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Distribution of the Logarithms of Currents in Percolating Resistor
Networks. I. Theory

Abstract
The distribution of currents, i, in the bonds b of a randomly diluted resistor network at the percolation

threshold is investigated through a study of the moments of the distribution P"(i2) and the moments of the
distribution P(y), where y=-Iniy?. For g>q the gth moment of P"(i%), Mq (i.e., the average of i23), scales as a
power law of the system size L, with a multifractal (noise) exponent ¥~ (g)-y"(0). Numerical data indicate

that q is negative, but becomes small for large L. Assuming that all derivatives " (gq) exist at g=0*, we show
that for positive integer k the kth moment, py, of P(y) is given by

ue=(ao InL)*{1+[kC1+1/2k(k-1)D;] (InL)~'+O[(InL) 2]},

where ag and D; (but not Cy) are universal constants obtained from v(gq). A second independent argument,
requiring an assumed analyticity property of the asymptotic multifractal function, f(a), leads to the same
equation for all k. This latter argument allows us to include finite-size corrections to f(a), which are of order
(InL)~L. These corrections must be taken into account in interpreting numerical studies of P(y). We note that
data for P(-Ini?) seem to show power-law behavior as a function of i? for small i. Values of the exponents are
directly related to the values of q,, and the numerical data in two dimensions indicate it to be small (but
probably nonzero). We suggest, in view of the nature of the finite-size corrections in the expression for py, that
the asymptotic regime may not have been reached in the numerical work. For d=6 we find that
Mq(L)~(lnL)e(q), where 0(g)~>o for g>q.=-1/2.
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Distribution of the logarithms of currents in percolating resistor networks. 1. Theory
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The distribution of currents, i,, in the bonds b of a randomly diluted resistor network at the percola-
tion threshold is investigated through a study of the moments of the distribution P(i?) and the moments
of the distribution P(y), where y = —Ini?. For g > g, the gth moment of P(i%), M, (i.e., the average of
i29), scales as a power law of the system size L, with a multifractal (noise) exponent ¥(g)—#(0). Numeri-
cal data indicate that g. is negative, but becomes small for large L. Assuming that all derivatives §(q)
exist at ¢ =0%, we show that for positive integer k the kth moment, p,, of P(y) is given by

i = (@ InLY* {1+ [kC, + 1k (k —1)D, 1(InL) "'+ 0 [(InL) 2]} ,

where ag and D, (but not C,) are universal constants obtained from #(g). A second independent argu-
ment, requiring an assumed analyticity property of the asymptotic multifractal function, f(«a), leads to
the same equation for all k. This latter argument allows us to include finite-size corrections to f(a),
which are of order (InL)™!. These corrections must be taken into account in interpreting numerical
studies of P(y). We note that data for P(—Ini?) seem to show power-law behavior as a function of i? for
small i. Values of the exponents are directly related to the values of g., and the numerical data in two di-
mensions indicate it to be small (but probably nonzero). We suggest, in view of the nature of the finite-
size corrections in the expression for u,, that the asymptotic regime may not have been reached in the
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numerical work. For d =6 we find that M, (L)~ (InL)*?, where 6(g)— o for g—g.,=—+

I. INTRODUCTION

Recently there has been increasing interest in the mul-
tifractal description of probability distributions on fractal
structures. Originally proposed to treat nonuniform tur-
bulence,! this formulation provides a mathematical
framework within which it is possible to discuss sys-
tematically families of fractal measures which may be
used to characterize a fractal set. For example, fractal
measures have been introduced to describe the nonuni-
form growth probabilities in diffusion limited aggregation
(DLA),>™* strange attractors in dynamical systems,>®
and localized wave functions of particles in a random po-
tential,” to name but a few. One of the first and most sys-
tematically studied cases concerns the distribution of
currents in bonds of a randomly diluted resistor network
at the percolation threshold,®?° which we will refer to as
a percolating resistor network.

Roughly speaking, and as we will see in more detail
later, a multifractal distribution is one which displays
power-law scaling as a function of the system size, L, but
with continuously variable exponents, f(a), associated
with different regions () of the distribution. One central
question with regard to any of these systems is the degree
to which the multifractal formalism provides a complete
description of the entire distribution function for the sto-
chastic variable. As we will discuss in more detail later,
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while the multifractal formalism does describe most of
the important features of the distribution function, some
of the finer details are not naturally contained in this
framework. This situation is perhaps analogous to at-
tempting to describe the Griffiths singularity?! in dilute
Ising systems within the renormalization-group frame-
work. In both the random resistor network and the di-
lute Ising model, one has a dominant power-law behavior
which is naturally treated in a multifractal or
renormalization-group approach. This approach works
best when properties at large length scales can be ob-
tained recursively from those at small length scales.
However, rigorous arguments'>?! also indicate the pres-
ence of tails in the distribution function which occur with
exponentially small probability and which are thus not
easily accessible to such recursive formalisms. If the sto-
chastic variable is denoted by x (in the following x =i2,
where i, is the current in the bond b of the percolating
resistor network), then a multifractal distribution of x im-
plies that the gth moment of x, denoted Mq(L), varies as
a power of L with a g-dependent exponent. As we discuss
below, large percolating networks have currents of order
i2. «exp(—KLP), which result in an exponential growth
of M, (L) with L, for 9<q., <0. Strong arguments, '?

presented below, indicate that the threshold qc, is

nonzero and negative. However, other small currents,
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which decay with L faster than a power law but slower
than an exponential, may generate deviations from the
power-law dependence of M (L), or from multifractality,
below a higher threshold ¢g,. As we discuss below, it
seems most likely that g, is strictly negative (g, <0, not
q.=0).

A second question, which recent work!® has suggested,
is whether or not the rather complicated multifractal
scenario could be completely obviated by considering the
distribution for Inx. In particular, one might ask whether
this distribution would be a function of a reduced vari-
able of the form Inx/(InL)?, where $ is a crossover ex-
ponent. A priori it is not clear that one can generally
hope to reduce all the information in an entire multifrac-
tal function to a umfractal one, i.e., to one with a single
scaling exponent, ¢. In view of these questions, this pa-
per is devoted to a study of the distribution function for
the logarithms of the currents in percolating resistor net-
works. A convenient way to access the distribution of
Inx is to consider the kth moment of Inx, , Mg. Our argu-
ments show that y, scales as (InL), i.e., ¢—1 Thus, the
dominant scaling behavior of the d1str1but10n of Inx is
indeed much simpler than that of x. However, as we
shall see, multifractality in the distribution of i? is
reflected in finite-size corrections of order (InL) ! to the
cumulants of the u;’s, denoted uj,.

We thus carry out a detailed analysis of p;, including
corrections of relative order k /InL and k(k —1)/InL. In
Secs. IIT and IV, we give two independent arguments that

iy =(aoInL)*{1+[kC,+ 1k (k —1)D{](InL) "
+0[(InL)" %]}, (1.1)

where the constants will be discussed in more detail
below. We see that the asymptotic behavior is only
reached when InL > > |k|, |k(k —1)|. The first deriva-
tion, which is valid for positive integer k, invokes deriva-
tives of M, (L) with respect to g. This derivation mvolves
assuming the existence for ¢—07" of derivatives of #(g
the exponent which describes the scaling with L of
M, (L). Although this assumption can be shown to fail
for some special models,'* we believe that for the random
resistor network on the percolating cluster, such an as-
sumption of regularity holds, as we will discuss in Sec.
III. The second derivation, presented in Sec. IV, depends
on an assumption that the multifractal function f(a)
[defined in Eq. (2.9), below] can be expanded about its
maximum at a=q, in powers of (@ —a,). Since we be-
lieve the assumption of regularity of ¥(q) for g—0% is
true, and therefore that Eq. (1.1) is true, we suggest that
the assumption that f(a) is analytic at @ =q, is probably
also true. Although some numerical work!'® would sug-
gest that g, is very small, we use the above reasoning to
argue in Sec. IV C that #(q) is an analytic function of g
for g > q., where g, is strictly negative.

