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Connection Between Percolation and Lattice Animals

Abstract
An n-state Potts lattice gas Hamiltonian is constructed whose partition function is shown to reproduce in the
limit n→0 the generating function for the statistics of either lattice animals or percolating clusters for
appropriate choices of potentials. This model treats an ensemble of single clusters terminated by weighted
perimeter bonds rather than clusters distributed uniformly throughout the lattice. The model is studied within
mean-field theory as well as via the ε expansion. In general, cluster statistics are described by the lattice
animal's fixed point. The percolation fixed point appears as a multicritical point in a space of potentials not
obviously related to that of the usual one-state Potts model.
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Connection between percolation and lattice animals

A. B.Harris and T. C. Lubensky
Department ofPhysics, University ofPennsylvania, Philadelphia, Pennsylvania 19104

(Received 9 June 1980)

An n -state Potts lattice gas Hamiltonian is constructed whose partition function is shown to reproduce in the limit

n~ the generat;ing function for the statistics of either lattice animals or percolating clusters for appropriate choices
of potentials. This model treats an ensemble of single clusters terminated by weighted perimeter bonds rather than

clusters distributed uniformly throughout the lattice. The model is studied within mean-field theory as well as via

the e expansion. In general, cluster statistics are described by the lattice animal s fixed point. The percolation fixed

point appears as a multicritical point in a space of potentials not obviously related to that of the usual one-state Potts
model.

I. INTRODUCTION

In the problem of bond percolation, "bonds on a
lattice of N sites and —,'zN bonds are occupied with
probability P and vacant with probability 1 -P. For
any given value of P, there are many different ar-
rangements of the —,'P¹occupied bonds, constitut-
ing an ensemble of states of the lattice. Clusters
a,re formed of adjacent sites connected by occupied
bonds. The statistics of percolating clusters can
be described in terms of B (n, p), the average num-
ber of clusters per site containing n sites. There
are two mays of calculating this quantity. In the
first, one constructs all possible states of the lat-
tice for each P, counts all clusters with g sites for
each state, divides by N, and averages over the
ensemble of possible states. To calculate B(n,P)
in this way one uses information about the whole
lattice. In the second but equivalent approach, "
one determines the number A(n~, n&, n) of distinct
clusters (sometimes called animals') having n&

bonds, n~ perimeter bonds (unoccupied bonds ad-
jacent to occupied bonds), and n sites. Then

B(n,P) = Q A(n„n„n)P"'q"&.
n&, n&

In this formulation, one only needs information
about conformations of a single cluster. It is iso-
lated from other clusters by unoccupied perimeter
bonds. Note that in this formulation it is natural
to relax the constraints q= 1-P and assume P, q& 0
to obtain generating functions for A.

The free energy of the one-state Potts model in
a field yields directly the generating function for
B(n, P) and is interpreted most directly in terms of
the first counting procedure. "' The problem of
finding A(n~, n&, n) is very similar to the problem
of finding the number of configurations of dilute
branched polymers with n monomers. ' A field-
theoretic formulation of the latter problem in

terms of an nm-component field g, was introduced
in Ref. 9. In that paper, the dilute limit was ob-
tained by allowing m, the polymer fugacity, to go
to zero. In this paper, me will introduce an n-state
Potts lattice gas model which in the limit n-0 will
yield directly the generating function A(n~, n~,. n).
Thus the Potts lattice gas in the n- 0 limit repro-
duces the information contained in the s-state Potts
model in the s- 1 limit.

%e study the Potts lattice gas model both in
mean-field theory and also with the aid of the z ex-
pansion. The mean-field theory reduces exactly
to that obtained using the one-state Potts model.
The structure of the e expansion recursion rela-
tions is identical to that of dilute branched poly-
mers discussed in Ref. 9. In particular, for most
functional relations between P and q, there is devi-
ation from mean-field behavior for d & 8 described
by the (8-e)-dimensional "animals" fixed point.
For special choices of potentials (in particular for
q = 1 -P), the animals fixed point is not reached.
In this case, mean-fieLd theory remains valid down
to six dimensions, and one seeks a fixed point in
6- e dimensions controlled by third-order poten-
tials in the field theory. In the treatment of the
percolation problem based on the one-state Potts
model, there is a single third-order potential lead-
ing to a single (6 —e)-dimensional fixed point. " In
the present treatment based on the n-state lattice
gas, there are three third-order potentials and
three fixed points. The most stable fixed point de-
scribes the statistics of branched polymers in 0
solvents and was analyzed in Ref. 9. The next
most stable fixed point describes percolation though
its relation to the Potts-model fixed point is not
obvious. Thus percolation emerges as a multicrit-
ical point that is unstable with respect to both a
second-order potential leading to the animals (or
dilute branched polymers) fixed point and also a
third-order potential leading to the 6-solvent
branched-polymer fixed point.
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II. FORMULATION OF A FIELD THEORY FOR CLUSTER STATISTICS

