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Multipole Approach to Orientational Interactions in Solid C60

Abstract
We calculate electrostatic multipole moments of C60 up to l=18 using the quantum-mechanical charge
distribution with icosahedral symmetry obtained from ab initio calculations. It is found that the second
nonzero moment (l=10) is comparable to the first nonzero moment (l=6). The values of several low-order
multipole moments are almost 10 times smaller than those found from the charge distribution of recently
proposed potential models and thus the actual Coulomb interaction between C60 molecules is much smaller
than previously predicted. Much better agreement with calculated multipoles is obtained from a model which
introduces point charges at the center of hexagonal and pentagonal plaquettes, following the physical
arguments of David et al. [Nature 353, 147 (1991)]. We show that a multipole expansion including only l=6
and 10 moments can predict the potential due to a C60 molecule at distances R≥2R0 within an error of about
5%, where R0 is the radius of the C60 molecule. At distances less than R<3/2R0 the multipole expansion is
qualitatively incorrect even if one includes the terms up to l=18, indicating the importance of short-range
quantum effects at these distances. The Coulomb interaction we obtain predicts two nearly degenerate, locally
stable configurations for solid C60: (1) a metastable structure with Pa3 symmetry and setting angle φ=23.3°,
close to experimentally observed value, and (2) a global minimum with the Pa3 structure but a setting angle
φ=93.6°. We give physical arguments for expecting two such configurations and give a qualitative explanation
for their near degeneracy. We conclude that a satisfactory intermolecular potential requires a first-principles
calculation of the quantum-mechanical short-range repulsive interactions.
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Multipole approach to orientational interactions in solid Cso

T. Yildirim, A. B. Harris, and S. C. Erwin
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania lÃ0$

M. R. Pederson
Complex Systems Theory Branch, Naval Research Laboratory, Washington, D.C. 20815-5000

(23 October 1992; re~ised manuscript received 8 February 1993)

We calculate electrostatic multipole moments of C60 up to l = 18 using the quantum-mechanical
charge distribution with icosahedral symmetry obtained from ab initio calculations. It is found
that the second nonzero moment (l = 10) is comparable to the first nonzero moment (l = 6).
The values of several low-order multipole moments are almost ten times smaller than those found
from the charge distribution of recently proposed potential models and thus the actual Coulomb
interaction between C60 is much smaller than previously predicted. Much better agreement with
calculated multipoles is obtained from a model which introduces point charges at the center of
hexagonal and pentagonal plaquettes, following the physical arguments of David et al [Nat.ure
353, 147 (1991)j. We show that a multipole expansion including only l = 6 and 10 moments can
predict the potential due to a molecule at distances R ) 2Ro within an error of about 5%, where

RD is the radius of the Ceo molecule. At distances less than R ( ~Re the multipole expansion is
qualitatively incorrect even if one includes the terms up to l = 18, indicating the importance of
short-range quantum e8'ects at these distances. The Coulomb interaction we obtain predicts two
nearly degenerate, locally stable configurations for solid Ceo'. (1) a metastable structure with Pa3
symmetry and setting angle P = 23.3', close to experimentally observed value, and (2) a global
minimum with the Pa3 structure but a setting angle P = 93.6'. We give physical arguments for

expecting two such configurations and give a qualitative explanation for their near degeneracy. We
conclude that a satisfactory intermolecular potential requires a first-principles calculation of the
quantum-mechanical short-range repulsive interactions.

I. INTRODUCTION

Solid C60 is a system that is interesting for both theo-
retical and technological reasons. The metal-doped sys-
tems, such as KsCso, are moderately high-temperature
superconductors, whereas undoped C60 shows an ori-
entational ordering transition. This paper is concerned
with the quantum-mechanical basis for models of orien-
tational interactions between C6o molecules.

Before discussing the orientational properties of solid
Csp, we briefly review some properties of the isolated
molecule. The Cso molecule is a nearly spherical molecule
in the shape of a truncated icosahedron. (For a descrip-
tion of icosahedra see Ref. 2). The Cso truncated icosa-
hedra thus represent a replica, on an atomic scale, of a
soccer ball, as pictured in Ref. 3. The molecule has 20
hexagonal and 12 pentagonal faces. The pentagons are
regular (i.e., all sides are equal), whereas the hexagons
consist of alternate single and double bonds having re-
spective lengths of 1.45 A and 1.40 A.. s For some pur-
poses, e.g. , where only symmetry is important, it is con-
venient to consider the simpler untruncated icosahedron
having 12 vertices and 20 faces. When circumscribed
by a cube such that each face of the cube has a twofold
axis passing through its center, one obtains the schematic
representation shown in Fig. 1(a). This orientation is re-
ferred to as the "standard" orientation.

The orientational properties of solid crystalline C60
are unique and quite interesting. This solid undergoes
a phase transition6 from a high-temperature orientation-
ally disordered phase7 to a low-temperature orientation-
ally ordered phase whose structure is that of space group
Pa3. In this structure each of the four molecules in
the unit cell is rotated about its local [1,1,1] direction,
starting from the standard orientation, through a setting
angle P, whose value is about 22' —26'.s ii (The sym-
metry and description of this structure is discussed in
detail in Ref. 12.) Although the nature of the Landau
theory to describe this transition was first obtainedi2 on
the basis of symmetry alone, it is of course interesting to
give a statistical treatment of this transition and other
orientational properties 4 5 starting from a microscopic
orientational Hamiltonian.

