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Critical Disordered Systems With Constraints and the Inequality ν > 2/d

Abstract
The renormalization group approach is used to study the effects of a “canonical” constraint (e.g., a fixed
number of occupied bonds) on critical quenched disordered systems. The constraint is found to be always
irrelevant, even near the “random” fixed point. This proves that α<0, or that ν>2/d. “Canonical” and “grand
canonical” averages thus belong to the same universality class. Related predictions concerning the universality
of non-self-averaging distributions are tested by Monte Carlo simulations of the site-diluted Ising model on
the cubic lattice. In this case, the approach to the asymptotic distribution for “canonical” averaging is slow,
resulting in effectively smaller fluctuations.
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Critical Disordered Systems with Constraints and the Inequalityn ... 2yyyd

Amnon Aharony,1 A. Brooks Harris,2 and Shai Wiseman3
1School of Physics and Astronomy, Raymond And Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Israel
2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
3Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

(Received 2 April 1998)

The renormalization group approach is used to study the effects of a “canonical” constraint (e.g., a
fixed number of occupied bonds) on critical quenched disordered systems. The constraint is found to
be always irrelevant, even near the “random” fixed point. This proves thata , 0, or that n . 2yd.
“Canonical” and “grand canonical” averages thus belong to the same universality class. Related
predictions concerning the universality of non-self-averaging distributions are tested by Monte Carlo
simulations of the site-diluted Ising model on the cubic lattice. In this case, the approach to the
asymptotic distribution for “canonical” averaging is slow, resulting in effectively smaller fluctuations.
[S0031-9007(98)06581-8]

PACS numbers: 05.50.+q, 75.10.Nr, 75.40.Mg, 75.50.Lk

The critical behavior of systems with quenched random-
ness has been the subject of much interest for decades.
One central issue concerns the correlation length expo-
nent,n. The so-called Harris criterion [1] showed that the
critical behavior of the nonrandom (“pure”) system ind
dimensions is not sensitive to randomness in the local tran-
sition temperatureTc if npure . 2yd. The same criterion
follows from renormalization group (RG) and scaling argu-
ments [2–5]. Whennpure , 2yd, RG yields a crossover
from the pure behavior to a new one, governed by a “ran-
dom” fixed point. Although the stability of the pure fixed
point is determined by the sign of the specific heat expo-
nent a ­ 2 2 dn, the stability exponent of the random
one,frandom, is not related toarandom [6], and one has not
yet identified any relation betweenarandom and the stability
of that fixed point. Independent of these RG arguments,
Chayeset al. [7] proved thatn . 2yd even for the case of
strong randomness. Their proof considered random binary
variables (e.g., the random occupation of bonds or sites),
in a “grand canonical” context where the average density
is fixed, but the actual density has fluctuations of order
N21y2 ­ L2dy2 in a system of linear sizeL. It has recently
been argued [8] that this proof no longer applies for the
“canonical” case, when the total number of occupied sites
(or bonds) is kept constant. The present Letter investigates
the different types of averaging. Although Refs. [7,8] em-
phasize quantum systems, we feel that the issues under dis-
cussion do not depend on that. Therefore, we address them
for the simplest case of a random classical ferromagnet.
Our new RG analysis shows that the stability exponent for
the canonical constraint is always equal to the appropri-
ate value ofa. We find that whenapure , 0, randomness
is irrelevant for both canonical and grand canonical av-
erages. Whenapure . 0, randomness causes a crossover
to the random fixed point. We then show that a positive
arandom would lead to unacceptable unstable distributions.
Thus, we conclude thatarandom , 0, and the random fixed

point is stable for both types of averaging. Contrary to the
expectation of Ref. [8], our arguments confirm the inequal-
ity n . 2yd especiallyfor the canonical case.

