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1. INTRODUCTION

Here we review recent and new developments which elucidate the symmetry and
the description of the magnetic and dielectric states of multiferroics using order
parameters. After some examples where the magnetoelectric (ME) behavior is
relatively simple, we discuss a proposed generic phase diagram for the so-called
“125” systems, RMn2O5, where R is a rare earth. The most important consequence
of the phenomenological theories we develop is to provide a general framework for
understanding the magnetic and dielectric properties of these materials and how these
properties combine to produce the interesting ME phenomena.

Briefly, this article is organized as follows. In Sec. 2 we discuss the
characterization of the magnetic structure obtained from symmetry arguments. Here
we discuss briefly a simplified version of the group theoretical approach (known as
representation theory) which is supplemented by less well-known arguments involving
the use of inversion symmetry. As examples we consider Ni3V2O8 (NVO), TbMnO3,
and RbFe(MoO4)2 (RFMO) and discuss the introduction of order parameters (OP’s)
to characterize the magnetic symmetry. We then give a brief review of how symmetry
restricts the form of the ME interaction when it is written in terms of both magnetic
and dielectric OP’s. In Sec. 3 we give a detailed discussion of how these concepts
enable us to construct a generic phase diagram for the 125 family of multiferroics,
which does not rely on a knowledge of the details of the microscopic interactions.
Section 4 contains an application of the theory of critical phenomena to the 125’s, and
the paper is briefly summarized in section 5.

2. SYMMETRY AND MAGNETIC STRUCTURE

Here we give a simplified review of the role of symmetry in determining the structure
of the magnetically ordered phase which develops at a continuous phase transition.
This subject is of ancient vintage, being discussed about 60 years ago by Landau
(see [1]). However, some reviews which discuss the analysis of diffraction data[2, 3]
overlook the importance of inversion symmetry in reducing the number of parameters
needed to describe the ordered magnetic structures. For multiferroics this was first
corrected quite recently by Lawes et al.[4], by Kenzelmann et al.[5] and in more detail
by Harris[6], which we follow here. Formal treatments appeared some time ago [7].
Recent papers include Schweizer et al.[8] and Radaelli and Chapon[9].

We start by assuming that the paramagnetic phase is characterized by a primitive
unit cell with nτ magnetic sites. The Landau expansion of F2, the magnetic free energy
at quadratic order in the spin components, is

F2 =
∑

q

nτ
∑

τ,τ ′=1

∑

α,β

[χ−1(q)]τ,α;τ ′,βSα(q, τ)∗Sβ(q, τ ′) , (1)

where χ is the wave-vector dependent susceptibility matrix and

Sα(R, τ) =
∑

q

Sα(q, τ)eiq·R , (2)

where Sα(R, τ) is the α-component of spin of the τth magnetic site in the unit cell at R

and Sα(−q, τ) = Sα(q, τ)∗. For each value of the wave vector the inverse susceptibility
has 3nτ eigenvalues (which may or may not be distinct from one another). At
high temperature T all these eigenvalues are positive and the paramagnetic state is
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thermodynamically stable. As T is reduced through a critical value, Tc, one eigenvalue,
λc(qc), at some wave vector qc (and wave vectors equivalent to it by symmetry which
comprise the star of qc) approaches zero, signaling an instability of the paramagnetic
phase to the formation of long-range order at the critical wave vector qc associated
with this critical eigenvalue. The actual value of qc is determined by the microscopic
interactions. Since these interactions are not well known, we regard the wave vector as
an experimentally determined parameter. The degeneracy of this critical eigenvalue
λc is nqN , where nq is the number of wave vectors in the star of q and N is the
dimensionality of the irreducible representation (irrep) of the symmetry group (the
so-called ”little group”) which leaves the wave vector invariant. (For ferromagnetic
Ising, x-y, and Heisenberg models N assumes the values 1, 2, and 3, respectively.)
To avoid technicalities, in this section we consider the simplest case, N = 1. This
case is simple because then we can use the familiar principle that the eigenvectors
of a matrix (here the inverse susceptibility) are also simultaneously eigenvectors of
operators (here the symmetry operations Oi of the space group which leave the selected
wave vector invariant) which commute with each other and with the matrix. In this
way we avoid using the full apparatus of group theory and the reader need not know
anything at all about “irreps”. We now illustrate this idea and show how inversion
symmetry introduces further simplifications for three recently studied multiferroic
magnetic materials, whose lattice structures are shown in figure 1 and whose positions
(except for RFMO where the Fe ions form a Bravais lattice) are given in table 1. ‡

Figure 1. (Color online). (a) The six Ni sites in the unit cell of NVO. Circles
represent “spine” sites and squares represent the “cross-tie” sites. The axis of the
two-fold rotation about the a-axis is shown. The glide plane is indicated by the
mirror plane at z = 3

4
and the arrow above mc indicates that a translation of b/2

in the b-direction is involved. (b) The four Mn sites (small circles) and four Tb
sites (large circles) in the unit cell of TbMnO3. The glide ma is indicated by the
mirror plane at x = 3

4
followed by a translation of b/2 along the b direction. The

planes at z = 1/4 and z = 3/4 are mirror planes. (c) RFMO, where large balls
are Fe spins 5/2 on a stacked triangular lattice, small balls are oxygens, Mo ions
are inside the oxygen tetrahedra, and the Rb ions are not shown.
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2.1. NVO

For NVO the incommensurate (IC) wave vector for magnetic ordering is[11, 12]
q ∼= 0.28(2π/a)â. Thus the space group operations Oi which leave the wave vector
invariant are generated by 2a, a two-fold rotation about the a-axis and passes through

‡ We interchangeably denote the a, b, and c axes as x, y, and z, respectively.
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Table 1. General positions[10] (given as fractions of lattice constants) within
the primitive unit cell for NVO (space group Cmca) and TbMnO3 (space group
Pbnm). Here r+ ≡ r + 1/2, 2α is a two-fold rotation (or screw) axis, and mα is
a mirror (or glide).

Ni3V2O8

Er = (x, y, z) 2cr = (x, y+, z+)
2ar = (x, y, z) 2br = (x, y+, z+)
Ir = (x, y, z) mcr = (x, y+, z+)

mar = (x, y, z) mbr = (x, y+, z+)

TbMnO3

Er = (x, y, z) 2ar = (x+, y+, z)
2cr = (x, y, z+) 2br = (x+, y+, z+)
Ir = (x, y, z) mar = (x+, y+, z)

mcr = (x, y, z+) mbr = (x+, y+, z+)

the origin and mc, a glide operation which takes c into −c followed by a translation
through (b/2)b̂. Thus the critical eigenvector (which is the spatial Fourier transform
of the spin distribution) must not only be an eigenvector of the inverse susceptibility
matrix, but it must also simultaneously be an eigenvector of both 2a and mc. Since
[2a]2 = 1, the eigenvalues of 2a must be λ(2a) ≡ λ = ±1. Since [mc]

2 is a translation
along the b axis, the eigenvalues of mc must be λ(mc) ≡ λ′ = ± exp(ibqb/2) = ±1.
Thus, if we assume continuous transitions, there can only be four distinct symmetries
of ordered phases, corresponding to independently selecting the eigenvalues of 2a and
mc. The corresponding eigenvectors must be of the form

S(q, 1) = (α1, α2, α3)ξ , S(q, 2) = λ(α1,−α2,−α3)ξ ,

S(q, 3) = λλ′(−α1, α2,−α3)ξ
3 , S(q, 4) = λ′(−α1,−α2, +α3)/ξ3 ,

S(q, 5) = ([1 + λ]α4, [1 − λ]α5, [1 − λ]α6) ,

S(q, 6) = − λ′([1 + λ]α4, [1 − λ]α5, [1 − λ]α6)ξ
2 , (3)

where ξ = exp(iqxa/4) and the αn assume arbitrary complex values. To check this
note that under 2a sublattices #1 and #2 are interchanged as are #3 and #4, whereas
under mc sublattices #1 and #4 are interchanged as are #2 and #3. Note that 2a

changes the signs of the b and c-components of spin, while mc changes the signs of the
a and b components of spin since spin is a pseudo-vector. This type of analysis, known
as representation theory, is well-known and widely used. However, less well-known and
often overlooked (as documented in [6]) is the fact that in these multiferroic systems
the free energy must be invariant under the inversion symmetry I possessed by the
lattice [7]. One can then show[4, 13, 12, 6] that this symmetry fixes the phases of the
αn: for λ = λ′ = 1, apart from an overall complex phase factor, α1 and α3 must be
pure imaginary and α2 and α4 must be pure real. For other irreps [i. e. for the three
other choices of the eigenvalues λ(Oi)] one has analogous results. If (1) is generalized to
include terms of fourth order in the spin variables, then a mean-field analysis for T near
Tc shows that the overall amplitude of the spin wave function varies [proportionally
to (Tc − T )1/2], but the ratios among the αn’s are nearly temperature independent.
Therefore we replace αn by σ(q)αn and require the normalization

∑

|αn|2 = 1. Thus
the temperature dependence is incorporated in the order parameter σ. If we require
that α4, say, be real, then the freedom to fix the overall phase is taken into account
by allowing the order parameter to be complex, as one would expect, since the origin
of the IC ordering is not fixed, at least within F2. It should be noted that the order
parameter inherits the symmetry of the spin functions, so that

2aσ = λ(2a)σ = λσ , mcσ = λ(mc)σ = λ′σ , Iσ = σ∗ . (4)
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In the analysis of diffraction experiments one tries to fit the structure assuming
in turn each of the four symmetries. In so doing one has not 3nτ = 18 complex-valued
fitting parameters, but rather the 4 or 5 α’s of (3) (depending on which symmetry one
is considering). However, the use of inversion further reduces the number of fitting
parameters by half since their phases are fixed [12].

