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users’ behavior. We use machine learning techniques to analyze the user behavior from a clinical dataset that
we collected on 55 T1D patients who use insulin pumps. We demonstrate the usefulness of the ETC behavior
modeling framework by performing in silico experiments. To this end, we integrate the user behavior model
with an individually parameterized glucose physiological model, and perform probabilistic model checking on
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Abstract—About 30%-40% of Type 1 Diabetes (T1D) patients
in the United States use insulin pumps. Current insulin infusion
systems require users to manually input meal carb count and
approve or modify the system-suggested meal insulin dose. Users
can give correction insulin boluses at any time. Since meal
carbohydrates and insulin are the two main driving forces of
the glucose physiology, the user-specific eating and pump-using
behavior has a great impact on the quality of glycemic control.

In this paper, we propose an “Eat, Trust, and Correct” (ETC)
framework to model the T1D insulin pump users’ behavior. We
use machine learning techniques to analyze the user behavior
from a clinical dataset that we collected on 55 T1D patients
who use insulin pumps. We demonstrate the usefulness of the
ETC behavior modeling framework by performing in silico
experiments. To this end, we integrate the user behavior model
with an individually parameterized glucose physiological model,
and perform probabilistic model checking on the user-in-the-loop
system. The experimental results show that switching behavior
types can significantly improve a patient’s glycemic control
outcomes. These analysis results can boost the effectiveness of
T1D patient education and peer support.

Index Terms—Type 1 Diabetes; Patient behavior; Data-driven
modeling and analysis; Data-driven verification; Blood glucose
control; Insulin pump; Closed-loop verification; Probabilistic
model checking; Physiological modeling; Medical Cyber-Physical
Systems;

I. INTRODUCTION

Diabetes affects approximately 29 million people (or 9.3%
of the population) in the United States and is the seventh
leading cause of death [1]. Type 1 diabetics (more than 1
million in the United States) and some Type 2 diabetics depend
on intensive daily insulin therapy to control their blood glucose
level and avoid the numerous serious long-term complica-
tions of hyperglycemia, such as cardiovascular disease, nerve
damage, blindness, and kidney damage. Advanced insulin

This research was supported in part by NSF grants CNS-1035715, IIS-
1231547, NIH 1U01EB012470-01, the Public Health Services research grant
R01- DK091331 (to M.R.R.), the James S. McDonnell Foundation Post-
doctoral Fellowship, and in part by the DGIST Research and Development
Program of the Ministry of Science, ICT and Future Planning of Korea (CPS
Global Center). The authors would also like to acknowledge support from
the Human Metabolism Resource of the Institute for Diabetes, Obesity &
Metabolism at Penn

pump technology provides continuous subcutaneous insulin
infusion (CSII) therapy. It is estimated that about 400, 000 T1D
patients in the United States use insulin pumps [2]. Reviews of
clinical studies suggest that CSII provides improved glycemic
control [3], [4].

Current insulin pumps require close supervision from the
user in many operational aspects. The user needs to do a carb
count for each meal so that the pump software can recommend
an insulin bolus dose based on the estimated carbohydrate ratio
and insulin sensitivity parameters. The user needs to approve
or modify every system-suggested bolus dose as there is
currently no insulin pump approved to the U.S. market that can
deliver boluses automatically without user acknowledgment.

Although the use of insulin pumps has been quickly increas-
ing in recent years, there is currently no official guidelines
for medical supervision of this complicated diabetes treatment
system. A recent official consensus statement by clinical
expert committees stresses critical needs on evidence-based
research to better understand the impact of insulin pumps
on diabetic users in various physiological, psychological, and
social aspects (see the AACE/ACE report [5]). Clinical studies
on the use of insulin pumps predominantly focus on evaluating
the impact on physiological metrics, such as the mean glucose
value, rate of hypoglycemia, and HbA1c levels [6], [7], [8].
Very few results exist on understanding the behavioral aspects
of how diabetic users interact with insulin pumps, which
are important factors in assessing how much a patient may
benefit from the CSII therapy [5]. For example, the behavioral
factors include the user’s eating patterns, adherence to pump-
recommended insulin doses, and the level of attention to
glycemic control.

Quantitative analysis of insulin pump user behavior is an
important yet largely open research problem. Recent advances
in insulin pump technology demonstrate a clear trend towards
a high level of automation [9]. At the same time, a proven
safe and effective fully closed-loop glycemic control system
that requires no user supervision is not likely to be available
in the near future [10]. The emerging intelligent insulin pumps
introduce new challenging engineering concerns: for example,



how much the user will trust the automation features, whether
he/she will eat more carbohydrates while believing the pump’s
safety features can “handle it”, and whether he/she may be-
come less attentive to glucose monitoring. Patek, Chen, Keith-
Hynes and Lee discuss the potential hazards associated with
the shared human-software control in a multi-mode artificial
pancreas system [11], but their work do not provide a solution
to model the user behavior and quantitatively evaluate its
impact on the physiology.

