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Critical Disordered Systems With Constraints and the Inequality v>2/d

Abstract

The renormalization group approach is used to study the effects of a “canonical” constraint (e.g., a fixed
number of occupied bonds) on critical quenched disordered systems. The constraint is found to be always
irrelevant, even near the “random” fixed point. This proves that a<0, or that v>2/d. “Canonical” and “grand
canonical” averages thus belong to the same universality class. Related predictions concerning the universality
of non-self-averaging distributions are tested by Monte Carlo simulations of the site-diluted Ising model on
the cubic lattice. In this case, the approach to the asymptotic distribution for “canonical” averaging is slow,
resulting in effectively smaller fluctuations.
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Critical Disordered Systems with Constraints and the Inequalityr > 2/d

Amnon Aharony, A. Brooks Harris> and Shai Wiseman
'School of Physics and Astronomy, Raymond And Beverly Sackler Faculty of Exact Sciences,
Tel Aviv University, Tel Aviv 69978, Israel
2Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104
3Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel
(Received 2 April 1998

The renormalization group approach is used to study the effects of a “canonical” constraint (e.g., a
fixed number of occupied bonds) on critical quenched disordered systems. The constraint is found to
be always irrelevant, even near the “random” fixed point. This provesdhat0, or thaty > 2/d.
“Canonical” and “grand canonical” averages thus belong to the same universality class. Related
predictions concerning the universality of non-self-averaging distributions are tested by Monte Carlo
simulations of the site-diluted Ising model on the cubic lattice. In this case, the approach to the
asymptotic distribution for “canonical” averaging is slow, resulting in effectively smaller fluctuations.
[S0031-9007(98)06581-8]

PACS numbers: 05.50.+q, 75.10.Nr, 75.40.Mg, 75.50.Lk

The critical behavior of systems with quenched randomypoint is stable for both types of averaging. Contrary to the
ness has been the subject of much interest for decadesxpectation of Ref. [8], our arguments confirm the inequal-
One central issue concerns the correlation length expaty » > 2/d especiallyfor the canonical case.
nent,». The so-called Harris criterion [1] showed that the Our second motivation concerns self-averaging in the
critical behavior of the nonrandom (“pure”) systemdn context of Monte Carlo simulations. Following numerical
dimensions is not sensitive to randomness in the local trarwork and heuristic arguments which indicated the absence
sition temperatur@. if vy > 2/d. The same criterion of self-averaging [9], it was shown [10] that when a
follows from renormalization group (RG) and scaling argu-random fixed point is stable, then the distributions of
ments [2—-5]. Wherv,,. < 2/d, RG yields a crossover measured quantiti€s(} at the critical point have nonzero
from the pure behavior to a new one, governed by a “ranrelative cumulants, which approach universal values as
dom” fixed point. Although the stability of the pure fixed L increases. This universality was then confirmed by
point is determined by the sign of the specific heat exposimulations on the grand canonical site-diluted cubic lattice
nenta = 2 — dv, the stability exponent of the random Ising model [9], which found that the relative variandgs
0oNe, ¢random, 1S NOt related tax,.nq0om [6], and one has not andRr,, (for the susceptibility and the magnetization) reach
yet identified any relation between.,qom and the stability the same nonzero limiting values for two different site
of that fixed point. Independent of these RG arguments;oncentrations. However, simulations often use canonical
Chaye<t al. [7] proved thatr > 2/d even for the case of averaging in order to reduce fluctuations [11]. Our new
strong randomness. Their proof considered random binafiRG results would predict theameasymptotic values of
variables (e.g., the random occupation of bonds or sitesRy, for both averages. This is apparently contradicted
in a “grand canonical” context where the average densitpy new simulations of the above Ising model, presented
is fixed, but the actual density has fluctuations of ordebelow, which find that the canonical averaging yields
N2 = L=2inasystem of linear size. Ithasrecently smaller values ofR, andR,. However, an important
been argued [8] that this proof no longer applies for theresult of the present Letter is that in the canonical dgse
“canonical” case, when the total number of occupied sitespproaches its universal asymptotic valu¢.48’. For the
(or bonds) is kept constant. The present Letter investigatetree dimensional (3D) random Ising model, this approach
the different types of averaging. Although Refs. [7,8] em-is very slow, and the asymptotic value is not reached
phasize quantum systems, we feel that the issues under dfer realistic sample sizes. This explains why canonical
cussion do not depend on that. Therefore, we address thesimulations often observe smaller fluctuations.
for the simplest case of a random classical ferromagnet. It is convenient to perform the RG analysis on a
Our new RG analysis shows that the stability exponent forandom exchange ferromagnetic spin modéd =
the canonical constraint is always equal to the appropri—2 Z<l~j> JijSi - Sj, where §; is an m-component unit
ate value ofx. We find that wheny,,. < 0, randomness vector, and(i;) indicates summation over pairs of nearest
is irrelevant for both canonical and grand canonical avneighbors on ad-dimensional hypercubic lattice. We
erages. Whem,,. > 0, randomness causes a crossoverconsider several distributions of th, random variables
to the random fixed point. We then show that a positive{l/;;}. In the grand canonical case, this distribution is
arandom WoUId lead to unacceptable unstable distributionsthe product of independent factoR(J;;), each having
Thus, we conclude thaingom < 0, and the random fixed an average = [J;;] and variance\ = [(J — J;;)*] (we
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use [...] to denote the configurational average). In theond termin Eq. (2), which represents the constraint. Each
extreme canonical case, this product is multiplied byfactor;, ;; is equal to the total energy of the sample,
8 i Jij — NuJ), representing the constraint on the which scales likevt!~«. Dividing by Fr ~ N>~ %, we
total number of occupied bonds. For example, for bonctonclude that, scales with: ~¢, just as in the argument
dilution one has/;; = Jo or 0, with probabilitiesp and  presented above [5,12]. However, unlike that argument,
1 — p, and the extreme constraint means that the numbehe present argument is not restricted to the vicinity of the
of occupied bonds in every acceptable realization must bpure fixed pointy always scales with the exponenteven
exactly equal topN,. A less extreme constraint would near the random fixed point.
arise if we replacé (x) by the Gaussian ekp-x2/(2yN,)]. This general conclusion is explicitly supported by the
As y decreases from to 0, the “strength” of the constraint RG analysis ind = 4 — €. Here we generalize the
increases gradually from the grand canonical limi= «©  calculations of Sak [12] for constraints in compress-
towards the “extreme” canonical limyjt = 0. ible magnets. Using Fourier transformed variab8s,=

