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Effect of Dipolar Interactions on the Spin-Wave Spectrum of a Cubic
Antiferromagnet

Abstract
The effect of dipolar interactions on the spin-wave spectrum of a cubic antiferromagnet is studied. The spin-
wave spectrum is found to consist of two branches whose frequencies are

(ℏω)2=(gβ)2[HA+HEa2k2][HA+HE(2−a2k2)−8πM/3+8πM sin2∂k]

and

(ℏω)2=(gβ)2[HA+HEa2k2][HA+HE(2−a2k2)−8πM/3].

Here a is the lattice constant, M the magnetic moment per unit volume, k the wave vector, θk the angle
between the magnetization and the wave vector, and HA and HE the anisotropy and exchange fields. The
reasons for discrepancies between these formulas and those given previously by other authors are discussed.
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Effect of Dipolar Interactions on the Spin-Wave Spectrum of a Cubic Antiferromagnet*

A. BRooKs HARRis

Department of Physics, Un& ersity of Pennsylvunic, Phil@delphic, Pennsylvania

(Received 15 October 1965)

The effect of dipolar interactions on the spin-wave spectrum of a cubic antiferromagnet is studied. The
spin-wave spectrum is found to consist of two branches whose frequencies are

(~) = (gP) LHz+Haarkr j[Hz+Hz(2 arkr—) SmM/—3+SrrM sin'Bqg
and

(Aa)'= (gP)'$H~+Hza%'g[Hg+Hz(2 a'kr) —S~M/—3).
Here a is the lattice constant, 3f the magnetic moment per unit volume, k the wave vector, Hq the angle
between the magnetization and the wave vector, and II~ and EIz the anisotropy and exchange Gelds. The
reasons for discrepancies between these formulas and those given previously by other authors are discussed.

I. INTRODUCTION

~ ~HE purpose of this short note is to call attention
to an error in recent treatments' of the effect of

dipolar interactions on the spin-wave spectrum of a
cubic antiferromagnet. As an introduction we brieRy re-
view some pertinent (and well-known) results for a fer-
romagnet. In Sec. II we then calculate the spin-wave
spectrum of an antiferromagnet.

For a cubic ferromagnet it has been shown' ' that the
spin-wave spectrum for an ellipsoid of revolution uni-
formly magnetized along its axis of rotation is

(kra)'= LDu'k'+gP(H —E.M)j
X/Da'k'+g/3(H X,M+47rM sin—'es)$. (1)

Here a is the lattice constant, M the magnetic moment
per unit volume, k the wave vector, 8~ the angle between
the magnetization and the wave vector, H the external
field, Ã, the demagnetizing factor associated with the
axis of rotation, and Da'k' is the exchange energy. This
dispersion law is valid for ka&& 1, and kE0))1, where Eo
is a characteristic dimension of the sample. This latter
restriction is necessary since for kEO& 1 plane waves are
no longer proper modes of the system. The exact
"magnetostatic" modes, have been investigated by
Walker' and have been shown to merge smoothly into
the plane-wave solutions as kEO becomes large.

In an unmagnetized (multidomain) sample one finds

(hca)'= )Da'k'jLDa'k'+4z. AM sin'Hsj. (2)

This relation is valid for ka&&1 and kE~&)1, where E~ is
the characteristic dimension of a domain. This result
is easily demonstrated by considering a conceptual

+ Supported in part by the Advanced Research Projects Agency.
This paper is a contribution of the Laboratory for Research on the
Structure of Matter, University of Pennsylvania.'R. Loudon and P. Pincus, Phys. Rev. 132, 673 (1963). We
shall refer to this paper as LP. Similar errors are made in F. R.
Morgenthaler, Phys. Rev. Letters 11, 69 (1963);G. I. Urushadze,
Zh. Eksperim. i Teor. Fiz. 39, 680 (1960) LEnglish transl. :Soviet
Phys. —JETP 12, 476 (1961)].' A. M. Clogston, H. Suhl. L. R. Walker, and P. W. Anderson,
J. Phys. Chem. Solids 1, 129 (1956).'T. Holstein and H. Primako8, Phys. Rev. 58, 1098 (1940).

4L. R. Walker, Phys. Rev. 105, 390 (1957).

sphere of radius E„suchthat kE,»1 and R,&&Eq. Since
the wavelength is much less than E„the e6'ect of the
rest of the sample on the conceptual sphere is well ap-
proximated by an efFective field. As is seen in Fig. 1,
the only contribution to this effective field comes from
the poles on the surface of the cavity. Since the sample
is unmagnetized there are no poles on the surface of the
sample. Furthermore it is assumed that the domains
arrange themselves so that the eGect of poles at the
domain walls is negligibly small. Thus the dispersion
law for an unmagnetized sample is found by using Eq.
(1) and by taking /t'/, =4rr/3 and H =4rrM/3. Naturally,
an extension of Eq. (2) valid for kRa& 1 would require
a knowledge of the exact arrangement of the domains
in the sample. Such a detailed model should include
the effects of lattice imperfections and impurities, since
these factors a6'ect significantly the arrangement of the
domains.