The fundamental heterogeneous nature of human-in-the-
loop control systems present critical challenges to modeling,
verification, and validation. This general problem started to
garner increasing attention in recent years and a few domain-
specific approaches exist. Sadigh et al. propose a data-driven
probabilistic modeling method to verify human driver behav-
ior [12]. The form of the proposed model is highly specific
to automotive applications and may not fit other domains.
Ahmeda et al. apply generic statistical models (e.g., Bayesian
Networks and Gaussian Processes) to analyzing human-
automation teamwork in unmanned aerial vehicles [13], but
their method requires sufficient controlled experiments under
different workload scenarios, which are usually not feasible
for testing invasive clinical treatment systems. Webster et al.
describe an approach to verify a home care robot system using
the Brahms specification language [14], but the user models
in their study capture only high-level events and cannot model
the fine-grained quantitative processes such as the physiology.
Because of their relative limitations, those existing techniques
are not directly applicable to evaluating the physiological
control systems such as the insulin pumps.

This paper makes several contributions on analyzing, mod-
eling, and evaluating the insulin pump user behavior. First,
we present statistical analysis results of a clinical dataset
that demonstrate different diabetic user behavioral patterns.
Second, we propose a so-called “Eat, Trust, and Correct”
(ETC) modeling and analysis framework that captures the
three key aspects of diabetic users’ behavior in interacting
with insulin pumps. We then use machine learning techniques
to extract several representative user behavioral patterns from
the patients’ ETC models. Finally, we pair the user behavior
model with an individually parameterized glucose physiologi-
cal model, and evaluate how different behavioral patterns im-
pact the individualized glucose physiology by running closed-
loop verification on a probabilistic model checker.

The remainder of the paper is organized as follows: Sec-
tion II presents the “Eat, Trust, and Correct” (ETC) framework,
the statistical analysis results of extracting ETC behavior
patterns from the CSII clinical dataset, and in silico exper-
imental results demonstrating the impact of patient behavior
change on glycemic control outcomes; Section III describes
the methodological details of the ETC behavior modeling, data
mining, physiological model individualization, and probabilis-
tic closed-loop verification; Finally, Section IV concludes the
paper and discusses future work.

Fig. 1. The user-in-the-loop CSII system architecture.

II. “EAT, TRUST, AND CORRECT” (ETC) FRAMEWORK

In this section, we propose an “Eat, Trust, and Correct”
(ETC) modeling framework to classify the behavior types of
T1D patients who use insulin pumps. We present the statistical
analysis results of different ETC behavior patterns from a
CSII clinical dataset. We also demonstrate the utility of this
framework with in silico closed-loop experimental results that
demonstrate the impact of patient behavior change on the
glycemic control outcomes.

A. The Closed-loop CSII System and the ETC Behavior Mod-
eling Framework

Figure 1 illustrates an overview of the CSII system that we
consider in this paper. The system is a physiological control
loop that is closed by the user. In this system, the user and
patient are the same person. The Continuous Glucose Mon-
itoring (CGM) sensor periodically transmits a subcutaneous
glucose measurement to the pump and the CGM readings can
also be seen by the user. There are two inputs to the patient’s
physiology: meal carbohydrates and insulin. When the user
eats, he/she inputs the meal information into the pump Bolus
Wizard R© (BWZ) feature1, which is a bolus advisory feature
that calculates a recommended insulin bolus dose. The user
needs to approve or modify every BWZ-recommended bolus.
The user can also initiate correction insulin boluses at any
time.

There is no automatic insulin delivery in current insulin
pumps and the user has exclusive control authority. In this
paper, we model the user behavior and evaluate how different
user behavior patterns may impact the patient’s glycemic con-
trol outcomes. In the closed-loop user, pump, and physiology
system shown in Figure 1, the user exercises control authority
through three channels: 1) eating, which represents the user’s
internal interaction with his/her own physiology; 2) approving
or modifying BWZ-recommended boluses; 3) taking correc-
tion insulin boluses. Based on this observation, we propose
the ETC behavior modeling framework that includes the three
key aspects for the user’s behavior in the CSII control loop:

1All patients in this study use the Medtronic systems, in which the bolus
calculator is called Bolus Wizard (BWZ). In this paper, we use “BWZ” to
refer to the bolus calculator in an insulin pump, but the methods and findings
are certainly not specific to any particular manufacturer’s products.



• Eat: how often a patient eats throughout a day and what
the meal carb count distributions are at different times of
the day;

• Trust: the likelihood of a patient following the BWZ
recommended bolus doses, and if not, how much dosage
he/she adjusts;

• Correct: how often a patient takes correction boluses and
what the dose distributions are at different times of the
day.

