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Nuclear-Spin Relaxation in the Rotating Frame in Solid D2

Abstract
The decay of the nuclear magnetization along a spin-locking field in the rotating frame has been studied in
solid deuterium, at a frequency of 4.7 MHz, following the method of Rowland and Fradin. Measurements
were made between 4 and 13 K, on samples having para ( J=1) mole fractions X ranging from 0.04 to 0.9. The
lab-frame transverse relaxation time T2 was measured in the range 13-17 K. These data permitted the
observation of thermally activated diffusion between 9 and 17 K, corresponding to a change in the
characteristic time τ between molecular jumps of some seven orders of magnitude. The activation energy is
(276 ± 20) K, independent of concentration. No evidence could be detected of the slow diffusion from
quantum tunneling of vacancies predicted by Ebner and Sung. For the temperature range below about 8 K, the
rotating-frame formalism has been adapted to the specific spin-lattice relaxation mechanisms present in D2,
and account has been taken of the intramolecular spin-spin interactions. Effects of translational molecular
motion were not seen in this region. This is consistent with the very slow rates expected theoretically by
Oyarzun and Van Kranendonk. At intermediate and high ( J=1) mole fractions X and below about 8 K, the
exponential decay of the spin-locked magnetization was preceded by a short transient of approximately
0.1-sec duration. This transient is thought to be associated with the internal equilibration of the nuclear-spin
energy systems. Its lifetime Tx is much longer than T2 of the rigid lattice because the NMR line is
inhomogeneously broadened by the intramolecular spin-spin interactions. The magnitude of Tx has been
correlated with previously reported cross-relaxation times for the lab frame.
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Nuclear-Spin Relaxation in the Rotating Frame in Solid Da~

F. Weinhaus, H. Meyer, and S. M. Myers~
Department of Physics, Duke University, Durham, ¹rth Carolina Z7706

A. B. Harris
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 28 September 1972)

The decay of the nuclear magnetization along a spin-locking field in the rotating frame has been
studied in solid deuterium, at a frequency of 4.7 MHz, following the method of Rowland and Fradin.
Measurements were made between 4 and 13 K, on samples having para (J=1) mole fractions X
ranging from 0.04 to 0.9. The lab-frame transverse relaxation time T, was measured in the range
13-17 K. These data permitted the observation of thermally activated diffusion between 9 and 17 K,
corresponding to a change in the characteristic time v between molecular jumps of some seven orders
of magnitude. The activation energy is (276+ 20) K, independent of concentration, No evidence could
be detected of the slow diffusion from quantum tunneling of vacancies predicted by Ebner and Sung.
For the temperature range below about 8 K, the rotating-frame formalism has been adapted to the

specific spin-lattice relaxation mechanisms present in D2, and account has been taken of the
intramolecular spin-spin interactions. Effects of translational molecular motion were not seen in this

region. This is consistent with the very slow rates expected theoretically by Oyarzun and Van
Kranendonk. At intermediate and high (J=1) mole fractions X and below about 8 K, the exponential
decay of the spin-locked magnetization was preceded by a short transient of approximately 0.1-sec
duration. This transient is thought to be associated with the internal equilibration of the nuclear-spin

energy systems. Its lifetime T„ is much longer than T, of the rigid lattice because the NMR line is

inhomogeneously broadened by the intramolecular spin-spin interactions. The magnitude of T„has
been correlated with previously reported cross-relaxation times for the lab frame.

I. INTRODUCTION

For low magnetic fields, comparable in magni-
tude to the dipolar local field, relaxation-time
measurements can give information about diffusion
not available from high-field measurements.
This is due to the fact that in the low-field regime,
where the Zeeman and dipolar Hamiltonians are
comparable in size, changes in dipolar energy due
to atomic or molecular motion are very rapidly
communicated to the Zeeman system, providing for
spin-lattice relaxation. Indeed one can detect
jump times comparable to the spin-lattice relaxa-
tion time, whereas in the high-field regime the
limiting time is the rigid lattice (RL) spin-spin
relaxation time T~ . Another possibility, as we
shall see, is the study of energy diffusion through
an inhomogeneously broadened line. Since in the
low-field case the Zeeman energy, which is the
quantity measured, is comparable with other terms
in the Hamiltonian, the flow of energy into those
terms can be monitored. In practice, it is most
convenient to achieve the low-field regime in the
"rotating frame. "

In the present experiment, rotating-frame stud-
ies of solid D2 were made. Thermally activated
diffusion was monitored between 9 and 13 K using
this technique. The diffusion mas also followed in
the range 13-1V K, via the transverse relaxation

time T2 in the lab frame, using the formalism of
Resing and Torrey. In the region below about 8 K,
ther mally activated diffusion has a negligible effect
on the nuclear-spin system. Also, the quantum dif-
fusion observed in H~ by Amstutz, Thompson, and
Meyer and treated by Oyarzun and Van Kranendonk
should be too slow to be detected in D~. Here the
rotating-frame measurements have provided useful
information on the flow of energy among the terms
of the spin Hamiltonian. In particular, the inhibi-
tion of cross relaxation associated with inhomo-
geneous broadening of the NMR line by intramolec-
ular spin-spin interactions was studied by monitor-
ing the decrease of the Zeeman energy with time.
These results mere successfully correlated with
previous studies in the lab frame below 5 K.v

In Sec. II the rotating-frame theory of Rowland
and Fradin will be reviemed briefly and adapted to
the specific case of D2. The relevant constants
in the theory mill be derived, and the effect of the
intramolecular spin-spin interactions will be in-
cluded. For the region below 8 K where the intra-
molecular interaction broadens the line, an esti-
mate will be made of the time for internal equili-
bration of the nuclear-spin system. Also a gen-
eralization of the relation derived by Resing and
Torrey for the Tz of a motionally narrowed line
will be given. Section III will describe the pulsed-
NMR method used, . and outline the other experi-
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mental procedures. The experimental data and

analysis will be presented in Sec. IV and the con-
clusions given in Sec. V.