If the dispersion law for an antiferromagnetic sphere
consisting of a single domain were known, then formu-
las for (a) arbitrarily shaped samples, or for (b) the
multidomain case could be derived as we have done for
a ferromagnet. For this purpose we again consider a con-
ceptual sphere whose radius R, satisfies kE,)&1 but with
R„&&Eg.For an antiferromagnet the average magnetiza-
tion is zero so that the effective field acting on the con-
ceptual sphere is zero. This reasoning is valid both for
a single-domain sample of arbitrary shape and for a
multidomain sample. Hence in both cases one expects
the dispersion law to be the same as for the single-
domain sphere.

FIG. 1. A hypothetical ar-
rangement of domains as
viewed on a macroscopic scale.
The Geld acting on the concep-
tual sPhere is +(4n/3)M. ph,
due to surface charges on the
surface of the sphere caused by
the magnetization of the rest
of the sample. Since the sample
is unmagnetized, there are no
surface poles.
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$*(R,) =S—a,ta„ (3a)

S+(R,) = (2S)'"a (3b)

S—(R,) = (2S)U2a, t (3c)

where R,= (n~i+e, g+n3k)a. For spins on the B (down)
sublattice

S'(R,+s)= S+b—,tb„ (4a)

S+(R,+~)= (2S)'"b ~ (4b)

S (R,+~)= (2S)'"b„ (4c)

where ~= ', u(f+ j-+k) These. u and b operators obey
boson commutation relations, We transform to momen-
tum variables:

a, t= (2/N)'" Qg apt exp( —ik R.), (Sa)

b, t= (2/N)'" Pg b, t exp( ik [—R,+~)), (Sb)

where E is the total number of lattice sites and Ir

is a vector of the 6rst Brillouin zone of a simple-
cubic lattice. Using these substitutions in the dipolar
Hamiltonian,

X =,'g'p'p -{S,"S,—3(S; rv)(S,"r,;)r,,—')re-', (6)
s ~ 2

II. THE SPIN-WAVE SPECTRUM OF AN
ANTIFERROMAGNET

Let us first give a formal derivation of the spin-wave
dispersion law using the Holstein-Primako8 transforma-
tion. ' Thus for spins on the A (up) sublattice

show an insignificant dependence on R, unless R ~ is
very near the surface. Cohen and Keffer' have studied
these dipolar wave sums and conclude that such an ap-
proximate treatment of them is justi6ed. As for the
ferromagnet, for kEO&1 one would 6nd spin waves are
no longer appropriate for the determination of the
normal modes.

Where our treatment differs from that of LP' is in
the evaluation of the lattice sums of Eq. (8). We take

A (k) =2m-gPM [1—(2N, /3NO) cos'H,—), (10a)

B(k) =7rgpM sm'H e "&' (10b)

C(k) = 4ngpM [1 —N, /.No), — (10c)

D(k) = -', x-go[1—3 cos'Hp),

E(k) =2sgPM sin'Hi, e "~'
(10d)

(10e)

Here No ——4~/3 is the value of N, for a sphere and H~

and p~ are the polar angles of k relative to the direction
of magnetization. The evaluations of LP differs from
those given here in that they take

A (k) =2sgPM sin'HI„ (11a)

or R +~ relative to the direction of magnetization. We
have already used the condition that kE0))1 to infer
that sums like

3~Z.-Z..~2

(R —R
)

'exp(ik [R —R ))
[R.—R. ['

one finds the quadratic part of the dipolar Hamiltonian
to be

C(k) =0,
D(k) = 27rgPM sin'Hl, .

(11b)

(11c)

B(k)= —g'P2S P.— exp(ik R,),
~n

(Sb)

3 cos'0 —1
C(k) =—g'O'S Z.

f
R,+~ ['

3 cos'8 —1

(8c)

3'.D =P, [A (k)+C(k))(age +b~tb„)
+{(aj,a g+bgtb j,t)B(k)+c.c.)
+{E(k)ugbgt+ c.c.)
+{D(k)agtb J+c.c.),

where c.c. means complex conjugate and

3 cos'8 —|.
A (k) =g'p'S p, (1+s' exp(ik R,)), (Sa)E'

