Phase Locking in the Heisenberg Helimagnet

A. Brooks Harris
University of Pennsylvania, harris@sas.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/physics_papers
Part of the Quantum Physics Commons

Recommended Citation

Harris, A. (1991). Phase Locking in the Heisenberg Helimagnet. Journal of Applied Physics, 69 (8), 6173-6175. http://dx.doi.org/ 10.1063/1.348796

Phase Locking in the Heisenberg Helimagnet

Abstract

The commensurability energy ΔE is calculated for a Heisenberg helimagnet whose wavelength is three lattice constants at zero temperature with a small but nonzero uniform field applied in the plane of polarization of the spins. It is shown that $\Delta E=0$ for classical spins but $\Delta E \neq 0$ for quantum spins when spin-wave interactions are considered.

Disciplines
Physics | Quantum Physics

Phase locking in the Heisenberg helimagnet

A. B. Harris
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

The commensurability energy ΔE is calculated for a Heisenberg helimagnet whose wavelength is three lattice constants at zero temperature with a small but nonzero uniform field applied in the plane of polarization of the spins. It is shown that $\Delta E=0$ for classical spins but $\Delta E \neq 0$ for quantum spins when spin-wave interactions are considered.

In this paper it is shown that phase locking occurs in a broad class of Heisenberg helimagnets when a uniform field is applied in the plane of polarization. The model Hamiltonian I treat is ${ }^{1}$

$$
\begin{align*}
\mathscr{H} & =\frac{1}{2} \sum_{i j} J_{i j} S_{i} \cdot S_{j}-h \sum_{i} S_{i x}+\epsilon \sum_{i} S_{i z}^{2} \tag{1a}\\
& =\mathscr{H}_{E x}+\mathscr{H}_{Z}+\mathscr{H}_{A}, \tag{1b}
\end{align*}
$$

where S_{i} is a quantum spin of magnitude S on the i th site of a simple tetragonal lattice. I include a small easy plane anisotropy energy ϵ whose effect is to orient the spins in the $x-y$ plane but can otherwise be neglected in the limit of small h. Arbitrarily I take the $x-y$ plane to coincide with the a - b plane. Also $J_{i j} \equiv J\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)$ is assumed to have the symmetry of the lattice. In the $a-b$ plane interactions between first, second, and third nearest neighbors are, respectively, $j_{1}=1, j_{2}$, and j_{3}. For nearest neighbors in the c direction, $J_{i j}=J_{1}>0$. All other interactions are neglected. For sufficiently negative values of j_{2} and/or j_{3} the classical ground state of this model is ${ }^{1}$ a helix of wave vector $\mathbf{Q} \neq 0$. For $h=0$ the value of \mathbf{Q} is a continuous function of j_{2} and j_{3} in contrast to the devil's staircase (i.e., stepwise discontinuous) behavior for the axial nearest, next-ncarest-ncighbor Ising (ANNNI) model. ${ }^{2}$ Since the Heisenberg helix (for $h=0$) has a circular cross section, the free energy is clearly independent of the phase of the helix and the commensurability energy vanishes. On the other hand, application of a field in the plane of polarization distorts the cross section of the helix into an ellipse and leads to my results for $h \neq 0$ that the Heisenberg system exhibits an incomplete devil's staircase.

Early spin-wave calculations ${ }^{3-5}$ indicated the presence of a Goldstone mode for small h. This phason mode occurs if the energy is independent of the phase of the helix. This early work was based on linearized spin-wave theory and implied that \mathbf{Q} varied continuously with j_{2} and j_{3}. Recently, it was shown ${ }^{6}$ that nonlinear spin-wave interactions modified this picture. For small h the pinning free energy (omitted in the early work) is of the form

$$
\begin{equation*}
\delta F=\sum_{p \geqslant 1 ; \mathbf{G}} A_{p}(T) h^{p} \delta(p \mathbf{Q}-\mathbf{G}) \cos p \phi, \tag{2}
\end{equation*}
$$

where p is an integer, \mathbf{G} a (big) reciprocal lattice vector, and ϕ the phase of the helix. Minimization with respect to ϕ yields