II. THEORETICAL REVIEW

A. Rotating-Frame Relaxation-Time Measurements

X=Xz+X„'+X', ,

where the Zeeman term is

Kz Xz+Kz
with

x;= —ye5~ (Ho —&/y)I, k,

(3a)

(3b)
Nuclear relaxation in weak applied fields has

been discussed by Bedfielde and by Hebel and
Slichter using the concept of a spin temperature
and a "weak-collision" theory. Sliehter and Ailiona
modified this treatment for the "strong-collision"
regime, and applied it to the case where the low
fields were achieved by an adiabatic transforma-
tion to a reference frame rotating about the static
field at the Larmor frequency. More recently,
Bowland and Fradins have also discussed relaxation
in the rotating frame. These authors, however,
attained the rotating-frame conditions using the
"spin-locking" pulse sequence of Hartmann and
Hahn. '~ The effect of either of these two methods
is to align the net magnetization in a plane perpen-
dicular to the static fieM and along a rotating field
of the order of the dipolar field in magnitude. Thus
to the spins the rotating field appears to be static.
The advantage of doing the experiments in the ro-
tating frame is that a large static field is still
present which provides for a good signal-to-noise
ratio. '-'

Bedfield'~ has shown that in the presence of a
radio-frequency field large enough to saturate the
absorption, the system ean be characterized by a
spin temperature in the rotating frame. Thus the
system is describable by a density matrix

p @-x/ke8/Tre Ic/kIIe-

Here Tr indicates that the trace is to be taken, 0
is the spin temperature of the system, ka is Boltz-
mann's constant, and 3C is the effective Hamiltonian
in the rotating frame.

It is well known that in solid D„ the moleeules
with rotational angular momentum J= 1 have a total
nuclear spin I= 1, while a fraction +6 of those with
J= 0 have a spin I= 2, the rest having I= 0. In the
solid D2 system, the interaction Hamiltonian con-
sists principally of three systems or terms:
(i) K~, the Zeeman interaction with the external
magnetic field; (ii) K~, the intermolecular nuclear
dipole-dipole interaction between molecules;
(iii) X„ the intramolecular nuclear interaction
which depends on the orientation of the molecule
with respect to the static field. ' The orientational
alignment of the J= 1 molecules is caused by the
intermolecular electric quadrupole-quadrupole
(EQQ) interaction between these molecules. Mak-
ing the standard rotating-coordinate transforma-
tion, ' ~4 one can express the effective Hamiltonian
as

(3c)

the summation being over all nulcear spins,

1-Scos 8

=--,' ZHI (3I,II,„-T, ~ l ) (4b)

is the truncated intermolecular dipolar term, and

Z,'=-gdIIE' (3cos'qk —1),(3I,'„-2) (5a)

-=——.'dI Z'~, (3I,'.,—3) (5b)

Here the intermolecular dipolar local field H~
is defined as

H', = H,'Tr(X', )'/Tr(X,")'

is the truncated intramolecular term. Here (d is
the frequency of the rotating field Hz, y is the
deuteron gyromagnetic ratio, I, is the total nuclear-
spin operator for the 4th molecule, 8,.~ is the angle
that the intermolecular vector B,z makes with the
z axis, y, is the angle between the axis of the )Xh
molecule and the g axis, and d is the intramolec-
ular coupling constant, which is 25. 24 kHz in D2.~3

In Eq. (5a) the brackets ( )r indicatethatathermal
average is to be taken and the prime on the summa-
tion indicates that sum is to be restricted to mole-
eules having I= 1 and J = 1, where J is the angular
momentum of molecular rotation. The terms
analogous to those of EIl. (5) for J= 0 molecules
are negligible. '3

Bowland and Fradins have already discussed the
low-field relaxation of just such a system, i.e. ,
one with Zeeman, dipolar, and quadrupolar terms
in the Hamiltonian. For the case in which there
is rapid transfer of energy within the spin system,
they make use of the spin temperature in the rotat-
ing frame to calculate the magnetization along the
effective field. When the frequency (d of the rf
field is equal to the Larmor frequency, and Ho
&& Hlq tlleI1 (M)r q

wllicll lies aloIlg Hlq deca/8 to a
zero value. The time constant 7~ for this decay
is then given by
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(9a)
=%2" ~/sy =0.0253(5 —3X) (G ) (9b)

Similarly, the evaluation of H& from our Eq. (8)
and from Eq. (3. 16d) and (3. 19b) in Bef. 13 yields

Hq=(—) ~ ~
—(2 A, r 1) (ioa)

= m""'/sy' (lob)

In Eqs. (9) and (10), the superior bars indicate
powder averages, and M~"" and M&'"' are, re-
spectively, the intermolecular and intramolecular
contributions to the second moment of the absorp-
tion line shape due to all the nuclear spins in the
system. The experimental determination of
M2"'" agrees very well with the expression given
in Eq. (9b). In the case of Eg. (10b), the calcula-
tion of M2""' involves thermal averages which can
only be calculated in the high-temperature limit.
Furthermore, the experimental determinati. on of
M',""'is subject to a large uncertainty at high
temperatures. Accordingly, at temperatures and
concentrations for which experimental determina-
tions of H q is meaningful we will use experimen-
tally determined values for it; otherwise (i. e. ,
when Ho is of the order or smaller than H~) we
shall use theoretical expressions for it [c.f. Eg.
(4. 13) of Bef. 13].

Returning to Eq. (6) we write the relaxation rates
as the sum of two terms, one due to diffusion, the
other due to rigid-lattice T1 mechanisms:

n
Tdiff

D D 1
(iia)

and the intramolecular (quadrupolelike) local-field
H@ is defined as

H'q = H', Tr(XO)'/Tr(Z ~)' . (6)

Also, T, is the relaxation time for the magnetiza-
tion along the H1 field and has been shown by Red-
field to be just the high-field laboratory-frame
relaxation time T,. Finally, TD and T~ are the re-
laxation times for the inter- and intramoleeular
nuclear spin interactions, respectively.

