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The Heisenberg Antiferromagnet With a Low Concentration of Static
Defects

Abstract
The static and dynamic response associated with a low concentration, x, of static defects in a Heisenberg
antiferromagnet at zero temperature is analyzed within linearized spin‐wave theory. We obtain the dispersion
relation for long‐wavelength spin waves in the form ω(q )= c ( x ) q + iγ( x ) q τ. Our results for c(x) agree with
previous work, and in particular give c(x) = c(0)[1 + αx + O(x 2)] where the coefficient α, which can be
related to the helicity modulus and the uniform perpendicular susceptibility, diverges in the limit d→2, where d
is the spatial dimensionality. One major new result is that τ=d−1 for defects whose spin, S’, is different from
that (S) of the host lattice and τ=d+1 when S’=S.
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The Heisenberg antiferromagnet with a low concentration of static defects 
C. C. Wan and A. B. Harris 
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 

The static and dynamic response associated with a low concentration, X, of static defects in a 
Heisenberg antiferromagnet at zero temperature is analyzed within linearized spin-wave 
theory. We obtain the dispersion relation for long-wavelength spin waves in the form w(q) 
= c(x)q + iy(x)qY Our results for c(x) agree with previous work, and in particular 
give c(x) = c(O)[l + ax + 0(x2>] where the coefficient a, which can be related to the 
helicity modulus and the uniform perpendicular susceptibility, diverges in the limit 
d-+2, where d is the spatial dimensionality. One major new result is that r=d - 1 for defects 
whose spin, S’, is different from that (S) of the host lattice and T=d + 1 when S’=S. 

The transition from a magnetic insulator, through dop- 
ing, to a nonmagnetic superconductor is familiar in the 
high-T, materials like lanthanum cuprate.’ It is interesting 
to understand how impurities in such a system eventually 
destroy the magnetic long-range order and induce the tran- 
sition to superconducting phase. Here we treat the simpler 
problem of a low concentration of static defects at zero 
temperature. Our model is a Heisenberg spin system with 
spin S and nearest neighbor coupling constant .J, and the 
defects have spin S’ and a coupling constant J’. The 
Hamiltonian of such a system can be written as 

H- 2 S(R)*S(R + 8) + c e(R) V(R) 
RJ R 

=Ho+ c E(R)UR), (1) 
R 

where S is summed over nearest-neighbor vectors and 
E(R) is unity at defect sites, which are assumed not to be 
adjacent to one another and e(R) = 0 otherwise. For a 
defect at site R we have 

V(R)= z (J’S’(R) -JS(R)).S(R+S). (2) 
s 

Throughout we use dimensionless parameters, such as 
s=S’/S, and j=J/J. We introduce boson operators in the 
usual way. For spins on the A sublattice we set SR = S 
- a$’ a< ; SL = @an; S, = @a:. For the B sublat- 

tice we have Sk = -S + bz b,; SL = $%bL ; S< 
= @bR Within linear spin-wave theory, the Hamiltonian 
of the pure system is 

h,=H&ZJzS) 

=z -’ & ; (a; +bR+ij)h+b:+& 

In terms of Fourier transforms 

(3) 

ho= x (a,ta,+b,+b,+y,a,+b+,+y,a,b-,), (4) 
9 

where 3/a = z - ‘&exp( iq.6). This Hamiltonian can be 
diagonalized by a Bogoliubov transformation 

(5) 

a+ =Zqaq+ -ma-,, P 

b-,= - rnqclik +Z,+LLq, 

where 

I,= JC 1 + e,)/Ge,) 
and 

mq= (1 - eq)/(2eqj. 