$$
\begin{equation*}
\delta F=-\left|A_{p}(T) h^{p}\right| \delta(p \mathbf{Q}-\mathbf{G}), \tag{3}
\end{equation*}
$$

and consequently \mathbf{Q} will remain pinned at the (commensurate) value \mathbf{G} / p for a range of values of j_{2} and j_{3} of order $\Delta j_{2} \sim \Delta j_{3} \sim h^{p / 2}$. This behavior is referred to as devil's staircase behavior and has been extensively studied in the Fren-kel-Kontorova model. ${ }^{7}$ Previously ${ }^{6}$ we found $A_{p}(T)$ to be nonzero for a classical model except for the special case $p=3, T=0$. Some time ago. Elliott and Lange ${ }^{4}$ showed explicitly that $A_{3}(T=0)=0$ for classical models within linear spin-wave theory. Our previous result for a classical model $\left[A_{3}(T=0) \sim T\right]$ extended this result to include the effect of nonlinearity. In the present paper, however, it is shown that $A_{3}(T=0) \neq 0$ when quantum spin-wave interactions are included. Thus even for $p=3, A_{p}(T)=0$ should be viewed as defining a special isolated multicritical point.

We now consider the calculation of $A_{3}(T=0)$ for a quantum spin system. Since this calculation is extremely complicated, it can only be summarized here. Following Ref. 8 one writes

$$
\begin{align*}
& S_{i}^{x}=-\sin \left(\mathbf{Q} \cdot \mathbf{r}_{i}+\phi\right) S_{i}^{\eta}+\cos \left(\mathbf{Q} \cdot \mathbf{r}_{i}+\phi\right) S_{i}^{\xi}, \tag{4a}\\
& S_{i}^{\eta}=\cos \left(\mathbf{Q} \cdot \mathbf{r}_{i}+\phi\right) S_{i}^{\eta}+\sin \left(\mathbf{Q} \cdot \mathbf{r}_{i}+\phi\right) S_{i}^{\xi}, \tag{4b}\\
& S_{i}^{\xi}=-S_{i}^{\xi} . \tag{4c}
\end{align*}
$$

Here \mathbf{Q} is the wave vector and ϕ the phase of the helix. The transformation to bosons is

$$
\begin{align*}
& S_{i}^{\xi}+i S_{i}^{\eta}=\sqrt{2 S}\left[1-a_{i}^{+} a_{i} /(2 S)\right] a_{i} \tag{5a}\\
& S_{i}^{x}-i S_{i}^{\eta}=\sqrt{2 S} a_{i}^{+} \tag{5b}\\
& S_{i}^{\xi}=S-a_{i}^{+} a_{i} \tag{5c}
\end{align*}
$$

The classical state is obtained by setting $a_{i}=a_{i}{ }^{+}=0$. In terms of the Fourier transformed boson operators the exchange Hamiltonian is

$$
\begin{align*}
\mathscr{H}_{E x}= & E_{0}(\mathbf{Q})+\sum_{\mathbf{k}} A_{\mathrm{k}} a_{\mathbf{k}}^{+} a_{\mathrm{k}}+\frac{1}{2} \sum_{\mathbf{k}} B_{\mathrm{k}}\left(a_{\mathbf{k}}^{+} a_{-\mathrm{k}}^{+}+a_{\mathrm{k}} a_{-\mathrm{k}}\right) \\
& -\frac{1}{\sqrt{2 N S}} \sum_{1,2,3} \frac{1}{2}\left(C_{2}+C_{3}\right) \delta(1-2-3)\left(a_{1}^{+} a_{2} a_{3}+a_{2}^{+} a_{3}^{+} a_{1}\right)+\frac{1}{2 N S} \sum_{1,2,3,4} V_{123} \delta(1+2-3-4) a_{1}^{+} a_{2}^{+} a_{3} a_{4} \\
& -\frac{1}{2 N S} \sum_{1,2,3,4} \frac{1}{3}\left(B_{2}+B_{3}+B_{4}\right) \delta(1-2-3-4) a_{1}^{+} a_{2} a_{3} a_{4} \\
& +\left(\frac{1}{2 N S}\right)^{3 / 2} \sum_{1,2,3,4,5} C_{1-3} \delta(1+2-3-4-5) a_{1}^{+} a_{2}^{+} a_{3} a_{4} a_{5} \\
& +\left(\frac{1}{2 N S}\right)^{2} \sum_{1,2,3,4,5,6} \frac{1}{2} B_{1-5-6} \delta(1+2-3-4-5-6) a_{1}^{+} a_{2}^{+} a_{3} a_{4} a_{5} a_{6} \tag{6}
\end{align*}
$$