We can generalize the expression for H D eval-
uated by Hebel to the situation of D~ where there
are two systems of spins with the same gyromag-
netic ratio. We obtain

energy is relaxed if either of the nuclear spins is
flipped. It can be shown that this is the case for
spin flips caused by the terms involving the inter-
action of Eqs. (5). The much smaller effectsdueto
correlated spin flips caused by the spin-rotation
coupling term gI ~ J in the nuclear spin Hamilto-
nian1~ can be safely neglected, so we set &=2.
The value of P is shown in Appendix A to be given
by

P = (15 —9X)/10X . (i2)

Finally, we consider the relaxation rates appear-
ing in Eqs. (11) due to diffusion. Slichter and
Ailion' have treated in detail the dipolar relaxation
due to slow vacancy diffusion. They have employed
two assumptions: (i) the systems corresponding to
the terms in the Hamiltonian couple together
strongly to attain a common spin temperature be-
tween jumps; (ii) the actual time for a jump is so
short compared to the nuclear precession period
that the spin orientation does not change during a
jump. This "strong-collision" theory for diffusion
extended for rapid moving vacancies' leads to

digg g 2(1 p) G 1 (G 2
(is)

where 7 is the mean time a molecule rests between
jumps and G is the number of nearest neighbors.
The factor (I -p) is a lattice sum of the order of
unity (p =0.223 for hcp lattice) which accounts for
the fact that the local field at a nucleus after a
jump is not statistically independent of the local
field before the jump. The factor of 2 in Eq. (13)
occurs because motion of either of the two inter-
acting spins modulates the dipolar energy.

An expression similar to Eq. (13) is obtained in
Appendix B for T~z"

(Tdiff)-1 2/T (i4)

At first glance the appearance here of the factor of
2 is surprising, because in this ease the nuclear
spin is interacting with a field not produced by nu-
clear spins on a different molecule. However,
when a molecule jumps, it changes not only its
own orientational state, but also that of its neigh-
bors because of the EQQ interaction. Hence the
environments of two nuclear spins are disturbed by
each molecular jump. Since H~ is of the same
magnitude as HD, and since the diffusion theories
are not too accurate anyway, we use the approxi-
mation of writing

1 1 P
T Tdiff

g q 1
(1lb) Hn Ho

(
2 g) 2(l-P) G —1 G —2

Tdiff + Tdiff -~ D+ g~
D Q

The parameters z and P describe the efficiency of
T, processes for inter- and intramolecular nu-
clear relaxation, respectively. If the nuclear spins
are flipped independently, ~ =2, since the dipolar

(»)
Using the values of ~ and P given above, and sub-
stituting Eq. (15) into Eg, (ll), we write Eq. (6)
as
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1 Hg+2H ~+[(15—9X)/10X]Ho
TR Hg+H +H . Tg

H~+Hc 2(1 —P) G —1 G —2
2 8'2
,+H, +H~ 7 G G

(16)
Since the quantities in large parentheses are both
of order unity, this expression shows that v should
be observable when it is comparable to or less than

Tj. Before continuing, we should point out that
Eq. (16) has the correct form in the X=0 limit.
To see this we use Eq. (10a), according to which
H~~~~, where A is the averageof A', over all
configurations of the ortho-para mixture. Note
that A~ vanishes if the 4th molecule has no J= 1
neighbors to cause orientational alignment. For
small X, A is proportional to X, '3 and hence H +
~X~. Thus, in the X=O limit, Eq. (16) becomes

TB H21+ HD2 T1 H 1+H D

2(1 —P) G —1 G —2 (ln)
G G

independent of H~, as expected.

B. Quantum Diffusion

Thermally activated vacancy diffusion falls off
very rapidly with decreasing temperature, and is
negligible below about 8 K in solid D~. However,
three mechanisms remain which may change the
spatial distribution of the I= 0, I= 1, and I= 2 nu-
clear spins: (a) quantum mechanical exchange be-
tween nearest neighbors due to the overlap of their
molecular wave functions; (b) resonant conversion
of two neighbors due to the magnetic interaction be-
tween nuclei. This process is distinguished by
having 6J=+ 1 for one molecule and 4J= —1 for the
other; (c) uncorrelated I= 2=I= 0 transformations
with &I, =0 among the J=0 molecules.

Changes with time of the distribution of I= 1 nu-
clear spins have been observed in solid H~ by
Amstutz eI; al. 5 These authors found that the
characteristic NMB spectrum of nearest-neigh-
bor ortho pairs increased in amplitude with time
following a drop in temperature, indicating that
molecules were moving into this energetically fav-
ored configuration. Oyarzun and Van Kranendonk
subsequently treated mechanisms (a) and (b) theo-
retically. They concluded that mechanism (a) is
negligible, but that the resonant conversion has a
characteristic time of v =80 min in 1% ortho H~.
This time takes into account the slowing down of the
conversion rate by the EQQ interaction from (J= 1)
neighbors. The estimate is consistent with the
Amstutz et p&. result. However, applying the
same formalism to D, gives ~=80 h, while T, =1
sec. Hence this motion cannot be detected in the

rotating-f rame experiment.
The uncorrelated (I= 0)= (I= 2) transformation

has been shown to occur in a time 7.3.0 =0.4 sec. '~

However, since there is no means whereby this
mechanism can cause energy exchange with the
lattice, it must conserve the total nuclear spin
energy. Hence it will not produce an observable
effect in the rotating-frame experiment.

As a result of the above considerations, the
second term of Eq. (16) can be neglected below the
region of significant thermally activated vacancy
diffusion, giving

1 H~q+2H~~+(15 —9X)H J10X 1

T~ H j+H ~+H @ Tl

C. Cross Reiaxation

(18)

The validity of Eq. (18) depends specifically on
the flow of energy among the terms of the Hamil-
tonian, occurring rapidly in comparison Lith the
spin-lattice relaxation time. When exchange oc-
curs at the rate (T",L) ', this condition is well sat-
isfied. However, at low temperatures the NMB
linewidth of the (J= 1) molecules, given approxi-
mately in terms of the second moment by
[mz(I= 1)]' ', is much broader than that of the
(J=O) molecules [mz(I=2)]'~ . This inhomogeneous
broadening arises from the intramolecular nuclear
spin-spin interaction as the (J'= 1) molecular rota-
tion is quenched by the EQQ interaction. '~ It has
the effect of making mutual nuclear spin flips non-
degenerate, thereby inhibiting energy flow. The
cross relaxation will then be characterized by an
energy exchange time T», which is much longer
than T~RL. We will not attempt to calculate this pa-
rameter for the low-field regime, but rather will
assume that it is the same as for the high-field
case. Then one can use the result of Bloember-
gen et a/. for the diffusion of energy through an
inhomogeneously broadened line, as modified in
Ref. 10 to apply to solid D2. This calculation gives

m I=1 "'
T =

[ „, ] ~[ (I =1)] —[ (I=2)
2

(19)
This is obviously an approximation, since at high
fields the total Zeeman energy is conserved and
one is concerned only with its redistribution among
the nuclear spins. Nevertheless, since the mech-
anism of energy exchange is basically the same in
both cases, it is probably a reasonable one. As
will be seen, the cross relaxation is observable
as a short transient of duration T„ in the exponen-
tial decay of the magnetization along the rotating
field. This transient corresponds to the coming
into equilibrium of the various nuclear spin ener-
gy systems, shown in Fig. 1. We can calculate
the relation between the experimentally observed
time constant T„and the cross-relaxation time T»
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Hp++ HQ HD

l

Ho field

I =2 I =1
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Lattice
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I