Figure 2. Dielectric and magnetic phase diagrams of NVO (left, from [11, 4, 12]),
TbMnO3 (center, from [14, 5]), and RFMO (right, from [17, 18]). In the dielectric
phase diagram the direction of the spontaneous polarization (if any) is indicated.
For NVO TC ≈ 4K, T< ≈ 6K, and T> ≈ 9K. In the magnetic phase diagrams P
denotes paramagnetic, HTI denotes a dominantly collinear IC phase with a single
OP, LTI is a dominantly elliptically polarized phase with two OP’s, and IC-TRI
denotes the IC stacking of triangular lattice antiferromagnets.

|| b

T <T >T T=2

C

Diel.

Mag.
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PHTILTI
C

|| c

40

PC LTI HTI

|| cDiel.

Mag.

10 30T=TbMnO
3
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P

|| cDiel.
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T=

The left phase diagram in figure 2 shows the experimentally observed sequence
of magnetic phases of NVO. As T is lowered, the first ordered phase to appear
(at T> ≈ 9K) is the HTI phase, which has a single eigenvector associated with
predominantly collinear sinusoidally modulated order. Analysis of experimental data
indicates that the eigenvalues of this phase are[12] λ(2x) = −1 and λ(mc) = +1.
At a lower temperature (T< ≈ 6K) the LTI phase appears with an additional order
parameter associated with dominantly transverse spin order and with λ(2x) = +1 and
λ(mc) = +1. The magnetic free energy which describes the development of these two
successive ordering transitions is of the form[12, 6, 21]

FM = a(T − T>)|σHTI|
2 + b(T − T<)|σLTI|

2 + O(σ4) , (5)

where a and b are constants and T> and T< are the respective temperatures (when
nonquadratic terms are ignored) at which σHTI and σLTI become nonzero. The
unwritten terms in FM , which are quartic in σ, favor fixed spin length. Thus σLTI is out
of phase relative to σHTI and the spins thereby order in a spiral structure[12, 15, 16].

2.2. TbMnO3

The case of TbMnO3 is almost identical to that for NVO. Here the IC wave vector is
of the form (0, q, 0)[19, 5], so that the symmetry operations which leave it invariant
are generated by the glide ma and the mirror mc. The eigenvalues of mc (ma) are ±1
(±Λ), where Λ = exp(iπq). For λ(mc) = 1 and λ(ma) = Λ one has

S(q, 1) = α1 î − α2ĵ − α3k̂ , S(q, 2) = α1î + α2ĵ + α3k̂ ,

S(q, 3) = −α1î + α2ĵ − α3k̂ , S(q, 4) = −α1î − α2ĵ + α3k̂ ,

S(q, 5) = α4k̂ , S(q, 6) = −α5k̂ ,

S(q, 7) = α5k̂ , S(q, 8) = −α4k̂ , (6)

where the αn are arbitrary complex numbers. As for NVO one can now require that F2

be invariant under I. In this case the result is that apart from an overall phase factor,
αn for n = 1, 2, 3 are real, α4 is an arbitrary complex number, and α5 = α∗

4[5, 13, 6].
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When inversion symmetry relates sites within the same Wyckoff orbit of the operators
of the group of the wave vector (as it does for NVO), the complex phases get fixed,
whereas when inversion relates sites in different Wyckoff orbits (as for the Tb sites
here), the previously independent amplitudes of the two orbits are now related. Again,
we replace αn by σ(q)αn, so that the temperature dependence of the spin function
is essentially contained in the order parameter σ(q) and the complex phase of the IC
ordering is incorporated in the arbitrary complex phase of σ(q) which transforms as

maσ(q) = λ(ma)σ(q) , mcσ(q) = λ(mc)σ(q) , Iσ(q) = σ(q)∗ . (7)

The center phase diagram in figure 2 shows the sequence of magnetic phases
of TbMnO3. As the temperature is lowered (through T> = 40K) the first ordered
phase to appear is the HTI phase in which the single eigenvector associated with
predominantly collinear order appears with λ(mc) = − exp(iπq) ≡ −Λ and λ(ma) = 1.
At a lower temperature (T< ≈ 30K) the LTI phase appears with an additional
order parameter associated with transverse spin order and with λ(mc) = −Λ and
λ(ma) = −1. The phenomenology of the magnetic phase diagram of TbMnO3 is very
similar to that of NVO.

2.3. RFMO

The magnetic Fe ions in RFMO form triangular lattice planes which are stacked
directly over one another, as shown in figure 1(c)[17]. Below T = 180K but above
the magnetic ordering temperature (at Tc = 4K) the lattice has P3 symmetry[20], so
that the only symmetry operation (apart from I) is a three-fold rotation R about the
c-axis, which is perpendicular to the triangular lattice plane. At low fields, the spins
within a single triangular lattice plane form a 120o structure and as one moves from
one plane to the next the spins are all rotated through an angle δφ = qcc, so that the
component of the IC wave vector along ĉ is qc [18]. To generate the 120o structure,
the in-plane component of the wave vector must be chosen to be at the corner, X,
of the Brillouin zone of the triangular lattice, i.e. q = X + qcĉ. Then the symmetry
operations Oi which leave the wave vector invariant are R and R−1. (R takes X into
a vector equivalent to X.) We thus end up with a one-dimensional irrep Γ and its
complex conjugate Γ∗. The spin distribution is given by[18, 6]

S(r) = [σ1(qz)(̂i + iĵ) + σ2(qz)(̂i − iĵ)]eiq·r + c. c. , (8)

where µ = exp(2πi/3). The order parameters transform as

Rσn(qz) = µn
σn(qz) , Iσn(qz) = σ3−n(qz)

∗ . (9)

The magnetic free energy up to order σ4 is

F = (T − Tc)σ
2 + uσ

4 + v|σ1(qz)σ2(qz)|
2 , (10)

where σ
2 ≡ |σ1(qz)|2 + |σ2(qz)|2, and u and v are constants (with u positive). It is

found[18] that only one of the two order parameters is nonzero in a single domain,
from which we deduce that v must be positive. (This conclusion is confirmed by the
appearance of ferroelectricity, as we will see in a moment.)

2.4. Magnetoelectric Interaction

Here we describe the ME interaction which leads to a spontaneous polarization induced
by magnetic ordering which breaks inversion symmetry. For this purpose we show the
dielectric phase diagrams of the three systems under consideration in figure 2.
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We write the free energy as

F = FM + FE + Vint , (11)

where FM (FE) is the magnetic (dielectric) free energy and Vint is the ME interaction
which is responsible for the magnetically induced ferroelectricity.

We first consider NVO[4, 12] and TbMnO3[5, 6]. Both have two magnetic ordered
phases, the high-temperature incommensurate (HTI) phase at higher temperature
(T> > T > T<), described by a single order parameter σHTI for which spins
are predominantly confined to the easiest direction, and the low-temperature
incommensurate (LTI) phase (for T < T<) in which a new order parameter σLTI

appears, describing ordering transverse to that of σHTI. The order parameters are out
of phase (to minimize the fourth order terms in the magnetic free energy)[12], and
thus give rise to a magnetic spiral. These order parameters transform as specified by
(4) and (7), respectively.

