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Critical Behavior of Random Resistor Networks Near the Percolation
Threshold

Abstract
We use low-density series expansions to calculate critical exponents for the behavior of random resistor
networks near the percolation threshold as a function of the spatial dimension d. By using scaling relations, we
obtain values of the conductivity exponent μ. For d=2 we find μ=1.43±0.02, and for d=3, μ=1.95±0.03, in
excellent agreement with the experimental result of Abeles et al. Our results for high dimensionality agree well
with the results of ε-expansion calculations.
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Critical hehavior of random resistor networks near the percolation threshold

R. Fisch
Department of Physics, Princeton University, Princeton, Net Jersey 08540

A. B. Harris
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

(Received 23 December 1977)

%'e use low-density series expansions to calculate critical exponents for the behavior of random resistor
networks near the percolation threshold as a function of the spatial dimension d. By using scaling relations,
we obtain values of the conductivity exponent p, . For d =- 2 we find p, = 1.43+0.02, and for d = 3,
p, = 1.95+0.03, in excellent agreement with the experimental result of Abeles et al. Our results for high
dimensionality agree well with the results of e-expansion calculations.

I. INTRODUCTION

In this paper, we discuss some new ideas con-
cerning the properties of random resistor net-
works near the percolation threshold. ' We con-
tinue here the work of an earlier paper. ' The
model we treat is that of an electrical network
on a d-dimensional hypercubic lattice of N sites
with real conductances o.;; connecting nearest-
neighbor pairs of lattice sites i and j. Each 0;;
is an independent random variable assuming the
values 0 and 1 with respective probabilities 1 -P
and P. (Thus we will be considering the bond
problem. ) The macroscopic conductivity Z is
then defined to be ihe configurational average of
vN ' ~, where o = I/V and I is the dc current which
flows when the potential difference V is applied
between two opposite (d —I)-dimensional faces of
the hypercube. We may define clusters as being
groups of sites which are connected with respect
to the unit (i.e. , cr;; = l) conductances.

The statistics of cluster size and the associated
pair connectedness correlation length $Q) were
shown by Kasteleyn and Fortuin' to be related to
the thermodynamics of the s-state Potts model'
in the limit s 1, if the identificationP =1
—exp(-Z/kT) is made, where J is the nearest-
neighbor interaction energy in the Potts model.
The s-state Potts Hamiltonian can be written

then it turns out that the fraction of sites in the
infinite cluster P(P) is given by

and the mean-square cluster size S(P) by

(4)

From Eqs. (3) and (4), we see that PQ) and S(P)
are analogous to the magnetization and the mag-
netic susceptibility, respectively, of a ferro-
magnet.

This relation indicates that the usual scaling-
exponent description for critical points can be
applied to the percolation threshold P„and that
the various scaling relations and universality
predictions can be expected to hold as well. Since
the order parameter P(P) is a probability P(P)
~ 0. Thus for d ~ d, = 6, the exponents for cluster
statistics near P, are those of the constrained
mean-field theory (MFT) for a positive order
parameter with a positive cubic term in the free
energy'. n=-l, P = l, y= I, and v= —'.

In view of Scaling arguments which relate the
diluted resistor network and percolation problems,
de Gennes' has suggested that d, = 6 for the re-
sistor network also. Here we present numerical
ev'idence which confirms that this suggestion is
correct. We also discuss a new scaling relation.

where each of the Potts variables n; can take on
any positive integer value less than or equal to s.
Note that if s = 2, Eq. (l) becomes the Ising Ham-
iltonian. The free energy per site is given by the
standard prescription

E= -(kT/X)ln[Tr(„. )exp(-R/kT)j . (2)

If we make the identification for P given above,

II. SERIES FOR THE DILUTED RESISTOR NETWORK

It is possible to determine d, for the ferro-
magnetic" and spin-glass' Ising models by
analyzing the high-temperature series expansions
for the order parameter susceptibilities, as a
function of the dimensionality d. This approach
has been applied to the site percolation problem
by Gaunt et al." These studies show that an
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18 CRITICAL BEHAVIOR OF RANDOM RESISTOR NETWORKS. . .

analysis of the series based on the assumption
of a simple power law scaling form will produce
an estimate for the exponent which is too large
near d„due to the confluent corrections.