H)
field
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Intermolecular
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intra molecular
( over l opping)

Intromoleculor

(not overlapping)
l2

BATH P BATH I
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Lattice
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HQ ~ H) ~HO

FIG. 1. Sym-
bolic representa-
tion of the NMR
spectra and energy
baths from the
I=1 and I=2 spins
in the high-field
(Hp) and low-field
(H~) regimes.
The spin-lattice
relaxation mech-
anisms are those
induced by inter-
molecular electric
quadrupole-qua-
drupole interac-
tion and by dif-
fusion. Once the
energy baths have
come into in-
ternal equilibrium
via cross relaxa-
tion, they relax
to the lattice with
a characteristic
time T& and T&
in the high-field
and low-field
situations, re-
spectively.

H1+H D+H o
2 2 2

H H 4H1+ D+ Q'

Here the factor 4 represents the fraction of the
quadrupole bath that overlaps in energy with the
dipolar and Zeeman baths, with

(2p)

+'=[m, (f= 2)/m, (I=1)] .
D. Laboratory-Frame Transverse Relaxation Time T,

(21)

It has long been known that motional narrowing
of the high-field NMR line provides a means of
probing diffusion in condensed systems. How-

ever, this technique is primarily useful in the re-
gion given by

[~inter]1/2 && ~-1 && (22)

In the region defined by Eq. (22), the expression
for T2 given by Kubo and Tomita21 becomes

(7 diff)-1 & ~ inter
2 c 2 (2&)

where v, is the decay time for the correlation func-
tion which characterizes the modulation by diffusion

by solving the differential rate equation of the two

energy baths shown on the right-hand side of Fig.
1. For simplicity we assume that the equilibration
time of the energy baths is much smaller than T~.
Our calculation, which is briefly presented in Ap-
pendix C, gives then

of the nuclear dipole-dipole interaction. Obviously

v, and v are comparable. A microscopic theory
based on an approximate treatment of the random
walk gives the result

7 =1.097' (24)

for the fcc lattice. Within the approximations used
to obtain Eq. (24), we find the result for the hop
lattice to be identical to that for the fcc lattice.

It must be realized, of course, that the theory
used to obtain Eq. (24), and to a lesser extent that
given by Slichter and Ailion, is approximate.
Equation (24) was derived by using the approxiina-
tion of isotropic hopping and by neglecting the cor-
relation which prevents two nuclear spins from oc-
cupying the same lattice site. As a consequence of
this latter approximation the formal expressions
are not well defined for a, discrete lattice. There-
fore, exact agreement between the values of v. ob-
tained from the two techniques is not to be ex-
pected. However, the temperature dependences
are not sensitive to theoretical details and should
therefore be correctly related to the activation en-
erNr.

As we have seen above, diffusion modulates the
intra, molecular interactions 3C„and one expects
that in analogy with Eq. (14) that Eq. (23) should
be generalized to read

(7 diff)-1 & (~inter+ ~ intra) (»)
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C
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FIG. 2. Pulse sequence for the spin-locking technique and schematic representation of the NMR pulse generating and
detecting system.

This result is discussed in Appendix B.
From the measurements of T~, we will deter-

mine ~ and compare it with that from longitudinal
relaxation measurements in the rotating frame,
The data are taken only in a temperature range
where Eq. (22) is satisfied. Under these condi-
tions, Tz~" »[M"'~] '~'

III. EXPERIMENTAL PROCEDURE

For the low-field experiment, the decay of the
nuclear magnetization along a transverse rf field
rotating at the nuclear resonant frequency was
studied, using the spin-locking procedure of Hart-
mann and Hahn. ~~ The method is schematically in-
dicated in Fig. 2. A sequence started with a, 90'
rf pulse, which rotated the equilibrium magnetiza-
tion along the static field Ho into the transverse
plane. In a time short compared to T &

L =0.3
msec, another rf pulse, of variable amplitude and
90' out of phase with the preceding pulse, was
applied. The second pulse, whose field IIj was
colinear with the transverse magnetization, lasted
for a variable time g. At the end of the second
pulse the amplitude M of the free-induction decay
(FIB) was measured. Specific-heat considerations
give the following limits8:

M(t 0) = MOH g /(H j + H r + H g),

M(f- )=M(f=O)H, /H, =10- M(t=O)=O. (2V)

Here Mo is the amplitude of the FID after the initial
90' when no subsequent Hj rf pulse is applied. A

semilogarithmic plot of M(t) vs f yielded the de-
sired relaxation time T„.

The electronics of the NMB system are block
diagrammed in Fig. 2. A stable 4. 7-MHz crystal
oscillator drove two pulse amplifiers, one through
a variable phase shifter. These amplifiers were
triggered from a timing network. The 90 pulse
had an amplitude of 190 V peak to peak, and a
width of 65 csee, while IIO could be continuously
varied up to 150 V peak to peak and over a time be-
tween 0. 3 msec and 14 sec without appreciable
drop in the amplitude. The first pulsed amplifier
has been used in previous work, while the long
(H&) pulse amplifier was of the Blume type, with
an extra pentode amplifier stage added. The nu-
clear signal was amplified, detected, anddisplayed
on a memory scope. The sample coil circuit was
parallel tuned, the capacitor C being adjusted to
maximize the impedance at P with all components
connected.