Our second motivation concerns self-averaging in the
context of Monte Carlo simulations. Following numerical
work and heuristic arguments which indicated the absence
of self-averaging [9], it was shown [10] that when a
random fixed point is stable, then the distributions of
measured quantitieshXj at the critical point have nonzero
relative cumulants, which approach universal values as
L increases. This universality was then confirmed by
simulations on the grand canonical site-diluted cubic lattice
Ising model [9], which found that the relative variancesRx

andRm (for the susceptibility and the magnetization) reach
the same nonzero limiting values for two different site
concentrations. However, simulations often use canonical
averaging in order to reduce fluctuations [11]. Our new
RG results would predict thesameasymptotic values of
RX , for both averages. This is apparently contradicted
by new simulations of the above Ising model, presented
below, which find that the canonical averaging yields
smaller values ofRx and Rm. However, an important
result of the present Letter is that in the canonical caseRX

approaches its universal asymptotic value asLayn. For the
three dimensional (3D) random Ising model, this approach
is very slow, and the asymptotic value is not reached
for realistic sample sizes. This explains why canonical
simulations often observe smaller fluctuations.

It is convenient to perform the RG analysis on a
random exchange ferromagnetic spin model:H ­
22

P
kijl JijSi ? Sj , where Si is an m-component unit

vector, andkijl indicates summation over pairs of nearest
neighbors on ad-dimensional hypercubic lattice. We
consider several distributions of theNb random variables
hJijj. In the grand canonical case, this distribution is
the product of independent factorsPsJijd, each having
an averageJ ­ fJijg and varianceD ­ fsJ 2 Jijd2g (we
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use [. . .] to denote the configurational average). In the
extreme canonical case, this product is multiplied by
ds

P
kijl Jij 2 NbJd, representing the constraint on the

total number of occupied bonds. For example, for bond
dilution one hasJij ­ J0 or 0, with probabilitiesp and
1 2 p, and the extreme constraint means that the number
of occupied bonds in every acceptable realization must be
exactly equal topNb . A less extreme constraint would
arise if we replacedsxd by the Gaussian expf2x2ys2yNbdg.
As y decreases from̀ to 0, the “strength” of the constraint
increases gradually from the grand canonical limity ­ `

towards the “extreme” canonical limity ­ 0.
It is also convenient to use the replica method [4,5],

and calculatefZng, whereZ is the realization-dependent
partition function andn is the number of replicas, to be
sent to zero at the end of the calculation. We next write
Zn ­ Tr fexps2bHeffdg, with Heff ­ 22

P
kijl JijEij,

whereEij ­
P

a Sa
i ? Sa

j , and hSa
i , a ­ 1, . . . , nj repre-

sents the spin in theath replica. In the grand canonical
situation, fZng breaks into a product of independent
averages over theNb different bonds,fexps2bJijEijdg ;R

dJ PsJd exps2bJEijd. Expanding in cumulants of
PsJijd, one ends up withZn ; fZng ­ Tr exps2bHgr d,
where the trace is over allnm spin components,

Hgr ­ 22
X
kijl

sJEij 1 bDE 2
ij 1 . . .d , (1)

and the dots indicate higher cumulants ofP, associated
with higher powers ofEij. This effective Hamiltonian
was the basis for the RG analysis in this “grand canonical
ensemble” [4,5,10]. Near the pure fixed point, we can
expand the free energyF to linear order inD, which
is a measure of the randomness. SincekSa

i ? Sa
j lpure ,

t12apure , wheret , T 2 Tc, the leading correction toF
scales asNDt2s12apured. Dividing by the leading free
energy density, which scales asNt22apure , we conclude
that D appears asDt2apure [5,12]. It is therefore relevant
(irrelevant) whenapure . 0 (, 0). Whenapure . 0, the
RG analysis showed a flow towards the random fixed point,
which has a finite value ofD.