We now construct a generating function, Z, which counts various cluster properties as follows. Associ-
ate with each site x or a lattice of N sites an n-state variable v(x) = 1, 2, . . . , n and an occupation variable
p(x) such that p(x) = 1 if the site x is occupied and p(x) =0 if the site is unoccupied. Now we define the "partition
function" to be

z= T. ,

'
([1"pr)pr")6„-„, ,;.,](.p[-~.pr)pr") -~,pr).r. ) -~,9r)pr )p)

x „[n 'qrx)+e "prx)], (2.1)

where qrx) = 1-p(x) is the indicator for vacant
sites, (x, x ) indicates that the product is taken
over pairs of nearest-neighboring sites, 5 is the
Kronecker delta, and the trace is over all values
of (prx)] and (vrx)]. The factor of n ' in the last
term of Eq. (2.1) ensures that the trace over v(x)
for unoccupied sites yields unity.

One can associate Z with a sum over graphs, 9,
by associating the factor p(%)e " with occupied
sites and the factor p rx)prx')6„&-„& „~-„& with occupied
bonds. The most general graph is constructed by
selecting a set of occupied bonds and a set of oc-
cupied sites. The set of occupied sites must in-
clude all sites interesecting occupied bonds, but
can also include arbitrary numbers of "isolated"
sites, i.e., sites to which no occupied bonds are
connected. An example of a graph with its associ-
ated counting variables is given in Fig. l. One
can express Z as

z=Q "~9i(„,r.)vb~9-i, ~v&«9i
8

zN~ = 2' +2',- + N~ . (2 6)

%'e now write 5' in terms of the partition function

$ = -lim —In Tre -x
n~o

=- -lim —lnZ
~ ~ (n)

0~0

(2.6a)

(2.6b)

J~ ~ ~
4W

where A(Nb, Nb„N~, N, ) is the number of clusters
per site having N~ bonds, N&,. internal perimeter
bonds, pf~, external perimeter bonds, and N, sites.
In Eq. (2.4) the sum is over all clusters C, i.e. ,
over all graphs consisting of a single cluster. If g
denotes the coordination number of the lattice we
note the relation

&gNp &S&e H&g&8 ) (2.2)
~ b

where N, (9), N, (9), Nb, (9), N~(9), and N, (9) are,
respectively, the number of clusters, bonds, in-
ternal perimeter bonds, external perimeter bonds,
and sites in the graph 9. A cluster is a group of
occupied sites connected by occupied bonds. A

single isolated occupied site is considered to be a
(one-site) cluster. Adjacent occupied sites need
not be in the same cluster. Internal perimeter
bonds are unoccupied bonds which connect two oc-
cupied sites whether or not the two sites are in the
same cluster. Exterior perimeter bonds are unoc-
cupied bonds which c'onnect an unoccupied site to an
occupied site.

In the limit n 0 one has

~ e
I

4 ~

~l——II

,
I

0

Z =1 nS+ O(n')-,

-F=N QA(Nb)Nb), Nb, g, )(Ve +) b

C

-E~ Np] -X~Np -H N~
t

(2.3)

(2.4)

FIG. 1. (a) A graph, Q, on a square lattice with N~(9)
=3, Ng(9)--7, Np](9)=2, Np, (9)=18, and N, (9)=9. Occu-
pied sites are indicated by dark, squares, occupied bonds
by full lines, interior perimeter bonds by dashed lines,
and exterior perimeter bonds by wiggly lines. (b) A

single cluster, C, on a square lattice (z =4) with 1V~(C)
= 5, N&&(C) = 2, N(C) = 10, and N (C) = 6 with the same
legend as in. (a). One can verify Eq. (2.5).