Clearly, to understand many of the properties of Csp
and its derivatives, it is essential to have a good in-
termolecular potential. In many contexts such a po-
tential may be viewed as consisting of two parts: one
the isotropic (orientation-independent) part and the
other the orientation-dependent part. The descrip-
tion of the dynamics of the center of mass of the
molecules depends mainly on the isotropic part,
whereas orientational dynamics of the molecules depends
mainly on the orientational-dependent part of the in-
termolecular potential, ' which is more sensitive to
the model chosen. A reasonable orientational potential
must be consistent with the stability of the observed Paa
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FIG. 1. Two difFerent orientations of C60. (a) Shown here
is an icosahedron inscribed in a cube. Only the edges of the
icosahedron which lie in the faces of the cube are shown. The
12 vertices of the icosahedron are located at ends of the edges
which lie in the faces of the cube. For the truncated icosahe-
dron, i.e., for C6o, each vertex of the icosahedron is flattened
into a pentagon (Refs. 2 and 12). In this orientation the x, y,
and z axes are twofoM axes. The primed coordinate system
(in which the z' axis is a fivefold axis) is obtained by rotation
through an angle 8 31.72' about the y axis. (b) Projection
onto the x'-y'axis of C60 when the z' axis coincides with a
fivefold symmetry axis (whose positive direction is out of the
page). Note that the x'-z' plane is a mirror plane. Multipole
moments are specifled in this prime coordinate system.

structure. s io The early potentials relied on atom-atom
Lennard- Jones potentials. Molecular-dynamics simula-
tions using such potentials found that the orientation-
ally ordered cubic structure was unstable to a tetragonal
distortion. is It was then clear that better orientational
potentials were required. By now two such improved in-
termolecular potentials have been proposed. i7'is In both
cases the isotropic part of the potential is well modeled
by Lennard-Jones potentials taken from graphite. How-
ever, to stabilize the observed Pa3 structure, both groups
introduced charges on the single and double bonds which
then gave rise to additional orientation-dependent in-
termolecular Coulomb interactions. By adjusting these
charges it was possible to obtain an orientational poten-
tial consistent with the observed Pa3 structure. Lu, Li,
and Martini~ (LLM) put q and —2q (q = 0.27e) point
charges at the center of the single and double bonds, re-
spectively. Sprik, Cheng, and Kleinis (SCK) put charges
q = 0.175e on the carbon sites and —2q on the center
of double bonds. A detailed study of the lattice dynam-
ics from these potentials can be found in Ref. 15. Even
though these potentials give reasonable results for the lat-
tice dynamics of Cso concerning the center-of-mass mo-
tions, there are problems with their orientational parts.
For instance, the LI M potential predicts another mini-
mum in the potential about 100 meV (150 meV if one
uses only the Coulomb part of it) above the Pa3 ground-
state energy. These values are almost one order of mag-
nitude larger than experimental values. For instance, by
inelastic neutron scattering, ultrasonic attenuation,
and thermal conductivity measurements, it has been
established that the energy difference between these two
minima is about 12 meV. (These potentials also predict
that these two minima are separated by a potential bar-
rier of 300 meV. This value is indeed in good agreement

with the experimental value one deduces from the tem-
perature at which orientational freezing occurs. ) The
other unpleasant thing about these potentials is that
they assume too much charge in the double and single
bonds. Quantum-mechanical calculations of electronic
wave functions of Cso (Refs. 22 and 23) as well as the
empirical evidence of bond lengths suggest that the
so-called "double" and "single" bonds between carbon
atoms in Cso are not nearly as different as in other hy-
drocarbons. For the LLM case, the single bond even has
positive charge with respect to carbon sites, which is un-

physical. Here we carry out ab initio calculations of the
electronic charge density based on the local-density ap-
proximation (LDA).2s To the extent that the LLM and
SCK potentials give results in agreement with theory,
we would view them as being satisfactory ad hoc phe-
nomenological potentials, whose explanation from first
principles has yet to be given. The aim of this paper
is to give a fundamental discussion of the orientational
interactions between Cso molecules in the solid state.

Specifically, the first aim of this paper is to verify that
currently available intermolecular potentials are unphys-
ical in that they do not refiect the actual Coulomb inter-
action between Cso molecules. Thus the statement that
the bond charges represent the "small charge transfer be-
tween two types of bonds in the Cso molecule" i7 is not
substantiated by our calculations. To quantify the com-
parison between the bond charges and the LDA charge
density, we first calculate the multipole moments of Cso
using the quantum-mechanical charge distribution from
ab initio calculations in two different ways. We then com-
pare these multipoles with those obtained from the point
charge models of LLM and SCK. We find that actual val-
ues of the lowest moments and Coulomb interaction po-
tential are one order smaller than those predicted from
these intermolecular potentials. Consequently, the bond-
charge models, although useful in some contexts, cannot
be justified from first principles.

Our second aim is to discuss the validity of a mul-

tipole expansion for Cso in the solid. We show that a
multipole expansion including t = 6 and t = 10 can pre-
dict the potential due to a Cso molecule for distances
(from its center) larger than twice the radius of the Cso
molecule. For points closer than this distance, but still
outside the outer radius of the molecule, the multipole
expansion converges only slowly and one must include
terms beyond t = 18. Since many atoms on a neighbor-
ing C60 molecule are inside this distance, the multipole
expansion is dangerously slowly convergent.

