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Parameter-Invariant Design of Medical Alarms

Abstract
The recent explosion of low-power low-cost communication, sensing, and actuation technologies has ignited
the automation of medical diagnostics and care in the form of medical cyber physical systems (MCPS).
MCPS are poised to revolutionize patient care by providing smarter alarm systems, clinical decision support,
advanced diagnostics, minimally invasive surgical care, improved patient drug delivery, and safety and
performance guarantees. With the MCPS revolution emerges a new era in medical alarm systems, where
measurements gathered via multiple devices are fused to provide early detection of critical conditions. The
alarms generated by these next generation monitors can be exploited by MCPS to further improve
performance, reliability, and safety.

Currently, there exist several approaches to designing medical monitors ranging from simple sensor
thresholding techniques to more complex machine learning approaches. While all the current design
approaches have different strengths and weaknesses, their performance degrades when underlying models
contain unknown parameters and training data is scarce. Under this scenario, an alternative approach that
performs well is the parameter-invariant detector, which utilizes sufficient statistics that are invariant to
unknown parameters to achieve a constant false alarm rate across different systems. Parameter-invariant
detectors have been successfully applied in other cyber physical systems (CPS) applications with structured
dynamics and unknown parameters such as networked systems, smart buildings, and smart grids; most
recently, the parameter-invariant approach has been recently extended to medical alarms in the form of a
critical shunt detector for infants undergoing a lung lobectomy. The clinical success of this case study
application of the parameter-invariant approach is paving the way for a range of other medical monitors.

In this tutorial, we present a design methodology for medical parameter-invariant monitors. We begin by
providing a motivational review of currently employed medical alarm techniques, followed by the
introduction of the parameter-invariant design approach. Finally, we present a case study example to
demonstrate the design of a parameter-invariant alarm for critical shunt detection in infants during surgical
procedures.
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surgical procedures, biomedical monitoring, data models, detectors, lungs, mathematical model, medical
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Parameter Invariant Design of Medical Alarms
James Weimer, Radoslav Ivanov, Alexander Roederer,

Sanjian Chen, and Insup Lee

F

The recent explosion of low-power low-cost
communication, sensing, and actuation tech-
nologies has ignited the automation of medi-
cal diagnostics and care in the form of medi-
cal cyber physical systems (MCPS). MCPS are
poised to revolutionize patient care by pro-
viding smarter alarm systems, clinical decision
support, advanced diagnostics, minimally in-
vasive surgical care, improved patient drug
delivery, and safety and performance guaran-
tees. With the MCPS revolution emerges a new
era in medical alarm systems, where measure-
ments gathered via multiple devices are fused
to provide early detection of critical conditions.
The alarms generated by these next generation
monitors can be exploited by MCPS to further
improve performance, reliability, and safety.

Currently, there exist several approaches to
designing medical monitors ranging from sim-
ple sensor thresholding techniques to more
complex machine learning approaches. While
all the current design approaches have dif-
ferent strengths and weaknesses, their perfor-
mance degrades when underlying models con-
tain unknown parameters and training data
is scarce. Under this scenario, an alternative
approach that performs well is the parameter-
invariant detector, which utilizes sufficient
statistics that are invariant to unknown pa-
rameters to achieve a constant false alarm
rate across different systems [1]. Parameter-
invariant detectors have been successfully ap-
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lee@cis.upenn.edu

plied in other cyber physical systems (CPS)
applications with structured dynamics and un-
known parameters such as networked systems,
smart buildings, and smart grids; most recently,
the parameter-invariant approach has been re-
cently extended to medical alarms in the form
of a critical shunt detector for infants undergo-
ing a lung lobectomy [2]. The clinical success
of this case study application of the parameter-
invariant approach is paving the way for a
range of other medical monitors.

