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Phase Diagram of the Dilute Ising Spin Glass in General Spatial
Dimension

Abstract
We use high-temperature and low-concentration series to treat the dilute spin glass within a model with
nearest-neighbor interactions which randomly assume the values +J, 0, -J with probabilities p/2, 1-p, p/2,
respectively. Using the Harris no-free-end diagrams scheme in general spatial dimension, we obtained 15th-
order series for χEA as a function of temperature for arbitrary dilution, 14th-order series for χEA as a function
of dilution for selected temperatures, and 11th-order series for two higher derivatives of χEA with respect to
the ordering field, where χEA is the Edwards-Anderson spin-glass susceptibility. Analysis of these series yields
values of TSG(p), the critical temperature as a function of the dilution p or the analogous critical
concentration pSG(T). Thus we determine a critical line, separating the spin-glass phase from the
paramagnetic phase in the T-p plane. We find values of the critical exponent γ and universal amplitude ratios
along the critical line. Universal amplitude ratios and dominant exponents along the critical line are identical
to those of the pure spin glass for a wide range of dilution, indicating the same critical behavior as that of the
pure spin glass.
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We use high-temperature and low-concentration series to treat the dilute spin glass within a model
with nearest-neighbor interactions which randomly assume the values +J, 0, —Jwith probabilities p/2,
1 —p, p/2, respectively. Using the Harris no-free-end diagrams scheme in general spatial dimension, we
obtained 15th-order series for y " as a function of temperature for arbitrary dilution, 14th-order series
for y " as a function of dilution for selected temperatures, and 11th-order series for two higher deriva-
tives of y with respect to the ordering field, where y is the Edwards-Anderson spin-glass susceptibil-
ity. Analysis of these series yields values of TsG(p), the critical temperature as a function of the dilution

p or the analogous critical concentration psG( T). Thus we determine a critical line, separating the spin-
glass phase from the paramagnetic phase in the T-p plane. We find values of the critical exponent y and
universal amplitude ratios along the critical line. Universal amplitude ratios and dominant exponents
along the critical line are identical to those of the pure spin glass for a wide range of dilution, indicating
the same critical behavior as that of the pure spin glass.

I. INTRODUCTION

The critical behavior of the dilute Ising spin glass
(DISG) has attracted the attention of many authors. '

In this paper we further discuss the DISG that is defined

by the Hamiltonian

F= —(kT/N)[ln Tre ~ ],„, (1.2)

where P=(kT) ', [ ],„denotes an average over all
configurations of the J;.'s and N is the total number of
spins. Our DISG is of considerable interest as it has a

&=—g J; S;S HgS, , —
(Ij)

where (ij ) denotes a sum over pairs of nearest-neighbor
sites ij, on a hypercubic lattice in d spatial dimensions,
and S;=+1. The nearest-neighbor exchange variables
J, . =J; independently assume the quenched values
J,O, —J with the probabilities p/2, 1 —p,p/2, respective-
ly. In Eq. (1.1) we also include the effect of a uniform
nonrandom external field H. Since the J;i's are quenched
variables, the quenched averaged free energy per spin, I,
is given by

temperature-dilution-dimension phase diagram which is
quite distinct from that of other well-known dilute mod-
els in several aspects.

Before discussing the atypical features of the DISG, let
us outline some typical temperature-dilution scenarios.
Undiluted ferromagnetic spin systems, such as Ising or
Heisenberg models, exhibit ordered states in d greater
than the lower critical dimension d„c for temperatures
less than a critical temperature T, . Fluctuation-
dominated transitions (with non-mean-field exponents)
occur in dimensions below the upper critical dimension

dUo (which is 4 for Ising and Heisenberg systems). As di-

lution is progressively introduced, the critical tempera-
ture T,(p) is depressed, reaching zero at the geometrical
percolation' threshold p, . In the Ising case, the nature
of the critical point changes for p, p (1 since there is a
new random fixed point' for finite disorder. Both the Is-
ing and Heisenberg models exhibit percolation critical ex-
ponents ' near the zero-temperature critical point at p, .
The Harris criterion' differentiates between cases such as
the Ising model, where the behavior is determined by a
new random fixed point for finite disorder, and cases such
as the Heisenberg model where it is not. There are some
other families' of dilute systems such as the Baxter-Wu
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model, certain classical antiferromagnets and quadrupo-
lar structures, where a finite-temperature transition does
not occur for a nonzero range of concentration

p, &p &x, . In one of the classical antiferromagnet
cases, ' percolation exponents nevertheless seem to be ob-
served at the T=O transition. In the Baxter-Wu and
quadrupolar cases, no study of this has yet been under-
taken. In some other models, ' one observes different
thresholds and different exponents.

The nondilute Ising spin glass differs from the nondi-
lute systems discussed in the preceding paragraph be-
cause there is already a significant degree of randomness
at p =1. The value of d„c is raised to 6 and d~c is now
believed' ' to be 3. Debate concerning the latter ques-
tion was long and contentious. Therefore there is a ques-
tion of principle to determine what effect further random-
ness of dilution will have. Our group has recently carried
out series-expansion studies of both the p =1 limit' and
the T=0 limit of the DISG. In the former we made a
careful analysis of all dimensions between 3 and 6. Our
d =5 results gave a substantially more accurate descrip-
tion of the critical behavior than had previously been at-
tained below dUC. These results were the first series to
confirm the prediction of Ref. 10 that the zero-
temperature transitions occurred at a threshold ps&
higher than the geometrical threshold p, . We also at-
tempted to determine the nature of the T =0 DISG tran-
sition and gave a summary of the history of this problem
in detail in Ref. 12. Briefly, one follows the "replica
trick" approach of Stephen and Grest to the T =0 limit
for the dilute Ising model. They used the generalized sus-
ceptibilities y'~'=g;[(S;SJ ) ],„, where [ ] and ( }
denote configurational and thermal averages, respective-
ly. They pointed out that for the T =0 dilute Ising mod-
el, all the y' 's diverge at the same concentration p, .
Since these y'~'s represent 2" states, the resulting per-
colation behavior is obtained for n ~0 as the q ~1 limit
of the q-state Potts model. For the T =0 DISG, Aharo-
ny and Giri and Stephen noted that for odd q's y' ' van-
ishes, and they assumed that for even q's all y'~' diverge
together. Since this corresponds to 2"—1 states, they
concluded that the model is equivalent to the q ~—,

