bind microtubules directly, it relies on binding partners, such as Disk Large 1 

(Dlg1), to mediate the interplay between F-actin and microtubules. Furthermore, ezrin 

FERM domain can bind to phospholipids (Jayasundar et al., 2012), opening the 

possibility that ezrin-Dlg1 complexes recruit microtubules directly to PM.  

Microtubules and microtubule-dependent motor cytoplasmic dynein have been linked 

to processive MC centralization (Figure 4.1). Colchicine treatment disrupts microtubules 

and prevents movement of SLP-76 MC to the cSMAC region (Bunnell et al., 2002). 

Additionally, dynein is recruited to the IS (Combs et al., 2006) and its silencing abolishes 

MC coalescence and prolongs signaling in the pSMAC (Hashimoto-Tane et al., 2011). 

We find that the relatively uniform centralization rate of SLP76 MCs is consistent with 

the power output of a cytoskeletal motor such as cytoplasmic dynein. Although in other 

cell types cytoplasmic dynein has been reported to move nearly 20 times faster than SLP-

76 MCs (Ma and Chisholm, 2002) (1.7 µm/s for dynein vs. 80 nm/s for SLP-76 MCs), 

we believe that the apparent MC rate is the result of simultaneous engagement of the 
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microtubule and the F-actin networks. Interestingly, MCs do not collapse onto the MTOC 

after F-actin depletion (Nguyen et al., 2008; Varma et al., 2006), suggesting that ongoing 

F-actin turnover is necessary to maintain their interaction with microtubules. Subsequent 

studies should investigate this peculiar phenomenon. 

The role of F-actin flow in MC dynamics is undisputed and numerous labs show that 

depletion of F-actin halts MC movement (Nguyen et al., 2008; Varma et al., 2006). We 

also show that immobilization of F-actin stops SLP-76 MCs from reaching the center of 

the IS (Figure 2.9 and Movie 2M). The Krummel lab had reported that in migrating T 

cells TCR MCs move to the F-actin-poor region rather than to the cSMAC (Beemiller et 

al., 2012). Their conclusion was that MCs are transported by actin centripetal flow into 

the zone of actin depolymerization. While this is a likely explanation, it may not be 

complete. I postulate that during cell migration, the microtubule network is constantly 

remodeled by F-actin flow. Buckling of microtubules may deflect MC trajectories away 

from the MTOC. As described above, there is enough evidence supporting the notion that 

MCs simultaneously associate with F-actin and with microtubules and that both networks 

participate in their centripetal movement.  

 

Concluding comments – the big picture of the IS 

Here we have shown that ongoing remodeling of the F-actin cytoskeleton is required 

to sustain signaling and choreograph spatio-temporal organization of receptors and 

associated complexes at the IS during early phases of T-cell activation. In the past one 

and a half decades we have learned a lot about the structure and function of the IS. New 

imaging techniques and biological assays have significantly advanced our understanding 
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of the mechanisms that drive T cell activation. However, our current knowledge 

represents but a sliver of all the secrets hidden in T cells. Redundancy and complexity in 

the system have significantly slowed down our progress and have often led to erroneous 

conclusions. A major caveat in research is that pathways are studied in isolation, often 

without deep regard to how other pathways may be affected by feed-back and feed-

forward loops. The F-actin cytoskeleton, while a major player, is only one contributor in 

an immensely integrated network. In order to make headway in our understanding of T 

cell activation, we must see the IS as an irreducibly complex matrix, where each variable 

to some extent affects all the others. Future studies should be geared to provide a holistic 

view of the IS structure and function in space and time.    
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CHAPTER 5: MATERIALS AND METHODS 

 

Reagents and Antibodies 

Unless otherwise noted, reagents were from Sigma Aldrich. Y-27632 and (-)-

blebbistatin were from EMD Chemicals. Jasplakinolide, Neutravidin, fura-2, AM, goat 

anti-mouse IgG-Alexa Fluor 680, Alexa Fluor 594 phalloidin, Alexa Fluor 488 and Alexa 

Fluor 594 labeling kits were from Life Technologies. CF405M phalloidin was from 

Biotium, and streptavidin DyLight 650 and DyLight 650 labeling kits were from Thermo 

Scientific. Leaf-purified anti-CD3 antibody OKT3 and biotinylated SK7 were from 

BioLegend and biotinylated OKT3 was from eBioscience. Mouse monoclonal antibodies 

TS2/4 (anti-CD11a) and Kim127 (anti-CD18) were harvested from hybridomas (ATCC). 

Mouse monoclonal antibody m24 (anti-CD18) was from Abcam.  Goat polyclonal 

antibody against talin was from Santa Cruz. Rabbit polyclonal antibody against myosin 

IIA heavy chain was from Covance. Rabbit polyclonal antibodies against phospho-

myosin light chain (pS19), phospho-PLCγ1 (pY783) and phospho-Zap70 (pY319) and 

rabbit polyclonal antibody specific for myosin IIB heavy chain were from Cell Signaling 

Technology. Rat monoclonal anti-alpha tubulin antibody was from Serotec. Mouse anti-

GAPDH was from Millipore and goat anti-rabbit IgG-IRDye800 was from Rockland. 

Anti-phospho-SLP-76 (pY145) was from Epitomics and Alexa Fluor 647 anti-phospho-

SLP-76 (pY128) was from BD Phosflow. Human VCAM-1-Fc chimera was from R&D 

Systems. 293T cells expressing his-tagged mouse ICAM-1 were generously provided by 

Dr. Eric Long, National Institutes of Health, and ICAM-1-His was purified from these 

cells as previously described (March and Long, 2011), also see below).  
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Plasmids and RNAi 

Unless otherwise noted, standard molecular biology protocols were used for 

molecular cloning. A construct expressing full-length heavy chain of non-muscle myosin 

IIA (NMHC IIA) N-terminally tagged with EGFP (Wei and Adelstein, 2000) was 

obtained from Addgene. A plasmid encoding NMHC IIA tagged with mKate2 was 

constructed in our lab. 5’-

tgcaggatccaccggtcgccaccATGGTGAGCGAGCTGATTAAGGAG-3’ and 5’-

gccataagctttccggaacctcctccaccTCTGTGCCCCAG-3’ were used to PCR amplify mKate2 

tag from the pmKate2-β-actin vector (Evrogen). Capital letters indicate the tag and 

underlines indicate AgeI and HindIII restriction sites. The PCR product was digested 

with AgeI and HindIII and swapped with EGFP in the pEGFP-NMHC IIA-C3 plasmid.  