Our second derivation of Eq. (1.1) is based on a new ex-
tension of the multifractal analysis, to include finite-size
corrections to f(a). We show that these corrections can
be expanded systematically in powers of (InL) ™!, give ex-
plicit expressions for these corrections, and emphasize

their importance for measurements over limited ranges of
sizes. This formulation thus provides a quantitative
theoretical explanation for the slow convergence of f(a)
with increasing system size observed in numerical work.!!

Briefly, this paper is organized as follows. In Sec. II,
we review the multifractal formalism as applied to the
percolating resistor network. In particular, we note the
existence of non-power-law scaling which is outside the
“standard” multifractal formalism. In Sec. III, we obtain
Eq. (1.1) from the scaling of the cumulant moments of
Inx, which, in turn, are obtained in terms of derivatives at
g =0" of M,(L). In Sec. IV, we present some new exten-
sions of the multifractal formalism to include finite-size
corrections. This formalism is applied to obtain a
second independent derivation of Eq. (1.1). In Sec. V, we
give an extensive discussion of the existence of g.. We
discuss its relation to the probability distribution for the
currents and how it can be extracted from numerical
work which we review in some detail. Our conclusions
are summarized in Sec. VI. In the Appendix we obtain
and discuss the exact solution for this distribution func-
tion for the Mandelbrot-Given?? fractal (MGF), which
corroborates Eq. (1.1).

II. REVIEW OF MULTIFRACTALITY

We start with a brief review of multifractality as it ap-
plies to the percolating resistor network. We consider a
network of nodes forming a hypercubic lattice in d spatial
dimensions. Initially nearest-neighboring nodes (whose
separation, a, is taken to be unity) are connected by unit
conductances. After random dilution each conductance
randomly assumes the values 1 and O with respective
probabilities p and 1—p. If a unit current®® is inserted
into the network at node x and removed at node X', a
current, i,(x,x’), appears in the bond b. We then define'?

M,(x,x)= [3 [iy(x,x)] ] /[21] . @
b

where the sums run over all bonds b with nonzero
currents i, and [ ---],, indicates an average over all
configurations of conductances. Fractal, or power-law,
behavior occurs for 1<<|x—x'| <<§p, where §p is the
percolation correlation length, which measures the size
of typical structures in the randomly diluted network. 2
In this paper we confine our analysis to the percolation
threshold, p =p,, where §, = o, and therefore we are al-
ways in the fractal regime. Paper II in this series?® will
discuss concentrations p <p.. In the fractal regime, mul-
tifractal behavior implies that

~qlx—x’|"7(q>“’7(°)

M, (x,x')=A

4 (2.2a)

in the asymptotic limit [x—x'|—> . In Eq. (2.2a), 4, is
a nonuniversal amplitude and ¥(q) are the multifractal
exponents,® 13 which do not depend on [x—x’|. In par-
ticular, ¥(0) is the fractal dimension of the backbone, Dj.
[In Refs. 8, 9, 14, 15, and 18 the notation %(g)=—x, is
used.] One may also consider the value of M, for a sys-
tem of linear dimension L when the nodes x and x’ are
separated by a distance of order L. Finite-size scaling in-

dicates that this quantity is given by
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M (L)~ A,L¥97%0) (2.2b)

where A, is another nonuniversal amplitude. For the
other problems mentioned above, one similarly con-
structs moments of the appropriate distribution func-
tions, e.g., of the growth probabilities for DLA.2~*

Note that Eq. (2.2b) is expected to hold asymptotically
for large L. As usual in critical phenomena, one expects
corrections with smaller powers of L. However, these
corrections will be ignored, since power-law corrections
have a negligible effect on the results obtained in this pa-
per. In particular, except at special values of d (see Sec.
V B), there are no logarithmic corrections to Eq. (2.2b).

For positive values of ¢ all approaches,® ™ !* numerical
or analytic, are in qualitative agreement with Eq. (2.2).
However, for negative g the situation is much less clear
because in this case M, is dominated by extremely small
currents. In fact, Blumenfeld er al.'> (BMAH) showed
that for g sufficiently negative, Eq. (2.2b) ceases to hold
and is replaced by

InM, (L)~ —Ini%;, ~L", (2.3a)

where i ;. is the smallest current in the network and p is
an exponent whose value was roughly estimated.
Presumably there exists a negative critical value of g,
which we denote g., such that Eq. (2.3a) holds for
q <q.,. A priori, it is not clear whether Eq. (2.2b) holds
for all g >g,,. There may exist?® an interval g, <q <gq,,
in which M, (L) grows faster than a power law, but
slower than exponentially, e.g.,

InM,(L)~(InL)* (2.3b)

with?® ®> 1. In the case of DLA, there is still some con-
troversy®?” 732 over the analogous situation. Initially?’ it
was suggested that for DLA 9c, and possibly also g, were

equal to — oo, but it was also suggested that g.=0.%28 In
fact, more complicated scenarios with the behavior given
in Eq. (2.3b) have been proposed.? In some scenarios,
one even found that ¢.(L) may approach zero from
above.’! Very recent large simulations*? seem to confirm
the behavior in Eq. (2.3a). As discussed in Sec. IV, our
work indicates that for percolation clusters g, is strictly
negative (i.e., bounded away from zero). This result does
not depend on the explicit asymptotic form of M, (L) for
q9<q..

The moments M (L) contain information on the un-
derlying asymptotic distribution function which we would
like to access. In fact, if one writes

M,(L)= [ 'd (PP LY, 2.4)

then the distribution function, P(i%, L), can be ob-
tained'* ! by inverting this relation, as in the famous
“moment” problem of mathematical analysis. Although
this is possible, in principle,'* ' it is difficult'® precisely
because of the difficulty in treating the extremely small
currents which only occur with small probability. Such
small currents are often neglected in many treatments be-
cause they only have a minute effect on the positive g mo-
ments, which are usually the object of interest. In Sec.

VD, below, we show that these currents lead to a
power-law behavior of P(i% L) for small i%.

Early attempts to estimate P(i%,L) used hierarchical
structures to imitate the spanning percolation cluster.
One example is the MGF shown in Fig. 1. In a simpler
version, one has two equal bonds in parallel in the central
section of each iteration.! After N iterations of the
simpler version, the linear size of the structure becomes
L =3", and the currents assume the values i, =2, with
probabilities

PGz, L)y=2"N [JIZ] . 2.5)

A similar, although somewhat more complicated, expres-
sion is obtained for the MGF in the Appendix. For such
distributions, the multifractal behavior of Eq. (2.2b) holds
for all q. Hierarchical structures?®3® do not faithfully
reproduce the anomalous behavior of negative moments
as they are observed on percolation clusters. Since
k= —Ini, /In2, Eq. (2.5) represents a log-binomial distri-
bution, which behaves like a Gaussian distribution near
its maximum, i,,. This fact led the authors of Ref. 10 to
propose the Gaussian approximation

(Ini?—1ni} )?

