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Series Analysis of Randomly Diluted Nonlinear Resistor Networks

Abstract

The behavior of a randomly diluted network of nonlinear resistors, for each of which the voltage-current
relationship is [V|=r|I|% is studied with use of series expansions in the concentration p of conducting bonds
on d-dimensional hypercubic lattices. The average nonlinear resistance < R.> between pairs of sites separated
by the percolation correlation length, scales as | p—pc|_c(“). The exponent {(a) was evaluated for O<a<co and
d=2, 3,4, S, and 6, found to decrease monotonically from the exponent describing the minimal length, at a=0,
via that of the linear resistance, at a=1, to the exponent characterizing the singly connected bonds, §()=1.
Our results agree with known results for a=0 and a=1, also with recent results for general a at d=6-¢
dimensions. The second moment < R2> was found to diverge as < R2 (for all a and d), indicating a scaling
form for the probability distribution of R.
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The behavior of a randomly diluted network of nonlinear resistors, for each of which the voltage-
current relationship is | ¥ | =r | I | %, is studied with use of series expansions in the concentration p
of conducting bonds on d-dimensional hypercubic lattices. The average nonlinear resistance (R )
between pairs of sites separated by the percolation correlation length, scales as | p —p, | ~*'®. The
exponent {(a) was evaluated for 0<a < « and d =2, 3, 4, 5, and 6, found to decrease monotonical-
ly from the exponent describing the minimal length, at =0, via that of the linear resistance, at
a=1, to the exponent characterizing the singly connected bonds, (o )=1. Our results agree with
known results for a=0 and a=1, also with recent results for general a at d =6—¢€ dimensions.
The second moment (R?) was found to diverge as (R )? (for all @ and d), indicating a scaling form

for the probability distribution of R.

I. INTRODUCTION

A few years ago, Kenkel and Straley"? proposed a
model of a network of nonlinear resistors, each of which
obeys the generalized Ohm’s law

V=r|I|%gnl, (1.1)

where V is the voltage drop across it and I is the current
flowing through it, r is the nonlinear resistance, and a is
the exponent characterizing the nonlinearity.

Consider now the (nonlinear) resistance R,(L) between
two terminals, a distance L apart, on the same cluster.
Two of us recently showed? that this resistance reduces to
the minimal (“chemical”) path between these points, L ;,,
for ¢—0, and to the number of singly connected (“red”)
bonds between them, Lgc, for a— «. It trivially becomes
the linear Ohmic resistance at a=1.

In this paper we study the randomly diluted network on
d-dimensional hypercubic lattices, where each bond (with
resistance r) is randomly present with probability p or ab-
sent (with probability 1—p). As p approaches the per-
colation threshold p., the percolation correlation length &
diverges as |p—p.| ", and all connected clusters are
self-similar on length scales L < £. For such distances one
expects the average resistance (R,(L)) to behave as a
power of L:

(R (L)) ~LE@ . (1.2)

As L approaches &, this crosses over to
(Rg(£)) ~E8@ ~ | p—p. | ~8@, (1.3)
34

with {(a)={§(a)v. On larger length scales there is practi-
cally no conductance for p > p., while the link-node-blob

picture*~® implies that the conductivity scales as
o~(p —p. M, with!
wla)=(d—-1v+[{la)—v]/a . (1.4

There exist many separate studies, using various tech-
niques, which estimated {(a) for a=0 (Refs. 6—14) and
a=1."""2 Of particular interest is Coniglio’s exact
proof,” showing that {(w)=1. Table I lists some of
these previous estimates and compares them with our own
estimates and at these values. It is easy to convince one-
self that one always has §(0) > (1) > {( o0 ); the resistance
of the minimal path decreases when more bonds are added
in the blobs, and the resistance of the singly connected
bonds increases when the blobs are added. Indeed, previ-
ous studies on various fractals showed® that £(a) is always
a monotonically decreasing function of . This was also
found in very recent € expansions for {(a), in d =6—¢€ di-
mensions. ¢

The aim of this paper is to use series expansions in p to
obtain estimates of {(a) for all d and a. This program is
a systematic generalization of the earlier series studies for
a=1.2=2 Up to this point we have discussed only the
average, {R,(L)) or {(R,(£)). In real experiments one
should also worry about the fluctuations about this aver-
age, i.e., the distribution of resistances measured for pairs
of terminals at fixed distance L (or &). To address this
question, we also constructed series for the second mo-
ment (R?).