Then 

ho= c eq(aq+aq + &+/j4), (6) 

where eq 1 dcd, in the usual notation. 
The Green’s function for the pure system,’ indicated 

by superscript (0), is given by the diagonal matrix: 
g@)(qe),, = (e - e )-I and g(0)(q,e)8,p = ( - e 
- eq; - t , where e = E( &zS) . The perturbation from a de- 

fect on the A sublattice at site R is 

VR~A= -Z -’ c (a$ +bR+6)(aR+bRf) 
6 

+jZ-’ ; (aR+ + t/&+6)&t+ $bR+f& (7) 

Now we use a non-Hermitian transformation for the oper- 
ators on site R, i.e., we replace aR+ by $ra,f and an by 
an/ 6. This transformation leads to the following pertur- 
bation with weak scattering in the long-wavelength limit: 

vRd=z --’ 5 (af +bR+‘d 

X[b-- lbR+ b- lM,++, I* (8) 

The potential is decomposed in the well-known way3 
into components which each transform according to an 
irreducible representation of the point group. Thus we 
have s, p, d, etc., potentials and the corresponding Green’s 
functions, g@)(e) with symmetry labels, p. The contribu- 
tion to the self-energy matrix from a single defect on the A 
sublattice is obtained by summing over repeated scatterings 
from that defect4 This is done independently for each sym- 
metry channel in the usual way. In addition, one performs 
the same operations when the defect is on the B sublattice. 
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That calculation can be trivialized by using the symmetry 
operations which carry one sublattice into another: inter- 
changing lq and mq and inverting the sign of the energy, e. 
The complete details of this calculation will be given 
elsewhereS5 The total self-energy matrix is the superposi- 
tion of contributions from all symmetry labels. To get the 
self-energy matrix for the configurationally averaged 
Green’s function we average over all possible positions for 

the defect, assuming a uniform concentration xA of defects 
on the A sublattice and xB on the B sublattice. Then the 
matrix Green’s function correct to first order in the con- 
centration of defects is 

g(w) = 12°)(q,e9 - ’ - dw9 I-*, (99 

where the matrix a(q,e) is the following: 

’ 

~ [&-- l)e,+j(s- 191 +m [(js-19eq-j(s- 191 

- C (js- 19V(sj21qmq x.4 XB 

Pi+ 
Z- (1.-e)(js- l>@(e) +z- (1 +e>(is- l>@Ye9 ’ 

(lOa 

(lob9 

and the other elements of the self-energy matrix are found 
by 

q3,~(cl,e;x~,x~9 = ua,, ( q, - e;xB,xA), (lla9 

q3,a (w;xA,xB) =%,p(qt - e;xB?xA). (llb9 
Here v is a form factor for symmetry label p as de- 

fined in Ref. 6, 

$=N- * 5 4 p(q92(e2 - ei) - *, (12a9 

and 

D(e)=(j-e)El -41 +e9gde>l 

+ejsEl+ (1 -e29g0(e91 
with 

(12b9 

go(e) =N-’ x (e2 - ei) -I. 
P 

(139 

Note that only when XA = xB is the symmetry between 
the two sublattice preserved. In that case the above 
results satisfy the relations o,,,(e) = a~,~( - e) and 
ua,p(e) = q,d - e9. 

We now discuss the implications of these results. First, 
of all, if one expresses the defect perturbation of Eq. (8 9 in 
Fourier components one finds a scattering matrix element 
v(k,k’) which is of order 

v(k7k’9-Vk---k9(U- l)Uk-mk*> 

+j(s - k&9 (1W 

-(j- 1) $P+j(s- 19 $32. (14b9 
This indicates that for s= 1 the scattering is of order 
@, whereas for s#l, it is larger, of order ,/????. Thus 
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we are led to consider three regimes: (I) s=l, (II) sfl, 
but XA = xgt and (III) s#l and x,~#x,+ In the tirst two 
regimes, the symmetry of the mode structure is preserved 
and consistent with previous work7,* the spin-wave energy 
is given by 

e,(x) =eq + oa,,(q,eq - j0 + 9. 
Then, for xA#xB, we find 

Re,(x9 =eq( 1 + a.~), 
where 

(159 

116a) 

j-l 
a=--j-- + (s - 192g0(09 

+ p'(q92 (js- 19 
2 eq z- (js- 19g@)(O9 ’ (16b9 

This result agrees with the prediction of hydrodynamics”,* 
that eq = cq, with c(x) = @m, where A(x) is the 
helicity (proportional to the conductivity of an associated 
resistor network”) and ,yI is the perpendicular susceptibil- 
ity. For case III, one must actually diagonalize the Green’s 
function matrix to find its poles which give the elementary 
excitations. Thus we set A(q,e) =0, where 