Our last aim is to discuss the Coulomb interactions
between Cso molecules and to try to answer the follow-
ing question: "Do Coulomb interactions by themselves
stabilize the observed Pa3 structure or not?" For this we
first propose a number of point-charge models which all
give the correct values of the first five nonzero multipoles
of C60. Using these models we show that Coulomb in-
teractions stabilize the Pa3 structure, but with a setting
angle P = 93.6, in contradiction to the experimental
values P = 22', 26'. io s This result gives rise to two pos-
sibilities: either the multipole expansion is too slowly
convergent to be used to describe the Fm3m ~ Pa3
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transition or an explanation of this transition requires
short-range quantum-mechanical interactions. Up to now
such short-range interactions have been modeled by the
6-12 Lennard-Jones potential which, as we have men-
tioned, has the wrong orientational dependence to ex-
plain the stability of the observed Pa3 structure. Since
the orientational dependence of this potential is compa-
rable to the Coulomb energy we obtain here, one should
be careful in modeling the short-range potential by such
a Lennard-Jones form. In summary, the orientational
interaction between Csp molecules consists of the inter-
action between the static charge distributions on the two
molecules which we have calculated here. In addition,
there are short-ranged quantum-mechanical repulsive in-
teractions and van der Waals atractive interactions, both
of which ought to be calculated from a reliable quantum-
mechanical calculation.

BrieBy, this paper is organized as follows. In Sec. II we
give the details of the calculation of multipole moments.
We discuss how (a) the electronic wave functions for the
Csp molecule are calculated and (b) the integration over
the resulting charge density is done to give the multipole
moments. In Sec. III we give an alternative determina-
tion of the multipole moments using a least-squares Bt of
the multipole potential to the ab initio potential. Com-
parison of both methods and the validity of the multipole
expansion is also discussed in this section. In Sec. IV we
discuss previous point-charge models and propose models
which more closely reproduce the the multipoles obtained
from our ab initio calculations. In Sec. V we discuss the
Coulomb interaction and the orientational dynamics of
Csp molecules in solid Csp by using point-charge models.
Section VI is devoted to the discussion of our results and
conclusions.

this method takes the one-electron basis functions to be
symmetry-adapted combinations of atomiclike orbitals.
This set is then supplemented by additional functions
to improve the completeness of the basis. The orbitals
are expanded on a set of ten Gaussian functions of s
and p symmetry, with Gaussian exponents ranging from

0.1 to 4000 bohr 2. A "variational integration mesh"
allows direct numerical evaluation, to an arbitrary pre-
scribed tolerance, of the Hamiltonian and overlap ma-
trix elements. Standard diagonalization then leads to
an updated charge density and effective potential, and
a self-consistent solution is arrived at within about ten
iterations.

Once the self-consistent ground-state wave functions
have been calculated, the density and potential can be
computed on an arbitrary set of points. In the remain-
der of this paper, p(r) will be understood as the den-
sity due to the occupied valence states only, although we
note again that core states are explicitly included in the
self-consistency cycle. As we shall see, the contributions
to the multipole moments due to the charge density of
the core electrons is conveniently treated. (In our calcu-
lation the separation of charge density into "core" and
"valence" contributions is a natural one which is eas-
ily implemented. ) By using a Gaussian basis set, the
Coulomb potential (understood to be based on the total
electron density) can be expressed directly in terms of in-
tegrals of the Gaussian functions, bypassing the need for
numerical solution of the Poisson equation. The result-
ing expression for 4(r) requires only a one-dimensional
integration to evaluate the incomplete p function, which
is easily computed to arbitrary precision.

B. Multipole moments

II. CALCULATION OF THE MULTIPOLES
OF Cap

In this section we describe the calculation of the mul-

tipoles of C60. This calculation requires the evaluation
of the following three-dimensional integral:

A. Ab Initio electronic wave functions
r~dr sin 8 d6t

0
d4 ~'~

T( )riY'(0 &)

In order to evaluate the Csp multipole moments,
we have computed the electronic charge density p(r)
and Coulomb potential C(r) directly from ground-state
Csp wave functions. These wave functions are cal-
culated self-consistently within the framework of the
LDA. zs All electrons are included on equal footing
(the pseudopotential approximation is not made), and
full orbital relaxation of both core and valence states
is allowed. Electron correlation eEects are included
through the standard LDA treatment, using the Perdew-
Zunger parametrization of the Ceperly-Alder exchange-
correlation functional. ~6 The ground-state geometry pre-
dicted by LDA is used here, with hexagonal and pentag-
onal bond lengths of 1.40 A and 1.45, A. , respectively.