This paper is organized as follows. Section II describes

3424 ©1986 The American Physical Society
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TABLE I. Values of {(a) for a=0,1.
a=0 a=1 d a=0 a=1
1.49+0.02* 1.297+0.007" 4 1.11+£0.07° 1.05+0.02°
1.52+0.01° 1.31+£0.01™ 1.0340.08° 1.03+0.09°
1.38+0.1¢ 1.29+0.01" 1.083+0.0012 1.0534
1.54+0.05¢ 1.31£0.1° 1.10+0.044 1.08+0.02
1.46+0.07° 1.26+0.02° 1.10£0.02 1.06+0.01%
1.509+0.004f 1.2040.005¢ 1.114£0.01%
1.1940.018 1.3240.08!
1.361+0.007" 1.31+0.05
}:ggio.ow’ 5 1.02+0.1¢ 1.0210.02;
1.4840.05* 1.0388 1.01+0.08
: : 1.04+0.01 1.025¢
1.19£0.04° 1.1240.02" 1L.04=0.01* }'8§f8'8i’k
1.1840.07° 1.161£0.07° R
1.20+0.03¢ 1.084+0.001¢
1.21° 1.06£0. 1
1.134+0.0048 1.32¢ 6 0.9+0.1° 1.01£0.02°
1.12+0.05" 1.15+0.03 1.0240.02¢ 1.00+0.01
1.20+0.03 1.12+0.03% 1.00+0.01) 1.00+0.01%
1.1940.03% 1.00+£0.01%

2Pike and Stanley, Ref. 6. Monte Carlo simulation.
®Alexandrowicz, Ref. 7. Monte Carlo simulation.

‘Hong and Stanley, Ref. 8. Series expansion.

9Havlin and Nossal, Ref. 9. Monte Carlo simulation.
‘Herrmann et al., Ref. 10. Monte Carlo simulation.
{Grassberger, Ref. 11. Monte Carlo simulation.

8Janssen and Cardy, Grassberger, Ref. 13. € expansion. The er-
ror bars for these e-expansion results were obtained using dif-
ferent Padé estimates. Errors less than 0.001 in the € expansions
were ignored.

"Edwards and Kerstein, Ref. 14. Monte Carlo simulation.

iRay, Ref. 12. Real-space renormalization.

"This work (£,).

the construction of the series, and Sec. III presents the re-
sults of their analysis, which are summarized in Fig. 1
with specific results listed in Table III. In Sec. IV we
analyze and discuss our results for (R2). Our con-
clusions are summarized in Sec. V.

II. SERIES CONSTRUCTION

In this section we follow closely Ref. 20. The percola-
tion susceptibility is defined by

Xp-_— Z‘V,'j s (2.1)
J

where v;; is 1 if the two sites i and j belong to the same
cluster and zero otherwise, and [ ],, denotes an average
over all configurations of occupied and unoccupied bonds.
The resistive susceptibility is defined by

Xg(a)= [ER,-j(a)v,-j ] , 2.2
J

av

av

where R;;(a) is the (nonlinear) resistance between sites i
and j.
We define X (a;T") for a cluster of sites, [, via

¥This work (£,/2).

1Zabolitzky, Ref. 15; Lobb and Frank, Ref. 16. Transfer matrix.
MHerrmann et al., Ref. 17. Transfer matrix.

"Hong et al., Ref. 18. Monte Carlo simulation.

°Adler, Ref. 20. Series expansion.

PEssam and Bhatti, Ref. 21. Series expansion.

9Harris et al., Lubensky and Wang, Ref. 19. € expansion. The
error bars for these e-expansion results were obtained using dif-
ferent Padé estimates. Errors less than 0.001 in the € expansions
were ignored.