' limit
of the q-state Potts model. It was soon realized, however,
that this approach disregarded some frustration effects
and therefore yielded incorrect conclusions. Harris'
showed that. in the limit of high dimensions, the y' ~'s
tend to diverge at T=O at different concentrations

p, &pz &p4 & -, y' ' tending to diverge at the lowest
concentration. However, as soon as y' ' diverges at pz,
the higher y' 's will also diverge, although with weaker
singularities. The dominant singularity at the T =0 tran-
sition of the DISG is thus that of g' ' ~g . Since this is
the same singularity as for the nondilute spin glass,
Harris predicted nondilute spin-glass behavior for the
DISG at a/I p, including the zero-temperature transition
at p =pso(T =0), which is larger than p, . Nevertheless,
it should be noted that the apparent thresholds of the
g' 's are very close and there may be crossover effects
from the nearby fixed point of the —,'-state Potts model.
Some numerical evidence was given to support the exten-

sion of the Harris claim to low dimensions from the T =0
studies of Ref. 12. The present calculation has been un-
dertaken in order to further explore Harris' claim for
general dilution and temperature and to determine
whether there are any intermediate new fixed points, such
as occur in the dilute Ising ferromagnet case for finite
temperature and dilution.

In order to calculate quenched averages such as that in
Eq. (1.2), we introduce the replica Hamiltonian'

&'"'= —g g J;,S S, —hg g S;S,~,
(ij ) a=1 i 1 a(P n

(1.3)

where h is the field conjugate to the Edwards-Anderson
spin-glass (SG) order parameter Q = [(S;) ],„and there
are n replicas. Then we define

F«z = lim — ln Tr[e ],„
2kT p~ ~

n-o n n —1X (1.4)

which is related to F of Eq. (1.2) via the relation
I„=—2I'. We obtained expansions for I k, for
k=2, 3,4, where we define I k as the kth derivative of
I'„~ with respect to the SG ordering field:

gkPF

ahk A=0
k=2, 3,4, (1.5)

where h =Ph. In a previous paper, we showed that, in
the critical regime,

a'kF —(2k —1)!
g~2k (k 1 }!

2k —1
1

k T

The second derivative I'z is the Edwards-Anderson (EA)
susceptibility. ' In the disordered phase [p (pso(T) or
Z'»so(p) ]

—+EA —~—1 y [(SS )2] (1.7)

%e have studied the critical behavior by computing
both universal amplitude ratios ' and critical ex-
ponents along the critical line via a general dimension
low-concentration and high-temperature series-expansion
approach. We have generated 15th-order series in tem-
perature for y for general dimensions and arbitrary
concentrations and shorter series for higher derivatives of
the free energy. Series to 14th order in p at arbitrary
temperature have also been obtained for y . These have
enabled us to determine the complete dilution-
temperature phase diagram for general dimension. These
results suggest that there is no intermediate fixed point
and further support the expectation of a pure spin-glass
behavior along the entire critical line.

The multiple series for general temperature, dilution,
and dimension contain an enormous amount of informa-
tion. The generation of these series is discussed in detail
in Sec. II and in the Appendix. Our algorithm generates
the coeScients of the series, in the high-temperature vari-
able w =tanh (J/kT), as explicit polynomials in p and d.
Thus a single calculation yields results which then enable
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analyses for all p and d. In some sense this may be con-
sidered as a "parallel" algorithm. (We use the term
parallel in analogy with simulation terminology, where
parallelization enables one to calculate many different
cases simultaneously with large savings of CPU time. }
The entire 15th-order series for y for general dimen-
sion and dilution, required only some 100 hours of CPU
time on a Cyber 180/990E. When one considers that for
a pure spin glass in three dimensions the computation
time for simulations on relatively small samples is so
enormous that special purpose machines must be built
and that dilution substantially increases the number of
samples that must be taken, our approach represents an
enormous saving of computer time. Unfortunately, the
higher derivatives required rather more time even within
the "parallel" approach, and therefore we stopped at
11th order, since we mainly required the higher deriva-
tives for amplitude ratios which converge quite well even
for the shorter series. The 14th-order series in p for y "
for a number of temperatures near zero (w =1) took
some 50 h on the Cyber 180/990E. These series are also
good for all dimensions, but had to be calculated in a sca-
lar mode for different w values. Sufficient coefficients to
rebuild all the series are given in Tables I-IV; see APS
repository, Ref. 23.