where $1 \equiv \mathbf{k}_{1}, 2 \equiv \mathbf{k}_{2}$, etc., $E_{0}(\mathbf{Q})=-N J(\mathbf{Q}) S^{2}$, and
$2 A_{\mathbf{k}}=4 J(\mathbf{Q})-2 J(\mathbf{k})-J(\mathbf{Q}+\mathbf{k})-J(\mathbf{Q}-\mathbf{k})$,
$2 B_{\mathbf{k}}=J(\mathbf{Q}+\mathbf{k})+J(\mathbf{Q}-\mathbf{k})-2 J(\mathbf{k})$,
$C_{\mathbf{k}}=J(\mathbf{Q}-\mathbf{k})-J(\mathbf{Q}+\mathbf{k})$,
$2 V_{123}=D_{1-3}+D_{2-3}-A_{1}-A_{2}$,
$D_{\mathbf{k}}=2 J(\mathbf{Q})-J(\mathbf{Q}+\mathbf{k})-J(\mathbf{Q}-\mathbf{k})$,
where $J(\mathbf{k})=\Sigma_{j} J_{i j} \cos \left(\mathbf{k} \cdot \mathbf{r}_{i j}\right)$. The value of \mathbf{Q} is found by minimizing the free energy with respect to \mathbf{Q}, so that $\mathbf{Q}=\mathbf{Q}\left(j_{2}, j_{3}\right)$. It is simpler, however, to formulate the discussion in terms of \mathbf{Q}, j_{2}, and j_{3} leaving \mathbf{Q} as an implicit function of j_{2} and j_{3}.

The Zeeman Hamiltonian H_{Z} is $V(h)$ $\equiv \frac{1}{4} h\left[e^{i \phi}+e^{-i \phi} V_{-}\right]$, where

$$
V_{ \pm}=\sqrt{2 N S}\left(a_{\mp \mathbf{Q}}^{+}-a_{\mp \mathbf{Q}}\right)+2 \sum_{\lambda} a_{\mp \mathbf{Q}+\lambda}^{+} a_{\lambda}
$$

$$
\begin{equation*}
\pm \frac{1}{\sqrt{2 N S}} \sum_{\lambda \tau} a_{\mp \mathbf{Q}+\lambda+}^{\ddagger} a_{\lambda} a_{\tau} . \tag{8}
\end{equation*}
$$

One needs the transformation to normal modes

$$
\begin{equation*}
a_{\mathbf{k}}^{+}=l_{\mathbf{k}} \alpha_{\mathbf{k}}^{+}+m_{\mathbf{k}} \alpha_{-\mathbf{k}}, \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& l_{\mathbf{k}}=\left(\frac{A_{\mathrm{k}}+E(\mathbf{k})}{2 E(\mathbf{k})}\right)^{1 / 2} \tag{10a}\\
& m_{\mathrm{k}}=-\frac{B_{\mathrm{k}}}{\left|B_{\mathrm{k}}\right|}\left(\frac{A_{\mathrm{k}}-E(\mathrm{k})}{2 E(\mathbf{k})}\right)^{1 / 2} \tag{10b}
\end{align*}
$$

where $E(\mathbf{k})=\left(A_{\mathbf{k}}^{2}-B_{\mathbf{k}}^{2}\right)^{1 / 2}$ in terms of which the qua.dratic part of $\mathscr{H}_{E x}$ is

$$
\begin{equation*}
\mathscr{H}_{0}=S \sum_{\mathbf{k}} E_{\mathrm{k}} \alpha_{\mathbf{k}}^{+} \alpha_{\mathrm{k}}+\text { const }, \tag{11}
\end{equation*}
$$

where the constant (the zero-point energy) is not needed here. One can write \mathscr{H} in terms of normal mode operators. The result will involve terms linear in $\alpha_{\mathbf{k}}^{+}$(and $\alpha_{\mathbf{k}}$). These terms can be eliminated by setting