In the “canonical ensemble,” we include the delta func-
tion for the constraint, and use the replacementdsxd ­R

dl expsilxd [or its generalization
R

dl expsilx 2

Nbyl2y2d]. Repeating the averaging over the individual
Jij ’s and integrating overl finally yields

Hcan ­ Hgr 1 sy0yNbd

√X
kijl

Eij

!2

1 . . . , (2)

wherey0 ­ 2bD2ysD 1 yd. The new nonlocal term in
Hcan is similar to that obtained from constraints in an-
nealed averages, which normally yield the Fisher normal-
ization whena . 0 [12,13]. Indeed, once we moved
to the replicated space, the random average became “an-
nealed”: the final expression forZn contains tracing over
both the spin and theJ degrees of freedom, and in the
canonical case the latter trace is constrained. We can now
consider the stability ofHgr against the addition of the sec-

ond term in Eq. (2), which represents the constraint. Each
factor

P
kijl Eij is equal to the total energy of the sample,

which scales likeNt12a. Dividing by Fgr , Nt22a , we
conclude thaty0 scales witht2a , just as in the argument
presented above [5,12]. However, unlike that argument,
the present argument is not restricted to the vicinity of the
pure fixed point;y always scales with the exponenta, even
near the random fixed point.

This general conclusion is explicitly supported by the
RG analysis ind ­ 4 2 e. Here we generalize the
calculations of Sak [12] for constraints in compress-
ible magnets. Using Fourier transformed variables,Sa

i ­
N21Sqeiq?ri sasqd, the above two models are both de-
scribed by a Landau-Ginzburg-Wilson free energy func-
tional of the form

F ­ s2Nd21
X
q,a

sr 1 q2dsasqd ? sas2qd

1 N23
X

q1,q2,q3

X
ab

sudab 2 w 1 ydq1,2q2d

3 sasq1d ? sasq2ds bsq3d ? sbs2S3
i­1qid

1 . . . , (3)
wherer ~ sT 2 fTcgd, w ~ D, andy ~ y0 (the propor-
tionality coefficients involve trivial scale factors [5]),
while u represents the usual quartic coefficient of the pure
m-vector model. In these equations we have written dis-
crete sums over wave vectors in order to facilitate the
proper identification of dependences onN ; Ld. In the
grand canonical limit one hasy ­ 0, and the problem re-
duces to that discussed before [2–5,10]. In the extreme
canonical limit (y ­ 0) one hasy ­ w. However, the
new parametery appears even for a weak constraint, and
therefore one must follow the recursion relations fory to-
gether with those for the other parameters.

The RG iterations involve integration over largeq,
rescaling lengths by factorse2,, and spins by factors
z ­ expfsd 1 2 2 hd,y2g [14], so that the renormalized
F maintains its form as above [5,15]. To leading order in
e ­ 4 2 d, u, w, andy, one has [4,5,12]

dr
d,

­ 2r 1 4I1f2smn 1 2dw

1 sm 1 2du 1 nmyg 1 . . . ,

dy

d,
­ ey 2 4I2f22smn 1 2dwy

1 2sm 1 2duy 1 nmy2g 1 . . . , (4)

dw
d,

­ ew 2 4I2f2smn 1 8dw2

1 2sm 1 2duwg 1 . . . ,

du
d,

­ eu 2 4I2fsm 1 8du2 2 12uwg 1 . . . ,

with Ik ­ Kdys1 1 rdk. Note thaty does not influence
the recursion relations foru andw. Therefore, these re-
main as they were in the grand canonical case. Forn ­ 0
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andm ­ 1 one must go to higher order, and the random
fixed point becomes of ordere1y2 [16,17]. However, all
the qualitative features remain the same. Note also that
in the limit n ! 0, y does not influence the recursion
relation for r . This implies that the thermal critical ex-
ponents, e.g.,n, are also not affected by the constraint.
This is different from the Fisher renormalization that hap-
pens for finite values ofn. Finally, note that the term of
ordery2, and all higher powers ofy, disappear from the
recursion relation fory whenn ! 0. We can rewrite the
linearized recursion relation fort ­ r 2 rc as dtyd, ­
tyneff ; th2 2 4Kdf22w 1 sm 1 2dug 1 . . .j. Noting
that the same combination of parameters appears in the
recursion relation fory, this latter equation can now be
written asdyyd, ­ yaeffyneff, with aeff ­ 2 2 dneff.
This agrees with our general scaling argument, and there-
fore we expect it to remain valid at all orders in the per-
turbation expansion. We thus conclude thaty has only
one fixed point value, atyp ­ 0.