"Fisch and Harris, Ref. 22. Series expansion.

SDerrida et al., Ref. 23. Transfer matrix.

'Mitescu and Greene, Ref. 24. Monte Carlo.

Xr(;T)=3 3 Rjla) 2.3)
ierjer

in terms of which X z(a) is obtained by summing over all
clusters, weighting each cluster by its probability of oc-
currence. This is best done in terms of cumulants, where-
by we may write

Xgla)=SW(Td)p™ Y (a;T) 2.4)
r

where n,(I") is the number of bonds in the diagram I,
W(T';d) is the number of ways per site a diagram topo-
logically equivalent to ' can be realized on a hypercubic
lattice in d dimensions, and the sum is over all topologi-
cally inequivalent diagrams . Also X%(e;T) is the cu-
mulant, defined by

Xg(a;D)=Xg(a;T)— 3 Xr(as7), (2.5)
y€r

where the sum is ?ver all subdiagrams, v, of I'.
The factor p"® in Eq. (2.4) implies that the evaluation
of X up to order p” involves only clusters with up to n
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TABLE II. The coefficients A4 (k,I) for =0.5 and 5.0. Numbers enclosed in square brackets denote scale factors of powers of 10.

A(1,1)=0.100000 000000 00[ +1]
A (3,1)=0.300 000 000 000 00[ +1]
A(4,1)=0.126 884 198 415 26[ + 2]
A (4,4)=0.320000 000 000 00[ +2]
A(5,3)=0.332463206 338 93[ +2]
A(6,1)=—0.274910165 301 55[ + 3]
A(6,4)=0.159 738961901 69[ +3]
A(7,1)=0.250 389733 781 58[ +4]
A(7,4)=0.684721758 204 65[ +3]
A(7,7)=0.448 000 00000001[ +3]
A(8,3)=0.252849 850257 65 +4]
A(8,6)=0.244092 641267 79[ +4]
A(9,1)=—0.158 601998 719 93[ +6]
A(9,4)=0.701750095 384 85[ +5]
A(9,7)=0.812 382339042 75[ +4]
A(10,1)=—0.184 379783331 60[ +7]
A(10,4)=—0.105 371458 782 25[ +6]
A(10,7)=0.409 652 346 888 39[ +4]
A(10,10)=0.511999 999 999 98[ -+ 4]
A(11,3)=0.395 741204 383 10[ +8]
A(11,6)=0.277502 604 119 33[ +6]
A(11,9)=0.737910 580822 75[ +5]

A(1,1)=0.100000 000 000 00[ + 1]
A (3,1)=0.300 000000000 00[ +1]
A(4,1)=0.158 324 580 830 73[ +2]

A (4,4)=0.320 000000000 00[ +2]
A(5,3)=0.206701 676 67705 +2]
A(6,1)=—0.344 147 549 31237[ +3]
A(6,4)=0.122010 503 003 12[ +3]
A(7,1)=0.306 266732258 91 +4]
A(7,4)=0.779 357 883 157 74[ +3]
A(7,7)=0.448 000000 00001[ +3]
A(8,3)=0.390871440 345 12[ +4]
A(8,6)=0.218 940335335 42[ +4]
A(9,1)=—0.196 875 662 152 44[ + 6]
A(9,4)=0.881391 653 34587[ +5]
A(9,7)=0.752 016 804 805 03[ +4]
A(10,1)=—0.229269 583 23602[ +7]
A(10,4)=—0.936301959 120 18] +5]
A(10,7)=0.629 107 363913 53[ +4]
A(10,10)=0.511999999 999 98[ + 4]
A(11,3)=0.490241472 587 84] + 8]

