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Low‐Temperature Properties of a Heisenberg Antiferromagnet

Abstract
It is shown how the propagator formalism can be used to obtain the low‐temperature expansion of the free
energy of an isotropic Heisenberg antiferromagnet. The lowest‐order terms in such an expansion can be
calculated using the proper self‐energy evaluated at zero temperature. The analytic properties of this quantity
are investigated by expressing it in terms of time ordered diagrams. The low‐temperature expansion of the free
energy is shown to be of the form AT 4+BT 4+CT 8, where A, B, and C are given by Oguchi correctly to order
1/S. For spin ½ the term in 1/S 2 gives a 2% reduction in A for a body‐centered lattice.
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Low-Temperature Properties of a Heisenberg Antiferromagnet* 

A. BROOKS HARRIS 

Duke University, Durham, North Carolina 

It is shown how the propagator formalism can be used to obtain the low-temperature expansion of the 
free energy of an isotropic Heisenberg antiferromagnet. The lowest-order terms in such an expansion can 
be calculated using the proper self-energy evaluated at zero temperature. The analytic properties of this 
quantity are investigated by expressing it in terms of time ordered diagrams. The low-temperature expan­
sion of the free energy is shown to be of the form AT4+BT4+Crs, where A, B, and C are given by Oguchi 
correctly to order 1/ S. For spin! the term in 1/ S2 gives a 2% reduction in A for a body-centered lattice. 

THE low-temperature properties of magnetic sys­
tems governed by a Heisenberg Hamiltonian have 

been intensively studied. For the ferromagnet, Dyson' 
has shown how to obtain the virial series by systematic 
use of perturbation theory. More recently attempts 
have been made to reproduce his results using Green's 
function methods. These calculations have not been 
altogether satisfactory because: (a) there is some am­
biguity in the decoupling procedure, and (b) it is 
difficult to obtain the low-temperature expansion of 
the free energy by isolating terms with a given tem­
perature dependence. For ferrimagnets and antiferro­
magnets the progress has been less substantial, as 
Dyson's method of calculation does not seem feasible 
in this case. Thus no systematic application of many­
body perturbation theory has yet been attempted. 
However, the propagator formalism of Luttinger and 
Ward2 is well suited to this problem. By using such a 
formalism one performs a partial summation of the 
perturbation series. Also the low-temperature expan­
sion of the free energy can be obtained conveniently. 
In addition, long wavelength divergences can be ex­
plicitly avoided. Finally, the use of diagrammatic tech­
niques allows one to examine terms of arbitrarily high 
order in the perturbation. Our treatment is incomplete 
in that we assume that the kinematic interaction can 
be neglected and that the perturbation series is a useful 
one. 

We treat the case of an isotropic body-centered cubic 
Heisenberg antiferromagnet whose Hamiltonian is 

Je=2JEsi,Sj (1) 
( iJ/ 

in the usual notation. Using Oguchi's transformation3 

one can express this in terms of the boson operators 
ak and bk as Je= E+Jeo+ V, where E= -JVzJ S2 and, 

Jeo= 16J SEak+ak+bk+bk+'Ykak+b_k++'Ykakb_k, 

V = -16 J N-' E[2'Yk-k,ak +ak,bk" + bk-k'+k" 

(2) 

+l'k,ak +bk,ak"ak-k'-k"+l'kak+bk,+bk,,+bk+k'+k" J, (3) 

* Supported by a contract with the U.S. Office of Naval 
Research. 

1 F. J. Dyson, Phys. Rev. 102, 1217 (1956). 
2 J. M. Luttinger and J. C. Ward, Phys. Rev. 118, 1417 (1960); 

J. M. Luttinger, Phys. Rev. 119, 1153 (1960); 121, 942 (1961). 
3 T. Oguchi, Progr. Theoret. Phys. (Kyoto) 22, 721 (1961). 

where 'Yk= cos (kxa/2) cos(kya/2) cos (k.a/2) . To diag­
onalize Jeo one introduces boson operators Ck and dk 
which are given as 

d_k= -qkak++pkb_k, (4) 

qk2= [(1-'Yk2)-L 1J/2. 

(5) 

In this cd representation Jeo takes the simple form 

ek=e(k) = 16J S(1-'Yk2)!. 

(6) 

Normally the next step would be to express V in the 
cd representation and apply perturbation theory. How­
ever, the perturbation then takes on an extremely 
unwieldy form involving terms which become infinite 
for k=O, since Pk and qk vary as k-1 for small k. In­
stead we leave the perturbation in the ab representa­
tion and apply the propagator formalism of Luttinger 
and Ward.2 

For this purpose we consider the following relations: 

(P[ ak + ({3,) ak' ((32) J ) 

= -(3-'okk' ESO(k, Zm)aa exp{zm({3,-{32)} I (7a) 
m 

(P[ak+({3,)b_k,+({32) J) 

= -(3-'okk' ESO(k, Zm) ab exp{Zm({3,-{32)}, (7b) 
m 

(P[ak ({32) b_k , ((31) J) 

= _(3-10kk' ESO(k, Zm) ba exp{zm({31-{32) I, (7c) 
m 

(P[bk+({32) b_k, Uh) J) 