In this tutorial, we present a design method-
ology for medical parameter-invariant moni-
tors. We begin by providing a motivational
review of currently employed medical alarm
techniques, followed by the introduction of the
parameter-invariant design approach. Finally,
we present a case study example to demon-
strate the design of a parameter-invariant
alarm for critical shunt detection in infants
during surgical procedures.

COMMON MEDICAL ALARM DESIGNS
Design of medical alarms has its roots in classi-
cal fault/anomaly detection and identification
(see [3], [4], [5], [6] and citations within). While
a complete review of the related literature is
beyond the scope of this tutorial, this sec-
tion provides a high-level overview of com-
mon medical alarm designs, including sensor
thresholding, model-based, data-driven-based,
and hybrid approaches, as motivation for the
parameter-invariant design.

Sensor Threshold Alarms
The most common detectors currently in
widespread use in hospitals are threshold
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alarms. Threshold alarms monitor a single
physiologic signal as measured by a biosen-
sor [7]. When the value of the signal crosses
a predefined fixed threshold, the system pro-
duces an alarm that can be observed by a clin-
ician. The goal of a threshold alarm is to alert
a clinician whenever the patient transitions
from a normal, healthy state to a dangerous,
unhealthy state based on the physiologic signal
being monitored.

Threshold alarms are popular because they
are simple; they are easy to implement, and
easy for humans to understand. However, ex-
tensive research has shown that single sensor
threshold alarms are severely limited. Vari-
ous studies have documented sensor threshold
false alarm rates ranging from 57% to 99% of all
alarms, causing alarm fatigue in caregivers [8].
Thus threshold alarms can ultimately fail to
provide clinicians with a reliable understand-
ing of their patients’ state.

Model-Based Alarms
Model-based fault detection is a vast and so-
phisticated area in control engineering, where
varying model fidelities are needed across ap-
plications [3]. In medicine, physiological mod-
els can be leveraged to provide personalized
alarms and treatment advice. Models of the
target physiological process can be used to
interpret clinical measurements and estimate
the patient’s state in real-time. The information
can then be used to generate predictive alarms
or advice treatment actions [9].

Developing a robust model-based alarm sys-
tem requires a high-fidelity model of the phys-
iological process that is being monitored or
controlled. To apply the model-based approach
to physiological systems in general, the model
must be expressive enough to be able to track
all relevant states, and at the same time, it must
still be identifiable from measurement data so
that it is usable in a practical clinical setting.
The trade-off between complexity and usability
is one of the fundamental grand challenges in
physiological modeling [10].

Data Driven Alarms
The unreliability of underlying physiological
processes has led towards the data-driven de-
sign of smart alarms. The data-driven approach

leverages large amounts of patient data to learn
a model directly and employ the model for
clinical detection. Data-driven approaches have
been successfully applied in many medical ap-
plications and have resulted in better monitor-
ing systems [11].

However, there are often practical challenges
to data-driven approaches in the medical do-
main. Machine learning algorithms usually re-
quire rich training data with accurate event
annotations [6]. In the medical domain, such
annotations are often rare or unavailable [8].
Moreover, temporal reasoning over clinical
data using machine learning techniques is still
an open and vibrant area of research [11],
where challenges arise due to the often large
number of possible features which must be
learned using possibly restrictive data sets.

Hybrid Alarms
In an attempt to leverage the strengths of mul-
tiple alarm designs, various hybrid approaches
to medical monitoring have been proposed
(e.g. [12]). In general, these techniques have
shown promise by leveraging the strengths
of various approaches to overcome their col-
lective shortcomings. However, these hybrid
approaches require some combination of ac-
curate models and rich training data [6], [10].
As an alternative to the designs presented in
this section, the following section describes the
parameter-invariant alarm design approach,
which has been shown to perform well in sit-
uations where model parameters are unknown
and training data is scarce [2].