It is also convenient to use the replica method [4,5].N~!3,e4™ % (q), the above two models are both de-
and calculatdZ”], whereZ is the realization-dependent scribed by a Landau-Ginzburg-Wilson free energy func-
partition function andu is the number of replicas, to be tional of the form
sent to zero at the end of the calculation. We next write

"= Tr[exp(— B Her)], With Hegr = =235, Ji; Eij, F=(N) 1Z(r + ¢’ (q) - o (—q)

whereE;; = >, S{ - S¥, and{S{", @ = 1,...,n} repre- b

sents the spin in theth replica. In the grand canonical + N3 Z Z(uaaﬁ —w + v8q,.—q,)

situation, [Z"] breaks into a product of independent Q.0 @B i

averages over thd, different bonds[exp2BJ;;E;;)] = X o(q1) - 0 (q2)o”(q3) - 0P (—32_,q))

[dJ P(J)exp2BJE;;). Expanding in cumulants of

P(J;j), one ends up witlz,, = [Z"] = Tr exp(—ﬁj-[gr), T 3)

where the trace is over alln spin components, wherer « (T — [T.]), w = A, andv = v, (the propor-

tionality coefficients involve trivial scale factors [5]),
Hy = =2 (JE; + BAEZ + .., (1) while u represents the usual quartic coefficient of the pure
@) m-vector model. In these equations we have written dis-