B. The CSII Clinical Dataset and Patient Behavior Pattern
Analysis

We collect the CSII system data from 55 T1D patients
(mean ± standard deviation of age: 45.7 ± 15.3 years; mean
± standard deviation of body weight: 79.2± 21.9 kilograms)
during their clinical visits to the diabetes center in the Univer-
sity of Pennsylvania Health System (with IRB approval). The
patients all use insulin pumps augmented with a CGM sensor.
The average time range of a patient’s data is 30.6 days, and
we assume a patient’s behavior pattern does not significantly
shift over this relative short time interval. Analyzing changing
behavior patterns would require a larger time span of data on
each patient. A national registry of T1D patients receiving care
in diabetes centers, of which Penn is a participating center,
indicates that 60% of adult patients use insulin pumps and
15% use CGM sensors [15]. So from the 932 patients with
T1D seen at the University of Pennsylvania in the past year,
84 would be expected to use both an insulin pump and a CGM
sensor. Thus, the 55 patients included in this study represent
the majority of patients expected to be utilizing this sensor-
augmented CSII technology in the management of their T1D
at the University of Pennsylvania.2

The dataset includes two parts: 5-minute sampled CGM
measurements and insulin pump data. The insulin pump data
contains two sections: insulin delivery logs and BWZ data.
The insulin delivery logs record the insulin basal rate at points
of change, the user selected insulin bolus doses, and the
pump delivered insulin bolus doses. The insulin basal rate is
a low continuous infusion rate and it changes at several pre-
scheduled times of the day. The insulin boluses consist of the
mealtime boluses and non-mealtime boluses, which we call
correction boluses in this paper. All data are time-stamped to
the precision of second.

The BWZ calculates recommended bolus doses based on
three pieces of information: (1) the meal bolus dose that is cal-
culated from the carbohydrate input and the estimated patient-
specific carbohydrate ratio, which represents the insulin dose
needed for each unit carbohydrate input; (2) the correction
bolus dose that is calculated from the difference between the
current glucose level and the target glucose level (e.g., 100
mg/dL), and the estimated patient-specific insulin sensitivity,
which represents the insulin dose needed for lowering a unit
glucose value; (3) the active insulin on board, which is an

2We had to exclude some patients from the dataset because of missing data,
i.e., for those patients, there are not enough CGM measurements and insulin
pump records that overlap in time.

(a) Eat E1: prominent regular peak meal times with low inter-meal snacks

(b) Eat E2: regular peak meal times with moderate inter-meal snacks

(c) Eat E3: no regular peak meal times

Fig. 2. Aggregated mean daily meal intake distributions of all patients in
three Eat clusters.

estimated amount of residual insulin in the physiological
system. The BWZ data section includes the following data
fields: user-reported carb counts, estimated correction bolus
doses, estimated meal bolus doses, estimated active insulin, the



(a) Trust T1: high probability of following BWZ-recommended doses (b) Trust T2: high probability of increasing BWZ-recommended doses

(c) Trust T3: moderate probability of increasing BWZ-recommended doses (d) Trust T4: high probability of decreasing BWZ-recommended doses

Fig. 3. Aggregated scatter plots of BWZ-recommended doses versus user-selected doses of all patients in four Trust clusters.

target glucose levels, carbohydrates ratios, insulin sensitivity
values, and BWZ-recommended bolus doses. Next, we present
the key findings of analyzing the ETC behavioral metrics from
the CSII clinical dataset.

“Eat” Behavior Analysis. The BWZ data contains patient-
reported meal carb counts and meal times. For each patient, we
aggregate the meal data throughout the entire data collection
time interval and calculate the patient-specific distribution of
the carb count at different times of the day. We then feed all
patients’ meal distribution data into an unsupervised learning
algorithm to identify clusters (Section III explains the technical
details of clustering). Each cluster contains a subset of the
patients with similar meal distribution patterns. We identify
three Eat clusters from the CSII dataset. Figure 2 illustrates the
aggregated average daily meal intake statistics of the patients
within each cluster.

To calculate meal frequency over the data collection time
interval, we round each meal time to the nearest whole hour
time. In Figure 2, the red solid line (mapped to the right Y-
axis) is a connected-dot line of meal frequencies at 25 hour

times (0-24 Hours): for example, a meal frequency of 0.3 at
time 8AM in Figure 2(a) means for those patients in cluster
E1, on average 30% of the days a patient would eat a meal
around 8AM. The corresponding point on the blue dashed line
(mapped to the left Y-axis) is the mean carb count per meal
over all the meals around 8AM of all the patients within cluster
E1.

Figure 2 shows three distinct daily meal intake patterns,
denoted as subtypes E1, E2, and E3. The E1 subtype shown
in Figure 2(a) represents patients who consistently eat three
regular meals (peak frequency times are breakfast at 8AM,
lunch at 1PM, and dinner at 7PM) with some morning and
afternoon snacks around 10AM and 4PM, respectively. The E1
patients rarely eat in the late night and early morning. The E2
subtype shown in Figure 2(b) represents patients who eat three
regular meals with more morning and afternoon snacks than
the E1 patients. The E2 patients are also more likely to eat in
the late night and early morning than those in cluster E1. The
average carb counts per meal at different mealtimes are similar
in the E1 and E2 patients. The E3 subtype shown in Figure 2(c)



represents patients who eat at near uniform frequencies in the
daytime. Those patients do not exhibit regular peak meal times
and tend to eat slightly lower carb meals when compared to
the E1 and E2 patients.