The enormous amount of information contained in the
series was first processed via D log Fade-approximant
analysis, fitting to the critical behavior

gap exponents and in order to study the universal ampli-
tude ratio ' for the dilute model. These ratios

We have generated the series for I k (k =2,3,4) via the
Harris scheme that uses only no-free-end (NFE) dia-
grams. Details on the implementation of this scheme for
the pure and zero-temperature dilute spin glasses have al-
ready been published. ' ' We therefore list here and in
the Appendixes only our final results. We refer the
reader to the discussion in Sec. III of Ref. 20. The basic
idea is to write the partition function in the form

Z =Trgp; [g (S;,h) ]'g
&,, ) g(S, , h)g(S, , h) '

where z =2d =0.+1,

(2.1)

p; =exp (h/kit) g S; S~
a(P

were calculated in all dimensions along the critical line.
These results are presented in Sec. V. We conclude in
Sec. VI with a discussion of the overall implications of
our results.

II. GENERATION OF THE SERIES

pe( w) —A ( w, —w ) (1.8) f,, =cosh (J/ksT)QS, S, (2.2)

in order to obtain values of the critical exponent y and
the critical values w, for given dimensions and a fine grid
of concentration values. This grid included some 80
different (p, d) locations. The analysis was undertaken
with a specially written, highly automated, and efficient
program that was specially prepared for this project. The
details of the critical parameters and the resulting phase
diagrams in the concentration-temperature plane are
given in Sec. III. Similar analyses were made for the
series in p, which should diverge with the same y at the
temperature-dependent concentration threshold psG.

In many cases we found that the dilute models con-
verged better than the pure system, and to research this
further at certain especially interesting locations we have
also extrapolated these series according to the more de-
tailed critical behaviors

and

X -(p p} [1+a (p p} '] (1.9)

-(w, —w) ~[1+a (w, —w) '], (1.10)

where b, 1 is an exponent that allows for the effect of
confluent corrections to scaling. Details of the special re-
gions and comparisons between dilution and tempera-
ture-series results are presented in Sec. IV.

The higher susceptibilities I 3 and I 4 are expected to
diverge with exponents of y+ 5 and y+2A, respectively,
where h=y+P is known as the gap exponent and P is
the order-parameter exponent for w & w„[(S,) ],„—(w —w, )~. I 3 and I 4 were studied both to measure the

and g(S;,h) must obey

Tr,. jp, [g(S, , h)) f,, ]
g(S, , h)= (2.3)

Tr, tp, [g(S,, h)]']
The essential expansion of g (S, ,h ) for the present case is

presented in Appendix A. To implement the NFE
scheme, we write the I k's according to

(2.4)

15 15 15

I k=ak(0, 0,0)+ g g g ak(l, m, n)w'p d",
1= lm =1n =1

(2.5)

but only nonzero elements are listed in the tables. These
series are for arbitrary dimension and concentration.

Here I k is the calculated susceptibility on a Cayley tree
having the same coordination number (2d) as the d-
dimensional hypercubic lattice, Wd(r} is the weight of
the NFE diagram I, and 5rk(I ), is the cumulant contri-
bution of this diagram to I k. Explicit expressions for
5rk(l ) are given in Appendix B. The expressions in

terms of NFE diagrams are far more complicated than
those using a full set of diagrams, especially for I 4. Nev-
ertheless, because the fraction of diagrams which have no
free ends is very small, there is a very important saving in
computer time when NFE diagrams are used.

The series of g at general p expanded in w are listed
in Table I (see APS repository) and those for I 3 and I ~

in Tables II and III, respectively (see APS repository).
We define the series coefficients ak by
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0.0 d= 8
@=0.8

+++
+

+++ + +

0.072
I

0.080
I

0.092
I

0.100

FIG. 1. Graph of the critical temperature m=tanh (J/kT)
and critical exponent values obtained via Pade approximants to
the logarithmic derivative of the susceptibility series for a bond
concentration of @=0.8, at dimension d =8. A box encloses
the region of optimal convergence.

We cannot obtain a 15th-order series in p for general
w. The reason is that the calculation of the coefficients
ak(l, m, n ) of Eq. (2.5} involves the division of two poly-
nomials in w. When we generate a double series, we ex-
pand this division up to the 15th order. However, if we
are interested in a series in p at a given temperature, we
must calculate this division exactly. We chose to do this
at a few temperatures only, in general dimension, to ob-
tain

15 m

(2.6)
m =1n =1

The nonzero series elements b„(m, n) for y, expanded
in p at fixed w, are listed in Table IV (see APS reposito-
ry}. To the best of our knowledge, the higher suscepti-
bility and p series are new, and the w series for P [Eq.
(2.5)] represent an extension by 5 terms of those of Pal-
mer and Bantilan.

III. PADK ANALYSIS
OF THE PHASE DIAGRAM

In the initial stage of our analysis, we studied the
15th-order series for y with the D log Pade analysis. In
this method one calculates the Fade approximants to
the series of the logarithmic derivative of the susceptibili-
ty. To a first approximation, we expect g to have the
singular behavior of Eq. (1.8) near the critical point.
Therefore the logarithmic derivative of g is expected to
have a simple pole at w, with a residue —y:

d in+" —y
dw (w —w, )

The 14th-order logarithmic derivative series derived
from the 15th-order y series yields 105 approximants
denoted by P&, 1~D+C & 14 and 0~D, 1~C. (The
approximant P& is a ratio of two polynomials: one of or-
der D divided by another of order C.} These approxi-
mants give 105 di6'erent values for w, and y, and all 105
can be generated on each of the 80 (d,p) grid points. As
a first step, making no assumptions concerning the choice

of approximants, the values of the approximants were
presented on a pole-residue plot for each of the 80 (d,p)
grid points. The center of the region with the highest
density of approximant values was chosen as the result.
An example of such a pole-residue plot for the case of
eight dimensions is shown in Fig. 1 for p =0.8. Here the
central boxed region (chosen by visual inspection) gives
estimates of y = 1.05+0.05 and w, =0.0875+0.0005.
This procedure was found to be useful for obtaining an
approximate picture of the phase diagrams, but for lower
dimensions where the convergence of the approximants is
poorer, the boundaries of the region of high density of
approximants were blurred and other schemes for inter-
preting the results had to be considered.