We have FE = (1/2)χ−1
E P2, where χE is the dielectric susceptibility and P is the

polarization vector. Because there is no tendency for ferroelectricity to form in the
absence of magnetic ordering, χE never gets large. In the absence of ME coupling,
the equilibrium value of P is zero. The ME interaction has to conserve wave vector
and be invariant under time reversal. At lowest (quadratic) order in σ, it therefore
must be of the form Vint ∼ σ(q)σ(−q)P ≡ σσ∗P . In the present situation, the two σ’s
can not both be HTI or LTI, because then Vint would not be invariant under spatial
inversion. So

Vint =
∑

γ

[cγσHTI(q)σLTI(q)
∗ + c∗γσHTI(q)

∗σLTI(q)]Pγ , (12)

and to be invariant under inversion we must have cγ = irγ , where rγ is real, so that[4]

Vint = i
∑

γ

rγ [σHTI(q)σLTI(q)
∗ − σHTI(q)

∗σLTI(q)]Pγ (13)

= 2 sin(φHTI − φLTI)|σHTIσLTI|
∑

γ

rγPγ , (14)

where σHTI = |σHTI| exp(iφHTI) and similarly for σLTI. The transformation
properties given in (4) and (7) for the order parameters under the mirror and glide
operations then imply that rγ in (13) is only nonzero for γ = b for NVO[4, 12, 13, 6]
and γ = c for TbMnO3[5, 13, 6]. The fact that P is proportional to |σHTIσLTI| has
been experimentally verified for NVO[22].

For RFMO the argument is slightly different. There (9) indicates that
σ1(qz)σ2(qz)

∗ is invariant under inversion (which changes the sign of P). Thus (9)
implies that the ME interaction quadratic in σ, which conserves wave vector, is[18, 6]

Vint =
∑

γ

rγ [|σ1(qz)|
2 − |σ2(qz)|

2]Pγ , (15)

where rγ is real valued. Since the square bracket is invariant under the three-fold
rotation R, Pγ must also be invariant under R. So at this order rγ can only be
nonzero for γ = c, as is observed[18]. At higher order[23] a transverse polarization is
in principle possible. Note that R(Px − iPy) = µ(Px − iPy) and Rσ1σ

∗
2 = µ2σ1σ

∗
2 .

Then one can have an ME interaction of the form

V
(4)
int = c[|σ1(qz)|

2 − |σ2(qz)|
2]σ1(qz)σ2(qz)

∗(Px − iPy) + c.c. . (16)
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However, the fourth order terms written in (10) select |σ1(qz)| = |σ2(qz)| if v is

negative and σ1(qz)σ2(qz) = 0 if v is positive. In either case V
(4)
int does not come into

play. Since the ordered phase is ferroelectric, we deduce that v is positive and that
only Pc is nonzero. Then, within mean field theory, Pc is proportional to 〈|σ|2〉, as is
the intensity of the magnetic Bragg peaks. This is experimentally confirmed[18]. §

3. 125’s

Figure 3. (Color online) (a) Two views of the lattice structure of the 125’s.
(b) Symmetry operations of space group Pbam. mα denotes a mirror or glide
operation, 2α is a two-fold rotation or screw operation and r+ ≡ r + 1/2.

(b)

r 2      =(x,y,z)c

c rm    =(x,y,z)

I   =(x,y,z)r

rE   =(x,y,z)

rbm       =(x+,y+,z)

2      =(x+,y+,z)rb

ram       =(x+,y+,z)

2      =(x+,y+,z)ra

We now consider the “125” orthorhombic (space group Pbam) family RMn2O5

(RMO), where R=Y, Ho, Er, Dy, Tb, Tm. Their lattice structure and the
corresponding space group operations are shown in figure 3. The paramagnetic unit
cell of the RMO’s contains 12 potentially magnetic ions: 4 Mn3+, 4 Mn4+ and 4 R3+.
Experiments show that all the RMO’s exhibit magnetic spin density wave ordering,
with a wave vector q which undergoes a sequence of phase transitions[24]-[29]. To
discuss these phases we introduce the notation q = (U, 0, V )n, which we abbreviate
as (U, V )n (in figure 5 these are denoted by UVn). If U = C (U = I), then qx = 1/2
(qx = 1/2 − δ) and if V = C (V = I), then qz = 1/4 (qz = 1/4 + ǫ), where the
wave vector is in reciprocal lattice units and δ and ǫ are of order 0.01 and depend on
temperature. V = X includes the cases when ǫ 6= 0 and when ǫ = 0. The subscript
n, if it is given, indicates indicates the number (1 or 2) of OP’s, see below. As the
temperature T decreases, all the RMO’s (with the possible exception of R=Dy) first
order below Tc (≈ 45 K), into an incommensurate (I, I) phase with no ferroelectric
(FE) order. For YMO (at TF = 41K)[30, 31], ErMO (at TF = 39K)[32] and TmMO
(at TF = 39K)[33], this paraelectric incommensurate state gives way to an (I, C) phase
and this phase displays a weak FE moment P along the b-axis. Below TC ∼ 37−39K,
q locks into a commensurate (CM) value (C, C) and Pb increases significantly[31].
TbMO[30, 36], HoMO[37, 38], and probably DyMO[37] go directly from the (I, I)
phase into the ferroelectric (C, C) phase. At lower temperature (about 10-20K) most
of the RMO’s return to having some kind of incommensurate order ‖. We will not
be concerned here with these low temperature phases, since their existence probably
depends sensitively on the details of the spin-spin interactions. As we shall see, the
behavior of the higher temperature phases can be described by a generic Landau free
energy. The magneto-dielectric phase diagrams of various 125’s are shown in figure 4.

§ However, critical fluctuations may imply different exponents for Pc and |σ|2, see Sec. 4 below.
‖ This order may be commensurate but with a large unit cell.
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Figure 4. ME phase diagrams of ErMO[26], TmMO[28], YMO[34, 35],
HoMO[32, 29], TbMO[27], and DyMO[39, 40, 38, 37]. We do not indicate
possible phase changes which have a dielectric signature but only a weak magnetic
signature and hence may represent a minor spin reorientation. In Sec. 3.4 we
argue that for 40 < T < 44K DyMO is in an (I, I) phase.
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ErMO T=11.5

Dielectric || b

39 45

(C,0,C)Magnetic (I,0,C)LTICLTCM

Dielectric ?? || b

TmMO T=5 25 38 39 45

(I,0,I) P

T=19

Magnetic (I,0,C)(C,0,C) P(I,0,I)LT

Dielectric || b

454138YMO T=20

Dielectric || b|| b??

Magnetic P(C,0,C)

HoMO

(I,0,I)(I,0,I) + CM

39 45

T=22

(C,0,C)Magnetic LT P

Dielectric || b

TbMO 37 38 42

(I,0,I)CM+IC (I,0,I)Magnetic (C,0,C) P

DyMO T=14

Dielectric || b

4440

????

Based on the symmetry of the OP’s we construct a Landau theory for the
various RMO’s, which yields a generic phase diagram, shown in figure 5, which is
independent of the detailed microscopic interactions[21]. Each RMO has particular
coupling constants which determine the wave vector q. Varying these parameters, Jx

for qx and Jz for qz , changes the value of the optimal q at which magnetic ordering
occurs. The rest of this section is devoted to an explanation of this phase diagram
(including the definitions of the various phases) and to a discussion of its consequences.
This analysis is particularly relevant for the RMO’s, because the microscopic theory
of their multiferroicity is somewhat controversial. Our theory provides a unified
explanation for the various sequences of phase transitions of the magnetic wave vector,
and explains why ferroelectricity does or does not occur in the various magnetic phases.
It also explains the occurrence of two distinct spin structures from neutron diffraction
studies of the CM phase[35, 25]. This phenomenological theory suggests several new
experiments and makes a number of predictions, which can be tested experimentally.