We have carried out the same program for the
diluted resistor network by analyzing low-con-
centration expansions for analogous susceptibilities,
In order to do this, we must identify appropriate
order parameters. For the undiluted (P = 1) net-
work, Kasteleyn and Fortuin' have shown that the
correlation function for the s-0 state Potts model
yields the resistance R;, between lattice points
i and j. This correlation function can also be ob-
tained by averaging over the Gaussian density
matrix,

1
~mn +m Xn

m, n

These observations suggest that A&, plays the role
of a correlation function for resistor networks. '
Therefore we define the resistive (r), percolative
(fi), and conductive (c) susceptibilities as

1 ~
X(x ~ ~ Xtx)f

t, J

where

The brackets [ ],, „denote a configurational
average, and the cluster function C;& is defined by

1 if i and j are in the same cluster,
fJ

0 otherwise.
(6)

For Eq. (5a) we take C,&R;, =0 if C;; =0. Note that

X =SIP), as defined by Eq. (4).
Our definition of X~ is the same as that of

Kasteleyn and Fortuin, and Harris et al. ,
"but

it differs from that of Sykes e~ al." This dif-
ference will not affect the exponents, although it
will, of course, lead to series expansions which
are different from those of Sykes et al.

The low-density series expansions for the various
susceptibilities were calculated in a straight-
forward manner by the method of cumulants, as
discussed extensively in Vol. III of the Domb and
Green series. " The computational procedure is
considerably simplified by the fact that, due to
the properties of the cumulant expansion, the
weight factor for each diagram is proportional to
P", where n is the number of bonds in the diagram.
Diagram weights are listed in Ref. 14. The series
expansions for the susceptibilities X„, X~, and

X, are given in Tables I, II, and III, respectively.

ancl

Xrif = [CiiRii] a~ &~ ~ [CaiRa, ]» ~

A, l

1
XPi j [Ci Rifi] a& ~2 ~ [CklRkl] av

A, l

1 1
Xcij = [CijR~i ] .„—&& M [CyiRyi ] ~„

&, l

(5a)

(5b)

(5c)

III. SCALING RELATIONS AND EXPONENTS

We define the conductivity exponent p by Z-
(p -p, )", for P-P,'. The quantity L is defined

to be the average resistance between two connected
points which are separated by a percolation cor-
relation length, g:

= X'", where ~x, -x,
~

= &.x, (5) x, ii
xp($) xi, ;i

'

This definition of L makes sense both above and
below p, . For P &P, de Gennes' has called L the
"resistance between nodes, "because on a Cayley
tree, nodes are spaced a distance $ apart, on

TABLE I. Coefficients a„m of the resistive susceptibility expansion defined by

X, =2 g .„.dp-.

m=1 m=2 m=4 m=5 m =10

1
2
3
4
5
6
7
8

9
10

0
0
0
0
0
0
0
0
0

-2
4.

0
0
0
0
0
0
0.
0

3 13.5
-12 6.5

12 -48
0 32
0 0
0 0
0 0
0 0
0 0
0 0

-75
130-

30
-160

80
0
0
0
0
0

-292,16
133.5
302.6
150

-480
192

0
0
0
0

2642.26
-5362.3

2272.4
710.6
640

-1344
448

0
0
0

20 298
—27 996.26

2 883.3
3 414.93
1 592
2 376

-3 584
1 024

0
0

-167
415

-329
74

3
3
7

-9
2

972.398
426.816
864.541
640.989
564.8
157.3
968
216
304

0

-1 955 630.113
3 633 613.528

-1731450.200
-101778.107

145 332.757
-1651.2

4 693.3
24 800

-23 040
5120
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TABLE II. Coefficients bn~ of the percolative susceptibility expansion defined by

m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m =10

1 1

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

0

4 -17 -58

30

-12 56 394

8 -32 20

16 -80 80

32 -192 272 416 —112

64 =448 832

128 —1 024 2 368

-2 304

442 2999 -22 117+ -231 788

31 -899 -4182 54 493+3 431 985+3

498 -43 244+3 -208 7433

112 510 9 905+3 -9 3103

224 484 16 7533

the average. However, the concept of a node
seems somewhat ambiguous in networks which
are not trees, and it will not be used here.