F-Tractin (ITPKA-9-40) tagged with tdTomato was a gift from M. Schell (Johnson 

and Schell, 2009).  cDNA encoding the 17 amino acid F-actin binding peptide Lifeact (a 

gift from the Sixt lab) was tagged with EGFP on the C-terminus using linker sequence 5’-

GGGGATCCACCGGTCGCCACC-3’. Lifeact-EGFP was then cloned into the 

pDONR221 donor vector, and subsequently into pLX301 destination vector (Addgene) 

using Gateway Technology. Lentivirus was generated as described below. 

For myosin IIA knock-down, ON-TARGETplus SMARTpool of siRNA duplexes 

against the heavy chain of human myosin IIA (Myh9) and siGENOME non-Targeting 

siRNA control #2 were purchased from Dharmacon. 500 pmol of oligonucleotides were 

used for transfection, as described below. For IQGAP1 knock-down, the shIQGAP1-

targeting sequence (5’ -GTCCTGAACATAATCTCAC-3’),  which corresponds to 

nucleotides 1318–1336 using National Center for Biotechnology Information Genbank 
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accession number NM_003870 was cloned into pFRT.H1p vector, which was described 

elsewhere (Gomez et al., 2006). 

 

Transfection of Jurkat and primary T cells 

We have found that transfection efficiency works best when cells are electroporated 

in antibiotic-free media.  This is crucial to optimal yields.  Growing the cultures in 

antibiotic-free media for 16-24 hours before electroporation enhances the growth of the 

cells, but is not as crucial of a factor as electroporating them in antibiotic-free media and 

culturing the cells after electroporation in antibiotic-free media.  It is also crucial for the 

cells to be in log phase.   

Cells were seeded at 2.0 x10
5
 cells/ml cultured in antibiotic-free 10% FBS RPMI 

1640 for 16-24 hours before electroporation. The next day cells were harvested and 

resuspended at 2.0x10
7
 cells/ml in antibiotic-free RPMI 1640 supplemented with 10% 

FBS. 500 µl of cell suspension was transferred to a 4-mm BTX cuvette and a desired 

amount of DNA plasmid or RNA oligonucleotides (usually 20-40 µg for DNA constructs 

and 1.5 µg (~500 pmol) for siRNA) was added. Cells in cuvettes were then electroporated 

using BTX Electro Square Porator ECM 830 (Harvard Apparatus BTX) with a single 

pulse using 310V for 10ms. Immediately after that, cells were incubated on ice for 5 min 

and then transferred to antibiotic-free RPMI 1640 with 10% FBS. For expression studies 

cells were used 6-16 hours later. For RNAi-mediated knockdown cells were used 24-72 

hours later. If it was necessary live cells were enriched using a Ficoll Paque gradient.  

Transfection of primary human T cells was performed using electroporation of in 

vitro transcribed mRNA. To prepare mRNA, the EGFP-actin fusion protein coding 
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sequence was cloned 3’ to the T7 promoter of the pGEM-64A plasmid (provided by Y. 

Zhao, University of Pennsylvania) (Zhao et al., 2006).  In vitro transcription of 7-

mG(ppp)G-capped and polyadenylated EGFP-actin mRNA was performed using the 

mScript mRNA kit (Epicentre Biotechnologies) in accordance with the manufacturer’s 

instructions. Following purification, GFP-actin mRNA was evaluated for polyadenylation 

and overall RNA quality by electrophoresis using a 1% agarose gel and ethidium bromide 

staining.  5.0 x 10
6
 CD4+ T cell blasts were washed once with PBS and resuspended in 

100 µl of RPMI 1640 medium (Lonza) without additives. 10 µg of the in vitro transcribed 

EGFP-actin mRNA was added to the cell suspension and the cell/mRNA mixture was 

transferred to a 2 mm cuvette (BTX). Electroporation with a single 500 V pulse of 720 µs 

duration was performed using an electroporator as above. Electroporated cells were 

transferred to a culture flask containing 10ml RPMI-1640 medium, 10% fetal bovine 

serum (Hyclone) and 10 mM HEPES and incubated for 17-20 hours prior to use. 

 

Lentiviral transduction of primary T cells  

To generate recombinant lentivirus, 1.8x10
7
 293T cells were seeded in 15-cm plates 

the day prior to transfection, and then co-transfected using the calcium phosphate method 

with 48 µg of the DNA of interest (PLX301 backbone), 36.3 µg of psPAX2 and 12.1 µg 

of pDM2.G.  Supernatant was harvested 30 hr. after transfection and used immediately to 

transduce T cells.  T cells were transduced by spin infection with lentivirus on day 3 post 

activation. 2.0x10
6
 blasting T cells were seeded per well of a 6-well culture plate 

containing 2 ml of lentiviral supernatant along with 8 μg/ml Polybrene. Cells were 

centrifuged at 2,000 rpm and 37°C for 2 hr. at which point, the media was replaced with 
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T cell culture media, containing 10% FBS RPMI 1640 and 50 U/ml of human rIL-2 

(obtained through the AIDS Research and Reference Reagent Program, Division of 

AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of 

Health; human rIL-2 from M. Gately, Hoffmann-LaRoche, Nutley, NJ).  

 

Production and purification of His-tagged ICAM-1 

A cDNA encoding the extracellular domain of the mouse ICAM-1 with a C-terminal 

6x His tag was generated by PCR with the following primers: 5’-

GTCGACGCCACCATGGCTTCAACCCGTGCCAAGCC-3’and 5’-

TCTAGATCAATGATGGTGGTGATGATGGTTATTTTGAGAGTGGTACAGTACTG

TCAGGTAC-3’. The fragment was then ligated in the pCR2.1-TOPO vector (Invitrogen) 

and confirmed by sequencing. The insert was digested with SalI and BamHI and 

subcloned into pBabe
+
 CMV-puro vector. This plasmid was transfected into 293T cells, 

and selected for stable expression with puromycin. Clones were generated by limiting 

dilution and were screened for ICAM-1 expression by intracellular flow cytometry. The 

highest expressing clone was expanded into eight 177-cm
2
 culture dishes and when the 

cells were near confluence, the culture medium was replaced with serum-free medium 

(20 ml/flask). After 3 days, culture supernatants were harvested, cell debris was removed 

by centrifugation, and the supernatant was nearly desiccated using dialysis tubing and 1:1 

mixture of PEG(8000) and PEG(3350). The solution was then diluted in PBS and flowed 

over a Ni-TED column (PrepEase), which was washed with PBS. Bound protein was 

eluted with 250 mM imidazole in PBS. The buffer was exchanged with PBS through 

repeated concentration with a 30 kDa cut-off Centricon concentrator (Millipore). 
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Cell Culture and T cell-B cell conjugation 

Jurkat cells stably expressing low levels of GFP-actin (Gomez et al., 2006) were 

primarily used for Chapter 2.  J14 (SLP-76-deficient) Jurkat cells stably reconstituted 

with GFP-SLP-76 (Baker et al., 2009), were from Dr. G. Koretzky, Univ. of 

Pennsylvania. 