3.1. Magnetic Structure of the (I, I)1 and (I, C)1 Phases of the 125’s

Given the experimental information, we now analyze the various phases in the order in
which they arise upon cooling from the P phase. The first phase which is encountered
is of the (I, I) type. Since qz = 1/4 plays no special symmetry role, it is convenient to
discuss the (I, I) and the (I, C) phases together. Here, the star of q consists of four
wave vectors, namely, q± =

(

±(1/2 − δ), 0, 1/4 + β
)

and their negatives. Each wave
vector is invariant under unity and my. This symmetry group has two one-dimensional
(1D) irreps, Γa and Γb, with complex OP’s as amplitudes. By symmetry, all the wave
vectors of the star must have degenerate eigenvalues of (1). Therefore, we introduce

complex OP’s, σ+
a ≡ σa(q

(a)
+ ) and σ−

a ≡ σa(q
(a)
− ) associated with irrep Γa at its wave

vectors q
(a)
± , and similarly for Γb. Here q

(a)
+ and q

(a)
− (q

(b)
+ and q

(b)
− ) are defined to be

the wave vectors at which the 〈σa(q)σa(q)∗〉 (〈σb(q)σb(q)∗〉) susceptibility is maximal
as T → Tca (T → Tcb). Specific basis functions are given elsewhere[41], where it is
also shown that they transform as

myσs(q
(s)
± ) = λsσs(q

(s)
± ), Iσs(q±) = κ±σs(q

(s)
± )∗, 2cσs(q

(s)
± ) = η2σs(−q

(s)
∓ ), (17)
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Figure 5. (Color) Left: Schematic 3D phase diagram for q near (1/2, 0, 1/4).
The top (red) surface represents the phase boundary between the P and (I, I)1
phases (where both qx and qz are incommensurate). Below the blue surface,
which is a parabola in Jz (depending only weakly on Jx), one has qx = 1/4, in
phases (I, C)1 and (I, C)2. The green surface represents (I, I)1 → (I, I)2 and
(I, C)1 → (I, C)2 (the subscripts 1 and 2 denote the number of 1D irreps which
order). Below the orange surface, which is a parabola in Jx (depending only
weakly on Jz), one has qx = 1/2. Right: A cut at constant qx. The (I, I)2 and
(I, C)2 phases disappear below the orange surface (as qx → 1/2), where one has
a 2D irrep. The dashed and dotted lines are possible trajectories followed by
specific RMO’s as the temperature is varied.

PM

II1
II1

IC1

IC2

CC

II2

II2

CI
CI

Jz

T

where λa = −λb = exp(iπqx) ≡ η∗ and κ± = η2 exp(∓2πiqz).
As one cools from the P phase, one must enter a phase described by a single irrep.

Arbitrarily choosing this irrep as Γa, the corresponding free energy is

F (a) = (T − Tca)[|σ+
a |2 + |σ−

a |2] + c1[|σ
+
a |2 + |σ−

a |2]2

+ c2|σ
+
a σ−

a |2 + c3[(σ
+
a σ−

a )2 + c.c.]δ4qz,1, (18)

and analogously for Γb. The coefficients c1, c2 and c3 may differ for F (b), and we
assume that Tcb < Tca. When qz 6= 1/4, this free energy describes the (I, I)1 phase
(the subscript 1 indicates a single irrep). In this phase, we have |σ+

a | = |σ−
a | if c2 < 0,

while only one of σ+
a or σ−

a orders if c2 > 0. Replacing (T −Tca) by r(q0), where q0 is
the wave vector which minimizes r(q), the corresponding minimal free energies in the
(I, I)1 phase are given by FII = −r(q0)

2/w, with w = 4c1 (4c1 +c2) if c2 > 0 (c2 < 0).
If qz is close to 1/4 then the last (Umklapp) term in (18) can lock qz to 1/4, via

a weakly first order transition. Clearly, this term arises only when both σ+
a and σ−

a

order, which would now happen only if c2 − 2|c3| < 0. In this case, one again has
|σ+

a | = |σ−
a | and FIC = −r(1/4)2/w′, with w′ = 4c1 + c2 − 2|c3|. One would then

have a first order transition from (I, I)1 into (I, C)1 when FII = FIC . Since r(q) has
a minimum at q0, we have r(1/4) ≈ r(q0) + α(1/4 − q0)

2. Thus, the transition would
occur when r(q0)+α(1/4−q0)

2 = r(q0)(w
′/w)1/2. Remembering that r(q0) = T −Tca,

we have qz − 1/4 ∝ (Tca − T )1/2. Furthermore, since qz = 1/4 is not a special point,
we expect q0 to be a linear function of Jz , hence 1/4− q0 ∝ Jz − Jzc, where Jzc is the
special value of Jz associated with the transition from the P state into the state with
qz = 1/4. Thus, the transition from (I, I)1 into (I, C)1 occurs at T = TF , with

Tca − TF ∝ (Jz − Jzc)
2, (19)

as shown in figure 6a. This parabolic relation is a mean-field result.
Now consider the implications of having qz locked to the value 1/4 in the (I, C)

phases. From (18) we see that for this locking to occur, both wave vectors q+ and q−
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Figure 6. (Color online) Phase diagrams (a) for qz ≈ 1/4, based on (19) and
(b) for qx ≈ 1/2, based on (31) and (32), when the (I,I)1-(I,I)2 phase boundary
(dashed line) is preempted by locking qx to qx = 1/2. Parabolas shown as a
function of Jx (Jz) are weak functions of Jz (Jx). (c) r±(qx) for nonzero ∆Jx,
based on (30). The OP associated with each point is given in the box along with
the parameters which characterize the wave function, as explained in [41]. In (a)
and (b) the points M and M’ are multicritical points that can only be reached by
adjusting both the temperature and some additional control parameter.
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z
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must appear (in the same domain). Then, since we do not allow a direct transition
from the P phase to the (I, C)1 phase (we ignore the unlikely case of a multicritical
point, at which Jz = Jzc), the question is whether or not a single domain of the
neighboring (I, I)1 phase has two wave vectors. From (18), the condition to have two
wave vectors is that c2 < 0. An alternate scenario would be that c2 > 0 and the two
wave vectors do not order simultaneously (in the same domain) in the (I, I)1 phase.
In that case, barring the existence of an as-yet-undetected phase boundary, the two
wave vectors would have to appear in conjunction with the phase transition between
the (I, I)1 and (I, C)1 phases. For the two wave vectors not to be present in the
(I, I)1 phase would imply that c2 > 0. Then if c2 − 2|c3| < 0, the two wave vectors
would appear at the (I, I)1 → (I, C)1 phase transition. It would be interesting to
experimentally determine (following the logic of Ref. [42]) which scenario actually
occurs, i. e. whether or not the (I, I)1 phase has simultaneous condensation at both
wave vectors. For this purpose, it would be interesting to perform an experiment
analogous to that of Ref. [42]. Here, since the ME interaction is present, one could
use an electric field parallel to one of the wave vectors to manipulate the domains.

3.2. Magnetoelectric Structure of the (I, I)2 and (I, C)2 Phases of the 125’s

Similarly to NVO and TbMnO3, the second 1D irrep Γb may order upon further
cooling. In addition to the ‘decoupled’ free energies F (a) and F (b), the total free energy
now contains many terms which couple the OP’s σ±

a and σ±
b . We start by discussing

the (I, I)2 phase, where all the wave vector components remain incommensurate. Then
the quartic terms which couple the two sets of OP’s are given by

F
(x)
4 = c4[|σ

+
a σ+

b |2 + |σ−
a σ−

b |2] + c5[|σ
+
a σ−

b |2 + |σ−
a σ+

b |2] + ∆ , (20)

where ∆ contains the locking terms,

∆ = c6[(σ
+
a σ+∗

b )2 + (σ−
a σ−∗

b )2 + (σ+
b σ+∗

a )2 + (σ−
b σ−∗

a )2]δ
q

(a)
+

,q
(b)
+

+ c7[σ
+
a σ−

a (σ+
b σ−

b )∗ + (σ+
a σ−

a )∗σ+
b σ−

b ]δ
q
(a)

+,z
,q

(b)

+,z

+ c8[σ
+
a σ−

b (σ+
b σ−

a )∗ + (σ+
a σ−

b )∗σ+
b σ−

a ]δ
q
(a)
+,x

,q
(b)
+,x

. (21)

Notice that so far we have not assumed that q
(a)
± and q

(b)
± are identical. If the

exchange interactions were isotropic, then the inverse susceptibility would be invariant



Order Parameters and Phase Diagrams of Multiferroics 12

under a global rotation of all spin directions. Here, in the generic case, we have small
anisotropic interactions which break this degeneracy and, in principle, would cause
these critical wave vectors to be slightly different. In this case, the quartic terms ∆
can lock the wave vectors of the two modes into equality, as happens for NVO[12].
The mechanism for this locking is as follows. Assume that, say, σa orders first at
T = Tca, and for simplicity we first treat the case with only a single wave vector, so
that, say, 〈σ+

a 〉, but not 〈σ−
a 〉, is nonzero. In analogy with what happens for NVO[12],

we assume that q
(a)
+ is almost equal to q

(b)
+ , at which the inverse susceptibility χ−1

b (q)

of σb has its minimum. For Tca > T > Tcb this minimum in χ−1
b (q) is positive since