$$
\begin{equation*}
\alpha_{k}^{+}=\widetilde{\alpha}_{k}^{+}+\alpha_{k}^{+(0)}, \alpha_{\mathbf{k}}=\widetilde{\alpha}_{\mathbf{k}}+\alpha_{\mathbf{k}}^{(0)}, \tag{12}
\end{equation*}
$$

where the constants $\alpha_{\mathrm{k}}^{(0)}$ and $\alpha_{\mathrm{k}}{ }^{(0)}$ represent distortions in the spins orientations induced by the external field. Note that in general $\alpha_{\mathrm{k}}{ }^{(0)} \neq\left(\alpha_{k}^{(0)}\right)^{*}$ because \mathscr{H} is nonHermitian. Up to order h^{2} and to leading order in $1 / S$ we find that ${ }^{9}$

$$
\begin{align*}
\left(\dot{\alpha}_{\mathbf{k}}^{+(0)}\right)^{*} & =\alpha_{\mathbf{k}}^{(0)} \\
= & \frac{h}{4} \sqrt{\frac{2 N}{S} l_{\mathbf{Q}}-m_{\mathbf{Q}}}\left(-e^{i \phi} \delta_{\mathbf{k}, \mathbf{Q}}+e^{-i \phi} \delta_{\mathbf{k},-\mathbf{Q}}\right) \\
& -\frac{h^{2}}{16}\left(\frac{2 N}{S^{3}}\right)^{1 / 2} \frac{\left(l_{\mathbf{Q}}-m_{\mathbf{Q}}\right)^{2}}{E_{\mathbf{Q}}} \frac{\left(l_{2 \mathbf{Q}}-m_{2 \mathbf{Q}}\right)}{E_{2 \mathbf{Q}}} \\
& \times \Delta_{\mathbf{Q}}\left(e^{2 i \phi} \delta_{\mathbf{k}, 2 \mathbf{Q}}-e^{-2 i \phi} \delta_{\mathbf{k},-2 \mathbf{Q}}\right), \tag{13}
\end{align*}
$$

where $\Delta_{\mathbf{Q}}$ is unity for $3 \mathbf{Q}=\mathbf{G}$, which is the only case of present interest. This evaluation yields the h-dependent energy at $T=0$ as

$$
\begin{align*}
E(h)-E(h=0)= & -\frac{1}{4} N h^{2}[2 J(\mathbf{Q})-J(2 \mathbf{Q})-J(0)]^{-1} \\
& +\left(\frac{N h^{3} \Gamma}{S}\right) \cos 3 \phi \sum_{\mathbf{G}} \delta_{3 \mathbf{Q}, \mathbf{G}}+O\left(h^{4}\right) . \tag{14}
\end{align*}
$$

To leading order in $1 / S, \Gamma=0$, in agreement with the $T=0$ evaluation of the previous result ${ }^{6}$ for the classical $(S \rightarrow \infty)$ model. The new result is that to next order in $1 / S, \Gamma \neq 0$.

For such a calculation one must consider the effect of perturbations generated following the transformation of Eq. (12). The relevant perturbations are

$$
\begin{align*}
& V_{A}=h e^{i \phi} \sum_{\mathbf{k}} V_{A}(\mathbf{k}) \widetilde{\alpha}_{\mathbf{k}+\mathbf{Q}}^{+} \widetilde{\alpha}_{\mathbf{k}}+\cdots, \tag{15a}\\
& V_{B}=h^{2} S^{-1} e^{2 i \phi} \sum_{\mathbf{k}} V_{B}(\mathbf{Q}) \widetilde{\alpha}_{\mathbf{k}+2 \mathbf{Q}}^{+} \widetilde{\alpha}_{\mathbf{k}}+\cdots, \tag{15b}\\
& V_{C}=h^{3} S^{-2} e^{3 i \phi} \sum_{\mathbf{k}} V_{C}(\mathbf{k}) \widetilde{\alpha}_{\mathbf{k}+3 \mathbf{Q}}^{+} \widetilde{\alpha}_{\mathbf{k}}+\cdots, \tag{15c}
\end{align*}
$$

where the ellipses indicate the three other terms with coefficients similar to $V_{A}(\mathbf{k}), V_{B}(\mathbf{k})$, and $V_{C}(\mathbf{k})$ that one gets when each $\widetilde{\alpha}_{k}{ }^{+}$and $\widetilde{\alpha}_{-k}$ is replaced, respectively, by $\widetilde{\alpha}_{-\mathbf{k}}$ and $\widetilde{\alpha}_{\mathbf{k}}{ }^{+}$. All the coefficients in Eqs. (15) are defined to be independent of S.