a=0.5
A(2,1)=—0.20000000000000[ +1]
A (3,2)=—0.120000 000 000 00[ +2]
A(4,2)=0.73115801584742[ +1]
A(5,1)=—0.717536793 66102[ +2]
A(5,4)=—0.159999 999 999 99[ + 3]
A(6,2)=0.117 860244799 50[ + 3]
A (6,5)= —0.48000000000000[ +3]
A(7,2)=—0.507730236069 14[ +4]
A(7,5)=0.66597056507126[ +3]
A(8,1)=0.19151854571807[ +5]
A(8,4)=0.322202539284 38[ +4]
A(8,7)=—0.35840000000000[ +4]
A(9,2)=0.392704 713022 59[ + 6]
A(9,5)=0.336038820271 34[ +4]
A(9,8)=—0.921 600000 00002[ +4]
A(10,2)=0.34208551362945[ +7]
A(10,5)=0.13853581580808[ +6]
A(10,8)=0.251635879 10994 +5]
A(11,1)=0.131 165690 600 52[ + 8]
A(11,4)=—0.169921937 818 34[ +8]
A(11,7)=—0.248 144519 178 89[ + 5]
A(11,10)= —0.563 200000 000 03[ +5]

a=5.0
A(2,1)=—0.20000000000000[ +1]
A(3,2)=—0.120000000 000 00[ +2]
A(4,2)=0.416754191692 68[ + 1]
A(5,1)=—0.84329832332290[ +2]
A(5,4)=—0.15999999999999[ +3]
A(6,2)=0.18230282702135[ +3]
A (6,5)= —0.480000000 000 00[ + 3]
A(7,2)=—0.622844475811 10[ +4]
A(7,5)=0.56536134134172[ +3]
A(8,1)=0.237363906 572 32[ +5]
A(8,4)=0.403269 847 79026[ +4]
A(8,7)= —0.358 400000000 00[ +4]
A(9,2)=0.485193204 857 08[ + 6]
A(9,5)=0.42971016125204[ +4]
A(9,8)=—0.92160000000002[ +4]
A(10,2)=0.42722368078927[ +7]
A(10,5)=0.165985863 922 39[ + 6]
A(10,8)=0.237550587 787 81[ +5]
A(11,1)=0.16375483723800[ +8]
A(11,4)=—0.211083 349336 38[ + 8]

A(2,2)=0.400 000 000 000 00[ + 1]
A(3,3)=0.120 000 000000 00[ +2]

A (4,3)=—0.480000 000 000 00[ +2]
A(5,2)=0.123 507358 73221 +3]
A(5,5)=0.799 999 999 999 96[ +2]
A(6,3)=0.291 310958 600 36[ +3]
A(6,6)=0.192 000000 00000[ +3]
A(7,3)=0.212571269 959 98[ +4]
A(7,6)=—0.134 400 000 000 00[ +4]
A(8,2)=—0.262959 627957 87[ + 5]
A(8,5)=0.152065791 588 22[ + 4]

A (8,8)=0.102 400 000 000 00[ 4]
A(9,3)=—0.311790 709 499 93[ + 6]
A(9,6)=0.294977 406 563 81[ +4]
A(9,9)=0.23040000000001[ +4]
A(10,3)=—0.161985 445 332 98[ +7]
A(10,6)=—0.169 731 805 435 38[ +4]
A(10,9)= —0.230399 999999 99[ + 5]
A(11,2)=—0.379 672310393 74[ + 8]
A(11,5)=0.198 815199 72098 +7]
A(11,8)=—0.828 884 647254 37[ +3]
A(11,11)=0.112 640000000 01[ +5]

A(2,2)=0.400 000 000 000 00[ +1]

A (3,3)=0.120 000 000 000 00[ +2]

A (4,3)=—0.480 000 000 000 00[ +2]
A(5,2)=0.148 659 664 664 58[ +3]
A(5,5)=0.799 999 999999 96[ +2]
A(6,3)=0.33383421928791[ +3]
A(6,6)=0.192 000000 000 00[ +3]
A(7,3)=0.272405 821 102 25[ +4]
A(7,6)=—0.134 400 000 000 000 00[ + 4]
A(8,2)=—0.330786208 767 49[ +5]
A(8,5)=0.177941 398 480 88[ +4]