PARAMETER-INVARIANT ALARM DESIGN
In applications where patient or condition vari-
ability precludes accurate models and rich
training data, the parameter-invariant design
provides an alternative approach. A parameter-
invariant design represents a guided approach
to the removal of unknown or corrupted
signals from the measurement. To design a
parameter-invariant test, we assume there ex-
ists a real-world process P which can be mod-
eled as MP and there exists a test, TH, for
the hypothesis (question) H. In designing a
parameter-invariant alarms, three design re-
quirements must be satisfied:
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• TH is invariant to MP
• MP is accurate for P
• TH is accurate for H

The remainder of this section discusses the
above requirements, while the subsequent sec-
tion provides a step-by-step tutorial example
for designing a parameter-invariant alarm.

Foundations of Parameter-Invariant Design
At the core of the parameter-invariant alarm
design is the requirement that the test, TH,
is invariant to the unknown model parame-
ters, MP . In this subsection, we first intro-
duce the high-level mathematical foundations
for parameter-invariant design, then provide
examples of three parameter-induced transfor-
mations and their respective invariant tests
common in real-world medical monitoring ap-
plications namely: bias, scale, and rotation.

To begin, let us assume that the unknown
model parameters induce a group of transfor-
mations, GM, on the measurements, y. A test
statistic t(y) is invariant to the group of trans-
formations, GM, if and only if

∀g ∈ GM t(y) = t(g(y))

where, in words, we say the statistic is in-
variant to the group of transformation if the
statistic has the same value regardless of the
unknown parameters. There are many invari-
ant statistics (e.g. t(y) = 0 is trivially invari-
ant to all parameters, but is useless as a test
statistic.), thus we wish (if possible) to choose
an invariant statistic that is maximally invariant,
namely the statistic which only removes the
effect of the unknown parameters. This concept
is captured mathematically by the following
implication: for any two measurement vectors
y′ and y′′,

t(y′) = t(y′′) −→ ∃g ∈ GM,y′ = g(y′′).

Except in rare cases, a maximally invariant
statistic cannot be realized; however, design-
ing the statistic to be near maximally invari-
ant improves the test performance. To present
different groups of transformations and their
corresponding maximally invariant statistics,
the remainder of this section utilizes Figure 1
illustrating transformations induced by bias,
scale, and rotation.

Bias occurs when the outputs are (partially)
generated through a known process with un-
known parameters (e.g., the glucose response
of an individual is governed by the individ-
ual’s insulin sensitivity, which varies across
the population). A subspace bias is illustrated
in Figure 1a, where outputs y are summed
with a vector Hθ of unknown magnitude and
direction (in a known subspace,

〈
H‖

〉
) such

that y+Hθ results. Thus, we say that θ induces
a group of transformations Gθ = {g | g(y) =
y+Hθ}. From the Figure, we observe that the
vector statistic t(y) = H⊥y is invariant to any
bias in the subspace

〈
H‖

〉
, as H⊥H = 0, and

also maximal since only the subspace
〈
H‖

〉
is

removed from the measurements.1
Scaling occurs when the outputs are gener-

ated by a process which multiplies them by
an unknown magnitude. All robust alarms are
normalized by the noise variance. In situations
where the noise variance is unknown (e.g. the
variance of metabolism in a diabetic popu-
lation), the normalization process induces an
unknown scaling of the measurements. The
effect of scaling is captured in Figure 1b, where
an output y is scaled according by σ such that
σy results, (i.e. Gσ = {g | g(y) = σy}. From
the Figure, we observe that the direction of
the measurement, t(y) = y/‖y‖, is maximally
invariant to scaling.

A rotation occurs when a translation is per-
formed on a signal in a subspace without af-
fecting the magnitude of the signal. In practical
applications, rotations manifest as the eigen-
vectors of the measurement covariance matrix,
in a subspace. The effect of a rotation is il-
lustrated in Figure 1c, where an output y is
rotated in the subspace

〈
H‖

〉
by applying a

unitary operation, Q ∈ U 2, in the subspace of〈
H‖

〉
, denoted as UQU> when UU> = H‖.