“Trust” Behavior Analysis. The BWZ feature recommends
a bolus dose when the user activates it at each mealtime.
In the CSII dataset, we iterate through the records of user-
selected insulin boluses and do a timestamp matching to
compare the BWZ-recommended doses with the correspond-
ing user selected doses. For each patient, we aggregate all
pairs of [BWZ-recommended dose, user-selected dose] and
calculate the probabilities of the patient following, increasing,
or decreasing the BWZ-recommended doses, as well as the
magnitudes of dose adjustment. We then feed all patients’
BWZ-adherence profiles, each of which consists of the three
probabilities, into a clustering algorithm (Section III describes
the details) and identify four clusters, each of which represents
a group of patients with similar BWZ-adherence patterns.

Figure 3 shows the aggregated scatter plots of the [BWZ-
recommended dose, user-selected dose] pairs of all the patients
in each cluster. The clusters are denoted as subtypes T1, T2,
T3, and T4. The T1 subtype shown in Figure 3(a) repre-
sents patients who strongly prefer following BWZ doses and
only occasionally make adjustments. Note that in Figure 3(a)
and 3(c), most scatter dots are heavily overlapped on the slope
= 1 red solid line. The T2 subtype shown in Figure 3(b)
represents patients who most of times prefer higher doses than
the BWZ-recommended values with significant dose increases.
The T3 subtype shown in Figure 3(c) represents patients
who mostly follow the BWZ doses and sometimes make
moderate adjustments, most of which are increasing the BWZ-
recommended doses. The T4 subtype shown in Figure 3(d)
represents patients who mostly follow the BWZ-recommended
doses and sometimes make moderate adjustments, most of
which are decreasing the BWZ doses.

The clustering algorithm does not find a “negative image”
subtype to T2, which would represent patients who fre-
quently make aggressive decreasing adjustments to the BWZ-
recommended doses. This indicates that the BWZ dose cal-
culation is tuned to be slightly conservative for most diabetic
patients, which makes sense from a safety standpoint because
insulin overdose can cause life-threatening hypoglycemia [16].

“Correct” Behavior Analysis. Unlike meal boluses, which
are associated with a patient’s routine daily meal pattern, both
the frequency and the doses of correctional boluses highly
depend on personal preference and the patient’s willingness as
well as availability to manage blood glucose. From the CSII
dataset, we exclude the mealtime boluses from the set of all
user selected boluses and calculate the aggregated distribution
of correction bolus frequencies and doses over the whole hour
times of a day (similar to how we treat the meal information,
we round the bolus times to the nearest whole hour times).
We feed the correction bolus frequency and dose distribution
into a clustering algorithm (Section III describes the details)
and identify three clusters of representative correction bolus

(a) Correct C1: highly infrequent correction boluses

(b) Correct C2: frequent correction boluses during daytime

(c) Correct C3: occasional correction boluses with peaks before and after
bedtime

Fig. 4. Correction bolus mean dose and frequency distributions of all patients
in the four Correct clusters.

patterns, denoted as subtypes C1, C2, and C3.
Figure 4 shows the mean dose and frequency distributions

of all the patients in each correction bolus cluster. Similar to



TABLE I
FREQUENCIES OF ETC TYPES IN THE CSII DATASET.

ETC Type Frequencies (in 55 patients)
E1T1C1 0.25
E3T1C1 0.16
E2T1C1 0.13
E2T3C1 0.09
E2T1C3 0.05
E1T3C1 0.05
E1T1C3 0.04
E3T1C2 0.04
E2T4C3 0.02
E1T3C3 0.02
E3T4C2 0.02
E3T3C2 0.02
E2T3C2 0.02
E1T2C2 0.02
E1T1C2 0.02
E3T4C1 0.02
E3T3C1 0.02
E3T2C1 0.02

Figure 2, the frequencies (red solid lines in Figure 4) represent
aggregated daily frequencies: for example, 0.1 at 8AM in
Figure 4(a) means for all patients within cluster C1, on average
10% of the days a patient would take a correction bolus around
8AM. The dashed dot blue line in the same figure represents
the corresponding mean dose distribution over all the patients
in the cluster.

The subtype C1 shown in Figure 4(a) represents patients
who rarely take any correction boluses. The subtype C2
shown in Figure 4(b) represents patients who frequently take
correction boluses during the daytime. The subtype C3 shown
in Figure 4(c) represents patients who take correction boluses
at a moderate frequency throughout the day, with two peak
times around 8AM and 10PM, i.e., before and after the
typical bedtime. The dose distributions in all three subtypes
are similar: the correction bolus doses are mostly in the mid-
low range (0-5U), which is consistent with common clinical
guidelines of diabetes self-management: high dose boluses at
non-meal times are usually not recommended as they may
cause hypoglycemia.
Summary and Remarks of the ETC Behavior Analysis. The
CSII dataset includes T1D patients who visit the clinic during
the data collection period starting in May 2014. We include
a patient’s data as long as the time ranges of the insulin data
and CGM data at least partially overlap, because we need
time-matched insulin and glucose data to individualize the
physiological model for closed-loop evaluation. We do not
have any other patient screening criteria for data inclusion.
The current CSII dataset has 55 T1D patients whose ages range
from 23 to 79 and body weights range from 50 kg to 175 kg.
As noted before, the set of patients represents the majority of
T1D patients at the study site who use insulin pumps.