σb has not yet ordered. Now, the quartic terms ∆ give rise to an effective quadratic
term, V2,eff . Since only 〈σ+

a 〉 is nonzero, we have

V2,eff = c6[〈σ
+
a 〉2(σ+∗

b )2 + (σ+
b )2〈σ+∗

a 〉2]δ
q

(a)

+
,q

(b)

+

, (22)

where 〈X〉 indicates the thermal average of X . Even before σ+
b orders, this term gives

an additional contribution [beyond (T − Tcb)] to the inverse susceptibility of σ+
b , but

only when q
(a)
+ = q

(b)
+ . Since this additional term depends on the relative phase of

the σa’s and the σb’s, the minimization of this term fixes the phase of σ+
b , reducing

its symmetry from that of the XY model (two components of a complex number) to
that of an Ising model. The minimzation always leads to a negative contribution to
the inverse susceptibility of σ+

b . If |〈σ+
a 〉|2 is sufficiently large, this term can thereby

shift the minimum in the σ+
b inverse susceptibility from the wave vector q

(b)
+ (which it

would have had when ∆ = 0) into equality with q
(a)
+ . Also, the star of the wave vector

associated with σ+
b now contains only the two vectors q

(a)
+ and −q

(a)
+ . This scenario

applies if the wave vectors for σa and σb are close enough to be locked to q
(a)
+ by the

term V2,eff before reaching the temperature Tcb at which σb condenses. This, in turn,

relies on the smallness of the anisotropic terms which cause q
(a)
+ to differ from q

(b)
+ .

If both σa(q
(a)
+ ) and σa(q

(a)
− ) condense at T = Tca, then we need to consider all

the terms in (21). In the (I, I)1 phase, both 〈σ+
a 〉 = xeiφ and 〈σ−

a 〉 = xeiχ break the
symmetry and have well defined phases φ and χ (x is a real number). Substituting
these values into (21) the yields a quadratic form in the four real and imaginary
parts of eiφσ+

b and eiχσ−
b , with eigenvalues 2x2[c6 ± (c7 + c8)] and 2x2[c6 ± (c7 − c8)].

Since only one of these eigenvalues is lowest, only one combination of the four OP
components of σ±

b orders, and thus we still have an Ising-like ordering into (I, C)2. In
any case, we henceforth assume that both OP’s have the same critical wave vectors.

Experimentally, it seems that the phase (I, I)2 has never been observed. Instead,
the phase with two OP’s below (I, I)1 seems to be of the (I, C) kind. Therefore,
we now consider the possible locking of qz to 1/4, which would correspond to the
appearance of the (I, C)2 phase. When qz is close to 1/4, (20) must include additional
Umklapp terms, which are also consistent with the symmetry of (17) and which lock
qz to 1/4. For qx 6= 1/2, these are

Uab = {c9σ
+
a σ+

b σ−
a σ−

b + c10[(σ
+
a σ−

b )2 + σ−
a σ+

b )2] + c.c.}δ4qz ,1, (23)

where c9 and c10 are real. The locking is stronger when two irreps, rather than a
single irrep as in (18), are present, because then the additional terms of (23) come
into play. However, in either case, note that this locking requires the presence of both

wave vectors q+ and q−.
Finally, we discuss the ME interactions in the (I, I) and (I, C) phases. In analogy

with (13), the lowest order ME interaction which is invariant under the operations of
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(17) is

Vint = irPy

∑

±

[σa(q±)σb(q±)∗ − σa(q±)∗σb(q±)] . (24)

Thus, in the (I, I) and in the (I, C) phases, at this order, ferroelectricity requires
the presence of two order parameters which are not in phase with one another.
At fourth order in the magnetic order parameters, the ME interaction can lead to
small spontaneous polarizations in the other coordinate directions, but due to space
limitations we refer the reader to [21].

3.3. Magnetoelectric Structure of the (C, X) Phases

This case includes both X = I (qz = 1/4+ ǫ) and X = C (qz = 1/4). Because q is on
the Brillouin zone boundary (qx = 1/2), the wave vector is invariant under ma and mb,
and the star of q consists of q and −q. These operations lead to a two-dimensional
irrep[43, 6] and we choose the basis functions as in table XVI of [6]. The actual wave
function is a linear combination of the two basis functions with complex amplitudes
σ1(q) and σ2(q). These are the OP’s which characterize the magnetic structure and
they transform as[6]

mxσn(q) = ζnσn(q) , myσn(q) = ζnσ3−n(q) , Iσn(q) = σ3−n(q)∗ , (25)

where ζn ≡ (−1)n+1. Consistent with these symmetries the magnetic free energy up
to quartic order in σ is

FM = (T − TC)[|σ1(q)|2 + |σ2(q)|2] + u[|σ1(q)|2 + |σ2(q)|2]2

+ w|σ1(q)σ2(q)|2 + v[σ1(q)σ2(q)∗ + σ2(q)σ1(q)∗]2

+ [x(σ1(q)4 + σ2(q)4) + yσ1(q)2σ2(q)2 + c. c.]δ4qz ,1 , (26)

where x and y are real. Under the terms quadratic in σ and those scaled by u, all
directions in the four dimensional space of σ1 ≡ σ1(q) and σ2 ≡ σ2(q) are equally
unstable relative to ordering. However, for qz 6= 1/4, the fourth order terms select
|σ1| = |σ2| for w + 4v < 0 if v is negative, σ1 = ±iσ2 for w < 0 if v is positive,
and σ1σ2 = 0 otherwise. For qz = 1/4 the terms in x and y are difficult to analyze
analytically, but in many cases we find that the phases of σ1 and of σ2 can be chosen
so that FM still has minima when either |σ1| = |σ2| or σ1σ2 = 0.

Now we consider the dielectric properties. At quadratic order in σ, since
Iσ1σ

∗
2 = σ1σ

∗
2 , (15) also applies to the 125’s when q = (1/2, 0, qz) and then (25)

indicates that rγ is only nonzero for γ = b. Including terms of higher order in σ[23]
the ME interaction for the 125’s is of the form

Vint = rc[|σ1|
2 − |σ2|

2]Pb + i
∑

γ

r′γ [|σ1|
2 − |σ2|

2][σ1σ
∗
2 − σ∗

1σ2]Pγ , (27)

where, according to (25), the real coefficient r′γ is only nonzero for γ = a. However, as
mentioned above, (26) probably allows only either |σ1| = |σ2| or σ1σ2 = 0, in which
case the last term in (27) is inoperative. On the other hand, if σ1σ2 = 0 (so that,
say, σ2 = 0) and if one applies an electric field, Ea, in the a direction, which induces
a nonzero value of Pa, the second term in (27) will induce a nonzero out-of-phase
value in the order parameter, σ2, that was zero for Ea = 0. Then with 〈σ1〉 6= 0, this
effective linear coupling between Pa and σ2 gives rise to electromagnons[44, 45, 46].

The ME coupling can induce lattice displacements at wave vectors which are
even integer multiples of the magnetic wave vector[47, 48]. Since the results are
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particularly simple for the (C, C) phase, where q = (1/2, 0, 1/4), we now discuss the
lowest order interaction in that case. So far we considered a trilinear spin-phonon
coupling involving σ(q)σ(q)∗ , which conserves wave vector and therefore couples to
a uniform polarization. We now generalize this analysis, and consider terms of the
form σ(q)2 or σ(q)∗2, which couple to phonon modes with wave vector ±2q. Within a
reciprocal lattice vector, this phonon wave vector is equal to the antiferroelectric wave
vector (0, 0, 1/2). To construct this interaction we need the site symmetry analysis
for this wave vector, which is the same as for the wave vector (0, 0, 0) as given in
Table I of [49]. There it is indicated that there are 15 B3u (x-like) modes, 15 B2u

(y-like) modes, and 9 B1u (z-like) phonon modes. An x-like mode, for instance, need
not involve displacements along the x-axis; rather such a mode need only transform
like x under the space group operations. ¶ Accordingly, let uAF(γ, τ) denote such
a phonon, where γ labels the symmetry (x, y or z, since we are only interested in
vector-like modes which carry a polarization) and the index τ labels the occurrence.
We use the transformation properties of (25) with mz = Imxmy, so that mzσn = σ∗

n.
Thus the combination (σ2

1 + σ2
2) is even under mx and my, so that the spin-phonon

interaction contains the term

Vsp−ph,z =
∑

τ

[irτ (σ2
1 + σ2

2) + c.c.]uAF(z, τ) , (28)

where rτ is real, so that the square bracket is odd under mz. Similarly σ1σ2 is odd
under mx and my, so it cannot couple to a vector. Finally (σ2

1 −σ2
2) is even under mx

and odd under my and it gives rise to an ME interaction of the form

Vsp−ph,y =
∑

τ

[r′τ (σ2
1 − σ2

2) + c.c.]uAF(y, τ) , (29)

where r′τ is real and we noted that the square bracket is even under mz. In summary,
at this order one can have antiferroelectricity with polarization along either y or z.