In order to tackle the large amount of data encoun-
tered in this project, viz. , 105 difFerent values per value of
bond concentration per dimension, and to maintain fiexi-
bility while automating part of the decision process, a
new FORTRAN routine for Fade analysis was written.
This routine generates the table of all 105 approximants
for given dimension and concentration and places it in a
file with a standardized labeling scheme, the label being
generated by use of character graphics within the pro-
gram. All these files are accessible from a single output
graphical program written in FORTRAN using DISSPLA

graphics. The graphical aspect of the results was espe-
cially useful for rapid collating of the approximant data
in any desired form This. enabled quick experimentation
with different selection schemes for the approximants.
This program has become the basis for a new set of
series-analysis algorithms, which will be described in de-
tail in Ref. 26.

We found that the best converged alternative to the use
of all approximants for estimating values of the exponent

y and transition temperature T, (or equivalently w, ) is to
use the values of 11 high and central approximants denot-
ed by P7, P6, P5 Ps P7 P6 P5 Ps P7 P6, and P5.7 7 7 6 6 6 6 5 5 5 5

Graphics of critical temperature and exponent estimates
were obtained from the approximant files as a function of
concentration of bonds. For high dimensions,
d )d Uc

=6, all 11 values of these approximants are in ex-
cellent mutual agreement for both the critical tempera-
ture values and the critical exponent values. The values
of w, from these 11 approximants for all bond concentra-
tions at d=8, 5,4 are presented in Figs. 2(a), 2(b), and
2(c), respectively. In the two higher dimensions d =8
and 5, the values of the 11 approximants are in good mu-
tual agreement, as can be observed in Figs. 2(a) and 2(b).
In these dimensions these values are also in good agree-
ment with the values obtained from the average of all the
105 approximants via the pole-residue plots. The average
values are represented by the solid lines in the figures. As
the dimension is decreased, there is increased dispersion
in the approximant values, as Fig. 2(c} demonstrates for
d =4. The values of the zero-temperature threshold con-
centration @so(T=0) and the pure system value

w, (p =1}are compatible with the results obtained for
susceptibilities of the zero-temperature dilute' and the
pure Ising spin glasses, respectively.

The same analysis was also performed an the g series
to 14th order in bond concentration far a number of fixed
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temperatures m =0.87,0.92,0.99. We thereby obtained a
second independent set of values of points on the critical
line in the neighborhood of zero temperature (w=1).
Unfortunately, for dimensions d =3,4, 5, these values do
not coincide with the values obtained from the series in
temperature, as can be seen in Fig. 2. A further analysis,
a owing corrections to scaling, was carried out on the
series in p in order to determine whether this discrepancy
is due to the limited length of the series. This analysis is
described in Sec. IV.

The values of the high and central approximants for
the critical exponent y also become somewhat dispersed
as the dimension decreases. These values for y along the

d=8
critical line are shown in Figs. 3(a) 3(b) a d 3( ) f, an c or

, 5, and 4, respectively. As can be seen in Fi . 3 f
d& ~ ~

, or
4 the critical exponent y has a fairly constant value

for bond concentrations greater than -3p (0). Al-SG
though the average is still constant, individual estimates
are somewhat dispersed in d =4. At lower bond concen-
trations, the y values decrease smoothly and monotoni-
cally as p decreases. At the zero-temperature critical
bond concentration psG, the exponent has a value agree-
ing with the exponents found at the zero-temperature
threshold (p, ) values quoted in Ref. 12. In the case of
d =3, the graph of y as a function of concentration
shows considerable dispersion in approximant values for

0.0- 1.5
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0.2-

04

E.akiRI)t[I / I / ) [ g y a R I I I I i I
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~ - P SERIES AVERRGE
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x
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0.0
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7 5
+ - 6, 5
' - 6.6
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(c) d=4
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I
o - 7, 6
& - 7)5
+ - 6,5
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0.2 0.4 0.6 0.8 1.0

(c) d=4

p

FIG. 2. Phase diagrams for (a) d=8, (b) d=5, and (c) d=4
as obtained from values of 11 high and central approximants.
The solid line

'
line in each figure represents the average of the esti-

mates obtained from pole-residue plots of all 10S approximants.
The solid circles are average results derived from series in the
bond concentration p at fixed m.

0.0
0.2 0.4 0.6 0.8 1.0

p

FIG. 3. Pa~-dh-approximant estimates of the critical exponent

y as a function of bond concentration for (a) d =8, (b) d=5,
and (c) d =4.. Values of 11 high and central approximants are
shown.
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concentrations above p =0.5, with convergence to
y=2. 7 near p =0.5. This graph is not shown and this
situation is discussed in detail below.

IV. ADDITIONAL ANALYSES IN
SPECIAL REGIONS OF THE PHASE DIAGRAMS

The results of the D log Pade analysis of the high-
temperature series in the higher dimensions (d ~ 5) are in
excellent overall agreement with exact results and with
the series for both the pure and zero-temperature sys-
tems. There are two notable deviations from internal
consistency and agreement of the approximant values.
One occurs near the pure limit in three dimensions,
where the values of the critical exponent y and the criti-
cal temperature w, exhibit a large dispersion. This is dis-
turbing, but undoubtedly reflects problems seen also in
analyses of the pure system. Just as in the pure system,
some slight discrepancies of a similar nature were also
observed in d =4.