To solve the Kohn-Sham equations, we have used
the linear-combination-of-Gaussian-orbitals cluster code
developed at the Naval Research Laboratory by Peder-
son and Jackson. 7 As described in detail elsewhere, "

for the multipole Q& of order t. Here, pT(r) is the total
charge density of the Csp molecule (including core elec-
trons and the positive nuclear charges) and Y& (8, P) is
the spherical harmonic of order l. It is a simple conse-
quence of Gauss's law that outside a spherically symmet-
ric charge distribution the electric fields and potentials
are the same as if that charge distribution were concen-
trated at its center. Since the electronic wave functions
we obtain for the core electrons are very close to being
spherically symmetric about their atomic centers, we can
take account of them by combining the two core electrons
on each atom with the six proton charges in the nucleus.
Thus pT (r) is replaced by two contributions: one, p(r),
from the density due to the occupied valence states, and
60 point charges of +4~e~ at the carbon nuclei. When
applied to interactions between Csp molecules, this ap-
proximation is an excellent one.
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Since by now it has been well established by both
NMR (Ref. 4) and neutron experiments s that the molec-
ular symmetry of Cso in the solid is icosahedral, the
nonzero multipoles of Cso given in Eq. (1) are I

6, 10, 12, 16, 18, ... and m = 0, +2, +4, ..., +l with re-
spect to a reference frame in which twofold axes lie along
the x, y, and z axes, as shown in Fig. 1(a). The odd m
terms are zero because of reflection symmetry. As an al-
ternative to this standard orientation reference frame, it
is more convenient to calculate multipoles in a reference
frame where a fivefold symmetry axis of Cso coincides
with the z axis. In this case, the molecule is oriented so
that one pentagonal facet is perpendicular to the z axis,
as shown in Fig. 1(b). In this frame, because of the five-
fold symmetry, Qi vanishes unless m is 0, +5, .... Thus,
for instance, for l = 6 we have only three nonzero multi-
poles, Qso and Qs . The phase of the complex quantity
QP depends on how the pentagonal facet is oriented, sub-
ject to its being in an x'-y' plane. For the choice shown
in Fig. 1(b), the x'-z' plane is a reflection plane, and con-
sequently the Q&

's are all real. The values given below
all refer to this reference frame.

To save computer time and also to increase accuracy
in the evaluation of three-dimensional integrals, one can
reduce the integration limits given in Eq. (1) using icosa-
hedral symmetry. In our calculations we reduced the in-
tegration limits to 0 ( 8 ( a/2 and 0 ( P ( vr/5, which
results from both inversion and fivefold symmetry of Ih, .
Note that this region, which is only 1/20 of the entire
region, can still be reduced by a factor of 3 because Ih,
has 120 operations (60 if we omit inversion). What this
means is that we are not using the full symmetry. In
other words, in our integration region we have three car-
bon sites and they will be treated independently. Thus
our results are unlikely to be consistent with symmetry
if they are wrong. On the other hand, if we had used full
symmetry, the results would have been guaranteed to be
consistent with symmetry whether or not they were cor-
rect. Below we will use this fact to provide one check of
our results. For the integration of radial distance, we set
the limits to 0.5Ro ( r ( 2Ro where Ro = 3.5485 A. is
the radius of Cso molecule. Inclusion of either the larger

r or smaller r region does not materially affect the in-
tegration because the electron density at these distances
goes to zero exponentially. To be precise, we find that
only 0.17 (out of 240) electrons lie outside these limits on
the radial integration.

Having summarized the reference frame and integra-
tion limits used, the contribution to the multipole QP
from the 240 valence electrons is now given by

Qi ——20
2Rp

r2dr
.5Rp

m/2

sin 8d8

(2)

The contribution to multipoles from the efFective core
charges of +4~e~ on each nucleus can be easily calculated
from a single summation over all C atoms and will be
added to QP given in Eq. (2).

Since ab initio calculation of p(r) can be done effi-
ciently for a large set of points, we first calculated p(r) at
43 x 90 x 36 points for r x 8 x P in the reduced region de-
scribed above. Then we developed a program to calculate
p(r) using a spline fitzs of these points. For the points
close to carbon sites [where variation of p(r) is large]
p(r) is calculated from a spline of 31 x 26 x 31 points uni-
formly distributed in a sphere of radius 0.725 A centered
at the carbon site. The values of the electron density p(r)
obtained from the spline program described above and
from the wave functions directly are identical to within a
maximum error of less than 1%. The only remaining dif-
ficulty in numerical integration is that the integrand is a
fast oscillatory function of the variables 8 and P. For this
reason, we divide the integration region given in Eq. (2)
into 10 x 10 x 10 subintervals. Integration in each subin-
terval is evaluated to an accuracy of 0.1% requiring, in
the worst case, (250)s function evaluations.

In the first column of Table I we present numerical
values of multipoles of Cso obtained by direct integra-
tion as described above. We also give multipoles from
the point-charge models of LLM and SCK. The most im-

TABLE I. Multipoles of C6o (in units of ~e~) obtained from the quantum-mechanical charge
distribution and the point-charge models of two recently proposed potential models. Values given
in the second and third columns are obtained by 3D integration and a least-squares fit to potential
values at 1000 nonequivalent points, respectively. The columns labeled LLM and SCK give the
values resulting from the effective point charges in their respective models. The last column shows
the ratio between our results and those of LLM for the multipole moments. The values of the
multipoles for m g 0 can be obtained from q~ given here and the ratios q& /Q& given in Table II.