3 sin Oe "~

Our evaluations are consistent with those of Holstein
and Primakoff3 when X,=O as they have assumed. Fur-
thermore Eqs. (10) are consistent with the formulas
given by Cohen and Keffer. ' Note that the Hamiltonian
is independent of E, as expected since only the com-
bination A (k)+C(k) appears. The harmonic-oscillator
frequencies are readily determined from the full
Hamiltonian

&=gP&s Zt* {~'&~+4'b~+v~&dht+va&~4)
+gpIfA Zk {rr'ktrrt+bk bh)++D ~

Here BI.:and Hz are the exchange and anisotropy fields,
respectively, and yz=s '+exp(ik 5), where s is the
number of nearest neighbors and the sum is taken over
all nearest-neighbor vectors S. The two branches of the
frequency spectrum are found to be

D(k) =-', g'P'S P, exp(ik [R,+~)), (Sd)
IR.+ I'

(b~)2= (gp)2[~A+p, pm')

X [HA+P~ (2—a'k') —SvrM/3), (13a)
sirP8e-"&

E(k) = —-', g'p'S g, exp(ik [R,+~)) . (8e)
fR,+~/'

In these equations 8 and q are the polar angles of I,

(A~)'= (gP)2[HA+V~a'k')
X[HA+ H~(2 —a'k') —SsM/3+8m 3II sin'4). (13b)

' M. H. Cohen and F. Keffer, Phys. Rev. 99, 1128 (1955).



EFFECT OF BIPOLAR INTERACTIONS

These results can also be derived using the torque
equations,

—S(R)= (gp/h)S(R)XH. ii(R),
dt

(14a)

—S(R+~)= (gP/h)S(R+~) XH.ii(R+~) . (14b)
dt

6 Note the difference between the argument used here and the
corresponding one in the Introduction. In the Introduction we
chose the radius of the conceptual sphere R, large so that kR,))1,
thus ensuring that the motion of spins of the rest of the sample
was incoherent with that of most of spins in the sphere. Then it is
possible to replace the effect of the rest of the sample by an effec-
tive field. In contrast, here we take R, to be small so that the
motion of the spins in the conceptual sphere and that of the
neighboring spins are coherent. In this case we must take account
of the oscillating transverse components of the dipolar fields.

Here H, ii(R) is the effective field acting on the spin at
R. We only consider the contributions to H, ff(R) from
dipolar fields, since LP correctly treat exchange and
anisotropy fields. We suppose that only spin waves of
wavelength less than k, are appreciably thermally
excited. We first consider the eGect of spins within a
distance 8, from 8, where k, R,&& j., R,))a.' Within
this sphere the spins are essentially in phase so that, due
to the assumed cubic symmetry of the lattice, the spins
of each sublattice create zero dipolar field at each lat-
tice site. The dipolar fields from the remaining spins are
calculated by replacing the lattice sum by an integral.
The dipolar fields can then be thought of as arising from
(A) a volume distribution of charge density —V M(R),
(B) a distribution of charge density M(R) 8 on the
surface of the sample, and (C) a similar distribution on
the surface of the cavity of radius R,. LP treat the con-
tributions (A) and (B) correctly. Contribution (B) is
zero both for the case of a single-domain and for the
case of a multidomain sample. Since we take kRO))1, the

(~)2= (gp)mpyg+ 2IIg~@+2fIg&o2p) (16a)

(~)2 (gp)2Lff ~2+2(HA++Eg2p2)

X (Hz+4m M sin'8~) j, (16b)

are insignificant under normal conditions. Only in the
rather unusual case when 4m% becomes comparable to
the exchange field is the difference between Eqs. (13)
and (16) important. It is interesting, however, to note
that there is a criterion for the stability of the assumed
antiferromagnetic array. This condition, which follows
from the requirement that the frequencies in Eq. (13)
be real, is

B~+2HE& 8s M/3.

This result is not surprising since the assumed configura-
tion is not that of lowest energy for spins interacting
only via dipolar coupling. ~ In contrast, the spectrum of
LP fEq. (16)j indicates no instability since the right-
hand side of Eq. (16) can never become negative.

7 J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946);
72, 257(E) (1947).

spatial variation of any poles on the surface of the sam-
ple is rapid in comparison to the sample dimensions.
LP ignore the contribution (C), although it is nonzero.
It is easy to see that this contribution to the dipolar
field is

hH ff(R) = (4s/3)LM&(R)+Mii(R) j, (15)

where, since kR,&&1, we can take the spins on the surface
of the conceptual sphere to be exactly in phase with
those near the center of the sphere. Although the time
average of this contribution is zero, the oscillating trans-
verse components which are nonzero do modify the
torque equations. When this term is added to the torque
equation of LP our Eq. (13) follows.

Admittedly the difference between our results (13)
and those of LP,
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