The second deviation from internal consistency is near
the zero-temperature limit in three to five dimensions,
where the critical values obtained from series in p and
series in w do not mutually agree. This deviation was
unexpected and is especially surprising since the simple
D log Pade analysis described above does agree with the
estimated from the zero-temperature DISG series.

In order to determine whether these two problems
reflect any real crossover efFects or are merely artifacts of
the D log Fade analysis, we have studied the series in
these two limits with allowance for corrections to scaling
such as appear in Eq. (1.9). Two methods M1 and M2,
which are discussed in depth in Refs. 26-29, have been
used. In both these methods, transformations are made
to eliminate the efFect of corrections to scaling, and then
graphs of Pade approximants to the dominant (correc-
tion) exponent as a function of trial correction (dominant)
exponent are drawn at a trial threshold or temperature
value in M2 (M1). The chosen set of (y, h, ) values is
within the region where different approximants give the
same results in both methods, and the chosen critical
point is that for which optimal convergence is seen.
These methods were applied at many difFerent points in
the phase diagram, in all dimensions. Excellent agree-
ment with averages of the difFerent approximants was ob-
tained, except for two cases. These two cases were exact-
ly those itemized above. This shows that apart from
these cases, where internal inconsistency already gave a
signal of trouble, the D log Pade method can give an ade-
quate analysis for many aspects of this model. In particu-
lar, this method is substantiated by M1 and M2 for d ~ S.

In d =4, the more detailed Ml and M2 analyses gave
exponent estimates near y=2.0 for large p values, in
agreement with the pure values of Ref. 20 and the aver-
age of the dispersed results of the D log Fade analysis.
Somewhat surprisingly, convergence is actually better for
the more dilute systems. This may be due to the fact that
dilution decreases the number of loops and thus may de-
crease the efFects of frustration.

The difference between results in the two directions
near T =0 can be seen in Fig. 2; the results from the tem-
perature direction agree with those of Ref. 12 where
corrections to scaling were taken into account and
disagree with those from the simple Pade analysis in the p
direction. In order to explore this discrepancy, the
correction to scaling analysis was undertaken for the new
series in both directions. I.et us consider the four-
dimensional case in detail. The simple Pade analysis dis-
cussed in Sec. III gives (w„pso ) estimates of (0.98,0.17),
(0.94,0.18},(0.90,0.19), and (0.86,0.20), for the w series at
fixed p leading to a zero-temperature threshold of a little
below 0.17 in agreement with the direct value of 0.1645
from Ref. 12. For the p series, the simple method gives
(0.99,0.126}, (0.92,0.133), and (0.87,0.14), implying a
threshold nearer to 0.12S. This is substantially below the
percolation value (p, =0.16) which is a lower bound on
the dilute spin-glass threshold. When the Ml and M2
analyses were carried out, we found that the effect of
corrections on the w series at fixed p was slight and al-
tered the optimal threshold only along the vertical line of
the phase-diagram boundary. The threshold remained
near 0.17 in all cases. However, for the p series at fixed
w, the corrections appear to have a very large effect. For
example, let us consider the series at m =0.99. The sim-
ple analysis here gives pso=0. 126, with y being far too
low at 0.45. The correction to scaling analysis gives
better convergence for pso =0.165, with y =1.2. Slightly
higher thresholds correspond to higher y values, similar
to the results given in Ref. 12 for zero temperature.

V. RESULTS
FROM THE HIGHER SUSCEPTIBILITIES

A. Gap exponent

The 11th-order w series for the higher susceptibilities
I 3 and I & should diverge with the dominant critical ex-

ponents y+6 and y+2h, respectively. We carried out
estimations of these exponents with the same techniques
as used for the y series. From the methods that did
not allow for the effects of corrections to scaling, we ob-
tained 5=2.0 and thus p= 1 at d =8. For d (dUc =6,
the values of the simple D log Pade analysis were greatly
dispersed. For example, in five dimensions the values of
y+6=2y+p ranged between 6.2 for the pure spin glass
and 3.0 for the zero-temperature critical bond concentra-
tion pso(w, =l). Such a continuous variation of ex-
ponent as a function of p indicates either an inadequacy
in the D log Pade analysis or an insufficiently long series.

Allowance for corrections to scaling improved the situ-
ation somewhat; in particular, the M1 results were
surprisingly good for such short series. For example, at
p =0.8 in d =5, we measured y = 1.72+0.04 from M1 on

at w, =0.171 for 15 terms [consistent with the un-
biased exponent and temperature results as given above
in Figs. 2(b} and 3(b), respectively, from the D log Pade
analysis]. For I 3 we found y+b. =4.6+0. 1 at the same
temperature and threshold, implying 6=2.88+0.14 and
p=1.1+0.14, using the y from the longer series. The
values for y from shorter series are higher, leading to a
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lower P estimate if used. The results at p =0.8 are typi-
cal of those above p =0.S. For p =0.4, where m, =0.33
gave optimal convergence, we measured y+ b =4.1, sug-
gesting that like the y estimates there is a slow decrease
in 5 for concentrations below p =O.S. Overall, the gap
exponent measurements are not extremely accurate, but
they are consistent with a constant gap exponent, with
the same value as that of the pure model values quoted in
Ref. 20.

