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Long Range Order in Random Anisotropy Magnets

Abstract
High temperature series for the magnetic susceptibility, χ, of random anisotropy axis models in the limit of
infinite anisotropy are presented, for two choices of the number of spin components, m. For m=2, we find T c
=1.78 J on the simple cubic lattice, and on the face‐centered cubic lattice we find T c =4.29 J. There is no
divergence of χ at finite temperature for m=3 on either lattice. For the four‐dimensional hypercubic lattice, we
find finite temperature divergences of χ for both m=2 and m=3.
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long range order in random anisotropy magnets 
R. Fisch 
Department of Physics. Washington University. St. Louis. Missouri 63130 

A. B. Harris 
Department of Physics. University of Pennsylvania. Philadelphia. Pennsylvania 19104 

High temperature series for the magnetic susceptibility, X, of random anisotropy axis models in 
the limit of infinite anisotropy are presented, for two choices of the number of spin 
components, m. For m = 2, we find Tc = 1.18J on the simple cubic lattice, and on the face
centered cubic lattice we find T,. = 4.29J. There is no divergence of X at finite temperature for 
m = 3 on either lattice. For the four-dimensional hypercubic lattice, we find finite temperature 
divergences of X for both m = 2 and m = 3. 

There continues to be a great deal of controversy asso
ciated with the term "spin glass." Much of this controversy 
results from the lack of general agreement on what a spin 
glass is or is supposed to be. For example, Mukamel and 
Grinstein I and Chudnovsky2 have argued that the "cor
rect" model of a spin glass is a random anisotropy model, 
rather than a random exchange model. 

Motivated by the results ofa recent simulated annealing 
study,' we have calculated high temperature perturbation 
series for the magnetic susceptibility, X, of random anisotro
py models on square, simple cubic, face-centered cubic, and 
hypercubic lattices. We will interpret the results of these cal
culations in the light of various other information, including 
the work ofPelcovits, Pytte, and Rudnick4

.
5 (PPR). Using a 

spin-wave analysis, PPR found that ferromagnetism is un
stable in random anisotropy models when the number of 
spatial dimensions, d, is less than or equal to 4. In contrast, 
our results indicate that for strong anisotropy the lower criti
cal dimension is 3. 

The simplest reasonable model for spin glass behavior is 
the Edwards-Anderson° (EA) Hamiltonian: 

HEA = - L. J'lS,Sl' (I) 
(ij) 

where (if) is a sum over nearest-neighbor pairs on some lat
tice, the J" are independent random variables whose proba-

bility distribution has the property that 2 ( JIj ) 1 < J ~, and 
S, = ± I. This model is a useful starting point. but it does 
not describe all of the behavior which is found in the experi
mental systems.7-1O 

An alternative model for strongly disordered magnetic 
systems was proposed by Harris, Plischke, and Zucker
mann II (HPZ): 

HHPZ = - J ~ "fl S;'S;' - D ~ Ctl (iz;'Sn
1 

- I), 
(2) 

where 5, is now an m-component spin and the ii, are uncor
related random m-component unit vectors. This Hamilto
nian may give rise to spin glass behavior under certain condi
tions, as was made clear by later work l2

-
14 

When we go to the strong anisotropy limit, D I J --> 00 , 

each spin is constrained to be paraJlel to its local anisotropy 
axis. Equation (2) then reduces to 

Hx = -J"i (ii;'ii;>S;Sj 
(ij) 

(3) 

in the absence of an external magnetic field. Each S; is now 
an Ising variable, which takes on only the values ± 1. This 
Hamiltonian was solved in the infinite range case by Derrida 
and Vannimenus,15 and it is convenient for both computer 
modelingl6 and high temperature series expansions. 17.18 

If we now take the limit m ~ 00 while holding J2/m 
fixed, it is easy to show that Eq. (3) reduces to Eq. ( 1 ), with 
a Gaussian probability distribution for the bond strengths. 
Therefore, rather than "Which is the real spin glass Hamil
tonian, H EA or H HPZ ?," one should ask "What is the correct 
value of m which describes my experimental system?" Beck 
has shown9 that AuFe belongs to the class m = 3. Following 
Ioffe and Feigel 'man, 19 we will claim that CuMn belongs to 
m = 2. But there also exist systems, such as EuxSr l _ xS, 
which are believed to belong to m = 00. 

