
University of Pennsylvania
ScholarlyCommons

Department of Physics Papers Department of Physics

3-13-1995

Localization Length Exponent in Quantum
Percolation
Iksoo Chang

Zvi Lev

A. Brooks Harris
University of Pennsylvania, harris@sas.upenn.edu

Joan Adler

Amnon Aharony

Follow this and additional works at: http://repository.upenn.edu/physics_papers

Part of the Quantum Physics Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/physics_papers/471
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Chang, I., Lev, Z., Harris, A., Adler, J., & Aharony, A. (1995). Localization Length Exponent in Quantum Percolation. Physical Review
Letters, 74 (11), 2094-2097. http://dx.doi.org/10.1103/PhysRevLett.74.2094

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fphysics_papers%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics?utm_source=repository.upenn.edu%2Fphysics_papers%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/physics_papers?utm_source=repository.upenn.edu%2Fphysics_papers%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=repository.upenn.edu%2Fphysics_papers%2F471&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevLett.74.2094
http://repository.upenn.edu/physics_papers/471
mailto:repository@pobox.upenn.edu


Localization Length Exponent in Quantum Percolation

Abstract
Connecting perfect one-dimensional leads to sites i and j on the quantum percolation (QP) model, we
calculate the transmission coefficient Tij(E) at an energy E near the band center and the averages of ΣijTij,
Σijr2ijTij, and Σijr4ijTij to tenth order in the concentration p. In three dimensions, all three series diverge at
pq=0.36+0.01−0.02, with exponents γ=0.82+0.10−0.15, γ+2ν, and γ+4ν. We find ν=0.38±0.07, differing from
“usual” Anderson localization and violating the bound ν≥2/d of Chayes et al. [Phys. Rev. Lett. 57, 2999
(1986)]. Thus, QP belongs to a new universality class.
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Connecting perfect one-dimensional leads to sites i and j on the quantum percolation (QP) model,
we calculate the transmission coefficient T;, (E) at an energy E near the band center and the averages
of g, , T;, , g,, r2T;, , and P,, r4T;, to tenth order in the concentration p. In three dimensions, all

three series diverge at p, = 0.36+()()2, with exponents y = 0.82+0 i&, y + 2v, and y + 4v. We find
v = 0.38 ~ 0.07, differing from "usual" Anderson localization and violating the bound v ) 2/d of
Chayes et al. [Phys. Rev. Lett. 57, 2999 (1986)]. Thus, QP belongs to a new universality class.

PACS numbers: 72.15.Rn, 05.70.Jk, 64.60.Ak, 71.30.+h

The localization (Anderson) transition in disordered
materials has been studied intensively for a long time
[1,2]. One parameter scaling theory [3] showed that
the electronic wave functions are localized (i.e., they
decay exponentially with distance) at and below two
dimensions (2D) for any amount of disorder, while above
2D they become extended as the disorder (measured
by A) decreases below some critical value A, . On the
insulator side (A ) A, ), one expects the wave functions
at energy E to decay with distance r as exp[ —r/g(A, E)]
(apart from power-law prefactors), and the localization
length g to diverge as g —(A —A, ) '. The value of
the exponent v has been the subject of much recent
discussion. Particularly, Chayes et al. [4] proved that if
g was defined as a finite size scaling correlation length,
then v must satisfy the bound v ) 2/d. They argued
that this bound applies in percolation, disordered magnets,
and Anderson localization. However, they noted that in
3D both the four-loop e expansion for d = 2 + e and
some experiments seem to violate this inequality. In the
present Letter we present the first accurate numerical
determination of v for the quantum percolation (QP)
model [5—7], which is a special variant of the general
Anderson model, and find that in 3D v = 0.38 ~ 0.07,
violating the Chayes et al. inequality.

The QP model is based on a tight binding Hamiltonian,

g &i I i)(i I
+ g t, (I t )(j I

+
I j)(t I),

where (ij) denotes a pair of nearest-neighbor sites, Ii)
represents a wave function localized near site i, and we
assume a constant on-site energy, e;, which we arbitrarily
take to be zero. The nearest-neighbor hopping matrix
element t;, is a random variable which assumes the values
1 or 0 with respective probabilities p and 1 —p.