We define the exponent g by I.- (P, -P) ~, for
p &p, . We expect that I. must grow at least as
fast as $, since clusters become increasingly
ramified"'"as P approaches P„so that in the
critical region the contribution of independent
parallel paths can be neglected. "'"' Thus, the
average resistance between two connected points
will increase at least as fast as the distance
between them. This means that g & v, where v

is defined, as usual, by g- (P, -P) ". We also
expect that L, cannot be greater than the average
length of a self-avoiding walk between two points
separated by a distance $. This gives us an upper
bound g &'v/v„where v, is the correlation length
exponent for self-avoiding walks. Thus, g must

satisfy the relation"

v&( & v/v, . (6)

I =t+(d —2)v.

We also know that v= ( for d = 1, and that f
= v/v, = l for d~ 6, because the self-avoiding walk
approximation (which is the appropriate MFT for
this problem) gives the correct exponents for
do dc=6

Following standard procedure, we define g'

by I-- (P -P, ) ~, for P &P, . Straley" has argued
that a scaling picture of the usual sort is valid
for this problem; therefore we expect that g'=g.
Stinchcombe" has verified that this relation is
true for MFT, by showing that P' = 1 for a Cayley
tree De Germ. es' has shown that Z-l,
which gives us the desired scaling relation,

TABLE III. Coefficients &„ of the conductive susceptibility expansion defined by

m=1 m=2 m=3 m=4 m=5 m=6 m=8 m=9 m =10

1 1
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

10 0

25 -3.095238
5.390 476 1
1.104 761 9

-6.4
3.2
0
0
0
0
0

-0.5 0.3 0.
1 -1.3 1
0 13 -3
0 0 2
0 0 0
0 . 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1.215
-12.503

16.193
3.260

13y3
5.3
0
0
0
0

47.935 064
-94.130735 9

30.458 008 6
23.423 376 6
10.742 857 1

-27.428 571
9.142 857
0
0
0

-1.773 661 6
212.183 033 8

-374.257 121 5
133.857 166 3
37.394 958 0
32.160401 0

-56
16

0
0

-1689.545 046 7
4069.579 760 6

-2952.779 855 2
365,729 631 2
142 ~ 257 523 2
61.832 521 1
88.369 910 3

-113.7
28.4

0

-1614.910 579 8
-5 017.366 464 4
16272.966 396 9

-12434.901 305 7
2 551.190 546 2

102.285 739 7
- 91.650481 8
228.385 1

—230.4
51.2

Bars over numbers indicate repeating decimal fractions.
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Equation (9) has also been derived by other
methods. '" From the definitions (5) and (7), we
see that X, = Ly~ and y, =I. Q~, so that we have

y, =yp+& ) (10a)

& =yp -5 (10b)

TABLE IV. Exponents for percolation conductivity.

2.78 2.45 2.19 2.093.8

pp 2.42 1.66 1.40 1.17 1.08

0 ~ 99 0.54 0.35,0.15 0.07

1.43 1&12 1.05 1.02 1.01

1.34 0.83 0.66 0.57

p 1.43 1.95 2.37 . 2.73

0.50

3.01

This work; the error bars are about +2 in the last
decimal place quoted.

These numbers represent the authors subjectively
weighted average of the available data (see Ref. 25).' Calculated via the scaling relation, p=&+(d-2)&.

These values do not take confluent corrections into
account. In fact, we believe that the MFT values are
correct for d =6.

where the exponents y„are defined by X„-(P,

We have used our susceptibility series expansions
to obtain y„, y~, and y, directly, and thus check
the validity of the scaling relations. The expon-
ents were calculated by both Pade and ratio
methods, and, in general, thege was good agree-
ment between the two techniques. Best values for
these exponents are shown in Table IV. We also
display values of the exponent f, computed by
using the scaling relations Eqs. (10). The numbers
in Table IV were computed by assuming the simple
power law scaling form y- (P -P, ) &; thus, the
deviations of the exponents from their MFT values
for d ~ 6 are believed to be spurious.