The corresponding group of transformations
induced by a rotation in H‖ is written as
GQ(y) = {g | g(y) =

(
H⊥ +UQU>

)
y}. From

the Figure, we observe that the angle between
the cone of rotation and the subspace

〈
H⊥

〉
,

namely t(y) = cos−1
(
‖H

⊥y‖
‖y‖

)
is invariant to an

arbitrary rotation in
〈
H‖

〉
.

1. See [1] for proofs of invariance and maximality for all
transformations considered herein.

2. U denotes the set of unitary matrices.
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Fig. 1: Types of transformations included in the transformation group G.

While bias, scaling, and rotation represent
three types of translations for which individual
tests can be designed invariant, combinations
of these transformations can also be consid-
ered. A detailed description of the composi-
tional translation and the resulting parameter-
invariant statistics is provided in [1]. Moreover,
the set of transformations presented herein
does not represent a complete set of transfor-
mations; however we have found bias, scaling,
and rotation sufficient to design powerful de-
tectors in many real-world applications.

Physiological Process Modeling

To develop a model, MP , which is accurate
for a physiological process, P , we consider
classical compartment models of physiological
phenomena [10]. A compartmental model is
(typically) a set of differential or difference
equations in which the state variables represent
the quantities of the target substances within
each compartment and the equations represent
the interconnections among the compartments.
The rates at which the substances enter or leave
a compartment can be captured by a set of
model parameters. Since most compartmental
models are derived from first-principle physics,
those parameters usually have physiological
meanings: for example, a parameter may rep-
resent how fast a chemical diffuses from one
body compartment (e.g., an organ or a type of
tissue) to another.

In general, compartment models can be de-
signed to arbitrary accuracy through a natu-
ral grouping (or ungrouping) of physiological
effects. For instance, in the glucose-insulin sys-
tem one can model the cumulative effect of car-
bohydrate ingestion as a single first-order dif-
ferential equation representing collectively the
stomach, intestine, and blood compartments
as the glucose system, or one can model each
of the three physical compartments individu-
ally as interactive systems. When designing a
parameter-invariant alarm, the choice in model
fidelity affects the performance of the resulting
detector. As a rule of thumb, the designer
should utilize a model which captures the gen-
eral trend of the system while simultaneously
ensuring that the unknown parameters of the
resulting model yield an invariant statistic. This
represents a design tradeoff which varies with
the monitoring application.

Regardless of the model fidelity, the
parameter-invariant design requires two
parameterized models: null model (H0) and
event model (H1). The null model describes
the normal physiology, while the event model
describes the physiology in the presence of
the event or condition. After discussing the
design of a hypothesis test in the following
subsection, we will demonstrate the modeling
approach in a case study example.
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Hypothesis Testing
Lastly, we consider that a test, TH, must be
accurate for the hypothesis problem, H. While
the parameter-invariant approach utilizes two
models (null and event), it is unlikely that
these two models always accurately explain all
possible scenarios. Thus, we utilize two statis-
tics, t0(y) and t1(y), under to test the different
hypotheses independently. The first statistic,
t0(y), assumes that the null hypothesis, H0, is
true, and aims to test the event hypothesis,
H1. The second statistic, t1(y) assumes that the
event hypothesis is true and aims to test the
null hypothesis. To ensure a minimum level
of performance, the parameter-invariant design
bounds the following probabilities:

P [t0(y) 6∈ φ0] ≤ α and P [t1(y) 6∈ φ1] ≤ β

where α and β are the probability of false alarm
(type I error) and probability of miss (type II
error), respectively, and φ0 and φ1 define when
each tests accepts the assumed true hypothesis
(event or null). Employing these acceptance
regions, the parameter-invariant test decides to
sound an alarm based on the following table.