'—# ] , (2.6)
o

a

P(i%,L)~exp

with IniZ, ~N ~InL and o0 ~N ~InL. However, this ap-
proximation fails badly away from the maximum, and
therefore is not suitable for calculations of the moments
M,(L). In fact, substitution of Eq. (2.6) into Eq. (2.4)
yields a quadratic dependence of 1(q) on g, instead of ap-
proaching a known finite limit as g — c0.!> As we show in
the Appendix, Eq. (2.6) fails for the MGF. However, a
correct analytic analysis of a distribution similar to Eq.
(2.5) reproduces all the predictions of the present paper,
including our main result, Eq. (1.1). That analysis is very
useful, as it also shows explicitly the limits of validity of
the finite-size corrections. Although the Gaussian ap-
proximation fails, Eq. (2.5) suggests that P(i% L) may de-
pend on i2 via a simple function of In (i?). One is thus
led to study the distribution function of the logarithms of
the currents, y =|1Ini?|,

FIG. 1. Three iterations of the Mandelbrot-Given fractal

curve. At each iteration, a bond is replaced by eight new bonds
and the length scale is changed by a factor of 3.
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P(y,L)=P(i%,L)|d(i*)/dy| . 2.7)

As noted by Fourcade and Tremblay,'* Eq. (2.4) indi-
cates that M, (L)is the Laplace transform of P(y,L):

ymax —_
M,(L)= [ "dy P(y,L)e "% . (2.8)
For finite L, y,.,=—Ini%, is finite. As L — oo,

Ymax— @ . Of course, we are interested in the behavior in
the asymptotic limit L — oo. In that case the only possi-
ble dependence on the limit can occur when g is negative
and y.., becomes large. (Again, we believe the type of
pathology found in Ref. 14 will not actually occur on per-
colating clusters.) If such a dependence on cutoff occurs,
it implies a breakdown of standard multifractality.* Us-
ing the inverse Laplace transform, and a saddle-point ap-
proximation, Fourcade and Tremblay'* found that in the
limit of infinite L, when one extends the integration to
the whole y axis, Eq. (2.2b) is equivalent to

InP(y,L)

li = .
Lg‘nw InL fla), (2.9)
where
2
y _ Ini% (2.10)

a= InL InL

Here f(a) is the Legendre-transformed function given
by? 12

fla)=ga+d(g)—¢(0), (2.11)
where q is a function of a determined by
aZ—M . (2.12)
dg

For finite L we will extend the definition of f (a) to be
fla,L)=InP(y,L)/InL . (2.13)

In Sec. IV we will show that for large L, f(a,L)—f(a)
has an expansion in powers of (InL)~!. If Eq. (2.9) holds
and if f(y/InL) has no other L dependence for
sufficiently large L, then one has data collapse when
InP/InL is plotted versus a=y/InL. The fact that
f(a,L) has corrections at large L of order (InL) ! im-
plies that InP/InL approaches its asymptotic limit f(a)
very slowly, with finite-size corrections of relative order
(InL)~!. Such large finite-size corrections give a quanti-
tative explanation for the slow convergence found, e.g., in
Ref. 11 for f(a) with increasing L.

Although we have mentioned problems other than the
distribution of currents on percolating clusters, there are
important reasons for restricting our attention to this
case. First of all, from renormalization-group € expan-
sions and scaling treatments, we believe the power-law
scaling of Eq. (2.2b) is well established for all ¢ >07%.
Such an ansatz may not be valid for arbitrary distribu-
tions on arbitrary fractal structures. In particular, for
percolating clusters we do not expect pathologies which
are mathematically allowed, in general, but which seem
unlikely on physical grounds. Our arguments are less
well founded in DLA, for example, where power-law
scaling has not yet been given a firm theoretical founda-
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tion.’! In the present paper we are therefore studying

multifractality in a very controlled setting, although it is
not easy to formulate this in rigorous mathematical
terms. We therefore specifically warn the reader that as-
sumptions which seem plausible in the context of per-
colating clusters can often be violated in models which
have less direct physical relevance. However, we hope
that the present detailed analysis will stimulate analogous
studies of DLA.

III. MOMENTS AND CUMULANTS OF Ini?

We now study the distribution of Ini2 by a considera-
tion of the moments and cumulants of y=|Ini?|. The
major result of this section is to derive Eq. (1.1) under
mild assumptions, which we believe are valid for per-
colating networks, though not for general multifractal
systems. In the Appendix we present an explicit analytic
example, in which all of these assumptions are clearly
justified. To start, we define the moments, u,, by

(X, %)= [%’Ilnibzl"] /[Eb"l

where the prime on the sum excludes the singly connect-
ed bonds (which have i, =1). As before we consider this
quantity on a large length scale, L, which we write as
i (L). Comparison with Eq. (2.1) indicates the relation

3*M (L)
L)=(—1)f——2 —~
Mk( )=( ) aqk

) (3.1)

av

av

(3.2)

q=0
Similarly, the corresponding cumulants are found via

x X

HUD)=(= D5 TinM, (L) (3.3)

q=0

(M, and InM, are similar to the partition function and
free energy in statistical mechanics). Assuming that Eq.
(2.2b) holds for g = 0, Eq. (3.3) yields

+% *InL ,
g=0"

(3.4)

where J”"E(—l)kakﬁ(q)/aqk]qzo+. Thus, all the cu-
mulants of y are linear in InL, with coefficients which are
directly related to derivatives of the universal function
¥(q) at ¢ =0, This is one of our main new results.

This result is certainly true if M (L) is analytic in g for
some finite interval around g =0, i.e., if g, <0. However,
we expect it to hold even if g, =0, since we believe that
for the percolating cluster all derivatives of M, (L) exist
for g—01. We now briefly discuss the evidence in favor
of this belief. First of all, the renormalization-group € ex-
pansion does not show any singularity in ¥(q) at ¢ =0.
(See Sec. V B, below). Secondly, it is clear that as a func-
tion of g, a problem at g —0 can only come from currents
which become very small as the system size becomes
large. Here ‘“very small” means small compared to a
power of L. In addition, of course, such anomalous
currents must occur sufficiently frequently to affect
M,(L). Again, small currents whose probability is ex-
ponentially small in L can be neglected. On the percola-
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tion cluster, we believe that small currents occur ex-
ponentially rarely, as in Ref. 12. In this connection, the
model introduced in Ref. 14 [for which $(0") is not regu-
lar] seems not to reproduce correctly the behavior of
small currents on the percolating cluster. In summary,
the evidence seems compelling that /(0%) is completely
regular and has derivatives of all orders. We also men-
tion that although Eq. (2.2b) had corrections involving
smaller powers of L, these are completely negligible com-
pared to the terms we kept in Eq. (3.4).

We now consider some of the implications of Eq. (3.4).
Noting the relation between cumulants and averages, and
setting pu§(L)=p,(L), we see that Eq. (3.4) implies that,
for large L,

uk(L>=u1(L)k+—kﬂ‘z;llmmk—ng(m
+0[(InL)* 2] (3.5a)
_ x k. k(k—1)
~(anL " [14+C, - +D = ——
+o[(1nL)"2]l , (3.5b)

where a,=9"=—039(q)/3q|,—o, D,=%"?/a}, and
C,=—dA,/dql,—o/ay In the expression for C, we
used the fact [see Egs. (2.1) and (2.2b)] that 4,=1. Since
¥(q) is a universal function of g, it follows that a, and D,
are universal constants, but C; is nonuniversal. In Eq.
(3.5b) the correction term involving C, comes from the
first term on the right-hand side of Eq. (3.4) for Kk =1 and
the correction term involving D comes from the term in
Eq. (3.5a) involving us$.

Some comments about Eq. (3.5b) are in order. The
conclusion that

i~ (InL)PR (3.6)
with
Blk)=k (3.7)

is a striking one. As we have said, there seems to be no
reason to expect that derivatives of ¢(q) as ¢—0" could
diverge. Also Ind, seems to display hardly any depen-
dence on ¢.!>?° These observations seem to justify Eq.
(3.4), upon whose validity Eq. (3.5) relies. Current nu-
merical data are consistent with Eq. (3.5b). For instance,
in d =3 for k> —3, Duering and Bergman® found
empirically that Inu,(L) is practically linear in k (see
their Fig. 4), consistent with Eq. (3.5b). Simulations in
d =2 give®* B(k)/k =1.15%+0.06, with systematic devia-
tions which may be due to higher-order finite-size correc-
tions. Also, as we shall see in paper II,%° series expan-
sions are consistent with Eqgs. (3.6) and (3.7), but at
present the data is not conclusive on this point.

The form of Eq. (3.5b) suggests further ways by which
it might be tested in the future. For example, one conse-
quence of Eq. (3.5) is that

Bet1 g [InL +C,+D,k +0(1/InL)] . (3.8)

Mk

In fact, ay, C,, and D, can be measured from such ratios.
Further, Eq. (3.5) implies the universality of the ratios

Mk

=1+D,[k(k—1D)+I(—1)—m(m —1)
Hmtn

—n(n—1)](2InL)"!
+0[(InL)"2], k+l=m+n .(3.9)

In fact, this latter result has been confirmed by series
studies.?® Finally, we may note where information (e.g.,
the 9 *”s) concerning multifractality is contained in the
pi’s. In particular, from the cumulant moments uj, we
can determine the ¢ *”s by ¢ ‘¥ =lim,  _[u§/InL].