B. A.mylitude ratios

Series for the universal amplitude ratios R—=r,r, /(1.3} were obtained by multiplication and
division of the 11th-order series in w for I 3, I 4, and the
11th-order portion of the 15th-order y series. Pade ap-
proximants were found for the amplitude-ratio series, and
their values were calculated for the corresponding critical
temperatures obtained from the I 2 analysis. Results for
11 high central approximants are in excellent mutual
agreement for d =8 and become dispersed with decreas-
ing dimensions. The values of the 11 high and central ap-
proxim. ants are distributed around a constant value, ap-
proximately 3 for d ~3 along the critical line. Our re-
sults for d =8, 5, and 4 are given in Fig. 4. In d =8 all
the approximant values are in excellent mutual agree-
ment along most of critical line. However, near the T =0
critical point, the values of most of the approximants rise
abruptly. This behavior is also noted in four and five di-
mensions. This behavior persists for d ))8 as well as for
the DISG series on the Cayley-tree lattice. We could find
no physical argument for this sudden rise; it is certainly
not connected with frustration since the latter is absent
from the Cayley tree. It appears to be an effect related to
the shortness of the series which causes increased uncer-
tainty, especially as TsG decreases. One possibility is that
the rise could be related to some small bias introduced by
the finite-series analysis in the w, (p) values. This may
cause a bias in the amplitude-ratio values, proportional to
~dw, /dp, ~. This bias would hardly be noted in the high
bond concentration regime where ~dw, /dp, ~

is very small
(Fig. 2), but would be amplified in the vicinity of the
zero-temperature critical point where the absolute value
of the derivative is the largest. Additional evidence for
this correlation between the deviation of the approximant
values and the absolute value of the critical temperature
to bond concentration derivative can be found when one
notes that both this deviation and the increase in the ab-
solute value of the derivative (Fig. 2) grow larger as di-
mension is increased.

These results must be compared with those for other
models, the only available potentially relevant ones being
for the pure spin glass and for percolation. (From the
discussion in the introduction and in Ref. 12, we do know
that there is no physical reason to suspect percolationlike
amplitude ratios, but the crossovers near the T =0 criti-
cal point give us reason to make comparisons and
double-check. ) The values of R for the pure spin glass
are given in Fig. 4 or Ref. 20 (explicitly 2.77+0.08 at
d=5 and 2.8+1.5 at d =4), and those for percolation
can be derived from the S ratios in Table VI of Ref. 30.
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FIG. 4. Values of 11 central and high Pade approximants to
the amplitude ratio R for (a) d =8, (b) d =5, and (c) 1=4 as a
function of bond concentration p.

(We quote the results 2.573, 2.221, and 1.917 for d =5, 4,
and 3, respectively, from this table. } From Fig. 4 it is
clear that for all concentrations there is a difference be-
tween the plotted points for the DISG and the percola-
tion value. The difference persists for all concentrations.
There is no crossover towards percolation values for low
concentrations as seems to occur for exponents [Fig.
3(b}]. This strongly supports the argument that the criti-
cal behavior along the critical line is governed by the
pure spin-glass parameters and is difFerent from that of
percolation. We must note, however, that an examina-
tion of the results for the universal amplitude ratios of
the pure Ising spin glass, obtained from a 15th-order
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series in m, reveals that the group of results for high or-
der and central approximants exhibit a bifurcation into
two groups of results which makes it hard to determine
the value of the result (the numbers quoted above are
averages). This behavior could persist in the dilute model
and complicate our conclusions.

VI. SUMMARY AND CONCLUSIONS

(1) We studied the critical properties of the dilute Ising
spin glass and obtained phase diagrams in the tem-
perature-dilution plane for various spatial dimensions.
These results for the transition temperature Tso(p) or the
critical concentration psG(T) may allow for comparison
to measurements on nonmetallic spin glasses such as
those mentioned in Ref. 31.

(2) As expected, the critical properties and universal
amplitude ratios are independent of p. The values of the
critical exponents remain constant from p =1 down to
p=3pso(0). The universal amplitude ratio R of Eq.
(1.11) was found to be independent of p over almost the
entire concentration range down to pso(0).

(3) Our results are not inconsistent with our previous
calculations' and with the critical behavior of the dilute
Ising spin glass being in the same universality class as the
undiluted spin glass, as one would expect from the Harris
result. '

(4) The critical behavior of the zero-temperature criti-
cal point is not that of classical percolation. This is
shown both from the critical exponents and from the
value of R. Our results are consistent with, but do not
show conclusively, that the zero-temperature critical
properties are the same as those for all p )pso(0) as as-
serted in Ref. 12. The fact that the exponent y decreases
towards its value for percolation when p approaches
psG(0) might indicate crossover due to the vicinity of the
percolation point. However, the amplitude ratio R
moves away from its percolation value. These deviations
are worse for shorter series and lower dimensions. %'e

believe that these deviations are spurious artifacts, due to
the shortness of the series which becomes more severe as

Tsz decreases towards zero.
(5) In the lower dimensions, convergence is substantial-

ly better for intermediate dilutions than for the pure case,
presumably due to a decrease in frustration. This sug-
gests that it might be of interest to carry out simulations
on a dilute system to see if this will improve convergence
there too.