The usual situation for nonrandom three-dimensional 
magnets is that each value of m constitutes a different uni
versality class. This means that the behavior near the critical 
point, Tc ' depends in a very well-defined fashion on the pa
rameter m. The behavior at low temperatures is then well 
described by some kind of a mean field theory. For random 
anisotropy and spin glass models, however, we have good 
reasons for suspecting that such a scenario may not work. 
PPR have given widely accepted (although nonrigorous) 
arguments which show that a ferromagnetic mean field theo
ry does not provide a good description of the low tempera
ture behavior of random anisotropy magnets in the absence 
of an external field, when d<4. This conclusion was later 
confirmed for m = 3 on simple cubic lattices by numerical 
calculations.1.11.16 

For the infinite anisotropy Hamiltonian, Eq. (3), it is 
straightforward to calculate the mean field transition tem
perature as a function of m and the number of nearest neigh
bors of each spin, z. The ferromagnetic transition tempera
tureis TjJ = zlm, where we have set Boltzmann's constant 

to 1. The spin glass transition temperature is T,g I J = ,./z?m. 
These results are obtained from a diagrammatic expansion 
for the free energy high temperature perturbation series. 18 
Thus, we see that, in mean field theory, we will have a phase 
transition from the paramagnetic phase to a ferromagnetic 
phase as we lower the temperature, as long as m < z. If m > z 
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the transition from the paramagnetic phase is into the spin 
glass phase. 

We have calculated high temperature series expansions 
for the free energy, F, and magnetic susceptibility, X, of H 00 

on various lattices, for several values of m. Details of the 
calculations, which are somewhat complicated by the fact 
that the bonds are not independent random variables, will be 

f bl" 20 reported in a uture pu lcatlOn. 
From the analysis of the ring diagrams,18 it should be 

anticipated that Tc (m) ::::: T[ 1m would be a good estimate of 
the critical temperature of H 00 (m) on some lattice with 
m < z, where TJ is the critical temperature of the standard 
Ising model on the same lattice. If the PPR analysis4 were 
applicable in the strong anisotropy limit, however, this 
would break down for d<,4. For d < 4, it is not unlikely that 
the phase transition, if any, will be first order, as is claimed 
for the random field Ising mode1.21 Past experience suggests 
that results which are independent of the details of the lattice 
structure are probably reliable. 

The susceptibility series for m = 2 and m = 3 on the 
simple cubic lattice are shown in Table I, and the series for 
the face-centered cubic lattice are shown in Table II. The 
extrapolation of the fcc m = 2 series is quite well described 
by a divergence of the form exp [ A I ( T - Tc) i; ], with 
TclJ = 4.29 ± 0.01 and t = 0.45 ± 0.03. The simple cubic 
m = 2 series is somewhat more difficult to extrapolate, be
cause of interference by the anti ferromagnetic singularity. 
After making a transformation to allow for this, we find 
T IJ = 1.78 ± 0.01 and t = 0.69 ± 0.05 for the simple cu
bi~ lattice. It is encouraging to note that 2Tc (2)IT[ is simi
lar for the two lattices, as one would expect: 0.789 for simple 
cubic and 0.875 for fcc. The Ising model critical tempera
tures for these lattices were obtained from Ref. 22. Our anal
ysis of the m = 3 series on these lattices indicates that Tc = 0 
in both cases. The behavior of these series coefficients is fair
ly regular. The major source of uncertainty in our analysis is 

TABLE l. High-temperature series coefficients for the magnetic suscepti
bility, ,t, of random anisotropy axis models in the i~finite anisotropy limit, 
Eq. (3), for the simple cubic lattice. The numbers dIsplayed are en' defined 
by X = (I!mD(l + ~ncn ( J /mn n

), wheremisthenumberofspincom
ponents. 

I 6.0 
2 30.0 
3 144.0 
4 666.0 
5 3020.0 
6 13436.0 
7 58918.6666666667 
8 255460.666 666667 
9 1095867.2 

10 4662697.333 333 33 
II 19674854.1866667 
12 82500121.3333333 
13 343685731.923 808 
14 1424431147.90772 
15 5872789753.31103 

3 

6.0 
30.0 

139.2 
618.0 

2622.17142857143 
10 751.794 285 714 3 
42217.536 

160460.605714286 
583 308.554 805 194 

2027 333.898 745 82 
6637 797.310 305 46 

20264 446.6933170 
56161 109.8339982 

130827 918.366 620 
206252 296.859 672 
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TABLE II. Series coefficients for the face-centered cubic lattice. The nota
tion is the same as in Table I. 

I 
2 
3 
4 
5 
6 
7 
8 
9 

2 

12.0 
132.0 

1392.0 
14292.0 

143992.0 
1430256.0 

14048493.3333333 
136736 137.333 333 

1 320 751 369.06667 

12.0 
132.0 

1382.4 
13 965.6 

137048.502857 143 
1312032.0 

12286661.8697143 
112 746484.355 265 

1 014963605.083 62 

our lack of knowledge about the nature of the transition, 
which is difficult to quantify. The fact that the divergence of 
X does not appear to be a power law is consistent with the 
lack of a magnetization 3 for T < Tc in three-dimensional 
random axis models. 