Human peripheral blood CD4
+
 T cells were obtained from the University of 

Pennsylvania’s Human Immunology Core under an Institution Review Board (IRB)-

approved protocol.  T cells were activated with 4.5 µm human T-Activator CD3/CD28 

magnetic beads (Dynabeads, Life Technologies) in RPMI 1640 (Invitrogen) 

supplemented with 10% FBS (Atlanta Biologicals), GlutaMAX (Invitrogen) and 50 U/ml 

of human rIL-2  T cell blasts were cultured in a humidified 37
o
C incubator with 5% CO2. 

Beads were removed from T-cell cultures on day 6 after initial stimulation, and cells were 

then cultured for an additional day to allow for surface re-expression of CD3.   

The human B cell line Raji was cultured in RPMI 1640 culture medium supplemented 

with 1% penicillin G and streptomycin, 1% GlutaMAX, 10%FBS. For conjuration 

experiments Raji B cells were pulsed with 2 µg/ml staphylococcal enterotoxin E (SEE, 

Toxin Technologies) for 1 hour at 37
o
C and allowed to interact with equal number of T 

cells for 30 minutes.   

 

Western blotting  

To verify Y-27632 activity in Chapter 2, Jurkat T cells were pretreated for 15 min 

with DMSO alone or 25 µM Y-27632 and stimulated with soluble OKT3 (1 µg/ml) for 5 
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min. Cells were then washed in cold PBS and lysed at 4°C in 50 mM Tris-HCl (pH 7.5), 

150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 10 mM NaF, 1 mM Na3VO4, and 

protease inhibitors. For western blotting, lysates were separated on a NuPAGE gel 

(Invitrogen), transferred to nitrocellulose, probed with the indicated primary antibodies in 

3% BSA in TBST, followed by incubation with secondary antibodies diluted in 3% dry 

milk in TBST. Membranes were imaged on a LI-COR Odyssey fluorescence scanner 

within the linear range. 

 

Preparation of supported planar lipid bilayers
7
 

Lipids DOPC, DSPE-PEG(2000)-biotin and DGS-NTA(Ni) (Avanti Polar Lipids) 

were reconstituted in chloroform at 98:1:1 mol %, respectively. The mixture was then 

dried under a gentle stream of air and desiccated in a vacuum chamber for 1 hour. The 

dried lipid cake was hydrated in PBS, sonicated using a tabletop sonication bath 

(Branson) for 15 min to generate multilamellar vesicles, and then passed through a 50 nm 

pore membrane using a mini-extruder (Avanti Polar Lipids). The resulting small 

unilamellar vesicles were stored at 4
o
C for 2-3 months.  

25 75 mm glass slides (# 1.5, Thermo Scientific) were cleaned for 15 minutes using 

Piranha solution (3:1 ratio of sulfuric acid and 30% hydrogen peroxide) (Dustin et al., 

2007) and then washed thoroughly with distilled water. Slides were then air-dried and 

adhered to Sticky-Slide I
0.2

 Luer closed chambers (Ibidi). Small unilamellar vesicles in 

PBS were added to the chambers to cover the exposed glass surface for 15 min. After 

                                                           
 

7
 For a comprehensive version of this protocol refer to Appendix A.  
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thorough rinsing with PBS, the chambers were incubated with Neutravidin (Life 

Technologies) and 1 mM NiSO4 for 15 minutes, then thoroughly rinsed again with PBS 

and incubated with excess OKT3-biotin and ICAM1-His. Chambers were rinsed and left 

in phenol red-free L-15 imaging medium (Invitrogen) supplemented with 2 mg/ml D-

glucose. Lipid bilayer surfaces were used for imaging studies on the same day. 

 

Single-cell Ca
2+

 assays 

Jurkat T cells were loaded with 3 µM fura-2, AM in RPMI for 15 min at 37
o
C, 

washed in L-15 medium supplemented with 2 mM CaCl2 and resuspended at 2x10
6
/ml. 

Cells were dropped on OKT3-coated and heated delta-T dishes (Bioptechs) and imaged 

every 3 seconds by sequential illumination with 340 and 380 nm lasers. Acquisition was 

done on Leica DMI6000 microscope using Orca-03G camera (Hamamatsu) and 40X oil 

objective, and images were analyzed with Metafluor (Molecular Devices). For inhibitor 

studies, cells were pretreated with 25 µM Y-27632 concomitant with fura-2,  AM 

incubation, washed in L-15 medium with Y-27632 and imaged in drug-containing 

medium. Jasplakinolide or DMSO were added after the cells had reached a plateau in 

Ca
2+

 response (5 minutes into spreading). In some experiments, 1 µM Tg was added to 

block Ca
2+

 uptake into ER stores. Ca
2+

 mobilization was analyzed by plotting 340 

nm/380 nm ratios from individual cells over time and average traces from cell population 

were shown. 
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Fixed-cell fluorescence microscopy 

For imaging of fixed cells in Chapter 2, coverslips were coated with poly-(L-lysine) 

as described (Bunnell et al., 2003), followed by 10 µg/ml OKT3 (2 hr. at 37°C or 

overnight at 4°C), and washed with PBS. Cells were harvested and resuspended at 

5 10
5
/ml in L-15 medium. Coverslips were equilibrated at 37°C, and 1.0 10

5
 cells were 

allowed to interact with the surface for the indicated times. Cells were fixed in 3% 

paraformaldehyde and labeled as in (Dehring et al., 2011). Cells were imaged on a Zeiss 

Axiovert 200 equipped with a PerkinElmer Ultraview ERS6 spinning disk confocal 

system and a 63  planapo 1.4 NA oil objective. Images were collected using an Orca ER 

camera (Hamamatsu) and analyzed using Volocity versions 5.5 to 6.3 (Perkin Elmer). 

Unless indicated, 1 μm-thick Z stacks of three images were collected at the T cell-

coverglass interface and displayed as extended projections. 

Acquisition in TIRF was done on Leica DMI6000 microscope using 100X planapo 

1.46 NA oil objective (Leica) and Evolve 512 EMCCD camera (Photometrics). TIRF and 

widefield images were acquired sequentially by switching between TIRF (90 nm 

penetration depth) and epifluorescence microscopy. Images were collected in LAS AF 

software (Leica). 

For imaging of fixed cells in Chapter 3, coverslips (12 mm, #1.0, Bellco) were 

directly coated with 10 µg/ml OKT3 for 2 hr. at 37°C or overnight at 4°C, followed by 

washing with PBS and incubation with 1 µg/ml ICAM-1.  Where indicated, coverslips 

were subsequently incubated with VCAM-1 at 1 µg/ml for 2 hr. at 37°C. LFA-1 

monoclonal antibodies were directly labeled as follows: m24 was labeled with Alexa 
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Fluor 488, Kim127 was labeled with Alexa Fluor 594 and TS2/4 was labeled with 

DyLight 650. Other permutations of labeling yielded less than optimal staining results. 