A (8,8)=0.102 400 000 000 00[ +4]
A(9,3)= —0.385059 840 765 06[ + 6]
A(9,6)=0.370 686 306 526 28[ +4]
A(9,9)=0.23040000000001[ +4]
A(10,3)= —0.206 284 351 160 12[ +7]
A(10,6)= —0.116926 435957 38[ +4]
A(10,9)= —0.230399 999 999 99[ +5]
A(11,2)=—0.471715784 307 61 +8]
A(11,5)=0.255796 342 480 59 +7]

A(11,6)=0.31819413081642[ +6]
A(11,9)=0.705715 629 229 37[ +5]

A(11,7)=—0.267031 336 602 39[ +5]
A(11,10)=—0.563 200000000 03[ + 5]

A(11,8)=0.532339 693011 20[ +4]
A(11,11)=0.112 64000000001[ +5]

bonds. We constructed the series for (2.1) and (2.2) up to
11th order in p. While computing the percolation suscep-
tibility for each cluster is trivial, the resistive susceptibili-
ty involves the nontrivial task of solving the nonlinear
Kirchoff’s equations based on Eq. (1.1). For reasons of
computational efficiency we solved the set of Kirchoff’s
equations differently for ¢ > 1 and fora < 1. Fora>1 we
solved the equations for the potentials at the sites (node
analysis”), while for a <1 we solved for the currents
through the bonds (loop analysis?’). In both methods the
equations were solved iteratively, where as an initial guess
we used the solution for the neighboring a. In the vicinity

of a=1, where both methods were used, we find the same
results.
Writing
Xrla)=3 A(k,d'p*, (2.6)
k1

the coefficients A4 (k,!) for «=0.5 and 5.0 are shown in
Table II. For a=1 the coefficients are the same as in
Refs. 20 and 22, while for a=0 and a— « (the coeffi-
cients seem to be essentially constant for a > 10), they are
the same as the coefficients for the minimal chemical
length and the length of the singly connected bonds in
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RCf. 8. I 50_ T L B B B T T T T T T ]
The average resistance (R, ) is defined by r .
X I ]
(RgY="5~|p—pc |~ 2.7 i )
Xp r -
s C ]
In order to find {(a) we analyzed the series for both X » 1.25 J
and X, and {(a) was found as the difference of the two L 7
corresponding exponents, {=yg —y. The series for the r 5
ratios X /X, were less well behaved than those for X or C N
X,. - ]

1.00 L PR N U N SR WS T S S SN S S U T‘r =
III. ANALYSIS AND DISCUSSION o 0.5 o
a/ (1 +a)

We analyzed the series using the ‘“nonhomogeneous dif-
ferential Padé method.””® By this method we obtain
20—60 estimates for p, and the critical exponent y. The
estimates for ¥ and yx were plotted as a function of the
estimates for p.. The resulting smooth functions y(p.)
and yg(p.) were fitted by linear curves. By interpolating
to the known value of p, (see Table III) we obtained esti-
mates for ¥ and yz. The error bars in the exponents were
taken as those of the interpolation procedure, where we
have taken into account the uncertainty in the values of
p.. Explicit values of {(a) for a=0.5 and 5.0 in 2—6 di-
mensions are shown in Table III, along with the error
bars. The errors seem to decrease with increasing dimen-
sionality. For d >6 the blobs become irrelevant, and
&(a)=1 for all . 192631

The results in the literature for =0 and 1 (discussed
previously) are shown in Table I, where they are also com-
pared with the estimates found by our analysis. The
agreement suggests that our estimates for other values of
a are also quite reliable.’? Figure 1 shows {(a) as a func-
tion of a/(a+1) for d =2,3. We see that {(a) decreases
monotonically and continuously from £(0), which corre-
sponds to the minimal-chemical length, through £(1),
which corresponds to the linear resistance, to the exact
§(e0)=1, which corresponds to the length of the singly
connected bonds.