The three Eat subtypes, four Trust subtypes, and three
Correct subtypes generate 36 possible ETC combinatorial
types. Table I lists the frequencies of the ETC types observed
in the CSII dataset (the remaining ETC types not presented in

TABLE II
THE EFFECT OF BEHAVIOR (ETC TYPES) CHANGE ON THE

HYPOGLYCEMIA AND HYPERGLYCEMIA RATES FOR A PATIENT WITH A
HIGH BASELINE HYPOGLYCEMIA RATE

ETC Type Hypoglycemia
Rate (%)

Hyperglycemia
Rate (%)

Actual type E3T2C1 6.93 8.43
Change

E subtype
E1T2C1 6.20 12.78
E2T2C1 5.99 13.72

Change
T subtype

E3T1C1 0.02 10.33
E3T3C1 0.04 10.09
E3T4C1 0.02 11.05

Change
C subtype

E3T2C2 7.04 6.30
E3T2C3 6.95 7.93

Change
multi-subtypes

E2T1C1 0.04 16.46
E2T2C1 5.99 13.72
E3T1C3 0.10 9.76
E2T1C3 0.08 15.42

the table are never observed on any of the patients in the CSII
dataset). The most frequent Trust and Correct combination is
T1C1 (54% of patients are in this subtype), indicating that
a significant portion of patients rarely make adjustments to
the BWZ recommended doses or take correction boluses. The
T3 subtype is less common than T1 but still represents 22%
of patients. The T2 and T4 subtypes represent uncommon
subtypes, but they are so distinct from T1 and T3, and some
patients do exhibit those Trust patterns. C2 and C3 are less
common subtypes but do cover 27% of the patients. The three
Eat subtypes all cover a significant subset of the patients,
indicating diverse eating habits across the insulin pump user
population.

The different meal intake, BWZ-adherence, and correction
bolus patterns could clearly have distinct impact on the glucose
physiology. Our clinician collaborators who work in diabetes
treatment and advanced research review the analysis results
and think that the ETC data mining approach extracts new
information that is highly clinically relevant but is not part
of the current standard pump software downloads, which
typically only include overall statistics such as the means and
variances of CGM values. The clinicians believe the ETC
metrics provide important insights for caregivers to better
understand how each patient’s own glucose-related behavior
impacts his/her glucose levels, which would ultimately pro-
mote the efficacy of treatment and enable better glycemic
control.

C. Effects of ETC Type Change on the Glycemic Control
Outcomes

We demonstrate the utility of our patient behavior modeling
framework with in silico experiments to illustrate the impact
of patient behavior (ETC type) change on the glucose con-
trol outcomes. Such analysis results can inform T1D patient
education and peer support [17].

We evaluate the glucose control outcomes using the hy-
poglycemia and hyperglycemia rates: that is, the percentage
of glucose readings below 70 mg/dL (hypoglycemia [18]) or
above 180 mg/dL (hyperglycemia [18]) over a certain period



TABLE III
THE EFFECT OF BEHAVIOR (ETC TYPE) CHANGE ON THE HYPOGLYCEMIA

AND HYPERGLYCEMIA RATES FOR A PATIENT WITH A HIGH BASELINE
HYPERGLYCEMIA RATE

ETC Type Hypoglycemia
Rate (%)

Hyperglycemia
Rate (%)

Actual type E1T1C1 0 43.92
Change

E subtype
E2T1C1 0 44.38
E3T1C1 0 41.62

Change
T subtype

E1T2C1 0 39.13
E1T3C1 0 43.46
E1T4C1 0 45.31

Change
C subtype

E1T1C2 0 41.59
E1T1C3 0 43.47

Change
multi-subtypes

E1T2C2 0 37.22
E3T2C1 0 35.45
E3T1C2 0 38.01
E3T2C2 0 32.56

of time. Section III describes the details of the in silico closed-
loop experiments. Here, we highlight the experimental results
by showing the impact of ETC type change on the hypo-
glycemia and hyperglycemia rates for two sample patients.

Table II presents the results for a patient with a high
baseline hypoglycemia rate (6.93%) in the experiments. The
patient’s actual behavior type is E3T2C1. As illustrated in
Table II, by changing the E subtype only, the hypoglycemia
rate only drops slightly. By changing the T subtype, the
patient’s hypoglycemia rate would significantly decrease. The
patient has a high likelihood of increasing the BWZ dose (the
actual subtype is T2). The results in Table II suggest that if the
patient follows the BWZ dose (T1) or even gives smaller doses
(T4), the expected hypoglycemia rate would drop to around
0.02%, which would be a beneficial outcome. The fundamental
challenge in glycemic control is that reducing the correction
doses can mitigate hypoglycemia, but at the same time, it
would also put the patient at a higher risk of hyperglycemia:
for example, if the patient behaves as E3T1C1, then the
expected hyperglycemia rate would be around 10.33%, which
is slightly higher than the value of 8.43% with the actual type
E3T2C1. Optimizing the CSII dose always comes down to
balancing the risk between hypoglycemia and hyperglycemia.
Hypoglycemia is a more critical short-term safety concern:
extreme hypoglycemia is life-threatening. Furthermore, the
current population baseline hyperglycemia rate among Type 1
diabetics is in the high range of 20% to 40% [18]. Therefore,
significantly reducing hypoglycemia at the cost of slightly
increasing hyperglycemia is justifiably beneficial to the patient.
The results also show that changing the C subtype would not
reduce the hypoglycemia rate for this patient. These exper-
iment results could inform patient education: for example,
clinicians may consider suggesting this patient to follow the
BWZ-recommended doses rather than frequently selecting
higher doses.