T cells were harvested and resuspended at 5 10
5
/ml in L-15 medium. Coverslips or 

chambers were equilibrated at 37°C, and ~5.0 10
4
 cells (for coverslips) or ~1.5 10

5
 

cells (for lipid bilayers) were allowed to interact with the surfaces for the indicated times. 

Wherever m24 antibody was used, live cells were labeled with m24 5 min. before 

fixation (as this antibody does not label fixed cells). Cells were then fixed in 3% 

paraformaldehyde and labeled with other antibodies as described previously (Dehring et 

al., 2011), except that 50 mM NH4Cl was used as a quenching reagent. 0.5-μm thick 

stacks consisting of three planes (0.25 µm apart) were collected at the T cell-coverglass 

interface and displayed as extended projections. Alternatively, T cell-B cell conjugates 

(see above) were imaged as 10-µm thick stacks were collected with planes spaced 0.5 µm 

apart. 25–50 spread T cells or conjugates were selected per condition and used for further 

analysis. 

 

Live-cell fluorescence microscopy 

For live cell imaging in Chapter 2, eight-well Lab-Tek II chambered cover glasses 

(Nunc) were coated with OKT3 as for fixed-cell experiments. Immediately before 

imaging, chambers were covered with 400 µl of imaging medium (phenol red-free RPMI 

1640, 25 µM HEPES) and equilibrated to 37°C on the microscope stage within a Solent 

environmental chamber. Cells were harvested, resuspended in imaging medium at 

2 10
6
/ml, and 5–10 µl of cell suspension was added to the well. Time-lapse images were 

collected at 63X using the microscope described above. 1 μm thick Z stacks of three 
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images were collected every 3s for 5–7 min. Emission discrimination filters were used for 

multi-color imaging. 20–40 randomly selected cells were analyzed per condition. 

For live-cell imaging on coverglass in Chapter 3, eight-well Lab-Tek II chambered 

cover glasses (Nunc) were coated with OKT3 as described above. Immediately before 

imaging, wells were covered with 400 µl of L-15 medium and equilibrated to 37°C on the 

microscope stage. Cells were harvested, resuspended in L-15 medium at 2 10
6
/ml, and 

5–10 µl of cell suspension was added to the well. Time-lapse images (0.5-μm thick Z 

stacks of three images) were collected every 2 s for 1-2 min. Emission discrimination 

filters were used for multi-color imaging. 10–20 spread T cells per condition were 

selected for image analysis.  

For live-cell imaging of T cells on planar lipid bilayers, surfaces were prepared as 

described above and T cell suspension was injected into the opening of the closed 

chamber assembly. Cells were allowed to settle onto bilayers at 37
o
C and imaging was 

initiated after full spreading has been reached, at least 10 cells were imaged per 

experiment.  

 

Image processing and quantitative analysis 

Retrograde flow of the actin network was measured in two ways.  First, movies of 

spreading T cells expressing GFP-actin were processed using the Smart Sharpen filter in 

Adobe Photoshop, with 300% amplification of local maxima within a 3 pixel radius. This 

facilitated identification of individual GFP-actin speckles, which were used as fiduciary 

marks for analysis. Analysis of sharpened and unprocessed movies yielded similar 

results, and unprocessed images are shown unless otherwise specified. As an alternative 
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approach, a portion of the F-actin network was photo-bleached to induce a synchronous 

wave of bleached GFP-actin propagating towards the center of the IS.  In both cases, a 

ray was struck from the center of the IS to the periphery, and vertical kymographs were 

generated in Volocity 5.5 and analyzed in ImageJ 1.45k (NIH). Actin flow rate was 

calculated based on the angle of deflection from the vertical direction. Instantaneous 

velocities were plotted as a function of relative position along the IS radius.  

SLP76 MC tracking analysis was done using custom algorithms written in Volocity 

and Microsoft Excel. Objects with intensities 1.5 standard deviations above the average 

intensity of the IS were identified and filtered by size; objects were then tracked using the 

shortest path algorithm in Volocity. Instantaneous velocities and relative (x, y) 

coordinates of each MC were exported into Microsoft Excel, and the distance from the IS 

centroid was calculated for each MC at each time point.  Instantaneous MC velocities 

within each 1 µm segment along the IS radius were averaged, and plotted as a function of 

radius. Kymography was used to confirm the findings from particle tracking for 

individual MCs. For this, maximum over time projections were generated from movie 

sequences, and used to define the tracks of MC movement.  Kymographs were generated 

along these tracks, and MC velocity was calculated based on the angle of deflection from 

the vertical direction. 

To measure the distribution of cytoskeletal components across the IS, a 0.5 µm thick 

line was drawn along the diameter of spreading cells, and fluorescence intensity profiles 

were measured. To assess IS area and shape, custom built algorithms in Volocity 

software were used to identify the cells based on the intensity of the F-actin network.  IS 
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area was calculated automatically by integrating the pixels within the identified objects. 

IS shape (circularity) was calculated using the following equation, 

  
  

   
   

where S represents IS shape and P and A are perimeter and area of the IS, respectively. 

To assess PLCγ1 activation, spreading GFP-actin expressing cells were fixed and labeled 

with anti-phospho-PLCγ1, and cell boundaries were defined based on actin intensity as 

described above.  For each cell profile, background signal was subtracted, and total 

phospho-PLCg1 signal intensity was quantified.  Values from 80 cells were averaged for 

each experimental condition.  

In Chapter 3, movies of T cells expressing Lifeact-GFP were analyzed for retrograde 

flow of the actin network using the kymography module in Volocity 6.3.  A ray was 

struck from the center of the IS to the cell periphery, and the generated kymograph was 

inspected for deflections in the flow. Instantaneous velocities were plotted as a function 

of relative position along the IS radius to generate a plot of F-actin flow rate distribution 

across the IS radius. For publication purposes, all kymographs were digitally enhanced 

using the Smart Sharpen filter in Adobe Photoshop, with 150% amplification of local 

maxima within a 2-pixel radius. 

Measurements of distributions of LFA-1 and other molecules across the IS were done 

in two ways. First, images of T cells were cropped to the same size, aligned based on the 

centroid for each cell and imported as a stack into ImageJ 1.46r (NIH). The stack of all 

images was projected as average intensity to generate a pattern of fluorescence 

distribution in cell population, and the Radial Profile plug-in was used to obtain average 
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intensity values along the radius of the projected IS. Second, radial fluorescence 

intensities from images of individual cells were imported into Microsoft Excel and all 

radii were normalized. Fluorescence intensity values were binned according to their 

relative position along the normalized IS radius. All values within a particular bin were 

used to determine the mean and standard deviation.  