Contributions to Γ of order $1 / S$ (for $p=3$) come from terms in perturbation theory due to V_{A}, V_{B}, and V_{C} which
contribute to order h^{3}. Perturbation of higher order in $1 S$ than those of Eq. (15) do not contribute to Γ at order $1 / S$. Due to space limitations I only quote the final result:

$$
\begin{align*}
256 S \Delta^{3} \Gamma= & \frac{8}{N} \sum_{\mathbf{k}} \frac{\left(c_{\mathbf{k}+\mathbf{Q}}-c_{\mathbf{k}}\right)\left(c_{\mathbf{k}-\mathbf{Q}}-c_{\mathbf{k}+\mathbf{Q}}\right)}{\left(E_{\mathbf{k}}+E_{\mathbf{k}-\mathbf{Q}}\right)\left(E_{\mathbf{k}}+E_{\mathbf{k}+\mathbf{Q}}\right)}\left(c_{\mathbf{k}}-c_{\mathbf{k}-\mathbf{Q}}\right)\left(l_{\mathbf{k}+\mathbf{Q}}-m_{\mathbf{k}+\mathbf{Q}}\right)^{2}\left(l_{\mathrm{k}}-m_{\mathbf{k}}\right)^{2}\left(l_{\mathbf{k}+\mathbf{Q}}-m_{\mathbf{k}+\mathbf{Q}}\right)^{2} \\
& +8 \sum_{\mathbf{k}} l_{\mathbf{k}} m_{\mathbf{k}}\left(\Delta+3 c_{\mathbf{Q}+\mathbf{k}}+a_{\mathbf{k}}+a_{\mathbf{Q}}-2 a_{\mathbf{k}+\mathbf{Q}}+2 b_{\mathbf{k}+\mathbf{Q}}-2 b_{\mathbf{k}}\right)-8 \sum_{\mathbf{k}} m_{\mathbf{k}}^{2}\left(2 \Delta+4 c_{\mathbf{Q}+\mathbf{k}}-b_{\mathbf{k}}+2 a_{\mathbf{k}}\right. \\
& \left.+2 a_{\mathbf{Q}}-2 a_{\mathbf{k}-\mathbf{Q}}+2 b_{\mathbf{k}+\mathbf{Q}}\right)-4 \sum_{\mathbf{k}} \frac{c_{\mathbf{k}+\mathbf{Q}}-c_{\mathbf{k}}}{E_{\mathbf{k}}+E_{\mathbf{k}+\mathbf{Q}}}\left(l_{\mathbf{k}+\mathbf{Q}}-m_{\mathbf{k}+\mathbf{Q}}\right)^{2}\left(l_{\mathbf{k}}-m_{\mathbf{k}}\right)^{2}\left(c_{\mathbf{k}}+\mathbf{Q}-c_{\mathbf{k}}+2 \Delta-3 a_{\mathbf{k}}\right. \\
& +4 a_{\mathbf{k}-\mathbf{Q}} \\
& \left.-4 b_{\mathbf{k}-\mathbf{Q}}-b_{\mathbf{k}+\mathbf{Q}}\right)+2 \sum_{\mathbf{k}} \frac{c_{\mathbf{k}}+\mathbf{Q}-c_{\mathbf{k}}}{E_{\mathbf{k}} E_{\mathbf{k}+\mathbf{Q}}}\left(8 \Delta+4 b_{\mathbf{k}}-a_{\mathbf{k}}-a_{\mathbf{k}+\mathbf{Q}}+2 b_{\mathbf{k}+\mathbf{Q}}\right) \tag{16}
\end{align*}
$$