Q6
0

Qvo
0

0
Qz6

0
Q&8

9(3 DI)

0.295
3.550
-0.751
—2.614
22.895

9(LSQ)

0.285
3.626

—0.793
—2.431
19.997

9(LLM)

3.801
1.863

—7.320
1.214

—0.031

9(SCK)

1.598
0.202

—3.637
—0.854
4.790

9(LLM)
9(3 DI)

12.88
0.52
9.75

—0.47
-0.00135
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III. MULTIPOLE EXPANSIGN
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al face. The large maximum at about 6.5 cor-of a pentagona ace.

respon s o pas
'd t assing through an electron-ric regi

ble bond.
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molecule by the following multipole expansion:

4. Ql ~- Q/ Y-(04,) (3)'("'~)=&-~t+I ' - (Qt=p m= —I,

As discusse in e pd the A pendix, for each t ( 30 the ratio

( , given in Table II, is the same for all charge dis-

onl one unknown Qi. So, if we know the potentia r' 14(r)

at the values of Qi found in Sec. II.
The function that we are going to minimize is

double bond
single bond

pentagon
hexagon

(C(r, ) —Cq(r;) l~'0 0

1=1
(4)

0. 2 0. 4 0. 6 0. 8

Here is e numN ' th mber of points used in the t and C'q r
t' 1 at oint r obtained by quasiana ytic

B is the average fractional error per point. efunction is
terminate the t summation in q. ( ) a

R with respect to variables Qi for t = 6, 10, Iimize wi
and 18. We used many difFerent sets oof 1000 inequiva-
lent oints and the results did not vary significantly. For

r & —~~~, it is not possible to predictthe oints where r & z~~~, i is
the potential using the multip pole ex ansion given in Eq.
(3) W do not even get the sign righ .' ht. This means t ae o

h ld worr about quantum-mechanica al efFects at
r & 2&- the multipolethese distances. For distances r

orks very well and by including only l = 6expansion wor s very
1 due to a Csoand t = 10 one can predict the potentia ue

molecule within an error about %%uo.5~. Inclusion of higher-
t l = 18 reduces this error to 2.8'. norder terms up o

f atthe second co umn od 1 f Table I we give the values o Q& a
which the function in q.R ' E (4) is minimized for many

set of 1000 inequivalents points. ese va ues
agree with the values found by direct integra ion

first two columns of Table I. This agreementas shown in rs w
sugges s at th t our numerical integrations are re
accurate.

FIG. 3. The solid and long-dashed lines give the charge
f C along single and double bonds, respectively, asdensity o 60 a ong s'

function of the fractional distance r along e on .
that the. charge densities of single an ou e

reciabl . The short-dashed and dotted lines givepp
t e c argeh h r e density along a path which s ar s a

n site for theand en s across ed the plaquette at another carbon
r the en-) and at the center of a double bond (for e pen-hexagon an a e cen

tagon). Note that the charge density at the cee center of the
hexagon or pentagon is quite sma .11

same it is remar y ow akabl 1 w at the center of hexagons and
ons. Thus one should try to simulate the chargepentagons. T us one s ou

t these electron de-d 't b utting positive charges at the
ficiency regions as we shall do in mo e

d in Sec. III, the multipole expansion does
not converge at distances T + —,in ica ing
h ld not hope to model the actual charge distri utions ou no o

. We shall see thisof C6p by a simple point-charge mo e . We s
below more clearly.

IV. POINT-CHARGE MODELS FOR Cep

In this section we shall discuss possible point-charge
d 1 for the charge distribution of a Coo moleculemo es or

w ic repro uceh' h duce the calculated multipoles. Such
r stal oten-will be very useful in the calculation of the crys a po

erties. B now only
two point-charge models have bee p pn ro osed. In Sec. III

n that both models predict wrong values for
tor . The ma-the multipoles and thus are not satisfactory. e ma-

b th models is that there is a largejor assumption in o m
. Thischarge i erence ed'fF b tween single and double bon s. isi. 3. Inm tion is not correct, as one can see from ig. . nassump ion is no

th' fi ure we show the charge density a ong1 n double andt is gure w
single bonds and along paths from a carbon site gthrou h

density at the double and single bonds are almost the

A. Model I

In t is mo eI th' del we shall try to simulate the charge den-
andf C b three difFerent point charges q~, qg,sity o 6O y

ere on the sin-1 t d a carbon site and somew ere
le and double bonds, respectively. We assumegle and ou e on s,

and ~ from a carbonthe fractional distance of qs an q~
site is respectively, Rs and RLi. 'g hFi ure 4 a shows
a schematic representation o '

ga sc
' ' this char e distribution.

This model is capable of repr
'

ge roducin the ILM mo e
SCKfor RD ——Bg = 0.5, qt

——
, qD ———= 0 = —2qs and the
= 0 D = —2qt-. However,

shall see below, such a model cannot pro uce easwes a see
have calculated.vaues o e1 f th multipoles of C6o that we ha

and qDBefore 6xing the parameters BD, Bg, q~, qg,
so that multipoles from this model wi eill be same as those
calculated in ec. , i isS . II it is useful to discuss the physical
regions for the va ues o e1 f the parameters. The fractiona
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(b)

Before giving up this model, it may be useful to discuss
the following point. Since at large and small distances
from the center of the C60 molecule the charge distri-
bution is almost spherically distributed, this part of the
charge distribution can be represented by putting a nega-
tive charge e at the center of Cso. Since at these distances
the wave function is very small, e should be small. Thus
the total charge on the C6o molecule qc+ qD+ 2qs given
in Eq. (5) no longer needs to be zero. It can be slightly
positive. Since now we have no constraint, Eq. (6) be-
comes a 3 x 3 set of linear equations and can be solved
using calculated values of QP for l = 6, 10, and 12. Un-
fortunately, the solution of this equation for 50 x 50 values
of Rs and Rii in the interval [0,0.5] always gives positive

rather than negative, indicating that this model and
others based on the difference in the charges of single
and double bonds are unphysical, and thus we abandon
them.