TABLE 1: Test Decision Space for Alarm System

t0(y) 6∈ φ0 t0(y) ∈ φ0
t1(y) 6∈ φ1

Warning
(inaccurate model) No alarm

t1(y) ∈ φ1 Alarm Warning
(indecision)

In Table 1, the parameter invariant test makes
a definitive decision (i.e., alarm or no alarm)
when both statistic tests agree. When the tests
do not agree, the parameter-invariant alarm
generates one of two types of warnings. An
indecision warning occurs when neither test
rejects its assumption, indicating that there is
not enough power in the test to disambiguate
between the two hypotheses to the level of ac-
curacy specified. A model inaccuracy warning
occurs when both tests reject their assumptions,
indicating neither model accurately describes
the measurements. The benefit of this two-
sided testing approach is that the event (or
null) hypothesis won’t be accepted/rejected
just because there wasn’t enough power or
because the models were inaccurate.

EXAMPLE: CRITICAL SHUNT ALARM
As a tutorial for the parameter-invariant alarm
design, this section develops a parameter-
invariant alarm to provide early detection of
critical-pulmonary shunts in infants during
lung lobectomy surgeries, as described in detail
in [2].

Hypothesis Formulation
In intubated patients, a pulmonary shunt can
result in single lung ventilation through the
insertion of the endotracheal tube into the main
stem bronchus of the healthy lung. A critical
shunt occurs when the single lung ventilation
is insufficient to maintain the blood oxygen
content. Currently, the level of oxygen in the
blood is monitored at the peripheral capillaries
(e.g. finger tip) through a pulse oximeter, which
does provide an accurate measure of the arte-
rial blood oxygen content, but is time-delayed
and once the measurement decreases the pa-
tient is already in a critical state. The aim of this
monitor is to use respiratory measurements,
sampled at 15 second intervals, corresponding
to respiratory rate, end-tidal CO2 (i.e. amount
of CO2 exhaled), and tidal volume (i.e. inhaled
air volume) to provide accurate early detection
of the critical pulmonary shunts. Thus the null
hypothesis, in words, is no shunt has occurred
and the event hypothesis is a shunt has occurred.

Physiological Model
Recalling that the physiological model must be
accurate for the process while simultaneously
allowing for a test statistic to be designed in-
variant to any unknown parameters, we aim
to develop a model which captures the general
trends in the blood oxygen content under the
shunt and no shunt scenarios. The process
which relates the hypotheses (i.e. the absence
or presence of a shunt) to the respiratory mea-
surements is governed by the circulatory and
respiratory dynamics. A simplified schematic
model of the gas partial pressures in the circu-
latory and respiratory systems is illustrated in
Figure 23, where the compartments of interest
are the airways (denoted by PeO2, PeCO2 and

3. For a complete model explanation, including supporting
physiological evidences, see our previous work [2].
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Fig. 2: A simplified schematic model of O2 and
CO2 partial pressures in the respiratory and
cardiovascular systems.

PiO2, PiCO2 for expiration and inspiration, re-
spectively), the alveoli (PAO2, PACO2), arteries
(PaO2, PaCO2), pulmonary capillaries (PpO2,
PpCO2), veins (PvO2, PvCO2) and pulmonary
veins (PR

v O2, PR
v CO2 and PL

v O2, PL
v CO2 for

the right and left side, respectively), also re-
ferred to as “lung-specific partial” pressures.
For completeness, the end-tidal airway CO2

partial pressure (i.e. PeCO2) is measured via
an anesthesia machine along with the tidal
volume and respiratory rate.

Despite the complexity of the cardio-
pulmonary system, we can capture the general
physiological trends by utilizing three compart-
ments corresponding to the (1) cardio-vascular
system, (2) CO2 diffusion, and (3) the respi-
ratory system. As shown in Figure 3a, the
general trend of the cardio-vascular system is
the blood returning to the heart via veins has
an oxygen (carbon dioxide) content approx-
imately equal to a time-delayed measure of
the blood leaving the heart via arteries, minus
(plus) an unknown constant corresponding to
the effects of metabolism. Although, this model
only captures the expected trend, we include
noise with an unknown uncertainty to account
for the model inaccuracies.