The conversion factor from V to 6 in the rf coil
was determined by measuring the voltage amplitude
and duration of a carefully optimized 90' pulse, and
this factor was found to he 0.030+ 0.001 6/V. For
almost pure ortho Dz, 0+=0, while III, is given by
Egs. (9) and its value is 0. 355 G. A check on the
internal consistency of Eqs. (9) was made at 4
K and X= 0.036 by measuring the short-time FID
amplitude M(t = 0) as a function of H, . Using Eg.
(26), a plot of [(Mo/M(t)) —1/~2 vs H&, shown in
Fig. 3, gave then a slope II~= 0.35+0.01 G, in good
agreement with that predicted above. The nonzero
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measurement and the gas sample purity have been
discussed elsewhere.

1.0—
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I

0.6-

0~ 0.4—

0.2-

Oi
0.05

1/'H1 (G ")
0.10

IV. RESULTS AND DISCUSSION

A. Classical Diffusion Region

The experimental values of the rotating-frame
relaxation time T~ and of T~ are shown in Fig. 4
for a representative mole fraction X= 0.89. For
temperatures above about 9 and 12 K, respectively,
both T~ and T2 exhibit an exponential behavior vs
T'. For temperatures below 8 K, T„ is unaffected
by diffusion and is only weakly temperature depen-
dent down to 4 K. Figure 5 shows a plot of T2 vs
T for X=0.05, 0. 54, and 0.89 that indicates
that T, is practically independent of X. The solid
line represents the fit

T~=3. 68x10 e-' ~ sec,

FIG. 3. Determination of the field HD from rotating-
frame experiments with various spin-locking fields. For
further explanation, see text. The solid D2 sample had

the composition X= 0.036 and the temperature was 4.2 K.

intercept, however, is not understood at this time.
The lab-frame transverse relaxation time T~

was determined in the conventional way by measur-
ing the FID corrected for magnet inhomogeneity
and also by measuring the amplitude of the echo
produced by a 90'-p-180' pulse sequence. A semi-
logarithmic plot of the echo amplitude vs 2t yielded
Tp ~

The cryostat, the technique of J= 1 mole fraction

which is close to that quoted in an earlier paper. '
In Fig. 6 we present the characteristic time 7 be-
tween jumps, as calculated via Eq. (25). Figure
6 also shows the characteristic time 7. between
jumps calculated from low-field techniques, using
Egs. (16) and (17) and the assumptions made in
Sec. II. Here the correction for the nondiffusion
term was made by subtracting the extrapolated
value of 1/T„, shown in Fig. 4 by the dashed line,
from the measured 1/T~ data at the corresponding
temperature. The average activation energies de-
termined from the slopes of the data derived from
spin-locking experiments and from T& data are 272
and 287 K, respectively, with an error of + 10 K.
There is a discontinuity24 by a factor of about 2 be-

10 10

hcp D~ X&„„)=0.88

10—

U
1O—

I8
E

I-
10—

0
0

0 +
~ TR

—10 08
E

I-

FIG. 4. Representative
set of relaxation data for
a sample of D2 with X
= 0.89. Left vertical
scale: transverse relaxa-
tion time T2; right scale:
longitudinal relaxation
time T& in the rotating
frame. The dashed curve
is the extrapolation from
the nondiffusion region.
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10

molecule by quantum tunneling through the double-
potential well barrier to a nearest-neighbor vacan-
cy should be observable below about 14 K. The
diffusion in this range should then be characterized
by an activation energy of 132 K. However, our
data down to 9 K fail to show evidence for this pre-
diction.

B. Nondiffusive Region

The decay of the FID amplitude M(f) as a func-
tion of the duration of the spin-locking H, pulse is
shown in Fig. 7 for Dz samples with X=0.05, 0.33,
and 0.89. For X=0.05, where II@ resulting from
the intramolecular spin-spin intera, ction in the
(J'= 1) molecules is very small, M(t) exhibits an
exponential decay with time. However as X is in-
creased, a transient preceeds the exponential re-
gime. The parameter Tz(X, T) was taken from
the exponential portion of the decay in all cases.
Using Eq. (18), the predicted value of Ts was
calculated for temperatures between 4 and 8 K,

I

0.0t- 0.0810 "
I

0.05 0.07
1rT (X-")

FIG. 5. Results for the transverse relation time T2
for three samples of D2 with different mole fractions X.
The straight line is the representative average for the
three sets of points.

DIFFUSION CHARACTERISTIC TIME T

1O I

10 —0.0

tween the 7 obta. ined from Ta and T„data, which
is not understood but which might be due to the ap-
proximations made in the theory leading to Eqs.
(16) and (24). However, from Fig. 6 it is clear
that from T= 17 to 9 K, and over a range of about
7 decades in 7, the diffusion is characterized es-
sentially by one activation energy Z/ks = 276+ 20 K.
A slight dependence of E on Y is not excluded, but
is within the experimental error. If we chose an
intermediate value of 7 between the low-field and
high-field data, we obtain 7=70e ~'sr, with 70
=6.4x10 ~3 sec for a choice of Z/ks=2V6 K.
Clearly, the value of 70 strongly depends on this
choice, decreasing by a factor of -2 for a choice
of E/ks 10 K highe-r. The value of E/ks is in

good agreement with the theoretical prediction by
Ebner and Sung, 290 K. Their diffusion constant
Do= V x10 4 cm /sec is also in good agreement with
the value of Do= R /6vo =4x 10 4 cm~/sec that can
be derived from our experiment.

Wang, Smith, and White ~ have recently reported
a less direct determination of the activation energy
in D2, based on experimental T& values in the lab-
oratory frame. Their values of 306+ 15 K for X
&0.05 and 336+15 K for higher mole fractions
agree roughly with the above results in which the
dependence on X, if any, is much sma, lier.

Ebner and Sung also predict that diffusion of a

0.5

10~ —0.8

10—

10-

10

0.06

High Field

I I I

0.08
1rT(K-"}

I

0.10 0.12

FIG. 6. Characteristic time v between jumps in the
classical diffusion region for D2 samples with various
mole fractions X. The solid symbols pertain to the high-
field T2 measurements, while the open symbols refer to
rotating-f rame measurements.



~EINHAUS, ME YER, M YE RS, AND HARRIS

'I

6)
I

(b)
I I

) H„=O.G G
X=0.55

o T=4.2 K-
T.G K

Q K

FIG. 7. Decay of the free-induc-
tion signal M(t) in the nondiffusion
region. For economy of space,
only one common time scale is used
in this figure. The vertical arrows
indicate the respective (= 0 points.
{a}The decay for samples with
various mole fractions X at 4.2 K,
illustrating the transient at higher
X, attributed to cross relaxation
between the two baths shown in Fig.