B. Model II
FIG. 4. (a) Positions of the point charges on the single and

double bonds for the point-charge model I. In the text, it is
shown that from this model it is not possible to fit the first
five nonzero multipoles of C6o by simply varying the distances
Rs and Rii. (b) Location of additional positive charges at the
center of hexagons and pentagons in model II.

distances Rz& and Rs are restricted to lying between 0
and 0.5. The charge qe on the carbon site should be posi-
tive and less than +4 if we assume that two core electrons
are spherically distributed on the C nucleus. The bond
charges qs and qD must be negative. Purthermore, since
C60 is neutral, the charges must be satisfy the constraint

qc+qD+2qs =0

The multipole QP arising from this model is given by

QP = qcSt (o) + qsSt (Rs) + qaSt (Ra), (6)

where

SP (R~) = ) r,'Yi (B,, P'), a = C S D.

From this equation and the constraint in Eq. (5), we see
that for a given Bs and BD, we have a 2 x 2 set of linear
equations. Thus using the calculated values of QP for
two different t, we can fix qc, qs, and qD. We have solved
the set of linear equations in Eq. (6) for 50 x 50 values of
Rs and R~ in the interval [0, 0.5] and unfortunately could
not get any physical solution as described above. We find
that qc is always negative and qs and qD are positive
to get correct values for multipoles of order l = 6, 10.
Therefore we have explicitly shown that it is impossible
to model the charge density of C60 by this model which
includes both the LLM and the SCK potentials.

In Sec. IV A we have seen that the difference between
double and single bonds is not enough to model the ac-
tual charge density of the C60 molecule. Here we propose
another point-charge model which uses the fact that the
anisotropic charge distribution of the C60 molecule ac-
tually originates from the electron deficiency around the
center of hexagons and pentagons. In order to sup-
port this idea, in Pig. 3 we show the charge densities
along double and single bonds and along a path through
the center of hexagons and pentagons. Note that charge
densities along double and single bonds are almost the
same 2 while there are electron deficiencies around
the center of hexagons and pentagons. Thus one may
think of the charge density of C60 as a spherically dis-
tributed cloud of valence electrons, denoted qo, plus pos-
itive charges qp and qH at the center of pentagons and
hexagons to create electron deficienc [see Fig. 4(b)]. The
distances from the center of C60 to qH and qp are denoted
by RH and R~, respectively. (In other words, these pla-
quette charges are not required to lie in the plane of the
hexagonal or pentagonal face. ) We have of course again
qc core charges at the carbon sites. To create electron-
rich double and single bonds with respect to the spheri-
cally symmetrically distributed charge qo, we will again
put point charges qs and qD at the fractional distances
Bs and BD on single and double bonds, respectively.
Prom the charge neutrality of C60 we have

qo + 60qc + 120qs + 60qri + 20qH + 12q~ = 0, (8)

where the charge qo is put at the center of the molecule.
Since we have five independent point charges in this

model, we can fit all multipoles up to l = 18. Because
of the free parameters Bs, BD, BH, and B~ we do not
have unique solutions. However, no matter which solu-
tion we use, we get the same potential energy because all
solutions give the same values for the first five nonzero
multipoles and higher orders do not have much effect on
the potential. We expect qc, q~, and qH to be positive.
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TABLE III. DifFerent solutions for the point-charge model II which reproduce the calculated
values of the first five nonzero multipoles of C6p. Rp = 3.5485 A. is the radius of Cpp. All charges
are given in units of ~e~. (So qp is always negative, whereas q~ and qz are always positive. )

R~
0.3
0.5
0 5a

0.5'
0.2

R~
0.870Rp
0.962Rp
0.962Rp

Rg
1.031Rp
1.078Rp
1.031Rp

Q~
0.675
0,435
0.829

Q~
—0.277
—0.324
—0.373

qs
0

—0.147
—0.353

QH

3.218
0.739
0.736

q~
0.688
0.237
0.375

qp
—96.496
—6.644
—4.220

At this value of RD and Rs, two charges along the bond converges to the center of bond and thus
we have 2qD and 2qs charges at the double and single bond centers, respectively.

In Table III, we list a few solutions. The first solution
is the one which contains a minimum number of point
charges. The other solutions include more point-charge
centers, but do not have any advantage over the first so-
lution. When we set both qD = qs = 0 we do not get
any physical solutions to fit the five multipoles. How-
ever, by varying RH and R~ one can fit the moments
t = 6, 10, and 12. The model with qg = q~ = 0 has 93
point charges on a C60 molecule and predicts the poten-
tial with an error twice that of the model with nonzero
bond charges, which has 153 effective charges.

V. INTERMOLECULAR COULOMB
INTERACTION IN SOLID C60

After having presented the values of multipoles and
point-charge models for Csp we can now discuss the in-
teraction between Csp molecules in solid arising from the
charge distribution of Csp. Since the point-charge mod-
els proposed in Sec. IV give the first five nonzero mul-
tipoles of Csp correctly, the Coulomb interaction can be
well approximated by the interaction of point charges lo-
cated on the Csp. Thus the Coulomb interaction between
molecules I and J is

Vip=) ) qq/R. ..
iGI gF J

(9)

where i, j runs over the effective charges of each molecules
given in Table III. In our calculations we use the set of
charges as given in the first row of Table III, since it has
fewer interaction centers than others.