and the dots indicate higher cumulants Bf associated crete sums over wave vectors in order to facilitate the
with higher powers ofE;;. This effective Hamiltonian proper identification of dependences dn= L¢. In the
was the basis for the RG analysis in this “grand canonicarand canonical limit one has = 0, and the problem re-
ensemble” [4,5,10]. Near the pure fixed point, we canduces to that discussed before [2—5,10]. In the extreme
expand the free energy to linear order inA, which  canonical limit (y = 0) one hasv = w. However, the
is a measure of the randomness. Si8& - S7)pue ~  new parameter appears even for a weak constraint, and
t!~@we wheret ~ T — T,, the leading correction tgF therefore one must follow the recursion relations#oto-
scales asNA¢2("en)  Dividing by the leading free gether with those for the other parameters.
energy density, which scales a&> %, we conclude The RG iterations involve integration over largg
that A appears aa¢ %~ [5,12]. It is therefore relevant rescaling lengths by factors=¢, and spins by factors
(irrelevant) whenopye > 0 (< 0). Whenapye > 0,the ¢ = exd(d + 2 — n)€/2] [14], so that the renormalized
RG analysis showed a flow towards the random fixed pointF’ maintains its form as above [5,15]. To leading order in
which has a finite value aA. € =4 — d,u,w, andv, one has [4,5,12]
In the “canonical ensemble,” we include the delta func- dr _ 2 + 4L [—( +2)
tion for the constraint, and use the replacemétt) = de g 1L W
[dlexpix) [or its generalization [dAexpilx —
N,yA?/2)]. Repeating the averaging over the individual
Jij’s and integrating oven finally yields ) fz_; — ev — AL[~2(mn + 2w
j-[can = g{gr + (UO/Nb) (Z Z'ij> + ... (2)
(i)
wherevy = 2B8A%/(A + y). The new nonlocal term in aw _ ew — 4L[—(mn + 8)
H.., is similar to that obtained from constraints in an- d¢
nealed averages, which normally yield the Fisher normal- + 20m + uw] + ...,
ization whena > 0 [12,13]. Indeed, once we moved
to the replicated space, the random average became “an-du _ eu — 4L[(m + 8)u* — 12uw] + ...
nealed”; the final expression faf, contains tracing over d¢t ’
both the spin and the degrees of freedom, and in the with 7, = K;/(1 + r)*. Note thatv does not influence
canonical case the latter trace is constrained. We can notlie recursion relations far andw. Therefore, these re-
consider the stability ofH,, against the addition of the sec- main as they were in the grand canonical case. nFet 0
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+ (m+ 2u + nmv] + ...,

+ 2(m + uv + nmv?] + ..., (4)
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andm = 1 one must go to higher order, and the randomdecrease back to zero. The flow is certainly slow near that
fixed point becomes of order'/2 [16,17]. However, all maximum. In any case, sufficiently close to criticality,
the qualitative features remain the same. Note also thand for sufficiently large samples, both the canonical
in the limit n — 0, v does not influence the recursion and the grand canonical averages must flow to the same
relation forr. This implies that the thermal critical ex- random fixed point, and therefore ratios lik must
ponents, e.g.y, are also not affected by the constraint. approach the same universal values.
This is different from the Fisher renormalization that hap- We next calculat&y for the canonical case, for the ex-
pens for finite values of. Finally, note that the term of ample ofR,. As shown in Ref. [10][AX?] and [X]?
orderv?, and all higher powers of, disappear from the have the same renormalization prefactors, and therefore
recursion relation for whenn — 0. We can rewrite the Ry = [AX?]/[X?] is invariant under the renormalization
linearized recursion relation far= r — r. asdt/d¢ =  group flow. Itis thus sufficient to calculate it aftéitera-
t/vesr = {2 — 4Ky4[—2w + (m + 2)u] + ...}. Noting tions, in terms of-({), u(£), w(€), andv(€). In the replica
that the same combination of parameters appears in tHanguage, one hgg = (a%(0) - *(0))/N, and[A xy?] =
recursion relation fow, this latter equation can now be [x2] — [x> = ¥/N?, where ¥ = (c2(0)03(0)), @ #
written asdv/d€ = vaegr/vesr, With aerr = 2 — dvegr. 8, and() denotes an average with respect to (exp).
This agrees with our general scaling argument, and theraVe evaluatel diagrammatically, in powers of andv.
fore we expect it to remain valid at all orders in the per-It is easy to check that one has
e e e g° conude thatas oy ) — NG OFINO] De() ~ v(O] + ... B)