To assess spreading area and total fluorescence intensity, custom algorithms in 

Volocity were used to identify T cell IS boundaries based on thresholds for total LFA-1 

(TS2/4) or F-actin intensity (if TS2/4 staining was not available). The IS area was 

calculated automatically by integrating pixels within the identified objects. Total 

fluorescence intensity from the IS area was determined after background-correction based 

on fluorescence of unoccupied stimulatory surface. 

 

Statistical evaluation 

Statistical analysis was performed using Microsoft Excel. In individual experiments, 

statistical significance was determined using a two-tailed Student’s t test for unpaired 

samples with equal variances. When comparing changes in donor population, a two-tailed 

Student’s t test for paired samples was performed. Outliers were discounted as being 2 

standard deviations away from the mean.  
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APPENDIX A: PREPARATION OF MIXED-MOBILITY SURFACES 

Mixed-mobility surfaces are the stimulatory surfaces with a combination of mobile 

and immobile ligands that can be used to test the role of ligand mobility and patterning on 

cellular responses. Below I present a number of protocols that should be used to generate 

these specialized surfaces. These protocols may be optimized for each particular context 

of research.  

Preparation of glass surfaces 

Note: Wear personal protective equipment (lab coat, apron, goggles and heavy gauntlets) 

at all times while working with Piranha solution.  

1. Set up a clean Coplin jar or a tall narrow beaker in a secondary container in the 

hood.  

2. Add 50 ml of Sulfuric acid to the jar 

3. Carefully add 16.6 ml of fresh Hydrogen peroxide to the jar. (If cleaning 25x75 

mm coverslips, make sure that they can be fully submerged in the solution, 

otherwise find a container of suitable dimensions.) 

4. Mix the solution with long glass rod. Care during this step is critical as the 

exothermic reaction quickly heats up the solution to above 100
o
C. (For optimal 

cleaning, use the solution shortly after preparation as it wears off within a few 

hours.) 

5. Clip the coverslips into locking polypropylene forceps and dunk them into 

Piranha solution. Do not take off the forceps but instead, leave them on the glass 

throughout the cleaning procedure. Evolution of gas on glass surface should 
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ensue. Piranha solution activates surface by exposing negatively charged –OH 

groups. 

6. Incubate the glass coverslips for 20-30 minutes. 

7. Prepare two 250 ml beakers of distilled, deionized water, which will be used to 

remove the residual sulfuric acid off of the coverslips after the incubation. 

8. Carefully pick up the coverglasses one at a time and transfer them into one of the 

beakers with water prepared in the previous step. (The used Piranha solution 

remains highly corrosive for a few hours. It should be left in the hood and 

disposed of the next day. Special vented amber bottle placed in a secondary 

container should be used for temporary Piranha waste collection.) Swirl the glass 

slips lightly in water to allow most of the acid to come off the glass. The pH of 

this rinse solution is about 2.0. This waste should be collected by the Safety 

Department according to the protocol, but practically can be discarded in the drain 

with copious amounts of water. 

9. Transfer the glass to the other beaker and swirl repeatedly again.  Optionally, 

sonicate the glass in a tabletop sonication bath for a minute. 

10. To dry the glass, insert the forceps with coverslips into FACs tube rack, pointing 

up. Allow the glass to dry by air and gravity. Aspirate the large droplets of water, 

which accumulate at the bottom of the glass slips. 

11. Do not leave the glass exposed to air for a long time, as contaminants will quickly 

settle on the surface and inactivate the hydroxyl groups, reducing the quality of 

the mixed-mobility surfaces. 
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Preparation of small unilamellar vesicles 

Note: The critical issues in this protocol are the quality of lipids and small unilamellar 

vesicles. These factors will directly influence the mobility of bilayers. The lipid solutions 

should be stored under inert gas (Argon or Nitrogen) in special Avanti vials with Teflon 

seals and at –20
o
C; chloroform will freeze at –80

o
C. Work with chloroform and acetone 

solution should be conducted in the fume hood. Wear protective equipment. 

1. Prepare lipid solutions in chloroform in a desired mol% ratio. We use 100 mM 

DOPC:DSPE-PEG(2000) biotin:DGS-NTA (nickel salt) in a 98:1:1 mol% ratio. 

Alternatively, make separate solutions of DOPC:DSPE-PEG(2000) biotin (98:2 

mol%) and DOPC:DGS-NTA (nickel salt) (98:2 mol%) and mix them 

immediately before making vesicles. Chloroform evaporation can cause 

inaccuracy in measurement, thus the volumes of lipid solutions should be noted 

and losses in volume should be replenished before mixing different lipid 

solutions.  

2. Set up a 10 ml glass test tube in the hood and rinse it with chloroform, using glass 

pipette. 

3. Using glass syringe, transfer 200 µl of lipid solution to the test tube. 

4. Dry the chloroform using gentle stream of inert gas or air. The dried lipid layer is 

called lipid cake. 

5. Further, dry the lipid cake in a vacuum chamber for 1-2 hours. 

6. Add 1 ml of PBS solution to the lipid cake and sonicate it for 20 minutes to 

rehydrate the lipids. This results in a spontaneous formation of multilamellar 
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vesicles that have many layers analogous to an onion. The turbidity in the solution 

will make it appear milky. 

7. Assemble the mini-extruder as per Avanti instructions, use 50 nm pore membrane 

for vesicle extrusion. Pass pure water through it a few times to ensure that the 

assembly does not leak. If leakage is discovered, re-assemble the extruder. 

8. Pass the lipid vesicles back and forth at least 11 times to make sure that all 

unilamellar vesicles are homogeneous in size. This will partially clear the 

solution. Make sure to pass the vesicles through the membrane an odd number of 

times so that the final mixture is not in the original syringe. 

9. The resulting small unilamellar vesicles are stable at 4
o
C for 2-3 months. If 

aggregation occurs, centrifuge the vesicle solution at top speed for 1-2 minutes. 

 

Preparation of supported planar bilayers 

1. Attach the cleaned and dried glass (see the protocol above) on the bottom of Ibidi 

Sticky-Slide I
0.2

 Luer. 

2. Dilute lipid vesicle mixture 5-fold in PBS before addition to glass; oversaturation 

of glass surface with lipid vesicles will result in partial fusion of vesicles to glass 

and diminish the mobility of the bilayers.  

3. Add about 100 µl of diluted solution to each chamber.  Mark the intake well of 

the chamber with an arrow; this will guide subsequent additions to the same side 

of the chamber to create flow in one direction. 

4. Incubate the chamber assembly with lipids for about 15 minutes. 
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5. Rinse the chamber thoroughly with PBS to remove the excess vesicles. This 

should be done by sequential addition of PBS to the intake well and removal of 

flow-through on the other side. About 150 µl of PBS can be added at a time for a 

total of 6 to 8 times. 