A(w9 = I - e - eq - qp(w9 1 [e - es - c,,,(w) 1 

- qp(w)q,Jq,e). (179 
In this way we find the expected result,* namely that 
this ferrimagnetic system has an acoustic branch with 
eq - [A(x)/M]$, where M - (x4 - xg) is the net mag- 
netization, and an optical branch whose energy is propor- 
tional to M. It is obvious that such a result is caused by the 
breaking of symmetry between sublattices. Formally, such 
a result is expected for a case when the scattering matrix 
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element (for k-k’) is of order unity in the long wave- 
length limit. In this context, one views the case XA = xg 
(with sfl) as being special in that, for this case the optical 
mode energy averages to zero on large scales. In this lan- 
guage one has strong scattering if s#l, but the scattering 
potential fluctuates in sign according to the fluctuations in 
(s - 1) (XA - x,). Of course, when s= 1 the scattering is 
much weaker, because then even locally there is no ten- 
dency to form an optical mode. Thus vacancy (s=O) scat- 
tering is strong. In fact, for two spatial dimensions, the 
renormalization factor a of Eq. (16) is infinite, due to the 
divergent term, go(O). This result is due to the fact that 
.;YJ. is divergent for the random two-dimensional system, 

These considerations also indicate the nature of the 
results for the damping, which is found as the imaginary 
part of e, given in Eq. (15). For case I, s= 1, we find 

rszFeq-q(d+ ‘I, (18) 
as one would estimate for a scattering matrix element of 
order m from Eq. ( 14). On the other hand, for regime 
II, s#l, the scattering matrix element is of order unity and 
we find 

q-q@- 1). (19) 

As we have said, one can understand the difference be- 
tween these two results either formally, by looking at Eq. 
( 14b), or physically by the following argument. If all the 
defects were on one sublattice, we obviously obtain an op- 
tical mode. Averaging over defects can average the gap to 
zero energy, but the decay rate from incoherent scatterers 
always adds. Thus for s#l, the energy is of order 
&A - xg) f O(q) while the damping is of order 
(xA + xs)&- ‘. It is worth noting that there is no such 
effect for ferromagnets, since there is no locally broken 
symmetry. Finally, we remark that our results for the 
damping contradict some previous work,7 but do agree 
with the unpublished work of Kumar’a and that results 
implied by Ref. 8. The reason for the discrepancy with Ref. 
7 is not understood. However, from our results we revise 
the scaling theory of Christou and Stinchcombe (CS)” 
which was based on the work of Ref. 7, which we believe to 
be incorrect. To do this, we first write down the dispersion 
as 

o(q) =c(x)q + &cd& l, (20) 
and following Harris and Kirkpatrick (HK)* one has9 

c(x) = &G&m (21) 

where A(x) is the dc conductivity, and x*(x) is the trans- 
verse suscepbility, which scale near the percolation thresh- 
old at x, as 

A(x)-(x-xx,)‘-g-f’v 

,y1(x>-(x-- Y-g-+ 
(22) 

c , 
where c is the correlation length, and according to HK, r 
can be expressed as r= t - j3 - (d - 2)~. We then apply 
the dynamic scaling principle of Halperin and Hohenberg,8 
in order to get a relation consistent with Eq. (20). We have 

Thus from Eqs. (21) and (22) we get 

2t-fl- (d-2)v 
2Y ’ (24) 

in agreement with CS. The scaling for the damping rate is 
therefore easy to get, we find 

r(g+f-2- [2t-B- (d-2)V/l/(2Y)* (25) 

As was done in CS paper, we can go further to write 

r (q,lJ = b - xc> +qd- 1, (26) 

wherey=(d-2)v--[2t--fl- (d-2)+J/2whichdiffers 
from the CS result ,!J = dv - [2t - p - (d - 2) 4/2. 
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