Finally, we have recently become aware of Ref. 32,
where results for the pure three-dimensional SG are
given. These are in good agreement with our critical
temperature estimate and were unfortunately omitted
from the comparisons in Ref. 12.
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APPENDIX A: THE FORM OF g(S;,h )

In this appendix we discuss the form of g(S, h ). This
derivation is valid for any symmetric distribution proba-
bility, namely, P (J)=P( —J') (this appendix is a continua-
tion of Appendix 8 of Ref. 20, and so we advise our
readers to read this appendix for a more detailed back-
ground}:

g(S, h ) =c(h)g(S, h ), (A 1)

where c (h) is independent of S and g(S, h ) is normalized
so that itisunity for S =0,

(ch)= 1+(y)An+0(n ),
where

(A2)
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y(h)=lim Tr, exp Ph g S S~ g(S, , h } [1—g(SJ,h)] .1

n~o 2n (p

We only need g(S;,h ) to leading order in n. It is determined by setting

g(S;,h }=1+hav,(S, )+h [v2(S,. )b2+v, (S;)b, ]+A [u3(S, )c3+v2(S,. )cz+v&(S; }c&]

+h [u4(S;)d4+u3(S, )d, +v2(S, )d2+u, (S;)d, )+

(A3)

(A4)

where for 1(2k ~n we define

v„(S)= s"s" ~ s"' (A5)

obtain

a =xD,
b, =—2x(1 coax )D— (A6a)

(A6b)
For the calculations of order h, we only need to evaluate
the following coefficients in Eq. (A4): a, b&, b2, and c&.
In addition, we need to evaluate y(h) up to order b . We b2=3x D 5, (A6c)
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C 1

17x
3

(1—3ox +2ox ) D
APPENDIX B:

THE DIFFERENT SUSCEPTIBILITIES
IN TERMS OF NO-FREE-END DIAGRAMS

+Box (1—x)(1 o—x )D

+9ox (1 x)D—b, ,

where D =(1 c—rx ) ', o =2d —1,

(1—ox )y

(1—oy)x

x =[tanh Jlks T],„,
and

y =[tanh J/ks T],„.

(A6d}

(A6e)

(A6f)

(A6g)

In this appendix we discuss the form of the different
susceptibilities in terms of contributions of no-free-end
diagrams. This appendix is a continuation of Appendix
C of Ref. 20, and so we advise our readers to read this ap-
pendix for a more detailed background. Although our
series were calculated for a specific distribution function
of the bonds, the NFE formulation is adequate for any
other even distribution (e.g. , Gaussian}.

We use the notation nb =number of bonds in the dia-

gram I, n, =number of sites in the diagram I, z,.

=number of neighbors of site i in the diagram I, and

~, =z, —1, as well as that of Appendix A. In specifying
the I k and 51 „(I ) that appear on the right-hand side of
Eq. (2.1), for k =2, 3, and 4, it is convenient for presenta-
tion to break up their contributions. For k =2,

For the distribution that we use, x =wp and y =w p.
We write y(h) =g„y„h"and have

(A7a)

and

I =D(1+x)

n,

5I'2(I )=D g z; x 2nb—x(1+x)

+ g (1—okx)(1 cr,x—)

(Bla)

y2= —,'xD2,

y3= —x(1 ox )D—

(A7b)

(A7c)

k, l er

X[(SkS() ],„ (Blb)

+ ,'cra b~+—4oa —+ —",a] . (A7d)

y4= —[2oac&+ ,'ob, + ,'ob2—+—',o—(o.—1)a bz

—3o(o —1)a b&+ ", o(cr —1)(—o—2)a + —,'c&

+3oab2 4oab—, + ", cr(o ——1)a + ,'b2—

where x is defined in Eq. (A6f}. We have used the distri-
bution function

P(J;, )=(1—p)5~ o+ (5i J+5i i) . (B2)

Therefore the configurational average is actually obtained
as a sum over all the possible subdiagrams each weighted
by its probability, namely,

n

5I 2(I')=D g z; w p 2nzwp(—1+wp)+ g P(I",p) g (1 crkwp)(1 —o~wp)—[(S Sk&} ],„
r'Er k, lor'

(B3a)

where (B4)

Where p =1, then

(B3b) is calculated for the Hamiltonian restricted to the bonds
of the cluster I"', which we write as

(B5)

1 if I '=I,
P I', 1 0 otherwise . Then

Here nb(I ) and nb(I ') are the number of bonds in I and
I", respectively. Here and below, o., z, n„and nb are
evaluated in I and all the correlations are evaluated in
I". We use the notation that

(B6)

Thus, in Eq. (B3a) (and similarly below) [(SkS& ) ],„ex-
plicitly depends on I".
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Hereafter we present our results for the general even
distribution. In order to obtain the explicit form for the
distribution that we have used in our calculations, one
should follow the example of Eqs. (B3a) and (B3b).

For k =3,

I i = —4D (1+3x—3ox —ox ),

Sr,(l ) =D'A, (r) —12(1—x)Sr,(r),
where

(B7a)

(B7b)

n n

A3(l )= 48nb —12 g z; x + 4 g z; —12 g z;+16nb x

+ g I 2 (ok+ol )x +
I ok +ol (ok+o! ) okol ]x + okol(ok +ol )x ] [ & kS! & ]av

k &lEI

—24
i &j&k&I

(1—o,.x)(1—o,x)(1—o„x)[&SS, &&S S, & &S„S,. &],„. (B8)

We see that for k =2, 3 the generalization of the NFE formulation for the dilute case is almost trivial. We now mere-
ly use x instead of w, and the evaluation of the configurational average of the various correlation functions is more com-
plicated. Unfortunately, for k =4 we should also use averages of tanh PJ and this fact highly complicates the NFE for-

mulation.
For k =4,

I ~=34+68Dzx+D zx I48+ [48(z —1)(z —3z+1)—68(z —1)(z —2)]x ]

+34D zx[2 6(z —1)x——(z —1)(z —Sz+2)x ]

+48D z(z —1)x [2—zx —2(z —1)x +z(z —1)x ]+54D lax +54D hz(z —1)x (2—zx),

51 (I ) =240D (1—x) 51' (I')+D A'(I )+D55A2(I )