6. Incubate the bilayers with excess fluorescent Neutravidin or Streptavidin (1 µg 

per chamber) and 1 mM NiSO4 for 15 minutes.  

7. Rinse thoroughly as before. 

8. Incubate the chambers with the desired stimulatory and adhesion ligands. 

(Biotinylated and his-tagged ligands should be added in excess to cover the 

surface completely. We use 1 µg of OKT3-biotin and 2 µg of ICAM-1–His per 

chamber. Optimal concentrations of ligands should be determined empirically) 

9. Incubate the surfaces for 15 minutes and rinse as previously. Replace PBS with L-

15 imaging media in the final rinse. 

10. Bilayer surfaces should be tested for ligand mobility (Figure X.1) and used within 

2 days after preparation. Ligand mobility and surface quality may decrease with 

longer storage. 

 

Preparation of the PDMS stamps 

Making “hard” PDMS (hPDMS) 

1. Mix 3.4 g of VDT-731 (Gelest) with 1 g of HMS-301 (Gelest) in 50 ml tube and 

vertex to ensure even mixing. 

2. Add 4 drops of modulator, 2,4,6,8-Tetramethyl-2,4,6,8-

tetravinylcyclotetrasiloxane (Sigma), and mix thoroughly. 
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3. Add 4 drops of platinum catalyst  platinum(0)-2,4,6,8-tetramethyl-2,4,6,8-

tetravinylcyclotetrasiloxane complex solution (Sigma), and mix thoroughly. 

4. Gently spread hPDMS on the silicon master wafer (which must be manufactured 

beforehand elsewhere) using either the Parafilm spatula. Cover the micro pattern 

area thoroughly. 

5. Bake the master with hPDMS layer at 60C for 20-40 minutes. 

Making “soft” PDMS (sPDMS) 

1. Mix 45 g of PDMS base (Sylgard) with 5 g of supplied curing agent thoroughly in 

the plate or in the disposable paper cup until it becomes milky.  

2. Centrifuge the mixed PDMS at 1000 rpm for 2 minutes to remove the air 

bubbles.  

Making the composite stamp 

1. Put the hPDMS-covered master face up into the tin-foiled large Petri dish to 

contain the regular PDMS from the contact with the dish. Make sure the hPDMS 

is properly cured after the baking. Pour the regular PDMS onto the master to 

cover it with 5-10 mm layer of regular PDMS. 

2. Bake it at 60C for more than 1 hour, until the surface is stiff to touch. (The 

unpeeled cured stamp on the master can be stored at room temperature for few 

weeks.) 

3. Gently peel the stamp from the master. Keep in mind, that the master is a fragile 

silicone mono-crystal and can crack easily; before peeling, make sure the non-

patterned side of the master is completely free from the regular PDMS that got 

underneath the master during the curing. 
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Micro-contact printing 

1. Cut the stamp with paperknife or razor blade gently into the 5x5 or 10x10 mm 

blocks. Make sure the printing surface is not damaged. Avoid contact with the 

patterned side. 

2. Coat the stamp with the protein of interest. Keep in mind that the protein 

concentration is a factor for the quality of stamping. Keep protein concentration in 

the coating solution around 20 µg/ml and do not exceed 100 µg/ml Excess protein 

will aggregate and reduce the quality of patterning.  

3. For coating, put the stamping PDMS blocks with the stamping surface pointing 

face up in a small Petri dish. Put 100 µl of coating solution onto the stamping 

surface and cover the liquid bead with 15 mm glass coverslip to spread the liquid 

evenly on PDMS. Incubate at room temperature for 30 minutes.  

4. During this incubation, clean the glass coverslips as described above.  

5. Dip the incubated PDMS stamps into deionized water a few times and dry the 

stamp completely using a jet of air. Ideally, inert gas (such as nitrogen) should be 

used to avoid oxidation and hydrolysis. 

6. Gently place the PDMS stamp on the cleaned coverslip face down with plastic or 

slightly wetted tweezers. It is critical to prevent shifting or jumping of the stamp 

on the glass. 

7. Carefully place a 10-15 g weight (we use a wrench socket) on the top of the stamp 

and wait 1 minute to ensure the proper contact between the stamp and glass 

coverslip. 
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8. Swiftly remove the weight and the stamp from the glass with tweezers by one 

quick uplifting motion. Do not reuse the stamps as that will result in cross-

contamination of ligands.  

9. Attach the glass to the bottom of the Ibidi Sticky-Slide I
0.2

 Luer and rinse a few 

times with distilled water to remove weakly-bound ligands. Multiple patterns can 

be used that are suitable for T cell stimulation (Figure X.2) 

Preparation of mixed-mobility surfaces 

1. To generate surfaces that have mobile and immobile ligands, pattern the glass as 

described above then add lipid vesicles as described above.  

2. For studies of T cell activation, a potential combination would be OKT3-biotin in 

the mobile phase of the mixed mobility surface and ICAM-1 in the immobile 

phase (pattern anti-human IgG1 antibody and then incubate with ICAM-1-Fc 

chimera when the surface undergoes incubations with ligand. We do not 

recommend printing ICAM-1 directly on glass, as we have found out that ICAM-

1 is easily denatured upon drying and will not stimulate cells.) 

3. Characterization of mixed-mobility surface is provided in Figure X.3 and Movie 

XA. 
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Figure X.1. Preparation and characterization of supported planar lipid bilayers 

(A). Planar lipid bilayers were generated by incubation of small unilamellar vesicles in glass 

bottom chambers. SUVs contained DOPC, DSPE-PEG(2000)-biotin and DGS-NTA(Ni) 

(98:1:1 mol%). Bilayers were incubated with streptavidin DyLight 650, and subsequently with 

OKT3-biotin and his-tagged ICAM-1 (not shown). Time-lapse imaging of fluorescence 

recovery after photo-bleaching of fluorescent streptavidin loaded with OKT3-biotin is shown 

as a series. Scale bar, 5 µm. (B) Fluoresce recovery of a region bleached in A. Gray bar 

represents the time when photo-bleaching was applied. The diffusion coefficient (D) and the 

mobile fraction (Fm) are indicated.  
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Figure X.2. Characterization of patterned surfaces prepared by means of micro-contact 

printing 

(A) 2 µm dots, 4 µm center-to-center square packing. Scale bar, 4 µm. (B) 1 µm dots, 4 µm 

center-to-center square packing. (C) 1 µm dots, 4 µm center-to-center, hexagonal packing. (D) 

1 µm thick lines, 5 µm center-to-center. 
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Figure X.3. Characterization of mixed-mobility surfaces 