CONNECTION BETWEEN PERCOLATION AND LATTICE ANIMALS

-~= Z [~r}pr }~,-. .-. , -(K.-2K,»r}~r"}]
(x,x')

+g([prx} —1] Inn —(II +zK,)prx)j, (2.7)

I
a", a (2.9a)

(2.9b)

where

K= ln(l+ v) . (2.8)

We write

S,(x) =P(x)a", " (2.10)

According to. E(I. (2.6) we may regard 5 as the free
energy corresponding to X. One sees that X de-
pends on three independent linear combinations of
the original parameters E, It"„X„andH, in con-
formity with the constraint of E(I. (2.5). It is inter-
esting to note that this Hamiltonian describes a
lattice gas Potts model which has received consid-
erable attention lately. '" lt differs from the us-
ual models, however, in that the chemical potential
for site vacancy becomes infinite as inn ' in the
limit n 0.

We develop a field theory as follows. We intro-
duce a complete orthonormal set of n unit vectors
a, for I =0, 1, .. . , (s —1): a, = (a,', a'„.. . , a",), and
we set a =n '~x(1, 1, ... , 1). The i's obey

in which case R can be written as

X= =,' Q K, (x, x'}S,(x)S, (x')
X,X', S

+n'~xII'QS, (x)+Inn Q[p(x) —1], (2.11)

where

H' =H +sE,
K, rx, x') = [K-n(K, -2K,)(),„]y-„-„.,

(2.12a)

(2.12b)

where y-„-„.is zero unless x and x' are nearest-
neighboring sites, in which case it is unity.

We now use the Hubbard" transformation to
write Z ") to leading order in s as

(2.13a)

(2.13b)

where

e ~") = Tr expl -qrx) Inn+-L K, (x, x,)p, re)s, rx) I.
a ( x),n(x)

Explicitly we may write

E((g])=x Z K, (x, x')g, (x)g, rx')+~in I+M expl ~ K, (x, x')t), rx')a&
l

(2.14)

+nl/2H/ ox + — Hl 21 nN
2 zK (2.15)

We have thus constructed a field-theoretic expres-
sion for Z" in terms of a free-energy functional Exu =-, zKl 0 — -e (3.2)

HI. MEAN-FIELD THEORY

We generate mean-field theory by minimizing F
with respect to a spatially uniform g, rx). It is con-
venient to write zKC -H'+~we-' '=0. (3.3)

This result is identical to that obtained previously'
for the very similar model phrased in terms of a
Potts Hamiltonian. The mean-field value of 4 must
minimize I"~, so we require

g, (x) = -n'~*% 5,~, . (3.1)
The critical point occurs when X '=0, i.e., when

With this choice of sign, 4 is positive for the or-
dered phase of the percolation model. The mean-
field free energy per site, E)zz =—lim„o(nN) 'S ",
is then given by

—= X '=zK(1-zKe ' ) =0 (3.4)

simultaneously with the constraint of E(I. (3.3).
The critical surface is thus defined by
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1-zK+lnzK=H +z(K, -K) —= H . p, =l —exp(-z '). (3.12b)

Thus the critical surface occurs for H &0, except
atzK= 1, when H =0.

Near the critical point we can determine the be-
havior of X by expanding in powers of 6K=K, -K
and b4' =4' -4'„where K, and 4', are the values of
K and 4 at the transition. Thus

zr K(1 -»K,@,)' + (»K,)'a4 . (3 6)

dK~ &
Z/2

~+= 2~K 1-»K. ' ~+O(~K') (3.7)

so that

X- (b.K) ", (3.8)

where y=-,' except when the critical point is ap-
proached along a path for which

If we solve the constraint equation near the critical
point, we find that

More generally, one can have P+qw 1 but still re-
tain percolationlike behavior in mean-field theory,
providing Eq. (3.11) holds true along the path ap-
proaching the critical point.

IV. 6 EXPANSION

%e now study the effects of fluctuations. %e
therefore write

y, (x) = -n'~'e6, o+y, (x)

and require

{e,(x)) =0,

(4.1)

(4.2)

where {) denotes an average with respect to the
weight function exp[-E(4')]. Using the substitution,
Eq. (4.1), we obtain E as an expansion in powers
of y, E=E E, where E contains all terms in E
of order p . E0 is the mean-field value of I'. Also

Setting

de
dK

(3.9) E,=n' '{r,-H) Zq, (x),

where

(4.3)

e =(P+e)lq,

(3.10a)

(3.10b)

r, =»K(@ —1 —e '
) (4.4)

we see chat the critical path for which y= 1 is de-
fined by

(3.11)

which is satisfied for percolation, for which

(3.12a)
I

E, =-,' Z (Ky-„-„.-K'e 'z~y-„-„.)y, (x)rp, (x')
XgX ol

+-,' ~ [(2K, -K,) y-„-„,+K'e ""y-'„-„.