= -(3-'okk' ESO(k, Zmhb exp{Zm({3,-{32)}, (7d) 
m 

where P is the time-ordering operator, the boson op­
erators are the usual time-dependent operators, the 
bracket indicates an average over a canonical distri­
bution at temperature kT={3-I, Zm=z(m) =2m7ri/{3, 
and m is summed from - 00 to + 00. The matrix 
SOCk, z) is called the unperturbed propagator and its 
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components are 

Saa= (z+16J S)/(ZLek2) 

Sab= ( -16J S/'k) / (z2-ek2) , (8a) 

Sba= (-16J S/'k)/(Z2_ ek2) 

Sbb=(-z+16JS)/(z2- ek2). (8b) 

The free energy can be expressed diagrammatically in 
terms of this propagator as follows. The nth-order 
term for In(Z/Zo) is constructed from diagrams ac­
cording to the following rules: Number n points. From 
each point draw two outgoing lines representing ak+ 
or b_k operators and draw two ingoing lines represent­
ing ak or b_k+ operators. Connect ingoing and outgoing 
lines together in pairs and label each line j with values 
of momentum k j and "energy" z(mj), and give each 
line indices aj and bj at each vertex. At each vertex 
energy and momentum are conserved. For a line j 
with indices a and {3 take a factor SO[kj, z(mj) Jail and 
for each vertex include the appropriate matrix element 
of the perturbation. Include also an over-all factor 
({3nn!)-I, sum over all propagator indices aj and {3j, 
momenta k j , energies z( m) j, and over-all connected 
diagrams. 

One defines the true propagator S(k, Z)all as what 
one gets by applying the above rules to connected 
diagrams when one line of momentum k and energy z 
is cut in half and the free ends assigned indices a and 
{3. One also defines the proper self-energy G(k, Z)all as 
the contribution from proper diagrams when the line 
with indices a and {3 is removed; then 

S(k, z) = [SOCk, z)-LG(k, z) J-l. (9) 

One can show that the free energy is stationary with 
respect to variations in the proper self-energy and 
that the lowest-order temperature dependence of the 
free energy is given by 

F(l) = {3-1LL Tr In[ -soCk, Zm)-I+G(k, Zm)], (10) 
k m 

where G(k, Zm) is evaluated at T=O. By a suitable 
contour integration one can derive the formula 

F(ll = _2{3-1 L In[1-exp( -{3i Ek i ) J, (11) 
k 

where Ek is the true single-particle energy which sat­
isfies 

In order to discuss the properties of the proper self­
energy it is convenient to express it in terms of time 
ordered diagrams in which the vertices are assigned 
"times" tv and these times are permuted to give n! 
time-ordered diagrams for each original diagram. The 
contribution to G(k, z) is made up of the following 
factors: an over-all factor n!-l, the appropriate matrix 

element for each vertex, a factor 

[zl-e(k j ) 2JSO(kj , Zj) /2e(k j ) 

evaluated at Zj= e(k j ) for lines j going towards later 
times and at Zj= -e(kj ) for lines going towards earlier 
times, and a factor Dv-l for each time interval, where 
Dv is the sum of the energies of all lines present in the 
time interval between tv and tv+1• From the appearance 
of the factor e(kj )-1 one might conclude that the long 
wavelength divergence is still present; however, by a 
suitable pairing of diagrams one can show that the 
sum of the integrands of the two paired diagrams is 
regular for any kj = O. 

Furthermore, by examining the diagrammatic series 
for the proper self-energy, one can easily see that the 
excitation energy can not involve even powers of k, 
and that the two spin wave branches are degenerate. 
Aside from higher-order nonanalytic terms of the form 
kn logk whose analysis is rather difficult and is not yet 
complete, the excitation spectrum is of the form 

Ek=A(ak)+B(Ok, tPk) (ak)2+C(Ok, tPk) (ak)5. (13) 

One finds using Eq. (11) that the free energy is of 
the form 

F= A'T4+B'P+C'T8. (14) 

The quantities A, B, and C can be calculated dia­
grammatically. From Eqs. (2) and (3) one sees that 
these quantities will be given by a power series in 
1/ S, of which Oguchi4 has calculated the terms up to 
order 1/ S. These results can be obtained by consider­
ing diagrams with a single vertex. From the diagrams 
with two vertices we find 

A=8JS(1+c/2S)(1-0.00S/S2). (15) 

Thus it seems that perturbation theory converges rap­
idly for a three-dimensional lattice. 

For a ferromagnet this stage of the approximation 
gives no correction to the noninteracting spin waves, 
since for T=O the proper self-energy vanishes. To ob­
tain the approximation which gives Dyson's T5 term 
one would have to give a more complete formula for 
the free energy and also calculate the proper self-energy 
at nonzero temperature. 

The advantages of the present formulation are sev­
eral. It enables one to eliminate the long wavelength 
divergence in a simple way. It also allows one to choose 
an unperturbed Hamiltonian which is closer to the 
true Hamiltonian than in some other calculations. This 
method is amenable to summation procedures and can 
also provide a consistent treatment of the kinematic 
effect as we will show elsewhere. Accordingly, although 
the numerical results may not be impressive, we feel 
that this formulation opens the way to more syste­
matic and comprehensive treatments of this problem. 

4T. Oguchi, Phys. Rev. 117, 117 (1960). 
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