The distribution of i? is multifractal if D;#0. Even if
D=0, ie., if $(2)=0, one still has multifractality unless
¥ W=0 for all k >2. Such a scenario of multifractality is
unlikely. Similarly, Eq. (3.4) indicates that for the cumu-
lant moments p§(L)~¢ ‘®InL. Thus, multifractality is
characterized by pi(L)/InL being nonzero for some
k=2,

IV. FINITE-SIZE CORRECTIONS TO f (a,L)

A. Systematic expansion of f (a, L) in powers of InL

Here we consider how f(a,L) should be modified to
take proper account of finite-size effects. To do this we
develop a systematic expansion of f(a,L) in powers of
(InL)~!. These results can be used in various ways. For
instance, the first application we consider is to give an al-
ternative derivation of Eq. (3.5) which sheds more light
on the problems related to g.. The second application is
to discuss the characteristic behavior of the finite-size
corrections, which have actually been observed in numer-
ical studies.

We start by assuming that #(q) is analytic at ¢ =0, and
has a Taylor expansion that converges in a finite interval
of g around g =0. This is correct for all finite L and also
for all ¢ 2 q,, even as L — . Now let us explore the pos-
sibility of consistently keeping track of finite-size correc-
tions in f (a,L). To do this we write

InM (L) 5 30)+ Ind,
InL W)=yl InL

OYg)+rg)InL) " '=7(q,L), (4.1)

Il

1

and we will develop the multifractal formalism in terms
of 7(g,L) which contains corrections of order (InL)" ! to
the usual asymptotic formalism. We now invert Eq. (2.8)
extending the range of integration over an infinite inter-
val, so that

P(y,L)=—1—, ioo qy+lan(L)dq (4.22)
2mi Y —io

= 1. foo e[qa+-r(0)(q)]lnLefm(q)dq , (4.2b)
2771 —ioo

where a =y /InL, as before. Now the saddle-point occurs
at'* ¢ =q} =gq, (a) and is determined not by Eq. (2.12)
but rather by
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__9drgL)__3dhg 1 94,
dq dg A,InL 93q ’
which incorporates finite-size effects. In evaluating the
saddle-point contribution in Eq. (4.2b) the simplest pro-
J

4.3)

1 i * * % ok %252 *2
P(y’L)zz_ﬂ-ifviwe[q a+rqg”,L)+(qg—q " )a+(g—q~)d7/3qg+(1/2)(q —q ¥ )*d°7/dq ]lnqu

=e[q*a+ﬁq*,L)]lnLL f foo el(172)g —q*)zlnLaz‘r/aq*2+(q*q*)af(”/3q*]dq

2mi Y -

:e[q*a+ﬁq*,L)]lnL[2ﬂ. InL3r/3g*2]~1/2 .

In passing from Eq. (4.4a) to (4.4b) we used
a=—097%/3q* and to get Eq. (4.4c) we dropped the
term involving 87'! /3¢ *, which leads to a correction of
relative order (InL)~2. The above is obviously merely
the first term in a systematic expansion in powers of
(InL)~!. Thus, we obtain a result of the form of Eq. (2.9)
but with

_InP_ -
fla,L) L ¢ a+7(g*,L)
1 2 *2
— . 4.5
21nLln[a 7/0q*] (4.5a)

Here we dropped the term In[271InL]/InL since it

represents an unimportant a«-independent shift in
f(a,L). Then
- _ ll’lAq*
EY A — +
fla,L)y=q*a+y(g*)—4(0) InL
(Ind*P(g*)/3q*?] . (4.5b)

" 2InL

Thus, we have shown how finite-size effects can be incor-
porated systematically in powers of 1/(InL). We should
emphasize that we have used Eq. (2.13) to define f(a,L).
When fluctuations due to finite L are ignored, the saddle-
point approximation ensures that f(a) and 7(q) are
Legendre transforms of one another. However, when
fluctuations due to finite-size effects are taken into ac-
count, then f(a,L) is no longer the Legendre transform
of (q,L).

A related formulation was given some time ago®’ in the
mathematical literature. That finite-size corrections are
of order (InL)™! has been confirmed recently both by an-

I, = fdaef(a,L)lnL +k Ina

:(a*)ka(“*)fda exp

InL[Ha—a*)f+LHa—a*)f3+ - ]+L*(a—a*)——k— e
a

cedure is to expand about the L = saddle [at g =¢*
determined by Eq. (2.12)] and treat 7'"(g) perturbatively.
Keeping quadratic fluctuations about the L = o saddle
(at g =q% =q*) in this way, we get

(4.4a)

(4.4b)

(4.4¢)

f

alytic calculations® for several special models and also by
numerical methods.!® Such corrections also follow
directly in the explicit example presented in the Appen-
dix. A further discussion of finite-size effects is given
below in Sec. V C.

B. Alternate derivation of results
for the moments of Ini?2

In this subsection we give a derivation of Eq. (1.1) al-
ternate to that of Sec. III. In contrast to the previous
derivation, this one requires the stronger assumption that
S (a) can be expanded in a power series in (a—a,) about
its maximum at a=aq,. In this approach we determine
the moments of the logarithms by

— Ymax k / Ymax
K fymin dy y“P(y,L) fymm dy P(y,L) (4.6a)
z(lnL)"fw daakef(a,L)lnL/fw da e lwLInL
(4.6b)
I
=(nL)* 3, (4.6¢)
Iy

where I is the integral in the numerator. In Eq. (4.6a)
Ymin=—Ini2,,, where i, is the current having the larg-
est value not equal to unity. For L -— o, i ,,—1 and
therefore y;,—0. In going from Eq. (4.6a) to Eq. (4.6b)
we assume that the integral is dominated by the region
near the maximum of the integrand. Now we utilize the
results of the previous subsection [particularly Eq. (4.5)]
to include finite-size corrections to f (a). We have

(4.7a)

, (4.7b)

where f,=d"f /da"|a:a* and a* (which depends on L) is determined below by f,(a*,L)=0. Since we are only in-

terested in terms which are of order (InL) ! and which depend on k, we only need the expansions as written in Eq.
(4.7b). Thus,

k2

Za(z)f‘z ( Qg JInL

3
[f2(eInL]?

I, ~(a**LS @ exp | — , (4.8

1 172 k
_.2_f2(a0)1nL+;(’1—(2)‘ [1+g&h0f3((10)1n[4
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where again we neglected k-independent corrections and where we set a* =q, in the correction terms. In the correc-

tion terms we may evaluate f (a,L) at L = oo. Thus,

— kf(ag)
e =(a*InL [ 1— Kk =D /s - :
205f5(apnL  2ayf,(ag)InL
In the correction terms we may use
+(2)7— d
frlag=—[3P17=7,

f3(a0):$(3)/[$(2)]3 .

Also, since a* —a, is of order (InL) ™!, Eq. (4.9) is

(4.9)

(4.10a)

(4.10b)

(4.11)

To complete the calculation we need to evaluate a* —a,, where a* is determined by df (a*,L)/da*=0. So a* is deter-

=0, (4.12)

k — 1)@ 7 (3) k(a*—ap)
pte = (aolnL ) |1+ K& - L - kl”(z) 0
2apInL 2ay “'InL
mined by
InA . 1 *P(g*)
e * +~ *) 9 _ q9
da |1¢ ¥lg™ InL 2InL " 3g*?  |a=a*

where ¢*=gqg* (a) is determined by a= —0y(g*)/dg. When a=a0=—8$(q*)/8q*|q*
From Eq. 4.11) a* will deviate from a, by terms of order (InL) ™!, so ¢* will be of order (InL)™ .