(A) Human ICAM1-Fc was mixed with an unspecific anti-IgG AF647 and printed onto glass 

using PDMS stamp with 1 µm wide lines, 5 µm center-to-center.  DOPC lipid vesicles 

containing 1% DSPE-PEG2000-Biotin were then deposited onto the patterned surface to form 

lipid bilayers. Mixed-mobility surfaces were then incubated with NTA-TexasRed and anti-

human IgG AF488 to label ICAM-Fc. Mono-biotinylated OKT3 was finally added to the 

bilayers. Surface images are shown, scale bar: 10 µm. (B) Mobility of lipid portion of mixed-

mobility surfaces was checked using FRAP. A region depicted by dashed lines at +1 s was 

photo-bleached. Scale bar, 5 µm. (C) Fluorescence intensity profile of mixed-mobility surface 

was acquired along the dashed line in B from the panel at -1 s. (D) Fluorescence recovery after 

photo-bleaching (FRAP) of the lipid portion of the mixed mobility surfaces. 
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APPENDIX B: SUPPLEMENTAL MOVIE LEGENDS 

 

Movie 2A. Myosin IIA localizes to the IS and accumulates behind the 

lamellipodium, related to Figure 2.1.  

Jurkat T cells stably expressing GFP-actin were transiently transfected with mKate2-

NMHC IIA (myosin IIA heavy chain). After 16 hours, cells were allowed to spread on 

OKT3-coated coverglass. Confocal image sequences were acquired every 3 seconds for 5 

minutes. Scale bar represents 5 µm.  

 

Movie 2B. F-actin features at the IS slow down towards the center of the IS, related 

to Figure 2.2.  

Jurkat E6.1 cells stably expressing GFP-actin were allowed to interact with OKT3-coated 

coverglass. Confocal 1-µm thick Z-stacks were acquired every 6 seconds for 12.5 

minutes. Movie sequence of a spreading cell is shown as “raw” extended projection (left) 

or as “enhanced” extended projection (right), and corresponds to still images and 

kymograph in Figure 2.1 A and B. Scale bar represents 10 µm. 

 

Movie 2C. Bleaching of GFP-actin prominently reveals F-actin velocity at the IS, 

related to Figure 2.2.  

GFP-actin Jurkat T cells were allowed to spread on OKT3 for 5 minutes before image 

acquisition was initiated. Confocal images were acquired every 3 seconds for 1-2 

minutes. Left panel shows a spread T cell subjected to high intensity laser to bleach GFP-

actin in the cytosol. The corresponding time series is in Figure 2.2 C.  Right panel shows 
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an enlarged view of the boxed region on the left and corresponds to the kymograph 

shown in Figure 2.2 C. Scale bars represent 5 µm (left) and 2 µm (right). 

 

Movie 2D. The F-actin ring collapses to the center of the IS in Jurkat cells upon 

stabilization of actin filaments, related to Figure 2.4.  

Jurkat T cells stably expressing GFP-actin were allowed to contact OKT3-coated 

coverglasses and imaged after full spreading was reached. Jasplakinolide was added to 

the wells when indicated.  Confocal 1 µm-thick Z-stacks were acquired every 3 seconds 

for 7 minutes and are shown as extended projections. Scale bars, 10 µm. 

 

Movie 2E. The actomyosin network collapses to the center of the IS in human 

primary T cells upon stabilization of actin filaments, related to Figure 2.4.  

Human primary CD4+ T cell blasts expressing GFP-actin were dropped onto OKT3-

coated coverglass and allowed to spread for 3 minutes. After full spreading was reached, 

0.5-µm thick z stack projections were collected every 3 seconds. Jasplakinolide was 

added to the imaging chamber when indicated. Similar results were obtained in 2 

independent experiments. Scale bar represents 5 µm.  

 

Movie 2F. The myosin IIA network collapses to the center of the IS in Jurkat cells 

upon stabilization of actin filaments, related to Figure 2.4.  

Jurkat E6.1 cells transiently transfected with GFP-NMHC IIA were allowed to contact 

OKT3-coated coverglass and imaged after full spreading was reached. Jasplakinolide was 
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added to the wells when indicated.  Confocal 1 µm- thick Z-stacks were acquired every 3 

seconds for 7 minutes and are shown as extended projections. Scale bars, 5 µm.  

 

Movie 2G. F-actin retrograde flow is unperturbed in cells pretreated with Y-27632, 

related to Figure 2.5.  

Jurkat T cells stably expressing GFP-actin were pretreated with Y-27632 for 15 minutes 

to inhibit myosin II activity. Cells were then allowed to spread on OKT3-coated 

coverglass and imaged to assess the dynamics of the F-actin network. Confocal 1 µm-

thick Z-stacks were acquired every 3 seconds for 7 minutes and are shown as extended 

projections. Scale bar represents 10 µm. 

 

Movie 2H. Myosin II inhibition with blebbistatin does not affect F-actin retrograde 

flow, related to Figure 2.5.  

Jurkat T cells transiently transfected with F-Tractin tdTomato were pretreated with 

blebbistatin for 30 minutes to inhibit myosin II activity. Cells were then allowed to 

spread on OKT3-coated coverglass and imaged to assess the dynamics of the F-actin 

network.  Confocal 1 µm-thick Z-stacks were acquired every 3 seconds for 1-5 minutes 

and are shown as extended projections. Scale bar, 5 µm.  

 

Movie 2I. Pre-treatment with Y-27632 and acute treatment with Jas arrests F-actin 

retrograde flow in Jurkat T cells, related to Figure 2.6.  

Jurkat T cells stably expressing GFP-actin were pretreated with Y-27632 for 15 minutes 

to inhibit myosin IIA activity. Cells were then allowed to spread on OKT3-coated 
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coverglass and imaged to assess the dynamics of the F-actin network.  During imaging, 

cells were treated with jasplakinolide when indicated. Confocal 1 µm-thick Z-stacks were 

acquired every 3 seconds for 7 minutes and are shown as extended projections. Scale bar, 

10 µm.  

 

Movie 2J. Pre-treatment with Y-27632 and acute treatment with Jas arrests F-actin 

retrograde flow in human primary T cells, related to Figure 2.6.  

Human CD4+ T cell blasts expressing GFP-actin were pre-treated with Y-27632 for 15 

minutes. Cells were then allowed to spread on OKT3-coated coverglass for 3 minutes 

before imaging. 0.5-µm thick Z-stack projections were acquired every 3 seconds. When 

indicated, 1 µM Jas was added to the imaging well. Similar results were obtained in 2 

independent experiments. Scale bar, 5 µm. 

 

Movie 2K. Myosin IIA suppression with siRNA does not affect actin retrograde 

flow, related to Figure 2.7.  