In Table III we also compare our calculations at d =5
with the recent e-expansion results.?® For large a, where
{(a) is close to unity, our results do not provide a very
sensitive test. For a <1 the situation is more favorable
and at a=% our results agree with the e-expansion re-
sults. Longer series will probably be able to provide a de-

TABLE IIl. Values of p, and results for a=0.5 and 5.0.

a=0.5 a=5.0
d Pe g 6272 4 §2/2
2 % (exact) 1.41+0.08 1.40+0.05 1.02+0.08 1.02+0.02
3 0.2486* 1.184£0.04 1.15£0.04 1.0240.02 1.01£0.02
4 0.1601>¢ 1.09+0.02 1.11£0.02 1.02+0.02 1.01+0.01
5 0.1181>¢ 1.04+0.01 1.04+0.01 1.02+0.01 1.01+0.01
1.035¢ 1.035¢ 1.001¢ 1.00¢
6 0.0941° 1.01+0.01 1.02+0.02 1.00+0.01 1.00+0.01

2Grassberger, Ref. 29.

YFisch and Harris, Ref. 20.
°Adler et al., Ref. 30.

€ expansion, Harris, Ref. 26.

FIG. 1. Series results for {(a) and {(a)/2.

finitive numerical test of the € expansion. We also deter-
mined d{(a)/da for a=1 and d =5, from a plot similar
to those in Fig. 1. Our result d{(a)/da= —0.012 is quite
close to the value, —e/72, for this quantity in Ref. 26. It
would be desirable to test the predictions for d{(a)/da
for a not near unity in order to distinguish between the
predictions of Refs. 26 and 33, which differ only for
a+1.

IV. SECOND MOMENT AND SECOND CUMULANT

We now consider the behavior of the second moment of
the resistance, (R2). The corresponding susceptibility is
defined by
, (4.1)

_ 2
XR2_ ERUV‘J
J

av

and we expect it to diverge at p, with exponent £,. By the
same method as above we constructed and analyzed series
for X p,. Figure 1 also shows our results for £,/2 versus
a/(a+1) for d=2,3 and Table III contains explicit
values of &, for a=0.5 and 5.0 in 2—6 dimensions. We
see that within our accuracy, the exponents § and &, obey
the relation

&EHla)=24(a) . 4.2)
We also studied the second cumulant, defined by
(R*).=(R*)—(R)*. 4.3)

A series for the second-cumulant susceptibility can be ob-
tained by the susceptibilities discussed above, by

. (Xr)*
R2=XR2_ XP .

(4.4)

(An interesting quantity to study is Y, jxi.}’ where
Xﬁ'})= [Vij(Rij - <Rij ) )2]av where (Rij ) =[Vinij lav/
[vij]lav- However, this quantity is not one for which one
can easily develop a series expansion.) This series is less
well behaved than the other series we studied and the er-
ror bars for £ are quite large. However, within the limits
of our accuracy, we can say that the relation

&la)=2¢(a) (4.5)
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is consistent with our results.

Let P(R,x,p) denote the conditional probability that
the (nonlinear) resistance between two sites separated by a
displacement x assumes the value R, subject to the two
sites being in the same cluster. Then the relation §; =k¢,
implies that P has the scaling form

P(R,x,p)=f(R /rxf,x /f,’)/rxZ R

where r is the resistance of a single resistor. For the
linear case, this form was found numerically,>* and is im-
plied by the scaling behavior of the resistive correlation
functions in the field theories.!® For the nonlinear case
considered here this relation is é)robably also implied by
the field-theoretic formulation.?® The present work pro-
vides the first numerical evidence in support of Eq. (4.6)
for as£1.

Equation (4.2) suggests that §,/2 should also serve as
an estimate for {. These estimates appear in Tables I and
III. Series estimates for &; /k for different k’s, which give
much better estimates for &, will appear elsewhere.

(4.6)

V. CONCLUSION

In this paper we studied the nonlinear resistance prob-
lem.!~ We confirmed by the series-expansion method
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that this problem interpolates smoothly between two
known topological problems: the minimal-chemical
length (for a=0) and the singly connected bonds (for
a— ). We studied the second moment and the second
cumulant of the resistance, and concluded that the critical
exponents corresponding to these two are the same _and
equal to twice the critical exponent of the resistance, £(a).
This equality suggests that even for a1, the probability
function for the resistance between two points has the
scaling form written in Eq. (4.6).
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