(4.12) gives

l’ (3)
q*:O 212;(2)

dqs,
da

aAq*
dq *

T ¥
at+ ST

*la)+
9% (a e

where we set ¢*=0 in the correction terms and thus
Ay=1. In other words

dqi 1 |04 g
* *) — ® q9
=— — - 4.14.
g% (a*) da WL | 3g |,—0 29 (4.14a)
94 5 (3)
=L | L %% ) YT 44
InL 1/}(2) aq 4=0 2(1/](2))2
Finally, expanding in powers of ¢ * we get
T o *
ot = — ¥g*) =g g*g@ (4.15a)
dg*
o4 7(3)
=a0+——1- — 9 'JL .
InL dq q=0 21/;(2)
(4.15b)

Substituting this into Eq. (4.11) indeed reproduces Eq.
(3.5b).

C. Discussion: Analyticity near ¢ =0

There is a very important distinction between the
derivation presented in Sec. III and that of Sec. IV B.
The first one works only for positive integral k, for which
the cumulants can be defined and Eq. (3.4) holds. Since,
as discussed after Eq. (3.4), we believe that for the per-
colating cluster (as distinct from special models proposed
in the literature'*3!), 4(q) is well behaved for all ¢ =07,
we believe that Eq. (3.5) follows without further assump-

(mL)*‘J =0,

then ¢*=0, of course.
Evaluation of Eq.

=0’

(4.13)

a=a

tions. The second derivation gives results which a priori
hold for both positive and negative k. However, it as-
sumes that u; is dominated by contributions from the in-
tegration over an interval of order Aa~ (InL)!’?around
the maximum of f(a) at a*, in which it can be expanded
as in Eq. (4.7b). This assumption may break down in two
cases. First, the expansion of f(a) around a=a, may
not converge over a range of a of order Aa~(InL) !/2,
or second, u;, may be dominated by large contributions
coming from outside this range. The first possibility re-
quires that the radius of convergence of the expansion
about a; is at most of order (InL)~ 2. In such a case, it
follows that in the ‘“thermodynamic” limit, L — o, f(a)
becomes singular at a =a,, implying that ¥(q) becomes
singular at g, =0. The weakest singularity would arise if
f(a) had different functional forms for a>a, and for
a <ay. For example, we might allow different expansion
coefficients a;” and a; in Eq. (4.7b) for a < a, and a > ag,
respectively. Such differences yield corrections to p, of
relative order k (la; |7!—l|a{ |7")/VInL, which would
thereby contradict Eq. (3.5). Since Eq. (3.5) follows from
our direct (first) proof, such a scenario is excluded.

The second possibility may arise if P(y) does not decay
to zero sufficiently fast as y approaches the cutoffs y ;, or
Ymax- As we will discuss in Sec. VD, extremely large
values of y arise from exponentially small currents. As
we show below [Eq. (5.8)], the corresponding probability
decays exponentially like

InP(y)~ —by (4.16a)
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or

B(i)y=i?t—1 | (4.16b)

which is equivalent to the linear behavior of the form

fla)=—bla—a'), 4.17)
where a' is related to the unspecified amplitude in Eq.
(4.16b). It is easy to see that if Eq. (4.16a) holds over the
interval y_. >y >y,, and even if y_ . diverges as L”,
the contribution from this interval to the integrals in Eq.
(4.6) will still be exponentially small compared to that of
the region near «. Similar exponential decays occur for
currents near unity, i.e., y near y. ;: even though
Ymin ~L %, resulting from chains of length L* in parallel
to a single bond, its probability is exponentially small. In
both cases, the contributions from the integral boun-
daries will become negligible for sufficiently large L (and
fixed k). Note, however, that Eq. (3.5) breaks down for
k ~kg, where |C ky+D ko(kg—1)/2|=InL. In the lim-
it of very large |k|, u;, may be dominated by contribu-
tions from y_;, (for kK <0) or y,,, (for kK >0), and thus p;
may exhibit exponential dependence on L. However, this
behavior may arise only for k much larger than kg, viz.,
fork=y,../Iny .. ~LP/InL.

If Eq. (2.2b) is valid for asymptotically large L, as im-
plied by exact multifractality (and to within power-law
corrections in 1/L according to the € expansion), then all
the coefficients ¥ ‘¥’ and f(a,) are universal and in-
dependent of L. Note that the Gaussian approximation,
Eq. (2.6), is nothing but a truncation of the expansion Eq.
(4.7b) at quadratic order, which is equivalent to a trunca-
tion of the expansion of 1(q) at the same order. Clearly,
such truncations do very badly for higher moments and
cumulants of y. They are even worse for M,, where they
violate>»!? the approach of #(g) to a finite limit as
q —> 00,

The expansion for f(a,L) in Eq. (4.7b) is expected to
give a good description of P(y,L) near its peak. Indeed,
all the numerical curves of P versus y in the literature
seem to have smooth maxima. However, these curves are
very asymmetric, and one may need many terms, or one
may need an alternative functional form, far away from
the peak. Equation (4.7b) gives an infinite series expan-
sion for f (a) near a=a,. In contrast, some of the mea-
sured curves seem linear!® 17193437 for large a (small i).
We discuss these data below in Sec. VE and in the Ap-
pendix. There exist many analytic functions f (a) which
have a Taylor expansion like Eq. (4.7b) for a near «, and
then become linear for large a, as in Eq. (4.17). A trivial
example is f(a)= —Incosh[b(a—a,)], which starts like
Eq. (4.7b) for small (¢ —a,) and approaches f (a)= —ba
for large . In this example, the factors of InL cancel and
one has P(i?)~i?*~2 as in Eq. (4.16b). An analytic ap-
proach of f(a) to a straight line will be shown below
(Secs. VB and V C) to result from the € expansion and re-
lated approximants. In other scenarios, Eq. (4.17) holds
exactly over a range of finite a’s, reflecting a “phase tran-
sition” in f(a) (See Sec. V D).

In conclusion, the validity of the alternative derivation
of Eq. (3.5b) given in Sec. IV B implies that g, is strictly

negative and that, at least for ¢ > gq,, InP /InL approaches
its asymptotic limit f(a) with finite-size corrections of
relative order 1/(InL).

V. THE THRESHOLD g,

In this section we consider the implications of various
existing studies concerning the threshold g.. Among
these are the renormalization-group € expansion (Sec.
V B), numerical approximants to /(q) (Sec. V C), rigorous
bounds on g, (Sec. V D), and numerical information con-
cerning g, (Sec. V E).

A. General comments

In the previous section we showed that the moments of
Ini? are not qualitatively affected by the “phase transi-
tion” at g., provided that g, is strictly negative. We now
return to a discussion of the moments of the currents,
M, (L), and of the various possible scenarios for their be-
havior near and below g¢,.

As already mentioned, g, is identified as the value of g
below which 7(g,L)=InM_,(L)/InL diverges to infinity as
L — . For g >gq_, one has a well-defined finite limit

Jim 7(g,L)=19(q)—%(0) . (5.1)

The different scenarios may now be classified according
to how #(gq) approaches o as g decreases through g,
and how 7(q, L) varies with g and L for g <gq,.

In the simplest scenario, ¥(g) diverges to « as g—gq,".
Such behavior is predicted by the € expansion, and is de-
scribed in Secs. VB and V C, below. In this case, the
slope a= —d 1 /dq also diverges as ¢g—g¢," and thus the
Legendre transformation maps the range g. <gq < « into
the full range O <a < « of f(a). The resulting function
f(a) is completely analytic, and the existence of g, is
reflected in it only through its asymptotic slope
g=df /da as a— «. One might call this a “‘continuous
phase transition.” A similar situation occurs if #(q) ap-
proaches a finite value at ¢,", but with an infinite slope.
This classification is equivalent to the usual one for phase
transitions>® of arbitrary order.

In a second scenario, 1(q) approaches a finite value,
with a finite slope, a,, as ¢ —g,". In this case, the Legen-
dre transform maps ¥(q) (for g > g,) onto a finite range of
fla), ie.,, 0<a<a,. The behavior of f(a,L) for a>a,
then depends on details of the divergence of 7(q,L) as L
increases for g <g.. In Sec. VD we discuss several
scenarios that may give rise to such behavior. We then
finish this section with a critical review of available nu-
merical information.