In the extreme canonical casey =0 and where N({) = Nexp(—d{), G(t) = 1/[r(€) + (e‘q)?],
v =w. Equation (4) then yieldsd(w — v)/d¢ = with ¢ « 1/L representing the smallest wave number
(a/v)eit(w — v) + 16LLw? + higher orders. Thus, the allowed in our finite sample, and the dots indicate higher
initial parameterw(0) — v(0) = 0 will increase with  powers ofu(¢), w(¢), andv(€). Similarly,[x(€)] = G(¥).
¢ towards positive values, implying an increase )in |teration continues untl = ¢*, whereG(¢*) ~ 1[10,15].
the RG maps the initial extreme constraint onto a lesghe final result, to leading order m(¢*) andv (€*), is
extreme one. Note that this equation always prevents . . .
w — v from becoming negative. Indeed, a negative Ry = [w(") — v(€)]/N(7). (6)
value of this difference would imply a negative value Thjs js exactly of the form found in Ref. [10], except that
of y, which is unstable and unphysical. Beginning inpow v (¢*) is replaced by the difference (£*) — v(€*).
the extreme canonical limit, we expect a few transientaway from criticality (I < & < L), we choose!’ = ¢,
iterations, during whichw(€) — v(€) grows from zero e N(¢*) = (L/£)?, and recover strong self-averaging,
to some small finite value (of order w?). Near the p 1/L4. At criticality (1 < L < &), we choose
pure fixed point, bothw andv scale withapue, and we & _ i, N() = 1. When the pure fixed point
have w(¢) - v(€) = CeXF{_g(“/V)pure]- |f pure <0, g stable,apye < 0, we find weak self-averaging®®, ~
the pure fixed point remains stable against bethand CL@/"h it the amplitudec much smaller than for the
v, and they both decay to zero. In contrast, Wheny g canonical case. Indeed, it would be very interesting
apue > 0, bothw andv flow away from the pure fixed  chack this prediction for the canonical averaging in
p_omt, anq the nonlinear terms in the recursion relatlon§ystems Withe e < 0 (€.9., the 3D Heisenberg model).
yield an increase ofv — v. Since the flow ofw(¢) When apue > 0, bothw andwv flow towards the random

i.s hot affected byv; w still flows towards its fa”d‘?m fixed point. For sufficiently largé. and at criticality we
fixed point value w,qom, @s for the grand canonical expect

case: w(f) = whngom + Ae {@/Pmem  However, in
the vicinity of that fixed pointv(¢) = Be!(@/?)umam  |f w(l*) = Wi qom + AL™(®/Vnion
one hada;angom > 0, this would imply a “run away” of #\ — 7 (@) mndom

. e v({*) = BL .
v({) towards large positive values, eventually yielding
negative values ofv(€) — v(€), which are not allowed. Thus,R, approaches theame universal valu@v,sndom +
This contradiction implies that wausthavea,,ngom < 0, ...) for bothcanonical and grand canonical averages in the
i.€., Vwandom > 2/d. Indeed, explicit expressions from limit L — . However, in view of the small (negative)
the € expansion indicate that ¢random < @random < 0 value of arangom, the decay ofv to zero may require
[6]. The same inequality seems also to hold for the 3Dprohibitively large values of.. In contrast, the approach
random Ising model, where a four-loop calculation with aof w to its fixed point value is relatively rapid [17].
[3/1] Padé-Borel approximation yields,.nqgom = 0.245, In the simulations [9] three site dilute Ising models
while a;angom = —0.01 [17]. Since armgom has a very were examined, including the two types of disorder. In
small magnitude, one might expect the decay eébwards  the grand canonical models each site of fHesite cubic
zero near the random fixed point to be extremely slowlattice was independently either occupied by an lIsing
Furthermore, we now expeet({) to first grow, near the spin with probability p or left vacant with probability
pure fixed point, then go through a maximum and thenl — p). We usedp = 0.8 with L up to64 andp = 0.6
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with L = 80. In the canonical model exactlyL® sites ‘

i H Rx == R
of each sample were occupied and only the locations R
of the occupied sites differed between samples. We A A B
used ¢ = 0.6 with L =90. In all models typically | lo1wol |
thousands of samples were simulated; e.g.¢ at 0.6, e
26 000 (1000) samples fdr = 20(90). Simulations were O
performed at the critical temperatureg,(p = 0.8) = e Sl =¥
3.4992 andT.(p = ¢ = 0.6) = 2.4220, as calculated by 0606
Heuer [11], using the Wolff [18] single cluster algorithm % p=0.6 o e
[19]. Estimates of critical exponents ratios (such%v,s Ap=0.8 0.02 ©
2) for the p = 0.6 and ¢ = 0.6 models were in good 10 100 10 100
agreement with each other. Exponent ratios o+ 0.8 L L

agreed well with those of Heuer [11] forca= 0.8 model,
in accord with our argument that is independent of the
constrainty.