(b) Temperature dependence of
the transient for X=0.33. The
steeper slope at T = 9jY (shorter Tz),
already reflects the onset of dif-
fusion,

assuming no diffusion of any kind over this tem-
perature region. The lab-frame relaxation time
Tj was determined from measurements on the Dz
sample during the same experiment. The field
H@ was obtained from Eq. (8) and using the ex-
perimental second moment M~ presented else-
where. " '9 The other parameters such as II, and
IID were determined as described before in Sec.
III. The calculated value Tz(X, T) is presented in
Table I together with the experimental results.
This calculated value of T~ may be in error by as
much as 10% due to the uncertainty in T~ and in
Hao/H~~. Considering this, the agreement between
the calculated and the experimental T„ is quite sat-
isfactory.

In Fig. 7 we also present the decay of M(f) vs f
as a function of temperature for X=0.33. It can
be readily seen that the transient time increases
as the temperature is decreased. %e have labeled
the characteristic time associated with the tran-
sient by T„and have obtained it from the FID decay
M(f) using a fit of the type

%here T~» T„.
The observed dependence of T on temperature

and on the mole fraction X imply that the transient
is due to equilibration of the three energy systems
in the Hamiltonian in the low-field regime, that is,
the attainment of a common spin temperature. We

TABLE I. Comparison of the calculated relaxation
time (Tz}t&~~ from Eq. (15) with the experimental values
(T&)~t . The quoted values of H/HD=3$& ' /~&
been taken from previous experiments {Hef. 19). The
field H~ is the applied spin-locking field and HD is related
to M&

' via Eq. (7).

0.036
0.036
0.33
O. 33
0.33
0, 33
0.91
0.91
0.91
0.91
0.91
0.91
0.91

4.2 1.66
7.0 1.66
4.2 3.60
6.0 3.60
7.0 3.60
8, 0 3.60
4.2 7.09
5.0 6.40
6.0 7.09
7.0 7.09
7.0 1.60
7.0 90.4
8.0 7.1

Hq2

(sec)

0 1.76
0 1.61

5.1 8.70
2.2
1.4 8.35
1.O 8.35
4.6 2.O5

3.2 2, 19
2.5 2.37
2.1 2.52
2.1 2.52
2.1 2.52
1.7 2.63

(&z)e~. (~z)e~t.
(see) (sec)

1.28
1.17
3.5
4, 2
4.7
5.0
2.1
2.2
2.3
2, 4
2.3
2.5
2.5

l.23
l.16
4.12
4.27
4.66
4.76
1.91
2.08
2.16
2.27
2.26
2.38
2.48

have crudely represented this by the three energy
baths shown in Pig. l. Here we have the Zeeman,
intermolecular dipolar and overlapping portion of
the intramolecula, r systems coming into equilibrium
with one another in a time comparable to Tz"L but
the nonoverlapping portion of the intramoleeular
dipolar system takes a time T„» T2L to communi-



NUCLEAR-SPIN RELAXATION IN THE ROTATING FRAME IN. . . 2969

10
I I I

(a)

Field

Field
Field

Field

(b)—

10'—
En
ran

g
QQ% 10 '—

Q
Q

Q

1CI~ I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10
T (K)

10 I

0 1 2 3 4 5 6 7 8 9 10
T (K)

FIG. 8. Cross-relaxation time T&2 for X=0.5 and X=0.33. This figure shows the data taken at high fields up to 4 K
and continued by the low-field (rotating frame) technique. The temperature dependence is less strong than that predicted
from a simple energy-diffusion random-step model (Ref. 19), applied to the D2 problem, and shown by the solid lines.

cate with the combined bath just mentioned. Once
the three systems are in equilibrium, the magne-
tization that expresses their common temperature
decays to its equilibrium value with the charac-
teristic time T~. In Fig. 8, we have presented for
X=O. 33 and 0. 54 the time T» calculated from T„
via Eq. (C13). These data join on smoothly to
those obtained from high-field pulsed-NMR tech-
niques. ' Hence the high- and low-field transients
do indeed seem to be based on the same mecha-
nism. The temperature dependence obtained ex-
perimentally is weaker than that predicted by the
simple random-step energy diffusion model. The
discrepancy between the predictions from the
model and the experiment becomes very large as
the temperature increases. Evidently at T as high
as 10 K, the measured cross-relaxation time is
appreciably larger than T~R~, which is somewhat
of a surprise.

Finally, we check the self-consistency of the
calculations we presented in Appendix C by com-
paring the calculated ratio A/8 [Eqs. (Cll) and

(C12)j with that determined experimentally using
Eg. (28) and the results presented in part in Fig.

4.2
6.0
7.0
8.0
9.0

(A./B) calc.

2.0
1.4
1.3
1.2
1.13

(A./B) expt.

1.6
1.4
1.3
1.2
l. 15

TABLE II. The calculated and observed ratio A. /B of
the amplitudes defined in Eqs. (28), (C11), and (C12) as a
function of temperature for X=0.33.

V. We haveused the value of 4 obtainedfrom the data
for m2(I=2) and m2(I= 1) and we have used the ra-
tios H, /H D and H o/H2D as given in Table 1 for
X=0.33. We find the results presented in Table
II. The agreement, except for T=4. 2 K, where
T» becomes comparable with T„, is quite satis-
factory. This tends to confirm further that the
selection of energy reservoirs in Fig. 1 is a rea-
sonable one.

V. CONCLUSIONS

By combining rotating-frame relaxation data with
measurements of the transverse relaxation time
in the lab frame, it has been possible to determine
the time 7 between jumps due to thermally activated
diffusion in solid D& over some seven orders of
magnitude. It was shown that the activation ener-
gy is essentially constant between 9 and 17 K.
Furthermore, there is fair consistency in the ab-
solute magnitude of v as calculated from the theory
of these two very different pulse techniques.

Below 14 K there was no evidence of another dif-
fusion process based on quantum tunneling of vacan-
cies, as predicted by Ebner and Sung.