One of the natural and physical measures to probe the
localization transition is the average sum over transmission
coefficients [7],

(2)

where T;, (E) is the transmission coefficient between sites
i and j, the sum is over all pairs of points including i = j,
and [ .]„represents a configurational average over the

t;, 's To d. efine T;,(E) we attach perfect one-dimensional
leads (in which all nearest-neighbor t s are unity) to points
i and j, insert an incoming wave with energy F on lead
i, and calculate the amplitude of the outgoing wave on
lead j by the QP model. Given the concentration p of
"metallic" bonds, each realization of the system consists
of clusters (I ) of sites interconnected by metallic bonds.
For p ( p, the average [ ]„may be expressed as a sum
over the clusters [8],

T(p. E) = +III (1)p"'"'(I —p)"""' g T;,(E), (3)
i j EI

where Wd (1 ) is the embedding weight (per site) of I on the
lattice, while nb(I ) and n„(I ) are the numbers of bonds in
I andonits perimeter. If T;, = 1 foralli and j onagiven
cluster, then Eq. (2) reduces to the mean cluster size (or
"susceptibility" ) of classical percolation, which diverges at
the classical percolation threshold p, as T —( p, . —p)
In the quantum case, all states are exponentially localized
for p ( p~(E), where p~ is the threshold for "quantum per-
colation" and p~ ~ p, . For p ( pq, the usual assumption
that $ is the only important length in the problem implies
that in some average sense [T;,(E)] —r;, 'f(r;, /$(p, E)),
where r,j is the distance between sites i and j, and
where f(x) is a scaling function which approaches a con-
stant as x ~ 0 and decays strongly (e.g. , exponentially)
for x ~. Therefore, T ( p, E) —g( p, E)" ' —[p~ (E)—
p] 4 ' —[p~(E) —p] r, with y = v(d —x). Three
comments are in order. First, since we take F near the
center of the band (E = 0), the values of p„(E) we quote
should be close to the critical value p" below which no
extended states appear at any energy, studied, e.g. , in
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Ref. [6]. Second, since we take E near E = 0, one might
be worried about the singularities in the density of states
which are known to arise at F = 0 due to many highly
symmetric localized states [5]. To check this, we repeated
our series derivation excluding the transmission channels
through these states [9], and found that these states do not
affect the divergence at pq. Third, because all wave func-
tions are localized for p = p, ( pq(E), we do not expect
a power-law singularity at p = p, . The absence of a sin-
gularity at p = p, was demonstrated in an exact solution
[10]. In any event, our series analysis does not show such
a singularity.

One way to obtain g uses moments of the distances
between pairs of sites on the lattice,

Al, (p, E) = g r,
"T;, (E) (4)

I,J —p

Given the above scaling ansatz about the behavior of
T„(E), we expect these moments to diverge near pq(E)
as A~(p, E) —[pq(E) —p] ~ "'. Stated more generally,
the ratios Ak+2/Ak have dimensions of squared lengths.
If the localization length g is the only relevant length
near the transition, then we expect these ratios to be
proportional to $, independent of the particular form
of the scaling function f(x). As we show below, both
A4/A2 and A2/Ao diverge similarly to each other, and
behave as [pq(E) —p] '. These results confirm and
justify our scaling assumption. Since the sum in Eq. (3)
contains polynomials in p, the averages in Eqs. (2) and

(4) yield series in p. A calculation to order p" involves
all clusters with up to n bonds. We first generated three
series, for k = 0, 2, and 4, exactly to all orders and for
general E in 1D [11]. As expected, all the series diverge
at pq: 1 with exponents y = v = 1. However, the
analysis degraded as F. increased, requiring more terms
in the series to keep the same convergence. Since wave
functions with small E (near the band center) have short
waves (E = 2cosq), their physics is already reflected by
small clusters. Larger clusters seem to be needed for
larger E. For this reason, and for comparison with earlier
work [7], we present results at E = 0.05.

The series for T(p, E), which requires only the topol-
ogy of the clusters, were derived before [7] to order 13
for all d. In contrast to T, AI, depends on the explicit ge-
ometry of each cluster, which requires much more data.
To obtain the new series A2 and A4, in d = 2, 3, we used
data files for r;, and r;, on all clusters with n ~ 10, which
were constructed earlier for the study of the dilute quan-
tum antiferromagnet [12]. For each cluster we calculated
T;, (E = 0.05), and then generated the new 10-term series
for A2 and A4. In the process, we realized that the se-
ries for T in Eq. (2), quoted in Ref. [7], did not include
the contributions from the diagonal terms T,;. These con-
tributions are now included in our new series, whose be-
havior is thereby improved. The new 10-term series for
E = 0.05 in 3D are given below [13].