B. € expansion and d =6

It is illuminating to start this discussion with the € ex-
pansion of 9(q), for percolating networks in d =6—¢ di-
mensions. Park, Harris, and Lubensky13 found that, to
leading order in €,

vip(g)=1+ =

—_— (5.2)
(g+1)g+b*)
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with @ =€/14 and b*=1. Here, v is the percolation
correlation length exponent. We first note that the
renormalization-group equations that lead to such an €
expansion in fact yield the more general form*°

c 6(q)
M, (L) 1+?(L€~1) , (5.3)
where C is a nonuniversal constant and
1 2
0(q)= —-=. 5.4
D= g1/ 7 G4
At d =6, this yields the exact result
M (L)< (InL)%9 (5.5)

q

Thus, multifracticality in L is replaced by multifractality
in InL, with the nontrivial exact set of exponents 6(q).
As far as we know, this kind of multifractality has not
been identified before. Equation (5.4) yields a divergence
of 6(q) as g —( —%)“L. Since M, decreases monotonical-
ly'? with g, this implies a breakdown of the simple power
law of Eq. (5.5) for g <q.=—1. At least for d =6 it
seems clear that g.= —1 is definitely strictly negative.
This may be interpreted by saying that for g <g,, the mo-
ments M (L) are dominated by very small currents,
whose contribution grows with L faster than a power of
InL.

Given Eq. (5.5), one may now follow the same algebra
as in Secs. II and IVA and find a data collapse of
InP /In(InL) versus y /In(InL), described by the Legendre
transform of 6(q) for ¢ > —1. As in the other case, it is
not obvious what P does for large y. We hope these exact
results will stimulate numerical simulations and direct
derivations of the behavior in six dimensions.

C. Approximant for d <6

For finite but small €, the O (€) term in Eq. (5.2) also
implies a divergence of ¥(q) as g— —(1)". Since
higher-order terms have not yet been calculated, we can
foresee two possible scenarios: if the terms of order €
contain denominators of the form (g +%)k, with no poles
at g > — (1), then one would conclude that the singulari-
ty in §(q) occurs at g, = —(1)+O(¢), moving continu-
ously away from —(4). This would imply a finite nega-
tive value of g, for a range of dimensions below d =6. If
higher-order terms contain poles at smaller values of —g,
then ¢, may have a discontinuity from —(1) to some oth-
er value between —(1) and zero as d moves from 6 to
6—e.

It is important to note that the recursion relations in
the € expansion are analytic because they describe the re-
cursive removal of noncritical degrees of freedom.*!
Thus, at any finite order in € we expect 1(g) to be a ra-
tional function of g. It may have poles (as a function of
q), but we do not foresee the possibility of contributions
to ¥(gq) of order g* with A not an integer. Since a pole at
g =0 is out of the question [¢(0) is the fractal dimension
of the backbone], we expect derivatives of #(q) to be
finite as g —07". Specifically, we doubt that the € expan-
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sion can produce terms of order g* which occur in the ex-
ample given by Mandelbrot, Evertsz, and Hayakawa.>’
The point we emphasize is that the € expansion gives rise
to a much more restricted class of behavior than does
multifractality in the broad sense used in Ref. 36. Final-
ly, the € expansion indicates that the leading corrections
to the asymptotic behavior of M (L) are of relative order
L %, where x =€+ 0(€?). Such a correction is negligible
compared to those of order (InL)~! considered here.
Further non-power-law corrections not contained in the €
expansion are even less important.

In Ref. 12, BMAH used Eq. (5.2) as an approximant
for ¥(q) in general dimensions, and chose the parameters
a and b* to fit the known values of #(0) (backbone) and
¥(1) (resistance). The results gave excellent fits for the
whole curve of ¥(g) for g >0, compared to series re-
sults.!?> Assuming that the functional form (5.2) is indeed
correct for all d <6 [as it would if g, has an € expansion
away from —(1)], then ¥(q) diverges to infinity as g ap-
proaches g,=—min(b*,1) from above. BMAH es-
timated that b*=1.05+0.1, 0.65+0.08, 0.45+0.1, and
0.33%0.3 for d =2, 3, 4, and 5, respectively.

Since #(g) is a monotonically decreasing function, a
divergence in ¥(q) as ¢ —gq,." implies that, for g <g,, one
has 7(q,L)— o as L — o, as indeed happens if M (L)
grows with L faster than a power law (e.g., exponential-
ly).*12 Using Eq. (5.2) with a =1.22 and b*=1.05,'% we
have derived a(q) and f (a) for d =2 [see Egs. (2.11) and
(2.12)]. The results are shown in Fig. 2.*3 It is particular-
ly interesting to note that f(a) [see Fig. 2(a)] looks linear
for large a. The large values of a arise from negative
values of ¢, with a— o for g—gq,". From Egs. (2.11)

[
or (a)
] 1 1
0 2 4 6 a
q (b)
2
|
2 4 [ Q
o L ! 1
_|_

FIG. 2. Multifractal functions based on the approximant of
Eq. (5.2) in two dimensions (after Ref. 12). (a) f(a). (b) g(a).
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and (2.12), one has df /da=q. As q decreases from zero
to g. [see Fig. 2(b)], @ grows from a, (where f has its
maximum) to o, and ¢ =(df /da) changes very slowly
from O to g, [see Fig. 2(b)]. Thus the f(a) curve is local-
ly very close to a straight line. For asymptotically large
a (small currents), the slope approaches g, and then one
ends up with the asymptotic behavior of Eq. (4.17), with
b= —gq,.. However, we note that even when a=7 in Fig.
2, i.e., when i2=L ~7, the effective local slope of f(a),
which we read from Fig. 2(b), is only of order ¢ = —0.4,
compared to g.= —min(b*,1)=—1 here. Given a mea-
sured graph like Fig. 2(a), and fitting its right-hand side
to an effective straight line, thus yields an upper bound
for g, which may be wrong (i.e., less negative) by more
than a factor 2.

It should be noted that the above scenario yields a con-
tinuous function f(a) for all a, although ¥(q) is infinite
for g <g.. Thus, the “phase transition” in ¥(q) is not
reflected by any singularity in f (a).

The specific form Eq. (5.2) may also be used to estimate
the finite-size corrections to f(a), as given by Eq. (4.5b).
We recall that the g dependence of 4, has been found
numerically to be quite small.'>?° Accordingly, the last
term in Eq. (4.5b) shows that these corrections depend on
3% P(g*)/3g*%. From Eq. (5.2), this second derivative is
of order unity for ¢* >0, i.e., for a < ay, but it diverges to
infinity as q*—»qf. Thus, the finite-size deviations are
expected to grow very rapidly as a grows from o to .
Indeed, all the observed numerical estimates of f(a)
show growing finite-size deviations from data collapse
above the peak in f(a). See Sec. VC. We expect similar
behavior in many other multifractal situations.**

D. Ladder configurations

Although the € expansion yields a divergence of (q),
it is not clear whether or not the field theory contains all
the Griffiths-like rare small currents. Here we discuss
their effect on f ().

In Ref. 12, BMAH attributed the divergence of nega-
tive moments of the current to ladder configurations.
They showed that a ladder with k rungs, whose minimal
current for large k is of order

31—k

i(k)~ [2+\/3} —igk, (5.6)
occurs with a probability which is at least as big as

plk)~[pup>(1—p)= Sl =x "k, (5.7)

where u is the branching ratio for self-avoiding walks on
the dual lattice and z is the coordination number. Thus,

dk -—2(q51+1)

P(iY)=p(k)—=~i , (5.8)
P
which is equivalent to Eq. (4.16) with
Inx
2b=—2q.,=—— . .9
qc1 lnio (5 )

For d =2, we set z =4, u~3(2d —3)=3, and p =p, =

2

so that 2¢, ~—1.8. Assuming that, for q<4. i(k)
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dominates the moment M, . and assuming that for a clus-

ter of size L one has k «< L”, one ends up with Eq. (2.3a).
In fact, BMAH used such ladder configurations to

prove that Eq. (2.3a) holds for q <gq,.,, where a lower

bound (which was negative) for g., was given. BMAH

also estimated q., from series expansions for the concen-
tration dependence of the cluster averages of M (x,x’).
These averages diverged at a threshold p, which became
q dependent for g <gq.;, with g.;=—0.3 and —0.6 for
d =2 and 3, respectively, indicating an exponential de-
crease of the small currents. [To see this, note that for
p.(q) <p. the probability that a cluster of s sites occurs is
of order?* exp( —cs), where ¢ >0 for p.(q)#p,.. To have a
divergent M (L) for L — o at p.(q)<p, thus requires
that i29~exp(cs), where i, is the minimum current in the
cluster of s sites.] As stated above, the thresholds g,.; and
q. may differ from each other if the network contains
currents which have some behavior intermediate between
a power law and Eq. (2.3a), as in Eq. (2.3b).