We next analyze the tongue associated with qx = 1/2. Note that for a critical
value, Jxc, of the control parameter Jx, the two branches [denoted r±(qx, Jx)] of the
quadratic coefficients r(qx) of the inverse susceptibility are degenerate and are minimal
at qx = 1/2, so that r±(qx, Jxc) = r(0) + a(qx − 1/2)2 + O(qx − 1/2)4, where a is a
positive constant. As Jx is varied away from Jxc, a term in r±(qx) which is linear in
kx ≡ (1/2 − qx) is allowed and generically is of order ∆Jx ≡ Jx − Jxc[41]. + The
symmetry operation mx dictates that the spectrum of the two branches r±(qx) should
be independent of the sign of kx, as shown in figure 6c, so that

r±(kx, Jx) = r(0) + ak2
x ± bkx(Jx − Jxc) . (30)

and for concreteness we assume that the constant b is negative and that Jx > Jxc.
Symmetry thus implies the existence of equivalent minima at kx = ∓b(Jx−Jxc)/(2a) ≡
k±. Thus at its minimum r±(kx) assumes the value r(kx = 0)−α′(Jx−Jxc)

2, where α′

is a constant. Accordingly, we can adopt the argument leading to (19), to the present
case and obtain

Tca − TC ∝ (Jx − Jxc)
2 , (31)

¶ As explained in [50], the largest polarization will come from rα-like modes, which have
displacements in the rα-direction.
+ To see the existence of such a term consider the approximation in which, for a system with isotropic
exchange interactions J(r, r′) between spins at r and r′, one has, for τ 6= τ ′ and q = (1/2 − δ, 0, qz)
that χ−1

τ,α;τ ′α
(q) = J(τ ,a+τ

′) exp[πi− 2πiδ)] + J(τ ,−a+ τ
′) exp[−πi+ 2πiδ)]. As long as the sites

do not sit at a center of inversion symmetry, these two terms will have different amplitudes and will
give an imaginary contribution which is linear in both δ and J .
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where TC is the phase boundary between the (I, X) and (C, X) phases. (This phase
boundary is the solid line in Fig. 6b.)

The structure of (30) also allows us to discuss the phase boundary T1→2 between
the (I, I)1 and (I, I)2 phases. For that purpose we compare (30) with (18) (and with
its analog for F (b)) and identify r+ with T − Tca and r− with T − Tcb. We thereby
find that

Tc,a − Tc,b = 2bk+(Jx − Jxc) ∼ c(Jx − Jxc)
2 , (32)

where c is a constant. Thus T1→2 is proportional to (Jx − Jxc)
2. Depending on the

parameters, this parabolic tongue can be either narrower or wider than that considered
above for locking qx to qx = 1/2. In the figure we show the former case, since the
(I, I)2 phase has not been observed for any of the 125’s.

3.4. Generic Phase Diagram for RMn2O5

We now explain how the generic phase diagram of figure 5 describes the various
RMO’s. Since qz = 1/4 is not a high symmetry point, we can not condense from
the P phase into qz = 1/4 unless we adjust the J ’s appropriately to reach this higher
order multicritical point. Since we reject this accidental possibility, the first ordered
phase we encounter has qz 6= 1/4. Although qx = 1/2 is a special value (characteristic
of antiferromagnetically doubling the size of the unit cell), the result shown in figure
6b indicates that a continuous transition from the P phase into a (C, I) phase is not
allowed because it would also involve a multicritical point. For the RMO’s (except
R=Dy which we discuss separately), experiment shows that the first ordered phase is
(I, I) and this case is shown in figure 5. From now on we arbitrarily set Tc,a > Tc,b

(since we reject the possibility of accidental equality). Consequently we identify that
the transition from the P phase is into an ordered phase (I, I)1 with a single OP
σa (except for the star of q). For a single OP, (24) provides a phenomenological
explanation for why this phase is not ferroelectric. As discussed above, we assume that

in the (I, I)1 the phases q
(a)
± and q

(b)
± become locked into equality without crossing a

phase boundary. For the phases with qx 6= 1/4, experiments have not yet indicated
whether the two wave vectors q± occur in separate domains, or whether the true
state is the superposition, within a single domain, of the two wave vectors. As T is
further reduced through the (I, I)1 phase, a second continuous transition could occur,
producing a phase (I, I)2 in which both OP’s σa and σb are nonzero (as in NVO[4, 6]
or TbMnO3[5]).

The above description applies for Jz relatively far away from Jzc, i.e. qz relatively
far away from 1/4. If qz = 1/4, one goes directly from the P phase into the (I, C)1
phase, which is similar to the (I, I)1 phase. Upon cooling, the OP related to the other
1D irrep tends to order, and one has a transition into the (I, C)2 phase. This transition
happens at a higher temperature than that for (I, I)1 → (I, I)2, due to Umklapp

terms like (23), which enhance the tendency of σb(qx, 0,±1/4) to order (compared to
σ(qx, 0, qz) with an IC qz). If qz is close to 1/4, one first goes from the P phase into the
(I, I)1 phase, but then the Umklapp terms cause a transition into the (I, C)1 phase,
and one ends up with the phase diagram shown on the RHS of figure 5.

As the temperature is lowered, each individual RMO follows some trajectory in
the parameter space. The RHS plot in figure 5 shows possible projections of such
trajectories. The trajectories, as well as the optimal wave vectors, are assumed
to have some temperature dependence, which can originate from the elimination
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Table 2. Values of qx, qz , and Π ≡ |1/2−qx|−|1/4−qz| for T near Tc for various
RMO’s. Positive Π favors locking qx to the value 1/4 in preference to locking qx

to the value 1/2.

R= Tm[28] Er[26] Y[51, 34] Ho[29] Tb[27, 24]
qz = 0.252 0.244 0.255 0.237 0.277
qx = 0.472 0.479 0.482 0.488 0.487
Π = 0.026 0.015 0.013 -0.001 -0.010

of secondary degrees of freedom, which generate effective temperature-dependent
exchange coefficients. Note that the whole diagram corresponds to the close vicinity
of q = (1/2, 0, 1/4), so that this temperature dependence is relatively weak. As shown
in figure 4, the real RMO’s go directly from the (I, I)1 phase into either an (I, C)
(for R=Er, Tm, Y) or into the (C, C) phase (for R=Ho, Dy, Tb). In the former case,
we now argue that this phase must be the (I, C)2 phase: Since the experimentally
observed phase is ferroelectric, it follows that there must exist two OP’s, σa and
σb. Once both order parameters exist, this phase could be either (I, I)2 or (I, C)2.
Since the experiments find that qz = 1/4, this must be (I, C)2. Indeed, we conclude
that the trajectories for R=Er, Tm, Y are represented by the dashed lines with long
dashes in the phase diagram. As the same lines indicate, one would then go into
the (C, C) phase, as indeed observed. At lower temperatures, the trajectories could
leave the (C, C) phase to the other side of the parabolic ‘tongue’, and enter a less
commensurate phase, which could be paraelectric [(I, I)1] or ferroelectric [(I, I)2 or
(C, I)].

As indicated by the dashed line with short dashes in the same figure, one can
also go directly from (I, I)1 into (C, C). This trajectory thus describes the RMO’s
with R=Ho, Dy, Tb. In the (C, C) phase, which is ferroelectric, (27) indicates that
|σ1| 6= |σ2|. The quartic term of (26) implies that either |σ1| = |σ2|, or one of them is
zero, so that σ1σ2 = 0. Thus only the first term in (27) survives and it explains the
observation[36, 37] that the spontaneous polarization lies along the b axis. Finally, we
should mention that the fact that different R’s follow slightly different trajectories is
reasonable from the following qualitative point of view. For Tm, Er, and Y the value
of qx (listed in table 2) is much closer to 1/4 and therefore is more likely to be locked
to qx = 1/4 than is that of Ho and Tb.

For DyMO, experiments have not definitively determined the sequence of phase
transitions in the wave vector, because the large incoherent neutron cross section
of the Dy nucleus causes experimental problems. A recent X-ray experiment[40] has
confirmed the existence[39] of the (C, C) state. The specific heat[37] provides evidence
that there is a single intermediate phase between this state and the paramagnetic state.
As argued in connection with figure 5, this intermediate phase has to be an (I, I)1
phase, because we do not allow the possibility of accidentally hitting the multicritical
point where the P phase meets the (I, C) (in figure 5a) or (C, I) phase (in figure 5b).
This proposed phase exhibits a single OP, which is also consistent with the fact that
DyMO is paraelectric for T > 40K (see figure 4).