Jurkat T cells expressing GFP-actin were transfected with siRNA against the heavy chain 

of myosin IIA and used 48 hours later. Cells were allowed to spread on OKT3-coated 

coverglass, and 1 µm-thick Z-stack projections were collected every 3 seconds. When 

indicated, 1 µM jasplakinolide was added to the imaging well.  Scale bar, 5 µm.  

 

Movie 2L. T cells suppressed for IQGAP1 exhibit accelerated F-actin flow at the IS, 

related to Figure 2.8. 
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Jurkat T cells stably expressing GFP-actin were transfected with vector DNA (left) or 

shIQGAP1 plasmid (right). Cells were harvested 72 hours post transfection and 

stimulated on glass surfaces coated with OKT3.  0.5 µm-thick Z-stacks just above the 

glass interface were collected every 3 seconds for 3.5 minutes and are shown as extended 

projections.  Scale bar, 5 µm. 

 

Movie 2M. F-actin dynamics govern SLP-76 MC movement, related to Figure 2.9. 

Jurkat T cells stably expressing GFP-actin (left) or GFP-SLP-76 (right) were mixed in 

culture and pretreated with Y-27632 for 15 minutes. The cell mixture was then dropped 

onto OKT3-coated coverglass to initiate spreading. Fields of view were scanned for cells 

that had dynamic GFP-actin and SLP-76. Confocal 1 µm-thick Z-stacks were acquired 

every 3 seconds for 2.5 minutes and are shown as extended projections. Jasplakinolide 

was added to the imaging chamber when indicated. After acquisition, movie sequences of 

individual cells were cropped and tiled for side-by-side comparison. Scale bar, 5 µm.  

 

Movie 2N. SLP-76 MCs move to the center of the IS at constant velocity, related to 

Figure 2.10. 

Jurkat T cells stably expressing GFP-SLP-76 were dropped onto OKT3-coated coverglass 

and imaged after full spreading was reached. Confocal 1 µm-thick Z-stacks were 

acquired every 3.2 seconds for 4 minutes and are shown as extended projections. Scale 

bar, 5 µm.  
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Movie 2O. F-actin retrograde flow is dispensable for microtubule assembly and 

dynamics, related to Figure 2.11. 

Jurkat T cells stably expressing GFP-actin were transiently transfected with STIM1-

mCherry, pretreated with Y-27632 for 15 minutes dropped onto OKT3-coated coverglass 

for stimulation. Confocal 1 µm-thick Z-stacks were acquired every 6 seconds for 3 

minutes and are shown as extended projections. Jasplakinolide was added to the imaging 

chamber at 1 min 30 s. Scale bar, 5 µm. 

 

Movie 3A. LFA-1 conformational change at the IS is organized into a concentric 

array in T cell-B cell conjugates, related to Figure 3.1. 

Human primary CD4+ T cells were conjugated to SEE-pulsed Raji B cells for 25 min, 

and labeled with phalloidin (gray) and with antibodies to total LFA-1 (blue) as well as 

conformation-specific antibodies to extended (red) and extended open (green) LFA-1. Z 

stacks of whole conjugates were collected and rendered in 3D in the IS plane. 

 

Movie 3B. F-actin dynamics in human CD4+ lymphoblasts spreading on stimulatory 

bilayers, related to Figure 3.3. 

Human ex vivo primary T cells were blasted and transduced with Lifeact-GFP lentivirus. 

Upon protein expression, cells were allowed to interact with the stimulatory planar lipid 

bilayers and F-actin dynamics in the IS plane were assessed by live-cell confocal 

microscopy. Left cell shows an accumulation of Lifeact-GFP in the central region, while 

right cell does not have that enrichment. 
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Movie 3C. F-actin dynamics in Jurkat cells spreading on stimulatory bilayers, 

related to Figure 3.4. 

GFP-actin Jurkat T cells were allowed to spread on stimulatory bilayers containing OKT3 

and ICAM-1. Imaging was initiated after full spreading has been reached. Note the 

extensive lamellipodial protrusions. Cells were imaged every 3 seconds right above the 

interface. Scale bar, 5 µm.  

 

Movie 3D. F-actin dynamics in human CD4+ lymphoblasts spreading on OKT3-

coated coverglass, related to Figure 3.5 

Human ex vivo primary T cells were blasted and lentivirally transduced with Lifeact-

GFP. Upon protein expression, cells were allowed to interact with the stimulatory 

coverglass coated with OKT3. F-actin dynamics in the IS plane were assessed by live-cell 

confocal microscopy. Cells were imaged every 2 seconds. Scale bar, 10 µm. 

 

Movie 3E. F-actin dynamics in human CD4+ lymphoblasts spreading on OKT3- and 

ICAM-1-coated coverglass, related to Figure 3.5 

Human ex vivo primary T cells were blasted and transduced with Lifeact-GFP lentivirus. 

Upon protein expression, cells were allowed to interact with the stimulatory coverglass 

coated with OKT3 and ICAM-1. F-actin dynamics in the IS plane were assessed by live-

cell confocal microscopy. Cells were imaged every 2 seconds. Scale bar, 10 µm. 

 

Movie 3F. F-actin dynamics persist in human T cells under myosin II inhibition but 

cease completely after abrogating F-actin turnover, related to Figure 3.7. 
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Human ex vivo primary T cells were blasted and transduced with Lifeact-GFP lentivirus. 

Cells were then pretreated with Y-27 or left untreated and allowed to interact with the 

stimulatory bilayers. After full spreading had been reached, Jas was added to imaging 

chamber. Cells were imaged every 2 seconds. Scale bar, 5 µm.  

 

Movie 3G. F-actin dynamics in human CD4+ lymphoblasts spreading on OKT3-

coated coverglass in the presence of immobilized ICAM-1 and VCAM-1, related to 

Figure 3.11. 

Human ex vivo primary T cells were blasted and transduced with Lifeact-GFP lentivirus. 

Upon protein expression, cells were allowed to interact with the stimulatory coverglass 

coated with OKT3, ICAM-1 and VCAM-1. F-actin dynamics in the IS plane were 

assessed by live-cell confocal microscopy. Cells were imaged every 2 seconds. Scale bar, 

10 µm. 

 

Movie XA. Characterization of ligand mobility on mixed-mobility surfaces 

Alexa Fluor 488-labeled secondary antibody was micro-contact printed onto glass using 

PDMS stamp with 2-µm dots. Subsequently, the space surrounding the patterns was 

coated with lipid bilayer containing1% biotinylated lipid (see Appendix A for details). 

The surfaces were then incubated with Alexa Fluor 594-conjugated Streptavidin to label 

the bilayer. The resulting mixed-mobility surfaces were imaged by confocal microscopy 

every 2 seconds. A region of the pattern was photo-bleached at 10 seconds into the movie 

to test the mobility of ligands. Scale bar, 5 µm.  
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