where $\Delta \equiv J(\mathbf{Q})-J(0)$.
As it stands this result is not very informative. We would like to know whether or not Γ vanishes. For this purpose we consider a generalization of this model in which the couplings in the $a-b$ plane are unchanged, but now we couple not just into a third direction but into d transverse directions, such that all interactions between nearest neighbors in each of these d directions is described by an exchange integral J_{\perp} that is much larger than $j_{1}=1$, j_{2}, and j_{3}. In that limit it is useful to write $\mathbf{k}=k_{x} \hat{i}$ $+k_{y} \hat{J}+\mathbf{k}_{1}$, where \mathbf{k}_{1} is perpendicular to the $x-y$ plane. Looking back at Eqs. (7), we see that B_{k} and C_{k} are independent of J_{1} and \mathbf{k}_{1}, for instance. Likewise we can write

$$
\begin{equation*}
2 A_{\mathbf{k}}=4\left[J_{1}(0)-J_{1}\left(\mathbf{k}_{1}\right)\right]+2 a_{\mathbf{k}} \tag{17}
\end{equation*}
$$

where a_{k} is the value of A_{k} when J_{1} is zero and is thus independent of \mathbf{k}_{1}. In this way one can develop a systematic expansion in j / J_{1}. The result to lowest order in this parameter is

$$
\begin{equation*}
\Gamma=\frac{\left|j^{2}\right|}{8 N S \Delta^{3}} \sum_{\mathbf{k}} \frac{1}{J_{1}(0)-J_{1}(\mathbf{k})}, \tag{18}
\end{equation*}
$$

where $|j|^{2}=4\left(j_{1}^{2}+j_{2}^{2}+j_{3}^{2}\right)$. We therefore conclude that in general Γ is nonzero at order $1 / S$. This result is quite
reasonable: If one believes that quantum fluctuations are similar in effect to thermal fluctuations, one would indeed expect Γ to be nonzero. We refer the reader to an earlier paper ${ }^{6}$ for a discussion of some of the experimental consequences of this nonzero pinning energy.

This work was supported in part by the National Science Foundation under Grant No. DMR-88-15469. Helpful conversations with T. C. Lubensky and E. Rastelli are are acknowledged.
${ }^{1}$ E. Rastelli, A. Tassi, and L. Reatto, Physica A 97, 1 (1979).
${ }^{2}$ M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).
${ }^{3}$ B. R. Cooper and R. J. Elliott, Phys. Rev. 153, 654 (1967).
${ }^{4}$ R. J. Elliott and R. V. Lange, Phys. Rev. 152, 235 (1960).
${ }^{5}$ T. Nagamiya, in Solid State Physičs, edited by F. Seitz and D. Turnbull (Academic, New York, 1967), Vol. 20, p. 346.
${ }^{6}$ A. B. Harris, E. Rastelli, and A. Tassi, J. Appl. Phys. 67, 5445 (1990).
${ }^{7}$ J. Frankel and T. Kontorova, Phys. Z. Sowjetunion 13, 1 (1938); F. C. Frank and J. H. van der Merwe, Proc. R. Soc. London 198, 205 (1949); S. Aubry, in Lecture Notes in Mathematics, edited by D. Chudnovsky and G. Chudnovsky (Springer, Berlin, 1982), Vol. 925, p. 221.
${ }^{8}$ E. Rastelli and A. B. Harris, Phys. Rev. B 41, 2449 (1990).
${ }^{9}$ Within spin-wave theory (i.e., avoiding low-dimensional divergent fluctuations) the response obtained from Eq. (13) is finite. The observable angular displacement is proportional to $a_{Q}^{(0)} \equiv l_{Q} \alpha_{Q}^{(0)}-m_{Q} \alpha_{Q}^{+(0)}$. This quantity is of order $\left(l_{\mathrm{Q}}-m_{\mathrm{Q}}\right)^{2} / E_{\mathrm{Q}}$ but remains finite even though $E_{\mathrm{Q}}=0$. To see this use Eq. (10), nothing that $B_{\mathrm{Q}}<0$ and A_{Q} is nonzero. Then for k near \mathbf{Q}, Eq. (10) yields $l_{\mathrm{k}}-m_{\mathrm{k}} \sim \sqrt{E_{\mathrm{k}}}$ for small E_{k}.