At least in two dimensions, numerical work does tend
to suggest that g. and g, are indeed different. In particu-
lar, note the estimate given after Eq. (5.9), ¢, =~ —0.9,
which is surprisingly close to the BMAH approximant
value of g.=—1. In contrast, the work of Batrouni,
Hansen, and Roux'® indicates that the limiting (for
a— o) slope df/da=—q, becomes very small as
L — . Their small currents (at large a) are probably
not due to ladders, both because the associated value of
g. is not as expected and also because to see ladders
would require an astronomically large number of trials.

Accordingly, it is of interest to see qualitatively how
f(a,L) behaves for large a. To see the effect on f(a,L)
of ladders in more detail, we need to estimate the prefac-
tors in Egs. (5.6) and (5.7). We write

i(k)~L "%

plk)~x kL =F,

’ (5.10a)
(5.10b)

Equation (5.10a) expresses the fact that a ladder will most
likely be attached in parallel with the most probable
current, ib2~L “_ 1t is difficult to estimate the probabil-
ity of having a ladder of k links. The presence of the fac-
tor x ~* is clear. However, the prefactor takes proper ac-
count of the fact that we wish to consider only ladders
which are part of the network connecting two sites
separated by a distance of order L. This constraint prob-
ably introduces a power-law prefactor as written in Eq.
(5.10b). We do not estimate k, although we believe it to
be non-negative. Using Eq. (5.10) we have

dk
P =p(k)— 5.11
(»)=p( )dy ( a)
Nelnx[(lni/lnio)+(a0/2)(lnL/lniO)]L_h(21ni0)_1 ‘
(5.11b)
Therefore,
_InPQy) .,
fla) InL bla—ay)—h , (5.12)
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with b =Inx /(21niy)= —gq,,. For finite L, we can apply
this result up to a maximum value of «, given by
pax~LP/InL, which for our purposes is infinite, since it
is larger than any other relevant quantities. For a only
somewhat larger than ag Eq. (5.12) only gives a lower
bound on f(a): currents corresponding to such values of
a may arise on many other bonds, and not only on
ladders. The actual f () will thus be above the straight
line of Eq. (5.12). However, for any finite L there exists a
value a, (L) such that for a>a,(L) one remains practi-
cally only with the ladder currents. This crossover value
a, (L) is expected to grow as L increases. This reasoning
yields the scenario plotted schematically in Fig. 3: For
any finite L, f(a,L) decreases slowly up to a=a,(L),
and then drops to the dashed line, Eq. (5.12), correspond-
ing to the ladders (drawn assuming A =0). The slope of
this dashed line, g.;, may be much larger than that of
fla,L) for a<a,(L). As Lo, a,(L)— o, and the
asymptotic slope of f(a,L— ), q,, may, in fact, be
smaller in magnitude than |g.,|. This asymptotic f(a)
curve is shown by the dot-dashed line in Fig. 3. In sum-
mary, in this scenario, the ladders do not affect the
asymptotic f ().

The scenario of Fig. 3 can be discussed in terms of the
behavior of 7(q,L). As Fig. 3 implies, the ladder
configurations dominate the current distribution for
sufficiently small i, say for i <i,(L). In this range we ex-
pect Eq. (4.16) to hold, with b = —gq.,. We write

M,(L)=I,+1I, (5.13)

4 fa)

IN
Qc a, u_)\ a
AN
AN
N

FIG. 3. Scenario for f(a,L) for three large L’s and a > «a.
The qualitative points we stress here are as follows. (a) As L in-
creases, the quasilinear part of f(a,L) evolves into the asymp-
totic f () (dash-dotted line) which has a small slope (according
to Ref. 16). (b) For any finite L, f(a,L) must eventually coin-
cide with the asymptotic result for the exponentially small
currents in the ladder configurations (Ref. 12) (dashed line).
This “ladder” line ends at a,,,~L”/InL. (c) The crossover to
the ladders occurs at a value of a, a,(L), which becomes

infinite as L — oo, so that asymptotically the ladders do not

affect f(a). (d) If there is a phase transition to an exactly linear
f(a), it occurs at a > .

with
y

n=f ', dy P(y,L)exp(—gy) , (5.14)
ymax

Iz:fyl dy expl(gc;—q)y] (5.15a)

= {exp[(g.1—q)Wmax ] —expl(g.1—q)¥1 1} /(g1 —q)
(5.15b)

where y,(L)= —1Ini?(L) and where we used Eq. (4.16) in
Eq. (5.15a). It is now easy to see that I, is negligibly
small for g >gq,,, where M, (L) is dominated by I,. How-
ever, for g <q,.,, I, is dominated by its upper cutoff, so
that

2 )(q—'qcl) .

12Ocexp[(qcl—q)ymax]oc(imin (516)

Since i,;, decays faster than a power of L, I, will dom-
inate M, and we find

7(q,L)=(q,1—q)Y max /InL ~(g,;—q)L?/InL . (5.17)

Thus, 7(q,L) is linear in g, with a slope that diverges to
oo with L.

E. Numerical information

Now we review briefly information available from ex-
isting numerical studies of the distribution of currents.
Most of these studies exhibit an apparent straight line for
f(a) at large a, as in Eq. (4.17). The corresponding
asymptotic slopes are presented in Table I and are dis-
cussed below. We remind the reader that a linear result
of the form of Eq. (4.17) would imply that g, = —b. With
the exceptions noted below, the results were obtained as
follows. The system studied was an L XL (or for the
three-dimensional work?® L X L X L) system across which
a potential difference was imposed. Then the distribution
of currents P(i ), or equivalently P(—Ini 2), was obtained
by an ensemble average. Kahng’s L =4 result!® was ob-
tained by an exact enumeration of the configurational
average for a system of 4 X 4 sites. Straley’s results!” were
obtained by imposing an electric field throughout the

TABLE I. Values of the asymptotic slope of f(a), b for the
current distribution on a percolation cluster.

Ref. L b [Eq. (4.17)] blnL
Two dimensions
33 90 0.255 1.15
19 4 1.15 1.59
17 10 0.48 1.1
17 20 0.38 1.14
17 40 0.31 1.14
17 80 0.26 1.14
16 32 0.31 1.07
16 64 0.25 1.04
16 128 0.18 0.87
Three dimensions
20 18 0.8 2.3
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sample. His results displayed the expected dependence
on the orientation of the electric field.