We show various contributions to the total poten-
tial energy as a function of setting angle P in Fig. 5.
Molecules in each sublattice are rotated about their [111]
directions starting from the standard orientation (P = 0).
In order to make comparison between different models we
show the Lennard- Jones potential, the LLM point-charge
model, and our multipole model in Figs. 5(a), 5(b), and
5(c), respectively. The first thing we notice is that the
potential energy from the multipole expansion is about
ten times less than that from LLM. Thus when our mul-
tipole interaction is used, the orientational dependence
of the 12-6 potential will become important in the selec-
tion of the ground state. Note that the Lennard-Jones
potential has its global minimum at around qt ~ 80' and
thus does not by itself stabilize the observed Pa3 struc-
ture. Aside from the disagreement in magnitudes of the

LLM model and our multipole model, the two poten-
tials are qualitatively very similar up to P 70'. For
the setting angle P ) 70' a strong disagreement between
the two potentials appears. While our model gives the
global minimum at P 93', the LLM potential predicts
a rnazirnurn near this angle (the same is true for the SCK
potential). This difference is a direct consequence of the
particular assignment of point charges in the two earlier
models.

To get more insight into the meaning of the various
potentials, we show, in Fig. 6, the potential energy of
a molecule at the origin when it is rotated through an
angle 0 about the local threefold axis of symmetry rela-
tive to its equilibrium value in the Pa3 structure, when
all other molecules are held in their ground-state orienta-
tions, taken with P = 23.3'. This potential energy would
determine the nature of the lowest branch s of librational
excitations if it were legitimate to consider them as be-
ing localized. (Librons are nearly localized, since their
energy depends only weakly on wave vector. ) In the top
panel of Fig. 6 we show the contributions to this potential
from the Lennard —Jones and the bond-charge model of
LLM separately. (The results for the SCK potential are
similar to those of the LLM potential. ) We see that in
these models the libron dynamics for excitations near the
ground state are dominated by the Coulomb interactions
due to the bond charges. The libron frequencies (which
depend on the curvature of the potential near its min-
imum), the barrier height, and the difference in energy
between the two minima are all dominated by these bond-
charge interactions. All these quantities are much smaller
when the potential is taken to be the sum of the Lennard-
Jones term and the multipole potential. The multipole
potential is plotted in the bottom panel of Fig. 6. This
potential by itself does have the two expected minima,
one is at 0 = 0' and the other at e = 60'. Their energy
difference is 2.2 meV, which is smaller than the experi-
mental value 12 meV. However, the Coulomb part
of the LLM potential and the SCK potential both predict
an energy difference between these two minima of about
150 meV. A difference of this magnitude seems implau-
sible to us, as we now discuss. As pointed out by David
and co-workers, sP the Pa3 structure (e = 0 in Fig.
6) has the center of a pentagon of one molecule facing
a double bond. This configuration is favorable because
these regions correspond to low and high electron den-
sities, respectively. However, nearly the same argument
also applies when the double bond faces the center of
a hexagon, as it does when 8 —60'. Thus these two
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FIG. 5. Variation of the potential energy with setting an-
gle P, i.e. , each molecule is rotated about its [111] threefold
axis (see Ref. 15) for various potentials. (a) Lennard-Jones
atom-atom potential with parameters given in Ref. 17, (b)
bond-charge interaction in the model of LLM, and (c)
Coulomb interaction using model II (with parameters taken
from the first row of Table III) for the location of the point
charges. Insignificant differences arise from the other models
of Table III.

configurations should be close in energy as predicted by
the multipole potential as shown in the bottom panel of
Fig. 6. However, one sees that the LI M potential gives a
large energy difference between these two configurations
as shown in the top panel of Fig. 6. The reason for this
large energy difference is that in the LLM model the pen-
tagon carries a total charge +5q on its bonds, whereas the
hexagon carried a total charge —3q on its bonds. Thus
in the bond-charge models there is a big difFerence be-
tween pentagons and hexagons. In contrast, within the
LDA pentagons and hexagons are rather similar. That
the experiments show a smaller value (12 meV) for the
relative energy of the metastable minimum at 0 60
than that (150 meV) given by the LLM potential may be

FIG. 6. The potential energy for a C60 molecule located
at (0,0,0) as a function of rotation angle 0, away from its
Pa3 orientation, when all other molecules are held in their
ground-state orientations with the setting angle P = 23.3'.
The bond-charge model of Lu, Li, and Martin (Vi,LM) and
Lennard-Jones (Vj2 6) potential energies are plotted as a solid
line and a dotted line, respectively, in the top panel. The bot-
tom panel is a similar plot using only the multipole potential.

taken as evidence in support of the multipole potential.
Although our model is successful in predicting a local

minimum in the potential at the observed Pa3 structure,
the global minimum corresponds to a Pa3 structure with
the setting angle P = 93.6'; this is in contradiction to
experimental observations. We note, however, that our
multipole potential predicts this structure to be only 3
meV lower in energy than the experimentally observed
P = 23.3'. Potential differences of this magnitude may
well be at or near the limits of convergence of our mul-
tipole expansion. Thus more complete calculations are
required, incorporating a more realistic treatment than a
simple multipole expansion for the Coulomb interaction
between C6o molecules.