Table III presents the results for another patient with a high
hyperglycemia rate (43.92%) in the experiments. The patient’s
actual behavior type is E1T1C1 and does not experience
hypoglycemia. Based on the results, in order to reduce the

Fig. 5. An Overview of the user behavior.

hyperglycemia rate, we would suggest the patient to reduce
carbohydrate intake. For example, by changing the E subtype
from E1 to E3, the expected hyperglycemia rate drops to
around 41.62%. In addition, the treatment outcomes would be
further improved if the patient gives higher BWZ dose (T2) or
take more correction boluses (C2), as highlighted in Figure III.
The optimal treatment outcomes can be achieved if the patient
changes behavior in all three aspects of the ETC types: the ex-
pected hyperglycemia rate drops to 32.56% if the patient acts
as type E3T2C2, which would be a significant improvement
compared to the patient’s baseline hyperglycemia rate.

III. METHODS

In this section, we first present our approach of modeling
the patient behavior and identifying representative clusters of
the individual patient behavior patterns using unsupervised
learning techniques. Then we describe how we individualize
an existing generic physiological model to the CSII dataset.
Finally, we integrate the behavior model and physiological
model and run in silico experiments via closed-loop prob-
abilistic model checking to evaluate how changing the user
behavior may impact the glucose outcomes.

A. Patient Behavior Modeling and Clustering

Figure 5 illustrates the operational workflow in the use of
the CSII system. At non-meal time, the patient interacts with
the system by requesting correctional boluses. At mealtimes,
the patient inputs the carb count and take meal-time boluses
with the assistance of the BWZ feature. We identify three main
user behavior factors and represent each patient’s behavior
profile as an ETC type. Next, we describe how to quantitatively
model the ETC types and cluster the patients’ behavior models.
Quantitative Modeling of ETC Behavior Types. Eat and
Correct are time-sensitive metrics because the meal carbo-
hydrate intake and correctional boluses both greatly depend
on the time of the day. To incorporate both the time of
the day and the magnitude information of the meal carbo-
hydrate intake, we partition the time of the day into NE

time intervals TE
1 . . . TE

NE
, where ∪NE

i=1T
E
i = [0, 24], and we

partition the possible value range of a carb count into ME

intervals SE
1 . . . SE

ME
, where ∪ME

i=1S
E
i = R+. Similarly, for

the correction bolus, we partition the time of the day into NC

intervals and partition the possible value range of a bolus dose
into MC intervals.

Let XE denote the Eat matrix of dimension NE by ME

and let XC denote the Correct matrix of dimension NC by



TABLE IV
FOUR OUTPUT CENTROIDS RETURNED BY THE K-MEANS ALGORITHM

RUNNING OVER 55 PATIENTS’ TRUST PROBABILITY DISTRIBUTIONS DT

Centroid ID PH PF PL

1 0.05 0.92 0.03
2 0.73 0.26 0.01
3 0.21 0.75 0.04
4 0.07 0.63 0.30

MC . An element xij in XE represents the probability of the
patient eating a meal with the carb count in the interval SE

j

within the time interval TE
i . Similarly, an element xij in XC

represents the probability of the patient taking a correction
bolus with dose in the interval SC

j within the time interval TC
i .

Clearly, for each row, we have ∀i
∑

j xij = 1. We estimate
the probability matrices XE and XC for each patient from the
CSII dataset by assigning the meal carb counts and boluses
into the corresponding value intervals and time intervals, and
then counting the frequencies.

Trust mainly indicates a patient’s BWZ-adherence level
and is less sensitive to time of the day.3 We aggregate all
the [BWZ recommended dose, user selected dose] pairs of
each patient and estimate the probabilities of the patient
increasing, following, or decreasing the BWZ-recommended
doses: those three probabilities are denoted as PH , PF and
PL, respectively. Let DT denote the probability distribution
DT = 〈PL, PF , PH〉.

Finally, the k− th patient’s complete ETC model is a tuple
ETCk = 〈XE , XC , DT 〉.
Clustering of ETC Models. To goal of clustering is to identify
common patterns within the ETCk tuples estimated on the
CSII dataset. Note that ETCk contains NE × (ME − 1) +
NC × (MC − 1) + 2 free dimensions, which can quickly
out-grow the size of the dataset (n = 55). Clustering high-
dimensional data introduces a number of computational and
theoretical challenges, as noted in extensive machine learning
research such as [19]: for example, the dimensions become
hard to think of and visualize, computational intractability (the
curse of dimensionality), and the relative distance between
samples converges as dimensions grow. Numerous machine
learning techniques exist on tackling this challenge [20]. In the
CSII dataset, not only that the number of free variables can
be far greater than the sample size, the clinical meanings of
the variables are highly heterogeneous and the three elements
in ETCk are estimated from disjointed subsets of the data.
Therefore, we decompose the clustering problem into three
parallel sub-problems: clustering each of XE , XC , and DT

independently. The ETC clusters would consist of combina-
tions of the sub-clusters.