Our values for y~ are in excellent agreement
with those of Gaunt et al." For d ~ 3, our
confidence limits are significantly better than
theirs. This is possible because the large value
of y„allows a more precise determination"4 of

P„ thus substantially reducing the primary source
of uncertainty. It is also probably significant that

y~ is indeed given by the average of y„and y„as
required by Eqs. (10a) and (10b).

Priest and Lubensky, "and Amit" have used the
connection between these lattice statistics prob-
lems and the Potts model to compute e expansions
to order e' for the various exponents, where e
=6-d. They find y~=1.19 for d= 5. On this

basis, we feel that there is excellent agreement
between the values of y~ derived from the series
expansion and the c expansion, contrary to the
opinion expressed by Gaunt et al. ,

"and
Kirkpatrick. ' Recently, Dasgupta et al."have
also computed ( = 1+O(c'), and Wallace and
Young" have extended this result to show that
& = 1 to all orders of perturbation theory near
d=6. Our calculations agree with this result, too.
They are also consistent with the conjecture that
& =1 for do 4

Now we combine our series expansion results
with the scaling relation, Eq. (9). In Table IV
we list what we believe are best values of the
correlation length exponent v, based on all in-
formation available to us." We also know that
v, = 0.75 for d = 2, 6 v, = 0.588 for d = 3, 27 and

v, =
& for d ~ 4." Thus, our values for f satisfy

the inequalities, Eq. (4). Using Eq. (9) we obtain
values for the conductivity exponent; these are
listed in Table IV. We find that p = 1.43 + 0.02
for d=2, and p. =1.95+0.03 for d=3. Our result
for d= 3 is in excellent agreement with the ex-
periment of Abeles et al. ,

"who measured p
= 1.9a 0.2 in amorphous W-Al, O, cermet films.
By building models of resistor networks, Watson
and Leath' obtained p =1.38+0.12 for d=2, and
Adler et al."found p = 2 for d =3. However, ex-
tensive computer simulations' by Kirkpatr ick"
and by Straley" give p. =1.1a0.1 and p. =1.10+0.05
for d=2, and p, =]..6+0.1 and p. =1.70*0.05 for
d=3, respectively, in disagreement with our re-
sults. Their d =2 results are difficult to reconcile
with the scaling theory, since inserting p. =1.1
into Eq. (9) gives r„= 1.1 which does not satisfy

)~ v
- We believe that the discrepancy between our

results and those of Kirkpatrick and Straley is
associated with the fact that our values are ob-
tained via a low-density series expansion,
whereas theirs are obtained by using data for
p &p, . We remind the reader that Sykes e& a&."
found that high-density series expansions for the
percolation problem are poorly behaved. This
would lead one to expect that corrections to the
asymptotic scaling behavior should be unusually
large for P &P„ thus making the extraction of
critical exponents from the data of Kirkpatrick
and Straley extremely difficult.

'
In view of the

connection'" with the Potts model, we believe
that it is unlikely that the high-density exponents
actually differ from their low-density counterparts.

IV. SUMMARY

In this paper we analyzed the properties of
randomly diluted hypercubic resistor networks
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near the percolation threshold P, as a function of
the probability P that each resistor is present.
The following results were obtained.

(i) A resistive susceptibility X„and a conductive
susceptibility, X„were defined. Low-density
series expansions for these functions and for the
percolative susceptibility X~ were computed to
order P".

(ii) Ratio and Pade techniques were applied to
the series expansions, and values of the sus-
ceptibility exponents y„, y„and y~ were ob-
tained as functions of d. For d near six, there
is good agreement between these results and the
results of & expansion calculations.

(iii) The characteristic resistance L was defined
as L =y„($)/y~($), where $ is the percolation cor-
relation length. It follows from this definition
that the exponent g, associated with the divergence
of I atP, is given by ( = y„—y~ =@~ —y, . The values

of ( obtained via this relation from the series
expansions obey the inequalities v &

&
& v/v„where

v and v, are the correlation length exponents for
percolation and for self-avoiding walks, respec-
tively. For d near 6, there is little or no

dependence of g on d.
(iv) By using the scaling relation p =(+ (d —2) v

values of the conductivity exponent p were ob-
tained.
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