Since the global mimimum in Coulomb interactions we
find corresponds to a Pa3 with the wrong setting angle,
there must be another mechanism that causes the ob-
served transition Fm3m ~ Pa3. The most likely candi-
date for this is the short-range interaction between C6o



MULTIPOLE APPROACH TO ORIENTATIONAL INTERACTIONS. . . 1897

molecules which has been modeled by the 12-6 poten-
tial, but which, by itself, does not stabilize the observed
Pa3 structure. However, in combination with the multi-
pole interaction, another form of this short-range repul-
sive interaction might possibly stabilize the observed Pa3
structure. Of course the other possibility (which we con-
sider unlikely) is that the charge distribution of Cso in
the solid is much difFerent than one of isolated Cso, which
we used in our calculations. Such a possibility would re-
quire the careful treatment of overlap integrals between
nearest-neighboring C6p molecules.

VI. CONCLUSION
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We have studied the orientational dependence of the
Coulomb interaction between Cso molecules by means of
a multipole expansion based on the quantum-mechanical
charge density of Cso from ab initio calculations. In sum-
mary we have reached the following conclusions.

(1) We calculated the erst five nonzero multipoles (l =
6—18) of Cso in two different ways. We showed the second
nonzero multipole (/ = 10) is not small compared to the
t = 6 moment and thus one has to keep (at least) both
terms in order to obtain the electrostatic potential due
to a Csc molecule. The multipole expansion converges
very slowly for the points close to Cso but still outside
the charge distribution and requires the inclusion of the
terms beyond l = 18.

(2) The first nonzero moment and Coulomb interaction
based thereon was shown to be one order smaller than
the values from phenomenological potentials previously
proposed by Lu, Li, and Martini and by Sprik, Cheng,
and Klein.

(3) We showed that it is not possible to simulate the
charge density of Cso by a point-charge model which is
based only on the differences between double and single
bonds. It is essential to also put positive point charges on
the center of hexagons and pentagons to create electron-
poor regions as pointed out David et al. YVe proposed
a model of efFective point charges which reproduces the
first five nonzero moments of C6p.

(4) In particular, our model II, which incorporates
the charge deficiency in hexagons and pentagons, pre-
dicts two minima which are close to each other in en-
ergy as expected from simple qualitative arguments~
unlike the Lu-Li-Martin and the Sprik-Cheng-Klein po-
tentials. However, the global minimum corresponds to a
Pa3 structure with wrong setting angle P = 93.6'. This
discrepancy is due to either (a) the fact that the multi-
pole expansion does not converge fast enough to predict
correctly the sign of the small energy difference between
these two minima or (b) the failure of the Lennard-Jones
potential to accurately represent the short-range repul-
sive quantum interactions between molecules. As is well
known, the Lennard-Jones potential, by itself, does not
stabilize the observed Pa3 structure.

(5) The electrostatic interaction obtained here can also
play a role in understanding the structure of M3C6p
and other doped systems. This study will be reported
elsewhere.

APPENDIX: MULTIPOLE AMPLITUDES

In this appendix we obtain the number of independent
amplitudes necessary to specify the (2t + 1) multipole
moments of degree l. One can address this question as
follows. The (2t + 1) spherical harmonics YP (8, P) pro-
vide a basis for a (2t + 1)-dimensional representation of
the icosahedral group. In general this representation is
reducible and will contain each irreducible representation
I' of the icosahedral group gr (l) times. In particular, the
one-dimensional identity representation E is contained
g@(l) times in the (21 + 1)-dimensional representation.
Thus there are g@(t) linear combinations of the YP's
which are invariant under all the operations of the icosa-
hedral symmetry group. This number can also be iden-
tified as the number of independent amplitudes required
to specify the QP's.

We determine g@ bysz

gx(t) =
60 ).Xr(&)Xi(&)
1

(A1)

where Q js one of the 60 operations of the icosahedral
group, yr(R) is the character of R for the identity repre-
sentation of icosahedral group, and yi(R) is the charac-
ter of g for the (2t+ 1)-dimensional representation in the
spherical harmonic basis. There are five classes of opera-
tors, the indentity operator E, and the various rotations
through an angle 8 corresponding to twofold, threefold,
and fivefold rotations. The corresponding characters for
the identity representation are

gs(E) = 1, yr(~) = 1, yr(2~/3) = 1,

g&(2~/5) = 1, ~, (4~/5) = 1.
To calculate characters in the spherical harmonic basis,
it is convenient to choose a coordinate system in which
the rotations are always taken about the z axis, Thus the
character is obtained as the trace of the [(2t+1)x (2t+1)]-
dimensional transformation matrix. In this way we find3

(E) 2t + 1 (e)»n((~ + (1/2)]e)
(A3)

((1/2)~]

Taking account of the number of operators in each class
we get the explicit result
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1 sin([l + (1/2)]m. ) sin[(2l + 1)7r/3] sin[(2l + 1)vr/5] sin[(4l + 2)7r/5]+12 +1260 sin(vr/2) sin(7r/3) sin(2vr/5) sin(4~/5)
(A4)

from which it follows that g~(l) first becomes larger than 1 for l = 30: g@(30) = 2.
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