We run the k-means clustering algorithm [21] on the 55
Trust probability distributions DT ’s. After experimenting dif-
ferent numbers of cluster K and the initialization settings,

3It is possible that the BWZ-adherence level may exhibit short-term
fluctuations, e.g., a patient may be more likely to simply follow BWZ doses
when he/she is busy with other things; examining short-term Trust patterns is
part of our future work.

TABLE V
COMPARISON OF POPULATION-WIDE GLUCOSE STATISTICS OF THE CSII

DATASET AND THE MODEL-SIMULATED GLUCOSE DATA GIVEN THE SAME
INSULIN & MEAL INPUTS. BG DENOTES THE BLOOD GLUCOSE LEVEL.

ALL BG OUTCOMES ARE IN THE UNIT OF MG/DL.

CSII
Dataset BG

Model
Simulated BG

Mean BG 163 159
Max BG 365 379
Min BG 50 49

BG > 180 35% 30%
BG < 70 3% 3%

BG in [70,180] 62% 67%

we choose K = 4 considering both the distribution of point-
to-centroid distances and the practical implications: the output
cluster centroids must have clear interpretations that are easily
understandable by clinicians. The four output centroids are
listed in Table IV. The four centroids correspond to the four
Trust types T1 - T4 presented in Figure 3.

The Eat and Correct matrices XE and XC are each defined
by two types of partitions: the time partitions and the magni-
tude partitions. Choosing the numbers of partitions NE , ME ,
NC , and MC involves a trade-off: on one hand, the partitions
must distinguish different meal carb counts and bolus doses at
a reasonably granularity; on the other hand, too fine-grained
partitions cause data sparseness.

In this paper, we empirically choose NE = 6, ME = 8,
NC = 6, and MC = 11, which are consistent with common
clinical knowledge: patients typically take six or less meals
a day, > 200 grams is a very high-carb meal, and 10 U is
a common maximum dose limit on the pumps for safety.4

We use the same time of the day partition for both XE and
XC : the six time cut-off points are 7AM, 10AM, 1PM, 4PM,
7PM, and 10PM. The six time intervals represent breakfast,
morning snack, lunch, afternoon snack, dinner, and evening
snack times. We partition the meal carb count into eight
intervals: the cut-off points are [0, 15, 30, 40, 50, 75, 100, 200]
grams; the rationale is that by analyzing all meal carb counts
in the CSII dataset, we observe that most meal carb counts are
in the range of 0 - 75 grams and therefore we assign denser
intervals in that range. The correction insulin bolus dose is
partitioned into eleven intervals: the cut-off points are 0 - 10
U with a step-size of 1 U; the rationale is that most insulin
boluses in the CSII dataset are within the 0-10 U range and
clinicians consider 10 U to be a very high bolus dose (some
clinical insulin protocols set 10 U as the maximum limit of a
bolus [22]).

Under the above partition scheme, XE is a 6 × 8 matrix
and XC is a 6 × 11 matrix, which still include too many
features for 55 samples. We apply a two-round clustering
heuristic5: to cluster the XE , in the first round, we run k-means
algorithm to identify clusters of meal carb count distributions

4In our future work, we will systematically investigate the performance of
the clustering algorithm under different parameter settings.

5We will evaluate alternative methods of tackling the dimensionality
challenge in our future work.



TABLE VI
STATISTICS OF THE PER-PATIENT DIFFERENCES BETWEEN THE CSII
GLUCOSE MEASUREMENTS AND THE MODEL-SIMULATED GLUCOSE

VALUES. BG DENOTES THE BLOOD GLUCOSE LEVEL.

Metric Value
Mean Difference of Per-Patient Mean BG 14 mg/dL

Mean Difference of Per-Patient BG > 180 Percentage 5%
Mean Difference of Per-Patient BG < 70 Percentage 1%

Mean Difference of Per-Patient BG in [70,180] Percentage 6%

at each time interval, i.e., on each row of XE ; the cluster ID
output of each row in XE from the first round is the input
to the second round of clustering, where we identify clusters
of meal-over-time distributions. For example, the first row
of XE represents the carb count distribution at the breakfast
time. We collect the breakfast carb count distributions of 55
patients, each of which contains 8 probabilities, and we run
k-means clustering to identify K breakfast clusters. We repeat
this for all 6 rows of XE . At the end of the first round of
clustering, each patient’s XE is mapped to a six-dimension
cluster membership KC = [K1 . . .K6], where Ki represents
the cluster ID of the i− th row of XE . We then run a second
round of k-means clustering on the vector [K1 . . .K6] of 55
patients, and transform the output centroids from the KC form
back into the 6×8 probability matrix form. We apply the same
two-round k-means clustering process to XC .

Using two-round clustering approach, we identify three
centroids of XE and three centroids of XC . Due to space
constraint, the centroid matrices are not presented in this paper.
Section II-B explains the interpretations of the different Eat
and Correct clusters, and Figures 2 and 4 illustrate the results.