We now return to the phase diagram of figure 5. All the RMO’s have q close to
(1/2, 0, 1/4) (see table 2), so they leave the P phase near the apex of the tongue of



Order Parameters and Phase Diagrams of Multiferroics 17

figure 6a or 6b. The effects of a magnetic field are explained as follows: it generates
magnetic moments on the R ions (even above their ordering temperature). Since these
ions couple to the Mn ions, their moment changes the effective Mn-Mn interactions,
thus changing the ’control parameters’ and the optimal q. This often moves the
material towards the (C, C) tongue, resulting in a transition from (I, C) ((I, I) when
paraelectric) back into the CM phase[32, 29]. Pressure[52] has similar effects.

3.5. Spin structures in the (C, C) phase

The introduction of OP’s leads to a natural interpretation of neutron scattering results
for the (C, C) phase in YMO. Figure 7 shows the Mn3+ a-b plane spin components
in the CM phase of YMO, from the neutron diffraction results of [35] ∗ and [25].
These two structures are obviously similar, and one might ask what symmetry (if
any) relates them. (This degeneracy was also found in the first-principles calculation
of [53].) We now show that these two structures are indeed equivalent.[21] To identify
the symmetry element that relates them note that the structure on the left is even
under the glide operation mx, while that on the right is odd under mx. (Here one
should note that spin, being a pseudovector, transforms with an additional minus sign
under a mirror operation.) Then (25) indicates that the structure on the left has
σ2 = 0, whereas that on the right has σ1 = 0. Going between these two structures
corresponds to a rotation in OP space. This equivalence is easily understood when
OP’s are introduced, as done here. Since either σ1 = 0 or σ2 = 0, we conclude from
the discussion below (26), that w + 2v − 2|v| is positive and both OP’s can not order
simultaneously[6, 21]. This conclusion supports that reached above, namely that since
the CM phase is ferroelectric, the fourth order terms in (26) must select σ1σ2 = 0.

Figure 7. (Color online) Schematic diagram of the a and b components of the
Mn3+ spins in a single a-b plane of YMO for the CM phase. The glide mx consists
of a mirror plane M at x = a/4 followed by a translation b/2 along y. Left: the
structure given in table III of [25] (with the c-components not shown). Right: the
structure given in figure 2 of [35] (who reported zero c-components of spin.)

x43 43

YMO

2 2

1 1

yyM M

To make this identification more quantitative, we consider the magnetic structure
which H. Kimura et al.[25] deduced from their neutron diffraction study, which we
summarize in table 3. Their structure determination was based on an unrestricted
fit, in which no particular symmetry was assumed. In contrast, our analysis based on
representation theory assumes that the magnetic structure is characterized by the two
complex-valued order parameters σ1 and σ2, with corresponding spin wave functions

∗ The top (bottom) panel of figure 2 in this paper should be labeled 24.7K (1.9K).
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Table 3. Magnetic structures of YMn2O5 at T = 25K showing the spins vectors
of the eight Mn3+ and the eight Mn4+ sites within the cell a0 × b0 × 2c0. The
complete magnetic unit cell is found by antiferromagnetically doubling the cell in
both the a and c directions.

Mn3+ Mn4+

Mx My Mz Mx My Mz n Mx My Mz Mx My Mz

H. Kimura et al. This work H. Kimura et al. This work
-2.02 -0.41 -0.71 -2.04 -0.38 -0.67 1 1.74 0.51 0.28 1.72 0.55 0.30
2.20 -0.40 -0.24 2.18 -0.41 -0.26 2 1.69 -0.59 -0.32 1.72 -0.55 -0.30
-2.06 0.35 0.63 -2.04 0.38 0.67 3 0.98 -0.33 -0.69 0.99 -0.30 -0.63
-2.15 -0.42 -0.29 -2.18 -0.41 -0.26 4 1.00 0.27 0.57 0.99 0.30 0.63
2.82 0.58 -0.51 2.85 0.53 -0.48 5 -1.65 -0.46 0.51 -1.63 -0.50 0.56
-3.07 0.55 -0.18 -3.04 0.57 -0.19 6 -1.61 0.55 -0.62 -1.63 0.50 -0.56
2.87 -0.49 0.45 2.85 -0.53 0.48 7 -2.12 0.74 -0.09 -2.15 0.68 -0.10
2.99 0.59 -0.21 3.04 0.57 -0.19 8 -2.18 -0.63 0.09 -2.15 -0.68 0.10

which are given in [6], but more conveniently in table IX of [41]. Since we expect
that σ1σ2 = 0, our theory would imply that the spin structure should be fitted with
only one OP component. Indeed, we find that Kimura et al.’s data can be fitted with
σ2 = 0. Optimizing the parameters of table IX of [41] so as to reproduce the spin
structure of Kimura et al., we found the optimal structure constants to be

r1 = (−0.387,−0.072, 0.091i) , r2 = (0.413, 0.078, 0.036i)

z = (0.257 + 0.049i,−0.081− 0.017i, 0.031− 0.063i) . (33)

With the normalization 2|r1|
2 + 2|r2|

2 + 4|z|2 = 1, the complex-order parameter was
found to be

σ1 = 5.2698 + i7.3691 . (34)

(This complex phase can not be explained by a low order anisotropy in the complex σ1

plane.) From table 3 one sees that the structure assuming the validity of representation
theory is quite close to that of the unrestricted fit of Kimura et al.. The difference
between these two structures is that our version respects the symmetry one would
attribute to a structure having only σ1 nonzero. Thus, in our structure the magnetic
sublattices are related in pairs, whereas in the structure of [25] these sublattices are
almost, but not exactly, related. To characterize the difference between these two
structures, note that |σ1| ≈ 9.1 gives the square root of the sum of the squares
of the spin amplitudes within the cell of table 3. The analogous quantity for the
difference vector between the two structures is 0.23, indicating that the difference, if
real, corresponds to an additional order parameter whose magnitude is about 2.5%
of σ1. As we explained, near the high-temperature limit of this phase one can only
have either |σ1σ2| = 0 or |σ1| = |σ2|. Thus, if |σ2| 6= 0 then we would expect it
to be of the same order as |σ1|. Thus, it seems unlikely that if such an additional
order parameter would emerge, it would be so small deep in the CM phase, where
the data were taken. Accordingly, we propose that the actual magnetic structure in
the (C, C) phase of YMO corresponds to a single order parameter σ1. We have also
identified that the data from [25] on HoMn2O5 exhibit the same symmetry: namely the
(C, C) phase is characterized by the single order parameter σ1. Similarly, we identify
that the magnetic structure of the Mn spins in ErMn2O5, as reported in [25], is also
consistent with the symmetry associated with the single order parameter σ1. However,
the phases φx of the x-components of the Er magnetic moments (0.8π and −0.3π) do
not agree with the values (π or 0) corresponding to σ1. It would be interesting to
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check the sensitivity of the data to variation of these phases. It is interesting that the
structures of all the 125’s determined in [25] have σ2 = 0, even though the structure
with σ1 = 0 represents an equivalent way that magnetic ordering can break symmetry.
Apparently, the sample preparation (which might create some uniaxial strain) or some
other experimental detail (stray electric fields?) chooses the structure with σ2 = 0
in these experiments. It would be interesting to study the cause for this apparent
symmetry breaking.

The selection of which OP is nonzero in the (C, C) phase is a result of broken
symmetry. An electric field along b would order Pb, and then (15) would select either
σ1 or σ2, depending on the sign of the field. Therefore we suggest cooling the sample
into the FE phase in the presence of a small electric field along b. Depending on the
sign of the electric field one should get either the left- or the right-hand panel of figure
7. This was indeed confirmed experimentally [55]. (A similar experiment was recently
performed in TbMnO3[56]).

4. Critical phenomena

All the quantitative results presented above were based on the Landau expansion and
on mean field theory. Although these theories usually give reasonable predictions far
away from critical points, fluctuations must be included in the critical regimes. We
start with NVO and TbMnO3. In these materials, one first goes from the P phase
into the HTI phase, which is represented by a single complex OP σHTI. Since the free
energy only involves |σHTI|2, it does not depend on the phase of this complex number,
and therefore this transition belongs to the universality class of the XY model, with
the critical exponents of an isotropic (n =2)-component spin model. The transition
from the HTI phase into the LTI phase, at T<, is also continuous. A priori, σLTI is
also a complex number, which would be described by an XY model. However, as we
discussed after (21), terms like [(σHTIσ

∗
LTI)

2 + c.c.] would lock the wave vectors of the
two order parameters to each other, even before one reaches T<. This lock-in is indeed
observed experimentally in the LTI phases of NVO[12] and TbMnO3 [5].