Under no shunt, alveolar diffusion governs
the transfer of gases between the blood and air
in the lungs. We recall from [2] that due to the
diffusive capacity of CO2 and O2, the change in
blood CO2 content is inversely proportional to

the volume of air in the lungs, while the change
in blood O2 content depends not only on the
lung volume, but also on unknown parame-
ters representing alveolar wall thickness, lung
health, etc. Since the physiological model must
be both accurate and allow for an invariant
test to be designed (to be discussed), we elect
to use CO2 content as a proxy for O2 content
since, in general, an increase in CO2 content
corresponds to a decrease in O2 content. Thus,
we model the diffusion of CO2 as shown in
Figure 3a, where α(t) ≈ ᾱ

V (t)
+σn(k) with ᾱ de-

noting an unknown proportionality constant,
V (t) is the effective lung air volume (i.e. tidal
volume times respiratory rate time sampling
rate) and σ denotes the unknown certainty in
our model thus far.

In the presence of a shunt, only one lung
participates in diffusion as indicated by Fig-
ure 3b, which tends to increase CO2 blood
content (and decrease the O2 blood content).
Lastly, we observe that the alveolar CO2 partial
pressure is approximately equal to the expira-
tory CO2 partial pressure such that an increase
in expiratory CO2 indicates an increase blood
CO2 content (corresponding to a decrease in
blood O2 content).

The details of the model developed in this
section are provided in [2]. Equally important
to the accuracy of the model is the ability
to remove the effects of the unknown param-
eters. Following [2], one may build a state-
space model of the system (not shown in this
paper due to space constraints), and after some
algebraic manipulation, the time-series mea-
surement can be modeled as y = Fiθ+ σn un-
der each hypothesis with lumped parameters
θ = [ᾱ, µiᾱ]>, and n denoting noise.

Parameter-Invariant Test

We observe that the unknown parameters, θ
and σ induce measurement transformations
corresponding to bias and scaling in the mea-
surements (i.e. Gi = {g|g(y) = σy + Fiθ} for
i ∈ {0, 1}). The invariant statistics to the groups
of transformations G0 and G1, respectively, are

t0(y) =
y>P01y

y> (P0 − P01)y
(1)
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(a) System without a shunt. (b) System with a shunt.

Fig. 3: Model of the respiratory and cardiovascular partial pressures with and without a shunt.

and

t1(y) =
y>P10y

y> (P1 − P10)y
(2)

where,

Pi = I − Fi
(
F>i Fi

)−1
F>i

Pij = PiFj
(
F>j PiFj

)−1
F>j Pi.

For t0(y), invariance is established with respect
to G0 by first projecting the measurements
onto the null space of F0 (eliminating the bias
induced by θ) using P0. Then, a ratio is con-
structed where the numerator is the energy
of the remaining measurements explained by
signal under the event hypothesis, P0F1, and
the denominator is the energy not explained by
the signal, thus eliminating the scaling induced
by σ.

DISCUSSION AND ONGOING WORK

The parameter invariant design approach
overview in this paper addresses a design
problem commonly encountered in medical ap-
plications. Based on an evaluation (detailed
in [2]), the critical shunt alarm evaluated on
real-patient data available from the Children’s
Hospital of Philadelphia (CHOP) from lobec-
tomy surgeries over the last decade, for 26 pa-
tients with shunt-induced hypoxia, the detector
gave early predictions for about 80% of the
cases while maintaining a false alarm rate of
about 2 false alarms per hour as tested on 172

open surgeries that were known to not have a
shunt. Ongoing work in designing parameter
invariant medical alarms include the develop-
ing alarms for hypovolemia and hypoglycemia
conditions. The design of detectors for these
conditions will give insight into the robustness
of the parameter-invariant design.
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