The results of these simulations are in broad agreement
with one another. For a less than the value a,, for which
f(a) is maximal, df(a)/da is large (except when «a is
very near «) and partly for this reason data collapse is
observed, i.e., f(a) does not display noticeable depen-
dence on L. For a>a, (but note that the sign conven-
tion for a in Ref. 16 differs from the standard one used by
other authors), f(a) has significant dependence on L.
Very crudely, as noted in Ref. 16, for a>a, > a,, one
may describe f (a,L) by

fla,L)=f(a.)—b(L)a—a,), (5.18)

with a slope b (L) which decreases as L increases. The
data of Ref. 16 were roughly described by

b=a/InL , (5.19a)

which would imply that g,=b(w)=0. Such a con-
clusion disagrees with our arguments given in Secs. III
and IV. Moreover, the data interpretation was based on
the assumption that f could not become negative. Drop-
ping that assumption yields an asymptotic estimate
b,=% as L—c (A. Hansen, private communication).
We therefore think that probably a better description of
the results would involve setting

b=b_,+a/InL . (5.19b)

Table I presents values of b InL, which would be indepen-
dent of L if Eq. (5.19a) were exactly correct. The numeri-
cal results are not really accurate enough to distinguish
between the two possibilities of Egs. (5.19a) and (5.19b),
much less to determine the true corrections of order
(InL)™!, given in Eq. (4.5b), which need not be a simple
linear function of a as assumed by both Egs. (5.19a) and
(5.19b). In fact, examination of the curves of Batrouni,
Hansen, and Roux!® shows that not only do neither of
these two equations fit the asymptotic slope very well, but
also f(a) has some curvature which confirms that the
finite-size corrections are not simply linear functions of a.
Indeed, there are regions of f(«) for finite L for which
azf/aa2>0, a situation which is excluded for L — o,
but which may arise for finite L (see Fig. 3). Similar
“anomalous” finite-size corrections have been analyzed
by Mandelbrot®® and co-workers®® for special models of
multifractality.

In summary, however, with the above caveats, one may
say that the data are described by Eq. (5.19a) or by Eq.
(5.19b) with a small (possibly zero) value of b, and with
a=~1.1%£0.05 in two dimensions. Unfortunately, the nu-
merical difficulties prevent meaningful determinations at
higher spatial dimensions where the prediction from the €
expansion that g,70 might be tested. In fact, data at
d =5 and 6, might provide crucial corroboration of our
assertion that g, 0.

VI. CONCLUSIONS

In this paper we have studied the distribution of
currents in the random diluted resistor network at the
percolation threshold when a unit current is inserted at
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one terminal and removed at another at a separation of
order L in a sample of linear size of order L. Our main
conclusions are as follows.

(1) For Ini /InL finite, the distribution of currents is a
function of the variable Ini2/(InL ), with ¢=1. In terms
of this variable the distribution is thus essentially unifrac-
tal.

(2) In Sec. III, by considering the relation between the
moments of the currents and the cumulant moments of
the logarithms of the currents, we found that the assump-
tion of power-law scaling for the former leads to the pre-
diction for the latter (denoted u, ):

i~ “InL (6.1a)
where the ¥ *”s are universal constants which are deriva-
tives of the so-called noise exponents for the random
resistor network. This striking result can then be used to
obtain the moments of the logarithms of the currents
(denoted ) to be

i ~(aglnL)*+0[(InL)* '],

with a,=1!. These predictions are consistent with
series work [see paper II (Ref. 25)] and existing transfer
matrix data of Duering et al.>* These results should hold
for spatial dimensionality, d, greater than one and small-
er than six. (Results for d =1 are given elsewhere.?’)

(3) Further to point (2): one can construct a family of
ratios of the form u,u,/(pu,u,), where k +I1=m +n,
whose asymptotic value is predicted to be unity.

(4) In Sec. IV, we discussed the corrections to scaling
of Eq. (6.1). In particular, we found corrections, given in
Eq. (3.5), in the variables k/InL and k2?/(InL). Since
these corrections are linear in (InL) ™!, they impose severe
practical limitations on the accuracy with which Egs.
(6.1) can be verified numerically. They also imply similar
finite-size corrections to scaling for other systems, such as
DLA, viscous fingering, or dielectric breakdown, which
are described by the multifractal picture.**

(5) Under the assumption that the multifractal function
f(a) is analytic near its maximum, or equivalently, that
the gth moment of the current distribution is analytic in ¢
near g =0, we presented (in Sec. IV) an alternative
analysis of the finite-size corrections of order (InL)” .
The results so obtained for f (a) agree with those given in
Eq. (3.5) obtained from the cumulant moments, uj,, and
with those found previously in the mathematical litera-
ture.’> The fact that this alternative analysis of the
finite-size corrections agrees exactly with that based on a
study of the cumulants lends support to the assumption
that, g., the critical value of g where the analyticity of
the moments breaks down, is not zero. The form of the
finite-size corrections we find is consistent with some
model analytic®>3¢ work.

(6) There exists a value of g, such that the gth moment
of the current distribution scales with a power law (q)
which diverges for g <gq,. This fact indicates that
df /da—q, as a— o. A consequence of this fact is that
the distribution function for currents has an asymptotic
power-law form at small currents:

(6.1b)

—2(g,+1)

P(i?)~i (6.2)
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(7) Both the € expansion and our analyticity arguments
suggest that g, is strictly negative: g, <0. Numerical
data are not yet sufficiently comprehensive to confirm or
refute this assertion.

(8) We showed (in Fig. 3) a scenario for the evolution
with L of f(a,L) which incorporates (a) the analytic
structure required by exponentially small currents in
ladder configurations'? and (b) the numerical studies of
Batrouni, Hansen, and Roux!® which for large L show a
small slope for df /d a in the limit of large «.

(9) At d =6, we find the exact result that

M, (L)~(InL)*?,

with 6(q) given by Eq. (5.4).
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APPENDIX: EXACT RESULTS
FOR HIERARCHICAL MODELS

We start with the MGF shown in Fig. 1. Similar re-
sults hold for a general family of randomized hierarchical
structures.*> The MGF has been found to describe quali-
tatively many properties of the spanning cluster for two-
dimensional percolation.?? A unit current is injected into
one end and extracted from the other end of the struc-
ture. After N iterations, the currents in the bonds are
given by

iG,D=(LY(3),

where j,/=0,1,...,N and j+I!/=N. The number of
bonds carrying exactly this current is

(A1)

o [N
n(j,1) [j

Nl_j]zN—j—13j ,

and the total number of backbone bonds is 6. The linear
size scales as L =3". Thus,

(A2)

N

M,=6"" 3 n(jDi(j,D*
j,1=0
={[24+3(1)¥+(2)H]/6}V, (A3)
and
P(g)—9(0)={In[2+3(1)**+(3)**]—1n6} /In3 . (A4)
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Using Egs. (3.1) and (3.2), it is now straightforward to
derive u; and pj. We find

pi=p;=—[1In(3)+In(})]N =1.482N , (A5a)
ps={Z[In(3)*+2[In(})]?
—[{In(H)+In(H) PN =1.702N , (A5b)

p§=~—0.1354N, and pi= —5.581N. From this we find
e ~(1.482N)K[1+0.387k (k —1)/N +O(N )] .
(A6)

Since N ~InL, this result is of the form of Eq. (3.5).
Equations (A5) and (A6) also result from a direct averag-
ing over |Ini(j,1)*|¥ with the weights of Eq. (A2),
confirming the use of Eqgs. (3.2) and (3.3). Note that the
above asymptotic results hold only for k(k—1)
<<N~InL. We will not consider the opposite limit
when k(k —1)>>N.

The numerical values in Eq. (AS5) may be used to obtain
the expansion, Eq. (4.7b), as an approximant for InP near
its maximum. For large a (small currents), P is dominat-
ed by Eq. (A2), with j near N and / near zero. Concen-
trating only on the points with /=0, and assuming
1 << N —j << N so that

In [?’]zw — )N ,
we have
Inn(i)~C(N)—j[InN +1n2—1In3]
=C(N)+v Ini (A7)
with
ye InN +11:1142—1n3 . (A8)

Since the effective slope ¥ depends only very weakly on
L, via In N ~In(InL), data on a finite range of sizes might
mislead one to conclude that the slope ¥y approaches a
constant value, and therefore that there exists a finite
negative threshold g.. Indeed, for 40 <N <320, Eq. (A8)
yields 2.4 <y =3.9, in rough agreement with recent nu-
merical plots of a coarse grained version’” of Inn, as given
in Eq. (A2). However, we note that Eq. (A7) is only a
rough approximation, and that In#n is never really linear
in Ini?, so that, in fact, g,=— . As we discussed, for
the percolating cluster, linearity at large a results from
the exponentially small currents, which are not included
in the hierarchical model. Therefore, we believe that
hierarchical models completely miss the dominant effects
of small currents. However, they are useful to illustrate
the other features discussed in the present paper.
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