Below the classical diffusion region, rotating-
frame measurements gave no indication of trans-
lational molecular motion, consistent with theoret-
ical expectations. The decays with time of the
magnetization in the rotating frame were charac-
terized by a short-lived initial transient, the time
of which increased with X and with decreasing
temperature. This transient was associated with
the energy flow within the nuclear spin system,
and related to the cross-relaxation time previously
measured in the lab frame. The values of the
characteristic energy-exchange time T» from the
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two kinds of measurements merged smoothly as a
function of temperature. However, this parameter
was found to have a much weaker temperature de-
pendence than predicted by a simple random-step
model. In view of this, and since solid D2 offers
a unique case where the inhomogeneous broadening
is (i) random on an atomic scale and (ii) strongly
temperature dependent, a more detailed theoreti-
cal treatment would seem most desirable.
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APPENDIX A: EVALUATION OF T g'

We wish to evaluate the rate T', at which the

energy of the intramolecular interactions relaxes
toward the lattice in the absence of diffusion. The
spin-lattice interaction is of the form

Va~=kc Z[f(,Z„+ 2(I„J, +I, Z„)]

and

1 3
Qo= P

' 0 2=0 y=4 (A3)

We shall compare our results with the expression
for T &~, which we write in the form

Tq ——[2X/(5 —3X)) (T, + T ), (A4)

where, in the notation of Ref. 13,
T-~ ~~ v~cad, (0)

T(]'=48 7d(Za(0),

(A5a)

(A5b)

are the relaxation rates due to the two terms in

Eq. (Al), and for solid Da, T,'«T„'. Here J,(0)
and Jz(0) arethe spectral densities of, respective-
ly, the first- and second-rank tensors in J„(-J„,
and 3/a, —2), which are then averaged over a
powder and over configurations of the ortho-para
mixture. These functions are evaluated at (d = 0,
since @@Ho is small compared to typical lattice
energies.

We now evaluate Tg. The assumption of a spin
temperature allows us to write

where

+kd Z Za O (f,)O (8„), (Al)
v f dt ([3C, , Vag], [V(]L,Z, ])r

Q @ ((~0)2) (A6)

0, 2(k) = k, ,

O„(k)= k,k, + k,k, ,

O()(k) = 3k, —k(k+ 1),
(A2)

where the subscript t denotes a time-dependent
operator at time t, K, is given in Eq. (5), and we
again set the resonance frequency to zero. Use
of Eq. (A6) yields

2

r „,„,',„, I~'2='o, (()(((~„)(.'I'&„(()('., ),.](s,. , )(,'I&.]

, —,'d' Z'o, O) (((oo(z) )(']'&, ,3(()(.', o (z)](o., (z), )(']&„)(()(,'.', o (z)I(o, (z), x']&,]I, (A))

where To = [(15—QX)/10X]Tj (Al 1)

G, (k) = f „dt (J)„(t)J'„(0))r,

Ga(k) = f dt ([3J~,(t) —2] [3d]„(0)—2])r .

(A8a)

(A8b)
After the powder average and that over the ortho-
para mixture are taken, we may set

Gi(k)= sadi(0); G2(k)= 5 vZ2(0) . (AQ)

To'= 144m (yc'Z](0)+ 5d'Jz(0)]

3~c + 5&u

(A10a)

(Alob)

If we neglect the small terms in T, in Eqs. (A4)
and (A10), we may write the latter as

The commutators in Eq. (A7) are easily evaluated
and all terms contain the factor A.&, which then
cancels the similar term in the denominator of Eq.
(A'7). Thus, the final result is

which is equivalent to Eq. (12) of the text.

APPENDIX B: MODULATION OF INTRAMOLECULAR
INTERACTIONS VIA DIFFUSION

Since the term in (Tq'") ' is not dominant in the
temperature range of interest, we will give here a
rather crude treatment of it. We will not bother
to estimate the small corrections analogous to
(1 —P) or [(G —1)G] [(G —2)/G], which appear in
Eq. (13).

The model we consider is one where diffusion
consists of nearest-neighbor-vacancies hopping.
Since it takes three vacancy hops for a vacancy to
pass by a given molecule, our picture of diffusion
is the following: A single molecule sees an en-
vironment which is essentially static for a time v,
then undergoes fluctuations over a period of 37„.
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Here 7„ is the va, cancy hopping time and T„«~ be-
cause ¹„=N„7, where N„/N is the vacancy con-
centration. Then this molecule settles down to a
new surrounding which remains essentially con-
stant for another interval of length 7'. Clearly, the
fluctuation duration 3v„ is negligible in view of the
fact we undoubtedly have M~~ 7 «1. Hence to com-
pute the xate of energy transfex to the lattice, we
should compute the difference in a spin's energy be-
tween a time & w after and a time &7' before the va-
cancy passes it. This picture diffex's slightly from
tha. t used by Slichter and Ailion. Approximately,
however, we ean say that for each spin displaced,
an amount of dipolar energy of order (1-»))) (2/&)
&((+~)}ris transferred to the lattice. Here the
factor of 2 occurs because for pairwise interac-
tions the energy of a spin in the field of its neigh-
bors is twice the energy pex spin. Thus, we have

&( X))»& r(1 -I )

Apart from the factors of [(G —1)/G] (G —2)/G this
argument reproduces E»l. (13).

The analogous argument for the effect of diffu-
sion on X, runs as follows. We need to calculate
the difference in intramoleeular energy between
times long befox'e and long after a, vacancy has
passed by a particular molecule. The change in
intramolecular energy is given by (c.f. Ref. 2)

~=Trp»(XI-X»)~(1/)'»»)8) (XyX -X )r
(B2)

since the density matrix before the hop p;, is pro-
portional to (1-X»/)'»~8). Here Rz and X, are the
values of &, before and after the hop. From Eq.
(B2) we see that the energy associated with the mo-
tion of the 0th molecule ls

1 hd~» = — —
~

~»)» &)»»
-&»»

y~o~

+»)+ 5,f+)+5,)» [(»» 1)/»»1+»)+ 5, »

Thus Eq. (B2) becomes

(B8)

Ad 2 1 ~ 2az = — -- — -Az ——Z rl .,
~)

)BQa)
kgO~ 3 S

(B9b)

since on the average there a,re the same number of
J = 1 neighbors to the 0th molecule as there are to
the (»»+ 5)th. This then leads to the result

1/T)»»ff 2/~

Clea, rly, a more detailed calculation of terms like
A&~A&; will lead to a. result of the foxm

1/~»)'" = (2/7) (1 -Po), (811

where p expresses the small correlation in the
intramolecular enex"gy before and after the hop.