The relative varianceR,, andR, are plotted in Fig. 1.
First, note thatRy of the grand canonical modelg, = the SP2 at the Inter-University High Performance Com-
0.6,0.8, seem to approach the same asymptotic values fgputing Center, Tel Aviv.
large L, in agreement with our prediction of universality.

However, the canonicalc(= 0.6) values of Ry remain

smaller than their grand canonical counterparts. This[1] A.B. Harris, J. Phys. @, 1671 (1974).

difference might suggest a separate universality class fof2] T.C. Lubensky and A.B. Harris, AIP Conf. Pro24, 99
the canonical case, associated with a new fixed point (1975); A.B. Harris and T.C. Lubensky, Phys. Rev. Lett.
which hasv™ # 0. However, since our RG analysis does 33 1540 (1974).

not find such a fixed point, we believe that both cases[3] T-C. Lubensky, Phys. Rev. B1, 3573 (1975).

should approach the same asymptotic values, given by th(%d'] G. Grinstein and A. Luther, Phys. Rev. B, 1329 (1976).

random fixed point values. In spite of this expectation 5] A. Aharony, in Phase Transitions and Critical Phenom-
P ) P p ’ ena,edited by C. Domb and M. S. Green (Academic, New

FIG. 1. The relative variances of the susceptibilRy (left)
and of the magnetizatioR,, (right) at7, as a function ofL.

we note that _although the grand canonical valueRof York, 1976), Vol. 6, p. 357.

given to leading order byv(€"), may already be very (6] w. Kinzel and E. Domany, Phys. Rev. 3, 3421 (1981);
close towranaom for the L’s used in the simulations, the D. Andelman and A.N. Berker, Phys. Rev. 2, 2630
difference between the values Bf in the two ensembles (1984).

is given (to that order) by (€*). Given Eq. (7), and the [7] J.T. Chayes, L. Chayes, D.S. Fisher, and T. Spencer,
smallness ofa/v).andom, it is reasonable to expect that in Phys. Rev. Lett57, 2999 (1986).

the simulationsv(¢*) has not yet reached its asymptotic [8] F. Pazmandi, R.T. Scalettar, and G.T. Zimanyi, Phys.
value of zero. Rev. Lett.79, 5130 (1997)

In summary, we have considered a quenched randomiyl®] Sigg\gs-e;nhan aF?d EL Domarlmoy, P?{,S-h Rde‘.’-ﬁ' 3459 .
diluted Ising model and have shown that, unlike the Fisher Eto be)i:)ubliyssﬁed)ev. ett. (to be published); Phys. Rev.
renormalization in thgrmodynamlc systems, the canonlIlo] A. Aharony and A. B. Harris, Phys. Rev. Le@t7, 3700
cally and grand canonically quenched random systems are (1996).
in the same universality class. Their finite size correc{11] H. 0. Heuer, J. Phy6, L333 (1993).
tions are different because_ of the appearance of an agt2] J. sak, Phys. Rev. B0, 3957 (1974).
ditional long-ranged potential associated with the globaf13] M. E. Fisher, Phys. Re\i76 257 (1968).
canonical constraint. To avoid RG flows into an unphysi-[14] In general, = O (u(£)?, u(€)w(€), w(£)?), independent
cal regime, it is necessary to suppose that 2 — dv is of v(€), and n¢ means [ n(€)d¢. To leading order,
always negative, including at the randomness dominated 7 = 0.
fixed point. Because the stability exponent foris «,  [15] J. Rudnick and D.R. Nelson, Phys. Rev. B, 2208
the flow of v to its fixed point value of zero can be suf- [16] gglze)khmelnitzkii Sov. Phys. JETRIL 981 (1975)
Ilc():tli?:nri)(f;i?rl]oewvvti?f? tnlltjr:,]n (:’)i/ Cgle S?ﬂﬁ;g;r?srea(:h the asymp- A. Aharony, Phys.,Rev. B3, 2092 (1976);,C. Jayapraka’sh

: : . . and H.J. Katz, Phys. Rev. B6, 3987 (1977).
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