Technically, near T< we have a finite order parameter 〈σHTI〉 ≡ aeiα. Writing
also σLTI ≡ e−iα(b + ic), the above locking term thus becomes a2(b2 − c2). Therefore,
the real order parameters b and c now have different quadratic terms, and only one of
them (depending on the sign of the overall coefficient) orders at a temperature slightly
above the ‘bare’ T<. As stated above, the fixed length constraint prefers σHTI and
σLTI to have different phases, which implies that c orders first, and the phases of the
two order parameters differ by π/2. This then yields a helical structure in the LTI
phase [15, 16, 12]. Furthermore, this phase relation is also confirmed by the existence
of a ferroelectric moment in the LTI phase, which would not exist if φHTI = φLTI

(namely if b were to order, rather than c), see (14). Thus, the transition from HTI
to LTI belongs to the Ising (n = 1) universality class. Further away from the critical
point the critical exponents may approach their mean field values γ = 1 and β = 1/2.

We next consider the ME interaction, (12) and (14). Assuming that indeed only
c orders, we find that near the HTI→LTI transition one can replace (14) by

Vint = 2rbacPb. (35)

This immediately implies that the actual order parameter at this transition is not just
c, but rather a linear combination of c and Pb [54, 6]. This implies that the dielectric
constant should diverge near T<, as ǫb ∼ |T − T<|−γ , with the Ising susceptibility
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exponent γ. However, as noted before (12), χ−1
E is much larger than |T − T<|, and

therefore the amplitude of this divergent term (related to the amplitude of Pb in
the mixed OP) can be quite small. It would be useful to search for this divergence
experimentally. Similarly, we expect that both c and Pb grow below T< as (T< − T )β ,
with the Ising order parameter exponent β.

We next turn to RFMO. As discussed in Sec. 2.3, the ordered phase has two
complex components of the magnetic OP, σ1 and σ2, and therefore altogether we have
n = 4 OP components, as described by (10). In fact, this free energy can be written
as

F = (T − Tc)(|σ1(qz)|
2 + |σ2(qz)|

2) + u(|σ1(qz)|
4 + |σ2(qz)|

4)

+ ṽ|σ1(qz)|
2|σ2(qz)|

2. (36)

This can be viewed as the free energy of two XY models (with OP’s σ1 and σ2),
which are coupled by the last term. In terms of the renormalization group (RG),
this model has two competing fixed points: the isotropic (n = 4) one with ṽ = 2u,
and the decoupled one with ṽ = 0[57]. It turns out that v is slightly relevant near
the isotropic fixed point, and ṽ is slightly irrelevant near the decoupled fixed point,
so that as T approaches T< one could follow two scenarios. If v = ṽ − 2u < 0,
iteration would make it more negative, and one could end up with a crossover from
the isotropic (n = 4) critical behavior to the asymptotic behavior of two decoupled
XY models. However, this crossover is very slow. Therefore, one might either observe
effective exponents close to those of the isotropic (n = 4) critical behavior, or one
might encounter relatively large corrections to the decoupled critical behavior, due to
the irrelevant parameter ṽ, which would be renormalized into ṽ(T< − T )−α, where α
is the specific heat exponent of the XY model. Alternatively, if v > 0 then v would
grow larger under iterations, and one would never reach the vicinity of the stable fixed
point at ṽ = 2u + v = 0. In this case, one probably ends up with a slow crossover to
a weak first order transition.

The ME interaction in RFMO is given in (15). Thus, Pc ∼ 〈|σ1(qz)|2−|σ2(qz)|2〉.
The RHS of this relation represents an order parameter anisotropy. Near the isotropic
fixed point, this average scales as

Pc ∼ 〈|σ1(qz)|
2 − |σ2(qz)|

2〉 ∼ 〈|σ1|
2〉λ, (37)

where the exponent λ > 1 is associated with the scaling of quadratic anisotropy terms
near the isotropic n = 4 fixed point [58]. However, for this result to hold we must
have σ1σ2 = 0, which arises only if v > 0. As explained above, in this case we expect
a crossover to a weak first order transition. Thus, as T is increased towards T< we
would expect a gradual variation from the mean field result, Pc ∼ 〈|σ1|2〉, via the
critical behavior of (37), to a weak first order transition. The mean field behavior,
with λ = 1, implies that the FE moment is proportional to the intensity of Bragg
peaks, as apparently found experimentally [18]. It would be interesting to check this
relation close to T<.

Finally we turn to RMO. As stated, the ordering below the P phase is into the
(I, I)1 phase, which corresponds to a single irrep, say Γa. As seen from (18), this
ordering involves the two complex OP’s σ+

a and σ−
a , and therefore belongs to some

n = 4 universality class. In the (I, I)1 phase, where qz 6= 1/4, the quartic terms in the
free energy include only those with the coefficients c1 and c2. Clearly, this free energy
is equivalent to the one discussed above for RFMO, yielding only one wave vector if
c2 > 0 and two wave vectors if c2 < 0. In the former case one probably flows under
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the RG towards a weak first order transition, while in the latter case one would flow
towards the stable decoupled fixed point. Thus, the question whether one or two wave
vectors order is directly related to the nature of the critical behavior.

The situation changes in the (I, C)1 phase, where one also needs to include the
Umklapp term with c3. Near the decoupled fixed point, this term involves products
of anisotropies in each of the XY models, and thus it can be shown to be relevant
[57]. As far as we know, this free energy has no stable fixed point, and one would
eventually end up with a weak first order transition. However, in the vicinity of the
isotropic fixed point, where c2 and c3 are small, one could still observe the critical
exponents of the isotropic n = 4 universality class. In any case, in the generic case
the phase (I, C)1 is reached from the phase (I, I)1 via a first order transition, so that
the critical behavior of the former can only be expected near the multicritical point
where Jz = Jzc.

We next discuss the transition into the (so far unobserved) (I, I)2 phase. We
start with the simple case, where only σ+

a orders in the (I, I)1 phase. As explained
after (22), the locking of the wave vectors of σ+

a and σ+
b fixes the phase of σ+

b , so that
the transition into the (I, I)2 phase now involves an Ising-like order parameter. The
situation now becomes exactly the same as in (35): the dielectric constant ǫb would
diverge with the Ising exponent γ, and Pb would grow in the (I, I)2 phase with the
Ising exponent β.

The transition from (I, I)1 into (I, C)2 is also weakly first order, since it involves
a lock-in of qz. However, if the discontinuity is small (as seems to be the case
experimentally), we can still discuss criticality of the OP’s associated with Γb. As
discussed after (22), this ordering should also belong to the Ising universality class:
before one reaches this transition one should see ǫb ∼ |T −T ′

cb|
−γ and Pb ∼ (T ′

cb−T )β,
with Ising exponents. Since ∆ now introduces several additional quadratic terms in
the σb’s, this transition is expected to occur at a temperature T ′

cb higher than Tcb,
where one would have the (I, I)1 → (I, I)2 continuous transition.

Near the P→ (I, I)1 transition (which occurs at TC1), a leading fluctuation
expansion yields ∆ǫ ∝ 〈P 2

b 〉 ∝ |〈σ2
a〉〈σ

2
b 〉|. Since only σa becomes critical there,

we expect singularities in ǫ which behave as the energy (|T − TC1|1−α) and as the
square of the OP ((TC1 − T )2β), but with the appropriate effective n = 4 exponents.
Indeed, experiments[52] show a break in slope at TC1, apparently confirming this
prediction. This behavior is also expected for other multiferroics and indeed this
may explain the anomaly seen in the dielectric constant of NVO shown in Fig. 4b
of [22]. In addition, this anomaly in the zero frequency dielectric constant reflects
the emergence of a resonance in the frequency-dependent dielectric constant due to
electromagnons[44, 45, 46].

5. Summary

We have developed a phase diagram to explain the multiferroic behavior of the
family of 125’s systems and have proposed several experiments to explore the
unusual symmetries of these systems. In view of our current understanding it
seems unnecessary to invoke the alternate route to multiferroicity proposed in [59],
particularly as a microscopic calculation[35] having exactly the symmetry we have
invoked reproduces the experimental data for YMn2O5 quite well.
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