B. Individualized Physiological Modeling

We use a commonly accepted first-principle based compart-
mental physiological model proposed in [23] and refer to it
as the Bergman model. The Bergman model we use is a first-
order differential equation that describes the interaction be-
tween the plasma insulin level and glucose level. To model the
real-life scenario where a patient eats and takes subcutaneous
insulin inputs, the Bergman model can be augmented with a
second-order meal pathway that relates ingested carbohydrates
to plasma glucose appearance [24], and a second-order sub-
cutaneous insulin pathway that relates subcutaneous insulin
inputs to plasma insulin appearance [25], [26]. The equations
of the complete fifth-order augmented Bergman model are
summarized in [27]6. The model contains several physiological
parameters that are patient specific: for example, the insulin
sensitivity and basal glucose production rate. We tune the
augmented Bergman model parameters within the value ranges
reported in the original Bergman article [23], which include
the glucose distribution rate, insulin sensitivity, meal glucose
rate of appearance, and basal glucose production rate. For the
other model parameters in the meal and insulin pathways, we
use the nominal parameter values reported in the physiological
modeling literature [26], [24].

6The paper is available at http://repository.upenn.edu/cis papers/782/

For each patient in the CSII dataset, we feed the recorded
insulin and carbohydrate inputs to the augmented Bergman
model and compare the model-generated glucose outputs
with those in the CSII dataset. For each patient, we search
for the combination of the tuning parameters on which the
model achieves the best of fit on glucose outputs. Table V
presents the key glucose statistics of the CSII measurement
data and the simulated glucose outputs generated by the
individualized model given the same insulin & meal inputs.
The individualized physiological model is able to reproduce
the population statistics, such as the mean, maximum, and
minimum glucose values, with errors that are not significant
in the glucose control application (blood glucose meters have
a typical measurement error ranging from 15 to 30 mg/dL;
the error range of CGM sensors is even larger). We also
compare the glucose in and out of range percentages, us-
ing commonly accepted hypoglycemia threshold 70 mg/dL
and hyperglycemia threshold 180 mg/dL [18]. Those are
percentages of the glucose readings that are lower than 70
mg/dL, within [70,180] mg/dL, and higher than 180 mg/dL.
They are important clinical metrics of evaluating the risk of
hypoglycemia and hyperglycemia, and are critical indicators
of the quality of glycemic control. Table V shows that the
individualized physiological model is able to reproduce the
glucose in and out of range percentages observed in the
CSII data. Table VI presents the per-patient differences of the
statistics of the model-simulated glucose values and the real
glucose measurements in the CSII dataset. It shows that the
model is able to reproduce the key glucose statistics not only
at the population level but also on each individual patient. We
use the individually parameterized augmented Bergman model
in the in silico closed-loop experiments.

C. Closed-loop Experiments

As stated in Section II-C, in order to demonstrate the utility
of the proposed ETC modeling framework, we perform in
silico experiments to show the effects of patient behavior
(ETC type) change on the glycemic control outcomes. We
build a model of the closed-loop system (see Figure 1) by
integrating the ETC behavior model, the individualized physi-
ological model, and a model of the BWZ. We use the PRISM
probabilistic model checker [28] to evaluate the hypoglycemia
and hyperglycemia rate of different instantiations of the system
model: each instantiation is a specific pair of a user behavior
model and an individualized physiological model. PRISM is an
open-source tool for formal modeling and analysis of systems
that exhibit probabilistic behavior. It can express and analyze
several types of probabilistic models, such as discrete-time
Markov chains, continuous-time Markov chains, and Markov
decision processes, etc. We build the patient ETC behavior
model as a discrete-time Markov chain, using probabilities
derived from the CSII dataset as described in Section III-A. We
also use Matlab to generate finite traces from the simulation
of the individualized augmented Bergman model and encode
them in PRISM. Then, we can use PRISM to exhaustively
check every possible execution trace of the closed-loop system



and compute the expected hypoglycemia and hyperglycemia
rate.

Given a patient’s individualized physiological model, we
can pair it with his/her actual ETC type model or any other
ETC types (there are 36 possible combinations) and run the
model checking to evaluate the expected control outcomes.
The in silico experimental results (e.g., those reported in
Table II and Table III) identify the behavior change that might
help a particular patient improve the glucose control outcomes,
i.e., reducing the hypoglycemia and/or hyperglycemia rate.

IV. CONCLUSION

In this paper, we propose the “Eat, Trust, and Correct”
(ETC) framework for modeling T1D insulin pump user behav-
ior. We use clustering algorithms to learn ETC user behavior
patterns from a clinical dataset, and we tune a physiological
model to fit each patient’s clinical data. By running closed-
loop evaluation of the user behavior model and the individual-
ized physiological model on a probabilistic model checker, we
demonstrate that the ETC framework not only provides fresh
clinical insights from the data but also enables exploring how
switching behavior types may impact a patient’s physiology.
The outcomes of the closed-loop evaluation can inform T1D
patient education and peer-support to improve the quality of
glycemic control.

Our future work includes further validation of the ETC
model by expanding the CSII dataset, exploring short-term
Trust pattern fluctuations, and comparing different clustering
techniques in the ETC framework.
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