In the extreme canonical case,y ­ 0 and
y ­ w. Equation (4) then yieldsdsw 2 ydyd, ­
sayndeffsw 2 yd 1 16I2w2 1 higher orders. Thus, the
initial parameter ws0d 2 ys0d ­ 0 will increase with
, towards positive values, implying an increase iny:
the RG maps the initial extreme constraint onto a less
extreme one. Note that this equation always prevents
w 2 y from becoming negative. Indeed, a negative
value of this difference would imply a negative value
of y, which is unstable and unphysical. Beginning in
the extreme canonical limit, we expect a few transient
iterations, during whichws,d 2 ys,d grows from zero
to some small finite valueC (of order w2). Near the
pure fixed point, bothw and y scale withapure, and we
have ws,d 2 ys,d ø C expf,sayndpureg. If apure , 0,
the pure fixed point remains stable against bothw and
y, and they both decay to zero. In contrast, when
apure . 0, both w and y flow away from the pure fixed
point, and the nonlinear terms in the recursion relations
yield an increase ofw 2 y. Since the flow ofws,d
is not affected byy, w still flows towards its random
fixed point valuewp

random, as for the grand canonical
case: ws,d ø wp

random 1 Ae2,sfyndrandom . However, in
the vicinity of that fixed pointys,d ø Be,sayndrandom . If
one hadarandom . 0, this would imply a “run away” of
ys,d towards large positive values, eventually yielding
negative values ofws,d 2 ys,d, which are not allowed.
This contradiction implies that wemusthavearandom , 0,
i.e., nrandom . 2yd. Indeed, explicit expressions from
the e expansion indicate that2frandom , arandom , 0
[6]. The same inequality seems also to hold for the 3D
random Ising model, where a four-loop calculation with a
f3y1g Padé-Borel approximation yieldsfrandom ø 0.245,
while arandom ø 20.01 [17]. Sincearandom has a very
small magnitude, one might expect the decay ofy towards
zero near the random fixed point to be extremely slow.
Furthermore, we now expectys,d to first grow, near the
pure fixed point, then go through a maximum and then

decrease back to zero. The flow is certainly slow near that
maximum. In any case, sufficiently close to criticality,
and for sufficiently large samples, both the canonical
and the grand canonical averages must flow to the same
random fixed point, and therefore ratios likeRX must
approach the same universal values.

We next calculateRX for the canonical case, for the ex-
ample of Rx . As shown in Ref. [10],fDX2g and fXg2

have the same renormalization prefactors, and therefore
RX ; fDX2gyfX2g is invariant under the renormalization
group flow. It is thus sufficient to calculate it after, itera-
tions, in terms ofrs,d, us,d, ws,d, andys,d. In the replica
language, one hasx ; ksas0d ? sas0dlyN, andfDx2g ;
fx2g 2 fxg2 ­ CyN2, where C ­ ks2

as0ds2
bs0dl, a fi

b, and k l denotes an average with respect to exps2Fd.
We evaluateC diagrammatically, in powers ofw andy.
It is easy to check that one has

Cs,d ­ fNs,dGs,dg4fNs,dg23fws,d 2 ys,dg 1 . . . , (5)

where Ns,d ­ N exps2d,d, Gs,d ­ 1yfrs,d 1 se,qd2g,
with q ~ 1yL representing the smallest wave number
allowed in our finite sample, and the dots indicate higher
powers ofus,d, ws,d, andys,d. Similarly, fxs,dg ­ Gs,d.
Iteration continues until, ­ ,p, whereGs,pd , 1 [10,15].
The final result, to leading order inws,pd andys,pd, is

Rx ­ fws,pd 2 ys,pdgyNs,pd . (6)

This is exactly of the form found in Ref. [10], except that
now ws,pd is replaced by the differencews,pd 2 ys,pd.
Away from criticality (1 ø j ø Ld, we choosee,p

­ j,
i.e., Ns,pd ­ sLyjdd , and recover strong self-averaging,
Rx , 1yLd . At criticality (1 ø L ø j), we choose
e,p