The X series for m = 2 and m = 3 on the four-dimen
sional simple hypercubic lattice are given in Table III. For 
d = 4 we fit our results for X with a simple power-law diver
gence, (T - Te) - Y. We find Tel J = 3.215 ± 0.005 and 
y = 1.192 ± 0.008 for m = 2, and Tel J = 2.005 ± 0.005 
and y = 1.46 ± 0.04 for m = 3. The values of mTe (m)IT/ 
are higher than in d = 3: 0.962 for m = 2, and 0.900 for 
m = 3, where we use T/ = 6.6817JY The assumption ofa 
power-law form is reasonable, at least for large D I J, if there 
is a nonzero magnetization in four dimensions for T < Te. 

Our series results for d = 4 do not agree with the results 
of PPR 4.5 for the small D I J limit, since we find Te (3) > O. 
Our results for d = 3, however, are similar to what they 
claimed would occur in d = 4. PPR predicted a special be
havior, related to that of the nonrandom m = 2, d = 2 ferro
magnet, for the m = 2 case when d = 4, with no divergence 
of X for m> 2. Since there are no spin waves in the limit 
D / J -> 00, it is not simple to relate the results of PPR to our 
work. 

A recent simulated annealing calculation} by one of the 
authors has given solid evidence for the existence of an infi
nite susceptibility phase for m = 2, but not for m = 3, on the 
simple cubic lattice. This is in excellent agreement with our 
analysis of the X series. It is also interesting to compare our 
results with the best existing Monte Carlo calculations. 16 

The Monte Carlo results do not indicate a divergence in X for 
d < 4. For m = 2 on a square lattice they show a specific heat 
peak centered at T = 1.3J, and for m = 3 on a simple cubic 
lattice they show a peak at T = 1.4J, with no indication of 
long-range order for these cases. Unfortunately, there do not 
seem to be any published Monte Carlo results for m = 2 in 
d= 3. 

The work of Bray and Moore24 has demonstrated that 
there is no finite temperature phase transition for d = 2, for 
any value ofm>2. Our series analysis agrees with this result. 
giving no indication of a divergence in X for any m>2 on the 
square lattice (not shown). Therefore. we conclude that for 
large D I J the lower critical dimension for the existence of a 
finite temperature phase transition is 3. If our assumption 
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T ABLE III. Series coefficients for the four-dimensional simple hypercubic lattice. The notation is the same as in Table I. 

~ .. 
2 

2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
\3 
14 
15 

8.0 
56.0 

384.0 
2584.0 

17 274.666 666 666 7 
1146\3.333333 333 
757768.888888889 

4989673.77777778 
32783035.377 777 8 

214851 732.622222 
I 405984012.39704 
9185249515.30667 

59942779289.8222 
390714537058.417 

2544 687649225.37 

about power-law behavior in d = 4 is correct, then the upper 
critical dimension, for which the transition becomes mean
field-like, is at lca~t 5 for large D I J. The comparison between 
our results and those of PPR would then imply that these 
critical dimen<;i(lTIs change at some intermediate value of 
DIJ. 

The co'll; m = 2 in d = 3 deserves further investigation. 
As we have already pointed out, there do not yet seem to be 
any Monte Carlo results. It is our expectation that, when 
these calculations are done, they will show a real phase tran
sition to a X = IX: phase. We would not be surprised, how
ever, if this transition turns out to be first order, but with a 
very small latent heat. Whether the transition is first or sec
ond order may depend on the value of D I J. 

Finally, we discuss the interesting question of which ex
perimental systems might be expected to exhibit the infinite 
X behavior. Obvious candidates an:: Tb-rich amorphous 
TbFe alloy:/'u6 and TbCo alloys. 2 

i A more intriguing possi
biiity is CuMn, and the conceptually similar system YGd.28 
The active degree of freedom herr. is the phase of the spin 
density wave,29 which is linearly polarized and couples qua
dratically to the alloy disorder. Thil; idea has been discussed 
hI some detail by Iolfe and Feig<::1'man, 19 and we encourage 
thZ' interested reader to consult their work. The addition of 
Au or Pt to CuMn·10 destroys the linear polarization of the 
spin density wave, because of the spin-orbit coupling. This 
changes the nature of the phase transition, probably by in
ducing a crossover to m = 3 behavior. Similar behavior is 
seen in stressed and impure Cr.31 

Special thanks are due to George Baker for sending us a 
data file containing the fcc lattice embedding constants from 
Brookhaven National Laboratory Report No. BNL 50053 
(1967), by G. A. Baker, Jr., H. E. Gilbert, J. Eve, and G. S. 
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8.0 
56.0 

377.6 
2494.4 

16245.0285714286 
104 768.0 
670029.494857 143 

4260084.74514285 
26933817.1145974 

169584501.785457 
1063439719.41412 
6648582831.52647 

41441798 194.8441 
257712485935.393 

I 598 946446 345.96 

Rushbrooke. This work was supported in part by the Na
tional Science Foundation. 
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