We furthermore note that for pg7» 1, Ta is
proportional to the density of secular fluctuations.
As is well known, the magnitude of these secular
fluctuations determines the second moment of the
absorption line. Hence we expect to have

for an hcp lattice. Note also that Aqy and A&; in-
volve two different sets of q's. The only q's in the
two sets which are correlated are those q's which
xefer to molecules which are nearest neighbors of
k both before and after the hop. These will give
only a small contribution to the average of (A& &„»)
over the configurations of 8= 1 molecules in the
ortho-para mixture. Thus, we set

Q~~»» -&)»») = -&))» ~

Next considex the term
2

(A») +»),f+))+ 5, » +») +»), » )

of E»l. (B3). The change in environment of the
molecule 0+5 due to the hop of the 4th molecule is
a. result of moving one of the n neighbors of the
(k+ 5)th molecule which have J = l. Hence we set

where again the subscripts i and f i~dicate v»ues
before and after the hop. Here 5 is summed over
(J'= 1) molecules»t+ 5 which are nearest neighbors
of k before the hop. (Molecules which are nearest
neighbors of k after the hop are counted in one of
the other &E's. ) To evaluate Eq. (B3)we use the
high-temperature result

12 X' '
&)»=

2 ~ &»f» .»)(3 cos'~6»» —1) (B4)
8 5

Here 3» is the angle between t) and 8'0, and»f „is
1 if 4„=1, and is zero otherwise. Note that the
average over the ortho-para mixtux'e of A& is zero
because

where 7„, and &int„are decay times for the in-
ter- and intramolecular interactions due to diffu-
sion. But we have lust seen that both these times
are essentially identical, both being nearly equal
to G -/2(1-»)))(G-1)(G-2). Thus, in place of
(B12) we should write

(T,'»")-' = m, i[G'/2(1 -
g )(G -1)(G- 2)], (B13)

which is not too far from Torrey's result for
~intra

APPENMX O' CROSS RELAXATION IN THE ROTATING
FRAME

The energy baths in the low-field regime have
been pictured as shown in Fig. 1. Hexe me have



2972 WE INHAUS, ME YER, M YERS, AND HARRIS

chosen the baths to correspond to the terms in the
Hamiltonian [Eq. (2)] rather than to the spin sys-
tems, namely, K, +K&+K, (overlapping) and K,
(nonoverlapping). We justify this separation into
two baths as follows. Because the Zeeman and di-
polar systems have comparable energies, they
can communicate rapidly with each other (i.e, ,
attain a common temperature within a time of the
order of T, ). Similarly we consider a. small
portion of the intramolecular system (correspond-
ing to those spins whose intramolecular energy
overlaps or is comparable in magnitude with their
dipolar energy) as in equilibrium with the combined
Zeeman-dipolar bath. However the remaining
major portion of this intramolecular system takes
a longer time T&2 to communicate with the other
bath. This time will be comparable with the time
for energy diffusion through the high-field NMR

spectrum. ' We shall assume in what follows that
these times are equal. Once both systems are in

equilibrium their common temperature decays to
its limiting value with a characteristic time TR.

To calculate the dynamics of the equilibration pro-
cess through cross relaxation, we have made the

approximation, as in a previous paper, that aver-
age spin temperatures can be assigned to both en-
ergy baths. We label them by 82, the composite
(intermolecular dipolar —Zeeman-overlapping in-
tramolecular dipolar) system, and by 8, the non-

overlapping dipolar system. This assumption is
very crude for the latter one, since a time T» is
taken for the internal equilibrium process itself.

To simplify further the calculation, we neglect
at first the relaxation to the lattice, taking T»
«T&. Then we can treat the coupled energy baths
in a similar way to that for two spin systems with
different gyromagnetic ratios in a magnetic field
H, that relax towards a common spin temperature.
Such a treatment has recently been presented by
Engelsberg and Norberg. 8 The relaxation rate
equations are taken to be

E2 ——C(Hg+H g+ O' Ho)/02,

and C is the Curie constant for D2,

C =My PP(5 —3X)/3ke . (C6)

82'(t=0)=00 HDH, (H', +H g+ 4 Hg) ' .
The solution is then

(C8)

M (t) H i
jg0

(Hi+He+ 4 Ho)+ (1-4 )Ho e 'i x
H2 H2 C2H2

(C9)
where

1 Hj+HD+Hg
x T H2 H2 C2H2 ~

At t=o

M/Ma =
gH( qH+ gH)+ 4 Ho) =A,

and for t» T~,

M/Mp -—
gH( gH+ HD+gH) =—B

(C10)

(C 11 )

(C12)

Also here C represents the fraction of the quadru-
polar bath that overlaps in energy with the dipolar
and Zeeman baths. The overlap in terms of the
line shape is shown by the dashed region in Fig. 1,
and we assume it to be approximately given by

e = [~,(f = 2)/m, (1=1)]'" (CV)

Since the energies are proportional to the square
of the local field, or to the second moments of the
line shapes [Eqs. (9b) and (10b)] the overlap in

terms of the energy baths must then be proportion-
al to C . To obtain a solution, we consider the
following boundary conditions. At the beginning of
the experiment, the spins are aligned along the ex-
ternal field Hp and their temperature is 0~0, equal
to the lattice temperature T. The magnetic mo-
ment is MD = CH0/80. We assume, similarly to
Ref. 28, 8& (f= 0) =80= T. Also from energy con-
servation arguments, we obtain

„-1dOj 1
(

y g)
dt Ti2

NOH 8-&)
Tpy

with the energy conservation equation

—(E~ + E~) = 0,

where

Eg ——C(l —4 )Ho/Og,

(Cl)

(C2)

(C3)

(C4)

or

(C13)

The coefficient B is the same as in Eq. (26) when

the temperature of the equilibrated total system re-
laxes to the lattice with a time constant T&. Hence
B can be obtained by extrapolation of this decay to
f = 0. The ratio A/B can hence be measured from
the experiment and can be checked for internal con-
sistency using the known values of H&, H~, and Hq

together with the approximate value of 4.
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