­ L, i.e., Ns,pd ­ 1. When the pure fixed point
is stable,apure , 0, we find weak self-averaging,Rx ø
CLsayndpure , with the amplitudeC much smaller than for the
grand canonical case. Indeed, it would be very interesting
to check this prediction for the canonical averaging in
systems withapure , 0 (e.g., the 3D Heisenberg model).
Whenapure . 0, bothw andy flow towards the random
fixed point. For sufficiently largeL and at criticality we
expect

ws,pd ø wp
random 1 AL2sfyndrandom ,

ys,pd ø BLsayndrandom .
(7)

Thus,Rx approaches thesame universal value(wp
random 1

. . .) for bothcanonical and grand canonical averages in the
limit L ! `. However, in view of the small (negative)
value of arandom, the decay ofy to zero may require
prohibitively large values ofL. In contrast, the approach
of w to its fixed point value is relatively rapid [17].

In the simulations [9] three site dilute Ising models
were examined, including the two types of disorder. In
the grand canonical models each site of theL3-site cubic
lattice was independently either occupied by an Ising
spin with probability p or left vacant with probability
s1 2 pd. We usedp ­ 0.8 with L up to64 andp ­ 0.6
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with L # 80. In the canonical model exactlycL3 sites
of each sample were occupied and only the locations
of the occupied sites differed between samples. We
used c ­ 0.6 with L # 90. In all models typically
thousands of samples were simulated; e.g., atc ­ 0.6,
26 000 (1000) samples forL ­ 20s90d. Simulations were
performed at the critical temperatures,Tcsp ­ 0.8d ­
3.4992 andTcsp ­ c ­ 0.6d ­ 2.4220, as calculated by
Heuer [11], using the Wolff [18] single cluster algorithm
[19]. Estimates of critical exponents ratios (such asb

n ,
a

n ) for the p ­ 0.6 and c ­ 0.6 models were in good
agreement with each other. Exponent ratios forp ­ 0.8
agreed well with those of Heuer [11] for ac ­ 0.8 model,
in accord with our argument thatneff is independent of the
constrainty.

The relative variancesRm andRx are plotted in Fig. 1.
First, note thatRX of the grand canonical models,p ­
0.6, 0.8, seem to approach the same asymptotic values for
largeL, in agreement with our prediction of universality.
However, the canonical (c ­ 0.6) values ofRX remain
smaller than their grand canonical counterparts. This
difference might suggest a separate universality class for
the canonical case, associated with a new fixed point
which hasyp fi 0. However, since our RG analysis does
not find such a fixed point, we believe that both cases
should approach the same asymptotic values, given by the
random fixed point values. In spite of this expectation,
we note that although the grand canonical value ofRx ,
given to leading order byws,pd, may already be very
close towp

random for the L’s used in the simulations, the
difference between the values ofRx in the two ensembles
is given (to that order) byys,pd. Given Eq. (7), and the
smallness ofsayndrandom, it is reasonable to expect that in
the simulationsys,pd has not yet reached its asymptotic
value of zero.

In summary, we have considered a quenched randomly
diluted Ising model and have shown that, unlike the Fisher
renormalization in thermodynamic systems, the canoni-
cally and grand canonically quenched random systems are
in the same universality class. Their finite size correc-
tions are different because of the appearance of an ad-
ditional long–ranged potential associated with the global
canonical constraint. To avoid RG flows into an unphysi-
cal regime, it is necessary to suppose thata ­ 2 2 dn is
always negative, including at the randomness dominated
fixed point. Because the stability exponent fory is a,
the flow of y to its fixed point value of zero can be suf-
ficiently slow that it may be difficult to reach the asymp-
totic regime with numerical simulations.

We acknowledge extensive discussions with E. Do-
many, and support from the German-Israeli Foundation,
the U.S.-Israel Binational Science Foundation, the Israel
Ministry of Science, and the National Science Foundation
under Grant No. 95-20175. Computations were done on
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FIG. 1. The relative variances of the susceptibilityRx (left)
and of the magnetizationRm (right) at Tc as a function ofL.

the SP2 at the Inter-University High Performance Com-
puting Center, Tel Aviv.
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