+D A4+D bA4+D b, A +D A +D b,A4+D 5 A +D (1—5) A

(B9a)

(B9b)

where!5, is defined in Eq. (A6e). In the absence of dilution y =x so that!5, =1 and Eq. (B9b) reduces to Eq. (C8b) of
Ref. 20. %e have

n n n

A4=112nsx+ 232 g z; —992nb x — 96 g z; +24 g z; —656nb x

n n

+ 96 g z; —208 g z; +224nb x

+ ( 1 x) y [
—112—16[ 26+29—(o; +0j ) ]x + 16[18(o,+ cTj )2+29cr, oj —8(g,..+g . )]x2

i&jEI

—16[18o,o (o, +crJ
.) + 10o;o 1 ]x ] [ & S;SJ.& ],„

+576
i &j&kEI"

[1—(cr, +o +ok)x+(o o!+iojok+oko()x

—o,.o,o„x'][&S,.Sj&&S,.S„&&S„S,&],„ (B10)

A42= —432nbx2+216 g z, x —216 g z, 432nb .x—

+(1—x) g [432x —432(o, +o.)x +432o';ojx ][&S;SJ& ],„,
i&jEI

(Bl 1)
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nn

A4= 108 g z, . —6nb x — 136 g z, —396 g z, +456nb x

nn

+ 34 g z; —28 g z, —66 g z, +120nb x

+ g [(216[2—(o, +o., )]x+[—64—384(o;+o, )+408(o;+cr, )']x'
i&jEI

[[576—384(o';+o~+ok)]x+192[(o, +cr~+crk) (cr;crj+oJok'+oko;) —2(cr;+o~+ak)]x
i &j&k&I

+192[(oIo~+o')ok+oko() 3ar—o~ak (o—

;+a~+ok�)(o(oj+a
Jok+oko; )]x

+192o;o'Jok(cr;+o I

+ok�

)x j [(SSJ ) (S~sk )(Si s; ) ],„
{1—(1+a;+cr +2crk)x+[(2o'k+1)(cr, +crj )+err,

(1+ok�)+cr;cr~]x

+216
i &j;kit,j E.I

[(crz—+crk)(cr;+cr )+cr;crj(2cr&+1)]x +ok(ok+1)o, cr x .j

x [&s,s„)'(s,.s„&'],„

( 1 x cr, )( 1 —x cr )( 1 —x o'
k
—)( 1 —x o't )

i &j &k &l&I

X [288([(S,S ) (S S„)(S„S,) (S,S; ) ],„+[(S;S„)(S„S ) (S S, ) (S,S; ) ],„

+[&s,s, ) &s,s, & &s,s„&&s„s,) ],„)

—96([(S;S,S„S,) (S;S, ) (S„S,) ]„+[(S;S,S„S,) (S,S„)(S S, ) ],„
+ [&s,s,s„s, & &s,s, ) &s,s„&],„)

+72([(S;S ) (S„S,) ],„+[(S;S„)(S S, ) ],„
+[(S;S,) (S,S„) ],„)+24[(S;SS„S,) ],„j, (B12)

n, nn

A&=108 3nbx + g z; 5nb x —— g z, —2 g z;+2nb x

+108 g ([—4x+4x +2[(cr;+cr~) —(o, +cr )]x 2o;oz(cr—, +crz)x j[(SSJ) ],„

+ [2x —[2+3(o,.+a, )]x +[(o,+o,. ) +2(o;+o, }+2o;cr~]x
—[2o,.o +(o, +cr. )o,.o,-]x j[(SS.) ],„)

[x —(a;+o~+crk )x +(o;oj+crjoi, +crko;)x o;crjokx—][(SSk ) (S~sk ) ],„+2
i &j;kWi,j EI

(B13}

A4= —108nbx +54 g z, 2nb x +10. —8 g [x —(o;+crz)x +o, cr x ][(S,.S.. ) ],„, (B14)
i &jEI

+ [192o,.a .[1—(o,. +o . )]—136(o,. +o } —120(o, +cr~) +80(o;+o J ) jx

+a, a [432+136(o;+cr )+.216(cr;+a~}—176cr;aj. ]x )[(S;S)) ],„
+ I108—216[1+(o;+cr )]x+108[1+3(o;+o))+(o;+cr~) +2a;o~]x

—108[2o,o, +(a, +cr, ) +(o, +o, )(1+2o,o, )]x +108o,o [1+(o;+o )+o;oj]x j[(S,S ) ],„]
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n

As=108 g z; —2n& x +108 g ( —[2(tr, +oj)x —4o;ojx ][&SSJ) ],„

+ [2x —2[1+(o';+o . )]x +[(o';+o'. ) 2rr—;crt+(tr;+trj )]x ][&SS& ) ] „)

n

A4= —108 g z, —
n& x

i=1

i &j;kAi,j & I
[—x+(tr;+o )x —o;cr x ][&S,S„) &S S„) ],„ (B15)

+108 g ([2(o;+o )x —4o;o x ][&S,S, )'],„

+I —2x+2[2+(o;+oj)]x +[ (ot—+oj) +2rr;OI —2('trt+oj )]x ][&S;SJ) ],„}

[—x+(o, +~,. )x' —o,.o,.x'][&S,S„)'&S,S„)'],„
i &j;ki, jEI'

A4=108n&x +108 g [—2x +(o;+o&)x ][&S;SI) ],„,
i&jEI

A,'=108 y '[&S,S,. )'],„.

(B16)

(B17)

(B18}
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