- 2K(K2- 2K,)e ' y-„„]qo(x)go(x')

(4.5)

Z =z-' y x& x4 y x 2, x4 y x3
~ ~ ~ I X4

V &,( )ex( ))tx( ))x(-. io, . ,, )+)n~J' ,,))6 ,o, )+)n"o~o6r, ,o6), , o6)„o)
l~, l2, l3

where y is the kth power of the matrix y, and the coefficients in I", are given by

-o + -zz4
0

z-'u = 'K'e "'+'K'(K---2K)e '»-'-
= —'K —'K(K —2K) ' —K (K -2K)

and

(4.6)

(4.7a)

(4.7b)

(4.7c)

V V V
Al ~ g ~ 'Ol Q~Qgg ~ (4.8)

Vfe are thus led to consider a continuum field theory with a free-energy functional of the form

2& &l X +2+&@0X +2 ~~) X + +
l

Z &. . .Fi,(z)z, ,S)wi, (x)+,—'n' *v,z, (x)') .
li 2i3

(4.9)
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dx = f5+ 2X —20XQ ~ (4.11a)

=6/+ exp —22/ + p z (4.11b)

—= ez+ xz —26yz+ 56 —6x
dz
dk z z

(4.11c)

and also

'g= 6X —3P ~ (4.12)

These equations have three fixed points which may
be classified according to their degree of stability
as determined by the signs of the stability expon-
ents. The most stable fixed point, at which all
three stability exponents are negative, was analy-
zed in Ref. 9 and describes the statistics of dilute
branched polymers in 8 solvents. The next stable
fixed point, which was not analyzed in Ref. 9, oc-
curs at

z= ~~,

with

(4.13a)

(4.13b)

(4.13c)

(4.14)

The stability exponents Ay A.„and A,, are the three
roots of the equation

x'+17m'+ 62m —56 = 0. (4.15)

Two roots of this equation are negative and one is
positive, indicating stability in two directions and
instability in a third. We will comment on this in

Terms of higher order in p or V'q are irrelevant to
our analysis. This model is identical to that stud-
ied by Lubensky and Isaacson' and we will use the
recursion relations they give for the potentials ap-
pearing in Eq. (4.9).

As they showed, there is a fixed point in 8-~ di-
mensions describing the non-mean-field behavior
of dilute polymer statistics. Here we study the
multicritical fixed point in 6 —e dimensions which
reproduces the known results" for the percolation
problem. For this purpose we follow Ref. 9 and set

(4.10a)

(4.10b)

z = Ã„(v u ') '~' „ (4.10c)

where K„'=2 'w" 'I'(d/2) in terms of which the re-
cursion relation are'

a moment.
The stability exponents associated with the tem-

peraturelike variables r and T cari be found from
Eq. (6.51) of Ref. 9 and are

(4.16a)

(4.16b)

The interpretation of p, is that it gives the aniso-
tropy crossover exponent y:

V = p2/p g= 1 —
p ~ ~ (4.17)
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From these results one obtains the known results
for the other exponents, e.g. ,

(4.18a)

(4.18b)

Zia and Wallace' have shown that (I() =P holds true
to all orders in the c expansion.

The exponents q, v, y, P, and y are identical to
those calculated for percolation from the Potts
model. '" Since we know that the present model
must have a percolation fixed point, the conclusion
of this analysis is that the fixed point of Eq. (4.13)
i's a multicritical point in the space of potentials
appearing in the Hamiltonian of Eq. (4.9). In the
case of the generalized Potts model' we have pre-
viously shown that this multicritical point is un-
stable with respect to anisotropy and Eq. (4.17) is a
reflection of this instability which takes one from
percolation to dilute polymers. However, in the
present context, the fixed point is also unstable
with respect to the single direction in the space of
the potentials u, v, and ~ corresponding to the
positive root in Eq. (4.15). We assert without
proof that the percolation Hamiltonian must cor-
respond to a point in this space on the surface de-
fined by the vanishing of the unstable cubic poten-
tial. This condition is clearly required if the flow
is to take the initial Hamiltonian to the fixed point
which we have shown does indeed describe percola-
tion. Moving off this surface seems to lead to a
crossover to -the fixed point describing dilute
branched polymers in 8 solvents, but we do not
have any clear physical picture of the consequences
of this phenomenon.
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