The analysis of the series involved several processes.
First we used a dlog Pade analysis [14] for the three
series, to identify the rough positions of poles (pq) and
residues (y + k v). We found not only positive real poles,
but also negative real poles which hampered the conver-
gence of Pade approximants near the positive pole. In
3D, the smallest of these appeared at p = —0.095. In
order to minimize this interference, we applied a con-
formal transformation of the series expansion variable

p = z/(1 + bz), where b = 1/p, is chosen so that the
negative pole is pushed far away from the origin in
the new complex plane. This transformation should not
change the value of the leading critical exponent, but it
generates an analytic correction to scaling [11]. The re-
sulting series in z were then analyzed, using the recently
developed efficient three-dimensional visualization meth-
ods [15] together with the Ml and M2 analysis algorithms
[16], which allow a very accurate determination of the
threshold pq, leading critical exponent (denoted by h be-
low), and confluent correction to scaling exponent A~ si-
multaneously. Denoting the general series by H(p), we
assume the form

H(p) = A(p —p) II + &(p —p) ' + ] (5)

In the M1 method, we study the logarithmic derivative of
B(p) = hH(p) —(pq —p)dH(p)/dp, which has a pole
at pq with residue —h + 5

&
. For a given value of pq

we obtain graphs of 5 j versus input h for all Pade
approximants, and we choose the triplet (pq, h, A~) where
a selection of high, near-diagonal Pade approximants
converge to the same point. In the M2 method, we first
transform the series in p into a series in the variable y =
1 —(1 —p/pq)~' and then take Pade approximants to
G ( y) = 5 ~ ( y

—1)d ln[H ( p)]/dy, which should converge
to —h. Here we plot graphs of h versus the input A~

for different values of pq and choose again the triplet

(pq, h, b, ~), where the Pade approximants converge to the
same point. In order to visualize the best converging point
in the (pq, h, A~) space, we look at 2D plots at different
trial pq values, in perspective [15]. The effectiveness
and preciseness of this series analysis method has been
demonstrated in recent works [16—18].

To generate the numerical results presented below,
we performed all these procedures on the series in the
variable z, and only at the end plotted the graphs in terms
of the original variable p. In Fig. 1 we present three
slices from the Ml analysis of the A2(p, E = 0.05) series.
The best convergence from different Pade approximants
is achieved at pq = 0.36. Figure 2 shows a slice at this
value, from which we read the value of the leading critical
exponent y + 2v = 1.58 as well as the correction to
scaling exponent 5& = 1.05. We repeated these analyses
for T and A4, and found a central value of pq = 0.36 from
all M1 and M2 analyses of all three series, except for M2
on T, which gave pq = 0.35. The estimates of pq quoted
here are based on the intersection regions of the different
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T series [11]all lead us to believe that longer series will
not yield the large shift needed for obeying the inequality.
Attempts to fit the series to essential singularities also
failed [11]. The Chayes et al. proof is based on a
particular finite size scaling correlation length, and they
themselves agree that it might not apply to other lengths.
Our $ might indeed differ from theirs. Further, Fisher
[24] recently presented a model in which the typical
and the average correlation lengths scale differently, and
the former violates the Chayes et al. inequality. Such a
violation can occur when there is a very broad distribution
of correlation functions. Returning to our data, we looked
at series in which T;, was replaced by a power T;, , and
found that for a wide range of n ) 1 they all diverged at
the same pq, with an exponent essentially independent of
a. This is connected with the fact that for E near 0, most
of the typical T;, 's have values very close to 0 or to 1.
This results from the fact that for such E, dangling ends
tend to generate either full reflection or full transmission.
Therefore, the distribution of the T;, 's is extremely broad
and this may affect the Chayes et al. inequality similarly
to what was found in Ref. [24]. The validity of this

inequality for QP thus remains in question, and we hope
this Letter will stimulate more discussion of this issue.

In conclusion, we presented strong evidence that QP
belongs to a separate universality class, in which the
Chayes et aI. inequality is violated. It would be useful to
test these conclusions using alternative techniques. How-
ever, we are not sure if this can be achieved by realis-
tic computer simulations: Experience (at least for simple
classical spin problems) shows that n-term series yield
information equivalent to simulations on lattices of size
(2n)", and calculating the transmission coefficient on such
sizes remains a computational challenge. Furthermore,
simulations require repeating the calculations for many
different realizations, and depend on the quality of the
random number generators. Our series contain exact av-

erages over ahl the random configurations.
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